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ABSTRACT OF THE THESIS 

 

Comparative Analysis of SEIR and Hawkes Models for the 2014 West Africa Ebola Outbreak 

 

by 

 

Adam Walter Chaffee 

Master of Science in Statistics 

University of California, Los Angeles, 2017 

Professor Frederic R. Paik Schoenberg, Chair 

 

The extent to which Hawkes point process models can more accurately characterize the 

evolution of a disease epidemic than a standard compartmental model such as SEIR is 

investigated. Maximum likelihood estimation was used to fit SEIR model parameters to Ebola 

outbreak data in West Africa in 2014 from the World Health Organization (WHO). Projections 

using simulation were then conducted using the Poisson-leaping Tau Method (Cao et al. 2007) to 

evaluate the fit. The projections and rate function were compared to Hawkes point process 

estimation and simulation over the same data and projection scale. Results indicate that Hawkes 

models outperformed SEIR in predicting the spread of Ebola in West Africa with a 38% 

reduction in RMSE for weekly case estimation across all countries (total RMSE of 59.6 

cases/week using SEIR compared to 37.2 for Hawkes). An analysis using the first 75% of the 

data for estimation and the subsequent 25% of the data for evaluation shows that the improved fit 

from Hawkes modeling cannot be attributed to overfitting. 
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Introduction 

 Between March 2014 and June 2016, the West African countries of Guinea, Sierra Leone, 

and Liberia fell victim to an Ebola outbreak of massive scale that rapidly grew to become larger 

than all other previously recorded Ebola outbreaks combined (WHO Ebola Response Team, 

2014). With nearly 30,000 total suspected Ebola cases and more than 11,000 deaths (World 

Health Organization, 2016), the outbreak severely diminished each country’s quality of life and 

economic output due to decreased trade, border closures, and a drop in foreign investment 

(United Nations Development Programme, 2015). The West African Ebola outbreak serves as a 

stark reminder that major outbreaks of deadly diseases can still occur with major impacts to life 

and socioeconomic well-being.  

To prevent future outbreaks of Ebola and other highly infectious diseases, it is important 

that communities and governments focus on several areas including improving detection and 

response capacity, conducting survivor studies, providing adequate education to the public, and 

continuing support for disease research (Spengler et al., 2016). Statistics can provide great 

contributions to many of these areas. 

 In particular, statistical models can help predict the spread of infectious diseases once an 

outbreak begins, leading to more effective allocation of detection and response resources. One of 

the first major breakthroughs in epidemiological modeling was the development of the 

compartmental model by Kermack and McKendrick (1927) which led to the basic SIR 

(Susceptible-Infected-Recovered) model and its variants. Such models involve dividing 

populations according to disease status, and then modeling the changes in numbers of infected, 

susceptible, and recovered individuals in the population using systems of simple differential 

equation models. Compartmental modeling has grown to become a mainstay of the 
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epidemiological community for modeling the establishment and spread of infections. In recent 

decades, the traditional SIR model has been modified with differing levels of complexity to 

better fit individual disease characteristics (Britton, 2010).  

The SEIR (Susceptible-Exposed-Infected-Recovered) compartmental model has become 

especially popular for describing the dynamics of the Ebola virus, most notably by Chowell et al. 

(2004) and applied to West African Ebola data by Althaus (2014). However, SEIR and other 

compartmental models may be overly simplistic in that they rely on spatial aggregation and 

subsequently describe the purely temporal spread, rather than describing the spatial-temporal 

interaction in detail. In addition, such models rely on the mass action assumption (Meyers, 2007) 

that all susceptible members of the population are equally likely to be infected, which is typically 

violated in practice, often resulting in inaccurate forecasts. For instance, compartmental SEIR 

models applied to the spread of SARS in China in 2003 estimated a high transmission rate and 

suggested 30,000 to 10 million SARS cases would occur in the first 4 months of the spread of 

disease in China, resulting in fears of a widespread pandemic (Meyers, 2007). Ultimately, only 

about 5,300 cases were reported in China (World Health Organization, 2003). 

