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Abstract
Parkinson’s disease is the second most common neurologi-
cal disease and affects about 1% of persons over the age of 
60 years. Due to the lack of approved surrogate markers, 
confirmation of the disease still requires postmortem exam-
ination. Identifying and validating biomarkers are essential 
steps toward improving clinical diagnosis and accelerating 
the search for therapeutic drugs to ameliorate disease symp-
toms. Until recently, statistical analysis of multicohort longi-
tudinal studies of neurodegenerative diseases has usually 
been restricted to a single analysis per outcome with simple 
comparisons between diagnostic groups. However, an im-
portant methodological consideration is to allow the model-
ing framework to handle multiple outcomes simultaneously 
and consider the transitions between diagnostic groups. 
This enables researchers to monitor multiple trajectories, 
correctly account for the correlation among biomarkers, and 

assess how these associations may jointly change over the 
long-term course of disease. In this study, we apply a latent 
time joint mixed-effects model to study biomarker progres-
sion and disease dynamics in the Parkinson’s Progression 
Markers Initiative (PPMI) and examine which markers might 
be most informative in the earliest phases of disease. The 
results reveal that, even though diagnostic category was not 
included in the model, it seems to accurately reflect the tem-
poral ordering of the disease state consistent with diagnosis 
categorization at baseline. In addition, results indicated that 
the specific binding ratio on striatum and the total Unified 
Parkinson’s Disease Rating Scale (UPDRS) show high discrim-
inability between disease stages. An extended latent time 
joint mixed-effects model with heterogeneous latent time 
variance also showed improvement in model fit in a simula-
tion study and when applied to real data.

© 2018 S. Karger AG, Basel

Introduction

Parkinson’s disease (PD) affects nearly 1% of persons 
over the age of 60 years. Degeneration and death of neu-
rons in the substantia nigra of the brain occurs much ear-
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lier than the onset of motor symptoms such as slow move-
ment, tremor, and rigidity. Disease progression is charac-
terized by the transition from normal, through preclinical, 
to clinical stages of the disease. Confirmation of the disease 
is only possible through an autopsy. The presence of non-
motor symptoms such as olfactory, sleep, and depression 
help classify patients as prodromal since there is currently 
no available surrogate marker to confirm disease diagno-
sis. Currently, the FDA approves DaTSCAN, a specialized 
imaging technique of the brain that measures levels of do-
pamine in the substantia nigra, to evaluate suspected PD. 
Nonetheless, diagnosis of the onset and progression of the 
disease is often marred by errors due to the unavailability 
of reliable validated diagnostic markers. Identifying and 
validating biomarkers are crucial steps in clinical diagnosis 
and the search for treatment to ameliorate disease symp-
toms and slow down the progression of PD. Reliable and 
cost-effective biomarkers for the diagnosis of neurodegen-
erative diseases are more likely to be discovered if multiple 
clinical, biological, and imaging assessments are studied 
simultaneously to provide complementary information. 

In studies of neurodegenerative diseases such as PD, 
clinical, biological, and imaging biomarkers are often col-
lected longitudinally over a short period of time on indi-
viduals at different stages of disease. Such studies are 
aimed at accurately characterizing disease trajectories 
and identifying important diagnosis and prognosis bio-
markers, and ultimately help to accelerate drug discovery. 
Although studies generally collect multiple outcomes 
over time, it is very common to find studies where re-
searchers focus on the analysis of changes in a single out-
come. In this regard, the linear mixed-effects model is 
ubiquitous in studies of neurodegenerative diseases. For 
example, Kennedy et al. [1] applied linear mixed-effects 
models to estimate the rate of decline of Alzheimer’s Dis-
ease Assessment Scale Cognitive score (ADASCog) 
among Alzheimer’s disease patients based on the Mini-
Mental State Examination (MMSE). Guerrero et al. [2] 
reported studies which employ mixed-effects models for 
the analysis of longitudinal Alzheimer’s disease markers. 
Mixed-effects models are also commonly applied in the 
PD literature. Sturkenboom et al. [3] assessed the effect of 
occupational therapy on the Canadian Occupational Per-
formance Measure in improving the daily activity of PD 
patients. Klotsche et al. [4] analyzed changes in health-
related quality of life in a longitudinal cohort study of PD 
patients. Analysis of single longitudinal outcomes can be 
inefficient for studying the progression of the disease 
since outcomes may be correlated and hence may provide 
complementary insights. Single-outcome analyses may 

also contribute to the lack of strong evidence of symp-
tomatic or disease-modifying treatment effects on clinical 
outcomes. Inference may be improved if all outcomes are 
modeled simultaneously, taking into account the intra- 
and inter-subject variability and accommodating be-
tween outcome associations.

