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ABSTRACT OF THE DISSERTATION

Efficient Polarization Solvers for Classical Molecular Dynamics Simulations

by

Dominique V. Nocito

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, June 2019
Professor Gregory J. O. Beran, Chairperson

The primary focus of this dissertation is the acceleration of the evaluation of the

self-consistent polarization energy. Two new variants of Jacobi iterations are proposed here

that exploit domain decomposition to accelerate the convergence of the induced dipoles.

The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the

polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky

decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy

DC-JI, achieves further acceleration by employing overlapping blocks. These algorithms

employ knowledge of the 3-D spatial interactions to group important elements in the 2-D

polarization matrix. These methods can be coupled with direct inversion in the iterative

subspace (DIIS) extrapolation to accelerate their convergence.

The DC-JI solver is adapted for periodic boundary conditions with particle-mesh

Ewald treatment of long-range interactions and implemented in a massively parallel fashion

within the Tinker-HP software package. Compared to widely used preconditioned conjugate

gradient (PCG) or conventional Jacobi iterations (JI/DIIS) algorithms, DC-JI/DIIS solves
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the polarization equations ∼20–30% faster in protein systems ranging from ∼10,000–175,000

atoms run on hundreds of processor cores. Not only is DC-JI/DIIS faster than PCG, but

it also gives more energetically robust solutions for a given convergence threshold.

We further demonstrate how one can improve the stability of a polarizable force

field molecular dynamics simulation or accelerate the evaluation of self-consistent polar-

ization via a simple extension of the predictor in the Always Stable Predictor-Corrector

(ASPC) method. Specifically, increasing the number of prior steps used in the predictor

from six to sixteen reduces the energy drift by an order of magnitude. Alternatively, for

a given level of energy drift, the induced dipoles can be obtained ∼20% faster due to the

reduced number of self-consistent field iterations required to maintain energetic stability.

Finally, we have developed an averaged condensed phase environment (ACPE)

model that address the high computational cost associated with modeling configurational

average properties with quantum mechanics/molecular mechanics (QM/MM) simulations.

In the domain of embedding techniques ACPE lies in between explicit QM/MM evaluation

of sampled configurations and continuum models. The ACPE model constructs an effective

polarizable environment directly from explicitly sampled molecular dynamics configurations.

ACPE can reduce the need for hundreds of QM/MM calculations to a few representative

QM/MM calculations.
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Chapter 1

Introduction

Polarizable force fields mimic the way the quantum mechanical charge distribution

responds to its environment. This dynamic behavior is crucial to modeling many properties

correctly. For instance, the dipole moment of water can decrease∼20% as it moves from bulk

water to a non-polar protein pocket.[1] Inclusion of polarization can be necessary to capture

the subtle balance of intra-protein and protein-environment interactions correctly[2]. This

flexible description leads to polarizable force fields parameters having better transferability

between chemical systems relative to fixed charge force fields.

The relatively high computational cost of polarizable force fields has prevented

their widespread adoption for classical molecular dynamics simulations. In practice the

polarization evaluation is too costly to be solved directly using standard linear algebra

techniques and instead is calculated with an iterative self-consistent field (SCF) method.[3,

4] In this dissertation we focus on SCF methods that accelerate the polarization evaluation

without loss of accuracy. Chapter 2 introduces a SCF method, divide-and-conquer Jacobi
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iterations, which we show is superior to existing SCF methods. Chapter 3 extends the

work from chapter 2 to large chemical systems via particle-mesh Ewald treatment of long-

range interactions and a massively parallel implementation in Tinker-HP. In Chapter 4 we

investigate improved energetic stability by use of a predictor for the SCF method with

an ”extended” history. Finally, Chapter 5 explores an efficient embedding algorithm for

quantum mechanics/molecular mechanics calculations that reproduces the time-averaged

behavior of the chemical system.

1.1 Multipolar Interactions

Intermolecular interactions such as electrostatics, induction, and dispersion stem

from Coulombic interactions. In order to model these phenomena we must have a tractable

means of describing the electronic charge distributions of our chemical system. One way

to do this is to use a multipole expansion on the site of our molecules. While the sites can

exist anywhere, normally atom-centered sites and occasionally bond centered sites are used.

The first few terms of the multipolar expansion are listed with the symbols used to denote

them: charges (q), dipoles (µ), quadrupoles (Θ), octupoles (Ω), and hexadecapoles (Φ).

The rank at which the multipole moment expansion is truncated and where the sites are

defined comes down to the user’s desired balance of computational cost and needed spatial

resolution of the electronic charge distribution. The multipole moments provide an excellent

means to describe interactions of electronic interactions at mid to long range, however at

short range when the electronic charge distributions have significant overlap the model

begins to breakdown. As a point-localized representation, the multiple moments neglect

2



the diffuse nature of the electronic charge distribution, so at short range contributions from

penetration energy are neglected. Advanced models have begun to address the breakdown

of the multipolar expansion due to charge penetration.[5]

1.2 Polarizable Force Fields

Classical force fields (FF) refer to a parametric function relating the atomic coor-

dinates to the potential energy of the chemical system. The parameters of the force field are

fitted to high level computed data or experiment. Generally the total energy is composed

of separable energy terms. These energy terms can be broken into two groups: bonded

and non-bonded interactions. Much of the diversity of FFs encountered in the literature

generally stems from the description of these non-bonded terms. A broad group of force

fields called fixed-charge force fields generally only include van der Waals and electrostatic

interactions. Polarizable force fields effectively incorporate the dynamic response of the

electronic charge distributions into molecular dynamics simulations, but they do so at a

significant increase in computational cost. One of the most robust models of polarization

is the induced dipole model. However, the induced dipole model is also one of the more

expensive force field descriptions of polarization, accounting for ∼ 50% of the force field’s

computational cost. In this work all simulations will be performed with the AMOEBA

(atomic multipole optimized energetics for bimolecular simulation) force field[6].

3



1.2.1 AMOEBA Force Field

Parameters for the AMOEBA force field have been worked out for a wide range

of biomolecular species[7, 8, 9]. The functional form of AMOEBA is presented in eq. 1.1.

UAMOEBA = Ubond + Uangle + Ubond−angle + Uout−of−plane

+Utorsional + UvdW + Uelectrostatic + Upolarization

(1.1)

The first five terms correspond to the bonding contributions. The first four terms

bond stretching, angle bending, bond-angle cross term and out-of-plane bending take a simi-

lar form to the terms found in the in the MM3 force field.[10] Thought it is typically classified

as a bonding contribution, the torsion contribution in reality has some non-negligible depen-

dence on non-bonded interactions. For this reason the torsional term is parameterized after

the non-bonded terms in order to lead to a better physical balance. A buffered 14-7 vdW

form is used providing a ”softer” repulsive region. This buffered 14-7 vdW term is some

times called the Halgren potential has been shown to better reproduce rare-gas potentials

over a range of interatomic distances, relative to the Lennard-Jones form[11]. AMOEBA

models the electronic charge distributions as an atomic centered multipole expansion up

to the quadrupole moment. AMOEBA models the mutual polarization using the induced

dipole model. Polarization is the response of the electronic charge distribution to an exter-

nal electric field. In the induced dipole model each site is assigned a polarizability which

models the flexibility of the electronic distribution around that site. The induced dipole on

a site is equal to the polarizability of that sites times the external electric field on the site.

4



µi = αiVi +
∑
i

Tijµj (1.2)

Where µi is the induced dipole on site i, αi is the polarizability on site i, Vi is the electric

field from the permanent multipole moments and the last term is the electric field from

all other induced dipoles. Tij is the interaction matrix which captures the distance and

orientational dependence of the dipole-dipole interaction between atomic sites a and b. The

mutual polarization must be solved self-consistently. Common polarization solvers will be

discussed in the next section.

1.3 Self-Consistent Field Polarization Solvers

The induced dipoles are the solution to system of linear equations listed below,

Zµ = V (1.3)

where Z is the symmetric response matrix with blocks for each atom a, b, c, etc:

Z =



(αa)
−1 −Tij −Tik . . .

−Tji (αb)
−1 −Tjk . . .

−Tki −Tkj (αc)
−1 . . .

...
...

...
. . .


(1.4)

Here, αa is a 3 × 3 diagonal matrix with the inverse of the isotropic polarizability along

the diagonal, and Tij is the interaction matrix described above. In practice the system
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of linear equations is too large to be solved directly using techniques such as Cholesky

factorization. Instead, self-consistent field (SCF) solvers are used to solve for the induced

dipoles iteratively.

Jacobi iterations (JI) offers a simple iterative procedure for solving for the induced

dipoles. It corresponds to the intuitive picture of mutual polarization where site A polarizes

site B, site B polarizes A, and the process iterates until self-consistency is achieved for the

induced dipoles. In JI, one partitions Z into its diagonal D and off-diagonal elements Y,

Z = D + Y. After minor rearrangement one finds,

Dµ = V −Yµ (1.5)

Diagonal matrix D can be inverted trivially to solve for the induced dipoles µ,

µ = D−1 (V −Yµ) = α (V + Tµ) (1.6)

However, since the right-hand side depends on µ, this equation must be solved iteratively.

The convergence behavior of JI can be determined using eigenvalue analysis. We

can expand the iterative induced dipoles as the true induced dipole plus some error vector

for that iteration.

µ + ei+1 = D−1V −D−1Yµ−D−1Yei (1.7)

Where ei is the error vector at iteration i and µ is the true induced dipole vector. The

first two term on the right hand side of eq. 1.7 equate to µ since in the limit of convergence
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eq. 1.6 is equal to the true induced dipoles. The error for each successive iteration is then

given by.

ei+1 = −D−1Yei (1.8)

Where µ is the true induced dipole and ei is the error vector for the induced dipole at

iteration i. We can expand ei in the basis of the eigenvectors of −D−1Y to get.

3n∑
j

λjcjvj = −D−1Y

3n∑
j

cjvj (1.9)

Where vj is the jth eigenvector, cj is the linear combination coefficient for the jth eigenvector

and λj is the corresponding eigenvalue. We see that if λj is less than unity then that

component of the error vector decreases with each additional iteration, but if it is close to

unity the error component is reduced slowly and if it is greater than unity that component

of the error vector diverges. JI is not guaranteed to converge, and in practice, if it does

converge, it usually does so slowly. We can address this shortcoming using a method called

successive over relaxation (SOR). In SOR we update the induced dipoles each iteration

as the previous induced dipole plus some scaled change in the induced dipole from this

iteration.

µn+1 = µn + ω(µn+1 − µn) (1.10)

Where µn+1 is the induced dipole from the desired iterative method, in this context

it would be the JI method. If ω is unity we have recovered the JI method. If ω is less than
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unity we are damping the change in the induced dipole, and if ω is greater than unity we

are accelerating the change in the induced dipole. Since JI has troubles converging for the

systems of interest, a ω less than unity is used. A typical optimal value for ω in the context

of the polarization problem is ∼ 0.78. This dampening factor mutes the the components of

the induced dipole error vector that would be diverging, but unfortunately this also mutes

the desirable converging components. For this reason SOR is quickly abandoned for better

performing methods.

One of these methods is Jacobi Iterations coupled with the Direct Inversion of the

Iterative Subspace (DIIS) method. That is, after establishing a short history of the induced

dipoles during the first few iterations, the induced dipoles are extrapolated via DIIS after

each Jacobi iteration. DIIS extrapolates the induced dipoles µextrap as a linear combination

of µ(j) from previous iterations j.

µextrap =
n∑
j

cjµj (1.11)

The extrapolation coefficients cj are obtained by solving,



B11 B12 · · · B1n −1

B21 B22 · · · B2n −1

...
...

. . .
... −1

Bn1 Bn2 · · · Bnn −1

−1 −1 −1 −1 0





c1

c2

...

cn

λ


=



0

0

...

0

−1


(1.12)

where Bij is the inner product between two residual vectors that represent the change in our
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vector of interest between iterations, Bij =
(
∆µ(i)

)T
∆µ(j) where ∆µ(j) = µ(j) − µ(j−1).

A brief overview of the Divide-and-Conquer JI (DC-JI) method is presented here

a more in depth discussion can be found in chapters 3 and 4. DC-JI is a block Jacobi-like

method where mutual polarization in spatial proximal clusters of atoms is solved directly

and the contributions between clusters is captured iteratively in a JI-like manner. Another

possible naming scheme for these methods might be Cluster-and-Conquer JI to stress that

the grouping of the clusters is based on some relevant physical property. Regardless, we

will use the the original name of DC-JI. DC-JI partitions Z into a block diagonal matrix D

and a matrix of the remaining off-diagonal elements Y, Z = D + Y. The partitioning of

the matrix does not affect the simplification, so we see DC-JI has an identical form to JI.

µ = D−1 (V −Yµ) = α (V + Tµ) (1.13)

However, since D is no longer a diagonal matrix, we avoid the higher cost of inversion by

solving for the induced dipoles of the blocks using Cholesky decomposition. We can apply

the same eigenvalue analysis that we applied to JI to look at the convergence properties

of DC-JI for a small cluster of 80 water molecules. For this system the spectral radius of

−D−1Y for JI is 1.0298 and for DC-JI it is 0.5655. We see that for this system, JI alone

will diverge very slowly, however DC-JI will converge reasonably fast.

Alternatively, the conjugate gradient (CG) method solves for the polarization by

minimizing Epol in Eq 1.14.

Epol =
1

2
µTZµ− µTV (1.14)
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Conjugate gradients is referred to as a Krylov subspace method, referring to the

growing subspace Dj.

Dj = span{r0,Zr0,Z
2r0,Z

j−1r0} (1.15)

Where Dj is the subspace defined at iteration j, r0 is the residual and with each additional

iteration the matrix Z is applies to the residual growing the subspace by the residual rj+1

which is orthogonal to Dj. The µj can be viewed as the projection of µ onto the subspace

Dj. CG does not search along rj ; instead the search direction dj is constructed by the con-

jugation of the residuals. This has the benefit that the residual is orthogonal to the previous

search directions, which means we will not have to store all previous search directions.

The µj+1 are given as linear combination of the past search directions.

µj+1 = µj + αjdj (1.16)

Where µj is the dipoles at iteration j, dj is the search direction at iteration j, and αj is the

step size given by

αj =
rTj rj

dTj Zdj
(1.17)

The rj+1 are given by,

rj+1 = rj − αjZdj (1.18)

The search direction dj+1 is given by,
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dj+1 = rj+1 + βjdj (1.19)

Where dj is the search direction at iteration j, rj+1 is the residual at iteration j+1, and βj

is the Gram-Schmidt constant given by

βj =
rTj+1rj+1

dTj Zdj
(1.20)

Poor convergence behavior is observed when the condition number of Z is large,

but this can be improved by applying a preconditioner (PCG) to solve a modified system

of equations:

P−1Zµ = P−1V (1.21)

where P−1 is some easily computed matrix that approximates Z−1. Preconditioning reduces

the range of the eigenvalues for the polarization matrix Z, speeding convergence. Sophisti-

cated preconditioners exist that evaluate only the short range interactions, but for massively

parallel implementations the diagonal preconditioner offers a satisfactory improvement in

convergence without the need for additional communication between processes.

1.4 SCF Initialization

The number of iterations an SCF method takes to reach convergence is dependent

on two factors: the starting point for the method and the convergence properties of the solver

that is used. There are several commonly used starting points. These include the “direct

guess” where the induced dipoles are set as the atomic polarizabilities times the permanent
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electric field. This guess arises from initially assuming the induced dipoles on all other

atoms are zero. Alternatively, one can use the “previous guess”, where the induced dipoles

from the last MD step are used. Because MD time steps are typically relatively short (a few

fs or less), the induced dipoles from the previous time step provide a reasonable starting

point for the next iteration. Finally, one can employ the “predictor guess” which in this

context is the induced dipoles from Kolafa’s Always Stable Predictor-Corrector (ASPC)

algorithm[12, 13]. The predictor guess differs from the previous guess in that it relies on a

longer history of induced dipoles from earlier MD steps to predict a guess for the dipoles at

the next step. It has been shown that the predictor guess provides the optimal reduction

in the number of SCF iterations needed for a stable MD simulation[4]. Other alternative

methods such as inertial extended Lagrangian approach have also been proposed.[14]

The ASPC uses a history-based predictor for the induced dipoles,

µp(t+ 1) =
k+1∑
j=0

Bj+1µ(t− jh) (1.22)

where µp(t + 1) is the predicted dipole, Bj+1 are the scaling coefficients and µ(t − jh)

are the induced dipoles from previous time steps. The time step size is h and k + 2 is

the total number of values stored in history. The Bj+1 scaling coefficients are derived

such that the contributions that lead to time irreversibility error are chosen to be zero. It is

known that the use of previous information from a simulation destroys the time reversibility

of the method.[15] A compromise between an acceptable degree of time reversibility and

improvement in the SCF starting point must be made when using the predictor guess.
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1.5 Embedding Models

Descriptions of extended chemical systems can be computationally expensive. One

way to address this expense is with the use of hybrid quantum mechanics/molecular me-

chanics models. In these approaches the area of interest is described with expensive QM

method while the extended system is modeled with the MM method. QM/MM is a broad

term used to describe a family of methods, but the type of method we will be focusing on

is the polarizable embedding models. In polarizable embedding models the mutual polar-

ization is accounted for between the QM and MM system. This embedding method can

be slightly more expensive than the pure QM evaluation, but the physics that is captured

allows for a better description of chemical properties. For instance the evaluation of excita-

tion energies of solvated molecules is heavily dependent on the interactions between solvent

and solute. When the presence of the solvent shifts the excitation energy of our molecule

relative to the gas phase this is called solvatochromic shift. In order to properly model the

solvatochromic shifts of our system we must capture the electronic interaction between the

solute and solvent to the best of our ability. We can define the QM region of our model as

the solute alone or the solute with a few of its nearest neighbor solvent molecules. With

more solute molecules included in the QM region the better we expect or results to be,

however this also increases the computational cost. The remaining solvent system can be

modeled at MM level where the sites of the solvent are assigned a multipole expansion to

model the electronic distribution around the solvent molecules and a polarizability on the

sites that allows the MM solvents to respond to the electronic interactions with the QM

region.
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Chapter 2

Divide-and-Conquer Jacobi

Iterations I

2.1 Introduction

Much research effort is currently being devoted toward the developments of phys-

ically motivated force fields which are more transferable between a variety of systems and

environments. Polarization typically plays an important role in allowing a given set of

force field parameters to describe widely different electrostatic environments. In protein

folding, for example, hydrophobic amino acids transition from a polar aqueous environment

to the non-polar protein interior, and polarizable force fields can mimic how the quantum

mechanical electron densities vary across these different environments.

On the other hand, evaluating the many-body polarization energy can increase the

overall computational cost by an order of magnitude compared to simpler pairwise-additive
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potentials. Considerable effort has been expended in recent years to make molecular dynam-

ics simulations with polarizable force fields more computationally practical,[16] including

accelerating the evaluation of the polarization energy, improving parallel efficiency for evalu-

ating the polarization energy on multiple processors (including both conventional processors

and graphical processing units),[4, 17, 18, 19] and developing strategies for taking longer

time steps/accelerated molecular dynamics.[20, 21].

Evaluating the self-consistent polarization energy for a force field like AMOEBA

(atomic multipole optimized energetics for biomolecular applications)[8, 6, 7, 9] requires

solving a set of linear equations of dimension three times the number of polarizable sites

to obtain the induced dipoles. Although these equations can be solved via direct (non-

iterative) linear algebra techniques in small systems, iterative techniques are required in

larger systems. Traditionally, techniques like Jacobi iterations (JI), accelerated with over-

relaxation (JOR)[7] or direct inversion of the iterative subspace (DIIS)[22, 23, 24, 4] are

used. More recently, the preconditioned conjugate gradient (PCG) algorithm has also been

employed.[3, 4, 17]

While these iterative methods vary in their rate of convergence and overall com-

putational cost, they solve the polarization equations to within a user-specified tolerance.

Several other techniques introduce approximations to the polarization equations in order

to accelerate the calculation of the polarization energy. Examples include perturbation

theory approaches that correct for couplings between induced dipoles,[25, 26] extended La-

grangian dynamics for the induced dipole vectors,[14] truncated many-body expansions for

the polarization energy (3-AMOEBA),[27], united-atom models that reduce the number
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of polarizable sites (uAMOEBA),[28] and re-parameterized versions of the force field that

compensate for omitting self-consistency (iAMOEBA).[29] Very recently, a systematically

improvable hierarchy of truncated PCG models has been proposed that gives analytic gra-

dients and allows a user-defined balance between cost and accuracy.[30]

Physically, the strongest polarization effects occur locally between adjacent molecules,

but they are influenced by longer-range and many-body effects. We propose two different

divide-and-conquer (DC) models for solving the polarization equations that exploit this fea-

ture. The first model, DC-JI, is equivalent to the non-overlapping domain decomposition

technique known as Block Jacobi iteration.[31] DC-JI partitions the polarization problem

into local clusters of polarizable sites (blocks). The self-consistent polarization equations

are solved directly (non-iteratively) within each block, while the couplings between blocks

are incorporated iteratively.

While the DC-JI approach solves the polarization problem within each block effi-

ciently, the iterative inclusion of the interactions between blocks in Block Jacobi is slow.[31]

The second approach proposed here, Fuzzy DC-JI, employs overlapping domain decompo-

sition. The “fuzziness” stems from the fact that a given polarizable site can simultaneously

be part of many different blocks. The same site will have different induced dipoles in each

block in which it is a member. Borrowing the terminology of fuzzy logic, these multiple

fuzzy values of the induced dipoles must then be “defuzzified” into a single set of “crisp”

dipoles. Here, the crisp dipoles are computed as distance-weighted averages of the induced

dipoles from each different block. In principle, both DC-JI and fuzzy DC-JI converge to the

numerically exact solution of the polarization equations. In practice, they are converged to
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within a user-defined tolerance.

Domain decomposition is well established in solving systems of linear equations,

of course. The primary challenge lies in identifying effective domains. The most important

couplings between atoms depend on the three-dimensional (3-D) spatial arrangement of

those atoms, but the polarization equations project the 3-D physical interactions onto a 2-

D matrix. The challenge is magnified when overlapping domains are used—how should one

choose additional off-diagonal elements to incorporate into the overlapping blocks? What

weights should be used to perform the defuzzification?

A key feature in the current work is the use of the K-means clustering algorithm

to identify natural sub-clusters of atoms in the system automatically. The K-means sorting

concentrates the largest matrix elements along the block diagonal. In the fuzzy algorithm

variant, K-means identifies which atoms lie on near the edges of the sub-clusters and should

therefore be distributed across multiple sub-clusters. It also provides a mechanism for

defining the necessary defuzzification weights.

In the end, both the DC-JI/DIIS and fuzzy DC-JI/DIIS algorithms require fewer it-

erations to converge and are substantially faster than JI/DIIS. Moreover, fuzzy DC-JI/DIIS

converges just as rapidly as PCG, with appreciably lower computation cost per iteration.

In the serial implementation of the algorithms developed here, the AMOEBA polarization

time is up 2–3 faster than JI/DIIS and PCG (using the Tinker 7.1[32] implementation of

the latter). Finally, while this paper focuses on AMOEBA, the algorithms extend readily to

other polarizable force fields involving discrete polarizable sites and comparable polarization

equations.
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2.2 Theory

2.2.1 Background

The AMOEBA model assigns a set of multipoles (charges, dipoles, and quadrupoles)

and a scalar polarizability to each atom. Dipoles are induced on each site due to the mutual

interactions of permanent and induced multipoles between sites. The polarization energy

is computed from these induced dipoles according to,

Epol =
1

2
µTTm =

1

2
µTV (2.1)

where µ is a vector of induced dipoles, m is a vector of the permanent multipoles, T is

the interaction tensor, and V = Tm is the permanent field. The induced dipoles µ are

obtained by solving the linear equations,

Z̃µ = V (2.2)

where Z̃ is a symmetric matrix with blocks for each atom a, b, c, etc:

Z̃ =



(αa)
−1 −Tab −Tac . . .

−Tba (αb)
−1 −Tbc . . .

−Tca −Tcb (αc)
−1 . . .

...
...

...
. . .


(2.3)
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Here, αa is a 3× 3 diagonal matrix with the inverse of the isotropic polarizability along the

diagonal, and Tab is a symmetric 3 × 3 matrix with six unique elements corresponding to

the various components of the dipole-dipole interaction between atomic sites a and b. For

small systems, this set of linear equations can be solved directly using techniques such as

Cholesky factorization. For larger systems, however, iterative solution becomes necessary.

In the Jacobi iterations (JI) approach, one partitions Z̃ into its diagonal D and

off-diagonal elements Y, Z̃ = D + Y. After minor rearrangement one finds,

Dµ = V −Yµ (2.4)

Diagonal matrix D can be inverted trivially to solve for the induced dipoles µ,

µ = D−1 (V −Yµ) = α (V + Tµ) (2.5)

However, since the right-hand side depends on µ, this equation must be solved iteratively,

starting from an initial guess µ = αV.

The notoriously slow convergence of JI can be improved using Jacobi over-relaxation

or DIIS extrapolation.[4] DIIS extrapolation in particular can reduce the number of iter-

ations required to achieve convergence several-fold and even sometimes converges in cases

where JI alone does not.

Another widely used approach to solving the polarization equations relies on pre-
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conditioned conjugate gradients. The quadratic form,

f(µ) =
1

2
µT Z̃µ−VTµ (2.6)

has a minimum when Z̃µ = V. Conjugate gradients can be viewed as a minimization algo-

rithm that takes a series of steps in conjugate directions (determined from the residuals from

previous iterations k, δ(k) = Z̃µ(k) −V) to minimize f(µ). Each CG step provides mono-

tonic improvement toward the exact solution. The rate of convergence depends significantly

on the condition number of Z̃, and preconditioning can be very important. Preconditioning

involves solving the modified linear equations,

P−1Z̃µ = P−1V (2.7)

where P−1 is some easily computed matrix that approximates Z̃−1. Preconditioning reduces

the range of the eigenvalues for the polarization matrix Z̃, speeding convergence. We use

the PCG implementation found in Tinker 7.1[32]. This preconditioner approximates Z̃ from

the first terms in its power series expansion,[3, 30]

Z̃−1 = α(I−αT)−1 ≈ α(I + αT) = P−1 (2.8)

where I is the identity matrix. For computational efficiency, this preconditioner is evaluated

only for short-range interactions (e.g. to within 3 Å). While the cost per PCG iteration is

higher than that of JI, it converges more robustly and in fewer iterations. Note too that a

hierarchy of approximate and efficient PCG methods have also been proposed recently.[30]

20



2.2.2 Divide-and-conquer Jacobi Iteration Approach

Here, we propose a divide-and-conquer Jacobi Iteration (DC-JI) scheme. Physi-

cally, the strongest mutual polarization effects will occur among sub-clusters of spatially

proximal atoms/polarizable sites. DC-JI solves the mutual polarization problem within each

cluster “exactly” (subject to the limits of numerical precision) using non-iterative Cholesky

factorization. The effects of mutual polarization between the different sub-clusters are

then incorporated iteratively. In the terminology of numerical linear algebra, this divide-

and-conquer approach amounts to a block Jacobi algorithm or a non-overlapping domain

decomposition. DIIS extrapolation is used to accelerate the convergence of the block Jacobi

iterations, just as in conventional JI.

Like the JI approach, DC-JI partitions Z̃ = Z + Y, but in this case Z is block

diagonal matrix, rather than a diagonal one. Blocks of Z include both the inverse of the

polarizability tensors α and the negative of the dipole-dipole interaction tensors T between

the atoms in the block. Exploiting the block structure of Z, one can break Eq 3.7 into a

separate matrix equation for each sub-cluster of polarizable sites,

ZIIµI = V0,I −YIJµJ = V0,I +
∑
J

TIJµJ (2.9)

where I and J here refer to the different blocks of atoms, rather than individual matrix

elements. In other words, the induced dipoles on atoms in block I depend on the total field,

which includes contributions from both the static field for block I and interactions with the

induced moments from atoms in other blocks J (induced field). This is shown schematically

in Figure 2.1. With appropriately small block sizes, one can solve each block equation for
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Figure 2.1: Scheme showing how the DC-JI algorithm breaks up the full system of po-
larization equations for six polarizable sites into three smaller, coupled sets of sub-system
equations.

µI directly. However, because the induced dipoles in block I depend on those in all other

blocks J , the full set of equations must be solved iteratively.

Defining appropriate blocks is important to the efficiency of DC-JI. First, dividing

the system into fewer, larger blocks will reduce the number of iterations required to achieve

self-consistency. On the other hand, the cost of solving the polarization equations directly

for each block increases with larger block sizes. Optimal efficiency will be a balance between

the cost of each iteration and the total number of iterations required. Second, convergence

will be most rapid if the largest coupling elements T are included in the diagonal blocks Z,

which requires ordering of the matrix elements to ensure that spatially proximal polarizable

sites occur near one another in the rows/columns of Z̃.

Accordingly, before solving the polarization equations, we perform K-means clus-

tering to identify natural, three-dimensional groups of polarizable sites. The K-means
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Figure 2.2: K-means partitioning of a (H2O)365 droplet into ten sub-clusters.

clusters are defined using a distance-based criterion, which leads to roughly spherical sub-

clusters. All polarizable sites are clustered independently, with no effort made to maintain

entire molecules/fragments within the same cluster. Splitting a molecule up over multiple

sub-clusters does not affect the resulting energy, since the AMOEBA force field includes

scaling parameters that control which intramolecular sites polarize one another that are han-

dled when evaluating the total field.[33] Figure 2.2 shows K-means clustering of a (H2O)365

droplet into ten sub-clusters. Note that other researchers have also recognized the impor-

tance of spatially-driven domain decomposition in the polarization problem.[17] That work

provides few details about the domain decomposition, but it does not appear to use K-

means clustering nor the direct solution of the polarization within each block as proposed

here.

The specific clustering generated by the K-means procedure does depend on the

random initial guess. As will be demonstrated in Section 5.4, the convergence rate of DC-JI

is variable and does depend on the random seed. However, switching to either Fuzzy DC-JI
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(see Section 2.2.3) or employing DIIS extrapolation eliminates virtually all variability in

the convergence rate (i.e. to within no more than ±1 iteration). The chosen number of

blocks K determines the average number of polarizable sites per block, but individual block

sizes are not constrained during the K-means clustering. Inhomogeneous block sizes pose

no problem for a serial implementation, though it might be beneficial to homogenize the

block sizes to achieve better load balancing in a parallel implementation.

