eScholarship Combinatorial Theory

Title

No extremal square-free words over large alphabets

Permalink <https://escholarship.org/uc/item/23b1m1rf>

Journal Combinatorial Theory, 2(1)

ISSN 2766-1334

Authors Hong, Letong Zhang, Shengtong

Publication Date 2022

DOI 10.5070/C62156889

Supplemental Material

<https://escholarship.org/uc/item/23b1m1rf#supplemental>

Copyright Information

Copyright 2022 by the author(s).This work is made available under the terms of a Creative Commons Attribution License, available at <https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

NO EXTREMAL SOUARE-FREE WORDS over large alphabets

Letong Hong¹ and Shengtong Zhang²

1,2*Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02142, U.S.A.* clhong@mit.edu *,* stzh1555@mit.edu

Submitted: Sep 12, 2021; Accepted: Feb 23, 2022; Published: Mar 31, 2022 © The authors. Released under the CC BY license (International 4.0).

Abstract. A word is *square-free* if it does not contain any *square* (a word of the form XX), and is *extremal square-free* if it cannot be extended to a new square-free word by inserting a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski proved that there exist infinitely many ternary extremal square-free words. We establish that there are no extremal square-free words over any alphabet of size at least 17.

Keywords. Combinatorics on words, square-free words, extremal words **Mathematics Subject Classifications.** 05A05, 05D10, 68R15

1. Introduction

A *word* is a finite sequence of letters over a finite alphabet. A *factor* of a word is a subword of it consisting of consecutive letters. A *square* is a nonempty word of the form XX (examples: "couscous", "hotshots", "murmur). A word is *square-free* if it does not contain a square as a factor (examples: "abracadabra", "bonobo", "squares"; non-examples: "entente", "referee", "tartar"). It is easy to check that there are no binary square-free words of length more than 3. Thue showed in 1906 [\[8\]](#page-8-0) that there are arbitrarily long ternary square-free words (see [\[1\]](#page-8-1)). His work is considered to be the beginning of research in combinatorics on words [\[2\]](#page-8-2).

Recently, Grytczuk, Kordulewski, and Niewiadomski [\[4\]](#page-8-3) introduced the study of *extremal square-free words*.

Definition 1.1. An *extension* of a finite word W is a word $W' = W_1 x W_2$, where x is a single letter and W_1, W_2 are (possibly empty) words such that $W = W_1 W_2$. An *extremal square-free word* W is a square-free word such that none of its extensions is square-free.

The only binary extremal square-free words are 010 and 101. Via a delicate construction, Grytczuk et al. showed in [\[4\]](#page-8-3) that there exist infinitely many ternary extremal square-free words. Grytczuk, Kordulewski, and Pawlik also raised several open problems concerning larger alphabet sizes $([4], [5])$ $([4], [5])$ $([4], [5])$ $([4], [5])$ $([4], [5])$, including nonexistence of extremal square-free words over an alphabet of size 4. Mol and Rampersad [\[6\]](#page-8-5) then classified all possible lengths of extremal ternary square-free words.

Conjecture 1.2 ([\[4\]](#page-8-3), [\[6\]](#page-8-5))**.** There exists no extremal square-free word over a finite alphabet of size at least 4.

To the authors' knowledge, Conjecture [1.2](#page-2-0) is open for any finite alphabet. Using ideas of Ter-Saakov and Zhang in [\[7\]](#page-8-6) and some new observations, our main result confirms their conjecture for alphabets of size at least 17.

Theorem 1.3. For any integer $k \geq 17$, there exists no extremal square-free word over an alpha*bet of size* k*.*

In [\[4\]](#page-8-3) and [\[5\]](#page-8-4), Grytczuk, Kordulewski, Niewiadomskim and Pawlik also introduced and discussed the notion of *nonchalant words*. The sequence of nonchalant words G_i is generated recursively by the following greedy procedure. Fix a total ordering on the alphabet. G_0 is the empty word, and $G_{i+1} = G_i' x G_i''$ is a square-free extension of G_i , where $G_i = G_i' G_i''$ with G''_i being the shortest possible suffix of G_i and x being the smallest possible letter such that G_{i+1} is square-free. Theorem [1.3](#page-2-1) partially affirmatively answers Conjecture 14 and 15 in [\[4\]](#page-8-3) for nonchalant words.

