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MATRIX ELEMENTS OF THE QUADRATIC STARK EFFECT ON HYPERFINE STRUCTURE
Robert W. Schmieder
Lawrence Radiation Laboratory
University of California

Berkeley, California 94720

February 1970

ABSTRACT
The mat}ix elemeﬁts for the second-order perturbation of hyperfine
levels by a uﬁifofm static'electric-field arevwritten in a form that does not
assume the fié;d is in the z-direction. Use of vectdr'COupling éoefficients

separates the effects into monopole and quadrupole interactions. Some

numerical values of the elements are given, and the energy levels of typical

atoms obtained by diagonalization are plotted as a fungtidn of the field.
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INTRODUCTION

It is well-known that the linear Stark effect is identically zero in

nearly all aﬁoms.l This is because nearly all atoms, unlike most moleéules,

have nondegenerate energy eigenstates thaf‘hafe well-defined parity, and the
gverage value of the Stark operator

y N . ‘ o ,
where p  is the electric dipole moment and € is the static uniform electric

field, is zero.'”Thus, the energy levéls are perturbed only in second (and
higher orders) and the energy'level shifts are'proportidnal to 82 (and
higher powers of s). Because of this, the level shifts at reasonable

3'MHZ) and only in the past few

fields (< SQO kV/Cm) are very small (10-10
years have ngﬁ—spectroscopic techniciues2 been developéd capable of measuring
such sméll‘shifts.

The anaiysis-of a typical/Stark effect méasurement reéuires knowledge

of the kinematical effects bf the electric field on the atom—-how the energy

levels split, whether they cross, their behavior at Very_large'fields, and

so on. When the atom has hyperfine structure (hfs), it is necessary to

diagonalize the perturbatioh hamiltoniap (quadrétic.Stark effect plus hfs),
and this obvioﬁsly re§ﬁires computation Of'the‘métrix elements. .The matrix
elements of the hf interaction arevweil known and_available many pléces,3‘
but those of the quadfatic Stéfk effect_aré more cdﬁpliéated, and nuﬁérical
values have'notbbeen bublished. ﬂ |

It ig usﬁal té use'a computer to evaluate thesé.matrix elements and

perform the7diégonalization, énd this_is'by'far the easiest way in practice.
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However, much insight can be gained from a numerical tabie of matrix elements

arranged as a matrix. Rather than assisting in the analysis of an experiment,

such a tableiis useful for ﬁndérstanding the symmetrigs of the interaction,v
identifyiﬁg felétionships, and spotting simplifications.

| We present in this baper the ﬁatrix elements of>the,qﬁadratic Stark
. Operator in tﬁe-fepresentation in which ,% = %'+ 3 and  M = MI + Mi are
constants of ﬁhe motion. The matrii glements in thé IMIJMJ representation
~are not as oftenlﬁeeded; and we do not present these. Some examples éré
bgiven of energyﬁievel shifts in the hfs of alkali atoms. The alkali atoms
V(Li, Na,vK,va’ Cs) are.practiCularly ;mportanﬁvbegdﬁse they can be treated

like one-electron atoms.

v
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. THEORY

The effects of the field € on a degenerate state in second order are
given by the matrix elements of the effective operatorsr_

‘ __'—F.—> —>.v+ ' .

Vee = 8 ‘_,P_)_‘e L : (?)
where A = ZiPi/(E-Ei) is a factor involving the energy difference E—Ei
between the staté»being pertufbed and the ith intermediate state, and pro-

- Jection operators P, for each ;0 state.  Using the algebra of irreducible
spherical tensors;6 it is possible to rewrite Eq. (2) in the form
= _.Q.Q ; ) . - _ o (3a)

Vse 0 2

where ao, Q, >are two constants that involve A and the matrix elements

2
of P, and »

_ n'dn-Jd — J- . S _
Q= [ J(2J-1) ] ) ‘ : (30)

. > >
In Eq. (3b), n is a unit vector in the direction of €, and J is the
o . > > ' '
angular momentum operator of magnitude J-J = J(J+1).
By rewriting Eq. (2) as Eq. (3) we have separated the. interaction into

two parts, one that is a simple number, independent of n and 'J and termed

- - » & 3 " » ) - e _>‘ 3 ‘. S
a '"scalar interaction', and the other involving n and J 1in a form similar

= %-(3u2fl), and termed a "tensor interaction".

