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Abstract

A uniqueness theorem is presented for linear elastic doublet mechanics. Restricting attention to
plane problems in elastostatics a correspondence between solutions in doublet and continuun mechanics
is achieved, thus allowing a technique for generating solutions. A micro-stress function is introduced in
analogy with the Airy stress function in continuum mechanics. Utilizing these solution methodologies a
sampling of problems in plane elastostatic doublet mechanics is solved. In particular, the fundamental
problems of Flamant, Kelvin and stress concentration due to a circular hole are considered.

1 Introduction

Recoguizing the discrete nature of natural materials Granik and Ferrari (1993) introduced the theory of
doublet mechanics (DM), wherein the body is modeled as a lattice of discrete points rather than a coutinuun.
A DM body is thus a collection of discrete poiuts separated by “swmall,” but finite, distances. Since its
inception, the theory has been successfully applied to failure theories (Ferrari and Grauik, 1994, 1995).
viscoelasticity (Maddalena and Ferrari, 1995), elastic wave propogation (Grauik and Ferrani, 1995; Zhang
and Ferrari, 1995) aud thermomechanics (Mou and Ferrari, 1995).

We begin with a uniqueness theorem in linear elastic doublet mechanics. With this tool in baud we
present two methods of obtaining solutions. The first stems from a correspondence between problemns in DM
and contituun mechanics (CM), which allows the generation of a solution in one theory given a solutiou
in the other. The second methodology involves cowbining the micro-stress equilibriwin and wmicro-strain
cowmpatibility requiremnents into a single condition, from which stews a micro-stress function (MSF) analogous
to the CM Airy stress function (ASF). While an adinissible ASF is auy bi-haruonic function, the equation
governing the MSF is a more general fourth order differential equation dependent on the lattice geometry.
We show that for a specific choice of the DM lattice the MSF a bi-bharmouic function.

We illustrate the advautages of the two methodologies by solving several probletus in plane elastostatics
We begin by considering homogeneous deformations and then obtain solutions to the dassical problewns of
Flamanut and Kelviu. Finally we obtain the stress concentrations due to a drcular hole iu au iufinite plate



subjected to bi-axial teusion. Qur purpose is not to provide a catalog of solutious in DM, but rather to
eludidate the techuiques,

As an application, Granik and Ferrari (1993) cousidered the DM equivalent of Flamant's problem: a
concentrated force acting nonmnal to the free-surface boundary of a planar elastic half-space. Though the
qualitative description of the existing DM solution is accurate, its quantitative incousistencies are corrected
iu this paper.

DM is a scale dependent theory but for the purposes of this paper we consider ouly the nou-scale subcase.
The reader is referred to Granik and Ferrari (1993, 1995) for background and the general theory of DM.

2 Uniqueness Theorem

The objective of this section is to establish a uniqueness theorem in linear elastic DM. Cousider a DM body
B with boundary 8B. The body B is subjected to a body force field b. The boundary is partitioned into
{68B,,8B1} sudi that the displacement field u is presaibed on 88, and tractions T are prescribed on ABr.
Similarly, the boundary is partitioned into {8B4,88,} such that the infinitesimnal rotation vector field ¢ is
prescribed on 88, aud the couple traction M is prescribed on 8By

The kinemnatical vector fields u and ¢ give rise to the miaro-strain quantities €, fo. and v, corresponding
to elongation, torsiou and shear, respectively, of the doublet. Greek subscripts distinguish doublets aud range
frow 1 to n where n is the nunber of doublets. Swimnation convention is not enforced with respect to greek
subsaripts. The work conjugate micro-stresses p,. mg and to, corresponding to elongation, torsion and
shear, respectively, are assumned to be derivable from a stored strain energy function W = W(ea. o %ai) to
exclude the possibility of generating energy through a closed cycle of deforinatiou. Unless otherwise noted,
Latin subscripts will denote the component of the quantity expressed with respect to a Cartesian coordinate
systemt. For exaimnple, <4 are the Cartesian components of vy, with respect to the orthononual basis e;.
The sunnation conveution is enforced for repeated Latin subscripts where the range of the index is {1, 2,3}
unless otherwise noted. For the most general linear elastic respouse, the wiaro-stresses are related to the
miaro-strains through the following linear constitutive relation:

