
UC Irvine
ICS Technical Reports

Title
How a programmer understands a program : a model

Permalink
https://escholarship.org/uc/item/2338t1dn

Author
Brooks, Ruven

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2338t1dn
https://escholarship.org
http://www.cdlib.org/

How a Programmer Understands
a Program: A Model

Ruven Brooks

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

Technical Report #97

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

iGh&JbM •••mWA
bstOLji'l^ 9d YGIT!
ml iiieiiVMO^ YC'
(.O.S.UTrsltiT)

(L3

How A Programmer Understands A Program: A Model

Ruven Brooks

Department of Information and Computer Science

University of California - Irvine

Irvine, Ca. 92715

A portion of this work was done using the facilities of the
National Center for Software Development and Computing
Techniques, Tata Institute for Fundamental Research, Bombay,
India.

Abstract

In a large variety of programming situations, a

programmer is required to understand a program that someone

else has written. A model has been created for the behavior

seen in the verbal protocol of a programmer on a sample

understanding task. The model is based on a theory of

understanding which stresses the role of the programmer's

apriori hypotheses or guesses about the program structure.

Organization of the model is that of a production system, a

structure which appears particularly well-suited to the

asynchronous, non-sequential nature of the input.

Understanding how a computer program works is an

important component of many different programming tasks.

Modifying or debugging a program certainly requires it, and

understanding how a program works may even in some cases be

a prerequisite to using it. In fact, the ease with which a

program can be understood is considered to be a sufficiently

important property of a program that a number of new

techniques, often referred to as "structured" programming

and "modular" programming have been developed to enhance

program understandability. A theorj^ of how people

understand programs would, therefore, be of both practical

and academic interest.

A useful starting point for such a theory is the

general theory of understanding task instructions that has

been developed by Hayes & Simon (1974; Simon & Hayes, 1976).

Essentially, their theory views the process of understanding

a problem as one of building an internal representation of

the basic elements of the problem. These basic elements

include a set of objects along with their properties and the

relations among them, operators for altering these

properties and relations, a specification of the initial

state of the objects, and some specification of the desired

final state. Thus, to understand a chess problem, the

problem-solver must know the pieces involved and the moves

they can make, their starting positions on the board, and

the condition, such as "checkmate," that is to describe the

final relationships among the pieces. When such an internal

representation has been created, the problem-solver has the

necessary information to begin work on the problem. (Note

that this representation of the problem need not be the one

the problem poser intended; the solver may have

misunderstood the problem.)

In the Hayes and Simon model, this internal

representation is created by a process that first scans the

text of the written instructions for the sets of objects and

the relations among them. A representational structure is

created to hold these objects and relations so that

information on initial and goal states may be stored in it.

A search is then made for potential operators that can

change the relations among objects, and semantic memory is

searched for semantic interpretations of the objects.

Finally, the semantic interpretations are converted to a

form compatible with the representational structure that

holds the objects and relations.

While the theory presented here shares the same

essential flavor of the Hayes & Simon work, the

understanding of programs is seen as differing from the

understanding of task instructions in two major respects:

First, the nature of the internal represention differs

significantly for a program as versus the kind of reasoning

problems used by Hayes & Simon. For the reasoning problems,

objects are given little or no semantic interpretation.

They are treated as atomic entities with no further internal

structure. For the program, however, objects have a quite

complex and extensive semantic structure. The essence of

this structure is seen to be a mapping between objects and

operations in the real world and those in the program.

Examples of real world operations are squaring a number and

finding the verb in a sentence. Example of objects in a

program are the expression, N**2, and the variable, VERB.

The mapping between the first two would consist of the

information that the value of N is the number and that **2

causes the number to be multiplied by itself. The mapping

between the second pair would be the information that the

value of VERB is the string of characters standing for the

verb in the sentence.

Such mappings preserve only a few selected properties

of the real world object. For example, the number of digits

required to write a quantity is a property of real-world

numbers which a program representation does not preserve.

The program representation also probably does not preserve

the typeface in which the number was written.

For anything but the simpliest information, mappings

will usually be organized into a heirarchical structure.