to the‘Legendrefpolynomial P
‘ B T

2

The numbers :ao, o are called the scalar and tensor polarizabilitiés, and

3

2

are given in u'nits8 of em™ or MHz/(kV/cm)z. These numbefs can be numerically



calculated for-Simple atoms like the alkalis and the alkali isoelectronic

sequence’, andvgood agreement between such computed'valhes.and experimental

ones has been_’obtained.9 The polarizabilities are the;éamé type of quantity aé'

a magnetic moment; i.e., a constant of proportionality between energy and

field. The gznamical structure of the interaction_is"éonféinéd.in these con-"

stants and the magnitude of the field, whereas the kinematical structure is

represented by the multipole operators 1 (the identity operator) and Q.

b E o UCRL-19560 -

&
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. MATRIX ELEMENTS . ‘ | |
_Since.we'ﬁish'to study}the effects of Eg. (3) on the hfs of an atom;
we requiré mafrix.élements of Veé between-two.hf stétgs In(I(Sg)J)FMbyl |

and In'(I'(s'l')J')F'M"). However, since V__ - operafofs_only on electronic

€€ -
'

coordinates (not nuclear or electronic spin), we know that I' =1 and s' = s.

 Now suppose we always keep the field E' small enough'éo;that the level shifts,

whatever theyfmight be, are always much smaller than thé fine structure

separations. Ekn(éQ)J) - E(n(sQ)J‘).j Under this condition,.the elements off-
diagonal in ﬁ, i, J will be very small, so oﬁly' n''=mn, & =2, J' = J ele-
ments are imporfant. Thus , Wé have only elements betweén étates | |
In(I(s)J)FM ) = |FM) and bln(I(SZ)J)F‘M’ ) é‘lF'M' ) to consider; i.e.,
(Pl [P ). o |

"The matrix elements of VEE can be computed stfaightforwardly from:

Eq. (3) if we write

. i . J_ +nJd J | o (L)
n = .“n_’-_l -1 no O - n__l +1 - . N .

= F(; + 3 ) = ’ - |
where n, = (n_X 1ny)/%§ » Ny =1, (same form for _Jil’ JO)
. - . 10 : i
and using the matrix elements™ (u =% 1, 0),
p'. . _ X . N ) . . - .
(PM[F'™M' ) = Spny Sy | o | (5)
(o |rmr ) = (-)F M o -~ (6)
' ' ' ' o1 O
T+ +
x (-1) L R (aF L) 4
S i J I J

x VU(J;l)(2J+1)V .
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Specific,formé of the (3jj) and {6-3} coefficients,appearing in Eq. (6) are
listed in many’ﬁlaées,ll énd numerical valueé are aVailgblé, so using EQS-
(L), (S)J_and'(6) in Eq. (3) is diréct, though tédiusf

A much eééier<way is to use thé facf.that:fhe_opefator Q in Eq. (3b)
is a scalar pfoquét of a secpn& rank tensof construéted from the three com-

pone?ts of n ;_(n+l, Nys n_l) an@ a second:rank tensor ope?ator,

J .). The following

constructed from the three components of 3 = (J+l’ JO; 1
relation can belproVed_by direct multiplication: '
3. PN 1 <> 33.+v(33)+ vl > +'++ s
Q= D) (an - $I): | == -5 370 (7a)

AN

Now X = nn - %—II is a dyadic, which represents a second-rank irreducible

tensor X2, which'has chponents
X = 2{:“ nn ‘ V5 (-1) . - L (7o)

Likewise, the rest of Q in Eq.v(Ta) forms a second—rank,ifreducible tensor

operator TL ‘with components vTi. Thus, Eq. (7a) can be writtenl®

Q= Z (—1)“_){2 e = x2;T2_ S o ' _ (Te)
which is in the form of a scalar product:of two tensors.
The matrix elements of tensor bperators are particularly simple,l3 and

from Eq. (7c) it is not difficult to show that

[N



- o . UCRL-19560

ST | 2 S E o
TR - _ L ] .
,<FM,V€€IF.M ) 5 0o € Sppr Sy g S (8a)
1 2
~ 2 % & Qppoge

i where

| _ . oL - _
L 15 (J+1) (23+1)(23+3) |2 L 1 2.1
“rreme T V2 [ J(2J-1) ] Z Z g

u qu q ~u q’
| (8b)
- C ratemowim - ’ F 2 F'\| F 2 F'
N (_l)I+J+F F'-M /BT (2F7+1) . ,
o Moy M J I J,