Joint models that simultaneously model 2 or more out-
comes have received relatively less attention in the neu-
rodegenerative disease literature. This neglect is likely 
due to problems in interpretation of resulting parameter 
estimates, or to the computational complexities that arise 
when the number of outcomes grows or when the out-
comes are of mixed types, such as binary, count, continu-
ous, or time-to-event. Moreover, in most studies which 
do employ multivariate models, only 2 outcomes are 
modeled at a time [5, 6]. Nevertheless, the multivariate 
modeling framework offers several potential advantages, 
such as accommodating all sources of variation and cor-
relation among outcomes. With the rapid emergence and 
growing popularity of Bayesian estimation methods to 
handle complex and computationally burdensome mod-
els, multivariate modeling techniques have become an ac-
tive area of research in neurodegenerative studies. Luo 
and He [7] analyzed longitudinal outcomes and a time-
to-event outcome to assess the effect of tocopherol on pa-
tients with early PD using a Bayesian Markov Chain 
Monte Carlo (MCMC) method for the efficient estima-
tion of model parameters. Their modeling framework ap-
plied a multilevel item response theory model for multi-
ple longitudinal outcomes and a Cox proportional hazard 
model for the survival outcome. They demonstrated that 
their joint model led to a better fit to their data than single 
analyses per outcome. Luo [8] provides an excellent re-
view of recent developments and issues of joint modeling 
of longitudinal and survival data. Li et al. [9] proposed a 
latent time joint mixed-effects model (LTJMM), an ex-
tension of the multivariate linear mixed-effects model for 
longitudinal data, which accommodates a large number 
of outcomes to be analyzed together and permits unbal-
anced time measurement of outcomes. A distinctive fea-
ture of this model is the inclusion of a latent time shift 
parameter, which captures the degree of an individual’s 
disease progression. The subject-specific latent times 
shared across outcomes are assumed to have a homoge-
neous variance across all subjects.

In this study, we extended the LTJMM by relaxing the 
homogeneity assumption on the latent times. Heteroge-
neity was introduced by allowing the latent time to be 
influenced by subject-level covariates. To achieve this, we 
modeled the latent time variance in terms of covariates 
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through an exponential function. The heterogeneous 
LTJMM was used to estimate trajectories of biomarkers 
and determine the sequence of biomarker abnormality 
using data from the Parkinson’s Progression Markers Ini-
tiative (PPMI) study. Estimation of model parameters 
was via a Bayesian MCMC framework.

Materials and Methods

Data
The PPMI is a prospective multicenter study of patients at dif-

ferent stages of PD with healthy patients as controls. Roughly 35 
centers across North America, Europe, Israel, and Australia are 
involved in this ongoing study that has collected data over a period 
of 6 years. All study sites received institutional review board ap-
proval before initiating the study, and all study participants pro-
vided written informed consent for research. Detailed study de-
sign, inclusion criteria, standard protocols, registration, and con-
sent procedures can be found on the study website (www.
ppmi-info.org). The study is aimed at identifying novel clinical, 
imaging, and biological markers of PD and to assess their progres-
sion in patients. Discovery and validation of new biomarkers 
would be beneficial for use in clinical trials of disease-modifying 
drugs. Patients are classified by their disease stage, namely, healthy 
controls (HC), PD, scan without evidence of dopaminergic deficit, 
prodromal, genetic cohort, and genetic registry patients. The ge-
netic cohort and registry subjects may or may not be affected with 
Parkinson’s symptoms. The steps involved in diagnosing and clas-
sifying participants into disease categories are reported in the 
PPMI study protocol.

In this study, we focused on subjects in the HC, PD, and pro-
dromal groups. There were 475 PD, 238 HC, and 187 prodromal 
individuals representing 52.78, 26.44, and 20.78% of the sample, 
respectively. Of these participants, 317 (35.22%) were female and 
583 (64.78%) were male. The proportion of females in the HC, PD, 
and prodromal groups was 34.87, 35.58, and 34.76% respectively. 
Visit times were not balanced, as the schedule of assessments de-
pended on the group. HC were followed every 6 months for the 
first year and every 12 months thereafter. Before the first 12 
months, PD and prodromal patients were followed every 3 months 
and every 6 months thereafter.