Thus, the meaning or . interpretation given to a single

variable name will play a role in the meaning given to

pieces or parts of program which use the variable.

The way in which these mappings are established forms

the second major point of difference between the

understanding of programs and the understanding of task

instructions. In the Hayes and Simon model, the information

necessary for establishing the internal representations is

derived almost entirely from the problem directions

themselves, with only a minimal use of other knowledge by

the problem solver. The authors state "the UNDERSTAND

program depends primarily on a knowledge of the English

language, and secondarily, upon a knowledge of the semantics

of a few basic operators" (Simon & Hayes, 1976,p.278). The

authors recognize that this situation may be due to the

peculiarities of the puzzles that they are using, and that

other kinds of problems will probably require much more

extensive use of other knowledge by the programmer.

Understanding a computer program is clearly a task

which will require extensive use of other knowledge.

Several arguments can be advanced to indicate that this must

be the case. First, in comparision with English sentences,

statements in a computer program taken by themselves are

relatively semantics free. Contrast the statements, "If the

person is an unmarried woman, search the population for a

mate," and "PENTRY[I,4]:=PENTRY[I,6] * TCARD." While the

reader can probably interpret the first sentence directly

and recognize the operation it is specifying, a great deal

more information is required before he can guess that the

program statement has to do with a payroll calculation.

Moreover, the problem with the program is not just one of

establishing context. The statement given above might

easily occur in the first 10 statements of a program, long

before any extensive context could be established. If the

program has few or no comments, then the necessary knowledge

to understand the statement must come from outside the

program.

A second argument for the extensive use of knowledge

besides the program text in understanding a program comes

from timing considerations- The task directions in one of

the Hayes and Simon studies contained about 10 main clauses.

Subjects were able to understand the problem in about 5

minutes. Each statement in a programming language can be

considered roughly equivalent to a main clause in an English

sentence in terms of the information conveyed. On the same

time scale, then, it should take a subject about 50 minutes

to understand a 100 statement program to the point, say,

where he could locate where a certain computation was

performed. In fact, if a subject in given a brief

description of what the program is intended to do, this

level of understanding can be reached in 10-15 minutes.

This suggests that the subjects comes to the program with

some store of knowledge that greatly reduces the information

that must be actually extracted from the program text.

Given that understanding a program does involve

extensive use of knowledge from outside of the program text,

an adequate theory of understanding programs should specify

the source of this knowledge. The concept put forth here is

that this knowledge is derived from a set of hypotheses

about the structure and organization of the program. These

hypotheses take the form of the mappings described earlier

between program elements and real-world objects and

relations. They include guesses as to the data structures

and algorithms used within the program, to the format and

encoding schemes used, to the probable output, and to the

program organization into modules and subprograms. An

example of such a hypothesis would be that a chess playing

program must do a tree search and must, therefore, use a

stack to keep track of the tree.

Given these hypotheses, the process of understanding a

program becomes one of verifying the hypotheses against the

actual program. This verification is accomplished by

scanning the program text for cues as to what the program is

doing, and checking them for consistancy against the

hypotheses. Should this scanning process result in some or

all of these hypotheses being disconfirmed, then new

hypotheses will be generated and verification attempted

until a set cf hypotheses is found which corresponds to the

program. An important question, then, is how the hypotheses

are generated.

If the assumption is made that the programmer is given

an arbitrary program of arbitrary type, then the source of

the hypotheses will be difficult to determine; perhaps, it

will depend on the kind of program the programmer last

worked on, or on what he discussed at lunch. In most real

world situations in which a program must be understood,

however, the programmer is usually told what the program is

intended to do. For example, if the programmer is asked to

modify an accounting program, he is usually told how the

program currently performs. Such information is, of course,

a fertile basis on which to generate hypotheses, and, if it

is available, it should play the dominant role in hypothesis

generation.

Summarizing the theory presented here, understanding

how a computer program works is viewed as a process of

establishing mappings bewteen objects in the real world and

the corresponding structure within the program. This

mapping is established via a process of hypothesizing and

verification. If available, information about what the

program is intended to do will be a primary source for these

hypotheses.

