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ABSTRACT OF THE THESIS

Extending kriging methods to large datasets

with applications to California groundwater data

by

Brice Charles Randolph

Master of Science in Statistics

University of California, Los Angeles, 2017

Professor Frederick R Paik Schoenberg, Chair

Spatial interpolation is performed to predict data values of unseen locations based on the

distribution of known samples. In the field of geostatistics, the technique of unbiased linear

interpolation, known as kriging, is used to predict data at unsampled locations. When

working with large data sets or a large domain of interest, standard kriging methods such

as ordinary and universal kriging can become computationally slow or require the domain

to be partitioned with different models fit to different partitions. In this paper, we review

common kriging methods as well as an extension known as fixed rank kriging that circumvents

these problems. We apply the method of fixed rank kriging to a dataset of 2016 California

groundwater, evaluating prediction accuracy under various model setups. We also compare

fixed rank kriging to ordinary and universal kriging based on prediction accuracy and time

taken to build the model and make predictions.
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CHAPTER 1

Introduction

1.1 Background

Statistical prediction in the spatial setting concerns the prediction of some variable quantity,

e.g. a resource, in an unknown location s0 based on sample values collected at known

locations s1, ..., sn. The statistical technique used to solve this spatial prediction problem

is formally known as kriging. G. Matheron developed the statistical theory behind the

prediction technique in the early 1960s. Matheron popularized the name kriging in honor of

a well known South African mining engineer, D. G. Krige. Krige made several contributions

to the field of mining, including the development of empirical methods for determining true

ore-grade distributions from distributions based on sampled ore grades. Intuitively, the key

insight in solving the spatial prediction problem was that observations closer to the prediction

point should be given more weight in the predictor. This contrasts with using the arithmetic

mean as a predictor, which gives equal weight to all samples, irrespective of proximity.

Although there are several methods of spatial prediction(interpolation) outside of the

geostatistical domain such as inverse distance-based weighted interpolation(IDW) or trend

surface analysis [BPG13], these methods do not take spatial correlation into account, nor do

they give confidence interval estimates.
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1.2 Introduction

We will be concerned with modeling data according to the stochastic process

{Z(s) : s ∈ Ds}

where the multivariate data point Z(s) is observed at spatial location s, which varies con-

tinuously over Ds (a subset of two-dimensional or three-dimensional space). s might be

measured in latitude and longitude, for instance.

As opposed to the assumption of independence of samples, often employed in statistics,

spatial data rarely obey this property. Data that are close together in space are often more

alike than those that are far apart.[Cre93] Intuitively, if a neighbor finds gold on his property,

you might start searching on your property, expecting more gold to exist in close proximity.

This is formalized by the concept of spatial correlation. The quantification of this correlation

will help guide the estimation of values at new unobserved locations.

Let Z = (Z(s1), Z(s2), ..., Z(sn))′ be the vector of observed data at known spatial loca-

tions s1, s2, ..., sn. The goal is to predict the unobserved value Z(s0) at the location s0.

1.3 Variogram

In geostatistics, spatial correlation is modeled by either the variogram or the covariance

function. We can’t simply estimate the spatial correlation between two realizations of a

variable z(s) at locations s1 and s2 as we only have a single data pair. Therefore, we must

make some assumptions about the stochastic process that generated the data.

One typical assumption is intrinsic stationarity. Informally, this means that variational

properties do not change throughout the region of interest Ds [Cre93]. Intrinsic stationarity

is defined by the following two equations.

E[Z(s + h)− Z(s)] = 0 (1.1)

2



V ar[Z(s + h)− Z(s)] = 2γ(h) (1.2)

Here, s and s+h are two different locations in Ds. In 1.2, we are stating that the variance

of Z is constant and does not depend on the location s, only on separation distance h, a

scalar. The quantity 2γ(h) is known as the variogram and can be estimated as

2γ̂(h) =
1

|N(h)|
∑
N(h)

(Z(si)− Z(sj))
2, (1.3)

where the sum is over N(h) = {(i, j) : ||si−sj||dist = h} and |N(h)| is the number of distinct

elements in N(h). γ(h) is often referred to as the semivariogram. Also, ||||dist is the distance

measure(usually euclidean or spherical).

The estimator γ̂(h) is unbiased, but it is heavily influenced by atypical observations.

A more robust approach to estimating the variogram was proposed in Cressie and Hawkins

(1980)[CH80]. They propose the variogram estimator

2γ̄(h) = { 1

|N(h)|
∑
N(h)

|Z(si)− Z(sj)|
1
2}4/(0.457 +

0.494

|N(h)|
). (1.4)

Another assumption on the stochastic process Z(·) proceeds from the following two equa-

tions.

E[Z(s)] = µ, for all s ∈ Ds (1.5)

Cov(Z(s1), Z(s2)) = C(s1 − s2), for all s1, s2 ∈ Ds. (1.6)

Equation 1.5 states that the expected value of the random function is µ throughout the

region of interest. A stochastic function Z(·) satisfying 1.5 and 1.6 is defined to be second-

order stationary. Furthermore, if C(s1 − s2) is a function of only ||s1 − s2|| (the distance

between the two points without mention of direction) then C(·) is called isotropic.

Outside of simulated data, we do not know the true variogram, and so we are forced to

model it at different lag distances, h. There are many models for the variogram, but only a

3



Figure 1.1: A typical sample variogram plot

few are typically used in practice. It takes a gross misspecification of the variogram model

to have a dramatic impact on kriging estimates. However, the computed kriging variance is

directly affected by the variogram fit. (Chiles Chp 3).

1.4 Variogram models

There are a myriad of different models for the variogram. Four of the most common models

will be mentioned here. These models assume isotropy of the underlying process.

The simplest is the linear model:

γ(h; θ) =


0 h = 0,

c0 + bh, h 6= 0.

(1.7)

θ = (c0, b)
′ , where c0 ≥ 0 and b ≥ 0.

Another common model is the spherical model:

4



γ(h; θ) =


0 h = 0,

c0 + c1{(3/2)(h/α)− (1/2)(h/α)3}, 0 < h ≤ α,

c0 + c1, h ≥ α,

(1.8)

θ = (c0, c1, α)′ , where c0 ≥ 0, c1 ≥ 0 and α ≥ 0.

The third model we present is the exponential model. This represents an exponential

decay of influence between two samples.

γ(h; θ) =


0 h = 0,

c0 + c1(1− exp(− h
α

)), h 6= 0,

(1.9)

Another common model is the Gaussian semivariogram:

γ(h; θ) =


0 h = 0,

c0 + c1(1− exp(− h2

α2 )), h 6= 0,

(1.10)

For both the Gaussian and exponential models, θ = (c0, c1, α)′ , where c0 ≥ 0, c1 ≥ 0 and

α ≥ 0.

1.5 Variogram parameters and fitting

Nugget effect (c0): The nugget effect refers to the nonzero intercept of the variogram. It can

be interpreted as sampling error or inherent geological variability.