In Eq. (éb) the sum over M, @, Q' fésult from.gfitiﬁg the opérator
as a scalar prbducf of two tensors. The (3-j) symbols yield the two'conditiéns
U=q+ q' =_M"e M,’whichvmeans there is'actually'only one independent sum in
EqTV(Bb). |

The matrix elements of Eg. (8a,b) are valid when'the eléctric field
is in any direction, specified by the components of ;;‘ if for.some reaéonl
wé fihd it deéirable to establish é z—axis in some diréciion_other than along

€, these general elements will be required, and. V88 is clearly not diagonal

~

S . > ~ : :
in M. However, if we can chose € = Eez, we have n = (0, 1, 0) and_y

1 2 1 . L _ S :
= “/i%3 and since W = 0 'the second (3-j) symbol in Eq. (8) is
0 0 0 : ' v ' '
M = t ] s : - ‘ L .
zero unless M = M . Thus, defining QFF';M = QFF';MM’ we»flnd,
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1
_ L (g+1) (2041) (23+3) | 2, . \I+J+F-F'-M . '
. . Ly
o F 2 F\(F 2 ¥
x V(2F+1)(2F'+1) &

\M 0 -M JI-_J'

Thus, the matrix Q is sﬁrictly diagonal in M wheq-ve is in the z-direction;:
for ever§ value of ‘M, there is a matrix with rows and colﬁmns labelled by.
F ~and F', respectively. In Fig. 1 we illustrate ﬁhe forms of these

matrices for an atom with I = 5/2, J = 3/2.
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NUMERICAL VALUES

~ In Table.I we list numerical values of QFF;-M Afdr'the important
. - . . . -9

‘case of J = 3/2 'state and I = 3/2, 5/2, 7/2. These values are appropriate

to the'v2P3/é states of the stable alkali atoms,’7Li;v23Na, 39K, 85Rb,
87Rb, 13305, as Veil as others. For such atoms, the"ZQPS/2

split by the‘hyperfine iﬁteraction into four hf states labelled by F =14+ 3/2,

states are -

I+1/2, I -1/2, I - 3/2, each with 2F +1 magnetic substates. Since oniy

substates with the same M (but possibly different F) can perturb each bther,

- matrices Quo, .. will be at most U4 X 4, and for some M, smaller thah hox k.
. R} ) . .

There are several interesting observations to be made on Table I:

l)'The (F-=F' =3, M= 2)'elements are zero fdr all TI;

2) The (F = F' =2, I = 3/2) elements are zero for all M;

3) The F = F' = 0 element = 0 (thié is the 0 # 0 selection rule); .
L) Nofeiements besides those of 1) 2) 3) are zero, except for
PF ] > 25 |
5) The M =0 matrices are.feducible from 4 x n to two 2 x 2, and ,
the energy eigenvaiues are roqté of.quadrétics'instead of quartics.

'This'follows from- the invariancerqf the déterminant to reordéring

of the rows and/or columns:

a 08 0 a 8§ 0 0
0 b 0 n 18§ » 0 0
. det § 0 ¢ 0] =4det |0 0 ¢ n
0O n 04a 0 0 n 4d (10)
1-a § e M
=det | | Qet .
5 b n a4

(s = 8%)(ca = n?) .
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Thus, the energy éigenvalues E - satisfy

It
o .

(a - E)(b ; E) - &2
2

I
o .

"_(c - Elhie E) - n

and therefore the curves E(|e|) are parabolas.
6) All diagonal elements are rational, and nearly all off-diagonal -

elements are irrational.’

The fact that the * M states have the. same matrix elements means:

“the quadratic'Stafk interaction will hot separate these two substates.

(1)
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" ENERGY LEVELS
Aithough»the main purpose of thisApaper is to present the matrix

elements of Vés’ the main purpose of the matrix elements is the computation

of ehergy levels versus €. Since we are considering hfs and Stark effect

perturbations of roughly equal magnitude, we must find the energy shifts as

the eigenvalues of

But from Eq. (8a) the scalar part of V€€ (involving a.) is not only dia-

0
gonal in the (FF';MM') subspace but actually a multiple of the unit matrix.