 Much work has been done in recent years pertaining to parameter estimation and 

theoretical modeling for Ebola SEIR models, yet comparatively little attention has been paid to 

assessing the fit of SEIR models to real data and comparing them with alternatives. This paper 

attempts to address this discrepancy by applying SEIR modeling techniques to the beginning of 

the 2014 West Africa Ebola outbreak, then utilizing these models to evaluate the goodness of fit 

on the data itself through case count estimation via mean simulation results. The results are then 

compared to goodness of fit of an alternative technique, Hawkes point process modeling, using 

equivalent data. 
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 Hawkes models are particularly suitable for describing the processes by which humans 

spread contagious diseases. Such processes were used to model the occurrence of smallpox in 

Brazil by Becker (1977), and by Farrington et al. (2003) to describe the effect of vaccinations on 

cases of measles in the United States, but their use for describing the emergence and spread of 

infectious diseases so far remained scant. As an alternative to compartmental SEIR models and 

their variants, Hawkes models may provide new insights into the spread of epidemics and 

invasive species, including a description of the spread via an estimated triggering kernel. 

 An overview of Hawkes model fitting is presented and compared to SEIR model fitting 

developed in this paper. Hawkes models are often extended to spatial data in space and time such 

as infection times and locations. However, to provide an equivalent comparison to SEIR 

modeling which is assumed spatially homogeneous, the Hawkes model was fit to infection times 

only. The fitted results of each modeling technique are then compared to assess their relative 

advantages and shortcomings when applied to various time intervals during the early stages of 

the 2014 West Africa Ebola outbreak. This work is a case study to provide a preliminary 

assessment of how SEIR compartmental models and Hawkes point process models vary in 

effectiveness in predicting the magnitude of infections in disease outbreaks. 

Design 

Outbreak Data  

 Data was collected and aggregated from the World Health Organization (WHO) website 

(http://www.who.int/en/) outbreak reports on Ebola during and after the outbreak period. These 

reports were typically released weekly by WHO and included the country, geographic location 

within country (either by region, closest city, or village) as well as confirmed cases and deaths 

from Ebola virus. For all locations, geographic coordinates were determined by searching for 
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village names either in Google Earth (Google Earth 2015, 

https://www.google.com/earth/download/ge/) or using the FallingRain Gazeteer 

(http://www.fallingrain.com/world/index.html) and recording the latitude and longitude of the 

location. In cases where only region was reported, we identified the centroid of that region and 

used the latitude and longitude of that centroid as the location for all cases. 

Data was filtered to only include infection cases and death counts from Ebola at various 

measured time points in three regions: Southeast Guinea, Eastern Sierra Leone, and Northwest 

Liberia. The time range of these observations begins on March 23, 2014 and ends on September 

7, 2014. This time window was used because it is similar to the data used from SEIR model 

fitting conducted in Althaus (2014), and will facilitate equivalent comparisons using Hawkes 

modeling. A copy of the data used is produced in the Appendix. 

The filtered data was modified to approximate real-time person-by-person infections by 

uniformly distributing new infections within times between reporting dates. Cases at the initial 

reporting date were assumed to have occurred uniformly over 1 day prior to the initial date. This 

modified data was used in fitting the Hawkes model parameters and used in all evaluation 

techniques for both Hawkes and SEIR models. The original filtered data was only used in SEIR 

model fitting. 

SEIR Modeling Overview 

The SEIR (Susceptible-Exposed-Infected-Recovered) compartmental model embodies 

the idea that the infected population spreads the disease at time t with rate 𝛽(𝑡), but can only 

spread the disease to the proportion of the population still susceptible, and these rates and 

proportions can change as an outbreak proceeds. It has been frequently used to describe Ebola 
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disease dynamics and is characterized by the following set of ordinary differential equations 

(Chowell et al. 2004): 

 

Where S is the susceptible population, E is the population which has contracted Ebola but is not 

yet infectious (“latent population”), I is the infectious population, and R is the 

recovered/deceased population. These four quantities sum to N, the total population. The 

populations are assumed to be spatially homogeneous, with a fixed N over time. 