2.2.3 Fuzzy DC-JI

Block Jacobi iterations provide a substantial improvement in convergence com-

pared to conventional JI, but it still can be slow to incorporate the off-diagonal couplings

between blocks. If chosen appropriately, the use of overlapping domains can significantly ac-

celerate the convergence without substantially increasing the cost per iteration. The fuzzy

DC-JI algorithm has the same basic structure as the DC-JI one, except that it allows a

given polarizable site to exist in multiple blocks. The “fuzzier” the partitioning, the more

different blocks a given polarizable site will belong to. Because the induced dipole on a

site with fuzzy blocks incorporates information from multiple distinct blocks, each iteration

better reflects the overall many-body polarization in the system, reducing the total number

of iterations required to achieve self-consistency. On the other hand, spreading sites over

multiple blocks effectively increases the size of each block. If the blocks are too fuzzy, the

growth in block sizes will increase the computational costs of solving each block equation

faster than the computational savings gained from reducing the number of iterations.

To assign the polarizable sites to appropriate blocks, K-means clustering is once

again used to locate the centroid of each block. However, instead of simply assigning each
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polarizable site to its nearest centroid, fuzzy DC-JI computes the membership weight w(R)

at every nearby centroid. The site is then assigned to all blocks on whose centroids it has

sufficiently large membership, and excluded from the remaining blocks. In Section 5.4, we

consider several potential membership functions of the form w(R) = R−n, for n = 1–3.

The smaller n is, the more slowly the weights decay and the fuzzier the block boundaries

obtained will be.

Once the weight wi∈I has been computed for polarizable site i in every potential

block I, the weights are normalized to sum to 1. The polarizable site then becomes a

member of every block for which its normalized weight is 0.1 or larger. This arbitrarily

chosen threshold implies that a given site will have membership in at most ten blocks, but

in practice the number of membership weights greater than 0.1 is typically much smaller.

Once membership has been determined, the sum of the weights are renormalized to 1 among

only those blocks in which the site is actually a member.

The fuzzy DC-JI polarization equations are solved for each block in the same

manner as the DC-JI ones. However, the multiple distinct fuzzy dipoles for a given site

arising from each block in which it is a member must be defuzzified into a single crisp

value that incorporates contributions from all of the fuzzy values. Within a given block,

one generally expects that induced dipoles on sites closer to the interior of the cluster will

be more accurate than those on the outer boundaries, and those interior dipoles should

factor more heavily in the final crisp dipole. The inverse dependence of the membership

weights on the distance between the polarizable site and the cluster centroid captures this.

Accordingly, the crisp induced dipole µCi on site i is computed as the weighted average
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of the fuzzy induced dipoles µFi from every block I containing that polarizable site, with

weights determined from the final renormalized set of membership weights wi,

µCi =
blocks∑
I

wi∈Iµ
F
i∈I (2.10)

The resulting crisp induced dipoles can then be extrapolated with DIIS (optional) and used

as inputs for the next iteration. Fuzzy DC-JI is similar to the Additive Schwarz method of

overlapping domain decomposition.[31, 34] However, fuzzy DC-JI is distinguished by (1) the

physically motivated use of K-means clustering to define the spatially proximal overlapping

blocks and (2) the use of non-uniform, distance-based weights in the defuzzification step.

2.2.4 Software Implementation

The implementation of DC-JI/DIIS is summarized in Algorithm 1. Key steps

involve (1) defining the blocks of polarizable sites, (2) initialization, and (3) evaluation of

the induced dipoles and (4) DIIS extrapolation. Modifications required for the fuzzy DC-

JI algorithm will be discussed in (5), followed by (6) computational analysis of the two

algorithms.

K-Means clustering

To partition the system into K clusters that define the diagonal blocks of Z, K

centroids are chosen randomly according to the K-means++ initialization procedure.[35]

The initial centroids are placed on random atoms (polarizable sites), with bias toward

spatially well-distributed centroids. More specifically, after each centroid is picked, the
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Algorithm 1 DC-JI Implementation

Define blocks of polarizable sites . K-means clustering
V = Tm . Compute permanent potential
Build ZII blocks . Mixture of (α)−1 and T elements
ZII = LIL

T
I via Cholesky Decomposition . LAPACK dpotrf

µ = αV . Initial guess
while Induced dipoles are not converged do . Begin iterations

loop over blocks I
Build TIJ . On-the-fly algorithm only
VI = V0,I +

∑
J TIJµJ . Compute total potential

Solve LIL
T
I µI = VI for µI . LAPACK dpotrs

end loop
Extrapolate µ via DIIS . Starting in the 2nd iteration
Epol = 1

2µ
TV . Compute polarization energy

end while

distance d(A) between each atom A its nearest centroid is computed. Subsequently, the

probability of choosing an atom for the next centroid is computed as P (A) = d(A)/
∑

A d(A).

This initialization of widely-spread random sites typically leads to faster convergence of the

K-means clustering and more optimal solutions.[35]

After this initialization procedure, every polarizable site is associated with its

closest centroid. The Cartesian coordinates of each centroid are updated as the mean

Cartesian position over all polarizable sites associated with that centroid. Polarizable sites

are once again assigned to their nearest centroids, and the process is repeated until the

centroid positions no longer change.

Computational savings in the K-means clustering procedure are achieved through

the use of a neighbors list, which is similar to the Verlet neighbors list sometimes used in

MD calculations to list pairs of particles whose interaction will be calculated.[36] In essence,

for each polarizable site, the neighbors list tracks centroids which lie within 15 Å of that

site. When deciding which centroid to assign a given polarizable site, comparisons are only
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made against centroids in that site’s neighbors list. Because the centroids move during the

K-means procedure, the neighbors list is re-determined whenever the accumulated average

change in position of the centroids reaches one half the radius of the sphere (e.g 7.5 Å).

Use of a neighbors list substantially reduces the computational cost of K-means in large

systems.[37] In practice, the cost of the K-means clustering is trivial compared to solving

the polarization energy, as discussed in Section 2.4.1.

Initialization

After determining the blocks of polarizable sites, one first computes the permanent

potential arising from the permanent multipoles,

V = Tm (2.11)

where m is a vector of all permanent multipoles and T here is an interaction tensor with

elements up to rank 2 (charges, dipoles, and quadrupoles). Second, one constructs the

appropriate diagonal blocks ZII of the Z̃ matrix. This requires the inverse polarizabilities

(which are simply a scalar for each atom in the isotropic AMOEBA model) and interaction

tensor elements T. The T elements in ZII are a subset of those required in building V,

and the loops to build V and ZII can be intertwined. Because AMOEBA includes only up

to induced dipoles, each site-site interaction tensor in ZII is a symmetric 3× 3 matrix with

six unique elements given by,

TABαβ = λ5
3RABα RABβ

(RAB)5
− λ3

δαβ
(RAB)3

(2.12)
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where Rα and Rβ correspond to Cartesian components of the vector between the two sites,

and δαβ is the Kronecker delta involving those two directions. The Thole damping functions

λ3 and λ5 are defined elsewhere.[8]

Third, Cholesky decomposition ZII = LIL
T
I is performed for each block I. Because

ZII does not change during the later iterative portions of the DC-JI algorithm, we store

the Cholesky decompositions LI instead of ZII . The LI matrices will be used to solve the

linear polarization equations for the induced dipoles µI in each iteration.

Finally, before beginning the iterations, we compute an initial guess for the induced

dipoles as µ = αV. This corresponds to the first iteration of a conventional JI model with

µ = 0 on the right-hand side of Eq 3.8. Evaluation of the initial guess is inexpensive, since

V is already available, and it typically reduces the number of iterations to converge the

calculation by one. Of course, subsequent time steps in an MD trajectory can initialize

the induced dipoles based on those from previous time step(s), further accelerating the

convergence of the polarization energy by a few iterations.[38, 13]

Evaluation of the induced dipoles

Once the initialization steps have been performed, the iterative solution of the po-

larization equations (Eq 3.10) can begin. For each iteration, this process involves building

the interaction tensors between blocks TIJ , contracting them with the induced dipoles for

other blocks J , and adding them to the static field to obtain the total potential VI . If suf-

ficient memory is available, the dipole-dipole blocks of TIJ built to evaluate the permanent

potential V during the initialization phase can be stored in sparse form for each atom pair

for subsequent use during the iterations (referred to as the “pre-computed T” algorithm).
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Otherwise, they are computed anew each iteration (“on-the-fly T” algorithm). Second, one

solves Eq 3.10 to obtain the new induced dipoles µI using the Cholesky decomposed form of

ZII (the LI computed during the initialization) via the standard dpotrs LAPACK routine.

DIIS extrapolation

DIIS extrapolation is used to accelerate the convergence of the DC-JI iterations

starting in the second iteration. The extrapolated induced dipoles are written as a linear

combination of the sets of induced dipole vectors µ(j) from recent iterations j,

µextrap =

n∑
j=1

cjµ
(j) (2.13)

The extrapolation coefficients cj are obtained by solving,



B11 B12 · · · B1n −1

B21 B22 · · · B2n −1

...
...

. . .
... −1
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−1 −1 −1 −1 0
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0

0

...

0

−1


(2.14)

where Bjk is the inner product between two residual vectors that represent the change in

the induced dipoles between iterations, Bjk =
(
∆µ(j)

)T
∆µ(k) and ∆µ(j) = µ(j) − µ(j−1).

The induced dipole history list is stored for up to twenty iterations. In practice, all the

algorithms explored here converge in fewer than twenty iterations when DIIS extrapolation

is employed.
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Modifications for Fuzzy DC-JI

The fuzzy DC-JI algorithm is summarized in Algorithm 2. The algorithmic struc-

ture is largely the same as for DC-JI. The main differences occur in the K-means clustering

and defining of the blocks. Once the locations RI of the K-means centroids have been

found, one must determine the membership list for each block. To do so, one first computes

the weights for each polarizable site i in each block I whose centroid lies within 10 Å. The

individual weights are given by wi∈I = 1/(ri −RI)
2, were ri is the position of the polar-

izable site. This weight function appears to provide a good balance between the degree

of fuzziness and the iterative convergence rate (see Section 2.4.1). Once all weights have

been computed for a given site i, the weights are normalized such that
∑

I wi∈I = 1. The

site becomes a member of every block for which the normalized weight is at least 0.1. The

final membership weights are then renormalized among the subset of blocks in which that

polarizable site is a member.

The efficient calculation of the total potential is mildly complicated by the over-

lapping nature of the blocks. For efficiency of the software loop structures, we opted for

an implementation which computes the interactions with all blocks J , and then subtracts

double-counted contributions from sites i which are already included in fuzzy block I. To

facilitate this, the ZII blocks containing the necessary interaction tensor T elements are

retained during the initialization (in addition to the Cholesky decomposed forms LI).

Crisp induced dipoles µC are used when computing the total potential during the

iterations. After each iteration, the crisp dipoles are obtained as the weighted average of

the fuzzy dipoles. If DIIS extrapolation is employed, it is applied to the crisp dipoles after
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defuzzification.

Algorithm 2 Fuzzy DC-JI Implementation

Compute block centroids RI for each block I . K-means clustering
Compute membership weights wi∈I = 1/(ri −RI)

2 for each site i/block I.
Assign block membership, renormalize wi∈I for each site i. . Blocks and weights now
known.
V = Tm . Compute permanent potential
Build ZII blocks . Mixture of (α)−1 and T elements
ZII = LIL

T
I via Cholesky Decomposition . LAPACK dpotrf

µC = αV . Initial guess
while Induced dipoles are not converged do . Begin iterations

loop over blocks I
Build TIJ . On-the-fly algorithm only
VI = V0,I +

∑
J TIJµ

C
J −

∑
i∈I Tiiµ

C
i . Compute total potential

Solve LIL
T
I µ

F
I = VI for µFI . LAPACK dpotrs

end loop
µCi =

∑
I wi∈Iµ

F
i∈I . Defuzzification of dipoles

Extrapolate µ via DIIS . Starting in the 2nd iteration
Epol = 1

2µ
TV . Compute polarization energy

end while

Computational analysis

The computational effort in the DC-JI algorithm is dominated by a handful of

steps. Let M and N be the number of polarizable sites in a block and the entire system,

respectively, with M � N . For simplicity of discussion, assume that all K blocks have

identical size (and therefore N = KM). In the initialization, the most expensive step is

the initial construction of the static field V, which requires O
(
N2
)

effort. Evaluating all

ZII blocks requires only O
(
KM2

)
= O(NM) effort, and all of the off-diagonal elements in

ZII are already computed when evaluating the interaction tensor T needed to evaluate V.

Cholesky factorization for each block of ZII scales as O
(
M3
)
, or a total O

(
NM2

)
for all

K blocks.
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Once the iterations begin, the computational effort for solving each of the K blocks

is dominated by the construction of TIJ and its contraction with µJ (when building VI),

which scales O(NM) per block (or O
(
N2
)

total). Solving the linear system of equations for

each block from the Cholesky factorized ZII matrices to obtain the induced dipoles requires

only O
(
M2
)

effort (O(NM) for all blocks), which is trivial as long as M � N . The effort

associated with the DIIS extrapolation based on only a handful of previous iterations is also

negligible. In summary, DC-JI combines a non-iterative cubic-scaling Cholesky step whose

cost is kept reasonable through prudent choice of the block size, and iterative quadratic

scaling steps that depend on the overall system size.

The same general scaling arguments apply for the fuzzy DC-JI algorithm. The

individual block sizes are larger in the fuzzy version, but the sizes are kept reasonable

through the choice of weight function. Computational costs associated with the additional

setup, book-keeping, and defuzzification steps in fuzzy DC-JI are all small compared to the

main algorithmic steps.

As noted above, the TIJ interaction tensors computed during the initialization

steps can be stored in memory throughout if sufficient memory is available (“pre-computed

T” algorithm). While the T blocks can be stored in moderately sparse form due to the

symmetry within the blocks for each atom pair Tab, the total memory storage still scales

with the square of the number of polarizable sites (the same as the overall Z matrix, but

with a smaller prefactor). In a serial implementation of the algorithm, this memory storage

requirement will become prohibitive in large systems.

Although the current study focuses on the serial software implementation, it is
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worthwhile to consider a potential parallel implementation. K-means can readily be dis-

tributed over many processors, with each process handling a unique subset of the centroids.

Only communication of the K centroid locations is required after each iteration. Once the

blocks have been defined, each block I is assigned to a worker. All initialization and itera-

tive steps associated with solving for the induced dipoles on that block can be carried out

separately and independently. Only after each iteration must the new induced dipoles be

broadcast to the other workers. In the fuzzy DC-JI algorithm, one must broadcast the fuzzy

dipoles, compute the crisp dipoles, and then broadcast the crisp dipoles to other nodes.

For DC-JI, the DIIS extrapolation could either be performed separately within

each block before communication of the updated induced dipoles, or after the dipoles have

been harvested by a central worker but before they are broadcast out to the remaining

nodes. For fuzzy DC-JI, DIIS probably cannot be employed until after defuzzification.

Load-balancing of the workers might require some finesse, particularly if the K-means block

sizes are inhomogeneous. However, in the non-overlapping DC-JI case, subsequent iterations

of the self-consistent polarization by a given worker can continue semi-asynchronously, even

if updated dipoles from some other blocks have not yet been received.

This algorithm would be well-suited for a hybrid OpenMP/MPI implementation,

where OpenMP is used to parallelize the matrix and other operations for a given block I,

and MPI is used to distribute the different blocks over many nodes. Such an approach would

also make it easier to exploit the computational savings associated with the pre-computed

T algorithm. In that case, each node would only need to store the subset of TIJ involving

the block(s) I being solved on that particular node. This reduces the local node memory
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requirement for pre-computed T from O(N2) to O(MN). As long as enough nodes are

available to ensure that M is sufficiently small, the pre-computed T algorithm should be

feasible.

Periodic boundary conditions are not considered in any detail here. However,

both the DC-JI/DIIS and Fuzzy DC-JI/DIIS algorithms are amenable to the inclusion of

periodic boundary conditions using Ewald techniques or a minimum-image convention. The

key requirement for the efficient use of the divide-and-conquer models will be that block

sizes are smaller than the real-space interaction cutoffs, such that the interaction tensor

elements in each Z block will have the same basic form as described in Eq 2.3. Longer-

range interactions stemming from periodic images, reciprocal space, or an external electric

field will couple in through the external potential terms on the right-hand side of Eq 3.10.

2.3 Computational Methods

The JI, DC-JI, and fuzzy DC-JI algorithms described here were implemented in a

local copy of Tinker 7.1.[32] We also compare against the existing Tinker 7.1 implementation

of PCG. Efficiency comparisons obviously depend both on the basic algorithm and the

specific implementations. Common implementation strategies were used in constructing

key intermediates such as the field V and interaction tensor T throughout to facilitate

even-handed comparisons. The performance of both PCG and the DC-JI models could

probably benefit from further code refinements.

Constant-energy molecular dynamics simulations were run with time steps of 1.0

femtoseconds. Smaller time step sizes of 0.25 femtoseconds were used in the energy con-
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servation analysis. Most calculations were performed on a ubiquitin protein surrounded by

2,835 water molecules (9,737 atoms total). A few calculations employ a large octahedron

containing 6,400 water molecules (19,200 atoms total). Both geometries were taken from

the example files distributed with the Tinker software package. Induced dipoles were con-

verged to a root-mean-square (RMS) threshold of 10−6 Debeye unless otherwise stated. In

MD simulations, the induced dipoles at each subsequent time step were initialized with the

converged dipoles from the previous step unless otherwise specified. All timings reported

are CPU timings on a single core of a 2.4 GHz Xeon E5-2630 v3 chip with 64 gigabytes of

RAM.

2.4 Results and Discussion

2.4.1 Behavior of the algorithms

The spatial clustering of the polarizable sites plays an important role in the effi-

ciency of the DC-JI algorithms. Figure 2.3 compares the distributions of significant matrix

elements in Z̃ from (a) a random sorting of the polarizable sites versus (b) the sorting

achieved by K-means in a cluster of 85 water molecules. While the ordering of sites stem-

ming from the atom ordering in a user-specified structure coordinate file may exhibit more

spatial clustering than the random Z̃ matrix shown here (depending on how the user ar-

ranges the input file), it can still be non-optimal due to both the inherent challenges in

mapping a 3-D system onto a two-dimensional 2-D matrix and the changes in atomic po-

sitions during an MD simulation. The K-means sort clearly concentrates large-magnitude
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(a) Random sorting (b) K-means sorting

Figure 2.3: Comparison of the Z̃ matrix with (a) random (b) K-means sorting, and (c)
Fuzzy K-means sorting of the polarizable sites for a (H2O)85 cluster (255 polarizable sites,
765 induced dipole vector components). The 10 colored sub-clusters in the molecular figure
are indicated by the colored boxes in (b) and (c). The red elements in (c) correspond to
terms captured in that particular fuzzy block. Matrix elements are plotted in log scale,
with coloring for elements with magnitude 0.005 Å−3 or larger.

matrix elements along the diagonal blocks.

Because it allows for the most important mutual polarization effects to be solved

directly in DC-JI, this clustering reduces the number of iterations required to converge

the self-consistent polarization. Conventional JI requires 41 iterations to converge in this

system. In a randomly sorted matrix, employing block Jacobi with the same block sizes

but no K-means sorting provides no clear convergence advantage over conventional JI. In
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contrast, with the K-means sorting shown in Figure 2.3b, only 15 iterations are required to

converge the induced dipoles with DC-JI.

Despite the substantial reduction in the number of iterations in the K-means sorted

blocked algorithm, many significant off-diagonal block contributions remain, corresponding

to many-body couplings among atoms in the various sub-clusters. The overlapping block

treatment in the fuzzy DC-JI algorithm helps capture some of these effects. In Figure 2.3

for example, the atoms in the red cluster directly border atoms in six of the nine other

sub-clusters. Polarization on the red atoms will be particularly affected by adjacent atoms

in these neighboring clusters. Only the light blue, salmon, and gold-colored sub-clusters

are not directly adjacent to the red sub-cluster atoms. Figure 2.3c plots the same K-means

sorting as in Figure 2.3b, but with all matrix elements included in the fuzzy version of

the red sub-cluster highlighted in red. Close inspection reveals that the fuzzy red block

includes couplings with all six adjacent sub-clusters, omitting couplings only from the three

more distant sub-clusters mentioned earlier. In other words, the fuzzy K-means procedure

identifies off-diagonal coupling elements in the 2-D matrix that are important in the 3-

D system. The number of iterations required to converge the polarization drops from 15

with DC-JI (non-overlapping) blocks to 8 in the fuzzy DC-JI (overlapping) case. Further

acceleration is possible with DIIS, as will be discussed below.

The next question is how large of blocks one should use. The use of fewer, larger

sub-clusters of atoms/polarizable sites should translate to the inclusion of more significant

off-diagonal coupling elements from Z̃ into the direct solution portion of DC-JI, leaving

weaker couplings in the off-diagonal blocks to be accounted for iteratively. In the limit of
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Figure 2.4: Average number of iterations required to converge the polarization to 10−6

Debeye RMS change of the dipoles in ubiquitin/water over 250 MD steps with various
block sizes and polarization algorithms. Error bars/shaded regions indicate the range of
iterations required in 90% of the time steps. PCG and JI/DIIS do not employ blocks, so
their convergence rates are independent of block size.

all polarizable sites being placed in a single block, only one iteration is required. On the

other hand, the cost of solving for the induced dipoles via Cholesky decomposition increases

with block size.

Figure 2.4 plots the mean number of iterations required to converge the polariza-

tion as a function of block size in the 9,737-atom ubiquitin/water system. These data reflect

an average over 250 1 fs MD steps. Error bars and shaded regions in the figure indicate the

range of iterations required in 90% of the MD time steps. For the DC-JI and fuzzy DC-JI

models, the simulations involved five sets of 50 steps, with different initial random seeds

for the K-means. Since PCG and JI/DIIS do not involve a random seed, the results were

averaged over a single longer trajectory. In all cases, converged dipoles from the previous

step were used as the initial guess for the next step.

39



The convergence rate of DC-JI is clearly sensitive to the block size. At 500 blocks

(mean block size 19.5 atoms, which corresponds to a matrix block dimension of ∼58 since

each atom has three dipole components), converging the polarization requires 27.4 iterations

on average. The convergence rate is also highly variable, ranging between 21–38 iterations

in 90% of the MD steps. The average number of iterations and range of iterations are

consistent across each of the five runs started with different initial random seeds for the

K-means clustering, suggesting that the randomness in the clustering is not a significant

issue. Using 100 blocks of mean size 97.4 atoms accelerates DC-JI convergence dramatically,

down to 17.5 iterations (90% range of 15-22 iterations). So while DC-JI represents an

improvement over conventional JI (which frequently fails to converge in this system), the

convergence behavior can still be slow if smaller blocks are used. Incorporation of the

off-diagonal couplings remains slow in DC-JI.

Fuzzy DC-JI handles those off-diagonal couplings better, significantly reducing

both the number of iterations required and the sensitivity to block size. With 500 blocks,

fuzzy DC-JI decreases the iterations from 27.4 to only 10.8. With 100 blocks, it requires

only 7.7 iterations instead of 17.5. The convergence rate becomes much more consistent

with the fuzzy blocks as well, with variations of no more than one iteration. The K-means

random seed has negligible effect on the convergence of fuzzy DC-JI.

Further acceleration can be achieved using DIIS extrapolation, especially for the

more poorly converging methods. Whereas conventional JI frequently fails to converge in

this system, JI/DIIS consistently requires 11 iterations. DC-JI/DIIS converges in 8.0–8.7

iterations (90% range 8–9 iterations), depending on block size. For systems with 100–200
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Table 2.1: Effect of the fuzzy membership function on the average number of atoms per
block, average iterations to converge the polarization, and CPU time required per iteration
to evaluate the induced dipoles in ubiquitin/water with DC-JI/DIIS or Fuzzy DC-JI/DIIS.

Algorithm Weights # of Blocks Block Size Iterations Time (s)

DC-JI n/a 100 97.4± 13.9 8.0 14.1
DC-JI n/a 200 48.7± 10.0 8.1 14.1

Fuzzy DC-JI R−3 weight 200 77.5± 14.6 7.0 13.0
Fuzzy DC-JI R−2 weight 200 94.9± 18.3 6.0 11.9
Fuzzy DC-JI R−1 weight 200 143.9± 30.5 6.0 13.4

blocks, fuzzy DC-JI/DIIS consistently converges in 6 iterations, which is almost half that

of JI/DIIS and is slightly better than the 6.5 iterations of PCG. With 400–500 blocks, the

fuzzy DC-JI/DIIS convergence occurs in only 7.0 iterations. Notice that DIIS substantially

reduces the sensitivity of the DC-JI and fuzzy DC-JI convergence to block size, which allows

one to focus on which block sizes are most computationally efficient.

To understand better how the fuzzy algorithm behaves, Table 2.1 compares the

block sizes, convergence rates, and time per polarization calculation for several different

models. For the non-overlapping DC-JI model with 200 blocks, the average block con-

tains 48.7 atoms. For the fuzzy models, the degree of fuzziness depends on the choice

of the weighting function, w(R) = R−n. Smaller exponents n translate to fuzzier blocks

with more overlaps. Progressing through R−3, R−2, and R−1, the mean block size for the

same 200 blocks increases by roughly 60%, 100%, and 200%, respectively, compared to the

non-overlapping case. The variability in the block size also increases, as indicated by the

standard deviations in Table 2.1.

As the average block size increases, the average number of iterations required for

convergence decreases. Notably, however, the convergence improvements from the fuzzy
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membership go well-beyond the simple block-size increases. Switching from 200 to 100

blocks in the non-overlapping DC-JI model doubles the number of atoms per block, but

it only improves the convergence rate by 0.1 iterations on average (hence the essentially

identical average DC-JI timings per MD step for both 100 and 200 blocks). For comparison,

the fuzzy DC-JI/DIIS model with 200 blocks and R−2 weighting has approximately the same

average block size as DC-JI/DIIS with 100 blocks, but it converges two iterations (25%)

faster. This result implies that the convergence enhancements from the fuzzy DC-JI model

stem mostly from the improved treatment of polarization at sites on the edges of the block

sub-clusters, rather than from simple increases in average block size.

The decision to adopt the R−2 weighting function was made empirically. R−3

weighting has physical appeal since it mimics the distance dependence of the dipole-dipole

interaction. However, R−3 decays relatively quickly, and this lower degree of fuzziness does

not accelerate the convergence as much as the more slowly decaying weighting functions

(Table 2.1). On the other hand, R−1 weighting makes the blocks too large. Despite gen-

erating blocks that are 50% larger than those from the R−2 weighting, the R−1 weighting

still requires 6 iterations to converge the polarization. At the same time, the larger block

size with R−1 weighting starts to increase the costs associated with the Cholesky decom-

position and solving for the induced dipoles (see discussion of detailed timing breakdowns

below). The R−2 weighting balances the number of iterations required for convergence and

the overall computational cost.

Before moving on, recall that fuzzy DC-JI employs distance-based membership

weights to defuzzify the induced dipoles into crisp values. For ubiquitin/water with 200
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Figure 2.5: Timing breakdown in the ubiquitin/water system for a single self-consistent
polarization energy calculation using (a) DC-JI/DIIS (200 blocks) (b) Fuzzy DC-JI/DIIS
(200 blocks) (c) JI/DIIS or (d) PCG, with the external interaction tensor elements TIJ

either evaluated on-the-fly at each iteration (lower memory requirement algorithm) or pre-
computed once and stored in memory throughout.

blocks andR−2 weighting, fuzzy DC-JI/DIIS requires an average of 6.0 iterations to converge

(Table 2.1). Alternatively, one might just employ a conventional unweighted average of the

fuzzy dipoles as in Additive Schwarz domain decomposition, but this increases the average

number of iterations to 6.5. Using the weighted average incurs no appreciable additional

overhead, so the average savings of 0.5 iterations translates to a computational savings of

7% compared to Additive Schwarz in this system.

Further insight is gained by analyzing the timing breakdown of the various algo-

rithms. Figure 2.5 plots the timing details for a single self-consistent polarization calculation
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on the ubiquitin/water system with DC-JI/DIIS, Fuzzy DC-JI/DIIS, JI/DIIS, and PCG.

200 blocks were used for both DC-JI models. The calculations converged in 8 (DC-JI), 6

(Fuzzy DC-JI) 11 (JI/DIIS), and 6 (PCG) iterations, respectively. For the DC-JI models,

the computational effort is dominated by the time required to compute the total potential

(right-hand side of Eq 3.10), particularly building and contracting
∑

J TIJµJ . In the “on-

the-fly” algorithm variant where TIJ is rebuilt every iteration, this step consumes 76-82% of

the total computational time for the two methods. The second largest portion of the effort

(16-18%) goes to the initialization steps, particularly evaluating the static potential V. The

remaining few percent of the time is spent doing the initial K-means clustering, performing

the Cholesky factorization of the diagonal ZII blocks, and solving for the induced dipoles.

The larger block size and extra book-keeping of fuzzy DC-JI does increase the cost

of some steps by up to a couple tenths of a second compared to DC-JI (most notably the

Cholesky factorization and computing of the induced dipoles). Nevertheless, those differ-

ences are dwarfed by the savings from the reducing the number of iterations required to

reach convergence by two. Instead of re-computing the TIJ matrices “on-the-fly” during

each iteration, one might store them in memory when they are computed during the initial-

ization phase. As noted previously, storing these large matrices quickly becomes memory-

prohibitive in a serial implementation, but it may be feasible in a parallel implementation

when sufficient processors are available.

It is interesting to compare these timings against ones for JI/DIIS (Figure 2.5c)

and PCG (Figure 2.5d). JI/DIIS is much more expensive than either divide-and-conquer

algorithm largely due to the larger number of iterations and the need to evaluate the induced
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field in each one. Pre-computing and storing the interaction tensor helps reduce costs

substantially, from roughly 26 seconds to 9 seconds here. Nevertheless, JI/DIIS still requires

a few seconds more than the divide-and-conquer models. PCG requires fewer iterations

than JI/DIIS to converge, but each iteration is more expensive. The cost of applying the

preconditioner is also notable. Again, pre-computing the interaction tensor elements helps,

but PCG is still slower than the divide-and-conquer approaches.

To summarize, both DC-JI and fuzzy DC-JI converge better than conventional JI.

When combined with DIIS extrapolation, fuzzy DC-JI converges much faster than JI/DIIS

and on par with or better than PCG. The good performance of the fuzzy algorithm stems

from its effective averaging of the fuzzy dipoles over multiple clusters, thereby better mim-

icking polarization in full system. As long as DIIS is employed, the divide-and-conquer

algorithms perform well over a range of block sizes. Because specific block size is not

critical, the number of blocks can be chosen to optimize computational efficiency.

