UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Modeling Number Sense Acquisition in A Number Board Game by CoordinatingVerbal,
Visual, and Grounded Action Components

Permalink
bttgs:géescholarshiQ.orgéucéiteméZEBglsSV\:/I
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Yuan, Arianna
McClelland, James L.

Publication Date
2019

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/23p1s8vv
https://escholarship.org
http://www.cdlib.org/

Modeling Number Sense Acquisition in A Number Board Game by Coordinating
Verbal, Visual, and Grounded Action Components

Arianna Yuan (xfyuan @stanford.edu)

James L. McClelland (jlmcc@stanford.edu)

Department of Psychology, Center for Mind, Brain, Computation and Technology, Stanford University, Stanford, CA

Abstract

Previous studies including Ramani and Siegler (2008) have
shown that playing a number board game improved students
performance on several numerical tasks, including numeral
identification, magnitude comparison, counting and number
line estimation. However, the computational mechanism
underlying such number sense acquisition remains unclear.
Here, we aim to fill this gap by building a model that
simulates play of the game as well as the basic numerical
tasks. We hypothesize that cognitive components that are
used in the basic tasks are recruited to work together when
children play the game, so that the learning induced by
playing the game also manifests itself in those tasks. We
reproduced the empirical findings with a neural network model
implementing our hypothesis. This computational approach
demonstrates how a single model that coordinates components
of number processing in different modalities (visual, language
and spatially-guided action) can explain the number sense
acquisition in number board game playing.

Keywords: Numerical Cognition; Mathematical Education;
Neural Networks; Board Games

Introduction

Mathematical concepts are notoriously hard to learn, perhaps
because they often involve a range of distinct properties.
Even the seemingly simple mathematical concepts, such
as the natural numbers, may have diverse properties and
multiple representations. For instance, the concept of “five”
can be grounded as the cardinality of a set; as a position
on a line; as a distance in space; or as a number of
events in a temporal sequence. In fact, researchers have
summarized these observations and proposed that humans use
several grounding metaphors to understand numbers (Lakoff
& Nuiiez, 2000), including arithmetic as object collection,
arithmetic as the use of a measuring stick and arithmetic as
motion along a path.

Given these diverse groundings, the perceptual variance
of natural numbers may be much larger than that of many
ordinary concepts. For example, “five dogs”, “five houses”,
and the position in a row between 4 and 6 are perceptually
very different, yet they can all instantiate the number “five”.
How do children learn to link different representations of
numbers, particularly non-symbolic ones, such as cardinality
and distance in space, to symbols such as verbal number
words and written Arabic numerals? This problem is called
the symbol grounding problem (Harnad, 1990), thought to be
equivalent to the problem of determining how we assign a
meaning to a symbol (in our case, a number word).

Many researchers have attempted to provide an answer
to this problem. One popular account, the approximate
number system (ANS) mapping account, assumes that a
symbol acquires its numerical meaning by being mapped
on a non-verbal and innate ANS. Evidence supporting this
hypothesis includes longitudinal studies in developmental

psychology. For instance, there is a large body of
literature showing a correlation between non-symbolic
number processing and symbolic math (Halberda, Mazzocco,
& Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011)
and arguing for a causal link between the two (Park &
Brannon, 2014).

Whatever the origin of non-symbolic number may be,
the question remains, what is the process whereby the
many diverse aspects of non-symbolic number and symbolic
numbers are acquired, to support skills such as number-space
mapping and numerical magnitude comparison? In the
current paper, we begin to address this question. Particularly,
we will focus on a number board game that has been used
in several studies to provide a rich learning environment that
grounds various aspects of numerical processing and links
them to the printed and spoken symbols for numbers. In
the seminal paper by Ramani and Siegler (2008), the authors
showed that playing this number board game for roughly
an hour spaced over several sessions increased low-income
preschoolers’ proficiency on four diverse numerical tasks:
numerical magnitude comparison, number line estimation,
counting (defined as reciting the count list from 1 to 10) and
numeral identification. Below we describe the details of their
intervention study.