Range (α): As the separation distance (h) increases, the value of the variogram increases

as well. At a certain distance, however, the variogram will plateau. The distance at which

the variogram reaches the plateau is known as the range.

Sill (c0 + c1): The value that the semivariogram model attains at the range.

In practice, we must use the data to first make the choice of a parametric family(e.g.
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Figure 1.2: Basic variogram models

exponential) and then estimate parameters of this model. Conventional practice for model

selection is to choose a model that is compatible with a plot of the classical variogram

estimator or the robust estimator given in equations 1.3 or 1.4 respectively.

As a compromise between simplicity and statistical efficiency, Noel Cressie proposes using

the method of weighted least-squares to fit the model variogram. [Cre85] So, we minimize

K∑
k=1

{ γ̂(h(k))

γ(h(k); θ)
− 1}2|N(h(k))|

with respect to the variogram parameters θ(e.g., sill, nugget effect, range, etc.). Here, the

sequence h(1), h(2), ..., h(K) denotes the lags at which the classical estimator was computed.

We can also replace the classical estimator γ̂ in the above expression with the robust estimator

γ̄.

1.6 Note on covariance functions

The derivation of the kriging equations can be performed with the use of either the variogram

or the covariance function. However, some generalizations of the krigging methods(Fixed
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Rank Kriging for example) are derived solely in terms of the covariance function. Therefore,

we will briefly describe the link between the covariance function and the variogram.

We define the covariance function

C(h) = Cov(Z(s), Z(s + h)), h ∈ Ds (1.11)

Although both tools serve the same purpose, variograms are more general than covariance

functions. However, covariance functions are better understood theoretically and many

important properties, characterizations, and decomposition theorems have been established

for covariance functions only. [GSS01] (Gneiting 2001) Because of this, some authors prefer

to work directly with covariance functions when deriving the kriging equations.

Almost all major properties of covariance functions carry over to variograms. However,

one of the exceptions is boundedness. |C(h)| ≤ C(0) for covariance function C, yet vari-

ograms do not need to be bounded.

If γ is a bounded variogram, then

γ(h) = C(0)− C(h), h ∈ Rd (1.12)

for some covariance function C.

7



CHAPTER 2

Kriging

We will now introduce the common methods of spatial prediction in the context of geostatis-

tics. The ordering of the methods presented is based on increasing generality.

2.1 Ordinary kriging

Ordinary kriging refers to spatial prediction under the following two assumptions.

Model assumption:

Z(s) = µ+ δ(s), where s ∈ Ds, µ ∈ R, and µ unknown. (2.1)

Here, δ(s) is a zero mean stochastic process with correlated errors. We assume this model

holds with variogram 2γ(h) = V ar(Z(s+h)−Z(s)), as was discussed in the previous section.

Predictor assumption:

Ẑ(s0) =
n∑
i=1

wiZ(si) ,
n∑
i=1

wi = 1 (2.2)

In 2.1, we are assuming that the predicted value of the process at new location s0 is a

weighted average of the sample values. The second condition ensures that the predictor is

unbiased, namely: E(Z(s0)) = µ.

Under assumptions 2.1 and 2.2, ordinary kriging proceeds by minimizing the mean

squared prediction error:

σ2
e = E[Z(s0)− Ẑ(s0)]

2 (2.3)

8



Substituting in our assumed linear predictor from 2.2, we have:

σ2
e = E[Z(s0)−

n∑
i=1

wiZ(si)]
2 (2.4)

Subject to the constraint
∑n

i=1wi = 1.

We can rewrite the mean squared prediction error in terms of the variogram after some

algebraic manipulation:

Look at [Z(s0)−
∑n

i=1wiZ(si)]
2,

[z(s0)−
n∑
i=1

wiz(si)]
2 = z2(s0)− 2z(s0)

n∑
i=1

wiz(si) +
n∑
i=1

n∑
j=1

wiwjz(si)z(sj)

=
n∑
i=1

wiz
2(s0)− 2

n∑
i=1

wiz(s0)z(si) +
n∑
i=1

n∑
j=1

wiwjz(si)z(sj)−
1

2

n∑
i=1

wiz
2(si)

−1

2

n∑
j=1

wjz
2(sj) +

n∑
i=1

wiz
2(si) =

−1

2

n∑
i=1

n∑
j=1

wiwj[z(si)− z(sj)]
2 +

n∑
i=1

wi[z(s0)− z(si)]
2

Now we can take expectations of the last expression, giving

−1

2

n∑
i=1

n∑
j=1

wiwjE[z(si)− z(sj)]
2 +

n∑
i=1

wiE[z(s0)− z(si)]
2 =

−1

2

n∑
i=1

n∑
j=1

wiwjV ar[z(si)− z(sj)] +
n∑
i=1

wiV ar[z(s0)− z(si)]

The last equality proceeds under the intrinsic stationarity assumption, where E[Z(s)] = µ.

This enables us to write V ar[z(s + h)− z(s)] = E[z(s + h)− z(s)]2.

Now, with the variogram defined as 2γ(si − sj) = V ar[z(si) − z(sj)], we can write the

9



previous expression as: 2
∑n

i=1wiγ(s0 − si)−
∑n

i=1

∑n
j=1wiwjγ(si − sj).

So, the kriging equations proceed from minimizing the mean squared prediction error σ2
e .

σ2
e = E[Z(s0)−

n∑
i=1

wiZ(si)]
2 =

2
n∑
i=1

wiγ(s0 − si)−
n∑
i=1

n∑
j=1

wiwjγ(si − sj)

subject to
n∑
i=1

wi = 1

Using the method of Lagrange multipliers, we can encode the constraint in the objective

function:

`(w1, ..., wn, λ) = 2
n∑
i=1

wiγ(s0 − si)−
n∑
i=1

n∑
j=1

wiwjγ(si − sj)− 2λ(
n∑
i=1

wi − 1) (2.5)

Now, minimization of `(w1, ..., wn, λ) with respect to the parameters w1, ..., wn, and λ

will minimize equation 2.4 under the constraint. After differentiating `(w1, ..., wn, λ) with

respect to the (n+ 1) parameters and setting these derivatives equal to zero, we get:

−
n∑
j=1

wjγ(si − sj) + γ(s0 − si)− λ = 0 , i = 1,...,n (2.6)

and
n∑
i=1

wi = 1

This system of equations can be written using matrix notation as

Γw = γ

10



Thus, the weights w1, ..., wn and Lagrange multiplier λ can be obtained as

w = Γ−1γ (2.7)

where

w = (w1, w2, ..., wn, λ)

γ = (γ(s0 − s1), γ(s0 − s2), ..., γ(s0 − sn), 1)′

Γ =



γ(si − sj), i = 1, 2, ..., n, j = 1, 2, ..., n

1, i = n+ 1, j = 1, 2, ..., n,

1, j = n+ 1, i = 1, 2, ..., n,

0, i = n+ 1, j = n+ 1.

