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Heterochromatin is a gene-repressive protein–nucleic acid ultrastructure that
is initially nucleated by DNA sequences. However, following nucleation,
heterochromatin can then propagate along the chromatin template in a
sequence-independent manner in a reaction termed spreading. At the
heart of this process are enzymes that deposit chemical information on chro-
matin, which attracts the factors that execute chromatin compaction and
transcriptional or co/post-transcriptional gene silencing. Given that these
enzymes deposit guiding chemical information on chromatin they are com-
monly termed ‘writers’. While the processes of nucleation and central
actions of writers have been extensively studied and reviewed, less is under-
stood about how the spreading process is regulated. We discuss how the
chromatin substrate is prepared for heterochromatic spreading, and how
trans-acting factors beyond writer enzymes regulate it. We examine mechan-
isms by which trans-acting factors in Suv39, PRC2, SETDB1 and SIR writer
systems regulate spreading of the respective heterochromatic marks across
chromatin. While these systems are in some cases evolutionarily and
mechanistically quite distant, common mechanisms emerge which these
trans-acting factors exploit to tune the spreading reaction.
1. Introduction
Heterochromatin is a gene-repressive chromatin structure that has been visualized
cytologically for over a century. The namewas coined by Emil Heitz and describes
chromosomal domains that remain condensed throughout the cell cycle [1]. We
have learned much about heterochromatin over the century, yet its behaviours
remain important to explore, given its central role in the eukaryotic cell: constitu-
tive heterochromatin shapes the normal functioning of the genome, while
facultative heterochromatin, which can change across lineages, directs normal
development in multicellular organisms. In some ways, both types of heterochro-
matin, but especially facultative heterochromatin, are formed by a process similar
to the activation of transcription: DNA sequences dictate the local recruitment of
repressive factors [2,3]. The field terms those ‘nucleation sites’ rather than promo-
ters and enhancers. What has remained intriguing about heterochromatin is its
ability to propagate itself outwards from such DNA-sequence encoded signals
for significant distances along the chromosome. This sequence-independent
extension of heterochromatin is a process referred to as ‘spreading’ [4] and encom-
passes both the chromosomal extension of function and structure (i.e. gene
expression and the associated changed chromatin state and protein composition).
This process is highly dosage-sensitive to key regulators, which was for example
observed for subtelomeric silencing by the Silent Information Regulator (SIR) pro-
teins in S. cerevisiae [5–7], and position effect variegation in D. melanogaster [8]. At
the heart of nucleation and spreading is the action of the central enzymes (writers)
that deposit repressive chromatin marks that signal the assembly of the gene
repressive heterochromatic structure. Much has been written about the properties
of the writer enzymes, here we want to explore how trans-acting factors enable
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Figure 1. Heterochromatin spreading occurs in different chromatin environments and on substrates of different histories. ‘Writers’ are nucleated directly via tran-
scription factors or indirectly via small RNA processes (centre). The writer then can spread on chromatin that was previously heterochromatic (domain maintenance,
right), thus inheriting nucleosomes through S-phase, enabling positive feedback. The region also may be diminished in spreading-antagonizing transcriptional
activities, such as in repetitive regions. The writer may also spread into a region de novo (domain specification, left), where it has to contend with multiple
antagonizing activities, including nucleosome destabilization and inhibitory chromatin marks.

royalsocietypublishing.org/journal/rsob
Open

Biol.13:230271

2

and control this process by writers across systems and examine
some unique and shared characteristics.
2. General substrate requirements for
heterochromatin spreading

While the heterochromatin systems we will discuss below do
have some differences in their requirements for spreading
away from DNA-encoded nucleation sites, there are some
universal features of the substrate, chromatin, that either
encourage spreading or hinder it. On a first level, it is useful
to think of heterochromatin spreading as a reaction that can
occur to re-establish the initial stage (domain maintenance),
or, to establish a repressed domain for the first time (domain
specification, we avoid the term establishment as this typically
refers to the first nucleation event; figure 1). The chromatin
environments in these two contexts are rather different: in the
case of maintenance, this occurs in regions that have already
been repressed and may be additionally gene-poor, such
as constitutive heterochromatin. Here, RNA polymerase is
typically less active (although, for co-transcriptional gene silen-
cing, some transcription does occur). Nucleosomes bearing
repressive marks, such as methylation at H3 lysine 9 or 27,
are partially inherited (figure 1), which directly facilitates
the re-establishment of the initial state by the writer enzymes.
This is because writer enzymes exploit positive feedback
encoded in those inherited methylated nucleosomes: As
‘read-write’ enzymes, the writers recognize their reaction pro-
duct in themodifying subunit or other complex subunit, which
facilitates further modification via a variety of mechanisms
[9–13]. This type of positive feedback has long been predicted
by theoretical approaches to be required for the formation of
a stably repressed domain (e.g. [14]).