We considered 17 outcomes and modeled 8 of them using age 
and gender as covariates. Clinical assessments included tremor, 
postural instability and gait difficulty (PIGD), REM sleep behavior 
disorder (RBD), University of Pennsylvania Smell Identification 
Test (UPSIT), Montreal Cognitive Assessment (MOCA), Hopkins 
Verbal Learning Test (HVLT), Geriatric Depression Scale (GDS), 
Semantic Fluency Test (SFT), Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS), total Scale for 
Outcomes in Parkinson’s (SCOPA), Line Orientation Test (LINE-
ORT), Montreal Cognitive Assessment (MOCA) and State Trait 
Anxiety Index (STAI). UPDRS total includes the 3 subtests; UP-
DRS I gauges mentation, behavior, and mood, UPDRS II assesses 
activities of daily living, and UPDRS III examines motor. To com-
plement these clinical outcomes, we also investigated biological 
markers such as cerebrospinal fluid (CSF) α-synuclein, CSF amy-
loid peptide 42 (Aβ42), CSF phosphorylated tau 181p (p-tau 181) 

Table 1. Simulation study results

Model
parameters

True 
values

LTJMM-H model LTJMM model 

bias coverage bias coverage

β01 –31.7 1.6929 0.86 1.7119 0.86
β11 –2.06 0.1139 0.94 0.0957 0.98
β21 0.12 –0.0314 0.9 –0.0312 0.88
β02 –30.70 0.8346 0.93 0.8408 0.93
β12 0.52 0.0138 0.97 0.0072 0.95
β22 0.06 –0.0156 0.93 –0.0154 0.92
β03 –7.60 1.3147 0.97 1.3778 0.98
β13 3.90 0.3746 0.95 0.3227 0.98
β23 0.28 –0.031 0.98 –0.0304 0.96
β04 17.20 –0.5776 1.00 –0.399 1.00
β14 –1.56 1.1918 0.98 1.0105 0.98
β24 0.08 –0.0145 1.00 –0.0114 1.00
β05 –36.20 8.2043 0.74 8.2752 0.73
β15 –1.40 0.3505 0.97 0.2837 0.97
β25 0.18 –0.1564 0.68 –0.1553 0.74
γ1 0.15 0.0106 0.96 0.0105 0.97
γ2 0.09 0.0064 0.98 0.0063 0.98
γ3 0.60 0.0461 0.96 0.0457 0.94
γ4 2.20 0.1588 0.97 0.1576 0.95
γ5 0.80 0.0577 0.98 0.0573 0.97
σα01 3.20 –0.0548 0.96 –0.0574 0.96
σα02 1.60 –0.021 0.97 –0.0203 0.97
σα03 5.60 –0.0224 0.95 –0.0218 0.95
σα04 7.10 0.0800 0.96 0.0781 0.95
σα11 0.60 –0.007 0.90 –0.0054 0.9
σα12 0.47 0.0209 0.93 0.0214 0.94
σα13 1.17 0.0022 0.96 0.0033 0.97
σα14 3.70 –0.1244 0.92 –0.1267 0.91
σα15 5.70 0.0657 0.96 0.0657 0.96
σ1 3.10 0.0198 0.93 0.0200 0.93
σ2 1.60 0.0229 0.97 0.0226 0.95
σ3 4.80 0.0556 0.95 0.0552 0.97
σ4 5.80 0.0601 0.94 0.0602 0.94
σ5 1.60 –6e–04 0.96 –2e–04 0.97
τ0 3.60 –0.1314 0.95 2.1513 0.00
τ1 –1.50 0.0131 0.97 – –
τ2 0.05 2e–04 0.95 – –

% best WAIC 61%
% best LOOIC 63%

One hundred simulated data sets were generated under model 
LTJMM (independent random effects). Both LTJMM-H (hetero-
geneity in the latent time) and LTJMM models with correlated 
random effects were fit to all simulated data sets. The best perfor-
mance was determined by the lowest WAIC and LOOIC between 
the two models for each data and summarized as “% best” over the 
100 simulations. Bias and 95% coverage probabilities are also re-
ported for each parameter.
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Table 2. Summary measures at baseline