In the board game, the board includes 10 horizontally
arranged squares of the same size, with the word “Start”
at the left end and “End” at the right end. There are two
conditions in the study. In the experimental condition, the
board the squares are numbered consecutively from 1 to 10
in order from left to right. In the control condition, the
squares only have alternating colors. In addition, in the
experimental condition, the game has an associated spinner
with a “1” half and a “2” half, whereas in the color board
version it has a spinner with colors that correspond to the
colors of the squares on the board. Before playing the game,
the participants were tested on 4 numerical tasks: numeral
identification, magnitude comparison between two numbers,
counting and number line estimation.

In the game, children chose an animal token and used it to
mark their progress on the board. Children were instructed
to take turns spinning the spinner and were told that the
one who reaches the end first wins the game. Children in
the experimental condition were told that on each turn, they
would move their token the number of spaces indicated on the
spinner. Also, they were required to say the number that they
spun and the numbers on each of the squares they reached as
they moved. For instance, if they were on 5 and they spun
a “2”, they would first say “two” then say “six”, “seven” as
they moved. In the control condition, children were told that

3186

they would move their token to the next square with the color
that matched the one they spun. Similar to the experimental
group, they need to say the color they spun and the colors on
the squares they reached as they moved.

After the participants played the game several times in each
of four short sessions over the course of several weeks, they
were tested a second time on the 4 numerical tasks mentioned
previously. The experimental group demonstrated significant
improvement, whereas the control group did not. The gains
remained 9 weeks later in a follow-up session, in which the
same tasks were tested a third time.

Here we propose a mechanistic account for the
enhancement of numerical processing skills that was induced
by playing the game. We hypothesize that multiple cognitive
components (visual, language and spatially-guided action)
are recruited and coordinated in the game environment.
Particularly, the process of moving the token incrementally
along the number board (motor) is coordinated with saying
the next number word through the count list (verbal) as well
as naming the printed numeral on each square tile on the
board (visual). We suggest that the various components
engaged in this process are also engaged in the basic
numerical tasks, allowing learning occurring in the game to
transfer to the basic tasks.

Another motivation for the current paper is that we want
to address one of the common shortcomings of neural
network models, which is their lack of flexibility in multi-task
learning scenarios. In the current paper, we would like to
show that as long as the model is composed of meaningful
cognitive components that are also used in other tasks, it
will be possible to demonstrate that training on one task
could result in improvement on other tasks. The idea of
constructing neural networks with multiple components that
are responsible for different sub-tasks aligns with some
recent advance in machine learning, e.g., neural networks
composed of distinct modules have been used to solve
language grounding problems (Andreas, Rohrbach, Darrell,
& Klein, 2016; Johnson et al., 2017).

Below we first describe the architecture of our model,
followed by the experiments we ran to simulate the learning
in the number board game and the resulting learning effect.
Finally, we present the implications of our results, some
limitations of the current work and some future directions.

Model Architecture

There are three neural network modules in our model: the
Visual component, the Language component (Figure 1) and
the Action component (Figure 2).

Visual Component

The Visual component is composed of a pre-trained neural
network named the ResNet (He, Zhang, Ren, & Sun, 2016)
and two fully-connected readout layers. The ResNet is a deep
neural network trained to recognize objects in ImageNet, a
large image database of natural images with hand-annotated
labels (Deng et al., 2009). The ResNet consists of stacked

3187

0.005 0.0050.01 0.03 0.82 0.02 0.02 0.01 0.04 0.04

(Language Component
P(number word)

One Two Three Four Five Six SevenEightNine Ten

Distance: d

Pre-traind
One Two Three Four Five Six Seven EightNine Ten
L 1])

S 0 10 /

Visual Ci

Figure 1: Illustration of the Visual component (left) and the
Language component (right).