Pa = D (Auses+DBagus+ Casigi) (1)
8=1
My = Z(B,go €3+ Eagps+ Fogsivsi) (2)
3=1
n
tai = Z (Cﬁoifﬁ + E@ai Mo + Iaﬁl'j ‘7}3.1') (3)
8=1

where 4,3 = 430, Eog = Ego aud Iogij = Igaji. Further restrictions on the formn of the constitutive
relations are addressed by Mou and Ferrari (1995). For the waterial stability we take the strain energy
function W be non-negative at all points for all compatible miaro-strain fields. We shall returu to this
point below. Due to the resulting quadratic formu, W achieves a minimum when ¢, = 0, g, = 0 and
~ei = 0; Without loss of generality we take this miuimmum to be zero. It follows that W = 0 if and ouly if
€a = Ho = Yai =0

The iuternal energy Wy, is giveu by (Granik and Ferrari, 1993)

n
2‘Vint=Z/B(poeo"*'"lo“n'*'ta"’a)dv (4)

a=1

and the external energy Wy is given by
2;Vm=/b.uw+/ (T -u+M-¢)dS. (5)
B a8

At equilibriwin, Wy, = Weyxe.



Let {ul,¢',ul,v2.pL ml tL} and {u?, ¢% 12,42, p2. m?,t2 } denote two sets of fields which satisfy the
goveruing equations. Furthermore, let (%) denote the difference iu the quantity (-) between the two solutions.
Fur example, G = u? —~ u!. It follows that

2xvm=LB-ﬁW+LB(T-ﬁ+M-$)ds=n. (6)

Thus, at equilibrium ﬁ’int, = () from which it follows that &, = f, = ,; = 0 which then implies that the
wiaro-strains and thus also the wmicro-stresses are the same for the two solutions, ie., €, =€, ...5L, =2,
It follows that the two sets of kinematical fields differ by at most a motion which is strain-free. That is,
the wmicro-straius associated with the kinematical fields @ and ¢ are zero. We call these wicro-strain—free
motious rigid body motions. The infinitesinal displacement u and rotation ¢ fields are thus unique to within
at most a rigid body motion. This concludes the uniqueness proof.

It was mentioned above that we demand the strain energy function W to be greater thau or equal to
zero when evaluated at any point within the body for all admissible motious. This was to assure waterial
stability. In other words, W is to be non-uegative for all physically realizable occurences of it argueinents,
the miao-strain.. Iu the realm of linear elastic CM, the strain energy functional W€ is taken to be a function
of the linearized CM strain measure €f;. To determine over what set W° wmust be non-negative consider au
E,."J- € R%. We now ask if there exists a displacemnent field u§ which when evaluated and somne poinut yields the
strain ieasure E,-’;-? The answer is in the affirnative; Take the displacement field u$ = s;"j z; which yields a
strain measure £5; at all poiuts in the body. Thus, W¢ must be non-uegative for all ¢;; € R®. The quadratic
forin of W€ in linear elasticity allows one to stipulate that W€ = 0 if and only if £§; = 0. As a resule, W€ is
required to be positive definite. In DM (€, o, 7ai) € RE™ but it is not clear that it is necessary to demand
that W be nou-negative with respect to R8"—though this would be suffident.

3 Inversion Technique

In this subsection we develop a connection between solutions i DM and CM. This connection proves useful
in that it allows, given a solution in one realm, the geueration of a solution in the other realin. Below we
present conditions which are sufficient to allow for this connection.

