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Summary

The thermomechanical foundations of the field of doublet mechanics are introduced. The
present approach utilizes the concepts of energy and entropy balance to derive thermodynamic
restrictions on the governing equations of the theory. The constitutive assumptions of nonlinear
elastic doublet mechanics are analyzed. Further restrictions on the material response functions are
determined from consideration of superposed rigid body motions. Finally, the equations of the

nonlinear elastic case are linearized and presented in simplified form.



1. Introduction

It may be said that the field of Continuum Thermomechanics (CT) was established in its
contemporary format with the landmark contributions of the late fifties and early sixties (Coleman
and Noll 1959, 1963; Gurtin, 1965; Truesdell and Noll, 1965). Disagreement between researchers
in CT has not been infrequent (see e.g. Day, 1976; Green and Naghdi 1977; Naghdi 1980; and
Kestin 1990), and mmch it has centered around the Clausius-Duhem Inequality (CDI) as the
embodiment of the Second Law of Thermodynamics and its use to derive wanc restrictions
in the manner proposed by Coleman and Noll (1963). Day (1976), using an example of a rigid
heat conductor with memory, has shown that the CDI is consistent with nonunique values of
entropy. Green and Naghdi (1977) have shown that the CDI predicts, for a class of rigid heat
conductors in equilibrium, that if heat is added to the medium, temperature must decrease. Green
and Naghdi (1977) proposed use of the Clausius Inequality in conjunction with the concept of an
entropy balance law as an alternative to the CDI. The Naghdi-Green formalism has been
successfully applied to studies of mixtures of interacting continua (Green and Naghdi 1978) and
nonlocal elasticity (Green and Naghdi 1978). For elastic constitutive assumpﬁons, the CDI-based
approach of Coleman and Noll (1963) yields identical results to the Naghdi-Green formalism
(Naghdi 1980).

Generalized continuum mechanical theories have been proposed, with the objective of
modeling continua endowed with a material microstructure (Cosserat 1909; Eringen and Suhubi
1964; Green and Rivlin 1964; Mindlin 1964, Eringen 1966, Stojanovic 1972; Pucci and
Saccomandi 1990). These are essentially continuum approaches, in that they are based on the
modeling assumption that all continuum points are endowed with additional kinematic variables

that are somehow representative of the microstructure contained in the “differential volume



element” centered at the point. Literature studies on the thermodynamics of the generalized
continua are not as abundant as those in continuum thermomechanics, and are gmérally based on
the CDI as the mathematical embodiment of the Second Law (Stojanovic 1972; Eringen and
Suhubi 1964; Eringen 1966). It may be expected that the use of the CDI in this context be subject
to the same objections as those mentioned above for conventional continuum mechanics. On this
basis, and without entering into the comparative merits of the various approaches to the
thermomechanics of media with or without microstructure, in this paper we employ the procedure
of Green and Naghdi (1977) to determine the constitutive restrictions that are imposed on a class
of microstructured media by the entropy balance law and the Clausius Inequality. The analysis is
limited to the thermoelastic range, where the choice of thermomechanical formulations has been
shown to be immaterial, not only for the cited case of continuum thermoelasticity, but also for the
case of micropolar elasticity (Ferrari, 1985).

The microstructure media to which reference is made in this paper are those that are
adequately modeled by the theory of Doublet Mechanics (DM), introduced by Granik and Ferrani
(1993). Quite differently from the previousfy described generalized continuum theories, in the
doublet mechanical approach, solids are represented as collections of points or nodes placed at
fmite distances. DM is “inductive” in the sense that the “differential volume element” of
conventional mechanics is supplanted with the concept of a “particle doublet™ as the elementary
unit on which the theory is built. At each doublet, elongational, torsional, and shear microstrains
are evaluated in terms of the two continuous mutually indépcndent vector fields of displacements,

U, and rotations, ¢ . Conjugate to the microstrains are the doublet-level stresses, or

microstresses. Equilibrium imposes the relationship by which microstresses are expressed in



terms of the microstrains and the microgeometry, providing a noninvertible linkage between the
continuum level and its descrete substructure.

The applicability of DM to a wide range of materials, including metals, alloys,
unreinforced and steel-fiber reinforced concrete, was demonstrated in the studies by Ferrari and
Granik (1994, 1995) on failure and yield envelopes. The theory of doublet viscoelasticity was
presented by (Maddalena and Ferrari 1994). In this four paper sequence, we deal with doublet
elastodynamics (Granik and Ferrari 1995; Zhang and Ferrari 1995), plane elastostatics (Nadeau,
Nashat, and Ferrari 1995), and, in this commumication, doublet thermomechanics. A
comprehensive review of DM is given in Granik and Ferrari (1995) with which the notation of this
communication is standardized.