/" “Move” “Stop”
@0 (o1 B

Visual Component
IAcﬁon Component

0.0050.82 0.01 0.03 0.005 0.02 0.02 0.01 0.04 0.04 -
One Two Three Four Five Six Seven Eight Nine Ten

Pre-traind
. ResNet J

Figure 2: [Illustration of the link between the number
word output of the Visual component (left) and the Action
component (right).

convolutional layers with non-linear activation functions and
identity shortcut connections that skip one or more layers
(see He et al. for details). We use the ResNet to process
each image in our dataset and use the hidden activation of
the last hidden layer as the feature vector of the image, i.e.,
as the image embedding. We then apply two fully-connected
readout layers to the image embeddings, one number word
readout layer and one magnitude readout layer. All of the
images in our dataset are images of Arabic numerals ranging
from 1 to 10 (see the Experiment Section for details). The
number word readout layer is used to decode the numbers in
the images. It outputs a probability distribution over the ten
possible number words (one to ten). The magnitude layer is
used to decode the magnitude of the number represented as a
scalar, thought to be provided as a target for learning by the
perceived distance of the number’s location on the number
line from zero. When simulating the number board game,
we make the assumption that children attend to the board in
two frames of reference, a global one and a local one: in
the local frame of reference, they attend to and recognize the
digit printed on the current square. In the global frame of
reference, they keep track of how far their token has traveled
from the “Start” point. These two processes are implemented
by the number word readout layer and the magnitude readout
layer, respectively. In the simulation of the number board
game playing, these two layers were trained simultaneously.
During the training we did not update the weights of the
ResNet and only the connection weights of the two readout
layers were updated. The equations of the Visual component
can be written as follows:

e; = ResNet([)
P(number word) = ¢(Wye; + bny) ey
m = ReLU(W,,e; + by,)

where I € R?*283 is the raw pixels of the image, e; € R3!% is

the image embedding, W,,, € R312%10 (W, € R312%1) are the
connection weights from the embedding layer to the number
word (magnitude) readout layer, by, € RO b, € RY) are
the biases of the number word (magnitude) readout layer.
The softmax function ¢(x); =):,!exlie,xj is used to normalize
the logits of the number word]readout layer in order to
get the probabilities over number classes. The prediction
is thus the one with the highest probability. The ReLU
activation function is used to restrict the magnitude output
to be non-negative, i.e., ReLU(x) = max(0,x).

Language Component

This component learns the successor function in counting,
i.e., it predicts the next number in a count list given the current
number (Figure 1, right). Particularly, during training, we
use (current-number, next-number) pairs as data, e.g., (“five”,
“six”), and the model takes the current-number as input and
predict the next-number. During testing, we iterate from zero,
and the score is coded as correct up to the point of the first
error. The number words are represented as one-hot vectors
and they are fed to a fully-connected layer with rectifier
activation function (ReLU), which is followed by a fully
connected output layer with the softmax activation function.
The mathematical formula for this module can be written as:

h = ReLU(Wlew + b[)

P(next word) = O(W,h; + by,) @

where e,, € R!? are the word embeddings for the stimuli
(one-hot vector), W; € R19%10 are the connection weights
from the input embedding layer to the hidden layer. We use
the softmax function ¢(x) to normalize the logits to get the
probabilities over the possible number words.

Action Component

The Action component is a recurrent network that learns
to output a sequence of “MOVE” actions before it outputs
a “STOP” action (Figure 2, right). We use the Visual
component described above to read the spinner, which shows
either “1” or “2”, to generate a probability distribution over
all possible number words. This serves as the initial hidden
state of the Action recurrent network. The Action network
then takes the initial hidden state 4o and the initial action ag to
predict the next action, which is either “MOVE” or “STOP”!,
and the new hidden state and the predicted action are used
in the next time step . The mathematical formulae can be
written as:
hy = hi—1 + ReLU (Wge,)

01 == ¢(Wmhz + bm) (3)

'In this board game the first action is always “MOVE”, so there’s
no need to make a prediction for the first action.

3188

\[2]|3]4]|5[¢4|1]8]|2]/6

Figure 3: Digits stimuli used in the current task. 1 - 9 are
randomly selected from the MNIST dataset and the 10s are
generated by randomly selecting 1s and Os from the dataset
and combine them (LeCun et al., 2010).

where ¢, € R> are the embedding of the action, W, € R>*10
are the connection weights from the embedding layer to the
hidden layer. We use the softmax function to normalize the
logits of the output layer to get the probabilities over the two
possible actions (“MOVE” or “STOP”).