Cousider two mathematical models of the sane physical body, one linear elastic DM and the other linear
elastic CM. For the DM model we cousider the non-scale theory with no infinitesimal rotational kinematical
vector field ¢p. We assume the waterial to be incapable of supporting wicro-torsional aud wiao-shear
stresses. The equilibriuin equations for the DM wmodel are

n
D T tsipajtbi=0 in B (7
a=l

where p, ; 1= Opo/Ox; and 73; is the direction cosine of the T3 doublet with the z;-axis. The boundary
conditious are "
nj Z TaiTajPa =T on 8Br (8)
amxl
aud
ul = 4 ou 8B, (9)
where 8By and 8B, form a partition of the boundary 88 aud T; aud 4; denote prescribed quantities. The
wicro-constitutive relation is “
Pa=) Aases (10)
B=1
where A, g is symmetric and positive definite. We shall often make use of a spedfic forin of the coustitutive
relatiou (10), nainely. taking 4,3 = 4,0, where 4, is a scalar and 8,5 is the Kronecker delta. to yield

Po = 4ota. (11)



This spedal coustitutive relation is termed “non-polar.” Compatibility is given by the idanity
d
22— 26812 + 521 =0 (12)

where E:’) = (U:IJ -+ Ui,‘)/z.
The equilibnumn equations for the CM wodel are the fawiliar equations

of;j+bi=0 iu B, (13)
The boundary conditions are )
ofiin; =1, ou OBr. (14)
aud
uf = & ou OB,. . (15)
The constitutive relation is
U.'cj = Cijki €51 (16)

where Cijui = Ciiij = Cjiri and C is positive definite.
The wrausition from micro- to macro-stresses is given by the relation

n
ofi= 1373 Pa (17)

a=]

As noted by Granik and Ferrari (1993) it is possible to define equivalent macro-stresses and -straius in terus
of the micro-stresses and -strains, respectively. The micro- to macro-strain relation is given by
— o .0 ..d 18
€a = Tq Toj U j- (18)
The micro to macro stress relation (17) permits a convenieut representation of the DM goveruing equa-
tions. Substituting equ (17) iuto the DM equilibriuin equ (7) yields
ol +bi=0 in B (19)
provided that the doublet directions do not vary spatially. Substituting equ (17) into the traction boundary

condition (8) yields the expression
ofnj=T. ou 8B8r. (20)

The forin equivalence between equs (19) and (13) and between equs (20) and (14) gives rise to the
following result. If of; is an admissible stress field then any set of wiao-stresses po whidh yield cr:-’j = of;
satisfy both the micro-stress equilibriuin aud the miaro-stress tractiou boundary condition. Conversely, if
{po} is au adwissible set of wicro-stresses then of; = of; is an admissible CM stress field.

Simiilarly, if &§; is an admissible strain field then micro-strains obtained frow equ (18) using a;’j = £f;
is an adissible wnicro-strain field. Conversely, if €, is an adinissible micro-strain field consistent with the
equivalent acroscopic strain field sfj then £f; = 53 is an adiuissible CM strain field.

We now introduce some matrix notation which will allow for couvenient representatiou of sone of the
above relations and later manipulations. Let é 1= {e).€3,...,6,}7 be the column vector of axial micro-
strains aund let  := {p;.p2....,pn}T be the column vector of axial wicro-stresses. The wicro-coustitutive
relation (10) may thus be expressed as p = A &é.

We now restrict attention to planar problems. The developuents below, however, are easily extended
to three dimensions. In this coutext, let & := {01,022,012}7 be the colunu vector of in-plane stresses.
Likewise, let & := {£4;.£32,612 + €1 }¥. The coustitutive relation (16) takes the form & = Cé wheae Cis
the appropriate matrix representation of C for the type of planar problem under cousideration, i.e., plaue
strain or plane stress.

