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MATRIX ELEMENTS OF THE QUADRATIC STARK EFFECT ON HYPERFINE STRUCTURE 

Robert W. Schmieder 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

February 1970 

ABSTRACT 

The matrix elements for the second-order perturbation of hyperfine 

levels by a uniform static electric field are written in a form that does not 

assume the fieJ-d is in the z-direction. Use of vector coupling coefficients 

separates the effects into monopole and quadrupole interactions. Some 

numerical values of the elements are given, and the energy levels of typical 

atoms obtained by diagonalization are plotted as a function of the field. 
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INTRODUCTION 

It is well-known that the linear Stark effect is identically zero in 

. 1 
nearly all atoms. This is .because nearly all atoms, unlike most molecules, 

have nondegenerate energy eigenstates that have well-defined parity, and the 

average value of the Stark operator 

-+ -+ v = ..,. 8 p 
8 

(l) 

-+ 
-+ 

where p is the electric dipole moment and 8 is the static uniform electric 

field, is zero. Thus, the energy levels are perturbed only in second (and 

higher orders) and the energy level shifts are proportional to 2 
8 (and 

higher powers of 8). Because of this, the level shifts at reasonable 

fields ( < 500 kV /em) are very small ( 10-103 MHz) and only in the past few 

years have non-spectroscopic techniques
2 

been developed capable of measuring 

such small shifts. 

The analysis of a typical Stark effect measurement requires knowledge 

of the kinematical effects of the electric field on the atom--how the energy 

levels split, whether they cross, their behavior at very large fields, and 

so on. When the atom has hyperfine structure (hfs), it is necessary to 

diagonalize the perturbation hamiltonian (quadratic Stark effect plus hfs), 

and this obviously requires computation of the matrix elements. The matrix 

. 3 
elements of the hf interaction are well known and available many places, 

but those of the quadratic Stark effect are more complicated, and numerical 

values have not been published . 
. 

It is usual to use a computer to evaluate these matrix elements and 

perform the diagonalization, and this is by.far the easiest way in practice . 

. l 
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However, much insight can be gained from a numerical table of matrix elements 

arranged as a matrix. Rather than assisting in the analysis of an experiment~ 

such a table is useful for understanding the symmetries of the interaction, 

identifying relationships, and spotting simplifications. 

We present in this paper the matrix elements of the quadratic Stark 

operator in the representation in which 
-+ -+ -+ 
F = I+ J and M = M + M 

I J 
are 

constants of the motion. The matrix elements in the IMIJMJ representation 

are not as often needed, and we do not present these. Some examples are 

given of energy level shifts in the hfs of alkali atoms. The alkali atoms 

( Li, Na, K, Rb, Cs) are practicularly important because they can be treated 
' ' '. 4 

like one-electron atoms. 

' ·~ .. 

,. ' 

·-, ... 
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THEORY 

-+ 
The effects of the field E on a degenerate state in second order are 

given by the matrix elements of the effective operator5 

where 

-+ 
V =s 

EE 
-+ -+ 
p A E 

X = L. P ./ ( E-E. ) 
1 1 1 

-+ 
p 

is a factor involving the energy difference 

(2) 

E-E 
i 

between the state being perturbed and the ith intermediate state, and pro­

jection operators P. for each ith state. Using the algebra of irreducible 
1 

spherical tensors,
6 

it is possible to rewrite Eq. (2) in the form 

(3a) 

where are two constants that involve and the matrix elements 

of p, and 

Q = 
[ 

. A -+"- -+ -+ -+ .J 3n·gn-J - J·J 
J(2J-l) 

( 3b) 

-+ -+ 
In Eq. ( 3b ) , n is a unit vector in the direction of E, and J is the 

-+-+ 
angular momentum operator of magnitude J•J = J(J+l). 

By re-writing Eq. (2) as Eq. (3) we have separated the interaction into 

-+ 
two parts, one that is a simple number, independent of n and · J and termed 

a "scalar interaction", and the other involving n and 
-+ 
J in a form similar 

to the Legendrepolynomial 1 2 P 2 = 2 ( 3J.l -1), and termed a "tensor interaction". 