Experiments

We use digit images from the MNIST database (LeCun,
Cortes, & Burges, 2010), a dataset of handwritten digits with
labels. We use a randomly selected subset of the original
training data to construct our training dataset, which contains
10,000 samples (Figure 3), and our test dataset contains
10,000 samples that do not overlap with our training data.

Our simulations have two conditions that correspond to the
experimental condition and the control condition in Ramani
and Siegler’s empirical study. In the experimental condition,
there are three phases: the pre-test training, the number
board game training and the post-test training. For simplicity,
and because no numbers were used in Ramani and Siegler’s
control condition, the simulation control condition included
only the pre-test training and the post-test training. In the
pre-test training phase, the number word readout layer of the
Visual component is trained on the numeral identification task
for 34 batches, the magnitude readout layer is trained on the
number line estimation task for 46 batches and the Language
component is trained on the counting task for 16 batches. The
numbers of batches for each task are chosen to produce the
pre-test accuracies that approximate the ones in Ramani and
Siegler’s original paper.

Each batch contained 100 trials. The numerals were
equally distributed in trials of each task. In counting, each
trial involved a single transition from a “current-number” to
the “next-number”. We used backpropogation to train the
network. In the board game training phase the models were
trained on board game trials corresponding to individual turns
in the game for 50 batches. We next describe in detail how
all the cognitive components work together in a single trial.
Assuming that the agent’s token is at square “3” and the
spinner yields “2”, the modules will perform the following
sequence of computations:

1. The Visual component reads the spinner (‘“2”’) and feeds
the computed P(number word) to the Action component as
its initial hidden state.

2a. The agent moves one step forward. The Visual
component takes the image of the square where the agent’s
token is currently located (““4””) and recognizes the number

printed on it, i.e., “four”.

2b. The magnitude readout layer of the Visual component
predicts the distance between the token’s current location
to zero, i.e., 4.0, as the supervision signal is available in the
game.

3. The Action component takes the initial hidden state and
the embedding of the initial action “MOVE” to predict the
next action “MOVE”.

4a. The agent moves one step forward. The Visual
component takes the image of the square where the agent’s
token is currently located (“5”) and recognizes the number,
i.e., “five”.

4b. The magnitude readout layer of the Visual component
predicts the distance between the token’s current location
and the “Start” point, i.e., 5.0.

4c. The Language module takes the number that the Visual
module recognized in the last time step (“four”) to predict
the current number, i.e., “five”.

5. The Action component takes the last hidden state and
the last action “MOVE” to output the next action “STOP”.

To summarize, in this single trial, the Visual component
needs to map the image of “4” to (“four”, 4.0) and “5” to
(“five”, 5.0); the Language component needs to map “four”
to “five” and the Action component needs to map the image
of “2” (the spinner’s output) to the action sequence “MOVE
(given), MOVE, STOP”. On trials where the spinner’s output
is 1, then only the steps 1, 2, 5 will be performed.

Finally, in the post-test training phase, in both conditions
the neural modules are trained on one batch to simulate the
learning experience gained during the 9 weeks between the
immediate post-test and the follow-up test. This is termed as
the “I-batch post-test training” simulation. This amount of
training yields changes in performance that are comparable
to the change from the post-test to the follow-up test in the
control condition of Ramani and Siegler’s experiment. To
get a comprehensive understanding of the advantage of the
experimental group, we also simulate another scenario in
which we train the neural modules with the same number of
batches as in the pre-test training phase (‘“n-batch post-test
training” simulation). This gives us a sense of how the model
will continue evolving if we train it on more than one batch,
although it is unlikely that participants actually got that much
training during the 9-week period of time in Ramani and
Siegler’s experiment.