2.4.2 Performance in molecular dynamics

Next, consider how these various polarization solvers perform in molecular dy-

namics simulations. The polarization time depends in part on how the induced dipoles are

initialized in each MD step. Two different algorithms are considered here: either using the

converged dipoles from the previous step, or using Kolafa’s always stable predictor-corrector

algorithm.[13] Figure 2.6 shows polarization timings with each algorithm over 1 ps of MD

simulation time in the ubiquitin/water system and a truncated octahedron of 6,400 wa-

ter molecules. 200 blocks were used for both systems, which corresponds to an average

45



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  200  400  600  800  1000

P
o
la

ri
z
a
ti
o
n
 C

P
U

 T
im

e
 (

m
in

)

Simulation Time (fs)

(a) Previous Dipoles

PCG

DC-JI/D
IIS

Fuzzy DC-JI/DIIS

JI/
DIIS

100%

83%

56%

47%

30%
28%

37%
35%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  200  400  600  800  1000

P
o
la

ri
z
a
ti
o
n
 C

P
U

 T
im

e
 (

m
in

)

Simulation Time (fs)

(b) Previous Dipoles

JI/
DIIS

PCG

DC-JI/D
IIS

Fuzzy DC-JI/DIIS

100%

82%

59%

50%

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000

P
o
la

ri
z
a
ti
o
n
 C

P
U

 T
im

e
 (

m
in

)

Simulation Time (fs)

(c) Kolafa’s Predictor

PCG

DC-JI/D
IIS

Fuzzy DC-JI/DIIS

JI/
DIIS

100%

80%

54%

47%
38%
38%
30%
28%

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

P
o
la

ri
z
a
ti
o
n
 C

P
U

 T
im

e
 (

m
in

)

Simulation Time (fs)

(d) Kolafa’s Predictor

JI/
DIIS

PCG

DC-JI/D
IIS

Fuzzy DC-JI/DIIS

100%

89%

62%

51%

Figure 2.6: Comparison of polarization CPU timings for (a)/(c) ubiquitin surrounded by
2835 waters (9,737 atoms) or (b)/(d) a cluster of 6,400 water molecules (19,200 atoms).
Solid lines correspond to the “on-the-fly” algorithm variants, while dotted lines result from
“pre-computing” and storing the T matrices. The labels indicate whether the induced
dipoles were initialized from the previous iteration or using Kolafa’s always stable predictor-
corrector algorithm. Percentages indicate the time savings over JI/DIIS.

of ∼50 and ∼100 atoms per block in the two respective systems. As seen in Figure 2.6,

the predictor-corrector algorithm somewhat reduces the number of iterations required to

converge the polarization and reduces the overall computational time, but it does not sub-

stantially alter the relative performance of the different algorithms. JI/DIIS performs the

slowest in these simulations. PCG evaluates the polarization energy 11-20% faster. How-

ever, the DC-JI/DIIS and fuzzy DC-JI/DIIS algorithms are roughly a factor of two faster

than JI/DIIS.

Because much of the computational cost is dominated by evaluation of the inter-
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action tensors T, even larger savings can be achieved if the elements of T are pre-computed

and stored throughout, as shown for ubiquitin in Figure 2.6a,c. In the pre-computed vari-

ants of the algorithm, PCG and JI/DIIS require similar amounts of computational time.

JI/DIIS disproportionately benefits from pre-computing T since a greater percentage of the

time is spent evaluating the induced potential (Figure 2.5).

Nevertheless, the pre-computed versions of DC-JI/DIIS and Fuzzy DC-JI/DIIS

still out-perform all other algorithms here with either dipole initialization scheme. The

pre-computed variant of fuzzy DC-JI/DIIS requires only 28% the time of conventional

JI/DIIS, and one-third the cost of conventional PCG. Storing T for large systems requires

prohibitive amounts of computer memory (RAM) in a serial implementation. Indeed, we

could not store T for the (H2O)6400 on a machine with 64 GB of RAM. However, as discussed

in Section 2.2.4, a distributed-memory parallel implementation would only require storage

of a subset of the TIJ blocks on each node. With sufficient nodes available, the pre-

computed T algorithm could become feasible, and the blocked nature of the divide-and-

conquer algorithms makes them well-suited to parallel implementation.

Finally, we investigate the energy conservation behavior of the various solvers.

Constant energy MD simulations were performed on ubiquitin (without aqueous solvent for

the sake of efficiency) with 0.25 fs time steps for each of the four solvers (JI/DIIS, PCG,

DC-JI/DIIS, and fuzzy DC-JI/DIIS) and various convergence thresholds for the induced

dipoles. Converged dipoles from each iteration were used as initial guess in the subsequent

iteration. As shown in Figure 2.7, the DC-JI and fuzzy DC-JI models behave similarly to

JI/DIIS. Converging the induced dipoles to only RMS 10−4 Debeye leads to appreciable
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Figure 2.7: MD energy conservation in ubiquitin (no solvent) with four different polarization
algorithms. Time steps of 0.25 fs were used.

energy drift almost immediately. PCG does not exhibit the same large drift for the loose

10−4 Debeye convergence in this system. For this particular trajectory and convergence

criterion, PCG fortuitously converges to a residual that is on average around 50% smaller

than that of the other three methods, and this appears sufficient to eliminate much of the

energy drift. Indeed, a convergence criterion of 10−5 Debeye already behaves much better

for all methods. Note that PCG does sometimes exhibit substantial energy drift with a 10−4

Debeye convergence criterion.[4] When convergence criteria of 10−6 Debeye or tighter are

used, the drift becomes no more than a few hundredths of a kcal/mol for all methods in the

simulation time frame shown here. In other words, as long as reasonably tight convergence

criteria are used, the proposed DC-JI solvers conserve energy well.
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2.5 Conclusions

In summary, two new, computationally efficient algorithms for evaluating the self-

consistent polarization equations in polarizable force fields have been proposed. Based on

non-overlapping and overlapping domain decomposition, these DC-JI and fuzzy DC-JI al-

gorithms can provide savings of ∼2–3 over a conventional JI/DIIS or PCG implementation.

They combine direct, non-iterative solution of the polarization equations within sub-clusters

of atoms and iterative treatment of the polarization couplings between atoms. K-means

clustering automatically identifies spatially localized sub-clusters that ensure rapid conver-

gence of the iterations. The particularly good performance of the fuzzy DC-JI algorithm

stems largely from its improved treatment of polarization sites near the sub-cluster edges.

An 1/R2 weight function was empirically chosen for fuzzy DC-JI to control the degree of

fuzziness and provide defuzzification weights for obtaining the final crisp induced dipoles.

Future work should focus on adapting these algorithms to periodic systems and

to an efficient parallel implementation. In particular, a massively parallel implementation

might be able to achieve significant computational savings by employing the pre-compute T

matrix variant of the algorithms in large systems. The algorithm performs well over a range

of block sizes. In a parallel implementation, this flexibility could prove useful by allowing

one to adapt the number of blocks to achieve uniform distribution of the work over the

available processors. Research in these directions is on-going.
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Chapter 3

Divide-and-Conquer Jacobi

Iterations II

3.1 Introduction

Quantum mechanical charge distributions respond to their environment, which

significantly impacts system behaviors. The dipole moment of water can decrease ∼20% as

it moves from bulk water to a non-polar protein pocket, for instance.[1] Capturing how the

charge distribution responds to its environment is also critically important for maintaining

the subtle balance of intra-protein and protein-environment interactions correctly[2] or for

reproducing the proper dynamics in ionic liquids.[39] Reproducing these effects in classical

force field simulations can be difficult—fixed-charge models are inherently incapable of

describing dynamic changes in the charge distribution.

Polarizable force fields, on the other hand, can mimic these behaviors.[40, 41, 42]
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Unfortunately, the improved physical description provided by polarizable force fields comes

at significantly increased computational cost. In the AMOEBA (atomic multipole optimized

energetics for biomolecular applications) force field,[8, 7] for example, where polarization is

represented via an induced dipole model with Thole damping, obtaining the induced dipoles

requires solving a set of linear equations of dimension three times the number of polarizable

sites N . These equations can be solved “directly” using a finite number of operations,

but such methods are only tractable for small systems due to their O(N3) complexity.

Instead, iterative methods are traditionally used to solve for the induced dipoles. Two

commonly used iterative solvers are Jacobi iterations (JI), accelerated with either over-

relaxation (JOR)[7] or direct inversion of the iterative subspace (DIIS)[22, 23], and the

preconditioned conjugate gradient (PCG) algorithm.[3] While these iterative methods vary

in their rate of convergence and overall computational cost, they can in principle solve the

polarization equations to arbitrary precision. In practice, the solution of the polarization

equations is converged to within a computationally tractable user-specified tolerance.

To minimize the computational cost, approximations can be made when solving

the polarization equations. Truncated versions of Jacobi iterations[25, 26] and precondi-

tioned conjugate gradients.[30, 43] have been introduced. These methods typically perform

the algorithm for a fixed number of iterations, which leads to several benefits. First, the

iterative methods can be “unrolled” to a form for which analytical gradients of the polariza-

tion with respect to atomic position can be derived. This potentially minimizes the energy

drift associated with iteratively solving the systems of equations to a finite convergence

tolerance. Second, the user has a “knob” to control the computational cost of the algo-
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rithm by choosing when to truncate. In this sense these methods might be characterized as

“direct” in that they can be solved in a finite number of operations. However, the resulting

dipole vector differs from the exact one, meaning that the potential energy surface on which

the dynamics occur differs from the true one. Similarly, extended Lagrangian approaches

eliminate the need to iterate the polarization equations at each time step by integrating

the dynamics along an approximate shadow potential.[14, 44, 45] Other strategies express

the polarization interactions via a truncated many-body expansion, such that mutual po-

larization is only considered up to 3-body interactions (3-AMOEBA),[27] or neglect mutual

polarization completely and reparameterize the force field to compensate (iAMOEBA)[29].

In addition to algorithmic advances, improved hardware has opened the door to

applying polarizable force fields for biological systems on chemically relevant timescales

that would otherwise have been unattainable. The Tinker software package, which includes

the polarizable AMOEBA force field, has expanded to a family of three codes that take

advantage of hardware advances: canonical Tinker v8.1,[46] the Tinker-OpenMM[47] pack-

age which leverages graphical processing units for fast mixed-precision dynamics, and the

Tinker-HP package[48] which enables massively parallel MPI applications on high perfor-

mance computing systems.

Recently, we introduced a new, formally exact iterative polarization solver, the

divide-and-conquer Jacobi iterations (DC-JI) algorithm.[49] DC-JI uses physically-motivated

partitioning of the polarization problem to accelerate evaluation of the self-consistent in-

duced dipoles. It partitions the set of polarizable sites into spatially local sub-clusters,

which will generally include the strongest polarization interactions. The mutual polariza-
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tion within each sub-cluster is solved directly within the field generated by more distant

polarizable sites outside the sub-cluster. Mutual polarization between sub-clusters is cap-

tured iteratively. Convergence of the DC-JI solver can be accelerated further with DIIS

and/or the use of fuzzy clustering.[49] The pseudo-direct nature of DC-JI/DIIS leads to a

convergence of the polarization equations in a number of iterations comparable to PCG,

but with a lower overall computational cost.

The initial implementation of DC-JI/DIIS in Tinker 7.1 performed ∼30–40% faster

than PCG for non-periodic systems on a single processor.[49] In this paper, we adapt

DC-JI/DIIS to periodic systems via the particle-mesh Ewald algorithm and introduce a

massively parallel implementation within the Tinker-HP software package. Good parallel

performance is demonstrated for systems containing hundreds of thousands of atoms and

many hundreds of processor cores. Crucially, results presented here show that DC-JI/DIIS

is not only faster than the conventional iterative polarization solvers like PCG, but that the

solution it obtains at any given convergence threshold is simultaneously more energetically

robust.

3.2 Theory

3.2.1 Background

The AMOEBA force field assigns permanent multipoles up to quadrupoles and

an isotropic dipole polarizability to each atom in the system. The polarization equations

are then solved to determine the induced dipoles on each site arising from the permanent

multipole moments and the mutually induced dipoles on other sites. The polarization energy
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is computed by minimizing the functional,

Epol =
1

2
µT Z̃µ− µTV0 (3.1)

where µ is a vector of induced dipoles, Z̃ is the response matrix defined below, and V0

is the electric field due to the permanent multipole moments. Z̃ is a symmetric positive

definite matrix with blocks for each atom A, B, C, etc:

Z̃ =



(αA)−1 −TAB −TAC . . .

−TBA (αB)−1 −TBC . . .

−TCA −TCB (αC)−1 . . .

...
...

...
. . .


(3.2)

Here, αA is a 3×3 diagonal matrix with the inverse of the isotropic polarizability along the

diagonal, and TAB is the interaction matrix which captures the distance and orientational

dependence of the dipole-dipole interaction between atomic sites A and B given by,

TABαβ = λ5
3RABα RABβ

(RAB)5
− λ3

δαβ
(RAB)3

(3.3)

where Rα and Rβ correspond to Cartesian components of the vector between the two sites,

capturing the anisotropic contributions to the interactions, and δαβ is the Kronecker delta

which switches on the isotropic term. The Thole damping functions λ3 and λ5 prevent

polarization catastrophe and are defined elsewhere.[8]

The vector of induced dipoles that minimizes the polarization energy is obtained
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as the solution to the system of linear equations,

Z̃µ = V0 (3.4)

Upon substitution of Eq 3.4 into Eq 3.1, the minimized polarization energy is given by,

Epol =
1

2
µTV0 − µTV0 = −1

2
µTV0 (3.5)

To compute forces for a molecular dynamics simulation, the derivative of the polarization

energy with respect to atomic positions is given as

dEpol
drak

=
∂Epol
∂rak

+
∂Epol
∂µ

∂µ

∂rak
(3.6)

If the dipole vector minimizes the polarization energy, then
∂Epol

∂µ is at a stationary point and

the second term of Eq 3.6 vanishes. Iterative equation solvers converge towards the dipole

vector that minimizes the energy, but they typically stop at a user-defined convergence

threshold for computational expediency. Care must be taken to balance between using a

looser-tolerance for computational efficiency and a tighter one for a more numerically exact

solution. Loosely converged polarization equations will exhibit a non-zero second term in

Eq 3.6 which can introduce energy drift during a molecular dynamics simulation.

3.2.2 Polarization Solvers

Jacobi iterations (JI) offers a simple iterative procedure for finding the dipole

vector that minimizes the polarization energy functional. It corresponds to the intuitive
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picture in which site A polarizes site B, site B polarizes A, and the process iterates until

self-consistency is achieved for the induced dipoles. Formally, the response matrix Z̃ can

be partitioned into its diagonal elements D and off-diagonal elements Y, Z̃ = D + Y.

Substitution of the partitioned Z̃ into Eq 3.4 and rearrangement yields,

Dµ = V0 −Yµ (3.7)

The diagonal matrix D can be inverted trivially to solve for the induced dipoles µ,

µ = D−1 (V0 −Yµ) = α (V0 + Tµ) (3.8)

However, since the right-hand side depends on µ, Eq 3.8 must be solved iteratively. JI

converges poorly if the spectral radius p(D−1(−Y)) is near 1 and diverges if p(D−1(−Y))

is greater than 1. The convergence behavior can be improved by coupling JI with DIIS. That

is, after establishing a short history of the induced dipoles during the first few iterations,

the induced dipoles are extrapolated via DIIS after each Jacobi iteration. DIIS has a long

history in computational chemistry.[24]

Alternatively, the conjugate gradient (CG) method can solve for the polarization

by minimizing Epol in Eq 3.1. Poor convergence behavior is observed when the condition

number of Z̃ is large, but this can be improved by applying a preconditioner (PCG) to solve

a modified system of equations:

P−1Z̃µ = P−1V0 (3.9)

where P−1 is some easily computed matrix that approximates Z̃−1. The diagonal precon-
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ditioner used in Tinker-HP is easily parallelized and offers a satisfactory reduction in the

condition number for high performance parallel implementations. The robustness of PCG

depends on Z̃ being symmetric and positive definite, and it can be sensitive to numeric

precision.[48]

3.2.3 Divide-and-conquer Jacobi Iteration method

DC-JI amounts to a block JI method[31] with physically motivated blocking.[49]

Because nearby polarizable sites are expected to polarize each other most strongly, DC-JI

partitions the system into spatially localized sub-clusters of sites.[49] The polarization equa-

tions within each sub-cluster are solved directly via Cholesky decomposition. Polarization

effects between the sub-clusters are captured iteratively through the contributions of the

field in a JI-like fashion. Formally, DC-JI partitions Z̃ = Z + Y, but in this case Z is block

diagonal matrix, rather than a diagonal one. Each block of Z corresponds to a sub-cluster

of polarizable sites. These Z blocks include both the inverse of the polarizability tensors α

along the diagonal and dipole-dipole interaction tensors T between the atoms within the

sub-cluster.

Exploiting the block structure of Z, one can break Eq 3.7 into a separate matrix

equation for each sub-cluster of polarizable sites,[49]

ZIIµI = V0,I −YIJµJ = V0,I +
∑
J

TIJµJ (3.10)

where I and J here refer to the different blocks of atoms. In other words, the induced

dipoles on atoms in block I depend on the total field, which includes contributions from
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both the permanent field of the whole system V0,I and the induced field from atoms in

other blocks J , given by TIJµJ . With appropriately sized blocks, one can efficiently solve

each block equation for µI directly. Although solving the linear equations formally scales

cubically with the block size, sufficiently small block sizes ensure this computational cost

remains low, and the number of blocks grows linearly with system size.

Particle-Mesh Ewald

The original implementation of DC-JI was limited to non-periodic systems/direct

space interactions.[49] For large systems, the evaluation of the electric field via multiplication

of the matrix of the interaction tensors T and the vector of the multipole moments becomes

cost prohibitive. Here, DC-JI is extended to large/periodic systems by combining it with

the particle-mesh Ewald (PME) algorithm. PME partitions the total electric field V into

short-range and long-range contributions,

V = V′ + Ṽ (3.11)

The short-range contributions V′ are treated in direct space, while the long-range contri-

butions Ṽ are handled in reciprocal space using fast Fourier transforms. PME allows the

long-range electric field contributions to be computed with only O(N logN) effort.

The direct space contribution is computed by direct particle-particle interactions,

contracting the interaction tensors T with the multipole moments. The reciprocal space

contribution is defined such that it excludes unphysical self-interaction terms and short-

range interactions. A smoothing function is applied to avoid discontinuities in the forces.
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Further details on PME and computing Ṽ can be found elsewhere,[42, 3, 17] The spe-

cific details for how the reciprocal space contribution Ṽ is evaluated are not necessary for

understanding the PME version of DC-JI here.

Within DC-JI, all interactions must either be captured directly on the left-hand

side of Eq 3.10 or iteratively through the field on the right-hand side. Specific interaction

tensor T elements in ZII can be zeroed out on the left-hand side, and the corresponding

contribution is then included in the field on the right-hand side. Optimal convergence with

DC-JI will be achieved when the strongest interactions are captured directly within ZII on

the left-hand side. In the case of PME, the interactions come in two forms: the direct space

interactions for which the interaction tensor is available, and reciprocal space ones for which

the field is known but the interaction tensor is not readily available. Accordingly, the direct-

space-only analog of the ZII matrix, Z′II , is modified to include only the direct-space T′

interaction tensor elements corresponding to the (typically strong) short-range interactions

which are treated in direct space, while the longer-range direct-space interactions between

blocks and all reciprocal space interactions are treated through the field on the right-hand

side. The resulting DC-JI equations with PME are given by,

Z′IIµI = V′0,I + Ṽ0,I + W̃I +
∑
J

T′IJµJ (3.12)

where V′0,I and Ṽ0,I are the direct and reciprocal space contributions to the permanent

field, W̃I is the reciprocal space contribution to the induced field arising from long-range

interactions, and T′IJµJ gives the direct space contributions to the induced field from other
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Figure 3.1: Representation of the polarization equations in DC-JI with PME for a system
of six atoms. DC-JI reorganizes the matrix polarization equations on the left to obtain the
set of coupled equations on the right that are solved iteratively for each block.

blocks J .

Figure 3.1 depicts these matrix equations graphically for a toy system of six atoms

clustered into blue and pink groups. The dotted circles illustrate the radius of the direct

space interactions around each atom. For simplicity of illustration, the interactions in this

toy system are handled entirely in either direct or reciprocal space, neglecting the smoothing

used to transition between the two. The response matrix Z′ is illustrated in the upper left

of Figure 3.1, with diagonal blocks corresponding to the two sub-clusters highlighted in blue

and pink. Interactions that lie outside the direct space radius are zeroed out in Z′. On

the right hand side of the equation, one finds the contributions from the permanent direct

space field V′, the permanent reciprocal space field Ṽ, and the induced reciprocal space

field W̃ (whose contributions include the terms zeroed out in Z′). DC-JI then rearranges

this matrix equation for the entire system into the set of smaller coupled matrix equations

shown on the right half of Figure 3.1. Those coupled equations corresponding to Eq 3.12
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are solved iteratively.

3.3 Software Implementation

Tinker-HP offers a platform for massively parallel simulations using polarizable

force fields.[48] Double precision operations are used throughout. Distributed memory setup

also allows for modeling large systems, with the largest simulation to-date including over 23

million atoms.[48] This is accomplished by using a 3D spatial decomposition of the chemical

system which can then be distributed across thousands of processors. Tinker-HP contains

two parallelization strategies for the polarization solvers that differ in how/when the bot-

tleneck evaluation of the electric field is handled. The “sequential” scheme evaluates the

reciprocal and direct space contributions sequentially, distributing the work for each over

all available processor cores. Because the reciprocal space contributions do not parallelize

as efficiently as the direct space ones, the “load-balancing” scheme partitions the processor

cores into two groups: a larger fraction of cores which focus on the direct space, and a

smaller fraction that perform the reciprocal space evaluations. The load-balancing scheme

is potentially faster if the processors are appropriately partitioned such that the two compo-

nents finish at the same time. In practice, however, the sequential approach proved slightly

faster in our testing with DC-JI/DIIS and PCG (at least for the numbers of processor cores

used here), so the remainder of this work discusses that implementation.

Because the serial DC-JI/DIIS algorithm without PME has been described in

detail,[49] this section focuses on features specific to the new parallel PME implementation.

While that earlier work examined both overlapping (“fuzzy”) and non-overlapping sub-
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Figure 3.2: Cartoon of the partitioning scheme employed in the parallel DC-JI algorithm.
First, Tinker-HP partitions the entire system into a set of domains, with one domain per
processor (large boxes at left). For DC-JI, each domain is further partitioned into a sub-
clusters according to the coloring in the enlarged domain at right. In practice, the sub-
clusters average 60 atoms each.

clusters, for simplicity of the parallel implementation the current work focuses on the non-

overlapping case. Throughout the algorithm, high parallel performance is accomplished

by starting communications as soon as possible and folding computational work into the

period before a synchronization bottleneck. To do this non-blocking MPI routines are

used with reception being done as early as possible and communication waits done as late

as possible. The communications bottleneck occurs in the reciprocal space contributions.

Communication for the direct space terms is comparatively minimal. PCG requires only

sending the updated dipoles and the descent direction to all other processes at each iteration.

Both DC-JI/DIIS and JI/DIIS communicate only the updated dipoles and the contributions

to the DIIS extrapolation matrix.

The first step is to identify the sub-clusters of atoms that define the DC-JI block-
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ing of Z′. Previously, this was performed via K-means clustering of the entire system

into a user-defined number of blocks.[49] For large systems, global K-means clustering

could become expensive. Tinker-HP already implements a three-dimensional spatial do-

main decomposition,[48] dividing the system into one domain per processor (Figure 3.2),

and each processor evaluates the forces and coordinate updates for the atoms in its domain.

Calculations of interactions between two atoms in different domains are handled using the

midpoint method, which assigns the interaction to the domain in which the midpoint of

the two sites lies. These domains are defined before the software enters the polarization

routines.

The parallel implementation of DC-JI exploits this existing domain decomposition

as a starting point. Each processor further partitions its domain into a series of sub-

clusters. Performing the DC-JI clustering within the existing Tinker-HP domains has two

advantages: the resulting DC-JI algorithm implementation is modular and works regardless

of the specific domain decomposition scheme, and it reduces communication by ensuring

that each block is entirely contained within a single domain. This approach does mean that

the solution to the polarization equations varies slightly with the number of processors—

changing the number of processors alters the composition of the domains and sub-clusters,

which in turn changes which portions of the problem will be solved iteratively and non-

iteratively. However, the variations in the resulting polarization energies and induced dipoles

are smaller than the user-chosen convergence criterion and do not present any practical

issues.

With the system partitioned into smaller domains, K-means clustering could be

63



performed efficiently within each domain. However, since the atoms have already been

sorted into spatially local domains, we adopt a simpler, non-iterative approach for forming

sub-clusters that divides the domain into the appropriate number of sub-systems, striving

for similar volumes and roughly equal dimensions. The domain is partitioned by dividing

it into evenly spaced portions along each coordinate axis such that the appropriate total

number of blocks is obtained. Assuming uniform density of the atoms, this procedure will

allocate similar numbers of atoms to each block. Dividing atoms from a single molecule over

multiple sub-clusters does not cause any problems.[49] This scheme performs the clustering

slightly faster than K-means (since it does not require the iterative atom-atom distance

calculations needed in K-means), and the convergence of the DC-JI polarization equations

is comparably good.

Empirically, the DC-JI algorithm performs fastest with block sizes of 60±20 atoms.

A given processor core will solve the DC-JI equations for all blocks lying within its domain.

For context, a system of 175,000 atoms (e.g. roughly the size of the COX-2 system discussed

in the Results section) run on 480 processor cores would be divided into 480 domains with

∼365 atoms each. The DC-JI partitioning further subdivides each domain into six blocks

of ∼60 atoms each.

Once the DC-JI blocks are defined, remaining initialization steps involve construct-

ing the permanent field (both direct and reciprocal space contributions), building the Z′II

blocks (and exploiting their symmetric nature), evaluating and storing the Cholesky decom-

position of those blocks Z′II = LIL
T
I (for facile subsequent solution of the linear equations),

and obtaining the initial guess induced dipole moments. The reciprocal space field is con-
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structed in parallel as described elsewhere,[48] and the results are communicated between

processors. In the first molecular dynamics time step, the guess dipoles are obtained as the

polarizabilities contracted with the total permanent field, µ = αV0. In later time steps,

guess dipoles are obtained from the previous steps (e.g. using the previous converged dipoles

or Kolafa’s always stable predictor-corrector algorithm[13]). Either way, the initial dipoles

are communicated between processors.

Next, the iterative portion begins. The reciprocal contribution to the induced

field W̃I is constructed and communicated. The direct space contributions to the field for

each block I from atoms in other blocks J are evaluated using a neighbors list. Once the

total field (right-hand side of Eq 3.12) has been built, the induced dipoles in each block

are solved via Cholesky decomposition (using the already factorized version of Z′II). In

the first iteration, these dipoles are communicated and the algorithm proceeds to the next

iteration. Starting at the end of the second iteration, DIIS extrapolation is performed be-

fore dipole communication. Each processor evaluates its contribution to the inner products

of the residual vectors needed for DIIS[49] and communicates those. Then the processor

extrapolates its induced dipoles and communicates them. The iterations continue until the

root-mean-square change in the induced dipole moments is smaller than the user-selected

convergence threshold. To summarize, each iteration requires communication of the recipro-

cal field contributions, the DIIS matrix updates, and the resulting induced dipole moments.

All other work is done locally.
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3.4 Computational Methods

DC-JI/DIIS has been implemented in Tinker-HP v1.1, and will be publicly avail-

able in future releases. The parallel implementation was tested on Comet at the San Diego

Supercomputer Center (SDSC). Each node includes two Intel Xeon E5-2680 v3 processors

with 128 GB DDR4 DRAM (64 GB per socket). The network utilizes 56 Gbps fourteen data

rate (FDR) InfiniBand with full bisection bandwidth on each rack and 4:1 oversubscription

bandwidth between racks.

Intra-node communication quickly can become the bottleneck. This is primar-

ily due to the communications necessary for the fast Fourier transforms (FFTs) used in

computing the reciprocal space contribution to the electric field. For this reason we have

performed test using varying amounts of cores on a node to test the optimal use of the

network cards. For all three algorithms (JI/DIIS, PCG, and DC-JI/DIIS), optimal perfor-

mance was seen when half the cores on a node were used. The relative performances of the

three polarization solvers remained consistent with the varying fractions of cores used per

node. Empirical testing found that for up to the 720 cores used here, the load balancing

approach was slower than the sequential procedure. Of course, this might change if even

more cores were used.

All molecular dynamics simulations were performed in the microcanonical (NVE)

ensemble with the reversible reference system propagator algorithm (RESPA) multi-time

step integrator[20] using a 1 fs time step for non-bonded forces and 0.5 fs time step for the

bonded forces. A range of thresholds for converging the polarization solvers were examined,

and the 10−5 threshold provides satisfactory stability. Kolafa’s always stable predictor-
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corrector was used to obtain initial induced dipoles at the beginning of each time step.[13]

All DC-JI/DIIS runs requested an average block size of 60 atoms. A 7 Å Ewald cutoff for

PME and 9 Å cutoff for the van der Waals interactions were used.

Performance testing is carried out on three different protein systems in explicit

aqueous solution: ubiquitin, dihydrofolate reductase (DHFR), and cyclooxygenase-2 (COX-

2). These systems are representative of typical biological problems for which one might use

polarizable force fields and span a wide range of system sizes. The smallest system, ubiqui-

tin, has been extensively studied due to its prevalence in eukaryotic organisms. Here, it con-

sists of the 1,227-atom protein surrounded by 2,835 waters (9,732 atoms total).[4] The ubiq-

uitin system has unit cell dimensions of 54.99×41.91×41.91 Å and employed a 72×54×54

PME grid. The DHFR system was taken from the joint Amber/CHARM benchmark.[50]

DHFR is necessary in the path to form purines and pyrimidines, which act as the building

blocks for DNA and RNA. The system consists of 2,489 protein atoms in a box of 7,023

waters (23,558 atoms total). The DHFR system occupies a cubic box of dimension 62.23 Å,

and a 64×64×64 PME grid was used. The COX-2 system was taken from the Tinker bench-

mark suite.[51] COX-2 is an enzyme that is a part of the rate limiting step in the formation

of prostanoids. The system consist of the 17,742 protein atoms surrounded by 52,159 wa-

ters (174,219 atoms total). The COX-2 system has cubic box edge length of 120 Å, and a

128×128×128 PME grid was used. All three systems have been studied previously using

Tinker-HP.[48]
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Figure 3.3: A 20 ps NVE simulation using a 1 fs time step and three different polarization
convergence criteria for (a) Ubiquitin, (b) DHFR, and (c) COX-2. Note that PCG with a
threshold of 10−4 D diverges out of frame within the first picosecond for all simulations.