The micro-macro relation (17) may be expressed as

¢! =Mp, (21)



which implicitly defines the 3 x n matrix M. Siwilarly, the micro-mnacro strain relation (18) can be expressed
/8 .
e=MTel (22)
Frow the developients giveu above it follows directly that
p=M"16° (23)

is an adwmissible micro-stress field provided that o{; is admissible and M is invertible. The matrix M is

invertible if n = 3 and noue of the three doublets are collinear. For n = 3, M is given by

(rh1)? (721)2 (5,)?
M=| (5 (75 (v5)% |. (24)
ThTi2 T21T2z T3 T3z |

Furthenuore,
e=MTe (25)

is an adinissible micro-strain field provided that £f; is admissible. Thus if €;; and of; are the equilibriuin
solution fields to the CM problemn then equs (23) and (25) yield admissible xxucxo-st,rws and micro-strain
fields. respectively. In order for these micro-strain and micro-stress fields to be the solution to the DM

problemn they must be related through the constitutive relation (10) or equivalently,
MamT = ¢, (26)
The proof follows by substituting (23) aud (25) into p = A é which yields
6°=MAMT & (27)

which lb true if M AMT = €. If the micro-coustitutive relation is non-polar then it can be proven that
MAMT = 4,MMT is isotropic for all values of 8 if aud only if ~ = = /3.

In sunuinary, if we desire a DM solution to a planar problemn mth three doublets and + = % /3 then the
solution can be calculated directly from the associated CM problemn with an isotropic material. Agaiu, we
eulphd.siw that this method of inversion of the macro-stresses has been presented ouly for the planar case
but it is applicable to 3-D problems as well. It should be noted, however, that there is no arrangement of 6
doublets in 3 dimensions that with a non-polar micro-coustitutive relation yields MAMT to be isotropic.

3.1 Homogeneous Deformations

In this section we present some homogeneous defortnations of discrete wmaterials. We begin by cousidering
n = 3 with v = 7/3. Cousider a plate of DM material modeled with three in-plane doublets with a structural
augle of v = 7/3 (cf. Figure 1a). We now subject the material square to uniaxial tensiou (¢f. Figure 1b) and
pure shea.r (. Figure 1¢). Using the method of macro-stress inversion the micro-stresses can be computed
for arbitrary angles of —the iuclination of the 73 doublet with the z;-axis. The results are presented as
follows. In Figure 2 the micro-stresses are presented for uniaxial tensiou as a function of the angle 8. Note
that compressive micro-stresses are achieved in distinction to the macroscopic prindpal stresses which are
everywhere nou-cowpressive. In Figure 3 the micro-stresses for the pure shear loading case is preseuted.
Note that the micro-stresses exceed the maguitude of the applied shear stress.

We now counsider the effect of v # #/3 for arbitrary 6. To simplify the presentation of results we will
cousider the energy stored in a plate of material subjected to shear. The stored energy is indicative of
the wagnitude of the stresses in the set of doublets. It is observed that 4 has a significant effect ou the
wicro-stress field. In general, the energy grows unbounded as v = 0 and as v — #/2 mdxumug that at least
oue of the wicro-stresses grows without bound. When v = /3 the internal st.ored energy is the same for all
angles € thus all curves illustrated in Figure 4 pass through the point (1/3.4/3). For each value of @ there
exists anu augle v which minimizes the internal stored energy. For a given value of 6 the value of ~ which
wminirpizes the stored energy varies with the state of applied tractious.
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Figure 1: Doublet geometry for homogeneous deformations
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Figure 2: Nornalized wmicro-stress of a plate under uni-axial tension: solid-line is p, /o; dashed-hne is pa /o
dotted-line is py /o.
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Figure 3: Normnalized micro-stress of a plate under shear: solid-line is p; /o; dashed-line is p; /o; dotted-line
is Ps3 /0.
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Figure 4: Stored energy in a plate under shear for different values of 6 (degrees).
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Figure 5: Doublet geownetry for Flamnant's problemn

3.2 Flamant Problem

Cousider the classical problemn of Flamaut: A penetrating point force P acting noral to the straight
boundary of a semi-infinite plate of isotropic material. The classical CM solution is dharacterized by a stress
field whose principal stresses are everywhere non-positive. In this section we consider the DM solution to
Flamant's problemn with three doublets with a structural angle of v = 7/3 and for arbitrary . This problemn
has been treated previously by Granik aud Ferrari (1993) for the case = 0. Their solution contains some
quantitative incousistendes which are corrected here.

