
eScholarship
Combinatorial Theory

Title
No extremal square-free words over large alphabets

Permalink
https://escholarship.org/uc/item/23b1m1rf

Journal
Combinatorial Theory, 2(1)

ISSN
2766-1334

Authors
Hong, Letong
Zhang, Shengtong

Publication Date
2022

DOI
10.5070/C62156889

Supplemental Material
https://escholarship.org/uc/item/23b1m1rf#supplemental

Copyright Information
Copyright 2022 by the author(s).This work is made available under the terms of a 
Creative Commons Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/23b1m1rf
https://escholarship.org/uc/item/23b1m1rf#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


combinatorial theory 2 (1) (2022), #17 combinatorial-theory.org

No extremal square-free words
over large alphabets

Letong Hong1 and Shengtong Zhang2

1,2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02142, U.S.A.
clhong@mit.edu , stzh1555@mit.edu

Submitted: Sep 12, 2021; Accepted: Feb 23, 2022; Published: Mar 31, 2022
© The authors. Released under the CC BY license (International 4.0).

Abstract. A word is square-free if it does not contain any square (a word of the form XX),
and is extremal square-free if it cannot be extended to a new square-free word by inserting
a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski proved that there
exist infinitely many ternary extremal square-free words. We establish that there are no
extremal square-free words over any alphabet of size at least 17.
Keywords. Combinatorics on words, square-free words, extremal words
Mathematics Subject Classifications. 05A05, 05D10, 68R15

1. Introduction

A word is a finite sequence of letters over a finite alphabet. A factor of a word is a subword of
it consisting of consecutive letters. A square is a nonempty word of the form XX (examples:
“couscous”, “hotshots”, “murmur). A word is square-free if it does not contain a square
as a factor (examples: “abracadabra”, “bonobo”, “squares”; non-examples: “entente”,
“referee”, “tartar”). It is easy to check that there are no binary square-free words of length
more than 3. Thue showed in 1906 [8] that there are arbitrarily long ternary square-free words
(see [1]). His work is considered to be the beginning of research in combinatorics on words [2].

Recently, Grytczuk, Kordulewski, and Niewiadomski [4] introduced the study of extremal
square-free words.

Definition 1.1. An extension of a finite word W is a word W ′ = W1xW2, where x is a single
letter and W1,W2 are (possibly empty) words such that W = W1W2. An extremal square-free
word W is a square-free word such that none of its extensions is square-free.

The only binary extremal square-free words are 010 and 101. Via a delicate construction,
Grytczuk et al. showed in [4] that there exist infinitely many ternary extremal square-free words.
Grytczuk, Kordulewski, and Pawlik also raised several open problems concerning larger alphabet
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sizes ([4], [5]), including nonexistence of extremal square-free words over an alphabet of size
4. Mol and Rampersad [6] then classified all possible lengths of extremal ternary square-free
words.

Conjecture 1.2 ([4], [6]). There exists no extremal square-free word over a finite alphabet of
size at least 4.

To the authors’ knowledge, Conjecture 1.2 is open for any finite alphabet. Using ideas of Ter-
Saakov and Zhang in [7] and some new observations, our main result confirms their conjecture
for alphabets of size at least 17.

Theorem 1.3. For any integer k > 17, there exists no extremal square-free word over an alpha-
bet of size k.

In [4] and [5], Grytczuk, Kordulewski, Niewiadomskim and Pawlik also introduced and dis-
cussed the notion of nonchalant words. The sequence of nonchalant words Gi is generated
recursively by the following greedy procedure. Fix a total ordering on the alphabet. G0 is the
empty word, and Gi+1 = G′ixG

′′
i is a square-free extension of Gi, where Gi = G′iG

′′
i with

G′′i being the shortest possible suffix of Gi and x being the smallest possible letter such that
Gi+1 is square-free. Theorem 1.3 partially affirmatively answers Conjecture 14 and 15 in [4] for
nonchalant words.

Corollary 1.4. For any integer k > 17, the sequence of nonchalant words over a fixed alphabet
of size k converges to an infinite word.