By contrast, a newly specified heterochromatin domain
cannot inherit pre-modified nucleosomes, therefore, the initial
specification by spreading does not have the opportunity to
exploit this positive feedback. Moreover, the chromatin tem-
plate is more hostile to heterochromatin: genes are active, and
transcription can directly or indirectly abrogate spreading. It
does so largely in two ways: first, destabilizing nucleosomes,
or even creating nucleosome-free regions (figure 1). Just as
nucleosome-free regions ‘poison’ spreading [15], unstable
nucleosomes can inhibit spreading as well, especially in sys-
tems that need to reach a fully methylated state for repression
and spreading (PRC2, Suv39, SETDB1; figure 2). This trimethyl
state is often critical for gene silencing, for example, H3K9me2
can be permissive to transcription [16], and the trimethyl state
can be instructive for positive feedback [9]. Methyl writers are
thought to require stable nucleosomes to reach the fully
methylated state as they are not processive for trimethylation
on the nucleosome substrate, e.g. Suv39h1 [17]. The in vivo
appearance kinetics of H3K27me3 also suggest that PRC2 is
not primarily processive for the terminal state [18,19]. In a dis-
tributive mode and relatively slow kinetics, continuous
residence of the target is essential for reaching trimethylation.
Hence, these heterochromatin systems are sensitive to nucleo-
some turnover: factors that mobilize or stabilize nucleosomes
antagonize and promote spreading, respectively. Second,
active genes can contain chromatin marks that directly
antagonize the enzyme itself. For example, H3K4 or K36
trimethylation, which mark active genes, can inhibit hetero-
chromatic enzymes such as G9a/GLP and Suv39 [20], as
well as PRC2 [21,22]. The SIR3 protein which spreads SIR
heterochromatin is directly inhibited in its ability to bind
nucleosomes by chromatinmarks associatedwith gene activity
[23,24] (figure 1). This antagonism can be critical to rejecting
ectopic nucleation and spreading into active genes.

Another broad level of regulation is the nuclear compart-
ment. It has been known for a long time that hetero- and
euchromatin segregate into different nuclear compartments,
for example via microscopy approaches, a general finding
that was re-emphasized by chromosome contact mapping
[25,26]. Some of the heterochromatic compartments may be
in a different biophysical state than euchromatin, i.e. in a
phase condensate [27,28] (see below). Whether or not such
condensates represent a requirement for heterochromatin
spreading, for example by providing a more permissive
environment, remains less understood. However, newer theor-
etical efforts by the Mirny and Jost/Vaillant groups have
emphasized the requirement for self-attraction in three-dimen-
sional space and compaction of the repressed domain in space
for accurate reformation by spreading. In this way, modified
nucleosomes are brought into close proximity with those
yet to be modified [29,30]. On the more local scale, three-
dimensional contacts appear necessary for efficient spreading
[31,32]. Together these theoretical advances may provide a
rationale for trans-acting factors promoting local looping,
long-range contacts, spatial and/or biophysical segregation
to enable heterochromatin spreading.



reader oligomers

heterochromatin
 environment

trans 
bridge

substrate
preparation

factor concentration 

nucleosome 
bridge 

HP1: 

CD 

CSD 

CD 

‘interrupted
bridge’H3K9me2/3

SIR2/3/4:

SIR3

SIR2

SIR4

B
A

H
 

B
A

H
 

wH

factor occlusion
trans H3K27me3

spreading 

cPRC1

cPRC1

cPRC1 
bridge

Cbx7

Cbx7

Phc1

Bmi1

FACT
HIRA
Fft3

K me2 

target deactylation: 

inhibitor clearance: 

Clr3/RPD3/Sir2

Lid2/Clr3/RBP2 

facilitate me2-me3 transition remove antagonists

euchromatin 

indirect feedback

RNAP II

oligomerization 

K me3 

Figure 2. Mechanisms by which trans-acting factors promote spreading. Central trans-acting factors produce a heterochromatin niche, either via condensates, or
subnuclear localization, where heterochromatin factors are enriched, and transcription-activating factors are de-enriched. These central trans-acting factors direct feed
into the positive feedback of the writer and stabilize the chromatin substrate via oligomerization, which also promotes spreading via the positive feedback. TOP BOX:
HP1 and Sir3 are examples of two proteins that cross-bridge nucleosomes via their oligomeric properties. HP1 domains highlighted: chromodomain (CD, me2/3
binding and oligomerization), chromo shadow domain (CSD, dimerization). Sir3 domains highlighted: winged helix (wH, di- and oligomerization), bromo-adjacent
homology (BAH, nucleosome binding). LEFT BOX: Long-range spreading (trans-spreading is enabled by canonical PRC1 (cPRC1) via its H3K27me binding and oli-
gomeric properties. RIGHT BOX: The chromatin substrate is prepared for productive spreading by factors that stabilize nucleosomes, such as FACT, Fft3 or HIRA. This
allows productive methylation to the trimethylated state, which is required for spreading and silencing in the case of Suv39 and PRC2 ‘writers’. Trans-acting factors
also remove occluding (on the substrate lysine) and antagonizing (inhibit writer activity on substrate lysine) marks.
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3. Factors promoting the spreading of
H3K9me3 via Suv39 ‘writers’