3.5 Results And Discussion

3.5.1 Energy Convergence and Drift

Converging an iterative solver to a finite tolerance leaves residual error in the

resulting induced dipoles. If the residual error is too large, it can cause energy drift as

discussed in Section 3.2.1. Accordingly, we first investigate the energy conservation of

DC-JI/DIIS and PCG with various convergence thresholds. The comparison focuses on

PCG (as implemented in Tinker-HP) because of its widespread use and good numerical and

computational performance.[3, 4, 48] Figure 3.4 plots the energies for 20 ps NVE simulations

for all three protein systems with a 1 fs time step and three different polarization convergence
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Figure 3.4: (a) Absolute error in the converged polarization energy relative to the DC-
JI/DIIS results with a 10−10 Debye convergence threshold, and (b) the number of iterations
necessary to achieve that convergence (without using dipoles from previous time steps).
For a given convergence threshold, DC-JI/DIIS achieves more converged energy than PCG
in the same number of iterations or fewer. Values were averaged over 100 configuration
snapshots.

thresholds. The loose 10−4 Debye (D) convergence threshold leads to divergent behavior

for both PCG and DC-JI/DIIS. However, whereas the PCG energy diverges out of the plot

frame within a fraction of a picosecond, the DC-JI/DIIS energy drifts more slowly over the

20 ps simulation. This suggests that DC-JI/DIIS is effectively converging the equations

more robustly. Tightening the convergence threshold by one order of magnitude to 10−5 D

is sufficient to stabilize both the PCG and DC-JI/DIIS trajectories, with both algorithms

exhibiting similar energy conservation. For both solvers, the energy conservation with a

10−5 D convergence criteria is similar to that from the much tighter 10−8 D criterion,

with the the looser 10−5 D criterion requiring fewer iterations (typically 4) and less overall

computational effort to converge.

To obtain further insight into the differences between DC-JI/DIIS and PCG, 100

configuration snapshots were extracted from a 10 ps NVE simulation of each protein at

100 fs intervals. Single-point energy evaluations were performed on each snapshot using
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either PCG or DC-JI/DIIS and various convergence thresholds. Initial guess dipoles were

obtained directly from the permanent field, without using any information from previous

time steps. Figure 3.4a plots the absolute percent error in the polarization energy relative

to the DC-JI/DIIS energy obtained with a 10−10 Debye convergence criterion, averaged over

the 100 snapshots. The use of percent error normalizes across the different energy scales of

the differently sized systems. For a given convergence threshold, DC-JI/DIIS consistently

exhibits an energy error that is 1–2 orders of magnitude smaller than for PCG. Moreover,

Figure 3.4b shows that DC-JI/DIIS achieves this better energy convergence in the same

number of iterations as PCG or fewer.

The good numerical behavior of DIIS-JI/DIIS can be understood in terms of two

factors. First, the direct solution of each block provides fully self-consistent polarization

within the blocks at every iteration. Second, the DC-JI/DIIS convergence criterion defini-

tion is based on the root-mean-square change in the dipole vector, while the PCG imple-

mentation in Tinker-HP weights those dipole residuals by the preconditioner. For a given

convergence threshold, the PCG criterion leads to slightly less-converged dipoles in practice.

Altering the PCG implementation to use the same convergence criterion definition as DC-

JI/DIIS causes PCG to require one additional iteration to converge. Doing so does improve

the PCG energetics, but the percent error in energy remains ∼3–10 times larger than for

DC-JI/DIIS, depending on the convergence threshold. It is possible that preconditioners

more sophisticated than the diagonal one used in PCG here could alter this analysis.[3]
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3.5.2 Computational Efficiency

Next, we examine the overall parallel performance of DC-JI/DIIS, JI/DIIS, and

PCG. Figure 3.5 examines the total timings for one self-consistent polarization time step

for each algorithm on 120 processor cores in the large COX-2 system. The results were

averaged over 100 time steps taken sampled from a trajectory in which the initial dipoles

were obtained via Kolafa’s predictor-corrector guess. The vast majority of the computa-

tional effort is associated with construction of the permanent field (during initialization)

and induced fields (at each iteration). The computational time required to evaluate the per-

manent electric field V and Ṽ is practically identical for PCG and JI/DIIS. Doing the same

for DC-JI/DIIS takes slightly longer, since this step also includes building the Z′ matrices

for later use. All three algorithms use identical routines to build the induced reciprocal field

W̃ during the iterations, so the time required for that step varies only on the number of it-

erations required to converge the induced dipoles. Both DC-JI/DIIS and PCG required 4.0

iterations on average and therefore required virtually identical amounts of time to build W̃,

while JI/DIIS required more time due to its average of 5.3 iterations. Building the induced
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Figure 3.5: Timing breakdowns for the COX-2 system (174,219 atoms) averaged over 100
steps. A block size of ∼60 atoms was used for DC-JI/DIIS. Timings were performed using
120 cores on SDSC Comet. DC-JI/DIIS and PCG converged in 4.0 iterations on average,
while JI/DIIS required an average 5.3 iterations.
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direct space field W is fastest for DC-JI/DIIS, since a portion of the interactions are already

computed and stored during the initialization as part of Z′, whereas PCG recalculates those

at each iteration. JI/DIIS requires even longer, since it both recomputes all the interaction

contributions at each iteration and requires additional iterations to converge.

Including all the other steps (factoring Z′ during the initialization, solving for the

dipoles, and other miscellaneous steps/communication), DC-JI/DIIS solves for the dipoles

in 0.28 seconds. In about the same amount of time, PCG performs all steps except for

the work associated with computing the initial descent direction. However, computing that

initial descent direction costs about the same as one PCG iteration, making PCG more

expensive overall at 0.33 seconds. In other words, at a 10−5 D convergence threshold, DC-

JI/DIIS is faster than PCG by approximately the cost of a single iteration (∼20%). At

tighter thresholds of 10−6–10−8 D, DC-JI/DIIS converges one iteration faster than PCG,

so the net computational savings would correspond to approximately two iterations worth.

Individual JI/DIIS iterations are less expensive than for the other two algorithms, but it

requires more of them, and JI/DIIS requires a slightly longer 0.34 seconds overall to compute

the induced dipoles.

Finally, Figure 3.6 examines parallel timings for the polarization solver alone and

for the total simulation (i.e. including evaluation of all bonded and non-bonded contri-

butions) for the three proteins with DC-JI/DIIS, PCG, and JI/DIIS. For the DHFR and

ubiquitin systems, timings are reported up to 480 cores. On 480 cores, ubiquitin and DHFR

have an average of 20 and 49 atoms per domain, respectively. This means that each do-

main consists of just one small DC-JI block. Increasing the number of cores further would
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decrease the DC-JI block size and lead to diminishing returns as the as the block size de-

creases. To utilize more cores, one would probably want to switch to the load-balancing

parallelization strategy. Allocating some processors to work exclusively on the reciprocal

space contributions translates to fewer, larger direct-space domains. For the much larger

COX-2 system we test up to 720 cores, which corresponds to 242 atoms per domain, or

about six DC-JI blocks per domain.

Figure 3.6 clearly demonstrates that solving the for the induced dipoles with DC-

JI/DIIS is faster than using either PCG and JI/DIIS for all numbers of cores, and the

computational savings increase with the number of cores employed. The analysis above

indicates that DC-JI/DIIS is effectively one iteration faster than PCG in timings, or 20%

faster at a 10−5 D convergence threshold. Indeed, for COX-2, DC/JI proves on average

∼20% faster than PCG, and ∼27% faster than JI/DIIS. Similar average speed-ups of 17–

18% over PCG and 29-31% over JI/DIIS are observed for the two smaller proteins. Larger

30–40% acceleration was seen in our earlier work on non-periodic systems.[49] The DC-JI

algorithm accelerates only the treatment of direct space interactions. In the non-periodic

case, all interactions are treated in direct space. For periodic systems modeled with PME,

the DC-JI algorithm only impacts the non-reciprocal space portions of the calculation,

thereby reducing the possible savings. Differences in the PCG preconditioner between

Tinker-HP and Tinker 8.1 might also play a role.

Unsurprisingly, the best parallel performance is observed for the largest systems.

However, the fractional speed-up provided by DC-JI/DIIS over the other two polarization

solvers is fairly consistent across different numbers of processor cores, typically increasing by
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Figure 3.6: Performance of the DC-JI/DIIS, PCG, and JI/DIIS polarization solvers (left)
and the corresponding total simulation time (right) for (a) Ubiquitin (b) DHFR, and (c)
COX-2. The reciprocal of the polarization time is plotted for ease of comparison with the
total simulation time.

a few percentage points as the number of cores is increased. For sufficiently large numbers

of cores, however, the parallel efficiency of all three algorithms decreases, due in large part

to the communication bottleneck associated with the reciprocal space terms. For COX-2,

building the reciprocal space contributions to the permanent and induced fields in DC-
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JI/DIIS consumes around 30% of the computational time on 12 cores, but this increases to

over 60% of the computational time on 720 cores. Those computational costs are essentially

the same across the three solvers, aside from any differences in the number of iterations

required to reach convergence. Thanks to the minimal communication required, the direct-

space portions of DC-JI/DIIS parallelize very efficiently. Perhaps the biggest limitation

comes when the number of cores is sufficiently large that the number of atoms per domain

falls below the optimal ∼40–80 atom block size. For very small blocks (∼10–20 atoms or

fewer), fewer polarization interactions are solved for directly, and the number of iterations

required to converge the dipoles begins to increase slowly as DC-JI/DIIS asymptotes toward

the JI/DIIS model.[49]

Finally, switching focus from the polarization solvers to the total simulation time

in Figure 3.6, we observe similar overall parallel performance and relative efficiencies of the

algorithms, except that the total computational savings from DC-JI/DIIS are smaller. The

non-polarization portions account for about half the total simulation time, and therefore

the ∼20–30% acceleration in the polarization solver translates to a ∼10–15% increase in

the number of nanoseconds of simulation time per day.

3.6 Conclusions

In summary, the DC-JI/DIIS polarization solver has been implemented for periodic

systems via particle-mesh Ewald in the massively parallel Tinker-HP software package. DC-

JI/DIIS solves the AMOEBA polarization equations up to 20% faster than PCG and 30%

faster than JI/DIIS. Factoring in all other steps in the force field evaluation, DC-JI/DIIS
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reduces the overall simulation time by ∼10–15%. Such performance is observed on chemi-

cal systems with tens or hundreds of thousands of atoms running on hundreds of processor

cores. Furthermore, at a given convergence threshold, the polarization energies obtained

from DC-JI/DIIS are closer to the exact solution than those from PCG. This translates to

better numerical stability, as evidenced by the decreased energy drift in simulations with

loosely-converged induced dipoles. Overall, given the combination of superior numerical be-

havior and decreased computational effort for DC-JI/DIIS over PCG and JI/DIIS, the new

DC-JI solver can be recommended as an excellent alternative to traditional self-consistent

polarization solvers.

The chief bottleneck in the parallel implementation is the treatment of reciprocal

space contributions to the field. For the COX-2 system, the proportion of the calculation

spent evaluating those terms more than doubled to ∼60%. Future work should consider

strategies for further improving the parallel efficiency of the reciprocal space terms. To

some extent this might be addressed by load-balancing schemes that partition the direct

and reciprocal space portions across different numbers of processors. Alternatively, new

algorithms for handling the long-range interactions efficiently on large numbers of processors

would be very valuable. Nevertheless, the current implementation of DC-JI/DIIS enables

polarizable force fields with mutual polarization to be applied to systems with hundreds of

thousands of atoms.
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Chapter 4

The Always Stable Predictor

Corrector

4.1 Introduction

Consideration of force field polarization is necessary to capture the transport prop-

erties of ionic liquids[52] and to adequately describe protein structure.[53, 54] However, the

inclusion of polarization significantly increases the computational cost of classical molecular

dynamics (MD) simulations. For instance, solving the large system of linear equations to

obtain the induced dipoles in the AMOEBA force field[8, 7, 9] accounts for about 50% of

the computational cost of an MD simulation. In practice, this system of equations is too

large to be solved exactly, and instead the solution is solved iteratively via a self consistent

field (SCF) method.[3, 4, 17]

In these SCF methods, successive iterations generally converge the induced dipoles
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toward their exact, mutually polarized values. The convergence thresholds for these SCF

solvers must be chosen with care: When evaluating the polarization contributions to the

nuclear forces, it is assumed that the iteratively determined induced dipoles have converged

completely to the exact induced dipoles. Loose convergence of the induced dipoles can

introduce instabilities in the simulation, such as problematic long-term energy conservation

or deviations in physical properties.[13] On the other hand, converging the induced dipoles

more tightly via additional SCF iterations can increase the computational costs appreciably.

Strategies based on perturbation theory,[25, 26] truncated conjugate gradients,[30, 43] and

extended-Lagrangian models[14, 44] have been developed to circumvent the computational

costs of converging the induced dipoles tightly during the polarization procedure.

Alternatively, use of a history-based predictor to construct a good initial guess for

the SCF solver can significantly reduce the iterations and computational cost required to

reach convergence. A predictor can provide an efficient means of calculating the induced

dipoles without introducing additional approximations. However, the use of induced dipoles

from previous time steps destroys the time reversibility of the method.[15] A useful predic-

tor should therefore exhibit an acceptable degree of time reversibility while substantially

improving the starting point of the SCF method. In this letter, we focus on the predictor

from the Always Stable Predictor-Corrector (ASPC) method.[12] We demonstrate how in-

corporating a longer history in this approach addresses stability concerns and/or reduces

the computational cost of computing the induced dipoles by ∼20%.
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4.2 Theory

The ASPC uses a history-based predictor for the induced dipoles,

µp(t+ 1) =
k+1∑
j=0

Bj+1µ(t− jh) (4.1)

where µp(t+ 1) is the predicted dipole, Bj+1 are the scaling coefficients and µ(t− jh) are

the induced dipoles from previous time steps. The time step size is h and k+ 2 is the total

number of values stored in history. The Bj+1 scaling coefficients are derived such that the

contributions that lead to time irreversibility error are chosen to be zero. In the original

ASPC approach, the predicted induced dipoles are subsequently corrected by performing

a single iteration of the SCF solver and then damping the resulting dipole update. The

specific value of the damping coefficient is determined empirically, and its optimal value

can potentially vary between systems and/or over the course of a simulation.

The Tinker software packages [55, 48, 47] (and possibly others) avoid this empirical

damping parameter part of the corrector. Instead they employ the so-called “predicted iter-

ation” method,[13] in which the predictor generates the initial guess for the induced dipoles,

after which the SCF iterations are allowed to proceed until some user-defined convergence

value is reached or a desired number of iterations has been performed. This predicted iter-

ation variant of the ASPC is more accurate and obviates the need to determine the optimal

damping parameter.[13]

Previously, the predictor coefficients were worked out and tested up to the 6-step

predictor (k = 4), but the 4-step predictor was suggested as a compromise between accuracy
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and memory storage.[13] The additional SCF iterations performed in the predicted iteration

method mitigate accumulation of error that might arise from the use of only a single SCF

iteration in the ASPC. These additional SCF iterations potentially change the calculus

regarding the optimal number of prior steps to include in the predictor, since a longer

history might lead to a better guess for the dipoles and therefore require fewer iterations

to converge at the next time step. Whereas the current implementation of this method

in the Tinker packages employs a 6-step predictor, in this letter we test up to the 16-step

predictor in the Tinker-HP v1.1 package.[48] The necessary coefficients for these higher

N -step predictors can be derived from the recursive expressions presented previously.[13]

Using these expressions, we have derived the coefficients for up to a 25-step predictor, and

these are included in the Supplementary Information.

Augmenting an existing implementation of the ASPC predictor to use higher N -

step predictors is straightforward and adds little computational overhead. For a given

system size, the memory requirements increase linearly with the number of induced dipole

vectors stored in history. In a parallel implementation such as the one in Tinker-HP,[48]

these historical induced dipoles can be distributed across nodes, since each processor only

needs knowledge of the dipole elements handled by that processor. Regardless, the total

memory requirements are insignificant even with global storage: the induced dipole history

for a 100,000 atom system for the 16-step predictor requires only 38.4 MB of memory

in double precision. Evaluating the predictor requires just scalar multiplication, so the

computational cost is negligible relative to the cost of an SCF iteration, and it scales linearly

with the number of prior steps included.
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Figure 4.1: The predictor coefficients vs coefficient history index. The 6-step predictor
(default) is compared to the higher N -step predictors.

In the ASPC predictor, the predicted induced dipole depends most strongly on the

recent induced dipoles in history. In Figure 4.1 we see this trend holds for across a range

of N -step predictors. In the 16-step predictor, for instance, the eight most recent history

points account for 99.1% of the predicted induced dipole magnitude, while the oldest 8

history points contribute the remaining 0.9%. That means for a 1 fs time step, the 16-step

predictor is dominated by contributions from the last 8 fs of simulation, which is shorter

than the time period during which any substantial structural or conformational changes to

the chemical system might occur.

The current work explores up to 16-step predictors, for which the Bj+1 coefficients
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span seven orders of magnitude. The coefficients for the 25-step predictor span twelve orders

of magnitude. The decision to stop at the 16-step predictor here is somewhat arbitrary.

The 16-step predictor provides significant computational benefits (as shown below) while

avoiding the need to handle many tiny contributions that would arise from employing a

longer history. To reduce round-off error, the predictor contributions are accumulated in

quadruple precision before being reduced to double precision in the final predicted dipoles.

We test the different N -step predictors here with the two SCF polarization solvers:

the widely used preconditioned conjugate gradients (PCG) solver[3] and our recently devel-

oped divide-and-conquer Jacobi iterations accelerated with direct inversion in the iterative

subspace (DC-JI/DIIS) solver. We have previously demonstrated the superior speed and

stability of DC-JI/DIIS relative to PCG.[49, 56] DC-JI/DIIS is used here unless otherwise

specifically noted. Typically one iterates the SCF equations until a user-chosen convergence

criterion is met. However, given the small numbers of iterations typically required to meet

commonly used convergence criteria, even a change of one iteration arising from slightly

different initial guesses can substantially alter how tightly converged the induced dipoles

are. That in turn would obscure the stability behavior resulting from the predictor. To

ensure an even-handed comparison of stability across the different solvers and predictors,

all results here employ a fixed number of SCF iterations in the polarization solver. Testing

indicates that the stability improvements reported here for the longer-history predictors

also occur with more traditional threshold-based convergence criteria.
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4.3 Computational Methods

Stability of the predicted iteration approach is assessed here in terms of energy

conservation in an NVE ensemble. The method also performs well for NVT ensembles,

though using a thermostat obscures differences between the different predictors. Testing

was done on a 500-molecule water box[57] and on the ubiquitin system.[4] The 9,737-atom

ubiquitin system consists of the 1,227-atom protein surrounded by 2,835 waters. All simu-

lations were performed with the reversible reference system propagator algorithm (RESPA)

multi-step integrator[20] using a 1 fs time step for non-bonded forces and 0.5 fs time step

for the bonded forces. A direct space cutoff of 7 Å was employed for the particle-mesh

Ewald treatment of long-range interactions. Energy drift was typically measured via linear

regression of the energies over 1 ns of simulation time. For more tightly converged cases

with less energy drift, 5–10 ns of simulation were used. Empirical testing indicates that

these simulation lengths are sufficient to provide converged regression slopes (energy drift).

4.4 Results and Discussion

Figure 4.2 plots the energy conservation from NVE simulations on (H2O)500 with

different N -step predictors. The tightly converged reference simulation (i.e. 20 DC-JI/DIIS

iterations, starting from initial guess dipoles equal to the polarizability times the permanent

electric field) converges the dipoles to a root-mean-square change of ∼10−13 Debye, and it

exhibits negligible drift (<10−5 kcal mol−1 ns−1 atom−1). In contrast, the N=6 predictor

with three SCF iterations per time step drifts by −0.042 kcal mol−1 ns−1 atom−1. Increasing
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Figure 4.2: Comparison of the energy conservation for NVE simulations on (H2O)500 with
different N -step predictors and three SCF iterations at each time step.

the length of the history employed in the predictor reduces the drift considerably. Despite

taking only three SCF iterations per time step, the N=16 predictor case drifts by only

−0.002 kcal mol−1 ns−1 atom−1 over the 10 ns trajectory.

For a broader perspective, Figure 4.3 plots the drift per nanosecond in the (H2O)500

box as a function of the number of steps included in the predictor and the number of SCF

iterations. Each data point in this plot corresponds to a drift rate extracted from linear

regression of an NVE simulation under those conditions. Independent of the number of

SCF iterations, increasing the history from the 6-step to the 16-step predictor decreases

the energy drift rate by an order of magnitude. Moreover, the use of the 16-step predictor
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for the 6-step to 16-step predictor with differing numbers of SCF iterations at each time
step. A tightly converged reference simulation with no predictor exhibits energy drift less
than 10−5 kcal mol−1 ns−1 per atom.

consistently improves the energy stability by an amount comparable to what one would

obtain by performing an additional SCF iteration with the 6-step predictor. From that

perspective, the better predictor can be used to accelerate the evaluation of the induced

dipoles without increasing energy drift. For example, DC-JI/DIIS generally requires four

SCF iterations to converge to a 10−5 Debye threshold.[56] With the 16-step predictor,

comparable energy conservation can be obtained at the cost of only three SCF iterations,

or a computational savings of ∼20%. The performance here is not unique to water, either.

Similar energy drift behavior is observed for the ubiquitin system as well (see Supporting
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Information).

It is interesting to compare the present approach with other recently developed

strategies for accelerating polarizable force field simulations. For example, in the 16-step

predicted iteration method with three iterations, the energy drift rate is only 0.002 kcal

mol−1 ns−1 atom−1. For comparison, a thermostatted extended-Lagrangian approach em-

ploying the same number of SCF iterations exhibited a somewhat larger energy drift of

∼0.009 kcal mol−1 ns−1 atom−1 for a similar water box.[14] The approximate OPT3 per-

turbative polarization solver[26] also effectively utilizes three SCF iterations, but it requires

several empirically fitted parameters to achieve good accuracy. Furthermore, the large N -

step predictor approach here is probably as fast or faster than the truncated conjugate

gradient approximate solvers (at least for 1 fs time steps), since those effectively employ

2-3 PCG iterations and have more expensive analytic gradients.[43] A direct performance

comparison among these different approaches over a range of simulation scenarios would be

a valuable future work.

To assess the role of the polarization solver, Figure 4.4 compares the behavior of

the higher N -step predictors for the DC-JI/DIIS and PCG solvers. Both SCF methods

benefit from employing the higher N -step predictors. However, DC-JI/DIIS exhibits less

drift relative to PCG for all simulations. Surprisingly, in the case of the PCG solver using

two iterations, using higher N -step predictors does not decrease the energy drift. Perhaps

two iterations of the PCG solver is insufficient to nullify the accumulation of error in the

higher N -step predictors. Regardless, this odd behavior is not observed for the more robust

DC-JI/DIIS solver.
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Figure 4.4: Comparison of different higher N -step predictors with the DC-JI/DIIS and
PCG polarization solvers.

Finally, to understand why the longer N -step predictors perform better than

shorter-history ones, Figure 4.5 shows the distribution of dipole errors in the initial guess

(µ0) and after each successive iteration relative to a tightly converged (20 SCF iterations)

reference set. With both 6-step and 16-step predictors, the initial guess dipoles have errors

around 10−4 D, but the root-mean-square (rms) errors for the 16-step case are about ∼20%

smaller. The errors in the induced dipoles decrease several fold with each SCF iteration, but

the dipoles from the 16-step predictor consistently maintain ∼20% higher accuracy. These

small accuracy improvements in the induced dipoles are sufficient to increase the stability

of the simulations signifcantly.
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four SCF iterations relative to tightly converged dipoles using either the 6-step or 16-step
predictor.

4.5 Conclusions

In conclusion, we have demonstrated that use of a longer history in the “predicted

iteration” variant of the ASPC provides substantial computational benefits in the context

of the AMOEBA force field. Increasing the history from 6 to 16 steps requires only minor

software modifications and adds little computational overhead, yet it reduces the rate of

energy drift by an order of magnitude. Alternatively, one can employ this strategy to

reduce the number of SCF iterations and accelerate the calculation of force field polarization

by ∼20%. The ability to achieve acceptable energy conservation with only three SCF
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iterations makes the combination of the 16-step predictor and DC-JI/DIIS polarization

solver competitive with other approximate and extended-Lagrangian schemes for handling

the induced dipoles. The extended predictor should prove useful for other polarizable force

fields in addition to AMOEBA, and perhaps it could also be adapted for ab initio molecular

dynamics simulations that employ the ASPC.[58]
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Chapter 5

Average Condensed Phase

Environment

5.1 Introduction

Combined quantum mechanical/molecular mechanics (QM/MM) calculations pro-

vide an effective route toward modeling complex systems in the condensed phase with much

less computational effort than fully QM simulations. Nevertheless, modeling condensed

phase systems, such as a molecule in solution, remains challenging due to the need to

perform the QM/MM calculations on large numbers of sampled configurations. QM/MM

configuration sampling can be performed directly with QM/MM dynamics, or indirectly

by first sampling with MM and subsequently performing QM/MM calculations on config-

urations extracted from the MM ensemble. Even in the latter approach, repeated QM

calculations are needed for each change in the MM environment. Strategies that reduce
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the computational effort associated with evaluating the response of the QM region to the

environment are therefore important.

One might circumvent the need to perform a new QM calculation for each new

configuration by either approximating or pre-computing the response of the QM solute to

the solvent using point-charge or more elaborate representations of the solute.[59, 60, 61,

62, 63, 64, 65, 66, 67] More recently, Sodt et al proposed a family of multiple environment,

single system (MESS) models which use an efficient correction to update the QM energy

and orbitals/density in response to a change in the MM environment.[68] For example,

the Hessian (H) based MESS-H variant estimates the QM/MM energy in a new solvent

configuration from the energy of a previous configuration based on a single Newton-Raphson

step update of the Kohn-Sham orbitals. The approximate orbital Hessian used in the

Newton-Raphson step only needs to be computed once, and it can be re-used for each new

configuration of the environment.

Polarizable continuum models (PCMs) lie at the opposite extreme. Rather than

explicitly sampling configurations of the environment, PCMs represent the environment as

a bulk dielectric medium.[69, 70, 71] Polarizable continuum models often do an excellent

job of capturing bulk solution behaviors, but they perform more poorly when specific, lo-

cal solute-solvent interactions are important. For example, the Cope elimination reaction

rate accelerates a million-fold upon switching from a protic to aprotic solvents.[72, 73, 74]

Hydrogen bonding between the solute and protic solvent molecules preferentially stabilizes

the reactant, effectively increasing the activation barrier and slowing the reaction rate. A

PCM will not capture this effect without inclusion of explicit solvent molecules.[75] Contin-
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uum models also have difficulty describing inhomogeneous environments for which a bulk

dielectric is ill-defined. The effective dielectric constant of a protein has been frequently

debated, for instance.[76, 77, 78, 79]

An interesting family of methods lies in between explicit QM/MM evaluation of

sampled configurations and polarizable continuum models. In these methods, one embeds

the QM calculation in an averaged or effective representation of the environment. As in

a PCM approach, replacing hundreds or more QM/MM calculations with a single calcula-

tion in an averaged environment reaps massive computational savings. At the same time,

constructing the averaged environment from explicit configurations can retain essential fea-

tures that might otherwise be lost in a bulk continuum approximation. These methods

do assume that the response of a system to its averaged environment is consistent with

taking the average over many individual responses of the system to different instantaneous

environments. Though there may be situations where this approximation does not behave

well, it often appears to be a useful approximation.

One such model, the averaged solvent electrostatic potential (ASEP) model devel-

oped by Aguilar and co-workers, embeds a solute monomer in a field of point charges fitted to

reproduce the average electrostatic potential felt on the solute due to the environment.[80,

81, 82, 83] Another model, the three-dimensional reference site interaction model (3D-

RISM) approach,[84, 85] allows the computationally efficient evaluation of solvent den-

sity distributions and thermodynamic parameters without requiring explicit solvent simu-

lations, and RISM approaches can be combined with QM simulations to study solvation

effects.[86, 87, 85]
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Previously, we presented a mean-field model that employs a mathematically rigor-

ous coarse graining of the environment.[88] This coarse-grained (CG) model constructed a

radial grid of CG points about the solute, and then averaged the effective force field param-

eters at these grid points over space and time. The coarse graining relied on formally exact

spherical harmonic translation formula to translate the MM parameters from their explicit

atomic sites to these CG grid points. These translations are analogous to the ones used in

the fast multipole method,[89] for example, except in this case they were applied to multi-

poles (electrostatics), polarizabilities (induction), and frequency-dependent polarizabilities

(van der Waals dispersion). The resulting translated MM parameters at each CG grid point

are summed and then averaged over the ensemble of configurations. The use of a grid of

effective polarizable multipoles to represent the solvent is also akin to the Langevin dipole

solvation model.[90, 90, 91, 92, 93] In the Langevin dipole model, the magnitude and orien-

tation of the dipole at each grid point is optimized simultaneously with the wave function

of the solute. Whereas the Langevin dipoles model has primarily been parameterized for

aqueous solution, our CG approach can be applied to an arbitrary molecular environment

more readily.

Here, we extend that earlier CG model in two key ways. First, we improve the

manner in which the coarse-grained points are chosen. The previous grid approach proved

too sensitive to the specific grid-point locations. Instead of enforcing a regular grid, the

current work employs clustering algorithms to place CG site locations “naturally” based

on the explicit locations of atoms/molecules in the sampled configurations. Second, we

improved the physical behavior of the coarse-grained polarization model. In particular, to
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retain distinctions in the polarizabilities of different atoms or molecules, the coarse-graining

is now performed separately over each unique atom type. Furthermore, the atomistic model

employed here would typically include only intermolecular polarization, since intramolecular

polarization is already accounted for in the multipolar expansion. However, the earlier CG

approach lost the distinction between inter- and intramolecular polarization. To regain some

of that distinction in the coarse-grained representation, nearby CG sites are now clustered

and polarization occurs only between clusters, rather than within them. These clusters

loosely correspond to the dynamic region inhabited by a given solvent molecule during the

simulation.

We examine the performance of the refined averaged condensed phase environment

(ACPE) model by computing excitation energies of small organic molecules in solution. We

demonstrate that the ACPE model maintains important features of the underlying solvent

structure and that it can be used to describe inhomogeneous features in complex environ-

ments that would be difficult to describe with a conventional, homogeneous polarizable

continuum model. At the same time, the predicted ACPE excitation energies in the aver-

aged environment agree very well with those from a more traditional QM/MM average over

many configurational snapshots. Importantly, the predicted excitation energies prove fairly

robust to variations in the specific CG sites generated by the ACPE model.

5.2 Theory

As illustrated by the flow chart in Figure 5.1, the ACPE procedure consists of six

main steps:
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1. Sample the configurational space of the system.