Since the DM dowain cousists of three doublets with 4 = 7/3 we can use the dlassical result of Flaruant
to obtain the DM solution using the method detailed in section 3. Flamant's solution reads

_2pP %y
o, = - ———.c"' Ty (28)
2P zy?
ol = o5 = T (29)
2P ¢
c b B
922 = 7 (22 + y?)? (30)
and
uj = iy arctan (_1!,) SRR A . (31)
! 27p LN +u z? 4+ y?
P X + 2u 2
¢ e e | enom——n Eofi B 3
42 27 p [2(A’+ )log(: +)+ z? 4+ 32 (32)
where A’ := 2Au/(A + 2u) and A and g are the Lamné coustants of the isotropic coutinuwn.
The wicro-stresses for 8 = ) are evaluated to be
4P (V3z +y) (33)

PZ TRy
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Figure 6: Nonnalized riao- and macro-stresses for the Flamaut problen with 6 = 0 (8 = =/3).

4P * (V3 —y)
3r (224 )2 (34)
2P y(322 — y?) (35)

= 75 (x2+y?)? "

The dassical solution due to Flamant is characterized by a stress field for which the prindpal stresses are
nowhere teusile for a penetrating applied load. Unlike the Flamant stresses, the micro-stresses are found to
be tensile within particular regious of the domain. For instance, the ps micro-stress assodated with the 73
doublet is tensile within the sector defined by y > /3 |&l. The py and p; micro-stresses are also veusile within
specific regions. To graphically illustrate these charactenistics it is convenient to noralize equs (33)-(35).
Let 7 := z/y. It follows that equs (33)-(35) can be recast in the following foru:

Iry V3i+1

Pl = ‘ZI—D'IM = "m (36)
R (37)
P3 = Tp"ya . 2(1113;;2)2 P3. (38)
In addition, the ouly nou-zero principal macro-stress of can be expressed as
S:= %}’-ap = -m—}gj. (39)

The pormalized quantities P1, P2, P3 and § are presented in Figure 6 for § = 0,
We uwow provide the in-plane displacenent field. Using the nou-polar constitutive relation it wmay be
verified that the components of the in-plane displaceisent field are given by

2P y ® 2zy
d e R - " 'dll L Y EERSRTRA
et Irdo [a.rc (x) 2 + z? +y2] (40)
2P 3 2z?
= TIA [2los(r +y )+x2+y=]’ (41)

9



FLAMANT PROBLEM: THETA = 15 DEGREES
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Figure 7: Nonualized micro- and macro-stresses for the Flamant problemn with 8 = 15 degrees.

In equ (41), log denotes the natural logarithm. We note that the displacement field does uot tend to
zero at infinite distances from the point of application of the load as is the case in the Flamant solution
(see e.g.. Love (1944, p.211)). In general, the displacement field given by equs (40) aud (41) is not the
satie displacemnent field as the Flamant solution. This observation is intuitive since the wmaterial domain
of Flamant is characterized by two counstitutive parameters while the microstructured material cousidered
herein is diaracterized by ouly one constitutive parameter, namely 4,, while the stress field is independent of
the coustitutive relation. Let (A, 4) denote the Lamé constants of the elastic contimmwn utilized be Flamant.
When (A p¢) = (34,/4.34,/8) (i.e., Poisson’s ratio is 1/3) it may be showu that the two displacerent fields
are equivalent,