When measuring the model performance on each
numerical processing task, the Visual component is used to
perform the numeral identification task and the number line
estimation task using randomly selected digit images not
used in training, and the Language component is used to
perform the counting task, starting from O, until an error is
made or the whole count list is completed. To measure the
performance of the number line estimation, we report the
linearity of the estimation (measured by the square of the
coefficient of correlation R*> between the models prediction
and the target) and the slope of number line estimation. These

3189

are the same dependent variables as measured in (Ramani
& Siegler, 2008). A perfect number line estimate should
yield a R? equal to 1.0 and a slope equal to 1.0. For the
magnitude comparison task, we randomly select images of
two different numbers from 1 to 10 and feed them to the
Visual component separately. We then use the output of its
magnitude readout layer to determine a response, i.e., the
one with larger magnitude output is determined to be the
“bigger number”. The training and the testing were simulated
20 times with different random initialization of the network
parameters and random sampling of the data.

Results

Accuracies of the Cognitive Components across the
Training

We find consistent patterns in results across all the tasks that
were tested (numeral identification, number line estimation,
counting and magnitude comparison). As expected, up to the
point when number board game was introduced, accuracy did
not differ between the experimental condition and the control
condition were. However, after the number board game
was introduced, across all tasks the experimental condition
demonstrated better performance than the control condition.
Figure 4 shows the learning curves of different tasks in the
“n-batch post-test training” simulation.

Numeral Identificatior ‘Number Line Marking

>

So. % 3 1

© y L

= 1 1

30. o~ 020 |\

Q Vall Condtlllclm = \ .~ 1 Condtlt\oln
2 0 e 1 ol et~ 1 MO 8 mental

20 40 5 50 75
N batches N batches

(@ (b)

Verbal ICountinq Comparison

> bodeobodeck-d 2N0g il & el 0
§ 0.75 A § 07 1t

d
8 0.5 ql N ! Condition 8 048 P il 1 Condition
Qo2 /¥ P 209 R .
< ¥ ¥ perimel < 04 # | experimental

1
0 10 0 0 25 50 75
N batc%es N batches
© (d)

Figure 4: (a) Accuracy of the Visual component on the
numeral identification task. (b) Mean Square Error of the
Visual component on the number line estimation task. (c)
Accuracy of the Language component on the counting task.
(d) Accuracy of the magnitude comparison task. The vertical
blue lines indicate the time points when number board game
is introduced in the experimental condition.

Pre-test, Post-test and Follow-up Test

To compare our results with the results in Ramani and
Siegler (2008), particularly their Figure 2, we also plot the
pre-test scores, the post-test scores and the follow-up scores
in the “I-batch post-test training” simulation. We run several
paired 7-tests to compare the pre-test scores and the post-test
scores, as well as the pre-test scores and the follow-up
test scores. In the control condition, as expected because

there is no training between the pre- and post-tests, the
post-test scores are not significantly different than the pre-test
scores. However, in the experimental condition, across all
tasks the post-test scores are significantly higher than the
pre-test scores (Table 1). The same results hold true for the
comparison between the follow-up measures and the pre-test.
v.
Condition
contro
“~experimental »

-
-
-
-

R

>
207
30. g
<
0.

Post Follow-up
batches

Figure 5: The model performance at the pre-test, the post-test,
and the follow-up measures on the numeral identification
task.

0.8-

> Condition Fommnt 3
% 0.78 !g%gﬁ;nentay
5 .
5 0.74 g
o 4
<070
Pre Post Follow-up
N batches

Figure 6: The model performance at the pre-test, the post-test,
and the follow-up measures on the magnitude comparison
task.

=.0.90 condition
% 0.85 !g%terﬁmemaI’
5 0.80 ’,/
g0.75 L
<€ 0.70 I
0.6

Pre Post Follow-up

N batches

Figure 7: The performance of the Language component at
the pre-test, the post-test, and the follow-up measures on the
counting task.

As shown in Table 1, in the experimental condition, after
the model is trained on the number board game, the numeral
identification accuracy increases from 52% to 73%, the
magnitude comparison accuracy increases from 68% to 80%,
the counting performance increases from 73% to 85%, the
square of the coefficient of correlation between the model’s
prediction and the target in number line estimation improves
from 0.29 to 0.62, and the slope increases from 0.12 to 0.47.
No improvement is observed in the control condition.