Thus , every magnetic substate will bé shifted by exactly the same amount by

270

Furthermore, since we are'neglecting elements off—diagOnal in I and J we

this tefm, nameiy -d 62, and we can ignore it when diagonalizing Eg. (12).

can write out V, . explicitly, so Eq. (12) becomes -
. , > > ;
- = 3(f'3)2 % J - _I>~I> 33 1 5 i
f - T e . - —
V' = g I:J:+0D ST eV (57D >0, € Q (13)

where a,b are the dipole, quadrupole hfs constants, and we’haVe droﬁped
the qo bterm. | - | | | |

| Theiopefatéf Ed. (l3) repfesents the quadiupole'hfs'quadratic Stark
effect, and the>energy levelé may be found -as a function of € by evaluating
det{V'-E} = O. ‘We have used a computer to dlagonallze Eq (13) for a.numbef.
of cases of interest.‘ Figure 2 shows a typical result, for the 7?P3/2

state of 133Cs (I-=17/2). The O on the vertical sca;e is the energy of the

3/2

7P / state for V = 0. The four unperturbed hf levels at € =0 have F = 5,4,3,2,
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“and for very lafgév €, the m, = + 3/2, £ 1/2 substates are well separated,

In order to mark the horizontal scale in units of [e] =-kV/cm, it

is necessaryito'know a,b and 02. The former arevgenerally known from

2
We used a = 18;6 MHz, b= - 0.11 MHz, and the theoretical.value

15 = 16
measurements, Swand values of « are currently being computed and measured. #

17 !

o, - - 1.072 Mitz/ (kV/cn)?
» | Severgl éspeéts-of Fig. 2 may be noticed:
1) The’genter46f;gravity of the energy.levels.reﬁains.at zero for
all'.g; This is a consequence of the ééro.frace (average) of all
non;zerd rank tensorsfv Note that the'sééléf'ﬁart of Vae’

excluded from Fig. 2, ié a zero rank tensor, and adds to each

curveithe parébola - l-a ‘E?.' Since- o

> o >0 and fag|>>{oy]

0
(usually) the actual levels ére bent'downward-Sharply;
2) Alijéubstates M# 0 are doubly degenerate (* M);

3) Level crossings occur at € > 0. These crossings, and those

occurring at € =0, fofm the basis for electric field level

18

crossihgvexperiments.
It mighf be COnsfructive to compare Fig. 2 with:g similér plét of
the Zeemaﬁ effect (Fig. 3).‘ This plot was COﬁputed in'the same way as Fig. 2,
using Eq. (ll)'with_.ngomUZ- instead éf‘-Q %-uz e? Q: The main differences
are in degeneracy (M vs. *|M|) and field dépéﬁdence (¥ vs. e2); both

effects have constant center-of-gravity,and at large fields the levels

separate into groups labelléd_by _mj (ile., Paschen-Back efféct).
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Finally, in Fig. b4 we plot the energy levels of the 32P3/2 state
of 7Li vs. €. This atom is interesting because the dipolé hs cohstant a 1is

negative, a unique occurrance among the‘alkali atoms. 'Figure L4 mskes use of
the extrapolated values a = -— 0.935 MHz, b = - 0.04 MHz, and the theoretic'allT

value @, == 0.377 MHz/(kV/cm)g. The result of a < 0 is that the crossing

near 3.25 kV/cm is exceptionally shérp (compare Fig. 2). .This fact is currently
being éxploited in a level-crossing experiment to obtain precise #alues of

19

the hfs constants - a,b in this state.
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FIGURE CAPTIONS

. 1. Arrangement of the matrix elements of Q for an atom with I=75/2,

J = 3/2, groﬁped according to-the value of M. The separation of different

M matrices is possible only if € is in the z—direction. For different

values of I, there are more (or less) 4 X L matrices, as seen in

Table I.

3/p State of the cs™33 atom. The

82 _of'all levels has not been included.

2. Energy levels vs. € of the 72P

. . -1
consﬁant_shlft > ao

3. Energy:leveIS'of the same atomic state asIFig. 2, as a function of

~magnetic field. The differenceé between this plot and Fig. 2 are

indicative of the symmetry differences of the Stark_and Zeeman effects.

vut'_Energy levels vs. € of the 32P3/2» state of Li7

if we inéludé the constant shift - %-ao‘az, we find the actual levels

. As in Fig. 2,

bend downward sharply.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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