To illustrate the effect of 6 on the micro-stresses, plots similar to that in Figure 6 are given for § =
15.30. 45, degrees, in Figures 7, 8 aud 9, respectively. Closed forin expressions for the iuicro-stresses in
terins of 6 are very lengthy but for spedal values of 6 simple expressions do exist. We have seeu this above
for 6 = 0. When 6 = 7/6 similar expressions exist. The normnalized micro-stresses when 6 = 7 /6 are given
by

_ 3wy H/3+%)
PL = Jpn=—Tismy (42)
_ 3wy -3
P2 = pr=ivoy (43)
Py = ¥, - EVE-2) (44)

PP T Trae

These are the functions plotted in Figure 8.
We note that the componeuts of the displacemnent field for the DM solutions for all values of 6 are given

by equs (40) aud (41).

3.3 Kelvin's Problem

The problen of Flamant treated in section 3.2 is a Greeu's function for elasticity problems with norial
surface tractions. We now present auother Greeu's functiou: a point force acting in the plane of an infinite

10
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Figure 8 Normnalized micro- aud macaro-stresses for the Flamant problemn with 8 = 30 degrees.
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Figure 9: Normalized wicro- and waaro-stresses for the Flamant problem with € = 45 degrees.
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plate, originally solved by Lord Kelvin. This solution euables one to solve problaus with arbitrary body
force distributions by integration. In particular, let us apply a poiut force of magnitude P at the ongin of
the plate in the negative oy directiou, with the ;- and zq-axes lylug in the plane of the plate (f. Figure
10). Frow dassical CM mechanics, the macrostress state is given by (Love, 1944)

Pa [ z27?]
€ P A - P
o, F 8% r? .‘ (r) i (45)
P [ 32 ]
< P PO, e P,
%2 = T _G ( r ) 1_ (40
Pay [ rzin? ] :
- 2EpE) w
where r? := 23 + 3.
The wicro-stresses are obtained by substituting the CM macro-stresses (45)-(47) into equ (23) yielding
P
n o= —-]-,-2-;;7 [.‘L'? -5z .’t:; e Yﬁzf I3 + \/szg] (48)
P2 = —-m [.L‘? d 51’1 I; hd 7\/§I¥ £9 = \/51'2] (49)
P 2_ .2
o= g (e -4 (50

where we have assumned a three doublet DM lattice with v = #/3 and 8 = 0. Expectedly. equs (48)—(50)
satisfy the equilibrivin equs (7). and the microstraius derived via (11) satisfy the equation of compatibility
(12).

3.4 Stress Concentration

In addition to obtaining DM Green's functions. the Inversion tedinique can be used to find wmicrostress
conceutration factors. As an example, we consider a dreular void within the infinite plate subjected to

12
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Figure 11: Circular hole in an infiuite plate.

hydrostatic tractions, T = o n. at iufinity, as illustrated in Figure 11. The CM solution in polar coordinates
is gven by

ofe = o[l = (Ifr)] (51)
o6 = oll+(Rfr)} (52)
gty = 0 (53)

where r aud 6 are polar wordinates and the circular void is centered at r = 0 with radius It

To obtain the microstresses from equs (51)-(53) we must first rewrite the wacrostresses ju terus of
Cartesian coordinates, since the DM lattice is defined with respect to this latter coordinate system. Equation
(23) can then be utilized to give the microstresses around the void

2¢ [ I? (33-2\/5:;1:2-2:?)

po= = |1- i (54)
20 [, R (z§+2\/§z|rz-—zf)

N P (55)
2¢ [, 2m? (2} = z3)

po= o [1-——2]. (56)

Cowparison of the wacro- aud wicrostresses shows that while CM predicts solely cotpressive principal
stresses arising from applied compressive tractions, the microstresses are teusile in certain regious adjacent
to the void. It should thus not be surprising if a granular body under hydrostatic pressure develops tensile
opeunings, analogous to the paradox assodated with Flamaut’s Problem. We find that the microstresses
in the viduity of the void vary from -1 to 3 times the far-field wicrostresses while the macrostresses vary
between 0 and 2 tines the far-field equivalent macro-stress.