In analogy with the methods of Green and Naghdi (1977, 1979), in this paper we first
identify local energy and entropy balance laws, and make constitutive assumptions as to what
variables the functions that appear in these balance laws depend on. Substitution of the
constitutive assumption into the balance laws allows simplification of these functional
dependencies. Next, an analysis is undertaken to determine what further restrictions are implied by
consideration of superposed rigid body motions (Green and Naghdi, 1979). Finally, the results of

the analyses are applied to a study of homogeneous linear elastic doublet mechanics.

2. Balance Laws

We start from the differential formulation of energy balance:
pr—div(g)+P-pE=0 2.1)
where the superscripted dot (E ) denotes the derivative with respect to time and the overbar ()

denotes vector quantities. In equation (2.1) r is the volume rate of heat supplied per unit mass,



is the heat flux vector, P is the mechanical power, E is the internal energy per unit mass, and pis

the mass density.

The differential law of entropy balance, introduced by Green and Naghdi (1977), is:

o ol

where £ is the internal rate of entropy production per unit mass, n is the entropy per unit mass,
and O is a function of empirical temperature, T, and other constitutive variables such that 6 > 0

and £ > 0. The combination of (2.1) and (2.2) yields the relation:
pr-div() = 8- pBE- ¢ = pE- P (23)

where g is denotes grad(8). Rewriting (2.3) yields:

-p(E-01)- 2-E-pE6+P=0 2.4)

or, in terms of the Helmholtz free energy (y= E - 0n):

—p(\+6n)-2-E-pEO+P =0 (2.5)

D |0

Expressions (2.4) and (2.5) will be referred to as energy/entropy balance equations and must hold
for all thermomechanical processes. Definition of a thermomechanical process will be delayed
until the mechanical power is discussed further.

The only difference in these equations between Continuum Mechanics (CM) and Doublet
Mechanics (DM) lies in how the mechanical power (P) is written. In CM, P =7 -L where 7 is the
stress tensor and the velocity gradient, L, is related to the deformation gradient, F, by

-
o

L=F -F'. The superscript ~ notation is used to denote tensor quantities. In DM:



P=3(pate +make +1,7,) @6

am]
where the summation over o ranges from 1 to n, the number of doublets defined at a node. p, is
the elongation microstress conjugate to the elongation microstrain £, m, is the torsional
microstress conjugate to the torsional microstrain y_, and t_ is the shear microstress vector
conjugate to the shear microstrain vector, y,. Use has been made of the fact that P -€, =p.€,

and T, - |, = m },. The microstrains are given by the following relations:

T° AR
£ = Bt (2.7)
Mo
T°-AQ
. = 2. ta (2.8)
N
F.=(6+1AF, -T2 xT, ) xT2 (2.9)

where 1|, is the internodal distance of the o-th particle doublet (nof entropy density), T, is a unit
vector in the undeformed configuration oriented along the a-th doublet axis, and At_ and A,

are given by the following relations in Cartesian coordinates:
) (2.10)

i:g ;} g( el e - "Ex“;.??.:é;:{d),é Jss.

Here, repeated Latin indices (k ;) should be summed over, while repeated Greek indices (a)

><| ><I

.t
i

should not. This equation should be evaluated only at the doublet nodes (when X = X,). The
number M refers to the degree of the approximation. The vector fields of translations, 6(X,t),
and rotations, $(X,t), are mutually independent and are functions of position, X, and time, t.

Additionally, the microstresses are required to satisfy the balance of linear momentum:



and moment of momentum:

a=l

B M x-1 6“(111 -—ln €. Tot )
x+1 Tl ai 2 'lajq aj aq
€. Tot. + -1 e g ceat? =0
Z[ 9 ' aj ag g( ) K! Ta,k, ok, | axkl"'axk‘

where b; is the volume body force and ¢, is the permutation tensor.
The mdependent variables in the above treatment are:
{4,6,T}
The balance laws (2.2), (2.5), (2.11), and (2.12) contain the fields:
{v,0,n,8,pa, ma, t, . T}
as well as:

{b,n}

We assume that the fields (2.14) depend constitutively on the variables in (2.13) and possibly their

space and time derivatives. We assume that:

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(1) The balance laws hold for arbitrary choices of the variables in (2.13) and, if

constitutive assumptions require, their space and time derivatives;

(2) The fields (2.14) are calculated from their constitutive equations;

(3) The fields (2.15) can then be found from the balance of momentum (2.11) and eatropy

(2.2);

(4) The energy/entropy balance equation (2.5) may be imposed as an identity for every
choice of variables (2.13). This allows restrictions on the constitutive equations to be

derived.