Now that we have calculated the weight vector w, we can compute the estimator Ẑ(s0) =∑n
i=1wiZ(si).

If we would like to construct confidence intervals around our predictor, we will need the

variance of our estimator, σ2
e . We can derive this by starting with equation 2.6

−
n∑
j=1

wjγ(si − sj) + γ(s0 − si)− λ = 0

We multiply this by wi and sum over i = 1, 2, ..., n to get:

−
n∑
i=1

wi

n∑
j=1

wjγ(si − sj) +
n∑
i=1

wiγ(s0 − si)−
n∑
i=1

wiλ = 0

This gives

n∑
i=1

n∑
j=1

wiwjγ(si − sj) =
n∑
i=1

wiγ(s0 − si)−
n∑
i=1

wiλ

Now, we can substitute this result into the equation for the variance:

11



σ2
e = 2

n∑
i=1

wiγ(s0 − si)−
n∑
i=1

n∑
j=1

wiwjγ(si − sj)

σ2
e = 2

n∑
i=1

wiγ(s0 − si)− (
n∑
i=1

wiγ(s0 − si)−
n∑
i=1

wiλ)

Finally, we arrive at the the variance of our estimator in terms of the computed weights

and Lagrange multiplier:

σ2
e =

n∑
i=1

wiγ(s0 − si) + λ (2.8)

Equation 2.7, w = Γ−1γ, illustrates the need for us to choose a model variogram that cap-

tures the underlying stochastic process. Firstly, the vector γ = (γ(s0−s1), γ(s0−s2), ..., γ(s0−

sn), 1)′ might not be computable from the sample variogram estimates. This is because we

only calculated a number of sample variogram estimates at certain lag distances (h). Sec-

ondly, solving the kriging equations (2.6) requires the computation of the inverse of a size

(n + 1)x(n + 1) matrix. This inverse is not guaranteed to exist using only the sample vari-

ogram since the sample version of Γ might not be positive definite. In order to get around

these two problems, we select and fit an appropriate model variogram(covered in section 1.4)

and proceed using the theoretical variogram values.

Now, we can summarize the kriging process. First we calculate the sample variogram

under different lag distances h. We plot these sample values against the different lag distances

and choose an appropriate class of theoretical variograms. We fit the theoretical variogram

to the data by minimizing a weighted sum of squares as in section 1.5. This will give us our

matrix Γ. Finally, we calculate the weight vector w by inverting the matrix Γ. For each

location, s0, we predict the value of the underlying random process Z(s0) using our predictor

Ẑ(s0) =
∑n

i=1wiZ(si).

Usually, a raster map of the predicted values is created along with a second map showing

the standard errors σe of the estimate. With this in mind, we will have a grid of values to

predict. Luckily, we only need to calculate a new vector γ as we will use the same matrix

Γ−1 for each new location.

12



2.2 Universal kriging

The goal of universal kriging is the same as ordinary kriging, namely, predict the value Z(s0)

of the stochastic process at an unsampled location s0. Ordinary kriging assumes stationarity,

a constant mean of the underlying random function Z(·). In reality, the mean values may

vary over the study area. Spatial trend or a drift represents any detectable tendency for the

values to change as a function of the coordinate variables.

Therefore, if our goal is to krig unsampled locations under the presence of a trend,

equation 2.1 is not appropriate and must be generalized. Universal kriging assumes that

the mean µ(·) has a functional dependence on the spatial location s, ie. µ(s) may vary

over the region of interest. We model this functional dependence with an unknown linear

combination of known functions {f0(s), ..., fp(s)}, s ∈ Ds. Our model for the underlying

stochastic process then becomes:

Z(s) =

p+1∑
j=1

fj−1(s)βj−1 + δ(s) (2.9)

Here, β = (β0, ..., βp)
′ ∈ Rp+1 is an unknown vector of parameters and δ(·) is a zero-mean

intrinsically stationary random process with variogram 2γ(·).

We might model the trend as a polynomial function of the X and Y coordinates(in the

case that s ∈ R2) as follows:

Z(si) = β0 + β1Xi + β2Yi + β3X
2
i + β4XiYi + β5Y

2
i + δ(si).

However, we should avoid overfitting the trend and thus should restrict ourselves to low-order

polynomials.

Regardless of the proposed trend, we will still have the same predictor assumptions

of equation 2.2. However, we must also incorporate more constraints to ensure that our

13



estimator is unbiased. In the case of a linear trend, we have:

Z(s0) = β0 + β1X0 + β2Y0 + δ(s0)

We must therefore add the constraints
∑n

i=1wiXi = X0 and
∑n

i=1wiYi = Y0 to our original

constraint
∑n

i=1wi = 1. In the same fashion as ordinary kriging, we minimize the mean

squared prediction error under these constraints in order to derive our kriging weights. We

will use the notation x = (f0(s0), ..., fp(s0))
′ and X is an n x (p + 1) matrix whose (i, j)th

element is fj−1(si). Our weight vector

wu = Γ−1u γu,

where

wu = (w1, ..., wn, λ0, ..., λp)
′,

γu = (γ(s0 − s1), ..., γ(s0 − sn), 1, f1(s0), ..., fp(s0))
′,

and

Γ =



γ(si − sj), i = 1, 2, ..., n, j = 1, 2, ..., n

1, i = n+ 1, j = 1, 2, ..., n,

1, j = n+ 1, i = 1, 2, ..., n,

0, i = n+ 1, j = n+ 1.

For universal kriging, we have assumed that the variogram is known. However, in practice,

it is estimated using 2γ̂ or 2γ̄. This is inappropriate in the presence of a trend since

E(Z(si)− Z(sj))
2 = var(Z(si)− Z(sj)) + {µ(si)− µ(sj)}2

where the first term on the right hand side is 2γ(si − sj) and the second term is nonzero. If

we knew the vector β characterizing out trend, we could estimate the variogram based on

14



the residuals. However, β is unknown and in order to estimate it (using generalized least

squares), we need knowledge of var(Z) = Σ, the covariance matrix of our data. But, Σ is

unknown and we are back where we started. This circularity has lead to some dissatisfaction

with universal kriging as we are introducing bias when we estimate the variogram using the

residuals. However, the bias of the residuals-based variogram is small at lags near the origin

and more substantial at distant lags. Provided that a variogram model is fit by weighted

least squares, which puts most weight on the estimator at small lags, the effect of the bias

should be small. (Cressie 1993 section 3.4.3) This bias does not have much influence on the

universal kriging predictor, but the kriging variance may be smaller than it should be.

2.3 Kriging as a regression procedure

A. Stein and L. C. A. Corsten embed the kriging technique into regression procedures, leading

to a more straightforward formulation than using Lagrange multipliers.[SC91]

Let C be a positive-definite matrix such that each element is assumed to be an isotropic

function c(h) only of the distance (h) between the pair of observation points concerned, ie.