When modeling the infectious phase, the primary quantity of interest in this model is 

𝛽(𝑡), the transmission rate. Under this model, it is assumed to decline exponentially at rate 𝜅: 

𝛽(𝑡) =  𝛽𝑒−𝜅𝑡 

Where t is the number of days from the start of the outbreak (Lekone and Finkenstädt, 2006). 

Other parameters in the SEIR model include the rate of infectious onset, σ, and the rate of death 

or recovery, γ. In model fitting, σ and γ are assumed constant to replicate the techniques used by 

Althaus (2014). 

A central feature to compartmental SIR/SEIR modeling is the reproductive number, R0. 

In the model R0 at any given time is estimated by the transmission rate, 𝛽(𝑡), multiplied by the 

average duration of infectiousness, 1/γ. R0 represents the average number of new infections 

generated by an infected person until the infected person dies or recovers. The critical threshold 

for R0 is 1: if R0 is above 1, the epidemic can spread to infect a large proportion of the 

population. When R0 drops below 1, the epidemic will quickly stop.  
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The SEIR model was fitted separately to Guinea, Sierra Leone, and Liberia using the 

original discretely reported Ebola outbreak data containing only cases and deaths at each 

reporting date. This approach is identical to the SEIR model used by Althaus (2014) in his 

parameter estimation for the outbreaks in Guinea, Sierra Leone, and Liberia. 

It is important to note that the theoretical SEIR model outlined above is purely 

deterministic. To convert this process into a stochastic model for simulating real-world 

outbreaks, the Tau-leaping approximation (Cao et al., 2007) is applied to the model. Under this 

process new exposures, infections, and recoveries occur randomly as a Poisson arrival process at 

probabilities based on R0, 𝜅, σ, and γ. With each new transition, the probabilities of these events 

update to reflect the new S, E, I, and R populations. The stochastic model using Tau-leaping is 

used in weekly and overfitting estimates as outlined in the Evaluation Techniques. 

Hawkes Modeling Overview 

 A point process (Daley and Vere-Jones, 2003, 2007) is a collection of points {τ1, τ2, ...} 

occurring in some metric time space. The points can be defined in space, time, or both, but for 

this study the points are modeled in time only. Such processes are typically modeled via their 

conditional rate (also called conditional intensity), λ(t), which represents the infinitesimal rate at 

which points are accumulating at time t, given information on all points occurring prior to time t. 

Hawkes or self-exciting point processes (Hawkes, 1971) are a type of branching point 

process model that has become widely used in modeling seismicity (Ogata, 1988, 1998) and 

other natural phenomena, but have scarcely been used to describe the spread of epidemic 

diseases. Hawkes models are frequently applied to data in both space and time. In this study, 

however, Hawkes models exclude spatial components to provide an equivalent comparison to the 
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spatially homogeneous SEIR model. For a purely temporal Hawkes process, the conditional rate 

of events at time t, given information 𝐻𝑡 on all events prior to time t, can be written: 

𝜆(𝑡|𝐻𝑡) =  𝜇(𝑡) +  𝜅 ∑ 𝑔(𝑡 − 𝑡′)

{𝑡′:  𝑡′<𝑡} 

 

Where 𝜇(𝑡) is the background rate, or the rate of infections that develop due to random chance 

without transmission from another infected individual. The quantity 𝑔 is the triggering function, 

and κ is the productivity. The triggering function can be thought of as a cumulative density 

function over time for the model, or the probability that an infection at time 𝑡′ will trigger 

another infection at or before time 𝑡, where  𝑡′ < 𝑡. As a cumulative density function, 𝑔 

approaches 1 with increasing time. The quantity κ is the expected number of new infections 

created by each individual infection. These new infections can then cause an average of κ 

additional infections in a cascading series. Because κ is constrained to be between 0 and 1, each 

background point is expected to generate a total of 1/(1 − 𝜅) − 1 points by convergence of a 

geometric series.  

