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Wavelet/TSVQ Image Coding with Segmentation 
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tEE Dept ., University of Minnesota, Minneapolis, MN 55455 
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Abstract 
The use of region-based coding is explored with a 

wavelet/TS VQ structure. Several methods of genemt- 
ing the segmentation map are discussed, including a 
recursive segmentation procedure that does not require 
any side information. The method is investigated on 
computerized tomographic chest scans, where the im- 
ages are segmented into three regions - the background, 
the chest wall region, and the chest organs region. The 
background is considered of no importance, the chest 
wall region is considered of low importance, and the 
chest organs region is considered of high importance. 
At  0.20 bits per pixel, region-based coding provides a 
2.0 dB improvement an the chest organs region at the 
expense of degradation in the clinically less relevant 
regions. 

1 Introduction 
The quality of an image depends on the information 

content of that image defined with respect to the user's 
ultimate objectives. In many image compression a p  
plications, all areas of an image may not contribute 
equally useful information for meeting these objec- 
tives. For example, medical images typically contain 
regions that are clinically relevant and regions (e.g., 
background) that are not. In a videophone image, the 
head and shoulders are considered to be more vital 
areas than the background. In such cases, a spatially 
constant reconstruction quality is not necessary. In 
addition] in very low bit rate encoding schemes, it may 
be desirable to ensure good quality for certain areas 
of an image. Segmentation can address these issues in 
several ways. It can enable the coder to allocate fewer 
bits and lower quality to the unimportant regions of an 
image, and more bits to the relevant areas. Segmen- 
tation can also be used to tailor the coding methods 
for each region. These ideas have been explored by 
several researchers (e.g., [8, 4, 6, 51). 

The discrete wavelet transform (DWT) combined 
with scalar or vector quantization has led to a num- 
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ber of effective algorithms for image compression. Us- 
ing a multiresolution framework, the DWT organizes 
the coefficients to enable effective quantization and en- 
coding. The DWT has several useful properties that 
enable it to take advantage of region-based coding. 
Wavelets have a natural coarse-to-fine representation. 
This is helpful since this can easily allow good coarse 
representation for all regions, but good finer represen- 
tations only for the regions of interest. Another help- 
ful property of wavelets is that each subband main- 
tains a simple spatial relationship to the original im- 
age. With each level in the decomposition, the spatial 
scale of the subbands is reduced by a factor of two 
in the horizontal direction and a factor of two in the 
vertical direction. This makes it simple to map the 
segmentation made in one level into the other levels 
of the wavelet decomposition. 

Pruned tree-structured vector quantization 
(TSVQ) has a number of useful properties for image 
compression, as it can provide a variable rate code 
and has a progressive quality, i.e. each bit improves 
the quality of the image on the average. A property 
of pruned TSVQ that makes it particularly amenable 
to region-based coding is that optimally pruned sub- 
trees are nested. Given a large TSVQ, large subtrees 
(corresponding to higher rate codes) can be used for 
important regions and smaller subtrees (correspond- 
ing to lower rate codes) can be used for unimportant 
regions. Since these trees are nested, memory storage 
is reduced, as the smaller tree is simply a subset of the 
larger tree. 

In this paper, we explore the use of segmentation 
in the refinement of the bzt allocation procedure used 
in the design of pruned TSVQs for wavelet coefficient 
quantization. 

2 Algorithm 
In the design of our system, the Daubechies or- 

thogonal 8-tap filter is used to decompose the train- 
ing images 4 levels. This decomposition produces 13 
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subbands. The wavelet decomposition is illustrated 
in Figure 1. The next step involves the construc- 
tion of separate codebooks for each subband. The 
lowest band is scalar quantized, the finest scales are 
encoded using 4 x4 vectors and intermediate scales 
employ vectors of size 2, 4, and 8. A large TSVQ 
is greedily grown on the training sequence associated 
with each band using the generalized Lloyd algorithm 
and is then optimally pruned back [l]. The final stage 
of the design provides the bit allocation for each vec- 
tor, which is determined by two factors: the subband 
in which the vector is located and the segmentation 
region in which it lies. The first factor is based on 
the fact that fewer bits can be allocated to the high 
frequency subbands than to the low frequency ones 
since they possess smaller variance, corresponding to 
less information. The bit allocation can be performed 
by selecting appropriate subtrees for each band. For 
each band, i E (1,. . .13}, the distortion and rates for 
the sequence of pruned subtrees provide distortion-. 
rate Dj(Rj) curves. The minimum overall distortion 
for a given total rate can be achieved by selecting 
points of equal slope across the individual distortion 
rate curves of the different subbands [7]. The second 
factor refines this bit allocation by selecting different 
points of equal slope based on the segmentation map 
For important regions, a low value for the point of 
equal slope will be selected, thus generating a set of 
relatively large subtrees. On the other hand, at less 
important regions a high value for the point of equal 
slope is selected, thereby generating a set of relatively 
small subtrees. 