13



4 Micro-stress Function

Cousider a nou-polar mediun with no body forces and with lattice geometry as shiown in, Figure la. The
equilibriumn equs (7) take the for

(mr+pm+esdyps)y+tany(p2—p1)z =0 (57)
(p2=p1)y+tany(p +p2) 2 =0. (58)
The Integrability theorem applied to equ (57) implies the existence of a function ¥ = ¥(x,x3) such that
¥, = tany(pz—n) (59)
V2 = —(p+p2+ad yp)a+tauy (p - p1). (60)

Siwnilarly, the Integrability theorews applied to equ (58) implies the existeuce of a function 6 = O(z;.z;)
such that 7
0, = —ta’y(p +p2) (61)
02 = tany(p—-p) (62)
From eqns (59) and (62) follows the relation ¥ 3 = 6, which itself implies the exstence of a function

x = x(xy.22) such that x 3 = © and y 2 = ¥. Solviug for the micro-stresses inu tertus of the second partial
derivatives of y yields

1
o= ~-2-wt2';' (tauv x.a2 + x.11) (63)
1
no= -5 cot? ¥ (tan v xaz = X.11) (64)
ps = cot?y (cos®yx 11 —sin® ¥ x 22) ()

The micro-stresses (63)—(65) thus satisfy equilibrivin for a suffidently differentiable function y. Cow-
patibility is now addressed. Cowmpatibility in terins of the micro-stresses is obtained by substituting the
coustitutive relation p, = 4, €, into egn (12):

0= [sec® 3 (01 + p2) = 2c0t® vpa] |, + 2paas + cscy sec (01 = p2) 12 (66)
Substitution of the wicro-stresses (63)-(65) into the cotpatibility relation (66) yields
0 = cot? 5 e8¢ ¥ (14 o8’ v)x 1 + e? (1 = dcos” 7)x 1122 + 20087 7 X 2272 (67)

Any function x which satisfies equ (67) thus yields a miao-stress field which satisfies equilibriuin and
cowpatibility. When ~ = =/3, equ (67) simplifies to

0= xnn+2xn2+ X222 = V- Vi = Vly (68)

which is the bi-barmonic equation.
Substituting the micro-stresses (63)-(65) into the micro- to wacro-stress relation (17) yields

o = X2 (69)
05 = Xn (70)
ofy = =Xaz 71)

where ¥ := = cos? 7 x. Equations (69)-(71) are foriu equivaleut to the equations for the classical coutinuwuy
stresses in tenrius of the Airy stress function. When 4 = %/3 the counection between DM and CM is further
elucidated, since y is governed by the bi-hanuonic equation, as the stresses are obtained in CM frow equations
which are formn equivalent to equs (69)-(71).

In sectious 4.1 through 4.4 below, we iuvestigate the solutions generated by the family of third-order
polynowial x(zy,z2) functions, and we present the MSF for the problems solved above via the Inversion
techiique of section 3/
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4.1 Third-order Polynomial ¥ Functions

Cousidering the combined equilibrium/compatibility relation (67) shows that any third-order polynoual
x(Zy. x2) represents an adinissible DM solutiou. Let us consider the DM lattice with 5 = 7/3 and postulate
a MSF of the form:

X(I;,:L’z) =Ajn+ A I% + 43 :r? + Dy z3 + DBy Ig + I3 x; +Crzyz9+C3 Ifl‘z + Cy x; Ig +D. (72)

We substitute equ (72) inte equs (63)—(65) to obtain the resulting microstresses:

pr = -% [(\/302 +3A3) Ty + (\/503 s Cz) Ty + ? Ci+ ‘42] (73)