3.1. Position effect variegation and the early
identification of trans-acting regulators

A great deal of our understanding of heterochromatin for-
mation in the last few decades derives from studies with
Drosophila and the position-effect variegation (PEV) phenom-
enon. PEV occurs when a normally expressed gene becomes
silenced in some cells. Silencing results from a change in the
gene position, for example due to recombination (i.e. when
the gene becomes juxtaposed to heterochromatin), hence
the name ’position effect’ [8,33–35]. Subsequently, PEV has
been observed in a variety of organisms including yeasts
and mammals [36,37]; but it primarily has been used in Dro-
sophila as a tool to study heterochromatin formation [38,39]. A
fly line with a PEV phenotype was used to screen for
mutations that are either suppressors or enhancers of the phe-
notype. Approximately 150 genetic loci have been identified
from such screens including suppressors of variegation
Su(var) as well as enhancers of variegation E(var) [8,38],
with a smaller fraction cloned and described. The screens
revealed that the su(var)3–9 mutant has a dominant effect
over the majority of PEV modifier mutations. Later, mamma-
lian SU(VAR)3–9 homologous (human SUV39H1 and murine
Suv39h1) were shown to be histone methyltransferases
(HMTs) that selectively methylate lysine 9 of the histone 3
(H3K9me) tail through their SET domains [40]. The fact that
the mutant identifier, deriving from the chromosome
number and linkage group, ended up matching the lysine
target was a happy coincidence.

3.2. The central role of HP1 in positive feedback
Another important modifier identified from the screens is
SU(VAR)2–5, which encodes a heterochromatin-associated
protein (now called HP1a) [41,42]. HP1a interacts with many
other chromosomal proteins and contains two conserved
domains, an amino-terminal chromo (CD) and a carboxy-term-
inal chromo-shadowdomain (CSD) alongwith a variable hinge
region.HP1a belongs to a highly conserved family of chromatin
proteins, with homologous present from fission yeast (Swi6,
Chp2) to humans (HP1α-γ) [2,43]. The CDofHP1 binds the pro-
duct of SU(VAR)3–9, H3K9me. The combination of H3K9me
recognition and HP1’s ability to dimerize (via the CSD) and
multimerize (via the CD) makes HP1 a central spreading regu-
lator [44–46]. HP1 binds to both the H3K9me mark on one
nucleosome and the neighbouring nucleosome via a bridging
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interaction [47]. This nucleosome-bridging by HP1 in turn
promotes H3K9me spreading [48,49]. It does so primarily
via the recruitment of SU(VAR)3–9, which in turn produces
more H3K9me. In Drosophila for instance, the N-terminus of
SU(VAR)3–9 was found to interact with the HP1 CSD both in
vitro and in vivo [50]. HP1 thus produces a positive feedback
loop of H3K9 methylation across the chromatin fibre, bringing
in more SU(VAR)3–9 at the edge of the spreading heterochro-
matin domain. In addition, oligomerization and bridging
itself are central to the spreading process, stabilizing the nascent
heterochromatin domain [2,9,47]. HP1s role in spreading has
been studied in quite some detail in S. pombe: The cryptic loci
regulator 4 (Clr4, the fission yeast SU(VAR)3–9 homologue),
initiates H3K9 methylation independently of Swi6 (the main
S. pombe HP1 homologue), but then the subsequent spreading
of H3K9 methylation across the domain is Swi6-dependent
[51]. Whether this occurs in mammals primarily via direct
Suv39 recruitment, nucleosome bridging, or downstream
interactions with other proteins (see below) is not fully clear.

3.3. Recruitment of additional spreading regulators by
HP1

Beyond this central positive feedback and signal amplification
role of HP1 it further contributes to spreading in two ways:
first, HP1 recruits to H3K9me marked chromatin a diverse set
of factors (more than 100 putative interacting proteins were
identified bymass spectrometry) including chromatin remodel-
lers and modifiers, such as histone deacetylases (HDACs)
[52–57]. These factors, besides executing the actual gene
silencing actions, produce an environment more favourable
to H3K9 methylation, via removal of antagonistic activities,
such as acetylation and transcription, or direct promotion of
the stability of the heterochromatic state. For instance, Swi6
recruits Clr3, a fission yeast homologue of mammalian class II
HDACs, which promotes spreading and maintains heterochro-
matin through the stabilization of H3K9me3 [58–60]. The
trimethylated state is required for the transcriptionally silent
heterochromatin in S. pombe, but also for feedback by Clr4
itself, as the CD of Clr4 is quite specific for H3K9me3
[9,16,61]. The HDAC function of Clr3 is also important for
preventing histone modifications associated with active tran-
scription and limiting RNA polymerase II accessibility at
the repressed site (transcriptional gene silencing) [62,63]. As
another example, Swi6 attracts the chaperone FACT, which
is required for spreading in constitutive heterochromatin,
probably via nucleosome stabilization [64–66].