The Model

To illustrate the sufficiency of this theory for

explaining a major element in how programs are understood, a

model, in the form of a computer program, is being developed

for an actual piece of understanding behavior. The behavior

was obtained by giving an experienced programmer a program

that someone else had written and asking him to tell how the

program operated. As he proceeded in this task, his

knowledge about the program, as revealed in his statements,

gradually increased. The order and manner in which this

increase occurred is the facit of the behavior which the

program attempts to model.

Behavioral Data

Before presenting the model, itself, a more detailed

explanation of the behavioral data and the manner in which

is was collected is worthwhile. The programmer who served

as subject in this study was, at the time he performed the

task, a user consultant for a university computing center, a

post which he had held for more than a year. Prior to that,

he received an undergraduate degree in computer science.

The program which he was asked to understand was written in

FORTRAN, a language with which he was very familiar, and was

93 statements in length. It performed a random-walk

simulation of an object moving on a rectangular grid. The

program had the unusual feature that, instead of generating

random numbers internally, it read them in, 10 at a time,

from an external file.

The program was printed on 8 1/2 by 11 inch sheets with

26 statements per page. In comparision with the normal 52

line page, this had the effect of somewhat restricting the

amount of program that the programmer could view at a given

time; consequently, he had to turn pages more frequently.

Each line on the page was numbered in red on the left-hand

margin.

While performing the task, the subject was seated at a

table with the program listing placed in front of him. A

microphone connected to a taperecorder was also placed on

the table.

General instructions to the subject were that he was to

be given a listing of a program and asked to understand what

it did. While performing this task, he was to "talk aloud"

about what he was doing and also to state the numbers of the

lines he was looking at. The instructions concluded with

the following statement:

"The program does a random-walk simulation of
movement. In a random-walk simulation of movement, an
object is presumed to be on a rectangular grid. At each
time interval, a random number is used to determine which
square an object moves to next. In the program that will
be given to you, the object can be considered to move for
100 time intervals. At the end of these moves,^ the
program prints out the squares which were visited in
order of frequency of visit. What you are to do is to go
through the listing and give a line by line description

of how the program works. Be sure tc state the line
numbers."

The subject spent approximately 15 minutes going over

the program. At the end of this period, he was still unable

to figure out what one section of program did. On being

told that it was a Shell sort, he stated that he now

understood what the entire program did.

The tape recording of the subjects comments was

transcribed and broken into phrases; the resulting protocol

consisted of 384 such phrases- A short sample of this

protocol is given below;

S46 Yeah, ahh, if this second argument
347 is greater than 10
348 greater than or equal 10
349 Ok, if it's less than 10 then you're
350 just adding one to the second argument
351 and returning
352 You do read in the buffer
353 and then you set that second argument equal to
one.

These protocols were analyzed for two different sorts

of information;

1. Indications of what part of the program the subject

was attending to. These include statements of line numbers,

page turnings, and the use of variable names or values which

occurred only at certain locations.

2. Indications of what information about the program

the subject was acquiring. These included statements about

the actions of specific pieces of code as well as more

indirect information about the overall organization of the

program into sections or segments.

An example of information of the first sort is that at

lines 46-53 of the protocol given above, the subject was

probably looking at lines 86-89 of the program. The basis

for this inference is that in line 41 of the protocol the

subject states that he is looking at program lines 84, and

the number,10, mentioned in the protocol occurs in program

lines 86-89.

An example of information of the second sort is that in

those same lines of protocol the subject has just discovered

that the subroutine, RANSUB, reads in something from an

external file, rather than generating the random numbers

directly. Further, it also indicates that he realizes that

the subroutine alters the value of its second argument,

though he gives no indication of realizing that the second

argument is a pointer into the buffer.

Model Structure

Overview

A simple way to view the structure of the model is that

it takes as input of the first kind of information, in the

same order as the subject does, and produces as output the

same information of the second kind. More precisely, a

description of what the subject is presumed to be looking at

in the program listing is placed, piece by piece, into a

database called the STM. For each piece, a set of condition

action rules - a production system - is applied to the

database. The conditions of each rule specify the presence

in the database of information about something the subject

may have seen and the context in which he may have seen it.