A thermomechanical process is defined by specifying the set of variables (2.13) such that

the balance laws are satisfied.

3. Elastic Constitutive Assumptions

The constitutive assumptions of Doublet Elasticity are:

=6(e..
=(Earta,¥a, TLVEX
(e G.1)

)
wrba T, LVEX)
P = P (€g- My, 75, T.VT:X)
m, = (sp,ua,ya,'l‘ VT: -X—)

% (s,,,u‘,,yp,T VT X)
where T is the empirical temperature and o and p can vary from 1 to n. The X indicates a possible
dependence on material inhomogeneity. Expanding these functions into their partial derivatives

and substitution, along with equation (2.6), into equation (2.5) yields an equation of the form:

N T T . :
AT+ B, +C. + Hil +H2 +H3 v .+
uz‘l( H axi ] axiaxj asu upa myw
oe o O o )
 — £ +I3 — et G=0 3.2
[+ 4] ax. axl ax‘ ( )

with coefficients:

{22 2) s - {oy/ {5/ o)



__a_® _ .9;(2'12?_ .@9.)_
Cy= ) a(m] G= ) 6T6x‘+8xi pLo
X,

__[ev 39) _4: %
Hl, = p(as, +n38u +P, I; = ® 2.
dy ae) | _=9 9%
H2, = p(aua +ﬁa“u +m, 12, = ® on.
H3, = ( + )-H I3 -4 %0
ai p ayni nayui ai ayj e anj

The vectorial subscripts i and j vary from 1 to 3, while the numbering subscript o varies from 1 to
n. Equation (3.2) must hold for every thermodynamic process, including arbitrary choices of the

functions in the set:

{',gx{—,—éx%i—;,éa,nu,m;‘: 2 ,ZYX‘:’} (33)
since these functions do not enter into con;titutive assumption (3.1) or the coefficients defined in
(3.2). Any functional relationships derived from arbitrary choices of the functions in the set (3.3)
must hold for every thermodynamic process. In particular:

a) Taking each member of the set (3.3) to be zero yields G = 0.

T .
B, to be zero yields C; = 0.

This means that 8 = §(T,&_,1,,7,,:X) i.e. © isnot a function of VT.

b) Given that G = 0, and taking all of set (3.3) except

¢) Given that C; = G = 0 and taking all of the set (3.3) except gx—r— to be zero yields

B; = 0. This means y = \D(T,s,,u,,y,,-:i) ie. yisnot a fimction of VT.

d) Given that C; = G = B; = 0 and taking all of the set (3.3) except T to be zero yields
A=0,



53
e) GiventhatCi;==G=Bi=A=Oandtakingalloftheset(3.3)cxcept-?ax-“tobezero

yields 11 ; = 0. This means 6 is not a function of ¢ .
ou,
ox.

f) Giventhat C;=G=B,=A =11, = 0 and taking all of the set (3.3) except to be

zero yields 12, = 0. This means 6 is not a function of p_.

a'Y(x’
g) Giventhat Cy=G=B,=A=I1, =12, = 0 and taking all of the set (3.3) except —éx—’—

to be zero yields I3_; = 0. This means 6 is not a function of y_,. At this point

9=é(T:—X7.

h) Giventhat Cy=G=B,=A=1Il, =12, =I3; =0 and taking all of the set (3.3)

except €, to be zero yields H1, = 0. This means p_ = p and, since \y is not a

oe

function of VT, p, is not a function of VT.

i) Giventhat G=G=Bi=A =11, =12, =I3,; = Hl. = 0 and taking all of the set (3.3)

0
except |, to be zero yields H2, = 0. This means m_ = p and m_ is not a function

ou,
of VT.

J) GiventhatCu=G=B;=A=Ilui=IZai=I3uﬁ=Hln=H2a=Oandtakingalloftheset

. . . 0 -
(3.3) except 7, to be zero yields H3,; = 0. This means t_, = p k4 and t_ isnot a

— ayui
function of VT.