3.4. HP1 as a regulator of heterochromatin position and
biophysical state

Second, HP1 may be required to promote an environment
inside the nucleus conducive to spreading. Swi6 connects
heterochromatin to the nuclear periphery via the nuclear
rim protein Amo1, which associates with Swi6-interacting
FACT (see above) and RIXC complexes [64]. Localization of
H3K9me heterochromatin to the periphery is commonly
observed across systems, for example via the CEC-4 protein
in worms and PRR14 to the nuclear lamina in mammals
[67,68], and in some cases is critical for heterochromatin for-
mation. How this environment promotes heterochromatic
spreading and silencing remains mechanistically opaque;
however, one mechanism is likely the concentration of
pro-spreading factors into this niche. The ability to form a
specialized heterochromatin compartment or biophysical
environment is likely linked to HP1s ability to oligomerize,
which is considered central to its potential to bridge nucleo-
somes in H3K9me spreading. Oligomerization also underlies
HP1’s propensity to undergo liquid–liquid phase separation
(LLPS), a process where biomolecules separate into distinct
liquid-like compartments within the cytoplasm or nucleus
[27,28,69]. Phase separation is typically driven by weak and
multivalent interactions between biomolecules. These inter-
actions involve both folded regions, such as the CD or CSD
of HP1 as well as intrinsically disordered regions, such as
the N-terminal extension of HP1 or its hinge region. These
associations can lead to phase separation in the cell into
condensates, which can have apparent LLPS characteristics,
though it remains notoriously difficult to test in vivo [70].
These condensates can sequester other proteins and
RNAs, thereby regulating their availability for biological
processes [71]. HP1 has been shown to undergo LLPS on its
own in vitro upon phosphorylation [27,28] and induce it in
chromatin in part via nucleosome distortions [72]. It has
been proposed that this behaviour, and/or its ability to
induce phase separation of chromatin, may underlie the for-
mation of heterochromatin domains in vivo. Whether these
condensates represent the cytologically observed dense
domains of heterochromatin, where gene expression is typi-
cally repressed, is not fully clear. It is possible that in this
context, this formed liquid droplet encloses heterochromatic
sequences and helps to exclude the transcription machinery,
triggering gene silencing by forming a ‘boundary’ that
separates heterochromatin from the surrounding chromatin
[73,74]. Whether HP1-induced phase separation applies to all
H3K9me-marked heterochromatin territories is not known.
HP1 containing chromocenters in the nucleoplasm that are
made of alpha-satellite repeats show properties of phase-
separated bodies [27,28]. By contrast,whether phase separation
is involved in heterochromatin found at the nuclear periphery
is unclear. It is possible that HP1 uses phase-separation to
package and insulate distinct heterochromatin types.

3.5. Beyond HP1
Additional chromatin modifications regulate H3K9me
spreading, for example by regulating chromatin structure.
One such mark is trimethylation at lysine 20 of H4
(H4K20me3). This mark is produced from H4K20me1 by
the SUV4-20H1 and H2 enzymes (reviewed in [75] and on
its own, can compact chromatin fibres [76]. This by itself
may support H3K9me spreading. In addition, SUV4-20H1
in a non-enzymatic role changes nucleosome structure
when bound, promotes phase condensation of chromatin,
and alters the HP1-formed chromatin condensates [77].
Both these activities of SUV4-20H might promote either a
spreading compatible chromatin structure and/or biophysi-
cal environment. Further, it appears that ubiquitination (Ub)
of H3K14 may be critically required to stimulate Suv39
enzymes in situ on the chromatin substrate and enable
spreading. In S. pombe, the Clr4 complex contains an E3
ligase [78–80], which we now understand ubiquitinates
H3K14 which binds to a partially conserved Ub-binding
pocket in Clr4 [81]. Stimulation by H3K14-Ub appears con-
served with mammalian Suv39 enzymes [81]. Separately, in
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a screen for spreading versus nucleation regulators, Green-
stein et al. identified a complex of the Clr6 HDAC with the
Fkh2 transcription factor as specifically required for hetero-
chromatin spreading at constitutive sites. Fkh2 recruits Clr6
to nucleation-distal chromatin sites in such contexts [82].
This points to the fact that regions outside the active
nucleation zone require additional manipulation of the chro-
matin substrate to make it compatible with heterochromatin
assembly and H3K9 methylation.
/journal/rsob
Open

Biol.13:230271
4. Factors promoting the spreading of
H3K27me3 by polycomb

4.1. PRC2 and PRC1 in H3K27me spreading
Heterochromatin marked by H3K27 methylation is critically
involved in the control of animal and plant development, as
was demonstrated via an elegant series of genetic studies in
Drosophilamelanogaster by EdLewis [83] and others. The central
polycomb H3K27 methylase is PRC2, which consists of the
evolutionary conserved Enhancer of zeste (Ezh) SET domain
methylase, the H3K27me binding Embryonic ectoderm devel-
opment (Eed), Suppressor of zeste 12 (Suz12) proteins, plus
Rpab46/48. Repression by the polycomb system requires
another enzymatic complex called PRC1, which catalyses
H2AK119 ubiquitination [84]. In Drosophila and mammals,
polycomb proteins are antagonized by trithorax group activa-
tor proteins, both systems establish a balance of activation and
repression over the developmentally regulated loci such that
only genes appropriate to the body segment are expressed
[85]. In flies, it has become recognized that the PRC2 protein
complex is recruited to specific polycomb response elements
(PREs) [86,87], which have not been identified in this form in
mammals. However, specific sequence contexts have been
identified in mammals that appear to initially attract PRC2.
These sequences contain CpG islands, and are unmethylated,
along with other features [88]. Experiments that fully deplete
the essential Eed protein and reintroduce it following the
full loss of H3K27me have further solidified the location of
these elements, which likely represent nucleation sites [18].
These sites also attract variant PRC1 complexes, triggering
H2A ubiquitination and subsequent PRC2 recruitment [89].
Beyond these nucleation sites, other regions repressed by
PRC2 are subject to H3K27me3 spreading from those nuclea-
tion sites. Elegant experiments tracking H3K27me3 domains
in the cell cycle also indicate a continuous need for PRC2-
nucleation, and later, Eed-dependent spreading, for domain
reformation [90].