2. Superimpose the atomic coordinates of sampled configurations.

3. Generate a set of CG sites via the K-means++ algorithm

4. Obtain MM parameters for each molecule via interpolation.

5. Translate like atoms’ MM parameters to the nearest CG site.

6. Group CG sites into CG clusters via a second round of K-means++.

Step 1 uses standard molecular dynamics, Monte Carlo, or related techniques to sample the

configurations of the environment. In all cases here, the molecule of interest (the “solute”)

is frozen at a fixed geometry during the configurational sampling to allow straightforward

superposition of the sampled environment (“solvent”) configurations in Step 2. This approx-

imation has been used in the MESS[68] and ASEP models[94] as well. In principle, one could

repeat steps 1–6 for various solute geometries if solute dynamics are also important.[94, 95]

Step 2 involves merging the atomic coordinate files for the molecules in the environment over

all sampled configurations into a single list. Step 4 assumes that the force field parameters

can vary as a function of the specific molecular geometries in the environment. Here, we

vary the water force field parameters with intramolecular geometry. If the MM parameters

are constant, Step 4 can be skipped. Steps 3–6 are described in more detail below.

5.2.1 Determination of coarse graining sites

Step 3 in the ACPE procedure automatically determines the locations of the CG

sites in the environment region based on the atomic coordinates in sampled configurations
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Figure 5.1: Flow-chart outlining the steps involved in the ACPE model.

via K-means clustering. K-means is widely used in machine learning, pattern recognition

and data-mining.[96] In general, K-means clusters a data set of n points into k groupings.

Here we adapt K-means to automatically cluster n molecules into k coarse-grained sites.

Distinct sets of CG sites are determined here for each symmetrically unique atom

type present in the environment. For an aqueous environment, for instance, K-means coarse-

graining is applied separately for the solvent oxygen and hydrogen atoms. This preserves the

physical behaviors of different atom types and retains aspects of molecular structure within
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the CG model. The number of CG sites k is chosen as the average number of atoms per

configuration of the type being coarse-grained times a user-selected scaling factor. Based on

empirical testing, scaling factors of 1–10 for light atoms and 5–40 for heavier atoms work well

in the examples considered here, as will be discussed further in Section 5.4.1. Further study

is needed to develop a more universal algorithm for choosing the scaling factor. Although

this “coarse-graining” utilizes many more sites than are present in a single configuration

of the initial system, it contains orders of magnitude fewer sites than the total number

of sites found across the hundreds (or more) configurations being averaged over. In other

words, this approach corresponds to coarse-graining over space and time (configurational

snapshots) simultaneously, rather than simply spatial coarse-graining.

The K-means algorithm seeks to identify the set of CG sites which minimizes the

sum of the distances between the atomic sites and their nearest CG site. Specifically, it

assigns each atom in the atomistic picture to a CG site and seeks to minimize the objective

function:

argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (5.1)

where S is the set of all atoms, x is the position of a single atom in S, Si is the set

of atoms associated with the i-th CG site, and µi is the centroid (position) of the i-th

CG site. Finding the globally optimal solution to the problem of clustering n points into

k groups scales as O(n(d+2)k+1), where d is the dimensionality of each point (three for

Cartesian coordinates).[97] The K-means algorithm iteratively searches for the solution to

this problem in O(nkdi) effort, where i is the number of iterations needed to converge.

Inclusion of a neighbors list (described below) can be used to effectively eliminate k from
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the scaling. Because the K-means algorithm used here relies on Euclidean distance between

the atoms and CG sites, the individual atoms clustered into a single CG site tend to be

roughly spherical.

In this paper we employ a variant of the K-means algorithm known as K-means++,

which differs from K-means only in the initialization step. In traditional K-means, a poor

initialization of the CG sites can lead to poor clustering. K-means++ addresses this problem

by defining an initialization procedure that is biased toward evenly-distributed CG sites.[98]

The K-means++ initialization typically leads to faster convergence of the algorithm and

more optimal solutions.[98] The K-means++ initialization step is performed as follows:

1. Select one atom uniformly at random to be a CG site.

2. Compute d(A), the square of the distance between each atom and its nearest centroid.

3. Weight the probability that each remaining atom A will be chosen as the next CG

site by d(A)∑n
A=1 d(A)

.

4. Choose the next CG site at random and repeat steps 2–4 until k CG sites have been

initialized.

Step 3 increases the probability that the initial guess CG sites will be well-separated

throughout the environment. Note that while this K-means++ guess initializes CG sites

on individual atoms, the final CG sites obtained upon converging the K-means clustering

algorithm are not constrained and can lie anywhere in space.

A neighbors list was implemented to reduce the number of distance calculations

required during the K-means clustering process. The neighbors list defines a sphere of
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inclusion around every atom, and only CG sites that lie within this sphere are considered in

the clustering of that atom. This is similar to a Verlet neighbors list[99] used in molecular

mechanics calculations to keep a list of all neighboring particles for which interactions will be

calculated. Assuming uniformly distributed CG sites, the neighbors list reduces the number

of distance calculations per atom from k to ρπr3, where r is the radius of the neighbors

list and ρ is the density of centroids. For the examples considered in this paper, using

the neighbors list accelerates the K-means algorithm by an order of magnitude, but this

improvement is ultimately dependent on k and the size of the system. With the neighbors

list included, the K-means algorithm runs as follows:

1. Determine neighbors list of CG sites lying within 3 Å of each atom.

2. Compute distance squared ‖x− µi‖2 between each atom x and the CG sites µi asso-

ciated with x in the neighbors list.

3. Assign each atom to its nearest CG site.

4. Compute new CG site positions as the mean of the positions of atoms assigned to it.

5. Calculate the sum of the absolute change in positions of the CG sites from their

previous position.

6. Recompute the neighbors list if the sum from step 5 has reached a defined threshold.

7. Repeat steps 2-6 until the sum from step 5 equals zero.

For step 6, the neighbors list is updated if the average change in position of the CG sites

exceeds half the radius of the sphere in Step 1 (i.e. 1.5 Å). This K-means clustering is

applied to the complete set of superimposed atomic configurations.
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5.2.2 Force Field Parameter Interpolation

Once the set of k CG sites has been determined via K-means++, parameters are

needed to describe the interactions between the system and its coarse-grained environment.

That requires obtaining force field parameters for the species in the original atomistic repre-

sentation of the environment (e.g. for each solvent molecule in each sampled configuration)

and then mapping those parameters onto the coarse-grained representation (Section 5.2.3).

The success of any embedding treatment is dependent on the manner in which

the environment is modeled. The molecules in the environment here are modeled using a

polarizable ab initio Force Field (AIFF) which has been demonstrated to perform well for

describing long-range and many-body interactions.[100, 101, 102, 103] The AIFF is parame-

terized in terms of atom-centered distributed multipoles (electrostatics),[104, 105, 106] dis-

tributed polarizabilities (polarization),[107, 108, 109] and distributed frequency-dependent

polarizabilities (van der Waals dispersion).[110] In the examples studied here, we perform

electrostatic embedding only, so the dispersion contributions are ignored. Dispersion con-

tributions were included in our earlier coarse-graining work, though.[88]

The AIFF parameters are typically calculated on the fly from density functional

theory (DFT) for each molecule in its current geometry. Using CamCASP,[111] calculating

these parameters for a water molecule typically takes a few minutes. Performing such cal-

culations over hundreds of solvent molecules in hundreds of configurations quickly becomes

computationally demanding. Instead, we pre-computed the water parameters at 20 water

bond angles and 20 bond lengths for each O-H bond (i.e. 8,000 geometries total). The force

field parameters (distributed multipoles and polarizabilities) can then be interpolated from
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Figure 5.2: Box-plot distributions of absolute percent errors in the (a) multipole moments
and (b) polarizabilities between directly computed and the interpolated AIFF parameters
for 400 water geometries. The boxes indicate the median error (center line) and the central
50% of the data, while the whiskers indicate the largest errors.

this grid of configurations using a “natural” cubic spline.

The spherical tensor multipole and polarizability force field parameter data on

the interpolation grid is stored in a local coordinate frame. Mapping the interpolated

force field parameters onto each individual molecule in the environment requires rotating

the local-frame parameters into the global coordinate system. Rotations of the multipole

moments and polarizabilities are performed using explicit expressions.[112] The rotation

matrix elements are expressed as polynomials of degree ≤ l, where l is the rank of moment

being rotated, in terms of the elements of the 3× 3 rotation matrix. Rotation matrices for

up to l = 4 (hexadecapole) are tabulated in the Supporting Information.

Overall, interpolation of the force field parameters provides excellent accuracy at

a tiny fraction of the computational cost of computing the parameters directly. Figure 5.2

presents the errors in the multipole moments and polarizabilities arising from the interpo-

lation for 400 solvent water conformations taken from an MD simulation. Errors in the

multipoles are typically well below 0.01%, while errors in the polarizabilities are no more
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than a few tenths of a percent. At the same time, this interpolation procedure reduces the

computational cost of obtaining AIFF parameters dramatically. In a test job containing

1000 solvent configurations of 1600 water molecules (i.e. 1.6 million waters total), interpo-

lation lowers the cost of generating the force field parameters from 9.1 years (at ∼3 min

each) to only 9.7 hours of CPU time. Each interpolation is independent of the others, so it

can be performed in highly parallel fashion if desired.

5.2.3 Force Field Parameter Translation

Once the set of CG sites have been determined via the K-means++ algorithm

(Section 5.2.1) and force field parameters have been obtained for each molecule in the

original explicit representation of the environment (Section 5.2.2), we then translate the

force field parameters for each atom to its associated CG site. Parameters are summed at

each CG site and divided by N , the number of configurations, to obtain average values. As

described previously,[88] the translation exploits the fact that a multipole moment Ql′k′ at

a given point in space O can be exactly represented as a linear combination of multipoles

Qlk at another point C. [113] The functional form for the translation of the moments is.

QClk =
l∑

l′=0

l′∑
k′=−l′

[(
l + k

l′ + k′

)(
l − k
l′ − k′

)] 1
2

QOl′k′Rl−l′,k−k′(−c) (5.2)

where the QClk are the multipole moments at the final position, the terms in curved brack-

ets are binomial coefficients, QOl′k′ are the multipole moments at the initial location and

Rl−l′,k−k′(−c) is a regular spherical harmonic. If k is not equal to zero the resulting mul-

tipole moment will be complex. Real multipole moments can be constructed according
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to,

Rlm =
(Rlmc + iRlms)

2bm
(5.3)

where bm is a piece-wise defined coefficient, Rlmc and Rlms are the regular spherical har-

monics. Additional details for deriving the translation expressions and a complete set of

translations for up to hexadecapole moments are listed in the Supporting Information.

In this approach, multipolar translations are expressed as polynomials of degree

l in terms of the elements of the translation vector, with coefficients of the moments of

rank ≤ l. A charge distribution described by a finite number of moments at a point would

require moments of rank up to infinity to completely describe it at another point. For

computational expediency, we truncate the multipole expansion at hexadecapoles (l = 4).

In principle, errors introduced by translating the multipole moments to the CG sites could

be systematically reduced by including higher-order moments.

The translation of the polarizabilities can be determined by applying Eq 5.2 to

the multipolar operators that occur in the formula for the polarizability.[88] For example,

for the dipole-dipole polarizability tensor elements αtu are given by,

αtu =

′∑
n

〈0|µ̂t|n〉 〈n|µ̂u|0〉+ 〈0|µ̂u|n〉 〈n|µ̂t|0〉
Wn −W0

(5.4)

where µ̂u and µ̂t are different components of the dipole moment operator, |0〉 and |n〉 are the

ground and excited states of the system with energies Wn. For example, the t-th component

of the dipole moment operator translated from initial point O to some new point C is given
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(a) (b) (c)

Figure 5.3: (a) Single configuration snapshot of water solvent. (b) ACPE environment from
400 sampled configurations. (c) A single ACPE molecular cluster near an acrolein solute.

by,

µ̂Ct = µ̂Ot + qC (5.5)

where µ̂Ct is the t-th element of the translated dipole operator, µ̂Ou is the original t-th

element of the dipole operator, q is the charge of this site, and C is the t-th element of

the translation vector. Substituting the operator form for this expression in for the dipole

operators in Eq 5.4, one finds that because qC term is constant and the eigenstates are

orthogonal, matrix elements involving the charge q are zero by orthogonality. See the

Supporting Information of Ref [88] for details. In other words, the translated dipole-dipole

polarizability is invariant to translation. Note that polarizability tensor elements involving

higher-rank contributions are not invariant; however, only dipole-dipole polarizabilities are

used in the embedding model here. Nevertheless, polarizability translation expressions up

to rank 2 (quadrupole-quadrupole) are provided as Supporting Information.
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5.2.4 Clustering of Coarse-grain sites

The K-means++ coarse graining in Section 5.2.1 produces a dense grid of points

that can accurately reproduce the electrostatic interactions between the solute and envi-

ronment. Figures 5.3a and 5.3b compare an individual water solvent configuration and the

cluster of oxygen and hydrogen coarse-graining points representing an ACPE constructed

by averaging over 400 solvent configurations. However, the coarse graining eliminates the

definitions of individual molecules in the environment, which blurs the distinction between

intra- and intermolecular polarization. Intramolecular polarization is already implicitly

included in the AIFF monomer distributed multipoles, while intermolecular polarization

needs to be modeled explicitly.

To recapture some of the distinction between intra- and intermolecular and en-

able intermolecular polarization in the coarse-grained representation, a second round of

K-means++ is employed to group CG sites into CG clusters. A given CG cluster is com-

posed only of CG sites derived from atoms from a given type of molecule. For example,

in the mixed water/benzene environment described in Section 5.4.4, a given CG cluster

would involve only oxygen and hydrogen sites derived from water molecules or carbon and

hydrogen sites derived from benzene molecules. Loosely speaking, a given CG cluster cor-

responds roughly to the dynamic domain sampled by a single molecule (though it may be

derived from contributions from various molecules). The ACPE model treats polarization

only between CG clusters. Polarization within a CG cluster is forbidden.

Figure 5.3c shows a single ACPE water CG cluster interacting with an acrolein

solute molecule. Note that while the CG sites in the CG clusters may seemingly resemble
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water molecules, the actual bond distances and angles between oxygen and hydrogen sites

correlate only loosely with real water molecules. It is also worth emphasizing that these

water-like distributions of hydrogen and oxygen CG sites arise “naturally” from the K-

means++ algorithm. The model was not steered to produce water-like CG sites.

Two parameters are used to define the CG clusters and their interactions. The

first parameter is the number of CG clusters, K. We choose K to equal the average number

of the solvent molecules from which the cluster was derived. For instance, if a solute is

surrounded by 256 water molecules in each configuration being averaged over, there will be

256 CG clusters in the final ACPE.

The second parameter is the minimal distance between points in different clusters

for which polarization is allowed. The goal is to allow maximal polarization while avoiding

the polarization catastrophe. To determine this ACPE calculates self-consistent atom-

centered induced dipoles due to many-body polarization. ACPE then calculates the average

induced dipole for each atom type. For atoms with induced dipoles less than the system

average, the cutoff is decreased by 0.1 Å. For atoms with induced dipoles greater than 0.03

a.u., is increased by 0.1 Å. This process of calculating the polarization and examining the

induced dipoles is repeated until the many-body induction energy is between 95–105% of

the configurational average of the original atomistic model or until 10 iterations have been

reached. These calculations are performed purely at the MM level, so they can be done

inexpensively.

This procedure was derived empirically, but it ensures that the coarse-grained

polarization model faithfully reproduces the original atomistic polarization while avoiding
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Figure 5.4: Distribution of polarization cutoff distances for the aqueous environment around
acrolein.

the polarization catastrophe from close-lying clusters. As shown in Figure 5.4, the majority

of CG sites are located on the interior of CG clusters and are sufficiently far from atoms

in other CG clusters that they have a polarization cutoff of 0.0 Å(i.e. full polarization).

Non-zero polarization cutoffs are primarily needed for atoms on the edges of adjacent CG

clusters. In the current implementation, the polarization cutoff is a hard step function—

polarization is either allowed or not. One could of course use a smooth damping function to

interpolate between complete polarization and no polarization, but that is not investigated

here.

In principle, the ideas here can be applied to any fixed-charge, multipolar, or
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polarizable force field which is derived from a multipolar expansion. However, because

translation of the force field parameters introduces higher-order multipolar components,

it complicates the force field model. Translating atomic parameters from a simple fixed-

charge force model like all-atom OPLS, for instance, leads to the introduction of dipoles and

higher-order terms into the electrostatic model. Similarly, translating polarizable force field

parameters from the Amoeba model introduces higher-rank multipoles and polarizabilities.

Of course, one truncates the multipolar expansions to ignore some of the new, higher-

rank contributions, albeit with some loss in accuracy. In the case considered here, we

maintain the original force field expansions with maximal rank 4 (hexadecapole) multipoles

and rank 1 (dipole-dipole polarizabilities) in the coarse-grained model. This captures the

leading contributions arising from the translated dipoles, quadrupoles, and octupoles, but

it neglects higher-rank contributions from translating hexadecapoles. Similarly, we neglect

any changes in the polarizability beyond dipole-dipole that arise from translation. In other

words, the ideas here are best-suited for force fields that already include multipoles beyond

point charges.

5.2.5 Molecular excitation energies with polarizable embedding

In the end, the ACPE procedure described above produces a set of multipole mo-

ments and polarizabilities which can then be used to construct an embedding environment

for a variety of quantum mechanical calculations. For the purposes of this paper, the ACPE

model is used to construct a polarizable solvent environment for computing solute excitation

energies with time-dependent density functional theory (TDDFT).

All embedding calculations use a self-consistent polarizable embedding (PE) scheme,[114]
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which is implemented in Dalton 2013.[115] This model allows polarizable embedding with

point multipoles and polarizabilities. The electrostatic potential is modeled with multipole

moment up to rank 4 (hexadecapole), which is sufficient to model the permanent charge

distribution. Polarization is treated using anisotropic dipole-dipole polarizabilities.

5.3 Computational Methods

Configuration sampling: Configuration sampling was performed via molecular

dynamics (MD) simulations using Tinker 7.1[116] and the OPLS-AA force field.[117] In the

first three test systems (s-trans acrolein, acetone, and pyrimidine) in aqueous solvent, MD

simulations were performed under periodic boundary conditions in a cell containing a single

solute molecule and 1600 water molecules. 500 ps of NPT dynamics at 298.15 K and 1.0

atm were carried out to equilibrate the system, followed by a 1.0 ns NVT production run.

The solute molecule was held fixed during the MD simulations at a geometry optimized

using the CAM-B3LYP functional, aug-cc-pVTZ basis, and implicit water solvation (using

the integral equation formalism polarizable continuum model[118] in Gaussian 09[119]. 1.0

fs time steps were used throughout. 400 configurations were sampled at intervals of 1.0 ps

over the last 0.4 ns of the production run.

For the benzene/water interface example, a rectangular box consisting of a single,

frozen phenol molecule at the interface of 1600 waters and 138 benzene molecules stacked

along the z-coordinate was generated (see Figure 5.8). Periodic boundary conditions were

employed. The system was allowed to equilibrate for 100 ps under NPT conditions. The

phenol was then frozen, and 400 ps of additional NPT equilibration were carried out to
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obtain a box with lengths 36.02 Å, 36.02 Å, and 55.31 Å along x, y, and z, respectively.

Subsequently, 1.0 ns of NVT MD production run was carried out. Again, 400 configurations

were sampled at 1.0 ps intervals over the last 0.4 ns of the NVT simulation.

Finally, a spherical solvation shell consisting of all solvent molecules lying within

9 Å of any atom in the solute molecule was extracted from each MD configuration. These

large clusters were then used to construct the ACPE model. These finite clusters may not

fully capture bulk solvation effects, but they provide a useful test for the ACPE coarse-

graining procedure. One could employ larger clusters or in some cases bulk continuum

models for longer-range effects, though we do not do so here.

ACPE construction: The ACPE for a given system was constructed from the

400 configurations sampled from the MD. Unless otherwise mentioned, scaling factors of

5 (H atoms) and 30 (heavy atoms) were used to define the number of CG sites k used in

the initial K-means++ coarse-graining for each system. This means, for example, that in

a system with an average of 100 water molecules (100 oxygen and 200 hydrogen atoms)

per configuration, there would be 5 × 200 = 1000 H sites and 30 × 100 = 3000 oxygen

coarse-graining sites. These scaling factors were chosen empirically based on a survey of

scaling parameters for acrolein—see Section 5.4.1 for details.

The AIFF distributed multipoles and polarizabilities for water and benzene were

computed with CamCASP version 5.6[111] using asymptotically corrected PBE0 and the

Sadlej basis. An ionization potential of 0.4638 au was used for the PBE0 asymptotic cor-

rection of water. For water, the force field parameters at each geometry were interpolated

as described in Section 5.2.2. For benzene, force field parameters computed at the equi-
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librium geometry were used throughout. Multipole moments up to hexadecapoles (rank 4)

on heavy atoms and dipoles (rank 1) on hydrogen were used, along with polarizabilities up

to dipole-dipole (rank 1) The translated multipoles and polarizabilities were truncated at

ranks 4 and 1, respectively.

Excitation energy calculation: TDDFT excitation energies were computed

using the polarizable embedding (PE) module in Dalton 2013[115] using the CAM-B3LYP

density functional[120] and the aug-cc-pVTZ basis.[121] For the CAM-B3LYP functional,

the parameters α modify the fraction of HF exchange and β modifies the fraction of the

DFT exchange for short- and long-range interactions. Here, α and β values of 0.19 and 0.46

were used, respectively.[122] The switching factor between HF and DFT exchange µ is equal

to 0.33, as proposed in the original work.[120] For the purposes of exploring the effect of

the ACPE parameters in Section 5.4.1, calculations were performed with the less-expensive

B3LYP/aug-cc-pVDZ model.

The PE was modeled with multipole moments up to hexadecapole (rank 4) and

anisotropic dipole-dipole polarizabilities (rank 1). Polarization was treated self-consistently

among the ACPE CG clusters and the QM region. Polarization within a CG cluster is

omitted, and short-range polarization cutoffs between CG sites in different clusters were

implemented as described in Section 5.2.4.

ACPE Validation: For comparison purposes, distributions of excitation energies

were also computed using the polarizable embedding model for each of the 400 individual

explicit configurations for each system. A “configurational average” excitation energy is

obtained by computing the mean excitation energy for each state over the 400 configurations.
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In some examples, integral equation formalism PCM calculations using default parameters

for an aqueous environment were also performed with Dalton.

5.4 Results and Discussion

To investigate the performance of the ACPE, we first examine the structure of the

averaged environment generated by the model. Next, we compute low-lying vertical singlet

excitation energies for several small molecules in aqueous solution. Finally, to demonstrate

application of the ACPE model to a more complicated, inhomogeneous environment, we

study the excitations of a phenol molecule residing at the interface between benzene and

water solvents. The sharp differences in solvent polarity and the spatial phase separation

exhibited by the two solvents would make this type of system much harder to describe with

conventional implicit solvent models.

5.4.1 Determination of the ACPE model parameters

The ACPE coarse-graining procedure contains a number of potential parameters

that might affect the model results. First, the initial CG sites in the K-means++ algorithm

are determined randomly, which raises the question of the reproducibility of the results

for different random seeds. Second, one must choose the density of CG sites, which is

defined as some scaling factor times the average number of atoms of a given type in the

MD configuration snapshots. Third, short-range damping is used to avoid the polarization

catastrophe in the embedding procedure as described in Section 5.2.4.

To explore how the first two parameters affect the excitation energies in the ACPE
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Table 5.1: Predicted B3LYP/aug-cc-pVDZ ACPE excitation energies for acrolein with dif-
ferent scale factors for the number of heavy and light atom CG sites. Each ACPE calculation
was repeated four times with different random initialization. Values report the average exci-
tation energies and standard deviations. For reference, averaging over the 400 configurations
explicitly predicts excitation energies of 3.84 eV (n→ π∗) and 5.86 eV (π → π∗).

(n→ π∗) (π → π∗)
Light Light

5 SD 10 SD 5 SD 10 SD

5 3.79 0.01 3.79 0.0 5 5.95 0.00 5.96 0.01
10 3.82 0.02 3.8 0.03 10 5.94 0.00 5.94 0.03
15 3.82 0.01 3.75 0.02 15 5.92 0.017 5.98 0.01
20 3.88 0.02 3.85 0.03 20 5.90 0.013 5.92 0.01

H
ea

v
y

25 3.83 0.03 3.91 0.04 H
ea

v
y

25 5.94 0.01 5.90 0.03
30 3.85 0.02 3.91 0.06 30 5.91 0.02 5.89 0.03
35 3.80 0.03 3.90 0.08 35 5.92 0.01 5.87 0.04
40 3.82 0.05 3.88 0.04 40 5.94 0.02 5.91 0.02

environment, we consider the lowest two excited states of acrolein in water. As a reference,

we first computed the excitation energy with B3LYP/aug-cc-pVDZ via polarizable embed-

ding for each of 400 solvent configurations. Each configuration consists of a single acrolein

surrounded by an average of 97 water molecules. Averaging over the 400 configurations, we

obtain average excitation energies of 3.84 eV (n→ π∗) and 5.87 eV (π → π∗).

Next, we performed ACPE calculations with four different random seeds (i.e. dis-

tinct K-means++ initializations) and varying scale factors for the number of heavy (oxygen)

and light (hydrogen) atom CG sites (Table 5.1). For any given set of light/heavy atom scale

factors, the standard deviation in the predicted excitation energies due to different random

seeds in the K-means++ initialization is less than 0.1 eV.

Similarly, the excitation energies are relatively insensitive to the heavy and light

atom scale factors. Using larger scale factors (more CG sites) reduces the typical distance

between the original atom and its assigned CG site. Translating the force field parameters
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(multipoles and polarizabilities) shorter distances reduces the magnitude of the higher-

rank components introduced upon translation. The embedding model here includes up to

hexadecapoles for the permanent multipole moments. Thus, the higher-order components

introduced by translation are described fairly well. However, the PE model only supports

dipole-dipole polarizabilities, so important higher-rank contributions to polarization intro-

duced by longer translation distances will be omitted.

Higher-rank distributed multipoles can be significant in magnitude on heavy atoms,[123]

which in turn means it may be beneficial to translate their parameters less distance (to min-

imize the introduction of components with rank > 4 that are not included in our model).

For hydrogen, the force field representation before translation includes only up to dipoles

(rank 1),[100, 101] so the higher-order contributions introduced by translation are captured

more completely by the final rank 4 representation of the embedding environment. Despite

these considerations, there does not appear to be any clear preference for certain combina-

tions of scale factors in practice, as seen in Table 5.1. Scale factors of 30 for heavy atoms

and 5 for light atoms seem to behave well and are used for all calculations described below.

With these parameters, the mean distance between the original atoms and their

corresponding CG sites in the four ACPE runs described above is 0.42 ± 0.14 Å for oxygen

and 0.69 ± 0.22 Å for hydrogen, respectively. Those individual CG sites are grouped into

CG clusters (Section 5.2.4). If both the explicit solvent molecules and the CG sites were

uniformly distributed, each heavy or light atom CG cluster would contain 30 (oxygen) or

2x5 (hydrogen) CG sites (i.e. the number of sites would match the scale factors). In the

four ACPE runs described above, the clusters averaged 30.0 ± 3.9 CG sites for oxygen and
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Table 5.2: Timings for the construction of the ACPE from 400 acrolein in water config-
urations. CG refers to the time to generate the CG sites via K-means++. Config. Pol.
indicates the time to compute the polarization in the individual configurations, and ACPE
Pol. Cutoffs the time to identify appropriate polarization cutoffs automatically.

Time (s) % of Total Time

CG Hydrogen 405 1.8%
CG Oxygen 303 1.3%
CG Clusters 41 0.16%
Translations 3 0.011%
Config. Pol. 597 2.3%
ACPE Pol. Cutoffs 5649 21.6%
ACPE Total 6998 26.7%

10.0 ± 1.6 for hydrogen.

Our implementation of the ACPE algorithm has not been fully optimized for com-

putational efficiency. Nevertheless, timings of the current implementation demonstrate that

the construction of the ACPE requires only a fraction of the subsequent excitation energy

calculation. Table 5.2 breaks the timings down into individual components of the ACPE al-

gorithm. The large number of polarizable sites employed in the polarizable embedding with

ACPE also modestly increases the time for the TDDFT calculation (by ∼3,000 seconds).

Overall, generating the ACPE and computing the ten lowest excited states of acrolein in

the water via the ACPE model requires 26,141 seconds, compared to 15,994 seconds for em-

bedding with multipoles and polarizabilities from a single configuration (i.e. without any

ACPE model). In other words, employing the ACPE model allows one to mimic the effect

of hundreds of solvent configurations at a cost only 60% higher than that of a TDDFT cal-

culation on a single configuration snapshot. Table 5.2 also suggests that further work should

be done to simplify the handling of polarization damping to reduce the computational time

further.
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Figure 5.5: Hydrogen bonding distribution for molecular dynamics configurations and K-
means++ generated grid points around pyrimidine.

5.4.2 Solvent structure in the ACPE model

One of the primary motivations underlying the ACPE model is to retain important

local structural features of the environment that would not be found in a more traditional

implicit solvent model. Continuum solvent models typically have difficulty describing local

solute-solvent hydrogen bonding interactions, for instance, which sometimes necessitates

the inclusion of explicit solvent molecules. Because ACPE derives its representation of the

environment from explicit solvent configurations, it naturally retains some of these localized

interactions.

Consider the hydrogen bonding interactions between pyrimidine and solvent water.

The contours in Figure 5.5 plot the distribution of hydrogen atoms near the two hydrogen-

bond accepting nitrogen atoms in pyrimidine over the 400 configurations, projected onto the
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molecular xy or xz planes. The red symbols represent hydrogen atom CG sites identified

by the K-means++ algorithm. The K-means++ algorithm naturally places CG sites in

regions with the highest hydrogen atom density. It captures the variability in hydrogen

bond lengths and angles observed across the MD configuration snapshots.

Another perspective on solute-solvent interactions can be gleaned from the radial

distribution functions (RDFs), which are plotted in Figure S1 in the Supporting Informa-

tion. One can compute the average number of hydrogen bonds by counting the number of

atoms within the first solvent shell of the N· · ·H-O RDF and dividing by the number of

snapshots considered. From the MD simulations, the first solvent shell ends at an N· · ·H

distance of 2.7 Å, and integrating the RDF indicates that a pyrimidine nitrogen averages

1.84 hydrogen bonds. For the ACPE model, we obtain the number of hydrogen bonds by

counting the number of CG sites within in the same N· · ·H distance and dividing by the

scaling factor (5 here). Doing so, one finds an average number of 1.90 hydrogen bonds in

ACPE, in very good agreement with the explicit MD result.