Up to this point we have not applied the Second Law of Thermodynamics; nothmg has
been said of which processes are possible and which are not. In this communication, we retain the
viewpoint that different statements of the Second Law are possible, each embodying some aspects
of it. In what follows we explore the consequences of the Clausius Inequality (Green and Naghdi,

1977):

§(ji'ida-&[ﬂvamz'o G.4)



which states that the sum of the entropy from heat conduction (q) through the surface of the
body B, and from radiation (r) in the body B,, considered over a closed cycle ( 1), must be
greater than or equal to zero. A closed cycle is one in which the entropy, n, is the same before

and after the cycle is completed. If the Second Law applies locally to every part of the body,
through the use of the divergence theorem and entropy balance (2.2), the Clausius Inequality (3.4)

can be reduced to:

fe.atz0 (3.5)

If the entropy production rate, £, is independent of time, (3.5) implies £ 2 0.
To incorporate (3.5) into the above analysis, one must reconsider the results of part a) of
the application of the constitutive assumptions (3.1) to the energy/entropy balance equation (2.5),

particularly:
G=-—" —-—'—+-——)—p§9=0 (3.6)

Since it is possible to choose the cycle (I)in (3.5) such that §, T, VT, and therefore £ are

independent of time, it must be that £ > 0 for all processes. Recalling that 6 2 0, equation (3.5) is

then equivalent to the condition:

(§£+_é'1)20 37
qi aT axi axi ( . )
If we assume Fourier’s Law of heat conduction holds ie. q, = K; 7— when -é-x-—approachcs
j i
zero, with:
R-‘ K(8¢9u¢)7¢$T:-x—) (3‘8)

equation (3.7) can be rewritten as:



T
ROTOT BT _o (3.9)

VT ox, Ox; U ox, ox,

- oT
Given that K = 0, if (3.9) is to hold for arbitrary (near zero) values of r it must be that

J

ik = 0. Thus, 6 is not an explicit function of X. This result, added to the results of parts d) to f)

ox

above, show that 8 is an explicit finction of T only. Given that 6> 0 and & > 0, §(T) is an
invertible function and 6 can replace T as a constitutive variable in all of the foregoing equations

and relations.

Armed with this result, conclusion d) above is reinterpreted to be:

oy
2 - -1 (3.10)

and 7 is not a function of V@ because \ is not from part c) above. Also (3.6) can be rewritten as:

pE0 = -, (3.11)
and from (2.3):
pr —div(q) = pB7 (3.12)

Relations (3.11) and (3.12) are consistent with the results of Coleman and Noll (1963) and Green
and Naghdi (1977).

At this point the relations (3.1) can be rewritten as:



2

n=" au,uuﬁu,ez_i)=°‘-a—9— (3.13)
o = Bulep by 70.0%)= 2
m, = i, (g5, 1p,75,0.X) = a?:

fo =T, 0%) = 2

4. Superposed Rigid Body Motions

In the various theories of solid mechanics, once a set of measures of the deformation are
chosen, these measures are tested against transformations of the deformed configuration that
leave them properly invariant. Thus, in finite deformation theories of classical continuum
mechanics, the Cauchy-Green tensor C = F'F is chosen as a strain measure and is determined to
be invariant under arbitrary finite rigid motion of the deformed configuration. In geometrically
linear continuum theories, € = sym(grad(1))is chosen, and is proven to be invariant under
infinitesimal rotations of the deformed configuration. As shown by Casey and Naghdi (1981),
invariance of € under arbitrary finite rotations may be proven, upon choosing to remove the
translation and rotation at a “pivot point” in the body from the description of the deformation.
This introduces an element of frame specificity to the theory, but allows the linear theory to be

deduced as a special subcase of the finite theory.

The set of deformations appropriate to a theory is chosen on the basis of the ability of said

measures to quantify those aspects of the deformation that are of interest within the theory itself



Thus, £ is an appropriate measure in linear continuum theories in that it contains the desired
information on changes in lengths, areas, volumes, and angles. By comparison with this, the
variance of £ under finite rotations has been considered a notion of lesser importance throughout
the histod of mechanics.

In the present form of doublet mechanics, as presented in the original paper by Granik and
Ferrari (1993) and summarized in (Granik and Ferrari 1995), the measures of deformation that
are chosen are the elongational strains €, , the torsional strains i, and the shear strains ¥ o As
discussed above, these deformation measures were chosen for the information which they provide
in the chosen reference system. In this section the invariance properties of these measures of

deformation are investigated under the transformations:

u; = u; =Q,(t)u; +c,(t)

4.1

where Q,(t) represents a proper orthogonal matrix (a rotation) and c;(t) represents a rigid
translation. Under (4.1), the doublet unit vectors transform as:
1o = QT @)

and the internodal distances remain unaltered, ie. n; =1,.