4.2. H3k27me2 versus me3 spreading
Spreading appears to be divided into short and more longer-
range spreading, and here, there is a critical distinction
concerning the methylation state: At first, the spreading of
H3K27me2 appears relatively wide-ranging from the nuclea-
tion centre [18,91], yet the functionally critical H3K27me3 is
initially more restricted [18]. Allosteric activation of Ezh2 via
the Eed subunit binding toH3K27me3 [11,92], is likely required
to enable further spreading of trimethylation. PRC2’s
activity in trimethylating H3K27 is also strongly regulated
by activating PRC2 auto-methylation [93]. Oncogenic PRC2
antagonists, like H3K27M and Ezhip [94], which traps
allosterically activated PRC2, instead abrogate spreading.
Insertion of a regulatory step betweenme2 andme3 is reminis-
cent of Suv39 enzymes discussed above and appears to be a key
gate in regulating spreading of the repressive state.

4.3. Regulation of H3K27me3 spreading by the
chromatin substrate

Tied into this regulation of the methylation state is the regu-
lation of these transitions by the chromatin substrate itself.
Beyond the influence of histone modifications other than
H3K27, which are not further discussed here, a central concept
already touched on is regulation of nucleosome density and
stability. In the case of PRC2, it was shown that the nucleosome
spacing influences nucleosome methylation activity by PRC2,
with 40 bp being the ideal spacing formethylation ondinucleo-
somes and arrays [95]. This is consistent with the results from
structural biology that show PRC2 directly reaching from
a methylated to a unmethylated substrate nucleosome with
30–35 bp spacing [96]. Another report showed that a high den-
sity of nucleosome in cis is required for stimulation [97]. Recent
evidence indicates one key factor that regulates the optimal
nucleosome arrangement for spreading may be the linker
histone H1. in vitro and in vivo evidence [98] seems to support
a role for H1 creating a chromatin structure that stimulates
spreading by PRC2. The details of the precise nucleosome
arrangement produced by H1 and favoured by PRC2, and
how it relates to priorworkon nucleosome spacing anddensity
remains to be determined.

4.4. Trans-H3K27me3 spreading
As alluded to above,H3K27me3 after this initial local spreading
is capable of long-range spreading apparently both in cis and
in trans. How is this long-range spreading facilitated? The
answer may reside in the biophysical nature of the polycomb
domains, which appear to form ‘polycomb bodies’ (PBs) in
the nucleus [99]. There, PBs bring together relatively distal
sequences in a manner that is not only independent of the
general looping and architecture regulatory pair CTCF and
cohesion, but rather appears to be antagonized by it [100,101].
Nucleation sites appear distally contacted through canonical
PRC1 complexes. These canonical PRC1 complexes, unlike its
variant PRC1 complex cousins, are less capable of the central
enzymatic activity of PRC1, H2A ubiquitination, but instead
are more prone to oligomerize [89,102–106]. Such capacity to
oligomerize has long been associated with PRC1 proteins
such as the Drosophila Ph [107] as well as with the mammalian
homologue Phc1/2 [103]. Similarly, the Drosophila PSC
oligomerizes [108] and the Drosophila protein has been shown
to mediate nucleosome compaction [102]. Further, hetero-
oligomerization between the PRC1 component is thought to
be essential in phase separation and likely PB formation
[109–111]. It is likely that the Phc1 and the PSC homologue
Bmi-1 (PCGF4) in canonical PRC1, in addition to CBX2,
could mediate clustering and phase separation [106,109,111].
These clustered nucleation sites then allow PRC2 to spread
H3K27me3 across distal regions, enabling PRC2 to exit the
local nucleation environment [18], a model that is also consist-
ent with theoretical modelling of heterochromatin spreading in
three dimensions via self-attraction [29,30]. Such nucleation site
clustering, presumably in PBs, also apparently ensures



royalsocietypublishing.org/journal/rsob
Open

Biol.13:230271

6
redundancy in targeting spreading sites from several spatially
adjacent nucleation sites, which may be at various distances
in genomic space. To what degree the biophysical environment
inside the PBs is important for the spreading process itself
remains to be determined.

4.5. Potential roles of PRC2 oligomerization
While PRC1 oligomerization appears to allow the connection
of distal sites, this type of oligomer formation is different
from the coupling of oligomerization towriter product reading
we saw for the Suv39 system. There is no apparent evidence
that PRC1 oligomerization is connected to H3K27me reading.
However, recent evidence implies that different PRC2 types
can form dimeric complexes. For example, EZH1 containing
PRC2 can dimerize on the nucleosome [112]. The structure of
that complex, with two ‘reading’ Eed domains facing outward,
may directly couple ‘writing’ to cross-nucleosome spreading.
How this is related to structures of EZH2 PRC2 [96,113,114]
and when dimerization is active in vivo remains to be deter-
mined. Finally, whether a linked oligomerization/product
recognition cycle is operational for this system is not clear.