The actions of the rule are to modify the database to

indicate inferences made from this perception about the

program structure and organization.

Knowledge Structures

The STM is structured as an ordered list of discrete

items. These items include both the inputs to the model and

the representations of knowledge that the model has about

the program. While there is no explicit limit on the size

of STM, it is conceived of as being small, on the order of

10-50 items.

Inputs to the model appear as new items in the STM.

These inputs take the form of deep-structure representations

of what the subject is assumed to be seeing or hearing at a

given time. The adjective, "deep-structure," is used to

indicate that that the information has already been

processed perceptually, and that what is entered into the

model is the result of this processing. Thus, when the

subject is assumed to be looking at the program statement.

"INTLGER RANBUF{10), PPTR," at line 86, the input appears in

the model as:

SEGMENT 86 86

DECLARATION:

INTEGER (RANBUF 10), PPTR

Note that the perceptual processing is presumed to have

supplied the information that an INTEGER statement is a form

of declaration statement.

Perceptions in the model can be of variable size.

While the perception given above is only one line long,

perceptions of several lines in length are also possible.

The main action that takes place in the model is the

conversion of these perceptions into representations of

knowledge about the program. These representations are

presumed to be organized heirarchically, with

representations for individual expressions forming

representations for lines which form segments, which, in

turn, form still larger units. Each unit at any level is

assigned a meaning, and the meanings of units at a lower

level combine to form the higher level meanings. No apriori

structure is imposed on any given amount of code so that, in

one place, a line of code may be treated as a single unit

while, in another, one line can be broken down into several

levels of sub-expressions.

Inside the model, these knowledge representations

appear as elements in the STM. These elements can be of two

types: OBJECTS represent atomic objects such as variables or

labels; PARTS represent segments of code. Each OBJECT or

PART consists of a collection of attributes and values, such

as its name, its function in the program, and whether it has

any subparts.

An example of a PART is:

Name: SUBROUTINE

Number: 6

Function: Generates random
numbers.

Location: 82-89

Subparts: DECLARATION 83
READ 84 84

In addition to the PARTS and OBJECTS themselves, the

STM also contains the model's hypotheses about what PARTS

and OBJECTS might possibly exist on the basis of a priori

knowledge about what the program is intended to do. These

take the form of HYPOTHESIZE elements which have the same

form as PARTs and OBJECTS except that they are preceeded by

the token, HYPOTHESIZE. Only the guessed-at information is

present in the item; missing information, to be filled in if

the hypothesis is confirmed, is indicated by question marks.

An example of a HYPOTHESIZE element is:

HYPOTHESIZE

PART

Name: ?

FUNCTION RANDOM-NUMBER-GENERATOR

Location: ?
Subparts: ?

As the model runs, the effect of the input is to cause

changes in the PARTs and OBJECTS and the hypothesized PARTs

and OBJECTS present in STM. Among the forms these changes

can take are the addition of new PARTs and OBJECTS, the

elaboration of existing PARTs and O&JECTs, and the

confirmation or disconfirmation of hypotheses. At any given

point in time, however, the particular structure of PARTs

and OBJECTS (including hypothesized ones) which is contained

in STM represents the model's entire knowledge about the

program.

Control Structure

The changes in the STM as a result of the input are

made by a production system, the sole control structure in

the model. The particular type of production system used

here and the language used to express it are derived from

the PSG system (Newell & McDermott,1975). The production

system consists of an ordered set of condition- action

rules. On each cycle of the system, the conditions of each

rule are scanned in order. When a rule is found whose

conditions are met, the action portion of the rule is

carried out, and the scan begins again from the beginning of

the list.

The conditions of a rule consist of a set of items,

each of which must be present in STM for the condition to be

condition; instead, a pattern language may be used to

describe an item in general terms. Thus, to specify a PART

which is a random number generator, the condition

specification may contain:

PART *ANY* (FUNCTION RANDOM-NUMBER GENERATOR) *REST*

The *ANY* and *REST* tokens are used to indicate that a

match may be made against any PART in STM which contains any

single item occurring at the position of the *ANY* and one

or more items occuring after the position of the *REST*.