Evaluation Techniques 

The parameters for the SEIR model were obtained using maximum likelihood estimation 

(MLE) based on Althaus (2014) which assumes occurrence of new cases follow a Poisson 

distribution. The negative log-likelihood score is calculated by a Poisson density function 

comparing probabilities of observed and expected case counts. The optimization algorithm uses 

the techniques developed by Nelder and Mead (1965) to find model parameters which minimize 

negative log-likelihood values. Hawkes model parameters and likelihood scores were estimated 

using non-parametric maximum likelihood estimation (Marsan and Lengliné 2008). The method 

approximates maximum likelihood by using the E-M algorithm. Parameters are first initialized; g 
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is initialized as a density step function with a fixed number of steps. Given those parameters, for 

all pairs of points i and j, where τi > τj, the probability event i triggered event j is calculated. Each 

pair of points is then re-weighted by its probability. This two-step process repeats until 

parameters converge to a local optimum. 

The SEIR fitted model parameters were then used in simulation-based forecasting for 

prospective analysis. Simulations were conducted in the R program for statistical computing 

using compartment estimation with the deSolve package, along with the tau-leaping method 

(Cao et al., 2007) which uses the adaptiveTau package. To begin SEIR model simulation, each 

population compartment must be initialized. Constant durations of infectiousness and latency of 

6 days each was used to estimate the starting infectious and latent populations for simulations. 

The starting susceptible populations were set to equal regional populations using the most 

recently published census data from Guinea (National Institute of Statistics, 2015), Sierra Leone 

(Sierra Leone Statistics, 2016), and Liberia (LISGIS, 2009). 

In the weekly projection analysis, SEIR and Hawkes MLE parameter estimates using the 

entire country infection data sets were used to project cumulative infections on a weekly basis 

using the mean of 1,000 simulations per week per country. The projection of the first week of the 

outbreak requires starting populations at day 0 of the outbreak, which are unknown. Therefore, 

during the first week’s projections, infectious and susceptible population numbers were set to the 

observed values, and only subsequent weeks were used for evaluation. 

In a separate analysis to guard against possible overfitting, parameter estimates were 

obtained withholding the last 25% of data, and were then used to project cumulative infections 

for the held-out period. To explore additional SEIR model variability, an overfitting analysis was 
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conducted withholding the last 50% of data. The overfitting analysis also involved 1,000 

simulations per country.  

In point process analysis, an effective way to evaluate the fit of the modeled rate of new 

events is to conduct a super-thinning analysis which assesses the homogeneity of the residuals of 

model rate parameters over space and/or time (Clements et al., 2013). Super-thinning involves 

both thinning the existing data points and superposing a new set of points. This technique was 

implemented in assessing goodness of fit for both Hawkes and SEIR models. 

For super-thinning the Ebola outbreak in time, the estimated rate of new infections (λ(t)̂ ) 

is calculated for each infection time in the data. Superthinning requires the choice of a tuning 

parameter, b, and as suggested in Clements et al. (2013) we use the simple default value of the 

total number of cases divided by the length, in days, of the observation period. First the existing 

data points are thinned where each point is randomly kept with probability min{𝑏/λ(t)̂ , 1} 

leaving a residual process. New points are then superposed via a two-step process. A Poisson 

process with constant rate b is first generated over the time interval, then each point is 

independently kept with probability max{𝑏 −  λ(t)̂ /𝑏, 0}.  

In evaluating the SEIR models, the value of 𝛽(𝑡) multiplied by the infectious population 

at time t was used as the estimated rate function (λ(t)̂ ) to calculate thinning and superposing 

probabilities. Hawkes models were evaluated using super-thinning based on the estimated rate 

function of the model (λ(t)̂ ). 

Super-thinned and superposed points are overlaid and visualized with each time point on 

the x-axis. A random uniform variable was generated as a y-coordinate for each point on the plot. 