C is the covariance matrix that will take the place of the model variogram matrix Γ. We

have the following linear model for the actual observations y and hypothetical observation

y0:

(y y0)
′ = (X x0)

′β + ε

where E(ε) = 0 and Cov(ε) = C. We require the best predictor ŷ = w′y, linear in the

observations y, to satisfy E(w′y−y0) = 0 and V ar(w′y−y0) is minimal. Again, C and c0 are

the known covariances among the yi and those between the yi and y0. We note that the vector

y0 − c′0C
−1y is orthogonal to any linear combination of y1, ..., yn and V ar(y0 − c′0C

−1y) =

V ar(y0)− V ar(c′0C−1y) = c00 − c′0C
−1c0, c00 being the variance of y0.

Now, we split the prediction error into

ŷ − y0 = (w′y − c′0C
−1y)− (y0 − c′0C

−1y),
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the difference between two orthogonal terms, and V ar(ŷ−y0) = V ar(w′y−c′0C
−1y) + c00−

c′0C
−1c0.

Furthermore, for ν ′y, with ν ′ equal to w′ − c′0C
−1, we require that E(ν ′y) = x′aβ with

x′a = (x′0 − c′0C
−1X) to satisfy the unbiasedness requirement. Minimizing V ar(ŷ − y0)

is equivalent to minimizing V ar(ν ′y) while E(ν ′y) = x′aβ. The minimum is attained by

the GLS estimator β̂ = VX ′C−1y, where V = (X ′C−1X)−1. Therefore, ν ′y = x′aβ̂ and

ŷ = ν ′y + c′0C
−1y will be:

ŷ(s0) = x′aβ̂ + c′0C
−1y = x′0β̂ + c′0C

−1(y −Xβ̂) (2.10)

The variance of our estimator will then be V ar(ŷ − y0) = c00 − c′0C
−1c0 + x′aVxa.

From equation 2.10, we can see that the predictor ŷ is the sum of the estimated local

expectation of the target value (x′0β̂) and a linear combination of the observed residuals

within y − Xβ̂, with the coefficients given by the best linear approximation of the target

value by all n observations. Furthermore, since ŷ − x′0β̂ = c′0C
−1(y − Xβ̂), the procedure

can be interpreted as regression of the residuals of ŷ with respect to x′0β̂ on the residuals of

y with respect to Xβ̂.

2.4 Problems with kriging on large datasets

When fitting the ordinary and universal kriging equations to a dataset, the covariance struc-

ture is assumed to be the same over the whole domain. In cases where the domain of interest

is large, the state of California, for example, this may be an inappropriate assumption. If

we wish to model different covariance structures in different parts of the domain, we are

forced to perform ad-hoc methods of partitioning the domain and fitting a different model

for each partition. This brings up issues of discontinuity in the covariance function as well

as a burden on the modeler. Ordinary and universal kriging require the inversion of an n

x n covariance matrix (or variogram), with a computational cost on the order of n3. This

isn’t a problem for data sets under about 5,000 rows, but can lead to major slow downs for
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larger data sets.

2.5 Fixed rank kriging

When datasets are large, they are often defined over a large spatial domain, so the spatial

process of interest usually exhibits non-stationary behavior over that domain. Fixed rank

kriging (FRK) is universal kriging within a class of non-stationary covariance functions. The

family of non-stationary covariance functions is defined using a set of basis functions that is

fixed in number. FRK is written in terms of the covariance matrix Σ. Regardless of whether

the kriging equations are written in terms of the variogram Γ or the covariance matrix Σ,

we still need to invert these matrices to obtain our kriging predictor. In FRK, a class of n x

n covariance matrices is selected such that Σ−1 can be obtained by inverting r x r matrices,

where r is fixed and r << n.

We continue to model the underlying stochastic process as

Z(si) = Y (si) + ε(si) , i = 1, ..., n,

We assume that the measurement-error process, ε(·), is statistically independent of Y (·) and

distributed as,

ε(·) ∼ N(0, σ2
ευε(·))

where υε(·) is a function that is usually assumed known. Then, Z|Y ∼ Nn(Y, σ2
εVε) where

Vε = diag(υε(s1), ..., υε(sn)). The process Y (·) is decomposed into two components,

Y (·) = µ(·) + ν(·)

Here, the first component µ(·) is a deterministic large-scale trend, and the second component

ν(·) is a random spatial-variation component. As in universal kriging, we assume that the
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deterministic trend is a linear function of spatial covariates,

µ(·) = x(·)′β

where x(·) is a p-dimensional vector of known covariates. The random spatial-variation term

ν(·) is further assumed to follow the spatial-random-effects (SRE) model,

ν(·) = S(·)′η + ξ(·),

where S(·) = (S1(·), ..., Sr(·))′ is an r-dimensional (r << n) vector of spatial basis functions,

and η is a spatial random-effects vector. Sometimes, S(·) contains basis functions of mul-

tiple resolutions, with the goal of capturing many scales of spatial variation. (Cressie and

Johannesson 2008) We also assume that η is distributed as

η ∼ Nr(0, K),

where K is an unknown r x r symmetric positive-definite matrix. The fine-scale-variation

process ξ(·) accounts for the error induced by dimension reduction and is distributed as,

ξ(s) ∼ N(0, σ2
ξυξ(s)),

independently for all s ∈ Ds, and independently of η, where υξ(·) is a known function. We

can then write the data vector as,

Z = Y + ε,

where

Y = Xβ + Sη + δ

Here, the i-th row of S is S(si)
′. The covariance matrix of the data vector has the form,

Σ = var(Z) = var(Sη) + var(δ + ε) = SKS ′ +D,
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where D = σ2
ξVξ + σ2

εVε. Here, Vξ = diag(υξ(s1), ..., υξ(sn)) and Vε = diag(υε(s1), ..., υε(sn)).

If there is no reason to believe that the measurement-error variances should be different in

different parts of Ds, we can assume Vε = In, the identity matrix. The same applies to υξ(·).

In the FRK framework, the domain of interest is discretized into a set of Nd non-

overlapping tiles known as Basic Aerial Units or BAUs. The process {Y(s) : s ∈ Ds} is

then averaged over the BAUs. When we use the model to predict at unobserved locations,

our prediction will give one value for the BAU that overlays the location of interest.

We must also specify the type, the number (r), and the locations of the basis functions

used in the matrix S. Common basis functions include bisquare functions, wavelets, indicator

functions, Gaussian functions, Matérn functions, and exponential functions.

Before prediction can proceed, we must estimate the unknown parameters {β,K, σ2
ξ}

and the measurement-error variance σ2
ε , which is assumed known. The measurement-error

variance can be estimated by interpolating variogram estimates at lags (h) closest to zero.