5.4.3 Excitation Energies in Aqueous Environment

Next, we examine the performance of ACPE for reproducing small-molecule verti-

cal excitation energies in solution. We compare the ACPE excitation energies against val-

ues obtained from a traditional configurational average approach, a polarizable continuum

model, and experiment. One should bear in mind that discrepancies between the predicted

and experimental results can arise for reasons including limitations of the TDDFT func-

tional, basis set, and embedding model, the quality of the ensemble generated from OPLS,
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Figure 5.6: Histograms of the first and second singlet excitation energies of acrolein com-
pared with the experimental, configurational average, and ACPE values. Box heights indi-
cate the number of configurations with this excitation energy.

and the finite cluster truncation of the bulk solvent model in addition to the ACPE approx-

imations. Accordingly, the comparison between the configurational average and the ACPE

model results provides more direct insight into the behavior of the ACPE approximations.

Figure 5.6 plots a histogram of excitation energies from each of the 400 individual

polarizable embedding calculations, where the height of each box corresponds to the number

of configurations exhibiting excitation energies within the particular energy interval. Across

the 400 sampled configurations, the n→ π∗ excitation energies occur between 3.55 and 4.74

eV, with an average value of 4.05 eV. This average excitation energy is in good agreement

with the value of 4.11 eV from an earlier work using polarizable embedding and the M2P2

force field.[124] The second excitation in acrolein, π → π∗, occurs between 5.71 and 6.29 eV

across the 400 configurations, with an average of 6.03 eV. The configurational averages for

these two excitation energies also lie within 0.1–0.2 eV of experiment (Table A.1), which is

well within the accuracy expected for TDDFT with CAM-B3LYP.[125] Plots of the exci-

tation energies as a function of the number of solvent configurations averaged over suggest

that both of these configurational averages are converged to within a few hundredths of an
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eV with respect to the number of configurations sampled (see Figure S2 in the Supporting

Information).

By definition, the ACPE model does not capture the full distribution of excita-

tion energies observed over the 400 configurations. However, it would ideally mimic the

configurational average. Indeed, for both the n → π∗ and π → π∗ transitions in acrolein,

the ACPE reproduces the configurational average to within 0.03–0.05 eV (Figure 5.6 and

Table A.1), despite performing only a single QM calculation instead of 400. Though the

specific CG sites identified by the K-means clustering algorithm will vary with the initial

guess, the resulting excitation energies from three different initial guesses varied by only

±0.01–0.02 eV both states (see Table S1 in Supporting Information).

Reliable prediction of solvatochromic shifts is often important when modeling elec-

tronic excitations in solution. Upon switching from the gas-phase to an aqueous environ-

ment, the ACPE model predicts solvatochromic shifts of +0.23 eV for the n→ π∗ transition

and -0.40 for the π → π∗ one (Table A.1). These shifts agree very well with the configu-

rational average shifts of +0.21 eV and -0.44 eV, respectively. They are also in fairly good

agreement with the experimental shifts of +0.25 eV and -0.52 eV.[122]

The good agreement in the solvatochromic shifts for the two lowest excited states

is notable because the electronic character of these transitions differs notably. The acrolein

π → π∗ excitation shows a sizable red shift of -0.30 eV in iso-octane, while the n → π∗

transition shows much smaller solvatochromic shift in non-polar solvents.[122] Aidas et al

suggest that the π → π∗ shift depends on both electrostatics and intermolecular polarization

effects, while the n → π∗ solvent shift is dominated by electrostatic interactions.[122] The

119



Table 5.3: Comparison of CAM-B3LYP/aug-cc-pVTZ excitation energies E and solva-
tochromic shifts ∆E for three solutes in aqueous solution. The ACPE excitation energies
are the average of three calculations. The individual values can be found in the SI.

Acrolein Acetone Pyrimidine

E (n→ π∗) ∆E E (n→ π∗) ∆E E (n→ π∗) ∆E
Gas 3.84 – 4.49 – 4.55 –
PCM 3.97 0.13 4.59 0.11 4.71 0.16
Config. Avg. 4.05 0.21 4.65 0.17 5.01 0.46
ACPE 4.07 0.23 4.64 0.16 5.01 0.46
Experiment 3.94a 0.25a 4.68b 0.22b 4.57c, 4.84d 0.35c,0.62e

E (π → π∗) ∆E – – – –
Gas 6.46 – – – – –
PCM 5.76 -0.70 – – – –
Config. Avg. 6.03 -0.44 – – – –
ACPE 6.07 -0.40 – – – –
Experiment 5.90a −0.52a – – – –
a Ref [122] b Ref [126] c Ref [127] d Ref [128] e Inferred using the gas-phase

excitation energy from Ref [127] and the solution-phase excitation energy from Ref [128].

ACPE describes both solvatochromic shifts well, despite the differences in the excitation

characters and their responses to the solvent environment.

Next, we consider the lowest singlet excitation energies in acetone and pyrimidine.

For acetone, the lowest excitation corresponds to the forbidden n → π∗ transition. The

energy of this excitation ranges from 4.33 to 5.29 eV over the sampled MD configurations

(Figure 5.7a). Averaging over all 400 configurations produces a configurational average

excitation energy of 4.65 eV, which is in excellent agreement with both the earlier M3P2

force field prediction of 4.75 eV[124] and the experimental value of 4.68 eV. A single ACPE

calculation reproduces the configurational average for the first excitation to within 0.01

eV. The solvatochromic shift of 0.16–0.17 eV predicted by both the ACPE model and the

configurational average are also in very good agreement with the experimental shift of 0.22
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Figure 5.7: Histograms of the lowest singlet excitation energies of (a) acetone and (b)
pyrimidine compared with the experimental, configurational average, and ACPE values.
For pyrimidine, two different reported experimental excitation energies are shown.

eV (Table A.1).[126]

Figure 5.7b plots the analogous results for the n → π∗ transition in pyrimidine.

The excitation energies range 4.52–5.44 eV over the 400 MD configurations, with a configura-

tional average of 5.01 eV. Once again, the ACPE calculation reproduces the configurational

average excitation energy to within 0.01 eV. Experimentally, the n→ π∗ excitation is very

broad, making it difficult to assign a precise excitation energy. Values ranging from 4.57

eV[127] to 4.84 eV[128] are reported in the literature. Our predictions agree with the latter

value to within 0.20 eV. The predicted ACPE and configurational average solvatochromic

shifts of 0.46–0.46 eV are also in similarly good agreement with the corresponding experi-

mental value of 0.62 eV (see Table A.1). Like for acrolein, the variation in the acetone and

pyrimidine ACPE excitation energies with the initial random K-means clustering guess is

only a few hundredths of an eV (Table S1).

Finally, it is interesting to compare the ACPE results against those obtained with

an implicit PCM water model. As shown in Table A.1, the excitation energies in the
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PCM are consistently lower than the configurational average ones for the cases examined

here. The PCM excitation energy errors with respect to the experiment are similar to or

slightly smaller than those from the configurational averages or the ACPE model. However,

given the few tenths of an eV errors typically expected for valence excitation energies with

TDDFT,[125] none of the approaches is clearly superior in terms of the excitation energies.

On the other hand, the solvatochromic shifts computed with the configurational averages

and/or ACPE model are consistently better than those from the PCM model. This is most

notable for pyrimidine, for which it has been argued that obtaining reliable solvatochromic

shifts requires the inclusion of several explicit waters.[129] The pyrimidine PCM model shift

of 0.16 eV (without any explicit solvent molecules) is reasonably close to the 0.35 eV shift

from Ref [127], but it is much further away from the value of 0.62 eV value inferred from

Ref [128]. The ACPE and configurational average shifts of 0.46 eV lie in between the two

experimental values.

Overall, for these simple examples of computing small-molecule excitation energies

in aqueous solution, the ACPE model performs very well. A single QM excitation energy

calculation embedded in the ACPE reproduces the excitation energies and solvatochromic

shifts obtained from a much more expensive configurational average to within a few hun-

dredths of an eV. Of course, PCM and other simple models often can describe these sorts

of homogeneous bulk environments well. In the next section, however, we consider a spa-

tially inhomogeneous model that would be much harder to describe with standard implicit

models.
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Figure 5.8: Proportion of water and benzene molecules as a function of the z coordinate,
averaged over 400 MD configurational snapshots, for phenol at the benzene/water interface.

5.4.4 Solute at the benzene-water interface

To test the ability of the ACPE model to treat an inhomogeneous environment,

we construct a model system consisting of a phenol solute molecule at the interface of

liquid benzene and water. This system was chosen because (1) the two solvents exhibit

very different polarities and would create an interface with an asymmetric electrostatic

environment and (2) the inherent rigidity of the benzene simplifies the treatment of its force

field parameters. Figure 5.8 shows a sample MD configuration of this system and plots the

proportion of water and benzene molecules (averaged over all 400 configuration snapshots)

as a function of the z-coordinate in the box. The left side of the box is dominated by
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Figure 5.9: Histogram of excitation energies for phenol lying at the benzene/water interface.

benzene molecules, while the right side consists mostly of water ones. The phenol molecule

resides right at the interface, with the hydroxyl group oriented toward the water region.

Figure 5.9 plots the distribution of excitation energies observed for phenol across

the 400 MD configurations. Despite the strong asymmetry of the environment, the ACPE

reproduces the configurational average to within less than 0.02 eV (Table 5.4). Further

insight is obtained by investigating the effects of each solvent layer on the phenol first

excitation energy separately. Table 5.4 compares the configurational average and ACPE

phenol excitation energies for phenol with only the aqueous solvent molecules present, only

the benzene solvent molecules, and in the presence of both solvents. The water-only and
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Table 5.4: Comparison of CAM-B3LYP/aug-cc-pVTZ excitation energies E and solva-
tochromic shifts ∆E for phenol at a benzene-water interface.

Water Benzene Interface

E (S0 → S1) ∆E E (S0 → S1) ∆E E (S0 → S1) ∆E
Gas 5.16 – – – – –
Config. Avg. 5.33 0.17 5.05 -0.11 5.29 0.13
ACPE 5.33 0.17 5.08 -0.08 5.31 0.16

benzene-only cases use the same solvent configurations as the system as a whole, just with

the other solvent molecules deleted. The two solvents induce opposing solvatochromic shifts

on the S0 → S1 excitation. The pure benzene layer red shifts the excitation energy by -

0.11 eV, while the pure water layer causes a 0.17 eV blue shift. When both sets of solvent

molecules are present, however, the excitation energy undergoes a 0.13 eV blue shift. In

other words, the effect of the solvent interface is more than a simple average of the two

parts.

Overall, the water/benzene interface provides a nice example of the robustness

of the ACPE model. Despite the heterogeneous and dynamic nature of the environment

surrounding the solute, the ACPE model captures the average environment in a single

calculation.

5.5 Conclusions

In conclusion, we have presented an automated procedure for constructing a configuration-

averaged condensed-phase environment model around a region of interest based on K-

means++ clustering and force field parameter translation procedures. The model has a

few adjustable parameters (the number of coarse-graining sites, the initial random seed,
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and the polarization cutoffs), but fortunately the results seem relatively insensitive over a

range of reasonable choices for these parameter values.

The chief advantages of this approach are that the resulting coarse-grained embed-

ding model (1) retains specific structural features of the underlying atomistic model and (2)

it reproduces the conventional configurational average approach with very high accuracy at

orders of magnitude lower computational cost. We demonstrated, for example, that it re-

produces key locations of hydrogen bonding partners and accurately describes the behavior

of a phenol molecule located at the interface of benzene and water solvents. More gener-

ally, the ACPE model may prove useful in situations where an inhomogeneous environment

precludes the use of more traditional continuum environment models.

Once a set of configurations has been obtained via some sampling procedure, con-

structing the ACPE model requires minimal computational effort—typically only a fraction

of the time required to perform a single embedded excitation energy calculation here. In

other words, the computational savings factor for the ACPE model compared to a conven-

tional QM/MM configurational average is approaches the number of configurations sampled.

At the same time, the ACPE excitation energies reported here all reproduce the configura-

tional average values to within less than 0.1 eV, which is well within the sorts of errors one

expects from TDDFT valence excitation energies.

The ACPE model does currently have limitations and opportunities for future

work. Most pressingly, all results here utilized a fixed QM region (the frozen solute) in a

dynamic environment. In practice, one should also consider the dynamics of the QM region.

One possible path forward would be to sample configurations of the QM region, freeze them,
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and then perform additional sampling of the environment to generate an ACPE for each

sampled QM configuration, though other alternatives may also exist.

Additionally, the model is predicated on the notion that the configuration aver-

aging can be performed before the property calculation (e.g. excitation energies), instead

of afterwards, as is more traditional. This clearly works well in the examples tested here,

and it will likely work well in cases where the observable properties of interest occur on

time scales which are long relative to the configuration averaging. Experimentally observed

nuclear magnetic resonance chemical shifts, for instance, typically represent a time average

over nuclear motions. Predictions of other observables which occur on much shorter time

scales may be less amenable to such a priori configurational averaging.

Finally, the examples here involved rather simple model systems. It will be in-

teresting to extend these ideas to more general systems and a broader range of polarizable

force fields. Generalization to more classes of systems might also provide additional insight

into how to choose appropriate values for the handful of user-defined parameters in the

ACPE model (number of coarse-graining sites, polarization cutoffs, etc.).
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Chapter 6

Conclusions

In summary, two new computationally efficient algorithms for evaluating the self-

consistent polarization equations in polarizable force fields have been proposed. Based on

non-overlapping and overlapping domain decomposition, these divide-and-conquer Jacobi

iterations (DC-JI) and fuzzy DC-JI algorithms can provide substantial savings over a con-

ventional preconditioned conjugate gradients (PCG) implementation. They achieve this by

solving the mutual polarization within clusters of atoms directly while mutual polarization

between cluster is captured iteratively. K-means clustering is used to identify near opti-

mal clusters that ensure rapid convergence of the iterations. We have also demonstrated

that DC-JI can be coupled with direct inversion of the iterative subspace (DIIS) to further

accelerate the convergence.

We implemented the non-overlapping DC-JI/DIIS polarization solver for periodic

systems via particle-mesh Ewald in the massively parallel Tinker-HP software package.

This massively parallel implementation of DC-JI/DIIS solves the polarization equations up
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to 20% faster than PCG and 30% faster than JI/DIIS. DC-JI/DIIS also obtains induced

dipoles closer to the exact solution than those from PCG. As of this writing, DC-JI/DIIS

is the default polarization solver in Tinker-HP.

The use of a longer history in the “predicted iteration” variant of the always

stable predictor-corrector (ASPC) method provides substantial computational benefits for

SCF polarization solvers. The energy drift is reduced by an order of magnitude going from

the standard 6-step predictor to our recommended 16-step predictor. The impact of this

starting point for the SCF solvers is so large that with the 16-step predictor one less iteration

is needed to achieve comparable stability to the previously used 6-step predictor. This one

less iteration can lead to acceleration of the polarization evaluation by ∼20%.

The combination of all the techniques outlined in this work can lead to substantial

acceleration of polarizable force fields. Prior to the techniques introduced here a typical

polarization calculation might use PCG with 4 iterations per polarization evaluation and the

6 step predictor, replacing the solver with DC-JI/DIIS using 3 iterations per polarization

evaluation and the 16 step predictor will accelerate the polarization evaluation by ∼ 50%

and also achieve less energy drift than PCG. Given that solving the polarization equations

consumes about half the total time, this amounts to a ∼ 25% speedup overall and higher-

quality numerics.

Finally, we presented the average condensed phase environment (ACPE) for QM/MM

embedding. ACPE retains atomistic details of the environment leading to a better descrip-

tion of the environment relative to the polarizable continuum model. ACPE faithfully

models the time averaged behavior of an extended environment. We demonstrated that
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APCE reproduces the configurational average values of vertical excitation energies for sev-

eral solutes in a water solution to within less than 0.1 eV. In addition, we demonstrated

ACPE’s ability to describe complex environments like interfaces.
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Appendix A

Average Condensed Phase

Environment

A.1 Multipolar and Polarizability Rotations

The averaged condensed-phase environment model explored in this work interpo-

lates the water multipoles and polarizability parameters in a local coordinate system and

then rotates them into the global coordinate frame. If we expand the local coordinates in

the global coordinate the rotation matrix that takes us from the local to the global system

has column vectors of the local coordinate axis. For water, we defined the Y -axis to be

along the first O–H bond in global coordinates and the second O–H bond to be in the third

quadrant of the XY plane of the local coordinates. A more general coordinate system might

use the eigenvectors of the inertia tensor to define the local coordinate axes.

The necessary rotation matrices can be derived according to Refs [112]. The
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elements of the rotation matrix D have been worked out here for rotations from the local

to global coordinate system, and expressions up to rank 4 (hexadecapole) are provided. All

expressions here are based on a spherical tensor formulation. The following ordering of the

elements in the multipole vectors, polarizability matrices, and rotation matrices was used

throughout:

• Charge: Q00

• Dipole: Q10, Q11c, Q11s (a.k.a. z, x, y)

• Quadrupole: Q20, Q21c, Q21s, Q22c, Q22s

• Octupole: Q30, Q31c, Q31s, Q32c, Q32s, Q33c, Q33s

• Hexadecapole: Q40, Q41c, Q41s, Q42c, Q42s, Q43c, Q43s, Q44c, Q44s

The overall rotation matrix D for terms up to rank 4 can be written as a block-

diagonal matrix, with block Dl corresponding to terms of rank l.

D =



D0 0 0 0 0

0 D1 0 0 0

0 0 D2 0 0

0 0 0 D3 0

0 0 0 0 D4


(A.1)
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Multipole rotation: Rotations of the multipole moments Q from local coordinate system

o to global system c involves a matrix-vector multiplication with rotation matrix D,

Qg = DQl (A.2)

In practice, this multiply can be carried out separately for each rank due to the block-

diagonal structure of D.

Polarizability rotation:

Rotations of the polarizabilities behave similarly. In this case, dipole-dipole and

quadrupole-quadrupole blocks of the polarizabilities tensor can be rotated separately with

the appropriate sub-block of the rotation matrix.

αl,l
g = Dlαl,l

lDl
T (A.3)

Rotations of the dipole-quadrupole and quadrupole-dipole block of the polarizabil-

ities tensor are performed according to:

α1,2
g = D1α1,2

lD2
T (A.4)

Since the polarizability tensor is symmetric, the remaining elements can be ob-

tained as:

α2,1
g = (α1,2

l)T (A.5)

Rotation matrix elements: Individual elements of the rotation matrix can be computed
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as follows. Elements from off-diagonal blocks not listed here are zero.

(A.6)D(0, 0) = 1

(A.7)D(1, 1) = zz

(A.8)D(1, 2) = zx

(A.9)D(1, 3) = zy

(A.10)D(2, 1) = xz

(A.11)D(2, 2) = xx

(A.12)D(2, 3) = xy

(A.13)D(3, 1) = yz

(A.14)D(3, 2) = yx

(A.15)D(3, 3) = yy

(A.16)D(4, 4) = (3 · zz2 − 1)/2
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(A.17)D(4, 5) =
√

3 · zx · zz

(A.18)D(4, 6) =
√

3 · zy · zz

(A.19)D(4, 7) = (
√

3 · (−2 · zy2 − zz2 + 1))/2

(A.20)D(4, 8) =
√

3 · zx · zy

(A.21)D(5, 4) =
√

3 · xz · zz

(A.22)D(5, 5) = 2 · xx · zz − yy

(A.23)D(5, 6) = yx+ 2 · xy · zz

(A.24)D(5, 7) = −2 · xy · zy − xz · zz

(A.25)D(5, 8) = xx · zy + zx · xy

(A.26)D(6, 4) =
√

3 · yz · zz

(A.27)D(6, 5) = 2 · yx · zz + xy
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(A.28)D(6, 6) = −xx+ 2 · yy · zz

(A.29)D(6, 7) = −2 · yy · zy − yz · zz

(A.30)D(6, 8) = yx · zy + zx · yy

(A.31)D(7, 4) = (
√

3 · (−2 · yz2 − zz2 + 1))/2

(A.32)D(7, 5) = −2 · yx · yz − zx · zz

(A.33)D(7, 6) = −2 · yy · yz − zy · zz

(A.34)D(7, 7) = (4 · yy2 + 2 · zy2 + 2 · yz2 + zz2 − 3)/2

(A.35)D(7, 8) = −2 · yx · yy − zx · zy

(A.36)D(8, 4) =
√

3 · xz · yz

(A.37)D(8, 5) = xx · yz + yx · xz

(A.38)D(8, 6) = xy · yz + yy · xz
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(A.39)D(8, 7) = −2 · xy · yy − xz · yz

(A.40)D(8, 8) = xx · yy + yx · xy

(A.41)D(9, 9) = (−8 · xx · yy + 8 · yx · xy + 5 · zz3 + 5 · zz)/2

(A.42)D(9, 10) = (
√

6 · zx · (5 · zz2 − 1))/4

(A.43)D(9, 11) = (
√

6 · zy · (5 · zz2 − 1))/4

(A.44)D(9, 12) = (
√

15 · zz · (−2 · zy2 − zz2 + 1))/2

(A.45)D(9, 13) =
√

15 · zx · zy · zz

(A.46)D(9, 14) = (
√

10 · zx · (−4 · zy2 − zz2 + 1))/4

(A.47)D(9, 15) = (
√

10 · zy · (−4 · zy2 − 3 · zz2 + 3))/4

(A.48)D(10, 9) = (
√

3 · xz · (5 · zz2 − 1))/(2 ·
√

2)

(A.49)D(10, 10) = (−10 · xx · yy2 + 15 · xx · zz2 − xx+ 10 · yx · xy · yy)/4
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(A.50)D(10, 11) = (10 · xy · yz2 + 15 · xy · zz2 − 11 · xy − 10 · yy · xz · yz)/4

(A.51)D(10, 12) = (
√

10 · (4 · xy · yy · yz− 4 · yy2 · xz− 6 · zy2 · xz− 3 · xz · zz2 + 5 · xz))/4

(A.52)D(10, 13) =
√

10 · (−xx · yy · yz − yx · xy · yz + 2 · yx · yy · xz + 3 · zx · zy · xz)/2

(A.53)D(10, 14) = (
√

15 · (−2 · xx · yy2− 4 · xx · zy2− xx · zz2 + 3 · xx+ 2 · yx · xy · yy))/4

(A.54)D(10, 15) = (
√

15 · (−4 ·xy · zy2− 2 ·xy · yz2− 3 ·xy · zz2 + 3 ·xy+ 2 · yy ·xz · yz))/4

(A.55)D(11, 9) = (
√

3 · yz · (5 · zz2 − 1))/(2 ·
√

2)

(A.56)D(11, 10) = (10 · yx · zy2 + 15 · yx · zz2 − 11 · yx− 10 · zx · yy · zy)/4

(A.57)D(11, 11) = (5 · yy · zz2 − yy + 10 · zy · yz · zz)/4

(A.58)D(11, 12) = (
√

10 · (−4 · yy · zy · zz − 2 · zy2 · yz − 3 · yz · zz2 + yz))/4

(A.59)D(11, 13) = (
√

10 · (yx · zy · zz + zx · yy · zz + zx · zy · yz))/2

(A.60)D(11, 14) = (
√

15 · (−2 · yx · zy2 − yx · zz2 + yx− 2 · zx · yy · zy))/4
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(A.61)D(11, 15) = (
√

15 · (−4 · yy · zy2 − yy · zz2 + yy − 2 · zy · yz · zz))/4

(A.62)D(12, 9) =
√

15 · zz · (−2 · yz2 − zz2 + 1)/2

(A.63)D(12, 10) = (
√

10 · (4 · yx · yy · zy− 4 · zx · yy2− 6 · zx · yz2− 3 · zx · zz2 + 5 · zx))/4

(A.64)D(12, 11) = (
√

10 · (−4 · yy · yz · zz − 2 · zy · yz2 − 3 · zy · zz2 + zy))/4

(A.65)D(12, 12) = (−4 · xx · yy − 4 · yx · xy + 12 · yy2 · zz + 6 · zy2 · zz + 6 · yz2 · zz + 3

· zz3 − 9 · zz)/2

(A.66)D(12, 13) = −6 · yx · yy · zz − 3 · zx · zy · zz − 4 · xy · yy − 2 · xz · yz

D(12, 14) = (
√

6 · (4 · yx · yy · zy+ 4 · zx · yy2 + 4 · zx · zy2 + 2 · zx · yz2 + zx · zz2− 3 · zx))/4

(A.67)

(A.68)D(12, 15) = (
√

6 ·(8 ·yy2 ·zy+4 ·yy ·yz ·zz+4 ·zy3+2 ·zy ·yz2+3 ·zy ·zz2−5 ·zy))/4

(A.69)D(13, 9) =
√

15 · xz · yz · zz

(A.70)D(13, 10) = (
√

10 · (−xx · yy · zy − yx · xy · zy + 2 · zx · xy · yy + 3 · zx · xz · yz))/2
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(A.71)D(13, 11) = (
√

10 · (xy · yz · zz + yy · xz · zz + zy · xz · yz))/2

(A.72)D(13, 12) = −4 · yx · yy − 2 · zx · zy − 6 · xy · yy · zz − 3 · xz · yz · zz

(A.73)D(13, 13) = 3 · xx · yy · zz + 3 · yx · xy · zz − 4 · yy2 − 2 · zy2 − 2 · yz2 − zz2 + 3

(A.74)D(13, 14) = (
√

6 · (−xx · yy · zy − yx · xy · zy − 2 · zx · xy · yy − zx · xz · yz))/2

(A.75)D(13, 15) = (
√

6 · (−4 · xy · yy · zy − xy · yz · zz − yy · xz · zz − zy · xz · yz))/2

(A.76)D(14, 9) = (
√

5 · xz · (−4 · yz2 − zz2 + 1))/(2 ·
√

2)

(A.77)D(14, 10) = (
√

15 · (−2 · xx · yy2− 4 · xx · yz2− xx · zz2 + 3 · xx+ 2 · yx · xy · yy))/4

(A.78)D(14, 11) = (
√

15 · (−2 · xy · yz2 − xy · zz2 + xy − 2 · yy · xz · yz))/4

D(14, 12) = (
√

6 · (4 · xy · yy · yz+ 4 · yy2 · xz+ 2 · zy2 · xz+ 4 · xz · yz2 + xz · zz2− 3 · xz))/4
(A.79)

(A.80)D(14, 13) = (
√

6 · (−xx · yy · yz − yx · xy · yz − 2 · yx · yy · xz − zx · zy · xz))/2

(A.81)D(14, 14) = (10 ·xx ·yy2 +4 ·xx ·zy2 +4 ·xx ·yz2 +xx ·zz2−7 ·xx+6 ·yx ·xy ·yy)/4
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(A.82)D(14, 15) = (16 ·xy ·yy2+4 ·xy ·zy2+6 ·xy ·yz2+3 ·xy ·zz2−7 ·xy+6 ·yy ·xz ·yz)/4

(A.83)D(15, 9) = (
√

5 · yz · (−4 · yz2 − 3 · zz2 + 3))/(2 ·
√

2)

(A.84)D(15, 10) = (
√

15 · (−2 · yx · zy2− 4 · yx · yz2− 3 · yx · zz2 + 3 · yx+ 2 · zx · yy · zy))/4

(A.85)D(15, 11) = (
√

15 · (−4 · yy · yz2 − yy · zz2 + yy − 2 · zy · yz · zz))/4

(A.86)D(15, 12) = (
√

6 ·(8 ·yy2 ·yz+4 ·yy ·zy ·zz+2 ·zy2 ·yz+4 ·yz3+3 ·yz ·zz2−5 ·yz))/4

(A.87)D(15, 13) = (
√

6 · (−4 · yx · yy · yz − yx · zy · zz − zx · yy · zz − zx · zy · yz))/2

(A.88)D(15, 14) = (16 ·yx ·yy2+6 ·yx ·zy2+4 ·yx ·yz2+3 ·yx ·zz2−7 ·yx+6 ·zx ·yy ·zy)/4

(A.89)D(15, 15) = (16 ·yy3 +12 ·yy ·zy2 +12 ·yy ·yz2 +3 ·yy ·zz2−15 ·yy+6 ·zy ·yz ·zz)/4

(A.90)D(16, 16) = (−68 · yy2 · zz2 + 68 · yy2 + 136 · yy · zy · yz · zz − 68 · zy2 · yz2 + 68

· zy2 + 68 · yz2 + 35 · zz4 + 38 · zz2 − 65)/8

(A.91)D(16, 17) = (
√

10 · (10 · yx · yy · zy · zz − 10 · yx · zy2 · yz + 10 · yx · yz − 10 · zx
· yy2 · zz + 10 · zx · yy · zy · yz + 7 · zx · zz3 + 7 · zx · zz))/4
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(A.92)D(16, 18) = (
√

10 · zy · zz · (7 · zz2 − 3))/4

(A.93)D(16, 19) = (
√

5 · (−14 · zy2 · zz2 + 2 · zy2 − 7 · zz4 + 8 · zz2 − 1))/4

(A.94)D(16, 20) = (
√

5 · zx · zy · (7 · zz2 − 1))/2

(A.95)D(16, 21) = (
√

70 · (2 · yx · yy · zy · zz − 2 · yx · zy2 · yz + 2 · yx · yz − 2 · zx · yy2 · zz
+ 2 · zx · yy · zy · yz − 4 · zx · zy2 · zz − zx · zz3 + 3 · zx · zz))/4

(A.96)D(16, 22) = (
√

70 · zy · zz · (−4 · zy2 − 3 · zz2 + 3))/4

(A.97)D(16, 23) = (
√

35 · (4 · yy2 · zz2 − 4 · yy2 − 8 · yy · zy · yz · zz + 8 · zy4 + 4 · zy2 · yz2

+ 8 · zy2 · zz2 − 12 · zy2 − 4 · yz2 + zz4 − 6 · zz2 + 5))/8

(A.98)D(16, 24) = (
√

35 · zx · zy · (−2 · zy2 − zz2 + 1))/2

(A.99)D(17, 16) = (
√

5 · (10 · xy · yy · yz · zz − 10 · xy · zy · yz2 + 10 · xy · zy − 10 · yy2 · xz
· zz + 10 · yy · zy · xz · yz + 7 · xz · zz3 + 7 · xz · zz))/(2 ·

√
2)

(A.100)D(17, 17) = (−24 · xx · yy2 · zz + 28 · xx · zz3 + 28 · xx · zz + 24 · yx · xy · yy · zz
− 31 · yy · zz2 + 3 · yy + 34 · zy · yz · zz)/4
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(A.101)D(17, 18) = (−34 · yx · zy2 − 3 · yx · zz2 + 31 · yx+ 34 · zx · yy · zy + 24 · xy · yz2