4.6. Lessons from plants: coupling nucleation and
spreading

Interestingly, in plants, H3K27me3 spreading shares some fea-
tures with Suv39 H3K9me3 spreading, as uniquely in plants,
an HP1 protein LIKE HETEROCHROMATIN PROTEIN 1
(LHP1) appears to act downstream or in parallel to PRC2
[115]. LHP1 binds H3K27me3 [116,117] that is deposited by
PRC2 over flowering time loci and appears to aid in the spread-
ing of this mark [118,119]. Intriguingly, spreading of the mark
beyond nucleation sites is required for the epigenetic stability
of the domain [119], highlighting the unique role of spreading
in intergenerational maintenance.
5. Spreading by SETDB1
5.1. KAP1, KRAB-zfps and SETDB1s initial recruitment
SET domain bifurcated 1 (SETDB1) is a specific H3K9 methyl-
transferase that primarily acts in euchromatin sequences to
silence retroelements or developmental regulators. An extensive
amount of research has been conducted on the recruitment of
SETDB1 to retroelements. Nucleation requires recognition of
target sites by KRAB zinc finger proteins (KRAB-zfps), which
then recruit SETDB1 via the critical co-repressor KAP1 (also
known as TRIM28) [120,121]. KAP1 forms a complex with
SETDB1 [122], which requires the intramolecular SUMOylation
of KAP1 [123–125]. When KAP1 is depleted, SETDB1 enrich-
ment in class I/II ERVs is decreased [120], indicating that the
formation of the KAP-KRAB-zfps complex is a central step in
SETDB1 recruitment to ERVs.

5.2. Pathways of H3K9me3 spreading by SETDB1
A first indication of H3K9me3 spreading by SETDB1 is that
KRAB/KAP1 binding sites may be found only in one region
of the retroelement, while H3K9me3 enrichment occurs
throughout the entire retroelement [126,127]. Separately,
SETDB1-generated H3K9me3 can repress the transcription of
genes located distally to KRAB-zfp binding sites, in some
cases up to tens of kilobases away [128–131]. This H3K9me3
spreading via SETDB1may be facilitated by product recognition
feedback. There are two potential pathways for this, outside the
SETDB1 enzyme subunit, which remain underexplored:

1. HP1 may perform ‘double duty’ as a key spreading regula-
tor for both Suv39 and SETDB1. Targeting of HP1α, HP1β
and HP1γ to heterologous loci is sufficient to induce the
recruitment of SETDB1 and deposition of H3K9me3
[132,133]. In mESCs, ERVs are enriched in HP1α, HP1β
and HP1γ and this occurs in part due to SETDB1-deposited
H3K9me3 [120]. There is a slight derepression in the
expression of ERVs, as well as a partial reduction in
H3K9me3 around the ERVs in HP1β KO mESCs [133,134].
The HP1 protein is therefore thought to be partially
implicated in SETDB1-mediated H3K9me3 spreading.

2. Beyond HP1, a specialized complex has been identified that
may be required for SETDB1 to mark target domains with
H3K9me3. Using a similar strategy to find the PEV elements
in drosophila cells, a non-lethal forward genetic screen con-
ducted in haploid human KBM7 cells identified the human
silencing hub (HUSH), which consists of the proteins
TASOR, MPP8 and periphilin [130]. TASOR appears to be
the hub of HUSH, providing a platform for assembling
the other subunits, and has been identified as a pseudo-
Poly (ADP-ribose) polymerase essential for HUSH complex
assembly [135]. One central activity of HUSH is the recruit-
ment of both SETDB1, as well as another factor MORC2 to
sites of initial H3K9me3 in retroelements. MORC2 appears
to have ATP-dependent remodelling activity key to the com-
paction of the underlying chromatin [130,136,137]. Whether
HUSH is directly involved in H3K9me3 spreading is still
contentious. The mechanisms by which HUSH may be
involved in spreading comes back to product recognition.
The CD of MPP8 binds H3K9me2 and H3K9me3 [138].
Hence MPP8 could ‘read’ the product of SETBD1 on nucleo-
somes. However, MPP8 also recognizes the methylation of
an H3-like mimic sequence found in other proteins, such
as ATF7IP, the nuclear chaperone of SETDB1 [139]. This
methylation on ATF7IP is thought to be partially required
for HUSH-dependent silencing [140]. Another critical
piece of information is that the CD of MPP8 can form
dimers [141]. Since ATF7IP is required for SETDB1 stability
[139], a model could be envisioned where following recruit-
ment of SETDB1 to a transgene, initial methylation occurs
on H3K9 and AT7IP. MPP8 dimers could bridge chromatin
and ATF7IP, recruiting the active form of SETDB1, which
would constitute a read-write cycle for outward spreading
over HUSH targets. This would nicely mirror parts of the
Suv39 model where stabilization of the H3K9me substrate,
multimerization and writer recruitment enable spreading.
Yet, a H3K9me3 read-write mechanism involving MPP8
alone and ATF7IP/SETDB1 is probably too simplistic:
HUSH-dependent lentiviral reporter repression requires
both TASOR and Periphilin, and the MPP8 chromodomain
is not required for the maintenance of repression [130].
However, the establishment of repression, so possibly the
initial domain specification, is dependent on the MPP8
chromo domain [130].