3 Segmentation Map Information 
Given a segmentation for the original image, there 

are several alternatives for generating segmentation 
maps for each of the subbands. The construction of 
the maps depends on whether side information indi- 
cating the region information can be tolerated in the 
system. If side information is acceptable, the map 
can be generated on the original image, and then, be- 
cause of the spatial relationships that exist between 
the bands, the maps corresponding to the subbands of 
the different levels can be obtained by downsampling 
the original map. (Note that with all of the segmen- 
tation methods presented in this work no map is used 
for subband 1). Because the decoder can also perform 
the downsampling operation, ondy the highest resolu- 
tion map must be transmitted to the decoder. This 
side information can be losslessly compressed. 

Side information may not be desirable in some situ- 
ations, however. For example, at very low rates, it may 
not be desirable to send any overhead to the decoder to 

LH4 HL4 

LH2 I HH2 

Figure 1: Wavelet decomposition 

relay the segmentation information. In addition, com- 
plicated images may lead to costly descriptions of the 
segmentation map. Furthermore, channel errors might 
corrupt side information, which may have a great im- 
pact on the reconstructed image if large portions of 
the important region are misclassified as unimportant. 
Two different methods can be used to generate maps 
with no side information. Both methods begin by en- 
coding the baseband (subband 1) with the TSVQ as- 
sociated with that subband. Then, the encoded base- 
band is segmented. One method for producing the 
segmentation maps for the upper level bands is to up- 
sample the segmented baseband. The idea of avoiding 
side information by examining the baseband was ex- 
plored by Johnsen et al. in [2]. In that work, the edge 
location information was upsampled to indicate edge 
locations in the upper bands. In the second method, 
rather than simply upsampling, the segmentation map 
of the upper level subbands can be refined at the ex- 
pense of additional complexity. A recursive segmen- 
tation, based on Mohsenian’s structure introduced for 
edge location identification [3], can be used to refine 
the upper band segmentation without the use of any 
side information. This procedure is illustrated in Fig- 
ure 2, and proceeds as follows: The lowest band (LL4) 
of size 32 x 32 is encoded with Lloyd-Max scalar quan- 
tization. The reconstructed version of this band is 
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& Reconstructed to allocate bits 

the reconstructed 

LLi, HL;, LHi, HHi 

Figure 2: The encoder structure involves recursively segmenting, quantizing, and inverse transforming 

segmented, and the segmentation guides the encoding 
of the 2-D vectors in the remaining 3 subbands of size 
32 x 32, (HL4, LH4, and HH4). Within each band, dif- 
ferent regions use different subtrees. The decoder is 
able to reconstruct the LL4 band and apply the same 
segmentation, thereby determining the bit allocation 
to follow. After subbands HL4, LH4, and HH4 are en- 
coded and transmitted to the decoder, both encoder 
and decoder can reconstruct these bands and com- 
bine them with the reconstructed LL4. Performing 
one stage of a wavelet inverse transform then yields a 
new baseband, LL3. The encoder and decoder then 
segment that baseband, and allocate bits for the 4-D 
vectors of bands HL3, LH3, and HH3. This recursive 
structure continues for the LL:, and LL1 basebands. 

One other issue must be addressed in determining 
the segmentation map. Because vectors are classified, 
rather than pixels, there is the possibility that pixels 
within a particular vector possess different region af- 
filiations. The vector classification can be resolved by 
majority rule, by choosing the region of highest impor- 
tance, or by choosing the region of least importance. 

4 CT Segmentation 
In this work we investigate the use of region-based 

segmentation on a set of computerized tomographic 
(CT) chest scans. An original 11-bit CT chest scan 
(printed with 8-bit grayscale) is shown in Figure 3(a). 
Figure 3(b) shows the segmentation of the original im- 
age into 3 regions. The chest organs are shown in 
white. This region contains the lungs and the medi- 
astinum (the portion of the chest which has the heart 
and the great blood vessels). The chest wall region, 
comprising the muscles and ribs, is shown in gray. The 
background of the image, including the table on which 
the patient lies, is shown in black. This segmenta- 

tion can be achieved automatically for many CT chest 
scans using a simple amplitude threshold and pixel ad- 
jacency rule. Because the background is considered of 
little or no importance, it is assigned zero bits (except 
in subband 1). The chest wall region is encoded at a 
low rate (using small subtrees), and the chest organs 
region is encoded at a high rate (using large subtrees). 