The condition would be met by the following STM item:

PART

17 SUBROUTINE

FUNCTION: RANDOM-NUMBER-GENERATOR

LOCATION: 83 92

PARTS: ?

The complete invoking conditions for a single

production may consist of a whole sequence of such pattern

items. The normal assumption is then that all the patterns

must be matched for the rule to be invoked. Moreover, the

matching is presumed to take place from left to right across

STM, without replacement (i.e., each STM item can be used to

match one and only one pattern). Additionally, it is

possible to include as part of a condition a specification

of a set of alternative patterns, at least one of which must

be matched by an element in STM. Last, part of a condition

may be the specification of the absence in STM of items

matching a particular pattern.

The action part of a production consists of a list of

actions to be performed. These actions all affect the

contents of STM, and they can be of four different types:

addition of new elements, replacement of old ones, removal

of old elements, and movement to the front of STM of

elements which are already in the STM. (This later action

will affect the order in which elements in STM are matched.)

Zero or more of each of these kinds of action make up the

list of actions of a production.

Model Operation

At the beginning of model operation, the STM is

considered to be empty of information relevant to the task.

In response to this condition a production fires off which

brings the first perception into STM. Other productions

respond to this perception and convert it into PARTS and

OBJECTS. This converstion process may be completable with

just the perception at hand; alternately, more information

may be needed. In the former case, perception is a

relatively passive processes, and the model "sees" just the

next input in sequence, as would be the case if the

subject's eye were just scanning down the page. In the

later case, however, perception is treated as an action, and

the model sets up a goal, in the form of a LOOK-FOR element.

to "see" a particular thing. Figure 1 illustrates the

operation of these perceptual mechanisms by showing the

partial contents of STM before and after the firing several

productions.

- insert Figure 1 about here -

The way a particular perception is processed is highly

dependent on the context in which it occurs. This is true

in two respects; it affects which information is extracted

from a perception and it affects how the information is

incorporated into other structures. As an example of the

first effect, when an assignment statement occurs in the

context of a group of initializations, only the information

that an assignment has occurred to a variable is retained;

the particular value assigned is ignored. An example of the

second effect is when a declaration statement occurs after a

subroutine heading; then, the information about the

declaration is presumed to belong to the subroutine, rather

than to the main program. Figure 2 shows both of these

effects:

- insert Figure 2 about here -

Major Characteristics of the Model

Perception and Perceptual Units

This model does not specifically provide for perceptual

processes. Instead, it assumes that only the outcome of

perceptual processing is important in understanding. This

assumption also characterizes the Hayes and Simon model as

well as many other cognitive models; it needs little,

additional defense here. What is more wcirthy of comment is

the size of units that make up a single perception. In this

model, perceptions are always of a line or several lines at

a time. If each symbol in a FORTRAN statement is considered

equivalent to a word, then perception in this model occurs

as a whole sentence or several sentences at a time.

No claim is made that this size unit is in any way

atomic or primitive; indeed, it is willingly conceeded that

there ate perceptual units and processes operating at much

lower levels, including those for individual symbols and

parts of symbols. What is asserted, however, is that the

larger units are the ones which are important in

understanding programs. The main argument in favor of this

assertion is that the larger units are the only ones that

are mentioned in this protocol or in other, similar

protocols. As an example, lines 3 to 16 of this protocol

are claimed to be one perceptual unit because, in scanning

these lines, the subject makes only one comment on the

entire section. Additionally, when he needs to use

information from individual lines in this range, he reads

the lines egain from the listing. On the basis of this

argument, the claim is made that the size of perceptual unit

used is sufficient for modeling program understanding

behavior.

Memory Capacity

The database for the production system is called the

STM, a commonly used abbreviation for "short-term memory."