Diagnostic
category

Variable n Min Max Mean SE

HC Age 199 30.54 83.87 60.79 0.80
CSF Aβ42 190 88.80 879.50 377.62 8.22
CSF α-synuclein 190 592.56 8,608.91 2,201.26 78.86
CSF p-tau 181 190 5.10 73.30 18.22 0.85
CSF total tau 188 18.40 223.10 52.48 1.98
GDS short 199 0.00 15.00 1.29 0.15
HVLT 198 15.00 35.00 26.02 0.32
LINEORNT 198 4.00 15.00 13.14 0.14
PIGD 198 0.00 0.80 0.02 0.01
REM sleep 198 0.00 11.00 2.86 0.17
SCOPA 197 0.00 35.00 8.10 0.52
SFT 198 22.00 80.00 51.90 0.80
STAI 196 40.00 105.00 57.08 1.00
Tremor 197 0.00 0.64 0.03 0.01
UPDRS total 197 0.00 20.00 4.63 0.32
UPSIT 199 10.00 40.00 33.89 0.36

Prodromal Age 64 58.37 82.12 68.75 0.73
HVLT 63 9.00 33.00 21.79 0.67
LINEORNT 62 3.00 15.00 11.97 0.29
PIGD 63 0.00 0.60 0.10 0.02
REM sleep 63 1.00 14.00 7.54 0.48
SCOPA 64 1.00 39.00 15.50 1.22
SFT 63 26.00 75.00 45.00 1.37
Tremor 63 0.00 0.45 0.08 0.02
UPDRS total 63 0.00 31.00 12.32 0.99
UPSIT 61 7.00 35.00 17.18 0.84

PD Age 430 33.63 84.71 61.57 0.47
CSF Aβ42 416 129.20 796.50 370.82 4.91
CSF α-synuclein 416 332.93 6,694.55 1,847.87 38.72
CSF p-tau 181 414 4.70 94.10 15.74 0.50
CSF total tau 412 14.40 121.00 44.80 0.91
GDS short 428 0.00 14.00 2.32 0.12
HVLT 426 9.00 36.00 24.47 0.24
LINEORNT 426 5.00 15.00 12.78 0.10
PIGD 411 0.00 1.40 0.23 0.01
REM sleep 416 0.00 13.00 4.50 0.14
SCOPA 430 0.00 71.00 12.55 0.45
SFT 426 20.00 103.00 48.79 0.57
STAI 425 40.00 137.00 65.25 0.89
Tremor 411 0.00 1.82 0.50 0.02
UPDRS total 406 7.00 76.00 32.52 0.67
UPSIT 427 1.00 40.00 22.29 0.40

PIGD, posture instability and gait difficulty; RBD, REM sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identifi-
cation Test; MOCA, Montreal Cognitive Assessment; HVLT, Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; SFT, 
Semantic Fluency Test; SCOPA, Scale for Outcomes in Parkinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Parkinson’s 
Disease Rating Scale; STAI, State Trait Anxiety Index; PD, Parkinson’s disease; HC, healthy control; SE, standard error.
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and CSF total tau (t-tau). These outcomes have long been known 
to be associated with the development and progression of PD. We 
also included DaTSCAN summaries of the striatum.

Statistical Methods
We employed the LTJMM to assess the relationship between 

CSF measures, imaging biomarkers, and the clinical outcomes and 
further explored its use to study progression among diagnostic 
groups. The LTJMM allows for multiple outcomes, measured lon-
gitudinally for each patient potentially at different visit times. Sup-
pose yijk represents the outcome k (k = 1, 2, …, p) observed at time 
j (j = 1,…, q) for each individual, i (i = 1, 2,…, n), tij is the time of 
measurement, and xijk is a set of covariates for the ith individual at 
time j. The model is given by

yijk = xt
ijkβk + yk(tij + δi) + α0ik + α1iktij + εijk,� (1)

where βk and yk are coefficients corresponding to covariates and 
time, respectively, α0ik and α1ik are subject-specific random inter-
cept and slope components specific to each outcome and assumed 
to follow a multivariate normal distribution with mean 0 and vari-
ance-covariance matrix, D. A random or “latent” time shift, δi, spe-
cific to each subject but shared across all outcomes is introduced 
to quantify the disease progression of an individual relative to the 

population. The δi are assumed to follow a normal distribution 
with mean 0 and variance σ2

δ. Finally, the independent random 
error term εijk is assumed to follow a normal distribution with 
mean 0 and variance σ2. Additionally, δi is assumed to be indepen-
dent of the subject-specific random effects and the pure random 
errors. However, the subject-specific random intercepts and slopes 
are allowed to be correlated to reflect the dependence among out-
comes. Heterogeneity in the latent time (LTJMM-H) is introduced 
by modeling σ2

δ as follows:

σ2
δi = exp(Zt

iτ),� (2)

where Zi represents a set of covariates for individual assumed to be 
a subset of Xi and τ is a vector of parameters corresponding to the 
covariates. With this, we have allowed the variability of the latent 
time to vary across subjects.