2. Proof of Theorem 1.3

For a wordW of length n, we number the letters inW from left to right as letter 1, 2, . . . , n, and
let W [i] be the letter i in W . We refer to the space between the letter i and the letter i+1 as gap
i, and call the first and last gap 0 and n. For 0 < a < b 6 n+ 1, we define the factor W [a, b) as
the subword of W consisting of letters a, a+ 1, . . . , b− 1.

Definition 2.1. Let W be any word. Let W +b c denote the word formed by inserting the letter
c at gap b. For a positive integer a and a non-negative integer b with a 6 b + 1, a positive
integer ` and a letter c, we say the quadruple (a, `, b, c) is square-completing in W if the factor
(W +b c)[a, a+ `) and the factor (W +b c)[a+ `, a+ 2`) of W +b c are the same word.

Define the sign of the quadruple to be 1 if b 6 a + ` − 2, and −1 if b > a + ` − 1. The
sign indicates whether the new letter we inserted at gap b lies in the factor (W +b c)[a, a+ `) or
(W +b c)[a+ `, a+ 2`).

We now demonstrate two key propositions, then use them to prove Theorem 1.3.

Proposition 2.2. Let W be a square-free word, and suppose (a, L, b, c) and (a′, L, b′, c′) are
square-completing quadruples in W with the same sign. Then one of the following holds:

1. |a− a′| > L− 1;

2. b = b′ and c = c′.
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Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then |a − a′| < L − 1.
By symmetry, we can assume the sign of both quadruples is 1, that is b 6 a + L − 2 and
b′ 6 a′ + L− 2. We argue by two cases on whether b = b′ or not.

Case 1. b 6= b′. Without loss of generality, assume b < b′. We do additional case work on
whether b′ = a′−1 or b′ > a′, i.e. whether the inserted letter at gap b′ is at the start of the square
in W +b′ c

′ or not.
First we handle the case b′ > a′. We first show that it is impossible for b = a + L − 2. If

b = a+ L− 2, then we have

W [a, a+L−1) = (W+bc)[a, a+L−1) = (W+bc)[a+L, a+2L−1) = W [a+L−1, a+2L−2),
and we have found a square in W , which is a contradiction. Hence, we have

b 6 a+ L− 3.

Furthermore, by the assumption that |a− a′| < L− 1 we have

a′ 6 a+ L− 2.

Therefore, if we let i = max(a′, b+ 1), then we have i+ 1 6 a+ L− 1, so

W [i] = (W +b c)[i+ 1] = (W +b c)[i+ 1 + L] = W [i+ L].

On the other hand, as we assumed b < b′ and a′ 6 b′, we have i 6 b′. Thus we have

W [i] = (W +b′ c
′)[i] = (W +b′ c

′)[i+ L] = W [i− 1 + L].

Thus we conclude that
W [i+ L] = W [i− 1 + L].

So we have found a square in W , which is a contradiction.
Then we handle the case b′ = a′ − 1. In this case, we have

c′ = (W +b′ c
′)[a′] = (W +b′ c

′)[a′ + L] = W [a′ + L− 1].

Note that as b′ > b, we have a′ + L− 1 > b, so

c′ = W [a′ + L− 1] = (W +b c)[a
′ + L].

As a′ + L > b+ L+ 1 > a+ L, and a′ + L 6 a+ 2L− 1, we find that (W +b c)[a
′ + L] is a

letter in (W +b c)[a+ L, a+ 2L− 1). Therefore,

c′ = (W +b c)[a
′ + L] = (W +b c)[a

′].

Since a′ = b′ + 1 > b+ 2, we get

c′ = (W +b c)[a
′] = W [a′ − 1].

However, this implies that

W [a′ − 1, a′ + L− 1) = (W +b′ c
′)[a′, a′ + L)

= (W +b′ c
′)[a′ + L, a′ + 2L)

= W [a′ + L− 1, a′ + 2L− 1),

so we have found a square in W , which is a contradiction.
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Case 2. b = b′. We know (W+bc)[b+1] = c and (W+bc)[a, a+L) = (W+bc)[a+L, a+2L),
so (W +b c)[b+ 1 + L] = c. This implies

W [b+ L] = c.

The exact same logic also gives W [b′ + L] = c′. As b = b′, we conclude that c = c′, which
contradicts our assumption that (2) is not satisfied.