Since this STM differs in two significant respects from the

characteristics conventionally associated with a short-term

memory, a word of explanation is in order. In contrast to

the conventional short-term memory, the STM here is much

larger in capacity than the traditional 7-9 chunks (Miller,

1956) , and the contents are not lost over time. Both of

these differences are related. Specifying a fixed capacity

for the STM requires establishment of a standard for what

constitutes a "chunk" of memory. Since subjects performing

problem solving tasks tend to adopt strategies which keep

memory requirements within manageable sizes (Newell & Simon,

1972), it is difficult to infer from the protocols the

amount of information that forms one chunk for the subject.

Similarly, it is difficult to tell when information has been

overwritten or "pushed off the end" of the short-term

memory. Rather than arbitrarily try to force the

information in STM into some fixed number of chunks (of

arbitrary size), the decision was made to put no bounds on

STM size, but, instead, to let it grow as needed. While

this does mean that the STM in the model will contain more

information than would be present in the short-term memory

of the human subject, the effect on the overall model should

be minimized since the model is constructed under the

assumption that immediate context is most important in

determining behavior. Thus, since the additional

information will appear towards the end of STM, it should

play a minimal role.

Specificity of Productions

In comparision of other problem-solving systems which

have rather general purpose routines such as "MATCH-INPUT" (

), the productions in this model are quite specific? for

example, one of the productions has as its working

conditions the following pattern:

1. SEE SEGMENT *ANY* *ANY* (READ *ANY* *ANY*

(IMPLICIT-DO *ANY*=V3 *ANY* *ANY* 1 *ANY*))

2. PART *ANY* *ANY* *ANY* *ANY* (PARTS *ANY*)

3. OBJECT $V3 *ANY* *ANY* (TYPE *ANY* (ARRAY *ANY*)

REST)

The sign in the first pattern means that whatever

matched the *ANY* token is to be assigned to the variable.

V3. The sign in the third pattern means that the value

of V3, not the symbol, V3, is to be used at that point in

the match. Paraphrased, the conditions can be written as:

1. A perception of a READ statement with an implicit DO

operation. 2. A PART with subparts. 3. An object of

TYPE, array, which is the same as the variable used in

the implicit DO construction.

At the present time, the model contains some 29

productions which attempt to account for behavior in the

first 56 of 384 utterances. At this rate, 150-250

productions will be required to model just one protocol.

Since the model was created using the protocol, the

possibility is raised that the productions have too much of

an ad hoc character, and that a better though out, more

general system might require fewer productions.

while this model is quite crude and could certainly be

improved upon, an argument can be made that any recasting

will not significantly reduce the total number of

productions without a compensatory increase in the size and

complexity of each production. The starting point for the

argument is that the subject does display particular

behaviors; he infers the specific purpose for which a

specific variable is being used at a specific location. To

achieve generality (or the appearence of generality), the

common practice in model building is to partition the

information involved in a specific behavior into a set of

general mechanisms and a collection of specific data on

which the mechanisms operate. Then, it is possible for the

0-9Q?;
Ho

same mechanisms to operate on several sets of data or for

the same data to be operated on by the same mechanisms.

Since the total amount of information involved is far

smaller than if each mechanism -data combination were

treated separately, a measure of parsimony is achieved.

The drawback to such a partition is that the separation

into procedure and data is usually an artificial one, a

point well made by users of systems such as PLANNER (Hewitt,

1970; Winograd, 1972). The production rules used here do

not distinguish between data and program, but, instead,

achieve parsimony through the use of patterns in their

invoking conditions. Nevertheless, they must still produce

specific behaviors, involving specific information. The

more specific information the program must model, the more

specific information it must contain. This information can

be incorporated into the system either by increasing the

complexity of the patterns used by including more

alternatives, binding more local variables, etc., or it can

be accomplished by increasing the number of productions.

Regardless of which route is followed, however, the net size

of the system must grow at a rate which will be at least

linear as it asked to account for more behavior.

Production Systems and Input Driven Processes

A number of general considerations have been put forth

in favor of the production system as a formalism for ^

• fj?

expressing models of human behavior (Newell & Simon,1972),

and these considerations alone might well lead to the

adoption of a production system structure for this

particular model. Of interest, however, is whether there is

some characteristic of this behavior under study which is

particularly suited for a production system representation.