Corollary 1.4. For any integer $k \geq 17$, the sequence of nonchalant words over a fixed alphabet *of size* k *converges to an infinite word.*

2. Proof of Theorem [1.3](#page-2-1)

For a word W of length n, we number the letters in W from left to right as letter $1, 2, \ldots, n$, and let $W[i]$ be the letter i in W. We refer to the space between the letter i and the letter $i + 1$ as gap i, and call the first and last gap 0 and n. For $0 < a < b \le n + 1$, we define the factor $W(a, b)$ as the subword of W consisting of letters $a, a + 1, \ldots, b - 1$.

Definition 2.1. Let W be any word. Let $W + b$ c denote the word formed by inserting the letter c at gap b. For a positive integer a and a non-negative integer b with $a \leq b + 1$, a positive integer ℓ and a letter c, we say the quadruple (a, ℓ, b, c) is *square-completing in* W if the factor $(W +_b c)[a, a + \ell]$ and the factor $(W +_b c)[a + \ell, a + 2\ell]$ of $W +_b c$ are the same word.

Define the *sign* of the quadruple to be 1 if $b \le a + \ell - 2$, and -1 if $b \ge a + \ell - 1$. The sign indicates whether the new letter we inserted at gap b lies in the factor $(W +_b c)[a, a + \ell)$ or $(W +_b c)[a + \ell, a + 2\ell).$

We now demonstrate two key propositions, then use them to prove Theorem [1.3.](#page-2-1)

Proposition 2.2. Let W be a square-free word, and suppose (a, L, b, c) and (a', L, b', c') are *square-completing quadruples in* W *with the same sign. Then one of the following holds:*

- *1.* $|a a'| \ge L 1;$
- 2. $b = b'$ *and* $c = c'$.

combinatorial theory 2 (1) (2022), $\#17$ 3

Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then $|a - a'| < L - 1$. By symmetry, we can assume the sign of both quadruples is 1, that is $b \le a + L - 2$ and $b' \leq a' + L - 2$. We argue by two cases on whether $b = b'$ or not.

Case 1. $b \neq b'$. Without loss of generality, assume $b < b'$. We do additional case work on whether $b' = a' - 1$ or $b' \ge a'$, i.e. whether the inserted letter at gap b' is at the start of the square in $W +_{b'} c'$ or not.

First we handle the case $b' \geq a'$. We first show that it is impossible for $b = a + L - 2$. If $b = a + L - 2$, then we have

 $W[a, a+L-1] = (W +_b c)[a, a+L-1] = (W +_b c)[a+L, a+2L-1] = W[a+L-1, a+2L-2],$

and we have found a square in W , which is a contradiction. Hence, we have

$$
b \leqslant a + L - 3.
$$

Furthermore, by the assumption that $|a - a'| < L - 1$ we have

$$
a' \leqslant a + L - 2.
$$

Therefore, if we let $i = \max(a', b + 1)$, then we have $i + 1 \le a + L - 1$, so

$$
W[i] = (W +_b c)[i + 1] = (W +_b c)[i + 1 + L] = W[i + L].
$$

On the other hand, as we assumed $b < b'$ and $a' \leq b'$, we have $i \leq b'$. Thus we have

$$
W[i] = (W +_{b'} c')[i] = (W +_{b'} c')[i + L] = W[i - 1 + L].
$$

Thus we conclude that

$$
W[i+L] = W[i-1+L].
$$

So we have found a square in W, which is a contradiction.

Then we handle the case $b' = a' - 1$. In this case, we have

$$
c' = (W +_{b'} c')[a'] = (W +_{b'} c')[a' + L] = W[a' + L - 1].
$$

Note that as $b' > b$, we have $a' + L - 1 > b$, so

$$
c' = W[a' + L - 1] = (W +_b c)[a' + L].
$$

As $a' + L > b + L + 1 \geq a + L$, and $a' + L \leq a + 2L - 1$, we find that $(W +_b c)[a' + L]$ is a letter in $(W +_b c)[a + L, a + 2L - 1)$. Therefore,

$$
c' = (W +_b c)[a' + L] = (W +_b c)[a'].
$$

Since $a' = b' + 1 \ge b + 2$, we get

$$
c' = (W +_b c)[a'] = W[a' - 1].
$$

However, this implies that

$$
W[a'-1, a'+L-1) = (W +_{b'} c')[a', a'+L)
$$

= (W +_{b'} c')[a'+L, a'+2L)
= W[a'+L-1, a'+2L-1),

so we have found a square in W, which is a contradiction.