(Cressie 1993 section 3.2.1) It is also sometimes assumed to be zero, but this is a matter

of choice and often depends on the application. In implementations of FRK, namely the R

package “FRK”, the user has the ability to attribute fine-scale variation to the observation

model or the process model. [Zam17] In the above exposition, we consider estimation where

the fine-scale variation sits in the process model.

One option for parameter estimation is through maximum likelihood estimation via the

expectation-maximization (EM) algorithm as in [KC11]. The EM algorithm attempts to

find the value of the parameter vector that maximizes the likelihood function, defined as the

probability density function of the observed data as a function of the unknown parameters.

We can estimate the parameter β through ordinary or weighted least squares, then use the

EM algorithm to estimate {K, σ2
ξ}. Alternatively, we could use EM to estimate all three

parameters simultaneously, however, we will pursue the former method in this case.

The EM algorithm begins with starting values, K [0] and σ
2[0]
ξ , for the two parameters of

interest. We subsequently update both parameters iteratively for t = 1, 2, ... until conver-
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gence.

K [t+1] = K [t] −K [t]S ′Σ[t]−1SK [t] + (K [t]S ′Σ[t]−1Z̃)(K [t]S ′Σ[t]−1Z̃)′

σ
2[t+1]
ξ = σ

2[t]
ξ + (σ

2[t]
ξ )2tr(Σ[t]−1[Z̃Z̃′Σ[t]−1 − In]Vξ/n)

where Σ[t] = SK [t]S ′ + σ
2[t]
ξ Vξ + σ2

εVε, Z̃ = Y − Xβ̂, and Σ[t]−1 is shorthand for (Σ[t])−1.

Using the Sherman-Morrison-Woodbury formula, we can invert Σ[t] by inverting only the r

x r matrix K [t] and the diagonal matrix D[t] = σ
2[t]
ξ Vξ + σ2

εVε:

Σ[t]−1 = D[t]−1 −D[t]−1S[K [t]−1 + S ′D[t]−1S]−1S ′D[t]−1.

This reduces the order of computations from n3 to nr2, and therefore makes computations

scalable to larger datasets.

From equation 2.10, we can then write the FRK predictor as:

ŷ(s0) = x′0β̂ + S(s0)
′KS ′Σ−1(y −Xβ̂)

and the kriging variance as:

V ar(ŷ − y0) = S(s0)
′KS(s0)− S(s0)

′KS ′Σ−1SKS(s0) + p′(X ′Σ−1X)−1p

where p = x0 −X ′Σ−1SKS(s0).
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CHAPTER 3

Kriging of California groundwater data

3.1 Background

California’s groundwater provides approximately 30 to 46 percent of the State’s total wa-

ter supply, depending on wet and dry years.[CAg] As the demand of water for domestic,

agricultural, and industrial uses increases, groundwater management becomes increasingly

important. Various management measures need to know the spatial and temporal behav-

ior of groundwater. Accurate maps of depth to groundwater are necessary for predicting

net flow direction as well as monitoring groundwater recharge. In a scattered groundwater

observation region such as California, geostatistical methods can be used to determine the

values for the points where measurements are not made. In what follows, several different

kriging methods were applied to a dataset of 2016 depth to groundwater measurements in

California. Specifically, we wish to evaluate Fixed rank kriging as it compares to ordinary

and universal kriging in terms of prediction accuracy and computation speed.

The original data consists of 4,727 measurement of depth to groundwater below the

ground surface. These measurements span California, but have a nonuniform coverage of

the state.

The measurements were taken in the Fall of 2016, between October and December. Of

the 4,727 original measurements, 4,028 measurements with unique locations were kept. Fur-

thermore, 42 locations with a negative depth to groundwater measurement were excluded

from the kriging as they indicate that the groundwater level is above ground surface at those

locations.
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Figure 3.1: Histograms of original and transformed values

3.2 Methods

We wish to perform kriging on the groundwater data using the fixed rank kriging method-

ology. We will be using the R package “FRK” [Zam17] to perform the kriging as well as

the package “gstat” [GPH16] when comparing FRK to ordinary and universal kriging. In

comparing the different kriging methods, we will look at out-of-sample prediction accuracy

based on the mean squared error. We will also compare standard error maps and the time

it takes to fit the models and make predictions for each method.

We decided to work with the logarithm of the depth since this transformation gave values

that more closely obeyed a normal distribution (see figure 3.1). As we have a moderately

large dataset, some departure from normality is expected. Regardless of normality, fixed

rank kriging is still justified as a spatial Best Linear Unbiased Predictor (BLUP).

Looking at figure 3.2, we can see what appears to be a latitude gradient in the data, as

values seem to be decreasing as we move from southern California to northern California.

Maps were created using the ggmap package in R.[KW13]

Recall that we first wish to characterize the deterministic trend x(·)′β, which models

large-scale variation. We fit a linear model with latitude and longitude as a covariates

(including an intercept), using least squares. As longitude was not a significant predictor
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Figure 3.2: California log(depth to groundwater [ft])

in the model, we decided to model the trend with latitude and an intercept term. This

gives a parameter vector of β = (11.591 − 0.200)′. Thus, in the notation of our model,

x = (1 latitude)′.

We then check the detrended data for normality (figure 3.3). Again, there is some de-

parture from normality, but we will proceed with the analysis.

To model small-scale variation (Sη in the SRE model), we construct the basis matrix S.

As Cressie and Johannesson recommend in [CJ08], we use multiple resolutions for the basis

functions. We compare prediction accuracy of models constructed with Gaussian, bisquare,

exponential, and Matérn covariance functions.

The form of these functions is as follows:

φGaussian(u) = exp (−‖u‖
2

2σ2
)

φbisquare(u) = {1− (
‖u‖
R

)2}2I(‖u‖ < R),
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Figure 3.3: Histogram of detrended data with QQ plot

φexp(u) = exp (−‖u‖
τ

),

φMatern(u) = (1 +

√
3‖u‖
κ

) exp (−
√

3‖u‖
κ

)

where {σ,R, τ, κ} are scale coefficients set based on the minimum distance between the

centroid locations following placement. u is the distance between the data point and the

centroid of the basis function.

We used the functions FRK::auto basis() and INLA::inla.nonconvex.hull() to place the

basis functions on our domain Ds, the interior of California. Figure 3.4 shows the placement

of the basis functions. For our comparisons, we used constructed the basis matrix with two

different resolutions (plot b). In an attempt to increase prediction accuracy, we also tried

using three different resolutions (plot a). 82 basis functions were used for the two resolution

basis and 468 for the three resolution basis.

The convex hull of our data was discretized into BAUs using the function FRK::auto BAUs().