The one that comes closest to filling this requirement is

the role that external perceptions play in the model.

External perceptions are the "input" to the model. In

a normal program, the interpretation given to a piece of

input is almost entirely dependent on the variable or data

structure to which it is assigned; for example, the

interpretation of the input, 123, to a FORTRAN program will

depend on whether the variable it is being read into is an

employee i.d. or the X coordinate of a point to be plotted.

In the model, on the other hand, the inputs, the

perceptions, are self-identifying; what they mean is clear

without reference to a variable or data structure.

Processing of input of this kind is most reasonably

nandled by a pattern matching approach (as versus, say, a

succession of tests and branches), since the set of inputs

is so large. Moreover, the range over which the match must

be made will usually be this entire range of inputs. Such

as system will, therefore, involve attempting to match the

input against against a large set of patterns, and taking

different actions depending of which pattern was matched-

Whether such an organization is implemented as an augmented

transition net, a PLANNER-like language, or in a special

producton system language, the resultant structure will,

therefore, still resemble a set of independent

condition-action rules•

Incomplete Work

As has been mentioned previously, the model currently

accounts for behavior in a small segment of protocol. After

enough additional production rules are added so that the

model accounts for a larger segment of protocol, it will be

possible to evaluate the "fit" between model and protocol.

This evaluation will be accomplished in two parts. First,

judges will be asked to rate at selected points the extent

to which the knowledge about the program in the protocol

overlaps the knowledge displayed by the model. Second, the

judges will be asked to estimate the extent to which

knowledge generated from hypotheses within the model could

have been directly deduced from the surrounding context of

that same knowledge in the protocol, thus giving an

indication of the power of hypotheses in the model.

The demonstration of a model-protocol fit, while an

important step, only validates the model for the behavior of

a single subject on a single task. Further work, involving

other subjects working at other tasks, will be mandatory to

demonstrate the model's wider generality. Of necessity, the

specific productions will have to be altered for each

subject. A few of the characteristics of the model,

however, appear to be applicable to a wide range of subjects

and tasks. These include;

1. The size and level of perceptual units.

2. The generation of hypotheses about progr

structure and their use in understanding the program.

3. The condition- action structure for processing

input.

Future work will be directed at assessing the extent to

which these features are, indeed, universally integral to

models of the program understanding task.

Bibliography

Brooks, R. Experiments with a production system language.
Technical report. Department of Information and Computer
Science. University of California at Irvine. Irvine,
Ca. 1976.

Hayes, J.R. & Simon, H.A. Understanding written problem
instructions. in Gregg, L.W. (Ed.) Knowledge and
Cognition. Lawrence Erlbaum Associates. Potomac,
Maryland. 1974.

Hewitt, C. Description and theorectical analysis (Using
Schemata of PLANNER: A language for proving theorems and
manipulating models in a robot. Unpublished doctorcal
dissertation. Department of Mathematics. Massachusetts
Institute of Technology. 1972.

Miller, G.A. The magical number seven, plus or minus two:
Some limits on our capacity for processing information.
Psycholoviical Review 1956. 63 81-97.

Newell, A. & McDermott,
Computer Science.
September, 1975

PSG Manual. Department of
Carnegie-Mellon University.

Newell, A. & Simon, H.A. Human
Prentice-Hall. New York. 1972.

>roblem solvinc

Simon, H.A. and Hayes, J.R. Understanding complex task
instructons. in D. Klahr (Ed.) Cognition and
instruction. Lawrence Erlbaum Associates; Ptomac,
Maryland. 1976.

Sussman, G.J& McDermott, D.V.
PLANNING. (AI Memo No.
Laboratory. Massachusetts
1972.

Why CONNIVING is better than
255A1 ArtificiaT Intelligence
Institute of Technology.

Winograd, T. Understanding Natural Language.
1972. 3 1-191.