Figure 3: Original and segmented CT chest scans 

5 Results and Discussion 
The training sequence was composed of 10 CT chest 

scans. Each image was transformed, and the various 
bands blocked into vectors of the size and shape cho- 
sen for that band. A CT chest scan from a different 
patient study was used as a test image. We deemed 
the chest organs region to be 25 times more important 
than the chest wall region, and thereby assigned to the 
former region a slope 25 times lower during the bit 
allocation procedure. The classification of each vec- 
tor was based on the most important region contained 
within the vector. 

Figure 4 displays a comparison of the SNR results 
obtained on the chest organs using wavelet/TSVQ 
coding without segmentation and the waveletjTSVQ 
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coding with the recursive segmentation procedure. 
Here SNR is defined as SNR = 10 log,o(Do/D), where 
D is the distortion measured by mean squared error 
and Do is the distortion produced by the best zero 
rate code. The x-axis shows the average bit rate for 
the entire image. The graph thus illustrates the dif- 
ferences in SNRs obtainable by the two methods foic 
that region when the entire encoded images are con- 
strained to have the same bit rate. The figure shows 
that coding with segmentation provides up to 2.0 dEl 
improvement in the chest organs region compared to 
coding without segmentation. A graph of the SNRs 
for the chest wall region would show a similar dif- 
ference, except within this region, the segmentation 
method would produce the inferior performance. This 
is illustrated in Table 1, which provides results for the 
two methods for the three regions at three different 
rates. For example, the table illustrates that at 0.20 
bpp the increase in SNR of 2.0 dB for the region of 
clinically important chest organs comes at the expense 
of greatly increased noise in the background, which is 
of no clinical relevance at all, and a 1.5 dB loss irr 
the chest wall region, which is rarely of clinical im- 
portance. The background loss comes partly from the 
severe blurring of the table on which the patient lies. 
Figures 5(a) and (b) show the encoded images with re- 
cursive segmentation and without segmentation. Both 
images have been windowed at intensities 50 and 400 
and then linearly rescaled for 8-bit printing. This win- 
dowing displays most clearly the degradation that the 
segmentation causes in the background and chest wall1 
regions. Figures 5(c) and (d) show a portion of the 
lungs of the same encoded images, also windowed at 
50 and 400, which demonstrate the higher SNR and 
better visual quality in the lung region produced by 
the segmentation method. 

Comparison of Segmentation Maps 
The recursive procedure improved the segmentation 

of the image considerably over t8he simple upsampling 
method. In particular, Figure 6(a) illustrates the map 
generated at 0.20 bpp using the upsampling method 
and Figure 6(b) illustrates the map generated at the 
same rate using the recursive method. Table 2 indi- 
cates the classification errors produced by the maps 
compared to the downsampled version of the origi- 
nal map (this is considered the “true” map), which 
illustrates the classification improvement gained by 
the recursive procedure. The improved segmentation 
produced by the recursive procedure led to small im- 
provement (0.2-0.3 dB) in the chest organs region and 

wall region. 
slightly more improvement (up to 0.8 dB) in the chest 
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Figure 4: SNRs achievable for chest organs region 

Figure 5: Top row: Encoded images at 0.20 bpp 
(a) wavelet/TSVQ with recursive segmentation, (b) 
wavelet/TSVQ with no segmentation. Bottom row: 
Zoom of encoded lung regions (c) wavelet/TSVQ with 
recursive segmentation, (d) wavelet/TSVQ with no 
segment ation 

Figure 6: Maps of size 256x256 for CT chest scans at 
0.2 bpp using (a) the upsampling method and (b) the 
recursive segmentation procedure 
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If side information for the map description can be 
tolerated, we can also compare the recursive segmen- 
tation procedure to the downsampling method that 
uses overhead information to characterize the highest 
resolution map. For the CT example we consider here, 
the image can be easily described. As a result, side in- 
formation does not contribute much overhead to the 
decoder. Consequently, the two methods provide com- 
parable performance for the chest organs region. 

6 Conclusions 
In this paper, region-based segmentation in con- 

junction with wavelet/TSVQ coding was investigated. 
The algorithm was able to take advantage of several 
properties of wavelets and TSVQs in allocating bits to 
the different regions. Several segmentation map gen- 
eration schemes were described, including a recursive 
procedure that did not require any side information 
to transmit the segmentation information. On a CT 
image, region-based coding led to a 2.0 dB improve- 
ment in the clinically important region compared to 
a method that did not segment. Recursive segmenta- 
tion produced a refined segmentation map compared 
to simply upsampling the baseband map. For this eas- 
ily described CT image, sending the actual maps was 
not very costly and produced comparable results in 
the most important region. We note however that in 
some situations, such as very low bit rate coding and 
the transmission of multi-region and complicated im- 
ages, side information may not be desirable. In such 
cases, recursive segmentation may be a viable option 
to use rather than simply transmitting the segmenta- 
tion information to the decoder. 
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