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Abstract. A word is square-free if it does not contain any square (a word of the form X X),
and is extremal square-free if it cannot be extended to a new square-free word by inserting
a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski proved that there
exist infinitely many ternary extremal square-free words. We establish that there are no
extremal square-free words over any alphabet of size at least 17.

Keywords. Combinatorics on words, square-free words, extremal words
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1. Introduction

A word is a finite sequence of letters over a finite alphabet. A factor of a word is a subword of
it consisting of consecutive letters. A square is a nonempty word of the form X X (examples:
“couscous”, “hotshots”, “murmur). A word is square-free if it does not contain a square
as a factor (examples: “abracadabra”, “bonobo”, “squares”; non-examples: “entente”,
“referee”, “tartar”). It is easy to check that there are no binary square-free words of length
more than 3. Thue showed in 1906 [8] that there are arbitrarily long ternary square-free words
(see [1]). His work is considered to be the beginning of research in combinatorics on words [2].

Recently, Grytczuk, Kordulewski, and Niewiadomski [4] introduced the study of extremal
square-free words.

Definition 1.1. An extension of a finite word W is a word W' = WixW,, where x is a single
letter and W, W, are (possibly empty) words such that W = W, W,. An extremal square-free
word W is a square-free word such that none of its extensions is square-free.

The only binary extremal square-free words are 010 and 101. Via a delicate construction,
Grytczuk et al. showed in [4] that there exist infinitely many ternary extremal square-free words.
Grytczuk, Kordulewski, and Pawlik also raised several open problems concerning larger alphabet
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sizes ([4], [5]), including nonexistence of extremal square-free words over an alphabet of size
4. Mol and Rampersad [6] then classified all possible lengths of extremal ternary square-free
words.

Conjecture 1.2 ([4], [6]). There exists no extremal square-free word over a finite alphabet of
size at least 4.

To the authors’ knowledge, Conjecture 1.2 is open for any finite alphabet. Using ideas of Ter-
Saakov and Zhang in [7] and some new observations, our main result confirms their conjecture
for alphabets of size at least 17.

Theorem 1.3. For any integer k > 17, there exists no extremal square-free word over an alpha-

bet of size k.

In [4] and [5], Grytczuk, Kordulewski, Niewiadomskim and Pawlik also introduced and dis-
cussed the notion of nonchalant words. The sequence of nonchalant words G; is generated
recursively by the following greedy procedure. Fix a total ordering on the alphabet. G is the
empty word, and G;11 = GixG! is a square-free extension of G;, where G; = G.G! with
G being the shortest possible suffix of GG; and x being the smallest possible letter such that
(11 is square-free. Theorem 1.3 partially affirmatively answers Conjecture 14 and 15 in [4] for
nonchalant words.

Corollary 1.4. For any integer k > 17, the sequence of nonchalant words over a fixed alphabet
of size k converges to an infinite word.

2. Proof of Theorem 1.3

For a word W of length n, we number the letters in W from left to right as letter 1,2, ..., n, and
let 7] be the letter ¢ in 1W. We refer to the space between the letter ¢ and the letter ¢ + 1 as gap
i, and call the first and last gap 0 and n. For 0 < a < b < n + 1, we define the factor W a, b) as
the subword of W consisting of letters a,a + 1,...,0 — 1.

Definition 2.1. Let W be any word. Let W +; ¢ denote the word formed by inserting the letter
c at gap b. For a positive integer a and a non-negative integer b with a < b + 1, a positive
integer ¢ and a letter ¢, we say the quadruple (a, ¢, b, ¢) is square-completing in W if the factor
(W + ¢)][a, a + £) and the factor (W +; ¢)[a + £, a + 2¢) of W +, ¢ are the same word.

Define the sign of the quadruple tobe 1ifb < a+ /¢ —2,and —1ifb > a + ¢ — 1. The
sign indicates whether the new letter we inserted at gap b lies in the factor (W 4+ ¢)[a, a + ) or
(W +p0)la+4,a+20).

We now demonstrate two key propositions, then use them to prove Theorem 1.3.

Proposition 2.2. Let W be a square-free word, and suppose (a, L,b,c) and (a’, L,V , ) are
square-completing quadruples in W with the same sign. Then one of the following holds:

I la—d|>L-1;

2.b=VVandc="—".
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Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then |a — a'| < L — 1.
By symmetry, we can assume the sign of both quadruples is 1, thatis b < a + L — 2 and
b < a4+ L — 2. We argue by two cases on whether b = ¥ or not.

Case 1. b # 0. Without loss of generality, assume b < b'. We do additional case work on
whether b/ = a’ — 1 or b’ > d/, i.e. whether the inserted letter at gap ' is at the start of the square
in W + ¢ or not.