To efficiently estimate the model parameters, an MCMC ap-
proach was adopted. We assign a weakly informative normal prior 
with zero mean and variance 100 on the regression and yk parame-
ters. For the variance components of the time shift and random er-
ror term, a weakly informative half-Cauchy (0, 2.5) distribution was 
imposed. For the subject-specific random effects, the variance-co-
variance matrix was first decomposed into variance and correlation 
components. A Cholesky decomposition was then applied to the 
correlation matrix to ensure efficiency and stability. A half-Cauchy 
(0, 25) prior was placed on the variance part and the LKJ prior on 
the correlation matrix as recommended by Lewandowski et al. [10]. 
To ensure identifiability of the model, we constrained the random 
intercepts for each subject to sum to zero (i.e., Σp

k = 1 α0ik = 0).

Simulation Study

A limited simulation study was conducted to study the 
effect of assuming a homogeneous latent time variance 
when in fact there is between-subject variation in latent 
time variance. We generated data from the LTJMM-H 
model with uncorrelated random effects as follows:

yijk = β0k + β1kx1ijk + β2kx2ijk + yk (tij + δi) + α0ik  
+ α1iktij + εijk,

where i = 1, 2,…, 5, x1ijk ∼bin(0.5), x2ijk ∼ N(55, 52), 
α0ik, and α1ik are random intercept and slope, respectively, 
and assumed to be independent. Further,

log(σ2
δi) = τ0 + τ1x1i + τ2x2i.

The sample size was set to 100 with each individual 
time, tijk ∼ Uniform(0, 6).

Simulation parameters were set by fitting the LTJMM 
model to 5 of the original outcomes in the PPMI study. 
Heterogeneity was introduced by allowing a small effect 
of x1i and x2i in the submodel. Actual parameter values for 
both fixed effects and variance components can be seen in 
Table 1. We then simulated 100 datasets and fitted both 
the LTJMM and the LTJMM-H with correlated random 

Table 3. Percentiles and percentile ranks of outcomes

Outcomes Min 25th 50th 75th Max

Tremor 0.00 0.05 0.12 0.43 2.36
PIGD 0.00 0.07 0.14 0.25 4.00
UPDRS I 0.00 1.96 4.35 7.73 36.00
UPDRS II 0.00 0.67 2.12 6.17 40.00
UPDRS III 0.00 1.00 6.21 19.22 86.00
UPDRS total 0.00 4.64 12.53 30.21 156.00
MOCA 2.00 24.70 26.76 28.30 30.00
UPSIT 1.00 15.26 23.82 33.26 40.00
SBR striatum 0.10 1.21 1.86 2.44 4.24
CSF 

α-synuclein 332.93 1,372.50 1,865.90 2,450.67 8,608.91
CSF Aβ42 88.80 312.24 372.85 435.31 879.50
CSF p-tau 181 4.70 9.84 13.35 20.59 94.10
CSF total tau 14.40 33.50 42.35 55.23 223.10
HVLT 4.00 19.63 23.62 27.92 36.00
REM sleep 0.00 1.52 3.54 7.12 17.00
GDS short 0.00 0.52 1.10 2.73 15.00
LINEORNT 0.00 10.55 12.52 13.81 15.00
SFT 7.00 39.79 47.83 55.92 103.00
STAI 40.00 47.70 58.07 71.06 150.00
SCOPA 0.00 5.12 9.79 19.51 83.00

PIGD, posture instability and gait difficulty; RBD, REM sleep 
behavior disorder; UPSIT, University of Pennsylvania Smell Iden-
tification Test; MOCA, Montreal Cognitive Assessment; HVLT, 
Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; 
SFT, Semantic Fluency Test; SCOPA, Scale for Outcomes in Par-
kinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Par-
kinson’s Disease Rating Scale; STAI, State Trait Anxiety Index.