3190

Pre Post FU Post-Pre 1 FU-Pre 1
Experimental Condition
Numeral Identification 0.52 0.73 0.77 0.21%** 591 0.26%**% 7.65
Magnitude Comparison ~ 0.68 0.80 0.81 0.12%** 12.66 0.13%** 11.46
Counting 073 0.85 0.85 0.12*% 225 0.12% 225
Number Line Linearity ~ 0.29 0.62 0.64 0.33%*** 4.81 0.36***% 599
Number Line Slope 0.12 047 046 0.35%#* 11.31 0.34%** 13.97
Control Condition
Numeral Identification 0.52 0.50 0.56 -0.01 -0.94 0.05* 241
Magnitude Comparison 0.68 0.68 0.72 0 -0.03 0.03*** 356
Counting 073 073 0.76 0 0.03 1.75
Number Line Linearity 029 0.30 0.41 0.01 020 0.12 1.95
Number Line Slope 0.12 0.10 0.18 -0.01 -0.61 0.07* 2.99

p < .05, % p < 01, #%p < 001

Table 1: Mean scores of the different tasks at the
pre-test (Pre, 1st column), the post-test (Post, 2nd
column) and the follow-up test (FU, 3rd column);
Differences of the scores between the post/follow-up test
and the pre-test(Post-Pre/FU-Pre, 4th/6th column) and the
corresponding ¢ statistics (t1/t, Sth/7th column) in the paired
t-test (df=20).

Viewed from a different perspective of the data, we also
show that although the performances in the two conditions
do not differ at the pre-test, there is a significant difference
between the two conditions at the post-test (Table 2) across
all tasks. Such gap remains significant in all the follow-up
measures except for the counting task.

Post 13 FU 14
Experimental - Control
Numeral Identification ~ 0.23*** 6.06 0.21¥** 7.05
Magnitude Comparison 0.12*%** 10.09 0.09*** 8.30
Counting 0.12%* 225 0.09 1.90
Number Line Linearity =~ 0.31%%* 434 0.23*** 424
Number Line Slope 0.36%%* 11.56 0.28*** 8.88

*p < .05, ¥ p < 01, #%p < 001.

Table 2: Differences of scores between the experimental
condition and the control condition at the post-test (Post, 1st
column) and the follow-up test (FU, 3rd column) with their
corresponding ¢ statistics (the 2nd and the 4th column).

Linearity of the Number Line Estimation

One of the major motivations of Ramani and Siegler’s work
was to test whether playing the number board game could
improve the linearity of children’s number line estimation.
As can be seen in Table 1 and Figure 8, in the experimental
condition, both the linearity (measured by the square of
the coefficient of correlation between the models prediction
and the target) and the slope of number line estimation
significantly increase after playing the number board game,
and these learning outcomes are still significant at the
follow-up test (Table 1).

U./ 0.
Condition Jomenee 4 Q Condition REEEREEE 3
“Q:O. =ggggrcl)mental,' Q0. =gQBerﬁmentaJ'
c0. . wn 0 .
8o S,
= - 0 0.
0' 1’ 2 O ko
Pre Post Follow—up Pre Post Follow—up
N batches N batches
(@) (b)

Figure 8: The linearity (a) and the slope (b) of the model
performance in the number line estimation task evaluated at
different stages.

Discussion

In the current study, we created a neural network model
to provide a mechanistic account for the enhancement of
numerical processing skills that was induced by playing a
number board game (Ramani & Siegler, 2008; Ramani,
Siegler, & Hitti, 2012). We hypothesized that various parts of
the number board game actually train different components of
the player that could later be used to perform other numerical
tasks, such as numeral identification, magnitude comparison,
counting and number line estimation. We reproduced the
empirical learning effect in our computational model that
implemented our hypothesis.

In our model, different cognitive components need to
coordinate with each other to perform the task. For instance,
as the Action component outputs the right actions, the agent
constantly gets good teaching signals from the external
environment which can be used by the Visual component
and the Language component. As the Visual component
recognizes the identities of the digits on the board, it further
provides the language component with the proper inputs
needed to predict the next number word. At the same
time, as the agent’s token moves along the board, the Visual
component learns to associate the symbolic numeral with
distance along the number line and the Visual and Language
components jointly determine the number word to be uttered.