Case 2. $b = b'$. We know $(W +_b c)[b+1] = c$ and $(W +_b c)[a, a+L) = (W +_b c)[a+L, a+2L)$, so $(W +_b c)[b + 1 + L] = c$. This implies

$$
W[b+L] = c.
$$

The exact same logic also gives $W[b'+L] = c'$. As $b = b'$, we conclude that $c = c'$, which contradicts our assumption that (2) is not satisfied. \Box

Proposition 2.3. Let W be a square-free word, and suppose (a, ℓ, b, c) and (a', ℓ', b', c') are *square-completing quadruples in* W *with the same sign. Then one of the following holds:*

- *1.* one of a, b, ℓ differs by at least $\frac{1}{5}L 2$ from the corresponding a', b', ℓ' , where $L =$ $\max(\ell, \ell');$
- 2. $b = b'$ *and* $c = c'$.

Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then we have

$$
\ell, \ell' \in [4L/5+2, L],
$$
 $|b-b'| < \frac{1}{5}L-2$ and $|a-a'| < \frac{1}{5}L-2.$

The case when $\ell' = \ell = L$ follows from Proposition [2.2,](#page-2-2) so we only need to prove the proposition when $\ell' \neq \ell$. By symmetry, we can assume that $L = \ell' > \ell$, and that the sign of both quadruples is 1, that is, $b \in [a-1, a+\ell-2]$ and $b' \in [a'-1, a'+\ell'-2]$. We argue by two cases on the quantity $M = \max(b, b')$.

Case 1. $M \leq a + \frac{3L}{5}$ $\frac{3L}{5}$. Then, consider the word $W[M+1, M+1+\ell'-\ell)$. We know that the factor $(W +_b c)[a, a + \ell)$ and the factor $(W +_b c)[a + \ell, a + 2\ell)$ of $W +_b c$ are the same word. As $M + 1 > b$, we have

$$
W[M+1, M+1+\ell'-\ell) = (W+_b c)[M+2, M+2+\ell'-\ell).
$$

On the other hand, we have

$$
(M+2) + (\ell' - \ell) \leq \left(a + \frac{3L}{5} + 2\right) + \frac{L}{5} \leq a + \ell.
$$

Therefore, $(W +_b c)[M + 2, M + 2 + \ell' - \ell)$ is a factor of $(W +_b c)[a, a + \ell)$, so it is equal to the corresponding factor of $(W +_b c)[a + \ell, a + 2\ell)$. More precisely,

$$
(W +_b c)[M + 2, M + 2 + \ell' - \ell] = (W +_b c)[M + 2 + \ell, M + 2 + \ell').
$$

Thus we have

$$
W[M+1, M+1+\ell'-\ell) = W[M+1+\ell, M+1+\ell').
$$

Similarly, since

$$
a' \leqslant b' + 1 < M + 2
$$

combinatorial theory 2 (1) (2022), $\#17$ 5

and

$$
M + 2 + \ell' - \ell \leqslant a + \frac{4L}{5} + 2 \leqslant a' + L = a' + \ell',
$$

we have $(W +_b c)[M + 2, M + 2 + \ell' - \ell)$ is a factor of $(W +_b c)[a', a' + \ell')$, so we conclude that

$$
(W +_b c)[M + 2, M + 2 + \ell' - \ell] = (W +_b c)[M + 2 + \ell', M + 2 + 2\ell' - \ell).
$$

Thus we have

$$
W[M+1, M+1+\ell'-\ell) = W[M+1+\ell', M+1+2\ell'-\ell).
$$

But then we have

$$
W[M+1+\ell, M+1+\ell') = W[M+1+\ell', M+1+2\ell'-\ell),
$$

and we have found a square in W, which is a contradiction.

Case 2. $M = \max(b, b') > a + \frac{3L}{5}$ $\frac{3L}{5}$. In this case, as $|b - b'| \leq \frac{L}{5} - 2$, we have $\min(b, b') > a + \frac{2L}{5} + 2$, and therefore $\min(b, b') > \max(a, a') + \frac{L}{5} + 4$. Let $A = \max(a, a')$. Then we note that

$$
A + \ell' - \ell \leq A + \frac{L}{5} - 2 < \min(b, b').
$$

So we conclude that

$$
W[A, A + \ell' - \ell) = (W +_b c)[A, A + \ell' - \ell)
$$

and

$$
W[A, A + \ell' - \ell) = (W +_{b'} c')[A, A + \ell' - \ell).
$$

As $\min(b, b') \leq b < a + \ell$, we have $(W +_b c)[A, A + \ell' - \ell)$ is a factor of $(W +_b c)[a, a + \ell)$. So we conclude that

$$
(W +_b c)[A, A + \ell' - \ell) = (W +_b c)[A + \ell, A + \ell') = W[A + \ell - 1, A + \ell' - 1).
$$

Similarly, because $(W +_{b'} c')[A, A + \ell' - \ell)$ is a factor of $(W +_{b'} c')[a, a' + \ell')$, and

$$
A + \ell' - 1 \geq a' + \ell' - 1 \geq b' + 1,
$$

we conclude that

$$
(W +_{b'} c')[A, A + \ell' - \ell) = (W +_{b'} c')[A + \ell', A + 2\ell' - \ell) = W[A + \ell' - 1, A + 2\ell' - \ell - 1).
$$

Then we have

$$
W[A + \ell - 1, A + \ell' - 1) = W[A + \ell' - 1, A + 2\ell' - \ell - 1),
$$

and we have found a square in W , which is a contradiction.