Different point styles were used to differentiate between thinned original infection times and 

superposed times. The resulting superposed process is then examined for uniformity, as the 
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residuals should form a stationary Poisson process if the modeled rate is correct (Clements et al. 

2013). Time regions in the plot that become sparse indicate periods of overprediction because the 

few observed points in the region are removed with high probability, then new points are 

superposed with a probability close to 0. Highly clustered regions indicate underprediction. 

Results 

Model Fitting and Weekly Estimates 

The log-likelihood scores for all models are shown in Table 1. Because Hawkes and 

SEIR models rely on different underlying probabilistic processes, the individual likelihood of a 

given model is difficult to interpret substantively, but the fit of two distinct models can easily be 

compared using log-likelihoods. In nested point process models, for example, the difference in 

log-likelihood of nested models is approximately chi-square distributed with 2q degrees of 

freedom, where q is the difference in the number of parameters between the two models (Ogata, 

1978). Here the models are not nested, so a common alternative in maximum likelihood 

estimation is to calculate the AIC when comparing models. AIC is calculated as {-2*log-

likelihood + 2*p} where p is the number of estimated parameters in the model. Lower AIC 

indicates better fit. 

The AIC for all three countries is lower in the Hawkes model, indicating that the Hawkes 

models provided a better fit to the infection outbreak in all three countries. When comparing root 

mean square error (RMSE) of weekly predicted cases in Table 1, Hawkes models achieved lower 

RMSE than SEIR models for all countries. The total RMSE across all countries was 59.6 

cases/week using SEIR and 37.2 cases/week using Hawkes models which represents a 38% 

decrease. RMSE and sum-squared error (SSE) attributable to overprediction and underprediction 

are shown in Table 1 as well. SEIR had greater RMSE in all countries and categories except in 
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underpredictions for Liberia. The RMSE results in total listed above and in Table 1 indicate that 

Hawkes achieved better model fitting than SEIR for nearly all data in the study. 

Table 1. Log-likelihood, AIC, and squared error for SEIR and Hawkes model fitting 

 
 

 The results from weekly estimates of total infections per week are displayed in Figure 1. 

Hawkes modeling projections for each week is shown in blue, SEIR is in red, and the actual data 

is shown in black. The projections from SEIR models display a strong relatedness to case load 

from prior weeks. This is not surprising given that the rate of infectiousness for SEIR modeling 

is a function of the current infectious population. SEIR model estimates tend to lag by nearly two 

weeks due to the assumed incubation period of 6 days before reaching infectiousness, which then 

lasts an additional 6 days.  

A general feature of the SEIR weekly estimates in Guinea and Sierra Leone is the 

tendency for the model to over predict in earlier weeks, then under predict in later weeks. This is 

caused by the nonzero 𝜅 term causing an inverse exponential decrease in the assumed 

transmission rate, 𝛽(𝑡). In Liberia, the maximum likelihood estimate for 𝜅 is 0, so there tends to 

be a consistent level of overprediction in case load except when there are sudden, large jumps in 

case counts from week to week. 

Hawkes models show a similar dependence due to the productivity constant in the model. 

However, the dependence is much weaker possibly because the background rate of the model is 

SEIR Hawkes SEIR Hawkes SEIR Hawkes

Log-Likelihood -606.5 913.6 -239.3 2834.8 -330.0 5265.4

AIC -1207.0 -1223.2 -472.6 -5065.6 -654.0 -9926.8

Weekly Prediction Results

RMSE from prediction 33.1 17.4 92.2 51.8 54.3 41.2

SSE% from over-predicting 32.9% 48.9% 55.2% 18.8% 64.2% 52.6%

SSE% from under-predicting 67.1% 51.1% 44.8% 81.2% 35.8% 47.4%

RMSE from over-predicting 23.0 15.1 97.0 31.2 74.7 35.3

RMSE from under-predicting 47.0 21.1 78.8 66.3 41.6 53.0

Guinea (861 cases) Sierra Leone (1424 cases) Liberia (2081 cases)
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calculated over the entire course of the data. This may provide a benefit of excluding some noise 

produced from week-to-week infection variability. Across all three countries the Hawkes models 

tend to produce more accurate weekly estimates with less extreme errors. 