· zz + 28 · xy · zz3 + 4 · xy · zz − 24 · yy · xz · yz · zz)/4

(A.102)D(17, 19) = (
√

2 · (4 ·xy ·yy ·yz ·zz+4 ·xy ·zy ·yz2 +xy ·zy ·zz2−3 ·xy ·zy−4 ·yy2

·xz ·zz−4 ·yy ·zy ·xz ·yz−15 ·zy2 ·xz ·zz−7 ·xz ·zz3 +8 ·xz ·zz))/2

D(17, 20) = (
√

2·(−22·xx·yy2 ·zy−30·xx·zy3−xx·zy ·zz2+29·xx·zy+22·yx·xy ·yy ·zy+30

·zx ·xy ·zy2+22 ·zx ·xy ·yz2+29 ·zx ·xy ·zz2−23 ·zx ·xy−22 ·zx ·yy ·xz ·yz))/4
(A.103)

(A.104)D(17, 21) = (
√

7 · (−8 · xx · yy2 · zz− 16 · xx · zy2 · zz− 4 · xx · zz3 + 12 · xx · zz+ 8

· yx · xy · yy · zz + 4 · yy · zy2 + yy · zz2 − yy + 2 · zy · yz · zz))/4

(A.105)D(17, 22) = (
√

7 · (−2 · yx · zy2− yx · zz2 + yx− 2 · zx · yy · zy− 16 ·xy · zy2 · zz− 8

· xy · yz2 · zz − 12 · xy · zz3 + 12 · xy · zz + 8 · yy · xz · yz · zz))/4

D(17, 23) = (
√

14 · (−2 · xy · yy · yz · zz+ 8 · xy · zy3 + 2 · xy · zy · yz2 + 4 · xy · zy · zz2− 6 · xy
· zy+ 2 ·yy2 ·xz · zz−2 ·yy · zy ·xz ·yz+ 4 · zy2 ·xz · zz+xz · zz3−3 ·xz · zz))/4

(A.106)

D(17, 24) = (
√

14 ·(−2 ·xx ·yy2 ·zy−4 ·xx ·zy3−xx ·zy ·zz2+3 ·xx ·zy+2 ·yx ·xy ·yy ·zy−4

· zx ·xy · zy2− 2 · zx ·xy · yz2− 3 · zx ·xy · zz2 + 3 · zx ·xy+ 2 · zx · yy ·xz · yz))/4
(A.107)
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(A.108)D(18, 16) = (
√

5 · yz · zz · (7 · zz2 − 3))/(2 ·
√

2)

(A.109)D(18, 17) = (24 · yx · zy2 · zz + 28 · yx · zz3 + 4 · yx · zz − 24 · zx · yy · zy · zz − 34

· xy · yz2 − 3 · xy · zz2 + 31 · xy + 34 · yy · xz · yz)/4

(A.110)D(18, 18) = (−34 · xx · yy2 + 3 · xx · zz2 + 3 · xx+ 34 · yx · xy · yy + 4 · yy · zz3

+ 28 · yy · zz + 24 · zy · yz · zz2)/4

(A.111)D(18, 19) = (
√

2 ·(−7 ·yy ·zy ·zz2+yy ·zy−7 ·zy2 ·yz ·zz−7 ·yz ·zz3+4 ·yz ·zz))/2

(A.112)D(18, 20) = (
√

2 · (−8 · yx · zy3 − yx · zy · zz2 + 7 · yx · zy + 8 · zx · yy · zy2 + 7 · zx
· yy · zz2 − zx · yy + 22 · zx · zy · yz · zz))/4

(A.113)D(18, 21) = (
√

7 · (−8 · yx · zy2 · zz − 4 · yx · zz3 + 4 · yx · zz − 8 · zx · yy · zy · zz
− 4 · xy · zy2 − 2 · xy · yz2 − 3 · xy · zz2 + 3 · xy + 2 · yy · xz · yz))/4

(A.114)D(18, 22) = (
√

7 · (2 · xx · yy2 + 4 · xx · zy2 + xx · zz2 − 3 · xx− 2 · yx · xy · yy − 16

· yy · zy2 · zz − 4 · yy · zz3 + 4 · yy · zz − 8 · zy · yz · zz2))/4

D(18, 23) = (
√

14 · (8 ·yy ·zy3 +4 ·yy ·zy ·zz2−4 ·yy ·zy+4 ·zy2 ·yz ·zz+yz ·zz3−yz ·zz))/4
(A.115)
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(A.116)D(18, 24) = (
√

14 · (−2 · yx · zy3 − yx · zy · zz2 + yx · zy − 6 · zx · yy · zy2 − zx · yy
· zz2 + zx · yy − 2 · zx · zy · yz · zz))/4

(A.117)D(19, 16) =
√

5 · (−14 · yz2 · zz2 + 2 · yz2 − 7 · zz4 + 8 · zz2 − 1)/4

(A.118)D(19, 17) = (
√

2 · (4 ·yx ·yy ·zy ·zz+4 ·yx ·zy2 ·yz+yx ·yz ·zz2−3 ·yx ·yz−4 ·zx
·yy2 ·zz−4 ·zx ·yy ·zy ·yz−15 ·zx ·yz2 ·zz−7 ·zx ·zz3 +8 ·zx ·zz))/2

(A.119)D(19, 18) = (
√

2 ·(−7 ·yy ·yz ·zz2+yy ·yz−7 ·zy ·yz2 ·zz−7 ·zy ·zz3+4 ·zy ·zz))/2

(A.120)D(19, 19) = (14 · yy2 · zz2 − 10 · yy2 + 14 · zy2 · yz2 + 14 · zy2 · zz2 − 12 · zy2 + 14

· yz2 · zz2 − 12 · yz2 + 7 · zz4 − 20 · zz2 + 11)/2

(A.121)D(19, 20) =−7 · yx · yy · zz2 + 5 · yx · yy−7 · zx · zy · yz2−7 · zx · zy · zz2 + 6 · zx · zy

(A.122)D(19, 21) = (
√

14 · (4 · yx · zy2 · yz + yx · yz · zz2 − 3 · yx · yz + 4 · zx · yy2 · zz + 4

· zx · zy2 · zz + zx · yz2 · zz + zx · zz3 − 4 · zx · zz))/2

(A.123)D(19, 22) = (
√

14 · (4 · yy2 · zy · zz + 4 · yy · zy2 · yz + 3 · yy · yz · zz2 − yy · yz + 4

· zy3 · zz + 3 · zy · yz2 · zz + 3 · zy · zz3 − 4 · zy · zz))/2
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(A.124)D(19, 23) = (
√

7 · (−16 · yy2 · zy2 − 8 · yy2 · zz2 + 8 · yy2 − 8 · zy4 − 8 · zy2 · yz2 − 8

· zy2 · zz2 + 16 · zy2 − 2 · yz2 · zz2 + 6 · yz2 − zz4 + 8 · zz2 − 7))/4

(A.125)D(19, 24) =
√

7 · (2 · yx · yy · zy2 + yx · yy · zz2 − yx · yy + 2 · zx · yy2 · zy + 2 · zx
· zy3 + zx · zy · yz2 + zx · zy · zz2 − 2 · zx · zy)

(A.126)D(20, 16) =
√

5 · xz · yz · (7 · zz2 − 1)/2

D(20, 17) = (
√

2·(−22·xx·yy2 ·yz−30·xx·yz3−xx·yz ·zz2+29·xx·yz+22·yx·xy ·yy ·yz+22

·yx ·zy2 ·xz+30 ·yx ·xz ·yz2+29 ·yx ·xz ·zz2−23 ·yx ·xz−22 ·zx ·yy ·zy ·xz))/4
(A.127)

(A.128)D(20, 18) = (
√

2 · (14 · xy · yz3 + 21 · xy · yz · zz2 − 15 · xy · yz − 14 · yy · xz · yz2

+ 7 · yy · xz · zz2 − yy · xz))/4

(A.129)D(20, 19) =−7 ·xy · yy · zz2 + 5 ·xy · yy−7 · zy2 ·xz · yz−7 ·xz · yz · zz2 + 6 ·xz · yz

D(20, 20) = (−28 ·xx ·yy3−14 ·xx ·yy ·zy2−14 ·xx ·yy ·yz2 +7 ·xx ·yy ·zz2 +23 ·xx ·yy+28

·yx ·xy ·yy2 +14 ·yx ·xy ·zy2 +14 ·yx ·xy ·yz2 +21 ·yx ·xy ·zz2−19 ·yx ·xy)/2

(A.130)

D(20, 21) = (
√

14 · (2 · xx · yy2 · yz − 4 · xx · zy2 · yz + 2 · xx · yz3 − xx · yz · zz2 + xx · yz + 6

· yx · xy · yy · yz − 8 · yx · yy2 · xz − 6 · yx · zy2 · xz − 2 · yx · xz · yz2 − 3 · yx · xz
· zz2 + 5 · yx · xz − 6 · zx · yy · zy · xz))/4

(A.131)
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D(20, 22) = (
√

14 · (8 · xy · yy2 · yz− 4 · xy · zy2 · yz− 6 · xy · yz3− 9 · xy · yz · zz2 + 7 · xy · yz
− 8 · yy3 · xz− 12 · yy · zy2 · xz+ 6 · yy · xz · yz2− 3 · yy · xz · zz2 + 9 · yy · xz))/4

(A.132)

(A.133)D(20, 23) = (
√

7 · (8 · xy · yy · zy2 + 4 · xy · yy · zz2 − 4 · xy · yy + 4 · zy2 · xz · yz
+ xz · yz · zz2 − 3 · xz · yz))/2

(A.134)D(20, 24) = (
√

7 · (−4 · xx · yy · zy2 + 2 · xx · yy · yz2 − xx · yy · zz2 + xx · yy − 4

· yx · xy · zy2 − 2 · yx · xy · yz2 − 3 · yx · xy · zz2 + 3 · yx · xy))/2

(A.135)D(21, 16) = (
√

35 · (2 · xy · yy · yz · zz− 2 · xy · zy · yz2 + 2 · xy · zy− 2 · yy2 · xz · zz
+ 2 · yy · zy · xz · yz − 4 · xz · yz2 · zz − xz · zz3 + 3 · xz · zz))/(2 ·

√
2)

(A.136)D(21, 17) = (
√

7 · (−8 · xx · yy2 · zz− 16 · xx · yz2 · zz− 4 · xx · zz3 + 12 · xx · zz+ 8

· yx · xy · yy · zz + 4 · yy · yz2 + yy · zz2 − yy + 2 · zy · yz · zz))/4

(A.137)D(21, 18) = (
√

7 · (−2 · yx · zy2 − 4 · yx · yz2 − 3 · yx · zz2 + 3 · yx+ 2 · zx · yy · zy
− 8 · xy · yz2 · zz − 4 · xy · zz3 + 4 · xy · zz − 8 · yy · xz · yz · zz))/4

(A.138)D(21, 19) = (
√

14 · (4 · xy · zy · yz2 + xy · zy · zz2 − 3 · xy · zy + 4 · yy2 · xz · zz
+ zy2 · xz · zz + 4 · xz · yz2 · zz + xz · zz3 − 4 · xz · zz))/2
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D(21, 20) = (
√

14 · (2 · xx · yy2 · zy+ 2 · xx · zy3 − 4 · xx · zy · yz2 − xx · zy · zz2 + xx · zy+ 6

· yx · xy · yy · zy− 8 · zx · xy · yy2 − 2 · zx · xy · zy2 − 6 · zx · xy · yz2 − 3 · zx · xy
· zz2 + 5 · zx · xy − 6 · zx · yy · xz · yz))/4

(A.139)

D(21, 21) = (40·xx·yy2 ·zz+16·xx·zy2 ·zz+16·xx·yz2 ·zz+4·xx·zz3−28·xx·zz+24·yx·xy
·yy ·zz−48 ·yy3−36 ·yy ·zy2−36 ·yy ·yz2−9 ·yy ·zz2+45 ·yy−18 ·zy ·yz ·zz)/4

(A.140)

D(21, 22) = (48 · yx · yy2 + 18 · yx · zy2 + 12 · yx · yz2 + 9 · yx · zz2 − 21 · yx+ 18 · zx · yy · zy
+ 64 · xy · yy2 · zz + 16 · xy · zy2 · zz + 24 · xy · yz2 · zz + 12 · xy · zz3 − 28 · xy

· zz + 24 · yy · xz · yz · zz)/4
(A.141)

D(21, 23) = (
√

2 · (−32 · xy · yy2 · zy − 6 · xy · yy · yz · zz − 8 · xy · zy3 − 10 · xy · zy · yz2 − 4

· xy · zy · zz2 + 14 · xy · zy − 10 · yy2 · xz · zz − 6 · yy · zy · xz · yz − 4 · zy2 · xz
· zz − 4 · xz · yz2 · zz − xz · zz3 + 7 · xz · zz))/4

(A.142)

D(21, 24) = (
√

2 · (10 · xx · yy2 · zy + 4 · xx · zy3 + 4 · xx · zy · yz2 + xx · zy · zz2 − 7 · xx · zy
+ 6 · yx · xy · yy · zy + 16 · zx · xy · yy2 + 4 · zx · xy · zy2 + 6 · zx · xy · yz2 + 3

· zx · xy · zz2 − 7 · zx · xy + 6 · zx · yy · xz · yz))/4
(A.143)

(A.144)D(22, 16) = (
√

35 · yz · zz · (−4 · yz2 − 3 · zz2 + 3))/(2 ·
√

2)

(A.145)D(22, 17) = (
√

7 · (−8 · yx · zy2 · zz− 16 · yx · yz2 · zz− 12 · yx · zz3 + 12 · yx · zz+ 8

· zx · yy · zy · zz − 2 · xy · yz2 − xy · zz2 + xy − 2 · yy · xz · yz))/4
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(A.146)D(22, 18) = (
√

7 · (2 · xx · yy2 + 4 · xx · yz2 + xx · zz2 − 3 · xx− 2 · yx · xy · yy − 16

· yy · yz2 · zz − 4 · yy · zz3 + 4 · yy · zz − 8 · zy · yz · zz2))/4

(A.147)D(22, 19) = (
√

14 · (4 · yy2 · yz · zz + 4 · yy · zy · yz2 + 3 · yy · zy · zz2 − yy · zy + 3

· zy2 · yz · zz + 4 · yz3 · zz + 3 · yz · zz3 − 4 · yz · zz))/2

(A.148)D(22, 20) = (
√

14 · (8 · yx · yy2 · zy− 4 · yx · zy · yz2− 3 · yx · zy · zz2 + yx · zy− 8 · zx
·yy3−12 ·zx ·yy ·yz2−3 ·zx ·yy ·zz2+9 ·zx ·yy−6 ·zx ·zy ·yz ·zz))/4

D(22, 21) = (64 · yx · yy2 · zz + 24 · yx · zy2 · zz + 16 · yx · yz2 · zz + 12 · yx · zz3 − 28 · yx · zz
+ 24 · zx · yy · zy · zz + 48 · xy · yy2 + 12 · xy · zy2 + 18 · xy · yz2 + 9 · xy · zz2

− 21 · xy + 18 · yy · xz · yz)/4
(A.149)

D(22, 22) = (−30·xx·yy2−12·xx·zy2−12·xx·yz2−3·xx·zz2+21·xx−18·yx·xy ·yy+64·yy3

·zz+48 ·yy ·zy2 ·zz+48 ·yy ·yz2 ·zz+12 ·yy ·zz3−60 ·yy ·zz+24 ·zy ·yz ·zz2)/4
(A.150)

D(22, 23) = (
√

2 · (−32 · yy3 · zy − 16 · yy2 · yz · zz − 24 · yy · zy3 − 16 · yy · zy · yz2 − 12 · yy
· zy · zz2 + 28 · yy · zy− 12 · zy2 · yz · zz− 4 · yz3 · zz− 3 · yz · zz3 + 7 · yz · zz))/4

(A.151)

D(22, 24) = (
√

2

·(16·yx·yy2 ·zy+6·yx·zy3+4·yx·zy ·yz2+3·yx·zy ·zz2−7·yx·zy+16·zx·yy3

+18·zx·yy ·zy2+12·zx·yy ·yz2+3·zx·yy ·zz2−15·zx·yy+6·zx·zy ·yz ·zz))/4
(A.152)
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(A.153)D(23, 16) =
√

35 · (4 · yy2 · zz2 − 4 · yy2 − 8 · yy · zy · yz · zz + 4 · zy2 · yz2 − 4 · zy2

+ 8 · yz4 + 8 · yz2 · zz2 − 12 · yz2 + zz4 − 6 · zz2 + 5)/8

D(23, 17) = (
√

14 · (−2 · yx · yy · zy · zz+ 2 · yx · zy2 · yz+ 8 · yx · yz3 + 4 · yx · yz · zz2− 6 · yx
·yz+ 2 · zx ·yy2 · zz−2 · zx ·yy · zy ·yz+ 4 · zx ·yz2 · zz+ zx · zz3−3 · zx · zz))/4

(A.154)

D(23, 18) = (
√

14 · (8 ·yy ·yz3 +4 ·yy ·yz ·zz2−4 ·yy ·yz+4 ·zy ·yz2 ·zz+zy ·zz3−zy ·zz))/4
(A.155)

(A.156)D(23, 19) = (
√

7 · (−16 · yy2 · yz2− 8 · yy2 · zz2 + 8 · yy2− 8 · zy2 · yz2− 2 · zy2 · zz2

+ 6 · zy2 − 8 · yz4 − 8 · yz2 · zz2 + 16 · yz2 − zz4 + 8 · zz2 − 7))/4

(A.157)D(23, 20) = (
√

7 · (8 · yx · yy · yz2 + 4 · yx · yy · zz2 − 4 · yx · yy + 4 · zx · zy · yz2

+ zx · zy · zz2 − 3 · zx · zy))/2

D(23, 21) = (
√

2 · (−32 · yx · yy2 · yz − 6 · yx · yy · zy · zz − 10 · yx · zy2 · yz − 8 · yx · yz3 − 4

· yx · yz · zz2 + 14 · yx · yz − 10 · zx · yy2 · zz − 6 · zx · yy · zy · yz − 4 · zx · zy2
· zz − 4 · zx · yz2 · zz − zx · zz3 + 7 · zx · zz))/4

(A.158)

D(23, 22) = (
√

2 · (−32 · yy3 · yz − 16 · yy2 · zy · zz − 16 · yy · zy2 · yz − 24 · yy · yz3 − 12 · yy
· yz · zz2 + 28 · yy · yz− 4 · zy3 · zz− 12 · zy · yz2 · zz− 3 · zy · zz3 + 7 · zy · zz))/4

(A.159)
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D(23, 23) = (64 · yy4 + 64 · yy2 · zy2 + 64 · yy2 · yz2 + 20 · yy2 · zz2 − 84 · yy2 + 24 · yy · zy
· yz · zz + 8 · zy4 + 20 · zy2 · yz2 + 8 · zy2 · zz2 − 28 · zy2 + 8 · yz4 + 8 · yz2 · zz2

− 28 · yz2 + zz4 − 14 · zz2 + 21)/8

(A.160)

(A.161)D(23, 24) = (−16 ·yx ·yy3−8 ·yx ·yy ·zy2−8 ·yx ·yy ·yz2−4 ·yx ·yy ·zz2+12 ·yx ·yy
−8 ·zx ·yy2 ·zy−2 ·zx ·zy3−4 ·zx ·zy ·yz2−zx ·zy ·zz2 +5 ·zx ·zy)/2

(A.162)D(24, 16) =
√

35 · xz · yz · (−2 · yz2 − zz2 + 1)/2

D(24, 17) = (
√

14 ·(−2 ·xx ·yy2 ·yz−4 ·xx ·yz3−xx ·yz ·zz2+3 ·xx ·yz+2 ·yx ·xy ·yy ·yz−2

· yx · zy2 ·xz− 4 · yx ·xz · yz2− 3 · yx ·xz · zz2 + 3 · yx ·xz+ 2 · zx · yy · zy ·xz))/4
(A.163)

(A.164)D(24, 18) = (
√

14 · (−4 · xy · yz3 − 3 · xy · yz · zz2 + 3 · xy · yz − 4 · yy · xz · yz2

− yy · xz · zz2 + yy · xz))/4

(A.165)D(24, 19) =
√

7 · (2 · xy · yy · yz2 + xy · yy · zz2 − xy · yy + 2 · yy2 · xz · yz + zy2

· xz · yz + 2 · xz · yz3 + xz · yz · zz2 − 2 · xz · yz)

(A.166)D(24, 20) = (
√

7 · (2 · xx · yy · zy2 − 4 · xx · yy · yz2 − xx · yy · zz2 + xx · yy − 2 · yx
· xy · zy2 − 4 · yx · xy · yz2 − 3 · yx · xy · zz2 + 3 · yx · xy))/2
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D(24, 21) = (
√

2 · (10 · xx · yy2 · yz + 4 · xx · zy2 · yz + 4 · xx · yz3 + xx · yz · zz2 − 7 · xx · yz
+ 6 · yx · xy · yy · yz + 16 · yx · yy2 · xz + 6 · yx · zy2 · xz + 4 · yx · xz · yz2 + 3

· yx · xz · zz2 − 7 · yx · xz + 6 · zx · yy · zy · xz))/4
(A.167)

D(24, 22) = (
√

2 · (16 ·xy · yy2 · yz+ 4 ·xy · zy2 · yz+ 12 ·xy · yz3 + 9 ·xy · yz · zz2− 13 ·xy · yz
+16 ·yy3 ·xz+12 ·yy ·zy2 ·xz+12 ·yy ·xz ·yz2 +3 ·yy ·xz ·zz2−15 ·yy ·xz))/4

(A.168)

(A.169)D(24, 23) = (−16 ·xy ·yy3−8 ·xy ·yy ·zy2−8 ·xy ·yy ·yz2−4 ·xy ·yy ·zz2+12 ·xy ·yy
−8 ·yy2 ·xz ·yz−4 ·zy2 ·xz ·yz−2 ·xz ·yz3−xz ·yz ·zz2 +5 ·xz ·yz)/2

D(24, 24) = (8 · xx · yy3 + 4 · xx · yy · zy2 + 4 · xx · yy · yz2 + xx · yy · zz2 − 7 · xx · yy + 8

· yx · xy · yy2 + 4 · yx · xy · zy2 + 4 · yx · xy · yz2 + 3 · yx · xy · zz2 − 5 · yx · xy)/2

· yz − 4 · zy2 · xz · yz − 2 · xz · yz3 − xz · yz · zz2 + 5 · xz · yz)/2
(A.170)

A.2 Multipole Translations

Using the following formula

QClk =

l∑
l′=0

l′∑
k′=−l′

[(
l + k

l′ + k′

)(
l − k
l′ − k′

)] 1
2

QOl′k′Rl−l′,k−k′(−c) (A.171)

where the QClk are the multipole moments at the final position, the terms in curved brack-

ets are binomial coefficients, QOl′k′ are the multipole moments at the initial location and
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Rl−l′,k−k′(−c) is a regular spherical harmonic. The spherical harmonics are a function of

−c or {−x,−y,−z}. Let

Wlk,l′k′ =

[(
l + k

l′ + k′

)(
l − k
l′ − k′

)] 1
2

Rl−l′,k−k′(−c) (A.172)

such that

QClk =
l∑

l′=0

l′∑
k′=−l′

QOl′k′Wlk,l′k′(−c). (A.173)

If k is non-zero, the resulting spherical harmonic (R) and the corresponding multi-

pole moment (Q) will be complex. In that case, Q or R can be converted into real functions

using linear combinations of regular harmonics. The expression here is expressed in terms

of R, but one can obtain expressions for the multipoles by replacing R with Q.

Rlm =
Rlmc + iRlms

2bm
(A.174)

with the following conditions

if m > 0 bm = (−1)m
√

1

2
(A.175)

if m < 0 bm =

√
1

2
(A.176)

The above definitions ensure that the cosine component satisfies Rlmc = Rl|m|c and the sine

component satisfies Rlms = −Rl|m|s.[113] By definition spherical harmonics with l values

smaller than the absolute value of the m term are equal to zero.

161



The next several sections derive sample multipole translation expressions. Sec-

tion A.2.4 lists a full set of multipole translation expressions up to rank 4.

A.2.1 Rank 0: Charge translation

For Rank 0, there is only one term:

QC00 = QO00W00,00(−c) (A.177)

l = 0; k = 0; l′ = 0; k′ = 0;

QO00W00,10(−c) = QO00

[(
0

0

)(
0

0

)] 1
2

R00(−c) (A.178)

Since R00(−c) = 1,

QC00 = QO00 (A.179)

A.2.2 Rank 1: Dipole translation

For Rank 1, we will examine QC10.

QC10 = QO00W00,10(−c) +QO10W10,10(−c) +QO11W11,10(−c) +QO1,−1W1,−1,10(−c) (A.180)

Consider each term in the the expression above:
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• First term: l = 1; k = 0; l′ = 0; k′ = 0;

QO00W00,10(−c) = QO00

[(
1

0

)(
1

0

)] 1
2

R10(−c) (A.181)

= −zQO00 (A.182)

since R10(−c) = −z,.

• Second term: l = 1; k = 0; l′ = 1; k′ = 0;

QO10W10,10(−c) = QO10

[(
1

1

)(
1

1

)] 1
2

R00(−c) (A.183)

= QO10 (A.184)

where the final equality follows from the fact that R00(−c) = 1.

• Third term: l = 1; k = 0; l′ = 1; k′ = 1;

QO11W11,10(−c) = QO11

[(
1

2

)(
1

0

)] 1
2

R0,1(−c) = 0 (A.185)

Since |m|> l, the spherical harmonic is equal to zero, making the whole term equal to

zero.

• Fourth term: l = 1; k = 0; l′ = 1; k′ = −1;

QO1,−1W1,−1,10(−c) = QO1,−1

[(
1

0

)(
1

2

)] 1
2

R0,−1(−c) = 0 (A.186)

Again, the spherical harmonic is equal to zero, and so the whole term goes to zero.
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• Summing all the terms:

QC10 = QO10 − zQO00 (A.187)

A.2.3 Rank 2: Quadrupole translation

We will also examine a Rank 2 case. In this example, complex spherical harmonics

arise.

QC20 = QO00W00,20 +QO10W10,20 +QO11W11,20 +QO1,−1W1,−1,20 +QO20W20,20 +QO21W21,20

+QO2,−1W2,−1,20 +QO22W22,20 +QO2,−2W2,−2,20 (A.188)

Again, we evaluate this expression term by term:

• First term: l = 2; k = 0; l′ = 0; k′ = 0;

QO00W00,20(−c) = QO00

[(
2

0

)(
2

0

)] 1
2

R20(−c) =
1

2
(2z2 − x2 − y2)QO00 (A.189)

where R20(−c) = 1
2(3z2− r2) = 1

2(2z2−x2−y2) was used to obtain the final equality.

• Second Term: l = 2; k = 0; l′ = 1; k′ = 0;

QO10W10,20 = QO10

[(
2

1

)(
2

1

)] 1
2

R10(−c) = −2zQO10 (A.190)

since R10(−c) = −z.
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• Third term: l = 2; k = 0; l′ = 1; k′ = 1;

QO11W11,20(−c) = QO11

[(
2

2

)(
2

0

)] 1
2

R1,−1(−c) (A.191)

The spherical harmonic is complex, so we apply the rules for changing complex spher-

ical harmonics to linear combinations of regular spherical harmonics:

R1,−1 =
R11c − iR11s

2
√

1
2

=

√
1

2
(R11c − iR11s) (A.192)

Using the same rules for the complex multipole:

Q11 =
Q11c + iQ11s

2(−1)1
√

1
2

= −
√

1

2
(Q11c + iQ11s) (A.193)

Combining these two gives:

QO11R1,−1(−c) = −
√

1

2
(Q11c + iQ11s)

√
1

2
(R11c(−c)− iR11s(−c)) (A.194)

Simplifying the expression gives,

QO11R1,−1(−c) = −1

2
(Q11cR11c(−c)+iQ11sR11c(−c)−iQ11cR11s(−c)+Q11sR11s(−c))

(A.195)

While this expression still includes complex terms, the imaginary parts will cancel with

other terms in the overall expression, resulting in a final expression for the translation

that is real.
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• Fourth term: l = 2; k = 0; l′ = 1; k′ = −1;

QO1,−1W1,−1,20(−c) = QO1,−1

[(
2

0

)(
2

2

)] 1
2

R1,1(−c) = QO1,−1R1,1(−c) (A.196)

Once again, the multipole and spherical harmonic are complex.

R11 =
R11c + iR11s

2(−1)1
√

1
2

= −
√

1

2
(R11c + iR11s) (A.197)

Q1,−1 =
Q11c − iQ11s

2
√

1
2

=

√
1

2
(Q11c − iQ11s) (A.198)

So the entire term is:

QO1,−1R1,1(−c) = −1

2
(Q11cR11c(−c)+iQ11cR11s(−c)−iQ11sR11c(−c)+Q11sR11s(−c))

(A.199)

• Fifth term: l = 2; k = 0; l′ = 2; k′ = 0;

QO20W020,20 = QO20

[(
2

2

)(
2

2

)] 1
2

R20(−c) = QO20R00(−c) = QO20 (A.200)

since R00 = 1. One can show that terms six through nine have Rlm with |m|> l and

are therefore equal to zero.
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• Combining the first, second, third, fourth and fifth terms,

QC20 =
1

2
(2z2 − x2 − y2)QO00 − 2zQO10 −

1

2
(Q11cR11c(−c)

+ iQ11sR11c(−c)− iQ11cR11s(−c) +Q11sR11s(−c))

− 1

2
(Q11cR11c(−c) + iQ11cR11s(−c)− iQ11sR11c(−c) +Q11sR11s(−c)) +QO20

(A.201)

QC20 =
1

2
(2z2 − x2 − y2)QO00 − 2zQO10 −QO11cR11c(−c)−QO11sR11s(−c) +QO20 (A.202)

Finally, since R11c(−c) = −x and R11s(−c) = −y,

QC20 =
1

2
(2z2 − x2 − y2)QO00 − 2zQO10 + xQO11c + yQO11s +QO20 (A.203)

A.2.4 Full List of Multipolar Translation Expressions up to Rank 4

Expressions for translating multipoles from some origin O to a new position C

have been tabulated below. The vector c = (x, y, z) defines the translation from O to C.