It is also noteworthy that HUSH targets are enriched
within transcriptionally active chromatin, as opposed to
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classical heterochromatin regulators [142,143], which is akin
to de novo spreading, for example, by the polycomb system
in cell fate decisions. Together spreading by the SETDB1
system is still a new field, especially with the relatively
recent discovery of HUSH. Whether it follows a ‘read–
write’ type of mechanism and to what degree this interfaces
with HP1 remains to be determined.
ing.org/journal/rsob
Open
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6. Spreading via SIR proteins
6.1. The SIR2/3/4 system
Yeast Saccharomyces cerevisiae SIR genes encode a family of
nuclear proteins that are targeted to specific genomic
sequences and targeted for silencing. SIR proteins are associ-
ated with three classes of genomic sequences: subtelomeres
(which serve as the principal storage sites for the SIR proteins),
silenced mating-type loci (i.e. HMR and HML) and rDNA
sequences. To efficiently silence the HM loci, Sir1, Sir2, Sir3
and Sir4 are required, while Sir2, Sir3 and Sir4 are required to
silence subtelomeres effectively. The central writer of the SIR
complement is Sir2 which is a NAD-dependent deacetylase
that targets histone H3 and H4.

Silent chromatin assembles in two stages at the molecular
level: nucleation and spreading. Nucleation occurs when the
Sir2/3/4 complex is recruited to silencers for the first time.
The spreading step occurs following the assembling of the
extended domain of silent chromatin by the complex. As a
result of the intrinsic properties of the SIR proteins, the
nucleation and spreading steps are closely linked. Nucleation
without spreading and spreading without nucleation can
be studied through mutations and other experimental
manipulations (e.g. [144]).

The process of nucleation relatively well understood. The
Sir2/3/4 complex is recruited to proteins bound at silencers
by a network of interactions. Both Sir3 and Sir4 associate
with the transcription factor Repressor-activator protein 1
(Rap1), while Sir4 also associates with Origin Recognition
Complex (ORC)-bound Sir1 [145,146]. The transcription
factor ARS-binding factor (Abf1) also cooperates in this process
at HMR andHML [147]. Mutants of Sir2 that exhibit a catalytic
defect restrict the Sir2/3/4 complex to silencers [148–150]. This
suggests that the deacetylation of histones by Sir2 triggers the
transition from nucleation to spreading.

6.2. SIR spreading: coupling of deacetylation and Sir3
oligomeric engagement

According to the original sequential model of spreading, Sir2
first deacetylates the nucleosomes adjacent to silencers, creat-
ing additional recruitment sites for Sir2/3/4 complexes [151].
Sir3 prefers to bind to deacetylated H4 tails, specifically
amino acid H4K16 [6,152]. In an alternative view, based on
the observed affinity of the Sir2/3/4 complex for acetylated
H4K16, the complex is thought to bind acetylated nucleosomes
first, and then acquire additional stability via deacetylation of
H4K16 and docking of Sir3 to the deacetylated tails [153]. As
a result of successive spreading, Sir2/3/4 binding, histone
deacetylation and interactions between Sir2/3/4 complexes
expand the silent chromatin domain until either a barrier is
reached, or the pool of free SIR proteins falls below a threshold
that facilitates efficient binding. In this view, the sequential
spreading of Sir2/3/4 complexes is analogous to a linear
polymerization reaction.

A more detailed mechanism has been proposed recently,
involving Sir3 and Sir4 propagation along the fibre. The
domain architecture of Sir3 has some conceptual similarities
to HP1 in that it contains a nucleosome binding and dimeriza-
tion domain. The N-terminus of Sir3 contains a bromo-adjacent
homology (BAH) domain (amino acids 11–196). Many chroma-
tin-associated proteins, including Orc1, Dnmt1, Rsc1, Rsc2
and Mta1 [154,155], contain the BAH domain, which is
involved in nucleosome binding [156,157], and in Sir3’s case
specifically, nucleosomes that are the products of Sir2 (see
below). Separately, Sir3’s winged helix-turn-helix domain
mediates self-interaction [158] and dimerization. This dimer/
multimerization of Sir3 is likely at the heart of spreading.
A model driven by biophysical measurements proposes that
Sir3 spreads along the chromatin fibre using an ‘interrupted
bridges’ [159] mechanism, where a Sir3 dimer bridges from
one face of the nucleosome to the adjacent nucleosome face
(figure 2). Further functional crosstalk with the enzymatic step
via Sir2 also may feed directly into the oligomerization process.

6.3. Possible modulation by the Sir2 deacetylation
by-product O-acetyl-ADP-ribose

But unlike the case of HP1, there is another interesting wrinkle
to the SIR system, and that is regulation by one of the reaction
products: Sir2 and other NAD-dependent protein Sir2/Class
III HDAC uses NAD as a cofactor for deacetylation. Two
products derive from NAD: nicotinamide and O-acetyl-
ADP-ribose (AAR) [160,161]. AAR is associated with silent
heterochromatin domains and demonstrates a similar pattern
to that of Sir2 [162]. Intriguingly, the in vitro association
of SIR2-3-4 complex and Sir3 alone with recombinant trinu-
cleosomes is enhanced by AAR [163]. Similar modulation of
binding to purified yeast nucleosomes was also reported
[157,164]. The effect of AAR on chromatin epigenetic gene
silencing has been demonstrated in vivo [165]. Moreover,
previous observations regarding the role of AAR in the assem-
bly of the SIR complex, as discussed above, strongly suggest
that AAR binds to at least one of the SIR proteins [152]. For
example, AAR might associate with the AAA ATPase-like
domain within SIR3’s C-terminus [158,166,167]. However,
there is no strong direct evidence that AAR binds Sir3, instead,
evidence supports binding to Sir2 [162], leaving the mechan-
ism of action unclear. Even if AAR enhances the efficiency
of Sir3-nucleosome complex formation, it does not appear
that AAR is necessary for SIR silencing. This is because silent
chromatin can be assembled in vivo using Hos3 (where Hos3
is targeted by a SIR3-Hos3 fusion), a deacetylase of the Rpd3
family that does not consume NAD nor produce AAR [168].
Despite the absence of all NAD-dependent deacetylases, the
chimera produced robust transcriptional silencing. Therefore,
if AAR is involved in the spreading of silencing, it may act to
modulate, rather than drive the process.