Proposition 2.3. Let W be a square-free word, and suppose (a, `, b, c) and (a′, `′, b′, c′) are
square-completing quadruples in W with the same sign. Then one of the following holds:

1. one of a, b, ` differs by at least 1
5
L − 2 from the corresponding a′, b′, `′, where L =

max(`, `′);

2. b = b′ and c = c′.

Proof. Suppose to the contrary that neither (1) nor (2) is satisfied. Then we have

`, `′ ∈ [4L/5 + 2, L], |b− b′| < 1

5
L− 2 and |a− a′| < 1

5
L− 2.

The case when `′ = ` = L follows from Proposition 2.2, so we only need to prove the
proposition when `′ 6= `. By symmetry, we can assume that L = `′ > `, and that the sign of
both quadruples is 1, that is, b ∈ [a − 1, a + ` − 2] and b′ ∈ [a′ − 1, a′ + `′ − 2]. We argue by
two cases on the quantity M = max(b, b′).

Case 1. M 6 a+ 3L
5
. Then, consider the word W [M + 1,M + 1+ `′ − `). We know that the

factor (W +b c)[a, a+ `) and the factor (W +b c)[a+ `, a+ 2`) of W +b c are the same word.
As M + 1 > b, we have

W [M + 1,M + 1 + `′ − `) = (W +b c)[M + 2,M + 2 + `′ − `).

On the other hand, we have

(M + 2) + (`′ − `) 6
(
a+

3L

5
+ 2

)
+
L

5
6 a+ `.

Therefore, (W +b c)[M + 2,M + 2 + `′ − `) is a factor of (W +b c)[a, a+ `), so it is equal to
the corresponding factor of (W +b c)[a+ `, a+ 2`). More precisely,

(W +b c)[M + 2,M + 2 + `′ − `) = (W +b c)[M + 2 + `,M + 2 + `′).

Thus we have

W [M + 1,M + 1 + `′ − `) = W [M + 1 + `,M + 1 + `′).

Similarly, since
a′ 6 b′ + 1 < M + 2



combinatorial theory 2 (1) (2022), #17 5

and
M + 2 + `′ − ` 6 a+

4L

5
+ 2 6 a′ + L = a′ + `′,

we have (W +b c)[M + 2,M + 2 + `′ − `) is a factor of (W +b c)[a
′, a′ + `′), so we conclude

that

(W +b c)[M + 2,M + 2 + `′ − `) = (W +b c)[M + 2 + `′,M + 2 + 2`′ − `).

Thus we have

W [M + 1,M + 1 + `′ − `) = W [M + 1 + `′,M + 1 + 2`′ − `).

But then we have

W [M + 1 + `,M + 1 + `′) = W [M + 1 + `′,M + 1 + 2`′ − `),

and we have found a square in W , which is a contradiction.

Case 2. M = max(b, b′) > a + 3L
5

. In this case, as |b − b′| 6 L
5
− 2, we have

min(b, b′) > a+ 2L
5
+ 2, and therefore min(b, b′) > max(a, a′) + L

5
+ 4. Let A = max(a, a′).

Then we note that
A+ `′ − ` 6 A+

L

5
− 2 < min(b, b′).

So we conclude that

W [A,A+ `′ − `) = (W +b c)[A,A+ `′ − `)

and
W [A,A+ `′ − `) = (W +b′ c

′)[A,A+ `′ − `).

As min(b, b′) 6 b < a + `, we have (W +b c)[A,A + `′ − `) is a factor of (W +b c)[a, a + `).
So we conclude that

(W +b c)[A,A+ `′ − `) = (W +b c)[A+ `, A+ `′) = W [A+ `− 1, A+ `′ − 1).

Similarly, because (W +b′ c
′)[A,A+ `′ − `) is a factor of (W +b′ c

′)[a, a′ + `′), and

A+ `′ − 1 > a′ + `′ − 1 > b′ + 1,

we conclude that

(W +b′ c
′)[A,A+ `′− `) = (W +b′ c

′)[A+ `′, A+ 2`′− `) = W [A+ `′− 1, A+ 2`′− `− 1).

Then we have

W [A+ `− 1, A+ `′ − 1) = W [A+ `′ − 1, A+ 2`′ − `− 1),

and we have found a square in W , which is a contradiction.
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Corollary 2.4. Let W be a square-free word of length n. Let A be a set of square-completing
quadruples (a, `, b, c) such that no two elements of A share the same (b, c). For each L > 2,
define

AL = A ∩ {(a, L, b, c) : a, b ∈ Z, c any letter}.