Corollary 2.4. *Let* W *be a square-free word of length* n*. Let* A *be a set of square-completing quadruples* (a, ℓ, b, c) *such that no two elements of* A *share the same* (b, c) *. For each* $L \ge 2$ *, define*

$$
\mathcal{A}_L = \mathcal{A} \cap \{(a, L, b, c) : a, b \in \mathbb{Z}, c \text{ any letter}\}.
$$

Then for any $L \geq 2$ *, we have*

$$
|\mathcal{A}_L| \leqslant \frac{2n}{L-1}.
$$

Furthermore, for any $L \ge 300$ *, we have*

$$
\sum_{\ell=L}^{2L-1} |\mathcal{A}_{\ell}| \leqslant \frac{320n}{L}.
$$

Proof. To prove the first proposition for $L \ge 2$, note that for a given sign $\epsilon \in \{-1, 1\}$, and any two quadruples (a, L, b, c) and (a', L, b', c') in \mathcal{A}_L with sign ϵ , by Proposition [2.2](#page-2-2) we must have $|a - a'| \ge L - 1$. Thus over all quadruples in A_L with sign ϵ , the a's must be spaced at least L − 1 apart, and must be in the range $[1, n - 2L + 2]$. Therefore, there are at most

$$
\frac{n-2L+2}{L-1} + 1 \leqslant \frac{n}{L-1}
$$

such quadruples. Given there are two possible signs, the total number of quadruples in A_L is at most $\frac{2n}{L-1}$.

To prove the second statement, we can divide the range $[1, n - 2L + 2]$ into at most

$$
\frac{n-2L+2}{L/6} + 1 \leqslant \frac{6n}{L}
$$

intervals of length $\frac{L}{6}$. For each such interval $I = [x, x + \frac{L}{6}]$ $\frac{L}{6}$), define

$$
\mathcal{B}_I = \{ (a, \ell, b, c) \in \mathcal{A} : \ell \in [L, 7L/6), a \in I, (a, \ell, b, c) \text{ has sign } 1 \}.
$$

Assume (a, ℓ, b, c) and (a', ℓ', b', c') are two distinct quadruples in \mathcal{B}_I . Note that

$$
|\ell-\ell'|\leqslant \frac{L}{6}<\frac{L}{5}-2,
$$

and

$$
|a - a'| \leq \frac{L}{6} < \frac{L}{5} - 2.
$$

Thus by Proposition [2.3,](#page-4-0) we must have b, b' spaced at least $L/5 - 2$ apart. Furthermore, for each quadruple (a, ℓ, b, c) in \mathcal{B}_I , the b's are restricted to the interval $[x - 1, x + \frac{4L}{3}]$ $\frac{dL}{3}$) due to the quadruples having sign 1. Thus the size of B_I is upper bounded by

$$
\frac{\frac{4L}{3} + 1}{\frac{L}{5} - 2} + 1.
$$

 \overline{a}

combinatorial theory 2 (1) (2022), $\#17$ 7

For $L \ge 300$, we can verify that

$$
\frac{\frac{4L}{3}+1}{\frac{L}{5}-2}+1 < 8,
$$

which implies

$$
|\mathcal{B}_I|\leq 7.
$$

Symmetrically, if we let

$$
C_I = \{(a, \ell, b, c) \in \mathcal{A} : \ell \in [L, 7L/6), a \in I, (a, \ell, b, c) \text{ has sign -1}\},\
$$

then

$$
|\mathcal{C}_I| \leq 7.
$$

Summing over all the intervals, we conclude that

$$
\sum_{L\leqslant \ell <7L/6} |\mathcal{A}_{\ell}| = \sum_{I} (|\mathcal{B}_{I}| + |\mathcal{C}_{I}|) \leqslant 14 \cdot \frac{6n}{L}.
$$

Analogously, for any non-negative integer i , we have

$$
\sum_{(7/6)^i L \leq \ell < (7/6)^{i+1} L} |\mathcal{A}_{\ell}| \leqslant \frac{14 \cdot 6n}{(7/6)^i L}.
$$

Summing over $i \in \{0, 1, 2, 3, 4\}$, we obtain

$$
\sum_{L\leq \ell<2L} |\mathcal{A}_{\ell}| \leqslant \frac{320n}{L},
$$

as desired.