First we handle the case b’ > a’. We first show that it is impossible for b = a + L — 2. If
b=a+ L — 2, then we have

Wla,a+L—1) = (W+yc)[a,a+L—1) = (W+yc)[a+L,a+2L—1) = W]a+L—1,a+2L—-2),
and we have found a square in ¥/, which is a contradiction. Hence, we have
b<a+ L -—3.
Furthermore, by the assumption that |a — a’| < L — 1 we have
d <a+L -2
Therefore, if we let i = max(a’,b+ 1), then we have i +1 < a+ L — 1, so
Wiil=W +yo)i+1] =W +p¢)[i+1+ L) = W[i+ L].
On the other hand, as we assumed b < b and o’ < ¥, we have 7 < I'. Thus we have
Wil = (W +y i) = (W +y )i + L] = Wi — 1+ LJ.
Thus we conclude that
Wi+ Ll =W][i—1+ L.
So we have found a square in W, which is a contradiction.
Then we handle the case ¥’ = a’ — 1. In this case, we have

=Wy )d]=(W+y d)d + L] =Wld +L—1].
Note thatas & > b, we have a’ + L — 1 > b, so
d=Wl[d+L—-1=W+,0)d + L].

Asd+L>b+L+1>a+L,andd’ + L < a+2L — 1, we find that (W +, ¢)[a’ + L] isa
letter in (W +; ¢)[a + L,a + 2L — 1). Therefore,

d=W+,c)d+ L) = (W 44 0)[d].
Sinced =0 +1 > b+ 2, we get
d=W+yo)d] =Wld —1].
However, this implies that
Wia' —1,d+ L—1)= (W 4y ¢)[d’,d' + L)
= (W +y )[d + L,a’ +2L)
=Wld +L—-1,d +2L—1),

so we have found a square in W, which is a contradiction.
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Case2. b=1"V". Weknow (W+,c)[b+1] = cand (W +,¢)[a,a+L) = (W+Hyc)la+L,a+2L),
so (W -+, ¢)[b+ 1+ L] = c. This implies

Wb+ L] =c.

The exact same logic also gives W[b' + L] = . As b = I/, we conclude that ¢ = ¢/, which
contradicts our assumption that (2) is not satisfied. ]

Proposition 2.3. Let W be a square-free word, and suppose (a,l,b,c) and (a’, V',V ) are
square-completing quadruples in W with the same sign. Then one of the following holds:

1. one of a,b, ! differs by at least %L — 2 from the corresponding o', b, l', where L =
max (¢, ('),

2.b=VVandc="—".

Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then we have

1 1
0,0 €AL/5+ 2, L), |b—10| <3L—2 and la — d| <3L—2.
The case when ¢/ = ¢ = L follows from Proposition 2.2, so we only need to prove the

proposition when ¢ # (. By symmetry, we can assume that L = ¢/ > ¢, and that the sign of
both quadruples is 1, thatis, b € [a — 1,a + ¢ —2] and ¥/ € [a' — 1,ad' + ¢’ — 2]. We argue by
two cases on the quantity M = max(b, ).

Casel. M <a+ % Then, consider the word W[M + 1, M + 1+ ¢/ — ¢). We know that the
factor (W +; ¢)[a, a + ¢) and the factor (W +, ¢)[a + ¢, a + 2() of W +, ¢ are the same word.
As M + 1 > b, we have

WM+1L,M4+1+0—0)=(W4,c)[M+2,M+2+0—1).

On the other hand, we have

L L
(M+2)+ ' -0 < (a+%+2)+g<a+€.

Therefore, (W +, ¢)[M + 2, M + 2+ ¢/ — {) is a factor of (W 4+, ¢)[a, a + £), so it is equal to
the corresponding factor of (W +; ¢)[a + ¢, a + 2¢). More precisely,

(Wape)[M+2,M+24+0 —0) =W +pc)[M+2+,M+2+10).
Thus we have
WIMA1IM41+0 -0 =W[M+1+(M+1+410).

Similarly, since
d <V +1<M+2
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and

AL
M—|—2+€’—€<a+?+2<a'—l-L:a'—FE',

we have (W +,, ¢)[M + 2, M + 2+ ¢’ — () is a factor of (W +, ¢)[a’,a’ + '), so we conclude
that

(W) [M+2,M+24+0 —0) =W+, ¢)[M+2+0,M+2+20—10).
Thus we have
WIM+LMA1+0 -0 =W[M+1+0,M+1+20—1).
But then we have
WM+ 14+ M4+140)=W[M+14+0,M+1+20 —1),
and we have found a square in I/, which is a contradiction.

Case 2. M = max(bt/) > a + 3£ In this case, as |[b — V| < £ — 2, we have
min(b, V') > a + 2£ + 2, and therefore min(b, b') > max(a,a’) + £ + 4. Let A = max(a, ).
Then we note that I

A+l —1< A—l-g — 2 < min(b, V).