Figure 1. Weekly case estimates from SEIR and Hawkes models for all countries 

 Guinea - SE  

 
Sierra Leone - East 

 
Liberia - NW

 
 

 

  

The error (estimated cases – actual cases) from weekly estimates is displayed for all 

models in Figure 2. Hawkes model error is shown in blue, SEIR is shown in red, and the black 
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horizontal line at 0 represents perfect estimates. The error rates for SEIR tend to be slightly more 

variable, but overall the prediction error is on the same scale as Hawkes. The analysis of weekly 

estimates indicate that Hawkes models tend to perform better at estimating caseloads one week 

into the future. 

Figure 2. Weekly error from SEIR and Hawkes models for all countries 

 Guinea - SE 

  
Sierra Leone - East 

  
Liberia - NW 

 

Prospective Analysis 

Simulation plots for fitted SEIR parameters on the first 50% and 75% of outbreak time 

data to the remaining 50% and 25%, respectively, are shown in Figures 3 and 4. The thick red 

\
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line indicates the actual cumulative occurrence of cases over time. Each of the thin transparent 

blue lines represent one of the 1,000 simulations of caseload over time which collectively 

provide a sense of how well or poorly each model explained the held-out data. A red dashed line 

is also overlaid which represents the mean of the 1,000 simulations. 

In the 50% fitting and projecting, the case load for Guinea was initially overpredicted, 

then a sharp increase in actual case load was not expected by any of the simulations. This led to 

underestimation for most of the simulations towards the end of the time. Sierra Leone 

simulations showed an average slight overestimation throughout the course of the time, but the 

data generally lies within the simulation variability. Liberia’s caseload is consistently 

underestimated in simulations throughout the held-out period. 

In the 75% fitting and projecting, SEIR modeling significantly underestimated Guinea’s 

new cases throughout the course of the simulation. The SEIR model for Sierra Leone also 

underestimated, but produced simulations that were only slightly lower than the actual trajectory 

of new cases. Sierra Leone’s simulations also captured actual results quite well during the first 2 

weeks of time. Liberia’s SEIR model simulations first undershot the actual case load after the 

first week but then began overestimating from exponential acceleration in all simulations. This 

acceleration did not match well with the observed linear increase.  

The simulations from all three countries achieved a varying degree of success in 

capturing actual case incidence. The amount of data used to fit SEIR models had a large impact 

in determining the direction and variability of simulations. In addition, simulations were 

impacted by the estimated populations of infected individuals for each country. If a model was fit 

at a time point right after a reported sharp increase in case load, such as the Liberia 75% fit, the 

simulations would project large increases. Given a time period culminating in few new 
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infections, the SEIR model tended to forecast a continued period of very few new infections, 

which was inconsistent with the actual observations. 

Figure 3. SEIR projections using 50% of data 

 

Figure 4. SEIR projections using 75% of data 

 

Figure 5 shows equivalent 75% fit and simulated projections using the Hawkes model. 

Hawkes simulations mostly underpredicted Guinea’s cases, although a small proportion 
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generated slight overestimation. Sierra Leone’s Hawkes estimates in aggregate seem to match 

the actual data well with about half of simulations overestimating caseloads and half 

underestimating, but the variation of simulations is much greater compared to the SEIR model. 

Liberia’s simulations also exhibit large variation but in aggregate fit the held-out data reasonably 

well. For these data and simulations, Hawkes seemed to overall provide a better fit to the 

observed data for each country, although the variance in simulation results was generally much 

larger than for the SEIR models. 

Figure 5. Hawkes projections using 75% of data 

 
Days past 75% of time 

Super-thinning Analysis 

Super-thinning results are displayed in Figures 6 and 7 for all regions. Original thinned 

points are displayed as “+” symbols and superposed points are represented by “o” symbols. The 

SEIR super-thinning plots in Figure 6 lack homogeneity in certain time ranges.  