The numbers a
0

, a 2 are called the scalar and tensor polarizabilities,7 and 

are given in units8 of cm3 or MHz/(kV/cm) 2 . These numbers can be numerically 
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calculated for simple atoms like the alkalis and the alkali isoelectronic 

sequence', and good agreement between such computed values and experimental 

ones has been obtained.9 The polarizabilities are the same type of quantity as 

a magnetic moment'· i.e. , a constant of proportionality between energy and 

field. The dynamical structure of the interaction is contained in these con­

stants and the magnitude of the field, whereas the kinematical structure is 

represented by the multipole operators 1 (the identity operator) and Q. 



... 

~; 
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MATRIX ELEMENTS 

Since we wish to study the effects of Eq. (3) on the hfs of an atom, 

we require matrix elements of v 
E£ 

between two h.f states ln(I(s.Q.)J)FM) · 

and 1 n ' (I ' (s , _Q,, ) J, ) F, M, ) • However, since v 
EE operators only on electronic 

coordinates (not nuclear or electronic spin), we know that I' =I and s' = s. 

-+ 
Now suppose we always keep the field E small enough so that the level shifts, 

whatever they might be, are always much smaller than the fine structure 

separations E(n(s.Q.)J)- E(n(s1)J\). Under this condition, the elements off-

diagonal in n, .Q., J will be very small, so only n' = n, 1' = 1, J' = J ele-

ments are important. Thus, we have only elements between states 

ln(I(s1)J)FM) . = IFM) and ln(I(s1)J)F'M' ) :: IF'M' ) to consider, i.e., 

( FMIV EE IF'M' ) . 

The matrix elements of VEE can be computed straightforwardly from 

Eq. (3) if we write 

where 

"' -+ 
n·J = 

= +(n ± in )//2 
X y 

10 and using the matrix elements (JJ = ± l, 0), 

( FMIF'M' ) :::: OFF'' OMM' 

c l F') ( FM l J I F 'M I ) = (-l)F-M 
]J -M ]J M' 

X (-l)I+J+F+l 1(2F+l)(2F'+l) t 1 

:·} 
I 

X IJ(J+l) ( 2J+l) 

( 4) 

(6) 
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Specific forms of the (3-j) and {6-j} coefficients appearing in Eq. (6) are 

. 11 
listed in many places, and numerical values are available, so using Eqs. 

(4), (5), and (6) in Eq. (3) is direct, though tedius. 

A much easier way is to use the fact.thatthe operator Q in Eq. (3b) 

is a scalar product of a second rank tensor constructed from the three com­

pone~ts of ~ = (n+l' n0 , n_1) and a second rank tensor operator, 
! 

constructed from the three components of The following 

relation can be proved by direct multiplication: 

3 
Q = J(2J-l) (

AA l +-+) 
0 
(jj + (jJ) t l +,+ +-+) nn -

3 
II . . 2 -

3 
J J II (7a) 

.oE+ 
Now X - nn ·1 +-+ --II 

3 
is a dyadic, which represents a second-rank irreducible 

tensor x2
, which has components 

X~= L 
qq' 

n n , 
q q (: : :.) ff(-l)l-1 (7b) 

Likewise, the rest of Q in Eq. (7a) forms a second-rank irreducible tensor 

operator rf" with components Thus, Eq. (7a) can be wri tten12 

Q = 2: (7c) 
l-1 

which is in the form of a sealar product of two tensors. 

The matrix elements of tensor operators are particularly simple,13 and 

from Eq. (7c) it is not difficult to show that 

:.•. 

,• 
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!Where 

( FMIV . IF1M 1 
} .. e:e: 

= 11525 QFF 1 ;MM 1 \j2 
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1 . 

[
(J+l)(2J+l)(2J+3) J 2 ~ 

J(2J-l) L 
].1 qql 

n. n 1 q q 
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(8a) 

( 8b) 

x (-l)I+J+F-F'-M 1(2F+l)(2FI+l) ( F 2 F') { F 2 F'} 

M ].1 -M' J I J 

In Eq. (Sb) the sum over ].1, q, q 1 result from writing the operator 

as a scalar product of two tensors. The (3-j) symbols yield the two conditions 

].1 = q + q 1 = M1 
- M, which means there is actually' only one independent sum in 

Eq. ( 8b). 