Then for any L > 2, we have

|AL| 6
2n

L− 1
.

Furthermore, for any L > 300, we have

2L−1∑
`=L

|A`| 6
320n

L
.

Proof. To prove the first proposition for L > 2, note that for a given sign ε ∈ {−1, 1}, and any
two quadruples (a, L, b, c) and (a′, L, b′, c′) in AL with sign ε, by Proposition 2.2 we must have
|a − a′| > L − 1. Thus over all quadruples in AL with sign ε, the a’s must be spaced at least
L− 1 apart, and must be in the range [1, n− 2L+ 2]. Therefore, there are at most

n− 2L+ 2

L− 1
+ 1 6

n

L− 1

such quadruples. Given there are two possible signs, the total number of quadruples in AL is at
most 2n

L−1 .
To prove the second statement, we can divide the range [1, n− 2L+ 2] into at most

n− 2L+ 2

L/6
+ 1 6

6n

L

intervals of length L
6
. For each such interval I = [x, x+ L

6
), define

BI = {(a, `, b, c) ∈ A : ` ∈ [L, 7L/6), a ∈ I, (a, `, b, c) has sign 1}.

Assume (a, `, b, c) and (a′, `′, b′, c′) are two distinct quadruples in BI . Note that

|`− `′| 6 L

6
<
L

5
− 2,

and
|a− a′| 6 L

6
<
L

5
− 2.

Thus by Proposition 2.3, we must have b, b′ spaced at least L/5 − 2 apart. Furthermore, for
each quadruple (a, `, b, c) in BI , the b’s are restricted to the interval [x − 1, x + 4L

3
) due to the

quadruples having sign 1. Thus the size of BI is upper bounded by

4L
3
+ 1

L
5
− 2

+ 1.
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For L > 300, we can verify that
4L
3
+ 1

L
5
− 2

+ 1 < 8,

which implies
|BI | 6 7.

Symmetrically, if we let

CI = {(a, `, b, c) ∈ A : ` ∈ [L, 7L/6), a ∈ I, (a, `, b, c) has sign -1},

then
|CI | 6 7.

Summing over all the intervals, we conclude that∑
L6`<7L/6

|A`| =
∑
I

(|BI |+ |CI |) 6 14 · 6n
L
.

Analogously, for any non-negative integer i, we have∑
(7/6)iL6`<(7/6)i+1L

|A`| 6
14 · 6n
(7/6)iL

.

Summing over i ∈ {0, 1, 2, 3, 4}, we obtain∑
L6`<2L

|A`| 6
320n

L
,

as desired.

Proof of Theorem 1.3. Let W be any extremal square-free word of length n on an alphabet of
size k. Then for any gap 0 6 b 6 n and any letter c not equal to the two letters adjacent to gap
b, there exists some a and ` > 2 such that (a, `, b, c) is a square-completing quadruple in W .
Let A be the set consisting of one such quadruple for each choice of (b, c). On one hand, by
construction we have

|A| > (k − 2)(n+ 1).

On the other hand, by Corollary 2.4, we have

|A| =
∞∑
`=2

|A`|

=
319∑
`=2

|A`|+
∞∑
j=0

∑
`∈[320·2j ,320·2j+1)

|A`|

6
319∑
`=2

2n

`− 1
+
∞∑
j=0

320n

320 · 2j
< 14.7n.

Thus we conclude that k < 17, as desired.
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Proof of Corollary 1.4. We showed that the number of square-completing quadruples (a, `, b, c)
with ` > 2 such that no two elements share the same (b, c) in a square-free word W of length
n is less than 14.7n. Thus, the number of ways to insert a letter into W such that the result is
no longer square-free is less than 16.7n. Therefore, if the alphabet size is at least 17, then it is
possible to insert a letter into the latter 16.7

17
of any square-free word W such that the result is

square-free. Therefore, for any positive integersN > 0 and i > 57N , the length ofG′i is at least
i − 16.7

17
i > N , so the length N prefix of Gi and Gi+1 is the same. So the prefix of {Gi} will

stabilize and the sequence converges to an infinite limit word.
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