In SEIR super-thinning, Guinea shows high clustering and therefore extreme 

underestimation during the first week, as well as around Day 70 and Day 150. Overestimation 

from a lack of points is seen in several places in Guinea but most noticeable around Day 95. 

Sierra Leone’s super-thinning indicate poor fit in many places as well but most notably 
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underprediction near Day 90, and overprediction near Day 100. Liberia’s super-thinning plot 

appears like a Poisson process with constant rate throughout the course of the outbreak data.  

The super-thinned residuals for the SEIR model clearly indicate excessive clustering. 

This likely occurs because the rate function is heavily dependent on the current infectious 

population which can be highly variable. When there is an unexpected surge in observed 

infections, the modeled rate according to the SEIR model tends to remain relatively low for 

several weeks. As a result, most of the observed points are retained after superthinning, resulting 

in intense clustering. After several weeks, the SEIR rate increases rapidly, resulting in very few 

points retained following superthinning. 

The Hawkes super-thinning plots in Figure 7 appear to be consistent with Poisson 

processes with constant rate for all three countries. We observe no evidence that the model is 

inaccurately estimating the infection rates over time. The superthinning indicates that Hawkes 

models tended to describe the rate of new infections throughout the course of the outbreak more 

accurately. 

Figure 6. Super-thinning using SEIR infection rate parameter 
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Figure 7. Super-thinning using Hawkes infection rate parameter  

Discussion 

The results indicate that Hawkes modeling has the potential to perform as good or better 

than traditional compartmental models such as SEIR in explaining the progression of Ebola 

disease outbreaks. Hawkes seemed to perform at equal or better levels than SEIR in all aspects of 

fitting and evaluation. In the prospective analysis, the higher variability of Hawkes simulation 

estimates may be considered a benefit as it allowed many simulations to line up well with the 

case load and trajectory of the actual outbreak. However, SEIR modeling also provided some 

reasonable projection estimates, especially when it was fit to less data. 

 A weakness to consider in this study is the data itself which is based on official WHO 

reports. The data likely not comprehensive in accounting for every case of Ebola at the correct 

time due to limits on human resources in managing the large area and population of the three 

study regions. Moreover, the data used in evaluation is pseudo data that may not accurately 

represent the true incidence of cases between reporting dates. Because SEIR modeling is heavily 
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dependent on the current population of infected individuals, it will be more prone to error if the 

data is not accurate. With improved detection and reporting measures, as well as more frequent 

measurements, it is possible that SEIR models could show some improvement and should not be 

ruled out as useful modeling tools. 

Another weakness to consider is that the Hawkes model itself relies more on a 

background rate and density function than a multiplicative triggering of new infections because 

each new infection cannot trigger more than 1 new infection. This concept may be somewhat 

counterintuitive in infectious disease modeling because each infection can generate multiple 

secondary infections. This may lead to difficultly in properly modeling in the first few weeks of 

a highly contagious outbreak when the total number of cases is low and should warrant further 

study. Some modifications to Hawkes have been proposed to account for this issue and shows 

promising results (Schoenberg et al., 2017). Nonetheless, the results in this paper demonstrate 

that basic Hawkes modeling can be effective in modeling caseloads several weeks after the 

outbreak has taken hold. 

Conclusion 

 The analysis indicates that both Hawkes and SEIR models achieve some level of success 

in describing the spread of the 2014 West Africa Ebola outbreak. Further study should be done to 

compare these models to other Ebola outbreaks and perhaps data from other infectious diseases. 

In this data set, Hawkes modeling appeared to provide more accurate results, especially in 

capturing the variability of long-duration projections. The projections using simulations 

withholding 25% of data provide the clearest evidence of this accuracy, as the Hawkes 

simulation variability consistently captured each country’s outbreak data. The SEIR model 

simulation variability, by contrast, was occasionally accurate but in most cases produced 
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trajectories that were not consistent with the actual data. In future outbreaks, epidemiologists 

should take great care in using SEIR models to project infections, as the models may poorly 

predict actual caseloads. They should strongly consider including Hawkes modeling as an 

alternative or supplement to SEIR models to achieve more well-informed caseload estimates. 