Each BAU covered 0.2 by 0.2 degrees latitude/longitude, giving 1,406 units (Grid 1). We

also used a finer grid with a 0.1 by 0.1 degrees area, giving 5,596 units (Grid 2). We found

that making the grid any finer lead to a decrease in prediction accuracy. σ2
ε was estimated

to be 0.189 for the FRK model.
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Figure 3.4: Constructed basis functions

Figure 3.5: Convergence of the EM algorithm

We performed parameter estimation using the EM algorithm with a convergence tolerance

of 0.1. This turned out to be the major bottleneck for fixed rank kriging. Time to fit the

model and make predictions varied depending on the choice of number and type of basis

functions, as well as the resolution of the grid of BAUs. Surprisingly, the algorithm converged

much faster when using the finer grid. So, despite having more prediction locations, 5,596

vs. 1,406, the time taken to fit the model and make predictions decreased.

The universal kriging used the same trend coefficients as the FRK model, with the spher-

ical variogram model fit in figure 3.6 (distance is in kilometers). The variogram had the fol-

lowing parameters, (Nugget c0 , Sill (c0+c1), Range α )=(0.336,0.7854,100.22). Based on the

directional variograms displayed in figure 3.7, we believe that the assumption of geometric
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Figure 3.6: Spherical variogram model fit to data

isotropy holds for the domain of interest.
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Figure 3.7: Directional variograms computed for directions 0, 45, 90, and
135 degrees

Table 3.1: FRK Mean squared prediction error over n=10 runs r=82 basis
functions

MSE (mean,sd)
Grid Used Gaussian Bisquare Exponential Matérn
Grid 1 (0.5629,0.02) (0.5628,0.02) (0.5636,0.02) (0.5633,0.02)
Grid 2 (0.511,0.03) (0.508,0.031) (0.5138,0.032) (0.513,0.03)

3.3 Results

Mean squared prediction error was calculated using a random sample of 75% of the data to

train the models and 25% of the data to test the models. This procedure was performed 10

times, giving 10 different random samples of the data. For fixed rank kriging, the predicted

value is taken to be the value of the BAU that contains the test data point. We list the

mean and standard deviation of the resulting mean squared prediction error.

Table 3.2: Universal and Ordinary kriging compared to FRK with r=468
basis functions

Prediction accuracy results
Ordinary kriging Universal krig-

ing
FRK (r=468 ba-
sis functions)

Mean(MSPE) 0.4091 0.4038 0.4959
SD(MSPE) 0.006 0.006 0.028
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Table 3.3: Time taken to build model and predict over BAUs

Average time taken (seconds)
Grid Used Gaussian Bisquare Exponential Matérn
Grid 1 28 26 17.8 24
Grid 2 8 6.2 8 7.8

Figure 3.8: log(depth to groundwater) prediction map and standard errors

From table 3.1, we noticed that there was little difference between the basis functions

chosen for the matrix S in terms of prediction accuracy. When comparing fixed rank kriging

with universal and ordinary kriging, we used 468 bisquare basis functions of three different

resolutions. From table 3.2, we can see that universal and ordinary kriging outperform fixed

rank kriging in terms of prediction accuracy. Fixed rank kriging is much faster, however,

averaging only 15 seconds to build the model and make predictions on 5,596 grid locations.

Universal and ordinary kriging averaged 52 seconds, almost 4 times as long as fixed rank

kriging. All times were recorded on a 2.9 GHz Intel Core i5 MacBook Pro (2015 model).

We can see the fixed rank kriging predictions and standard errors for the coarser resolution

model (1,406 BAUs) in figure 3.8. We see that the standard error is higher in the areas

without data points.
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Figure 3.9: FRK prediction map (resolution 3) and standard errors

Figure 3.10: Universal kriging prediction map (resolution 3) and standard
errors
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From figures 3.9 and 3.10, we can see that the fixed rank kriging prediction map closely

follows the universal kriging map. Both maps show that groundwater is furthest from the

surface in the region of inland southern California and closest to the surface in the north-

western corner of California. The universal kriging map is much smoother than the fixed

rank kriging map, however. Making the grid any finer, ie. increasing the number of BAUs

past 5,596, led to a decrease in prediction accuracy for fixed rank kriging. Therefore, we

settled on 5,596 BAUs for the FRK model.

3.4 Conclusion

For a dataset of this size (3,986 observations), the computational speedups of fixed rank krig-

ing are not persuasive enough to support its use in place of universal kriging. As prediction

accuracy is more important than computation time, we believe that universal kriging remains

the de-facto prediction method at this scale. The smoothness of the universal kriging predic-

tion and standard error maps are also preferred to the more choppy fixed rank kriging maps.

For fixed rank kriging, we also found that varying the type of basis function did not have

as much of an impact on increasing prediction accuracy as increasing the number of basis

functions. Although fixed rank kriging remains a valid option for spatial prediction, we be-

lieve that the computational benefits of this approach do not outweigh the accuracy increase

of maintaining the full covariance structure. In the case of predicting groundwater levels at

this scale, universal kriging was shown to be the preferred method. In certain applications,

where the domain of interest is very large and may include measurements with different sup-

ports, fixed rank kriging becomes a much more convincing alternative to universal kriging.

For example, combining measurements from different orbiting satellites becomes a computa-

tional challenge for reasons of data size (upwards of 100,000 observations), nonstationarity,

and varied support (some sensors use different grid sizes) [CJ08]. As an example use case,

if kriging needs to be performed as part of a real-time system, on a global scale, we believe

that fixed rank kriging offers advantages in terms of prediction speedup and preprocessing

time.
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CHAPTER 4

R Code

# Brice Randolph UCLA Statistics MS Thesis Code

# last edit: June 29 2017

# Data acquisition: 1. Visit

# https://gis.water.ca.gov/app/gicima/

# 2. Under ’Select Layer Group ’,

# choose Fall 2016 Depth

#3. Select ’Download ’

# Load necessary packages:

library(readr)

library(FRK)

library(sp)

library(ggplot2)

library(ggmap)

library(geoR)

library(gstat)

library(INLA)

library(foreign)

library(rgdal)

library(gridExtra)
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######

# replace with path to dataset

h20 <- read.dbf(

#"~yourpathhere/Fall_2016_Depth_Points/

#F2016_DBGS_Points_20170327_102311.dbf")

# WSEL = groundwater surface elevation DGBS =

# groundwater depth below ground surface

# Preprocessing

h20 <- h20[, c("Site_Code", "WSEL", "Latitude", "Longitude",

"DGBS")]

#remove duplicate reading from same site

h20 = h20[unique(h20$Site_Code), ]

h20 <- h20[, c("Latitude", "Longitude", "DGBS")]

coordinates(h20) = ~Longitude + Latitude

# Fixes distance calculations

proj4string(h20) = CRS("+proj=longlat")

h20 <- remove.duplicates(h20)

# Working with log transformed data with values > 1

h20Edit <- h20[h20$DGBS > 1, ]