So we conclude that
WA A+ —0) = (W 4, ¢)[A, A+ 0 — 1)

and
W[A,A +€/ - ﬁ) == (W +b’ CI)[A,A -+ gl — f)

As min(h,b') < b < a+ ¢, we have (W +, ¢)[A, A+ ¢/ — {) is a factor of (W +, ¢)[a,a + £).
So we conclude that

(W4 )[ALA+ 0 —0) =W o)A+ LA+ =W[A+L -1, A+ 0 —1).
Similarly, because (W +y ¢)[A, A+ ¢ — {) is a factor of (W +y )[a,d’ + ¢'), and
A+l —1Z2d +0 -120 +1,
we conclude that
(W +y A A+C =) =W +y )[A+ U, A+20 —0) = WA+ —1, A+ 20— —1).
Then we have
WA+l -1, A+0 - 1) =W[A+{ -1, A4+ 20 —0—1),

and we have found a square in I/, which is a contradiction. O]
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Corollary 2.4. Let W be a square-free word of length n. Let A be a set of square-completing
quadruples (a, b, c) such that no two elements of A share the same (b, c). For each L > 2,
define
A =An{(a,L,b,c):a,beZ,cany letter}.
Then for any L > 2, we have
2n
L-1

|ALl <

Furthermore, for any L > 300, we have

Proof. To prove the first proposition for L > 2, note that for a given sign ¢ € {—1, 1}, and any
two quadruples (a, L, b, c) and (o', L, ¥, ¢) in Ay, with sign €, by Proposition 2.2 we must have
la — a’'| > L — 1. Thus over all quadruples in .4, with sign €, the a’s must be spaced at least
L — 1 apart, and must be in the range [1,n — 2L + 2. Therefore, there are at most

n—2L+4+2 n

1<
-1 ST

such quadruples. Given there are two possible signs, the total number of quadruples in Ay, is at
most %
To prove the second statement, we can divide the range [1,n — 2L + 2] into at most

n—2L+2 6on
e NI [P it
/6 ST

intervals of length £. For each such interval I = [z, z + £), define
Br=A{(a,l,b,c) e A: L€ [L,7L/6),a € I,(a,l,b,c)hassign1}.

Assume (a, ¢,b,c) and (o', ¢, V', ¢') are two distinct quadruples in B;. Note that

L L
(V)< =< —=—2,
| <<%
and
|a—a'|<£<£—2
=6 5 7

Thus by Proposition 2.3, we must have b, spaced at least /5 — 2 apart. Furthermore, for
each quadruple (a,/,b, c) in B, the b’s are restricted to the interval [z — 1,z + %£) due to the
quadruples having sign 1. Thus the size of B; is upper bounded by

4L
ALy

L )
5
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For L > 300, we can verify that
AL

@l

+1 <8,
2

Sllls)

which implies
1Br| < 7.

Symmetrically, if we let

Cr={(a,l,b,c) e A: L €[L,7L/6),a € I,(a,l,b,c) has sign-1},

then
Cr| < 7.
Summing over all the intervals, we conclude that
6n
o A=) (B + e < 14 7
L<b<TL/6 I
Analogously, for any non-negative integer i, we have
14 - 6n
Ayl < ————=.
2 M (7/6)'L
(7/6)i L<E<(T/6)i*1L
Summing over i € {0,1,2, 3,4}, we obtain
320n
Z |A€| < Ta
L<<2L
as desired. [

Proof of Theorem 1.3. Let W be any extremal square-free word of length n on an alphabet of
size k. Then for any gap 0 < b < n and any letter ¢ not equal to the two letters adjacent to gap
b, there exists some a and ¢ > 2 such that (a, ¢, b, ¢) is a square-completing quadruple in WW.
Let A be the set consisting of one such quadruple for each choice of (b, c). On one hand, by
construction we have

|A| = (k—2)(n+1).

On the other hand, by Corollary 2.4, we have

A=) Al
(=2
319 00

= A+ A,
(=2

J=0 ¢€[320-27,320-27+1)

omn <. 320n
< . < 14.7n.
;£—1+Z320-2ﬂ "

J=0

Thus we conclude that k£ < 17, as desired. O
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Proof of Corollary 1.4. We showed that the number of square-completing quadruples (a, ¢, b, ¢)
with ¢ > 2 such that no two elements share the same (b, ¢) in a square-free word W of length
n is less than 14.7n. Thus, the number of ways to insert a letter into W such that the result is
no longer square-free is less than 16.7n. Therefore, if the alphabet size is at least 17, then it is
possible to insert a letter into the latter % of any square-free word W such that the result is
square-free. Therefore, for any positive integers N > 0 and i > 57V, the length of G/, is at least
i — X1 > N, so the length N prefix of G; and G, is the same. So the prefix of {G;} will
stabilize and the sequence converges to an infinite limit word. [
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