4.1. The Microstrains
Using relations (4.1) and (4.2) and the identities

v v,
QaQi "'_’6; and ax: = Q'.an 'ax_k (4.1.1)

it can be deduced from (2.10) that:

Aug, = QiiAqu and Adg = QuA‘bqj (4.1.2)



and from (2.7), (2.8), (4.1), (4.2), (4.1.1), and (4.1.2) that:

€ =€, and pg=p, (4.1.3)

Relation (2.9) for the microshear strain vector can be rewritten in Cartesian form as:

1°1°% =8,
yui=[(¢j+a}A¢ )rapsw +(—‘i’-%--—i’-)Aunj] (4.1.4)

where £, is the permutation tensor. Again using the relations (4.1), (4.2), (4.1.1), and (4.1.2) it is

found that:

Vi =[(¢, +346,)Q,Q,.7%E +(Q"T“‘; ~ )Auaq:' (4.1.5)

with no further algebraic simplification apparent. We note that:

(1) If the material is torsionless (¢ = 0), then transformation (4.1), leaves ¥, unchanged
apart from orientation, i.e.¥. = Qy,.

(2) From (4.1.4) and (4.1.5), ¥ = Qy, if Q is such that:

QmQuQp8s =€y (4.1.6)
(3) If Q is an infinitesimal rotation,l relation (4.1.6) is satisfied and 7} = Qy .
By (4.1.3) and (4.1.6) it is seen that the axial and torsional microstrains are unaltered

under finite rigid rotations, while the shear microstrains are invariant only under infinitesimal

rotations.

4.2. The Microstresses
It is postulated that the doublet mechanical microstresses are invariant apart from

orientation, under the transformations (4.1):



Pi=P,, m =m, and t}=Q, (4.2.1)
Under the constitutive assumptions (3.1), relations (4.2.1) imply that:
PalEarMas¥2,0:X) =P, (EasHas Yo, 8:X)
B, (€0, M, 2,08:X) = i, (54, Mg, 4, 8:X) (4.2.2)
ta(Eastas 72,0 %) = Q- L (6 M ¥ 0:X)
where ¥, is given by (4.1.5). Relations (4.2.2) place significant restrictions on the functional

forms of the microstresses. No further simplifications through application of Cauchy’s

representation theorems (Truesdell and Noll, 1965) are possible unless Q obeys relation (4.1.6)
or the material is torsionless. If Q(t) is infinitesimal, then ¥ = Qy_, and Cauchy’s
representation theorems allow (4.2.2) to be rewritten as:

Po = Pal®q,1,,8:X)

m, =1, (g,,H,,0:X) (4.2.3)

ty = L(ew be 7o 70,0 %) 7,
where 1, is a second order tensor of material properties.

4.3. Other Functions

The other fimctions in our development also have similar restrictions for finite Q(t):
W(EastasTas0:X) = W(E,, 1o, Yo ,8:X)
W(EqsMa,Va,0:X) = N(Eg,Hq,74,0:X) (4.3.1)
Eearte,T2,0,Q-V0:X) = E(ea,He 70,0, V0 X)

A(e.,1e,72,0,Q-V0:X) = Q-§le,, 1y, 7,0, V0:X)



Again, for infinitesimal Q(t) Cauchy’s representation theorems allow (4.3.1) to be rewritten as:
v = W(e,,H,,0:X)
N =N(g,,H,,0:X) 4.3.2)
E = E(6q,Hq,0:X)
G=RK. (0 H0sTs 74.8,V0-V6,7, -VO-X) -7, +---

+L, (5, 10,7 '74,0,V0-V0,7_-V0:X)- V0

5. Linear Elastic Doublet Mechanics

The next step in this analysis is to choose the most general linear elastic form (linearization
of (4.2.2)) for the constitutive laws relating the microstrains to the microstresses without
restriction to infinitesimal SRBMs. We then explore the effect of finite SRBMs on these relations
and compare to the linearized forms obtained from restriction to infinitesimal SRBMs as in
(4.2.3). Assuming material homogeneity, the most general linear relation between the microstrains

and microstresses takes the form:

~

Po =Agsts +Byghty +Copivp +7.0

m, = Dyeg + Egplly + Fpp v + K © (5.1)

fai = Gopi€p + Hopiltp +LgiYp + L@
where sums are again taken over repeated Latin and Greek indices. © =6 -6 is an increment of
the temperature and 6, is the temperature of the granular media in an initial state. Using relations
(5.1) and (4.1.3), it is seen that:

Pa =A8p +Bg +C v +1,0

m, = Dggeg +E gty + I*‘m,,i'y;;i +K, 0 (5.2)



f; = G € -i»Haﬁiu.(i +Iamj-y;j +L,0
However, relations (4.2.2) require that p] = p, and m_ = m_. Clearly this can only be true if
Y = Y OF Cop = 0 and Fy; = 0. Consideration of (4.1.4) and (4.1.5) show that generally
Ypi ® Yg:» therefore Cog; = F ., = 0. In the linear regime, the tensile and torsional microstresses, p,

and m,, do not depend on the shear microstrain, Y oi-
Relations (4.2.2) also require that t}, = Q;t,;- Substitution of (5.1) and"(5.2) into this
relation results in conditions:
Q;Gupj =G =0
QHyp ~Hep =0
QLgy-Ly=0 (5.3)
QLo Yo —Lopy¥y; =0

The first three conditions i (5.3) require that Gopi = Hyp = L, = 0. In the linear regime, the

shear microstress, t,, is not a function of ¢, p_, or 0 ie. {, = t, (7). Thermal loads produce no

microshear stresses.

Further restrictions on the micromoduli follow from the results of pax;ts b) through j) of
the application of the constitutive assumption to the energy/entropy balance equation and the
mathematical requirement that partial differentiation be independent of the sequence of
differentiation ie.:

az\l’ = az\l’ =apa=apﬁ=
Poe.oe, 'oeyde, e, oc,

Agy=A, (5.4)

Such considerations lead to the conclusions that:

Ag =Ag, By =Ep,, Ly =Iy, and B, =D, (5.5)



In summary, for a homogeneous linear elastic material subject to finite SRBMs:

Pe = A €+ Bty +J .0

m, =Dge; +E o1, +K O (5.6)
tar = LopY;

with the conditions:
Qo Ypx — Lagi¥p; =0 (5.7)

It is instructive to compare the above results to the linearized form of relations (4.2.3)
which are identical to relations (5.6) and (5.8). Relation (5.7) is not an identity for infinitesimal
Q(t)but is satisfied to first order (neglecting terms of order €). This graphically illustrates the
exact point where finite proper invariance breaks down for linear elastic assumptions. Relation
(5.7) can be used as a measure of departure of the linear theory from proper invariance. In the

linear regime, p, and m_, do not depend on the shear strain, ¥, or the temperature gradient,
V8, and the shear microstress, 1, does not depend on anything but the shear microstrain,
whether Q(t) is infinitesimal or finite.

6. Conclusion

From the present thermomechanical analysis it is concluded that:

1. The constitutive functional measure of temperature, 6, must be a function only of empirical
temperature, T.

2. The Helmholtz free energy, v, is not a function of the temperature gradient, g = grad(6).

3. The microstresses and microstrains obey the following relations:



oY
Pu as 9mu“‘pa“a’ ai ayui

@

and thus the microstresses are also independent of grad(0).

. The Helmholtz free energy and the entropy, 1, are related by:

and thus the entropy is also independent of grad(6).

. The microstrains €, and p, are properly invariant under arbitrary finite rotation (¢} =¢_,
U, = M, ), however the shear microstrain transforms according to:

y;i =[(¢l +%A¢N)Q,|QNT“8W +[Q.ﬂ'a17 qu JAU“:,

|
. The shear microstress, ¥, , satisfies the relation y_ = QY _ if any of the following are true:

(a) The material is torsionless (¢ = 0);
(b) Q(t) is such that Q;,Q, Q€ = € e
(c) Q(t) is infinitesimal

. For a homogeneous elastic solid, the functional representations of the microstresses must obey
the following relations:

Pal€asMa:¥er0) = Po(Easbar¥ea,0)

1 (805 Mo ¥2,0) = 1, (4, 1, Ve ,6)
t(Earta T e,0) = Q-ta (Easle. T ,0)

. The constitutive laws for a homogeneous linear elastic solid reduce to:
Po = At + By +J,0

m, = Dgep +Egohy +K @

to; = LogyYy;



with conditions Qilagn Y o --Ia‘,.ﬁgj =0 and
A=A, Epg=Eg,, Iy =1y, and By =Dy,

afij Boyi>
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