The matrix elements of Eq. (8a,b) are valid when the electric field 

is in any direction, specified by the components of n. 
14 

If for some reason 

we find it desirable to establish a; z-axis in some direction other than along 

-r 
e:, these general elements will be required, and v e:e: is clearly not diagonal 

in M. However, if we can chose 't = Eez' we have n = (0, 1, O) and 

( 10 02 10) =~and since ].1 = 0 ·the second (3-j) symbol in Eq. (8) is 

zero unless M = M'. Thus , defining ~F 1 ;M - QFF 1 ;MM,; we find 



~F';M 

-8-

l 

[
(J+l)(2J+l)(2J+3)] 2 (-l)I+J+F-F'-M 

J(2J+l) 

x /(2F+l)(2F'+l) (F 
2 

F ') { F 
2 

F'} 
MO-M JIJ 

UCRL-19560 

(9) 

Thus~ the matrix Q is strictly diagonal in M whe~ E is in the z-direction; 

for every value of M, there is a matrix with rows and columns labelled by 

F and F', respectively. In Fig. l we illustrate the forms of these 

matrices for an atom with I = 5/2, J = 3/2. 

1:, 

.. 

I 
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NUMERICAL VALUES 

In Table I we list numerical values of QFF' ;M for the important 

il:l 
case of J = 3/2 state and I = 3/2, 5/2' 7/2. These values are appropriate 

":-~ to the 2p3/2 states of the stable alkali atoms, 71. 
l' 

23N a, 39K, 85Rb' 

87Rb, 133cs, as well as others. For such atoms, the states are 

split by the hyperfine interaction into four hf states labelled by F = I + 3/2, 

I + 1/2, I - 1/2, I - 3/2, each with 2F +1 magnetic substates. Since only 

substates with the same M (but possibly different F) can perturb each other, 

matrices ~F'·M will be at most 4 x 4, and for some M, smaller than 4 x 4. 
' 

There are several interesting observations to be made on Table I: 

1) The (F-= F' = 3, M = 2) elements are zero for all I· 
' 

2) The (F = F' = 2, I = 3/2) elements are zero for all M; 

3) The F = F' = 0 element= 0 (this is the 0 f 0 selection rule); 

4) No elements besides those of 1) 2) 3) are zero, except for 

IF~F' I > 2; 

5) The M = 0 matrices are reducible from 4 x 4 to two 2 x 2, and 

the energy eigenvalues are roots of quadratics instead of quartics. 

This follows from the invariance of the determinant to reordering 

of the rows and/or columns: 

a 0 0 0 a· 0 0 0 

.II, 0 b 0 n 0 b 0 0 

det 0 0 c 0 = det 0 0 c n 
0 n 0 d 0 0 n d (10) 

[" :] [; :} = det det 
0 

2 2 = ( ab ... o ) ( cd · - n ) 
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Thus, the energy eigenvalues E satisfy 

(a E)(b E) 02 ·- 0 ~ 

(c E)_( d E) 2 
0 (ll) n = 

k 

and therefore the curves E(j~j) are parabolas. 

6) A;Ll diagonal elements are rational, and nearly all off-diagonal 

elements are irrational. 

The fact that the ± M states have the sarire matrix elements means 

the quadratic Stark interaction will not separate these two substates. 

,ill 
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ENERGY LEVELS 

Although the main purpose of this paper is to present the matrix 

elements of V , the main purpose of the matrix elements is the computation E:6 . 

of energy levels versus 6. Since we are considering hfs and Stark effect 

perturbations of roughly equal magnitude, we must find the energy shifts as 

the eigenvalues of 

v = v .· + v 
hfs 66 

But from Eq. (8a) the scalar part of v 
66 

(involving 

( 1~) 

is not only dia-

gonal in the (FF' ;MM') subspace but actually a multiple of the unit matrix. 

Thus, every magnetic substate will be shifted by exactly the same amount by 

this term, namely 
1 2 -2 a0 6 , and we can ignore it when diagonalizing Eq. (12). 