Proof of Theorem [1.3.](#page-2-1) Let W be any extremal square-free word of length n on an alphabet of size k. Then for any gap $0 \leq b \leq n$ and any letter c not equal to the two letters adjacent to gap b, there exists some a and $\ell \geq 2$ such that (a, ℓ, b, c) is a square-completing quadruple in W. Let A be the set consisting of one such quadruple for each choice of (b, c) . On one hand, by construction we have

$$
|\mathcal{A}| \geq (k-2)(n+1).
$$

On the other hand, by Corollary [2.4,](#page-5-0) we have

$$
|\mathcal{A}| = \sum_{\ell=2}^{\infty} |\mathcal{A}_{\ell}|
$$

= $\sum_{\ell=2}^{319} |\mathcal{A}_{\ell}| + \sum_{j=0}^{\infty} \sum_{\ell \in [320 \cdot 2^j, 320 \cdot 2^{j+1})} |\mathcal{A}_{\ell}|$
 $\leq \sum_{\ell=2}^{319} \frac{2n}{\ell-1} + \sum_{j=0}^{\infty} \frac{320n}{320 \cdot 2^j} < 14.7n.$

Thus we conclude that $k < 17$, as desired.

 \Box

 \Box

Proof of Corollary [1.4.](#page-2-3) We showed that the number of square-completing quadruples (a, ℓ, b, c) with $\ell \geq 2$ such that no two elements share the same (b, c) in a square-free word W of length n is less than 14.7n. Thus, the number of ways to insert a letter into W such that the result is no longer square-free is less than $16.7n$. Therefore, if the alphabet size is at least 17, then it is possible to insert a letter into the latter $\frac{16.7}{17}$ of any square-free word W such that the result is square-free. Therefore, for any positive integers $N > 0$ and $i > 57N$, the length of G_i' is at least $i - \frac{16.7}{17}i > N$, so the length N prefix of G_i and G_{i+1} is the same. So the prefix of $\{G_i\}$ will stabilize and the sequence converges to an infinite limit word.

Acknowledgements

The authors thank Prof. Joseph Gallian, Prof. Jarosław Grytczuk, Prof. Lucas Mol, Prof. Bartłomiej Pawlik, Benjamin Przybocki and the anonymous referees for their invaluable comments to the paper.

References

- [1] Jean Berstel. Axel Thue's papers on repetitions in words: a translation. *Publications du LaCIM*, Vol. 20, Université du Québec a Montréal, 1995.
- [2] Jean Berstel and Dominique Perrin. The origins of combinatorics on words, *European Journal of Combinatorics*, 28:996–1022, 2007. [doi:10.1016/j.ejc.2005.07.019](https://doi.org/10.1016/j.ejc.2005.07.019).
- [3] Roger Charles Entringer, Douglas E. Jackson, and J. A. Schatz. On nonrepetitive sequences. *Journal of Combinatorial Theory, Series A*, 16:159–164, 1974. [doi:](https://doi.org/10.1016/0097-3165(74)90041-7) [10.1016/0097-3165\(74\)90041-7](https://doi.org/10.1016/0097-3165(74)90041-7).
- [4] Jarosław Grytczuk, Hubert Kordulewski, and Artur Niewiadomski. Extremal squarefree words. *Electronic Journal of Combinatorics*, 27(1):P1.48, 2020. [doi:10.37236/](https://doi.org/10.37236/9264) [9264](https://doi.org/10.37236/9264).
- [5] Jarosław Grytczuk, Hubert Kordulewski, and Bartłomiej Pawlik. Square-free extensions of words. *Journal of Integer Sequences*, 24, 2021, No. 8, Art. 21.8.7.
- [6] Lucas Mol and Narad Rampersad. Lengths of extremal square-free ternary words. *Contributions to Discrete Mathematics*, Vol. 16 No. 1 (2021). [doi:10.11575/cdm.](https://doi.org/10.11575/cdm.v16i1.69831) [v16i1.69831](https://doi.org/10.11575/cdm.v16i1.69831).
- [7] Natalya Ter-Saakov and Emily Zhang. Extremal Pattern-Avoiding Words. *arXiv preprint*. URL: <https://arxiv.org/abs/2009.10186>.
- [8] Axel Thue. Über unendliche zeichenreihen. *Norske vid. Selsk. Skr. Mat. Nat. Kl.*, 7:1–22, 1906.