= 3|(Aei-34)) =+ (Vics-c Be 4] 7
Pz = 3 2 dJd A3 31+( 3= 2)Jz+‘§- 1'—«2J (74)
Pz = -(1;[3(Ag-Ca)I|+(Cz’933)32—332+442]' (75)

Substituting equs {73)—(75) into the relation (17) yields the equivalent macrostresses;

1

a;il = —5[0331+3B312+B2] (76)
1

agz = -—513,431:14-023:2'1-.42] (77)
1

‘7;’2 = Z[2Cg:cl+203.‘52+01]. (78)

Aunalysing either the miaro- or macrostresses, we see that y given by equ (72) will provide solutious to
problemns with homogeneous or linearly varying stress states. Examnples include uniaxial or biaxial teusion
and compression, pure shear and beans under pure bending. Note that shear stresses arise ouly frowm the
seventh through the ninuth terms of (72). Hence, if the three C; coefficients are zero, the - and r5-axes are
the pincipal axes; and conversely, states of shear are giveu by only the non-zero C;'s. The coefidents 4;.
B, and D have no effect on the stress state aud thus represent superfluous information.

4.2 Flamant's Problem

The family of third-order polynomials giveu by (72) represents ouly a subset of adinissible y functions, We
uow cousider a more involved MSF containing a trigonowmetric term:

4P1‘1

w

x(zy.z3) = (1 = arctan(xq/ay)) (79)

which represents an adinissible DM solution when 4 = % /3. The microstresses derived from (79) are identical
with (33)~(35), indicating that we have found the MSF for Flamant's Problem. Note, however, that for this
particular application of the MSF a slightly varied forn of (63)—(65) is necessary, since the coordinate systein
has been changed to that shown iu Figure 5.

4.3 Kelvin's Problem

The poiut force in f‘.he infinite plape is a similar problemw in soine respects to Flamnant's Problan., Hence,
we start our search for the appropriate MSF with modificatious to the fanily of arc tangent functious., The
final result is p

x(z1,23) = i [, log(z? + 22) + 8x; arctan(z) fx;) - 8. (80)

Substituting equ (80) iu equs (63)-(05) yields microstresses ideutical to equs (48)-(50).
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4.4 Stress Concentration

The problew of a circular void within the hydrostatically stressed plate is the superposition of a homogeneous
stress state with the concentration stresses arising around the hole. Thus, the MSF should be a sum of a
secoud-order polynowial and a termn or tertus that account for the effects of the void. The result we find is

x(zy.23) = ~20 [zf-}-zg - I? log (:rf-{—:cg)] (81)
whidh exactly recovers equs (54)~(56). Expectedly, the logarithunic term acts to satisfy the zero-traction
boundary coudition at surface of the void.

8 Conclusion

We initiated our study by presenting a uniqueness theorem in linear elastic DM, We then developed two
methods for obtaining solutious in plane elastostatics.

Iu the first, we noted a correspoudence between DM and CM for specific DM lattice geowetries, namely,
a three doublet arrangement with 4 = 7/3. The result of this counection between DM and CM is that
given a solution in either one of the two regitues, one can generate an equivalent solution iu the other.
We demonstrated the utility of this techmique by obtaining DM solutions to homogeneous deformation
problewns, the classic problems of Flamant and Kelviu, and stress concentration around a hole. In the first
two applications, we extended the study to a lattice rotated by au angle € with respect to the original
coordinate systern. In the case of homogeneous deformatious, we also analyzed the general three double
lattice where ~ # = /3.

The second tedmique which was developed arises when the micro-stress equilibriviu and micro-strain
compatibility requirements are manipulated to yield the uicrostress function (MSF). In illustrating the use
of this second tedmique, we studied the solutions geuerated by the family of third order polynomial MSF's,
and we derived the MSF's corresponding to the three problems cousidered via the Inversion technique.
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