# checking normality assumptions

hist(log(h20Edit$DGBS), main = "Log Depth to Groundwater",

xlab = "") #Appears normal

lmodel <- lm(log(h20Edit$DGBS) ~ (Latitude + 1), data = h20Edit)

h20DF <- data.frame(h20Edit)
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summary(lmodel)

par(mfrow = c(1, 2))

hist(h20Edit$DGBS , main = "Histogram of depth to groundwater",

xlab = "depth to groundwater (ft)")

hist(log(h20Edit$DGBS), main =

"Histogram of log(depth to groundwater)",

xlab = "log(depth to groundwater)")

### looking at normality in detrended values

hist(lmodel$residuals , main = "Histogram of detrended data",

xlab = "residuals")

qqnorm(lmodel$residuals)

qqline(lmodel$residuals , col = 2)

######### Procedure for creating single train/test set to

######### evaluate prediction Code at end contains the

######### procedure for replicating this 10 different times

set.seed (1)

trainIndices <- sample (1: length(h20Edit), length(h20Edit)/4,

replace = FALSE)

test <- h20Edit[trainIndices , ]

train <- h20Edit[-trainIndices , ]

##### Creating the Basic Aerial Units(BAUs) Essentially

##### discretizes the domain of interest

# @ arguments: 2D plane , BAU cellsize , grid (not

# hex), data around which to create BAUs , border

# buffer factor ,

GridBAUs1 <- auto_BAUs(manifold = plane(), cellsize = c(0.2,

0.2), type = "grid", data = h20Edit , convex = -0.05,

nonconvex_hull = FALSE)
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h20Pts <- h20Edit

h20Pts$DGBS <- NULL

GridBAUs2 <- BAUs_from_points(h20Pts)

# this (GridBAUs2) has terrible performance

# compared to the other BAU methods and is left out

# of the report

GridBAUs3 <- auto_BAUs(manifold = plane(), cellsize = c(0.1,

0.1), type = "grid", data = h20Edit , convex = -0.05,

nonconvex_hull = FALSE)

GridBAUs4 <- auto_BAUs(manifold = plane(), cellsize = c(0.05 ,

0.05), type = "grid", data = h20Edit , convex = -0.05,

nonconvex_hull = FALSE)

plot(GridBAUs1)

plot(GridBAUs2)

plot(GridBAUs3)

plot(GridBAUs4)

GridBAUs1$fs <- 1 # fine -scale variation at BAU level

GridBAUs2$fs <- 1

GridBAUs3$fs <- 1

GridBAUs4$fs <- 1

# Types of basis functions used: ’bisquare ’,

# ’Gaussian ’,’exp ’, ’Matern32 ’

G <- auto_basis(manifold = plane(), data = h20Pts ,

nres = 2, type = "Matern32", regular = 0)

show_basis(G) + coord_fixed() + xlab("Longitude") +

ylab("Latitude")
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## Note: show basis assumes spherical distance

## functions when plotting

G2 <- auto_basis(manifold = plane(), data = h20Pts ,

nres = 3, type = "bisquare", regular = 0)

show_basis(G2) + coord_fixed () + xlab("(b)") + ylab("Latitude")

## Note: show basis assumes spherical distance

## functions when plotting

f1 <- log(DGBS) ~ 1 + Latitude # formula for SRE model

f2 <- log(DGBS) ~ 1 # formula for SRE model

# @ parameters: formula , list of datasets , BAUs ,

# basis functions , estimation measurement error

S1 <- SRE(f = f1 , data = list(train), BAUs = GridBAUs1 ,

basis = G, est_error = TRUE , average_in_BAU = FALSE)

# @ parameters: model , max. num EM iterations ,

# tolerance at which EM is assumed to have

# converged , bool print log -likelihood at each

# iteration

S1 <- SRE.fit(SRE_model = S1 , n_EM = 100, tol = 0.1,

print_lik = TRUE)

GridBAUs1 <- SRE.predict(SRE_model = S1 , obs_fs = FALSE)

MSE_FRK1 <-mean((log(test$DGBS)-over(test , GridBAUs1)$mu)^2)

#returns the GridBAUs1 entry with closest pixel

MSE_FRK1

head(over(test , GridBAUs1)$Latitude)

head(test$Latitude) # sanity check
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################ second FRK BAU setting

S2 <- SRE(f = f1 , data = list(train), BAUs = GridBAUs2 ,

basis = G, est_error = TRUE , average_in_BAU = FALSE)

S2 <- SRE.fit(SRE_model = S2 , n_EM = 100, tol = 0.01,

print_lik = TRUE)

GridBAUs2 <- SRE.predict(SRE_model = S2 , obs_fs = FALSE)

#returns the GridBAUs1 entry with closest pixel

MSE_FRK2 <- mean((log(test$DGBS) - over(test , GridBAUs2)$mu)^2)

MSE_FRK2

################ third FRK BAU setting

S3 <- SRE(f = f1 , data = list(train), BAUs = GridBAUs3 ,

basis = G, est_error = TRUE , average_in_BAU = FALSE)

S3 <- SRE.fit(SRE_model = S3 , n_EM = 100, tol = 0.01,

print_lik = TRUE)

GridBAUs3 <- SRE.predict(SRE_model = S3 , obs_fs = FALSE)

#returns the GridBAUs1 entry with closest pixel

MSE_FRK3 <- mean((log(test$DGBS) - over(test , GridBAUs3)$mu)^2)

MSE_FRK3

################################# Other kriging methods

### variogram for ordinary kriging

train_g <- gstat(id = "log_dist", formula = log(DGBS) ~

1, data = train)

vg <- variogram(train_g)
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# robust variogram calculation

vgRobust <- variogram(train_g, cressie = TRUE)

plot(vg)

plot(vgRobust)

lm(vgRobust$gamma ~ vgRobust$dist) # sigma2e = 0.664

v.fit <- fit.variogram(vgRobust , vgm(1.5, "Sph", 300,

0.5))

v.fit

plot(vg, v.fit)

##### variogram for universal kriging

train_g_U <- gstat(id = "log_dist", formula = log(DGBS) ~

1 + Latitude , data = train)

vg_U <- variogram(train_g_U)

dir.vgm <- variogram(train_g_U, alpha = c(0, 45, 90,

135))

plot(dir.vgm)

v.fit_U <- fit.variogram(vg_U, vgm(1.5, "Sph", 400,

0.5))

plot(vg_U, v.fit_U)

### ordinary and universal kriging

OK <- krige(id = "logDist", formula = log(DGBS) ~ 1,

train , newdata = test , model = v.fit)

#returns the GridBAUs1 entry with closest pixel

MSE_OK <- mean((log(test$DGBS) - OK$logDist.pred )^2)

UK <- krige(id = "logDist", formula = log(DGBS) ~ 1 +
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Latitude , train , newdata = test , model = v.fit_U)

MSE_UK <- mean((log(test$DGBS) - UK$logDist.pred )^2)

# UK2 is used to produce the analogous kriging map

# of california using OK and UK as opposed to FRK

UK2 <- krige(id = "logDist", formula = log(DGBS) ~

1 + Latitude , train , newdata = GridBAUs3 , model = v.fit_U)