One limitation of the current paper is that we did not
explicitly train the model’s attention, e.g., we feed the Visual
component with images of the current digits treating the
“MOVE” action as simultaneously moving the player’s token
and shifting the focus of attention. We assume that the
participants could allocate their attention to different parts
of the environment and deploy their cognitive components
in a synergistic way. Coordination of these processes
to actually play the game requires executive control and
working memory (Barnes et al., 2016). In future work we
will explore how the selective attention and the executive
control ability of the model can also be learned through
training. This is a promising direction since recent advances
in language grounding research in the artificial intelligence
field have shown that neural network models can learn to
attend different parts of an image in order to answer questions
about the image (Yang, He, Gao, Deng, & Smola, 2016).

Another limitation is that we did not fully model the color

3191

board game control condition in Ramani and Siegler’s work,
i.e., we only modeled the aspect that participants did not
receive any number-related training during the color board
game playing, but we did not simulate the color-related
training. In future work, we will fully model this color
board game control condition. In addition to this control
condition, in later studies researchers also compared the
count-on procedure (reciting the number words for each new
tile reached) used in Ramani and Siegler’s study with the
standard count-from-1 procedure (reciting the number words
corresponding to the number of onward steps), and found
that playing the same game using the standard procedure
led to considerably less transfer to the other tasks (Laski
& Siegler, 2014). This might occur because participants’
attention was not directed either to the token position on the
board or to the numerals on each square, as the task can be
performed without this information. Also, the count-from-1
procedure provides no practice counting beyond the number
two. It would be interesting to see whether modeling those
control conditions within a network that learns to deploy its
attention could provide a mechanistic account for why one of
the interventions worked while the others did not.

In summary, the current work is a first step towards
building a comprehensive computational model for numerical
cognition that coordinates different modalities and integrates
various training stimuli and paradigms. Our approach allows
us to simulate the acquisition of number concepts as a process
through which a set of component skills are assembled in
different configurations in diverse task settings, promoting
transfer across tasks that share components.

References

Andreas, J., Rohrbach, M., Darrell, T., & Klein, D. (2016).
Neural module networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(pp- 39-48).

Barnes, M. A., Klein, A., Swank, P., Starkey, P., McCandliss,
B., Flynn, K., ... Roberts, G. (2016). Effects of
tutorial interventions in mathematics and attention for
low-performing preschool children. Journal of Research
on Educational Effectiveness, 9(4), 577-606.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 248-255).

Halberda, J., Mazzocco, M. M., & Feigenson, L.
(2008). Individual differences in non-verbal number acuity
correlate with maths achievement. Nature, 455(7213), 665.

Harnad, S. (1990). The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1-3), 335-346.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(pp- 770-778).

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman,
J., Fei-Fei, L., Zitnick, C. L., & Girshick, R. (2017).
Inferring and executing programs for visual reasoning.
In Proceedings of the IEEE International Conference on
Computer Vision (pp. 3008-3017).

Lakoff, G., & Nuiez, R. (2000). Where mathematics comes
from: How the embodied mind brings mathematics into
being. Basic Books.

Laski, E. V., & Siegler, R. S. (2014). Learning from number
board games: You learn what you encode. Developmental
Psychology, 50(3), 853.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST
handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2.

Libertus, M. E., Feigenson, L., & Halberda, J. (2011).
Preschool acuity of the approximate number system
correlates with school math ability. Developmental
Science, 14(6), 1292-1300.

Park, J., & Brannon, E. M. (2014). Improving arithmetic
performance with number sense training: An investigation
of underlying mechanism. Cognition, 133(1), 188-200.

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and
stable improvements in low-income childrens numerical
knowledge through playing number board games. Child
Development, 79(2), 375-394.

Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it
to the classroom: Number board games as a small group
learning activity. Journal of Educational Psychology,
104(3), 661.

Yang, Z., He, X., Gao, J., Deng, L., & Smola, A. (2016).
Stacked attention networks for image question answering.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 21-29).

3192