Cognitive

1. SEE SEGMENT 18 19

(LABEL 15) SUBROUTINE-CALL
(RANSUB RANS IPT)

ASSIGNMENT INUM (RANS IPT)
2. PART 1

PROGRAM

FUNCTION RANDOM-WALK OF THING 3 ON GRID 2
LOCATION 1 ?
PARTS

INTEGER-DECLARATIONS 1 2

INITIALIZATIONS 3 16
3. PART 5 INITIALIZATIONS

FUNCTION INITIALIZATION

LOCATION 3 16
0

4. LOOK

Production SEE-3 fires off.
1. PART 1

PROGRAM

FUNCTION RANDOM-WALK OF THING 3 ON GRID 2

LOCATION 1 ?

PARTS

INTEGER-DECLARATIONS 1 2

INITIALIZATIONS 3 16

SUBROUTINE-CALL 18 19

2. PART 6 SUBROUTINE-CALL

FUNCTION SUBROUTINE-CALL RANSUB
LOCATION 18 19
?

10. HYPOTHESIZE

PART

?

V

FUNCTION RANDOM-NUMBER-GENERATOR

?

?

At this point, CONCLUDE-1 is fired off.

1. LOOK-FOR SUBROUTINE RANDOM-NUMBER-GENERATOR
2. PART 1

PROGRAM

FUNCTION RANDOM-WALK OF THING 3 ON GRID 2
LOCATION 1 ?

PARTS

INTEGER-DECLARATIONS 1 2
INITIALIZATIONS 3 16

SUBROUTINE-CALL 18 19
3. PART 6 SUBROUTINE-CALL

FUNCTION SUBROUTINE-CALL RANSUB
LOCATION 18 19

Figure 1

Operation of Perceptual Mechanisms

The figure shows the partial contents of STM before and

after the firing of several productions. The "?" is used as

a place holder to indicate information not yet known to the

model. Note the HYPOTHESIZE element; this serves as part of

the invoking conditions for CONCLUDE-1 which places the

LOOK-FOR element into STM.

1. SEE SEGMENT 85 85

DECLARATION INTEGER RANBUF 10 PPTR
2. PART 7 SUBROUTINE

FUNCTION RANDOM-NUMBER-GENERATOR

GENERATES NUMBERS RANDOM

LOCATION 84 ?

?

3. PART 1

PROGRAM

FUNCTION RANDOM-WALK OF THING 3 ON GRID 2

LOCATION 1 ?

PARTS

INTEGER-DECLARATIONS 1 2

INITIALIZATIONS 3 16
SUBROUTINE-CALL 18 19

Production SEE-5 fires off.

1. PART 7 SUBROUTINE

FUNCTION RANDOM-NUMBER-GENERATOR

GENERATES NUMBERS RANDOM

LOCATION 84 ?

2. OBJECT RANBUF 9 (SUBROUTINE 7)
TYPE INTEGER ARRAY 10

MEANING BUFFER

3. OBJECT PPTR 8 (SUBROUTINE 7)
TYPE POINTER

MEANING BUFFER-POINTER

Figure 2a.

Context-dependent Information Extraction

Note that the two new OBJECTS that are created by SEE-5

belong to the subroutine, not to the main program.

1. SEE SEGMENT 3 3

ASSIGNMENT NS 500

2. PART 1

PROGRAM

FUNCTION RANDOM-WALK OF THING 3 ON GRID 2

LOCATION 1 ?

PARTS

INTEGER-DECLARATIONS 1 2

INITIALIZATIONS 3 16

SUBROUTINE-CALL 18 19

The producion, SEB-12, is fired

1. PART 5 INITIALIZATIONS

FUNCTION INITIALIZATION

LOCATION 3 16

PARTS ASSIGNMENT 3 3

2. OBJECT NS 15 (INITIALIZATIONS 5)
VALUE ?

3. PART 14 ASSIGNMENT-

FUNCTION ASSIGNMENT

ASSIGN NS ?

LOCATION 3 3

?

Figure 2b.

Context-dependent Information Incorporation

The SEE-12 production recognizes the assignment

statement as being part of some initializations. In

creating the NS object, therefore, only the fact of the

assignment, not the specific value, is retained.