6.4. Antagonism to SIR spreading
Spreading via Sir3 is also downregulated or limited in several
ways. A prominent example is the acetylation of H4K16,
which has been shown to impact Sir3 chromatin association by
mutational analyses, ChIP and co-immunoprecipitation studies,
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as well as biochemical studies [149–151,153,157,169–171]. The
co-crystal structure of the nucleosome and the Sir3 BAH
domain [10] visualized how this antagonism by H4K16 acety-
lation, but also H3K79 methylation would regulate Sir3
association with the nucleosome surface. A majority of the
BAH domain’s electrostatic contacts are with histone residues
K16 and H18 in the H4 N terminal tail. A significant decrease
in the affinity of Sir3 for the nucleosome is expected to occur
as a result of the acetylation of K16. This is consistent with
previous studies, which have indicated that acetylation has a
1000-fold impact [157]. Thus, Sir3/4 spreading, like that of
HP1, requires recognition of the writer enzyme product on
chromatin, in this case, a deacetylated H4 tail.
Open
Biol.13:230271
7. Conclusion
In the above, we have attempted to summarize what is
known about how trans-acting factors regulate of heterochro-
matin spreading by writers in four systems. Some common
principles emerge about how trans-acting factors promote
the spreading of heterochromatin by writer enzymes. These
are also summarized in figure 2.

First, trans-acting factors directly promote the positive
feedback inherent in most heterochromatic writers. They do
so by acting as a second, redundant feedback layer. The
redundant layer, obvious in Suv39, SIR, and likely SETDB1
systems, consists of ‘reader’ proteins binding the writer
product on chromatin and recruiting more writers via direct
physical interactions.

Second, through processes of oligomerization on the
chromatin substrate, writers like HP1 and Sir3 stabilize
the structure and ensure that opportunities for redundant
feedback are present across the forming heterochromatin
domain. How the writers however do not end up getting
‘trapped’ in the core of the domain remains unresolved. A
hint at a possible mechanism is differential preferences for
methylation states of the chromatin mark in systems where
methylation is the instructive chemical change (hence, not
in the case of Sir2). Swi6 and Clr4 have differential prefer-
ences for H3K9me2 and me3, with Clr4 strongly preferring
H3K9me3 [9,61]. Since H3K9me2 is more abundant than
H3K9me3, one can consider one mark the assembly and the
other the spreading and silencing mark [16].

Third, trans-acting factors likely promote spreading by
shaping a microenvironment conducive to spreading, in
part via nucleosome stabilization and possibly by producing
an altered biophysical environment. Spatial segregation and
self-attraction of heterochromatin has been predicted to be
required for efficient spreading and inheritance by modelling
approaches [29,30]. HP1 appears to be involved in anchoring
some but not all H3K9me domains to the nuclear periphery,
for example, those that fall into lamin-associated domains
(controlled largely by G9a/GLP which we did not discuss
in this review). The nuclear periphery in the case of fission
yeast may be enriched for factors that stabilize nucleosomes
[64]. Nucleosome stabilization, in turn, is central for efficient
spreading, and especially for production of the trimethylated
state in the case of H3K9me and K27me systems, which
drives positive feedback. This state is also favoured by deace-
tylases that are recruited to the spreading zone. Finally, at
least HP1 and PRC1 appear to be involved in forming con-
densates or condensate-like domains in vivo that may be
required to promote the stability of heterochromatin and its
spreading. In principle, condensate formation may promote
writer enzyme activity directly, for example by increasing
local concentration and altering the chromatin structure, or
by rejecting antagonistic factors, such as excluding acetylases,
transcription factors, or RNA polymerase (figure 2). In either
case, resolving how condensates influence heterochromatin
spreading remains a very active area of research.

However, there are also unique aspects not shared across
the different heterochromatin systems. Firstly, the polycomb
system’s ability to perform long-distance spreading via
PRC1 clusters in PBs does not have an exact parallel for
other systems, and may be required for the reliable silencing
of large developmental loci via redundant of spreading from
dispersed nucleation sites [18]. SIR proteins may be regulated
in their chromatin interactions via the Sir2 writer NAD deace-
tylation reaction by-product AAR, achieving a potential level
of feedback lacking in the S-adenosyl methionine-dependent
methyltransferase writers Suv39, PRC2 and SETDB1. The by-
product in this case, S-adenosyl homocysteine is largely
inhibitory via product inhibition. The interactions of HP1/
Swi6 appear particularly diverse and contain inbuilt auto-
regulation not observed to the same extent elsewhere. In a
facet not reviewed above, HP1/Swi6 even directly recruits
negative heterochromatin spreading regulators such as Epe1
[172,173] in a manner tightly coordinated with H3K9 methyl-
ation. This restrains propagation of heterochromatin beyond
the natural borders in fission yeast.

More work remains on unravelling how some of these
unique mechanisms shape the spreading reaction and how
they interface with the common operating principles
discussed above.
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