This in turn could lead to more efficient and effective allocation of resources when managing 

future outbreaks. 

It is important to keep in mind that the spread of Ebola in west Africa in 2014 is one case 

study that demonstrates the effectiveness of Hawkes modeling. SEIR and Hawkes models may 

perform differently for other diseases, regions, or time periods. Important subjects for future 

work would be to compare the fit of Hawkes and SEIR models to data on other diseases and in 

other regions, and to perform prospective analyses to evaluate the forecasting performance of the 

two types of models. Such work could help determine if Hawkes modeling is generalizable to 

explaining future outbreaks.  

Another noteworthy consideration for future study is that Hawkes may be expanded to 

incorporate spatial distribution of cases in the future if the data is available. On the other hand, 

compartmental modeling is generally limited due to its assumption of spatial homogeneity of 

each compartment’s population. Although some attempts have been made toward spatial 

compartmental modeling, such as Guofo et al. (2014) who propose a fractional SEIR model 

using separate S, E, I, and R compartments for each neighboring major metropolitan region in 

New Zealand with additional terms for the spread between these regions, such models still 

spatially aggregate the observations resulting in the loss of some information and resolution 

compared with spatial point process models such as Hawkes models. This advantage to Hawkes 

models should be explored further to improve its use as a tool in explaining disease outbreak. 
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Appendix 

Data used from Ebola outbreak: 

  

Date

Guinea_SE

_Cases

Guinea_SE

_Death

SierraLeone_

E_Cases

SierraLeone

_E_Death

Liberia_NW

_Cases

Liberia_NW

_Death
23-Mar-14 49 29
24-Mar-14 86 59
25-Mar-14 86 60
26-Mar-14 86 62
27-Mar-14 103 66
28-Mar-14 112 70
31-Mar-14 122 80

1-Apr-14 127 83
5-Apr-14 143 86
7-Apr-14 151 95
9-Apr-14 158 101

14-Apr-14 168 108
16-Apr-14 197 122
17-Apr-14 203 129
20-Apr-14 208 136
23-Apr-14 208 136
26-Apr-14 224 143
3-May-14 231 155
5-May-14 235 157
6-May-14 236 158

10-May-14 233 157
12-May-14 248 171
23-May-14 258 174
27-May-14 281 186 16 5
28-May-14 291 193 50 6

1-Jun-14 328 208 79 6
3-Jun-14 344 215 81 6
5-Jun-14 351 226 89 7

16-Jun-14 398 264
17-Jun-14 97 30
17-Jun-14 390 267 136 55 33 24
19-Jun-14 41 25
20-Jun-14 390 270 136 59
22-Jun-14 51 34
30-Jun-14 413 303 239 99 107 65

2-Jul-14 412 305 252 101 115 75
6-Jul-14 408 307 305 127 131 84
8-Jul-14 409 309 337 142 142 88

12-Jul-14 406 304 386 194 172 105
14-Jul-14 411 310 397 197 174 106
17-Jul-14 410 310 442 206 196 116
20-Jul-14 415 314 454 219 224 127
23-Jul-14 427 319 525 224 249 129
27-Jul-14 460 339 533 233 329 156
1-Aug-14 485 358 646 273 468 255
4-Aug-14 495 363 691 286 516 282
6-Aug-14 495 367 717 298 554 294
9-Aug-14 506 373 730 315 599 323

11-Aug-14 510 377 783 334 670 355
13-Aug-14 519 380 810 348 786 413
16-Aug-14 543 394 848 365 834 466
18-Aug-14 579 396 907 374 972 576
20-Aug-14 607 406 910 392 1082 624
26-Aug-14 648 430 1026 422 1378 694
31-Aug-14 771 494 1216 476 1698 871

7-Sep-14 861 557 1424 524 2081 1137
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