# compare MSE of single trial: Actual comparisons

# are done after replicating the procedure 10 times

# (shown at end of code)

MSE_FRK1

MSE_FRK2

MSE_FRK3

MSE_OK

MSE_UK

MSE_OKL

### Plotting the predictions and standard errors

# need to coerce the BAUs to a data frame for ggplot2

BAUs_df <- as(GridBAUs3 , "data.frame")

g_grid2FRK <- ggplot () + geom_tile(data = BAUs_df,

aes(Longitude , Latitude , fill = mu), colour = "light grey") +

scale_fill_distiller(palette = "Spectral", name = "pred.") +

coord_fixed () + xlab("Longitude") + ylab("Latitude") +

theme_bw()

# the following can be added to plot data over the
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# map geom_point(data=data.frame(h20Edit), # Plot

# data aes(Longitude ,Latitude ,fill=log(DGBS)), #

# Colour <-> log(zinc) colour=’black ’, # point

# outer colour pch=21, size=1) # size of point

g_grid2FRK # to view the map

# Similar to above but with standard errors

g2 <- ggplot () + geom_tile(data = BAUs_df , aes(Longitude ,

Latitude , fill = sqrt(var)), colour = "light grey") +

scale_fill_distiller(palette = "BrBG", name = "s.e.",

guide = guide_legend(title = "se")) + coord_fixed () +

xlab("Longitude") + ylab("Latitude") + theme_bw()

g2

grid.arrange(g1 , g2, ncol = 2)

########## plotting the data over california

myLocation <- c(lon = -119, lat = 36)

### myMap = watercolor for just showing locations

### myMap2 = toner for contrasting color grad

myMap <- get_map(location = myLocation , source = "stamen",

maptype = "watercolor", crop = FALSE , zoom = 6)

myMap2 <- get_map(location = myLocation , source = "stamen",

maptype = "toner", crop = FALSE , zoom = 6)

ggmap(myMap2) + geom_point(aes(x = Longitude , y = Latitude ,

colour = log(DGBS)), size = 1, data = data.frame(h20Edit),

alpha = 0.5) + scale_colour_gradientn(colours = rainbow (4))

####

# Plotting universal kriging predictions and

# standard errors
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UK_df <- as(UK2 , "data.frame") #logDist.pred logDist.var

gUKp <- ggplot () + geom_tile(data = UK_df , aes(Longitude ,

Latitude , fill = logDist.pred), colour = "light grey") +

scale_fill_distiller(palette = "Spectral", name = "pred.") +

coord_fixed () + xlab("Longitude") + ylab("Latitude") +

theme_bw()

gUKp

gUKse <- ggplot () + geom_tile(data = UK_df, aes(Longitude ,

Latitude , fill = sqrt(logDist.var)), colour = "light grey") +

scale_fill_distiller(palette = "BrBG", name = "s.e.",

guide = guide_legend(title = "se")) + coord_fixed () +

xlab("Longitude") + ylab("Latitude") + theme_bw()

gUKse

grid.arrange(g_grid2FRK , gUKp , ncol = 2)

############ Replicating the procedure on 10 different test

############ sets Seed changes 10 times

mseListOK <- list()

mseListUK <- list()

mseListFRK1 <- list()

time <- list()

for (i in 1:10) {

set.seed(i)

trainIndices <- sample (1: length(h20Edit), length(h20Edit)/4,
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replace = FALSE)

testi <- h20Edit[trainIndices , ]

traini <- h20Edit[-trainIndices , ]

start.timei <- Sys.time()

S1i <- SRE(f = f1, data = list(traini), BAUs = GridBAUs1 ,

basis = G, est_error = TRUE , average_in_BAU = FALSE)

S1i <- SRE.fit(SRE_model = S1i , n_EM = 100, tol = 0.1,

print_lik = TRUE)

GridBAUs1i <- SRE.predict(SRE_model = S1i , obs_fs = FALSE)

end.timei <- Sys.time()

time.takeni <- end.timei - start.timei

#(over) returns the GridBAUs1 entry with closest pixel

MSE_FRK1i <- mean((log(testi$DGBS) - over(testi ,

GridBAUs1i)$mu)^2)

time <- c(time , time.takeni)

mseListFRK1 <- c(mseListFRK1 , MSE_FRK1i)

}

# results of first FRK procedure (larger BAUs)

mean(unlist(mseListFRK1 ))

sd(unlist(mseListFRK1 ))

mean(unlist(time))

sd(unlist(time))
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####

mseListFRK3 <- list()

timeFRK3 <- list()

for (i in 1:10) {

set.seed(i)

trainIndices <- sample (1: length(h20Edit), length(h20Edit)/4,

replace = FALSE)

testi <- h20Edit[trainIndices , ]

traini <- h20Edit[-trainIndices , ]

start.timei <- Sys.time()

S3i <- SRE(f = f1, data = list(traini), BAUs = GridBAUs3 ,

basis = G2, est_error = TRUE , average_in_BAU = FALSE)

S3i <- SRE.fit(SRE_model = S3i , n_EM = 100, tol = 1,

print_lik = TRUE)

GridBAUs3i <- SRE.predict(SRE_model = S3i , obs_fs = FALSE)

end.timei <- Sys.time()

time.takeni <- end.timei - start.timei

MSE_FRK3i <- mean((log(testi$DGBS) - over(testi ,

GridBAUs3i)$mu)^2)

timeFRK3 <- c(timeFRK3 , time.takeni)

mseListFRK3 <- c(mseListFRK3 , MSE_FRK3i)

}

# results of finer grid model FRK
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mean(unlist(timeFRK3 ))

sd(unlist(timeFRK3 ))

mean(unlist(mseListFRK3 ))

sd(unlist(mseListFRK3 ))

####

mseListFRK1 <- list()

time <- list()

# Universal kriging and Ordinary kriging MSE are

# computed as before , using

# MSE_UK<-mean((log(test$DGBS)-UK$logDist.pred)^2)

# for the different test sets

for (i in 1:10) {

set.seed(i)

trainIndices <- sample (1: length(h20Edit), length(h20Edit)/4,

replace = FALSE)

testi <- h20Edit[trainIndices , ]

traini <- h20Edit[-trainIndices , ]

start.timei <- Sys.time()

##### variogram for universal kriging

train_g_U <- gstat(id = "log_dist", formula = log(DGBS) ~

1 + Latitude , data = traini)

vg_U <- variogram(train_g_U)

v.fit_U <- fit.variogram(vg_U, vgm(1.5, "Sph",

400, 0.5))
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UK2 <- krige(id = "logDist", formula = log(DGBS) ~

1 + Latitude , traini , newdata = GridBAUs3 ,

model = v.fit_U)

end.timei <- Sys.time()

time.takeni <- end.timei - start.timei

time <- c(time , time.takeni)

}

mean(unlist(time)) # avg time = 32 sec. sd 19.6
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