Furthermore, since we are neglecting elements off-diagonal in I and J we 

can write out Vhfs explicitly, so Eq. (12) becomes 

..... --~ [ 3(r·3) 2 
+. ~ r·3 - r·I j.j J 

V' = a I·J + b 2I(2I-l)J(2J-l) . 
(13) 

where a,b are the dipole, quadrupole hfs constants, and we have dropped 

the term. 

The operator Eq. (13) represents the quadrupole hfs quadratic Stark 

effect, and the energy levels mey be found as a function of 6 by evaluating 

det{V'-E} = 0. We have used a computer to diagonalize Eq. (13) for a number 

of cases of interest. Figure 2 shows a typical result, for the 2 7 p3/2 

state of 133cs (I = 7/2). The 0 on the vertical scale is the energy of the 
r, 

7'P
312 

state for V = 0. The four unperturbed hf levels atE:= 0 have F = 5,4,3,2, 
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and for very large E, the mJ = ± 3/2, ± l/2 substates are well separated. 

In order to mark the horizontal scale in units of [E) = kV/cm, it 

is necessary to know a,b and a
2

. The former are generally known frorn 

15 
measurements, .. and values of . a2 

16 
are currently being computed and measured. 

We used a= 18.6 MHz, b =- 0.11 MHz, and the theoretical value
17 

. 2 
1.072 MHz/(kV/cm) . 

Several aspects of Fig. 2 may be noticed: 

l) The center-of-gravity of the energy levels remains at zero for 

all E; This is a consequence of the zero trace (average) of all 

non-zero rank tensors. Note that the scalar part of v 
EE' 

excluded frorn Fig. 2, is a zero rank tensor, and adds to each 

curve the parabola 
l 2 

Since· a > o and la0 l»la) - 2 ao E . 0 . 

(usually) the actual levels are bent downward sharply; 

2) All subs tates M 1 0 are doubly degenerate ( ± M) ; 

3) Level crossings occur at E > 0. These crossings, and those 

occurring at E = 0, form the basis for electric field level 

. . t 18 cross2ng experlmen s. 

It might be constructive to compare Fig. 2 with a similar plot of 

the Zeeman effect (Fig. 3 ) . This plot was computed in the same way as Fig. 2, 

using Eq. (ll) with gJpO'JCJz instead of_ :.. t a
2 

E
2 Q. The main differences 

are in degeneracy (M vs · ± IM I) and field dependence . ('Jf vs. E
2 ); both 

effects have constant center-of-gravity ,and at large fields the levels 

separate into groups labelled by mJ (i.e., Pas chen-Back effect). 

•• 
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Finally~ in Fig. 4 we plot the energy levels of the 
2 3 P 

312 
state 

Of 7Ll. VS. E. This atom is interesting because the dipole hfs constant a is 

negative, a unique occurrance among the alkali atoms. Figure 4 makes use of 

. 4 t• . 117 the extrapolated values a=- 0.935 MHz, b = - 0.0 MHz, and the theore lCa 

value a2 =- 0.377 MHz/(kV/cm) 2 . The result of a< 0 is that the crossing 

near 3.25 kV/cm is exceptionally sharp (compare Fig. 2). This fact is currently 

being exploited in a level-crossing experiment to obtain precise values of 

the hfs constants a,b in this state _19 
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FIGURE CAPTIONS 

Fig. l. Arrangement of the matrix elements of Q for an atom with I = 5/2, 

J = 3/2, grouped according to the value of M. The separation of different 

M matrices is possible only if 
-+ 
E: is in the z-direction. For different 

values of I, there are rriore (or less) 4 x 4 matrices, as seen in 

Table I. 

Fig. 2. Energy levels vs. of the state of the Cs133 atom. The 

constant shift ·1 2 - 2 a 0 E: of all levels has not been included. 

Fig. 3. Energy levels of the same atomic state as Fig. 2, as a function of 

magnetic field. The differences between this plot and Fig. 2 are 

indicative of the symmetry differences of the Stark and Zeeman effects. 

Fig. 4. Energy levels vs. e: of the 3
2

P state of Li7. . 3/2 As in Fig. 2, 

if we include the constant shift 1 2 . . - 2 a 0 e: , we f1nd the actual levels 

bend downward sharply . 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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