Rank 0:
(A.204)QC00 = QO00

Rank 1:
(A.205)QC10 = QO10 − x ·QO00

(A.206)QC11c = QO11c − y ·QO00

(A.207)QC11s = QO11s − z ·QO00
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Rank 2:

(A.208)QC20 =QO20 +0.5 · (2 ·x ·QO10 +2 ·y ·QO11c−4 ·z ·QO11s+2 ·z2 ·QO00−x2 ·QO00−y2 ·QO00)

(A.209)QC21c = QO21c −
√

3 · z ·QO10 −
√

3 · x ·QO11s +
√

3 · x · z ·QO00

(A.210)QC21s = QO21s −
√

3 · z ·QO11c −
√

3 · y ·QO11s +
√

3 · y · z ·QO00

(A.211)QC22c = QO22c + 0.5 · (2 ·
√

3 · y ·QO11c − 2 ·
√

3 · x ·QO10 +
√

3 · x2 ·QO00 −
√

3 · y2 ·QO00)

(A.212)QC22s = QO22s −
√

3 · x ·QO11c −
√

3 · y ·QO10 +
√

3 · x · y ·QO00

Rank 3:

QC30 = QO30 + 0.5 · (3 · x2 · z ·QO00 + 3 · y2 · z ·QO00 − 2 · z3 ·QO00 − 3 · x2 ·QO11s − 3 · y2 ·QO11s + 6

· z2 ·QO11s− 6 · z ·QO20− 6 ·x · z ·QO10− 6 · y · z ·QO11c + 2 ·
√

3 ·x ·QO21c + 2 ·
√

3 · y ·QO21s)
(A.213)

QC31c = QO31c + 0.25 · (
√

6 · x3 ·QO00 +
√

6 · x · y2 ·QO00 − 4 ·
√

6 · x · z2 ·QO00 + 8 ·
√

6 · x · z
·QO11s − 4 ·

√
6 · x ·QO20 − 3 ·

√
6 · x2 ·QO10 −

√
6 · y2 ·QO10 + 4 ·

√
6 · z2 ·QO10 − 2 ·

√
6 · x

· y ·QO11c − 8 ·
√

2 · z ·QO21c + 2 ·
√

2 · x ·QO22c + 2 ·
√

2 · y ·QO22s)
(A.214)

QC31s = QO31s + 0.25 · (
√

6 · x2 · y ·QO00 +
√

6 · y3 ·QO00 − 4 ·
√

6 · y · z2 ·QO00 + 8 ·
√

6 · y · z ·QO11s
− 4 ·

√
6 · y ·QO20 − 2 ·

√
6 · x · y ·QO10 −

√
6 · x2 ·QO11c − 3 ·

√
6 · y2 ·QO11c + 4 ·

√
6 · z2

·QO11c − 8 ·
√

2 · z ·QO21s − 2 ·
√

2 · y ·QO22c + 2 ·
√

2 · x ·QO22s)
(A.215)
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QC32c = QO32c + 0.5 · (−
√

15 ·x2 · z ·QO00 +
√

15 · y2 · z ·QO00 +
√

15 ·x2 ·QO11s−
√

15 · y2 ·QO11s + 2

·
√

15 ·x ·z ·QO10−2 ·
√

15 ·y ·z ·QO11c−2 ·
√

5 ·x ·QO21c+2 ·
√

5 ·y ·QO21s−2 ·
√

5 ·z ·QO22c)
(A.216)

(A.217)QC32s = QO32s −
√

15 · x · y · z ·QO00 +
√

15 · x · y ·QO11s +
√

15 · y · z ·QO10
+
√

15 · x · z ·QO11c −
√

5 · y ·QO21c −
√

5 · x ·QO21s −
√

5 · z ·QO22s

(A.218)QC33c = QO33c + 0.25 · (−
√

10 · x3 ·QO00 + 3 ·
√

10 · x · y2 ·QO00 + 3 ·
√

10 · x2 ·QO10 − 3

·
√

10 · y2 ·QO10 − 6 ·
√

10 · x · y ·QO11c − 2 ·
√

30 · x ·QO22c + 2 ·
√

30 · y ·QO22s)

(A.219)QC33s = QO33s + 0.25 · (−3 ·
√

10 · x2 · y ·QO00 +
√

10 · y3 ·QO00 + 6 ·
√

10 · x · y ·QO10 + 3

·
√

10 · x2 ·QO11c − 3 ·
√

10 · y2 ·QO11c − 2 ·
√

30 · y ·QO22c − 2 ·
√

30 · x ·QO22s)

Rank 4:

QC40 =QO40 + 0.125 · (3 ·x4 ·QO00 + 6 ·x2 ·y2 ·QO00 + 3 ·y4 ·QO00−24 ·x2 · z2 ·QO00−24 ·y2 · z2 ·QO00
+ 8 · z4 ·QO00 + 48 · x2 · z ·QO11s + 48 · y2 · z ·QO11s− 32 · z3 ·QO11s− 24 · x2 ·QO20− 24 · y2

·QO20 + 48 · z2 ·QO20−32 · z ·QO30−12 ·x3 ·QO10−12 ·x · y2 ·QO10 + 48 ·x · z2 ·QO10−12 ·x2

· y ·QO11c− 12 · y3 ·QO11c + 48 · y · z2 ·QO11c− 32 ·
√

3 ·x · z ·QO21c− 32 ·
√

3 · y · z ·QO21s + 4

·
√

3 ·x2 ·QO22c− 4 ·
√

3 · y2 ·QO22c + 8 ·
√

3 ·x · y ·QO22s + 8 ·
√

6 ·x ·QO31c + 8 ·
√

6 · y ·QO31s)
(A.220)

QC41c =QO41c+0.25 · (−3 ·
√

10 ·x3 ·z ·QO00−3 ·
√

10 ·x ·y2 ·z ·QO00 +4 ·
√

10 ·x ·z3 ·QO00 +3 ·
√

10

·x3 ·QO11s+3 ·
√

10 ·x ·y2 ·QO11s−12 ·
√

10 ·x ·z2 ·QO11s+12 ·
√

10 ·x ·z ·QO20−4 ·
√

10 ·x
·QO30 +9 ·

√
10 ·x2 ·z ·QO10 +3 ·

√
10 ·y2 ·z ·QO10−4 ·

√
10 ·z3 ·QO10 +6 ·

√
10 ·x ·y ·z ·QO11c

− 3 ·
√

30 ·x2 ·QO21c−
√

30 · y2 ·QO21c + 4 ·
√

30 · z2 ·QO21c− 2 ·
√

30 ·x · y ·QO21s− 2 ·
√

30

·x · z ·QO22c− 2 ·
√

30 · y · z ·QO22s− 4 ·
√

15 · z ·QO31c + 2 ·
√

6 ·x ·QO32c + 2 ·
√

6 · y ·QO32s)
(A.221)
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QC41s =QO41s+0.25 · (−3 ·
√

10 ·x2 ·y ·z ·QO00−3 ·
√

10 ·y3 ·z ·QO00 +4 ·
√

10 ·y ·z3 ·QO00 +3 ·
√

10

·x2 ·y ·QO11s+3 ·
√

10 ·y3 ·QO11s−12 ·
√

10 ·y ·z2 ·QO11s+12 ·
√

10 ·y ·z ·QO20−4 ·
√

10 ·y
·QO30+6 ·

√
10 ·x ·y ·z ·QO10+3 ·

√
10 ·x2 ·z ·QO11c+9 ·

√
10 ·y2 ·z ·QO11c−4 ·

√
10 ·z3 ·QO11c

− 2 ·
√

30 ·x · y ·QO21c−
√

30 ·x2 ·QO21s− 3 ·
√

30 · y2 ·QO21s + 4 ·
√

30 · z2 ·QO21s + 2 ·
√

30

· y · z ·QO22c− 2 ·
√

30 ·x · z ·QO22s− 4 ·
√

15 · z ·QO31s− 2 ·
√

6 · y ·QO32c + 2 ·
√

6 ·x ·QO32s)
(A.222)

QC42c = QO42c + 0.25 · (−
√

5 · x4 ·QO00 +
√

5 · y4 ·QO00 + 6 ·
√

5 · x2 · z2 ·QO00− 6 ·
√

5 · y2 · z2 ·QO00
− 12 ·

√
5 ·x2 · z ·QO11s+ 12 ·

√
5 · y2 · z ·QO11s+ 6 ·

√
5 ·x2 ·QO20− 6 ·

√
5 · y2 ·QO20 + 4 ·

√
5

·x3 ·QO10− 12 ·
√

5 ·x · z2 ·QO10− 4 ·
√

5 · y3 ·QO11c + 12 ·
√

5 · y · z2 ·QO11c + 8 ·
√

15 ·x · z
·QO21c− 8 ·

√
15 · y · z ·QO21s− 2 ·

√
15 · x2 ·QO22c− 2 ·

√
15 · y2 ·QO22c + 4 ·

√
15 · z2 ·QO22c

−2 ·
√

30 ·x ·QO31c+2 ·
√

30 ·y ·QO31s−8 ·
√

3 ·z ·QO32c+2 ·
√

2 ·x ·QO33c+2 ·
√

2 ·y ·QO33s)
(A.223)

QC42s = QO42s + 0.5 · (−
√

5 · x3 · y ·QO00 −
√

5 · x · y3 ·QO00 + 6 ·
√

5 · x · y · z2 ·QO00 − 12 ·
√

5 · x
· y · z ·QO11s + 6 ·

√
5 · x · y ·QO20 + 3 ·

√
5 · x2 · y ·QO10 +

√
5 · y3 ·QO10 − 6 ·

√
5 · y · z2

·QO10 +
√

5 · x3 ·QO11c + 3 ·
√

5 · x · y2 ·QO11c − 6 ·
√

5 · x · z2 ·QO11c + 4 ·
√

15 · y · z
·QO21c + 4 ·

√
15 · x · z ·QO21s −

√
15 · x2 ·QO22s −

√
15 · y2 ·QO22s + 2 ·

√
15 · z2 ·QO22s

−
√

30 · y ·QO31c −
√

30 · x ·QO31s − 4 ·
√

3 · z ·QO32s −
√

2 · y ·QO33c +
√

2 · x ·QO33s)
(A.224)

QC43c = QO43c + 0.25 · (
√

70 · x3 · z ·QO00 − 3 ·
√

70 · x · y2 · z ·QO00 −
√

70 · x3 ·QO11s + 3 ·
√

70 · x
· y2 ·QO11s − 3 ·

√
70 · x2 · z ·QO10 + 3 ·

√
70 · y2 · z ·QO10 + 6 ·

√
70 · x · y · z ·QO11c

+
√

210 · x2 ·QO21c −
√

210 · y2 ·QO21c − 2 ·
√

210 · x · y ·QO21s + 2 ·
√

210 · x · z ·QO22c
− 2 ·

√
210 · y · z ·QO22s − 2 ·

√
42 · x ·QO32c + 2 ·

√
42 · y ·QO32s − 4 · rt7 · z ·QO33c)

(A.225)

QC43s = QO43s + 0.25 · (3 ·
√

70 · x2 · y · z ·QO00 −
√

70 · y3 · z ·QO00 − 3 ·
√

70 · x2 · y ·QO11s +
√

70

· y3 ·QO11s − 6 ·
√

70 · x · y · z ·QO10 − 3 ·
√

70 · x2 · z ·QO11c + 3 ·
√

70 · y2 · z ·QO11c + 2

·
√

210 · x · y ·QO21c +
√

210 · x2 ·QO21s −
√

210 · y2 ·QO21s + 2 ·
√

210 · y · z ·QO22c + 2

·
√

210 · x · z ·QO22s − 2 ·
√

42 · y ·QO32c − 2 ·
√

42 · x ·QO32s − 4 · rt7 · z ·QO33s)
(A.226)
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QC44c = QO44c + 0.125 · (
√

35 · x4 ·QO00− 6 ·
√

35 · x2 · y2 ·QO00 +
√

35 · y4 ·QO00− 4 ·
√

35 · x3 ·QO10
+ 12 ·

√
35 ·x · y2 ·QO10 + 12 ·

√
35 ·x2 · y ·QO11c− 4 ·

√
35 · y3 ·QO11c + 4 ·

√
105 ·x2 ·QO22c

− 4 ·
√

105 · y2 ·QO22c − 8 ·
√

105 · x · y ·QO22s − 8 ·
√

14 · x ·QO33c + 8 ·
√

14 · y ·QO33s)
(A.227)

QC44s = QO44s + 0.5 · (
√

35 · x3 · y ·QO00 −
√

35 · x · y3 ·QO00 − 3 ·
√

35 · x2 · y ·QO10 +
√

35 · y3

·QO10 −
√

35 · x3 ·QO11c + 3 ·
√

35 · x · y2 ·QO11c + 2 ·
√

105 · x · y ·QO22c +
√

105 · x2

·QO22s −
√

105 · y2 ·QO22s − 2 ·
√

14 · y ·QO33c − 2 ·
√

14 · x ·QO33s)
(A.228)

A.3 Polarizability Translations

One can employ similar techniques to derive translation expressions for polariz-

abilities. Sample derivations are provided in the Supporting Information of Ref [88]. Here,

a complete set of polarizability translations up to rank 2 (quadrupole-quadrupole) are pro-

vided.

In the following expression, αlm,l′m′ refers to an original, un-translated polarizabil-

ity, and α′lm,l′m′ is the polarizability following translation to the new coordinates. Since the

polarizability tensor is symmetric α′lm,l′m′ = α′l′m′,lm, only symmetrically unique elements

are given below.

As noted in the main paper, the charge polarizability is zero, and the dipole-dipole

polarizabilities do not change upon translation. See Ref [113] for more details.

Dipole-Quadrupole:

α′11c,20 = α11c,20 + α11c,11cx+ α11c,11sy − 2α11c,10z (A.229)
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α′11c,21c = α11c,21c −
√

3α11c,10x−
√

3α11c,11cz (A.230)

α′11c,21s = α11c,21s −
√

3α11c,10y −
√

3α11c,11sz (A.231)

α′11c,22c = α11c,22c −
√

3α11c,11cx+
√

3α11c,11sy (A.232)

α′11c,22s = α11c,22s −
√

3α11c,11sx−
√

3α11c,11cy (A.233)

α′11s,20 = α11s,20 + α11c,11sx+ α11s,11sy − 2α11s,10z (A.234)

α′11s,21c = α11s,21c −
√

3α11s,10x−
√

3α11c,11sz (A.235)

α′11s,21s = α11s,21s −
√

3α11s,10y −
√

3α11s,11sz (A.236)

α′11s,22c = α11s,22c −
√

3α11c,11sx+
√

3α11s,11sy (A.237)

α′11s,22s = α11s,22s −
√

3α11s,11sx−
√

3α11c,11sy (A.238)

α′10,20 = α10,20 + α11c,10x+ α11s,10y − 2α10,10z (A.239)

α′10,21c = α10,21c −
√

3α10,10x−
√

3α11c,10z (A.240)

α′10,21s = α10,21s −
√

3α10,10y −
√

3α11s,10z (A.241)

α′10,22c = α10,22c −
√

3α11c,10x+
√

3α11s,10y (A.242)

α10,22s = α10,22s −
√

3α11s,10x−
√

3α11c,10y (A.243)
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Quadrupole-quadrupole:

α20,20 = α20,20 + 2α11c,20x+ α11c,11cxx+ 2α11s,20y + 2α11c,11sxy + α11s,11syy − 4α10,20z

− 4α11c,10xz − 4α11s,10yz + 4α10,10zz (A.244)

α20,21c = α20,21c −
√

3α10,20x+ α11c,21cx−
√

3α11c,10xx+ α11s,21cy −
√

3α11s,10xy

−
√

3α11c,20z − 2α10,21cz −
√

3α11c,11cxz + 2
√

3α10,10xz −
√

3α11c,11syz + 2
√

3α11c,10zz

(A.245)

α20,21s = α20,21s + α11c,21sx−
√

3α10,20y + α11s,21sy −
√

3α11c,10xy −
√

3α11s,10yy

−
√

3α11s,20z − 2α10,21sz −
√

3α11c,11sxz −
√

3α11s,11syz + 2
√

3α10,10yz + 2
√

3α11s,10zz

(A.246)

α20,22c = α20,22c −
√

3α11c,20x+ α11c,22cx−
√

3α11c,11cxx+
√

3α11s,20y + α11s,22cy

+
√

3α11s,11syy − 2α10,22cz + 2
√

3α11c,10xz − 2
√

3α11s,10yz (A.247)
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α20,22s = α20,22s −
√

3α11s,20x+ α11c,22sx−
√

3α11c,11sxx−
√

3α11c,20y + α11s,22sy

−
√

3α11c,11cxy −
√

3α11s,11sxy −
√

3α11c,11syy − 2α10,22sz + 2
√

3α11s,10xz

+ 2
√

3α11c,10yz (A.248)

α21c,21c = α21c,21c − 2
√

3α11c,21cz − 2
√

3α10,21cx + 3α10,10xx + 3α11c,11czz + 6α11c,10xz

(A.249)

α21c,21s = α21c,21s −
√

3α11s,21cz −
√

3α10,21cy −
√

3α11c,21sz + 3α11c,11szz + 3α11c,10zy

−
√

3α10,21sx+ 3α11s,10xz + 3α10,10xy (A.250)

α21c,22c = α21c,22c +
√

3α11s,21cy −
√

3α11c,21cx−
√

3α11c,22cz − 3α11c,11syz + 3α11c,11cxz

−
√

3α10,22cx− 3α11s,10xy + 3α11c,10xx (A.251)

α21c,22s = α21c,22s −
√

3α11s,21cx−
√

3α11c,21cy −
√

3α11c,22sz + 3α11c,11sxz + 3α11c,11cyz

−
√

3α10,22sx+ 3α11s,10xx+ 3α11c,10xy (A.252)
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α21s,21s = α21s,21s − 2
√

3α10,21sy + 3α10,10yy − 2
√

3α11s,21sz + 6α11s,10yz + 3α11s,11szz

(A.253)

α21s,22c = α21s,22c −
√

3α11c,21sx+
√

3α11s,21sy −
√

3α10,22cy + 3α11c,10xy − 3α11s,10yy

−
√

3α11s,22cz + 3α11c,11sxz − 3α11s,11syz (A.254)

α21s,22s = α21s,22s −
√

3α11s,21sx−
√

3α11c,21sy −
√

3α10,22sy + 3α11s,10xy + 3α11c,10yy

−
√

3α11s,22sz + 3α11s,11sxz + 3α11c,11syz (A.255)

α22c,22c = α22c,22c−2
√

3α11c,22cx+3α11c,11cxx+2
√

3α11s,22cy−6α11c,11sxy+3α11s,11syy

(A.256)

α22c,22s = α22c,22s −
√

3α11s,22cx−
√

3α11c,22sx+ 3α11c,11sxx−
√

3α11c,22cy +
√

3α11s,22sy

+ 3α11c,11cxy − 3α11s,11sxy − 3α11c,11syy (A.257)

α22s,22s = α22s,22s − 2
√

3α11s,22sx+ 3α11s,11sxx− 2
√

3α11c,22sy + 6α11c,11sxy + 3α11c,11cyy

(A.258)
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A.4 Radial Distribution Functions for Pyrimidine in Water

The distribution of the CG sites as determined by K-means reproduces the general

structure of the explicit solvent. Figure A.1 compares the radial distribution function (RDF)

for pyrimidine in water using both the explicit and coarse-grained models. The roughness of

the ACPE RDF stems from the smaller number of data points in the ACPE representation.
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Figure A.1: RDF of the pyrimidine N to H of water as computed with from the explicit MD
simulation configurations or from the coarse-grained representation generated via K-Means.
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A.5 Convergence of the Excitation Energies with Configura-

tion Sampling

Figure A.2 demonstrates that the excitation energies are well converged with re-

spect to the number of configurations included in the configurational average. By 400

configurations, the variations are a few hundredths of an eV or less.
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Figure A.2: Convergence of the configurational average for the vertical excitation ener-
gies with increasing number of configurations (a) acrolein, (b) acetone, (c) pyrimidine, (d)
phenol.
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A.6 Sensitivity of ACPE Excitation Energies to the K-means

Initial Guess

The K-means clustering algorithm used to determine coarse-grained sites in the

ACPE model begins with a random initial guess. Three trials with different random seeds

were performed for each of the aqueous solution examples. Table A.1 shows that the result-

ing excitation energies vary only be a few hundredths of an eV or less with different initial

guesses. The ACPE excitation energies reported in Table 3 of the main paper are averages

of these values.

Table A.1: Variation in the ACPE excitation energies with different random initial guesses
for the K-means algorithm.

Trial Acrolein Acetone Pyrimidine

E (n→ π∗) E (n→ π∗) E (n→ π∗)
1 4.09 4.64 5.01
2 4.07 4.62 4.97
3 4.05 4.66 5.05

E (π → π∗) – –
1 6.06 – –
2 6.07 – –
3 6.06 – –
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Appendix B

Always Stable Predictor Corrector

B.1 Transferability Across Different Chemical Systems

In addition to validation between self consistent field (SCF) solvers we have also

tested the behaviour of the N -step predictor in two different chemical systems. In Figure B.1

we demonstrate the energy drift behavior for three SCF iterations is practically identical

between a system of 500 water molecules and a system of a ubiquitin protein solvated

by 2835 water molecules. Future testing should focus on the behavior of more chemical

systems.
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Figure B.1: Comparison of the energy drift (kcal mol−1 ns−1 per atom) with different N -
steps predictors for a water box and ubiquitin. Each data point was obtained from a 1 ns
NVE simulation using three iterations of the DC-JI/DIIS polarization solver.

B.2 Predictor Coefficients

The Always Stable Predictor Corrector (ASPC) uses a history-based predictor for

the induced dipoles,

µp(t+ 1) =
k+1∑
j=0

Bj+1µ(t− jh) (B.1)

where µp(t+ 1) is the predicted dipole, Bj+1 are the scaling coefficients and µ(t− jh) are

the induced dipoles from previous time steps. The time step size is h and k + 2 is the

total number of values stored in history. The coefficients of the ASPC predictor are derived

such that the predictor error contributions that are time irreversible are zeroed out.[13]

A recursive description of the coefficients that maintains this property is described below,

followed by the coefficients worked out to the 25-step predictor.
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B.2.1 Recursive Form for the Predictor Coefficients

These following recursive expressions for Bi are taken directly from Ref [13]:

B1 = 1(4k + 6) 1
(k+3)

B2 = −2(4k + 6) (k+1)
(k+3)(k+4)

B3 = 3(4k + 6) (k+1)(k+0)
(k+3)(k+4)(k+5)

B4 = −4(4k + 6) (k+1)(k+0)(k−1)
(k+3)(k+4)(k+5)(k+6)

...

Bi = 0 for i > k + 2

B.2.2 The Predictor Coefficients for N=2–25-Step Predictors

The present study considered up to 16-step predictors, but one conceivably could

wish to explore even longer-history predictors. The expressions have been derived here for

all N -step predictors ranging from N=2–25.

2-step predictor (k = 0)

B1 = 2

B2 = −1

3-step predictor (k = 1)

B1 = 5/2

B2 = −2
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B3 = 1/2

4-step predictor (k = 2)

B1 = 14/5

B2 = −14/5

B3 = 6/5

B4 = −1/5

5-step predictor (k = 3)

B1 = 3

B2 = −24/7

B3 = 27/14

B4 = −4/7

B5 = 1/14

6-step predictor (k = 4)

B1 = 22/7

B2 = −55/14

B3 = 55/21

B4 = −22/21

B5 = 5/21

B6 = −1/42
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7-step predictor (k = 5)

B1 = 13/4

B2 = −13/3

B3 = 13/4

B4 = −52/33

B5 = 65/132

B6 = −1/11

B7 = 1/132

8-step predictor (k = 6)

B1 = 10/3

B2 = −14/3

B3 = 42/11

B4 = −70/33

B5 = 350/429

B6 = −30/143

B7 = 14/429

B8 = −1/429

9-step predictor (k = 7)

B1 = 17/5
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B2 = −272/55

B3 = 238/55

B4 = −1904/715

B5 = 170/143

B6 = −272/715

B7 = 119/1430

B8 = −8/715

B9 = 1/1430

10-step predictor (k = 8)

B1 = 38/11

B2 = −57/11

B3 = 684/143

B4 = −456/143

B5 = 228/143

B6 = −171/286

B7 = 399/2431

B8 = −76/2431

B9 = 9/2431

B10 = −1/4862
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11-step predictor (k = 9)

B1 = 7/2

B2 = −70/13

B3 = 135/26

B4 = −48/13

B5 = 105/52

B6 = −189/221

B7 = 245/884

B8 = −280/4199

B9 = 68/6043

B10 = −5/4199

B11 = 1/16796

12-step predictor (k = 10)

B1 = 46/13

B2 = −506/91

B3 = 506/91

B4 = −759/182

B5 = 3795/1547

B6 = −253/221

B7 = 1771/4199

B8 = −506/4199
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B9 = 208/8055

B10 = −115/29393

B11 = 11/29393

B12 = −1/58786

13-step predictor (k = 11)

B1 = 25/7

B2 = −40/7

B3 = 165/28

B4 = −550/119

B5 = 1375/476

B6 = −559/383

B7 = 385/646

B8 = −440/2261

B9 = 225/4522

B10 = −167/17369

B11 = 27/20423

B12 = −6/52003

B13 = 1/208012

14-step predictor (k = 12)

B1 = 18/5
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B2 = −117/20

B3 = 1053/170

B4 = −429/85

B5 = 2145/646

B6 = −875/488

B7 = 1287/1615

B8 = −468/1615

B9 = 236/2775

B10 = −59/2997

B11 = 47/13565

B12 = −10/22929

B13 = 13/371450

B14 = −1/742900

15-step predictor (k = 13)

B1 = 29/8

B2 = −203/34

B3 = 2639/408

B4 = −2511/461

B5 = 2655/709

B6 = −1821/851

B7 = 2639/2584
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B8 = −557/1372

B9 = 363/2725

B10 = −126/3547

B11 = 222/29543

B12 = −17/13998

B13 = 1/7094

B14 = −4/382063

B15 = 1/2674440

16-step predictor (k = 14)

B1 = 62/17

B2 = −310/51

B3 = 2170/323

B4 = −2329/400

B5 = 1701/409

B6 = −806/323

B7 = 1024/809

B8 = −479/883

B9 = 257/1316

B10 = −434/7429

B11 = 191/13375

B12 = −62/22287
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B13 = 3/7217

B14 = −3/67015

B15 = 2/646323

B16 = −1/9694845

17-step predictor (k = 15)

B1 = 11/3

B2 = −352/57

B3 = 132/19

B4 = −352/57

B5 = 260/57

B6 = −1248/437

B7 = 2002/1311

B8 = −659/944

B9 = 594/2185

B10 = −352/3933

B11 = 73/2966

B12 = −70/12601

B13 = 572/570285

B14 = −7/50224

B15 = 3/214289

B16 = −1/1104927
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B17 = 1/35357670

18-step predictor (k = 16)

B1 = 70/19

B2 = −119/19

B3 = 136/19

B4 = −1360/209

B5 = 1114/225

B6 = −1342/417

B7 = 2779/1542

B8 = −1904/2185

B9 = 476/1311

B10 = −170/1311

B11 = 29/737

B12 = −206/20567

B13 = 44/20951

B14 = −55/155636

B15 = 25/544726

B16 = −2/463017

B17 = 1/3813082

B18 = −1/129644790
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19-step predictor (k = 17)

B1 = 37/10

B2 = −222/35

B3 = 1316/179

B4 = −3055/448

B5 = 2131/400

B6 = −1833/512

B7 = 1276/611

B8 = −611/576

B9 = 421/898

B10 = −2516/14007

B11 = 131/2210

B12 = −172/10307

B13 = 53/13402

B14 = −44/56823

B15 = 7/57374

B16 = −6/403411

B17 = 1/759362

B18 = −1/13267742

B19 = 1/477638700
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20-step predictor (k = 18)

B1 = 26/7

B2 = −494/77

B3 = 2764/367

B4 = −4346/611

B5 = 3124/549

B6 = −1627/413

B7 = 1611/676

B8 = −1611/1274

B9 = 1069/1816

B10 = −271/1130

B11 = 229/2691

B12 = −717/27461

B13 = 223/32521

B14 = −31/20390

B15 = 27/96688

B16 = −1/24172

B17 = 2/420877

B18 = −1/2517469

B19 = 1/46506926

B20 = −1/1767263190
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21-step predictor (k = 19)

B1 = 41/11

B2 = −1640/253

B3 = 3895/506

B4 = −3451/467

B5 = 761/126

B6 = −5287/1231

B7 = 1573/586

B8 = −1013/684

B9 = 844/1169

B10 = −345/1111

B11 = 941/8014

B12 = −223/5745

B13 = 37/3324

B14 = −30/10949

B15 = 31/54307

B16 = −11/111406

B17 = 3/217331

B18 = −1/667085

B19 = 1/8426342

B20 = −1/164103010

B21 = 1/6564120420
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22-step predictor (k = 20)

B1 = 86/23

B2 = −301/46

B3 = 903/115

B4 = −2739/358

B5 = 1154/181

B6 = −13889/2990

B7 = 1791/599

B8 = −938/549

B9 = 1579/1819

B10 = −355/906

B11 = 71/453

B12 = −142/2567

B13 = 146/8527

B14 = −71/15402

B15 = 17/15919

B16 = −3/14297

B17 = 3/87464

B18 = −1/220280

B19 = 1/2139034

B20 = −1/28449148
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B21 = 1/582530167

B22 = −1/24466267020

23-step predictor (k = 21)

B1 = 15/4

B2 = −33/5

B3 = 2079/260

B4 = −308/39

B5 = 1045/156

B6 = −1881/377

B7 = 1359/412

B8 = −1397/718

B9 = 2482/2419

B10 = −1021/2111

B11 = 226/1111

B12 = −342/4495

B13 = 180/7147

B14 = −295/40243

B15 = 12/6451

B16 = −14/34397

B17 = 7/92496

B18 = −2/170555
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B19 = 1/678629

B20 = −1/6930497

B21 = 1/96806946

B22 = −1/2079149174

B23 = 1/91482563640

24-step predictor (k = 22)

B1 = 94/25

B2 = −2162/325

B3 = 2179/268

B4 = −2179/268

B5 = 1535/219

B6 = −5002/939

B7 = 1263/350

B8 = −1882/859

B9 = 386/323

B10 = −809/1381

B11 = 457/1773

B12 = −211/2078

B13 = 435/12193

B14 = −128/11509

B15 = 101/33056
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B16 = −23/31365

B17 = 6/39467

B18 = −3/111823

B19 = 3/759220

B20 = −1/2115693

B21 = 1/22668139

B22 = −1/331779123

B23 = 1/7457817688

B24 = −1/343059613650

25-step predictor (k = 23)

B1 = 49/13

B2 = −784/117

B3 = 322/39

B4 = −5729/686

B5 = 1878/257

B6 = −809/143

B7 = 3237/826

B8 = −1627/666

B9 = 1829/1331

B10 = −1523/2182

B11 = 564/1763
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B12 = −508/3847

B13 = 277/5660

B14 = −155/9558

B15 = 7/1465

B16 = −43/34591

B17 = 17/60065

B18 = −14/251105

B19 = 4/427229

B20 = −1/761002

B21 = 1/6667825

B22 = −1/74785723

B23 = 1/1144546715

B24 = −1/26873003069

B25 = 1/1289904147324
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