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

   
   

   
   

   
   

   
   

  
13

2.
23

9.
14

2.
13

0 
- 

9/
7/

20
18

 7
:2

2:
43

 P
M



Iddi/Li/Aisen/Rafii/Litvan/Thompson/
Donohue

Neurodegener Dis 2018;18:173–190178
DOI: 10.1159/000488780

effects to the data. To apply the MCMC algorithm, we 
specified two Markov chains, each run for 2,000 iterations 
including 1,000 warm-up iterations, which were discard-
ed. Simulation results are presented in Table 1. Both mod-
els consistently estimated fixed parameters, variance pa-
rameters of the random effects, and the random error with 
high coverage probability. However, the LTJMM per-
formed poorly in the estimation of the latent time variance 
resulting in severe bias and zero coverage probability for 
the true parameters. Also, the LTJMM-H model resulted 
in lower widely applicable information criterion (WAIC) 

and leave-one-out cross-validation information criterion 
(LOOIC) values in many of our simulations, demonstrat-
ing better model fit compared to LTJMM.

Analysis of PPMI

Exploratory Analysis
Table 2 summarizes patient characteristics and out-

comes at baseline in the PPMI dataset. Using ANOVA, 
the diagnostic groups at baseline yielded a significant dif-

CSF AB42 CSF α-synuclein CSF p-tau 181 CSF total tau GDS short

REM sleepPIGDMOCALINEORNTHVLT

SBR striatum

UPDRS total UPSIT HC PDProdromal

HC PDProdromal Disease stageHC
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Fig. 1. a Box plots of the observed quantiles of each outcome by 
disease category. b Spearman’s correlation between the outcomes. 
PIGD, posture instability and gait difficulty; RBD, REM sleep be-
havior disorder; UPSIT, University of Pennsylvania Smell Identi-
fication Test; MOCA, Montreal Cognitive Assessment; HVLT, 

Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; 
SFT, Semantic Fluency Test; SCOPA, Scale for Outcomes in Par-
kinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Par-
kinson’s Disease Rating Scale; STAI, State Trait Anxiety Index; PD, 
Parkinson’s disease; HC, healthy control.
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ference in means, with all p values <0.05. The average age 
was higher in the prodromal group compared to HC and 
PD categories. Tremor, one of the main clinical manifes-
tations of PD, was unsurprisingly higher on average 
among PD patients relative to the other diagnostic groups.

To compare outcomes on a common scale, raw scores 
were transformed into percentiles using a weighted em-
pirical cumulative distribution function. The inverse of 
the sample proportion of diagnostic category for each 
outcome was used as weights. Table 3 shows percentile 

scores corresponding to selected percentile ranks. Figure 
1a shows the box plot of the percentile ranks, representing 
disease severity, for each outcome in each of the three di-
agnostic categories. From this figure, we observe broad 
variation in percentile ranks of the outcomes for each dis-
ease group. There were outlying observations, particular-
ly for the motor outcomes, tremor, PIGD, and UPDRS 
total and olfactory measures indexed by UPSIT. The me-
dian ranks differ among diagnostic groups and were low-
est in the HC group. The Spearman rank correlations be-

CSF α-synuclein

CSF AB42

CSF p-tau 181

CSF total tau

GDS short

HVLT

LINEORNT

MOCA

PIGD

REM sleep

SBR striatum

SCOPA

SFT

STAI

UPSIT

Tremor Spearman‘s rank

UPDRS total

CS
F 
α-

sy
nu

cl
ei

n

CS
F 

AB
42

CS
F 

p-
ta

u 
18

1

CS
F 

to
ta

l t
au

GD
S 

sh
or

t

H
VL

T

LI
N

EO
RN

T

M
O

CA

PI
GD

RE
M

 sl
ee

p

SB
R 

st
ria

tu
m

SC
O

PA SF
T

ST
AI

UP
SI

T

Tr
em

or

UP
D

RS
 to

ta
l

b

correlation

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

1

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

   
   

   
   

   
   

   
   

  
13

2.
23

9.
14

2.
13

0 
- 

9/
7/

20
18

 7
:2

2:
43

 P
M



Iddi/Li/Aisen/Rafii/Litvan/Thompson/
Donohue

Neurodegener Dis 2018;18:173–190180
DOI: 10.1159/000488780

tween outcomes are displayed in a heat map in Figure 1b. 
Total tau was highly correlated with CSF α-synuclein (r = 
0.74). PIGD was also strongly associated with UPDRS to-
tal (r = 0.71). Generally, motor outcomes were highly cor-
related. CSF biomarkers were also generally correlated 
with each other but weakly associated with clinical out-
comes. A cognitive outcome, MOCA, was moderately 
positively correlated with verbal working memory assess-
ment indexed by the HVLT (r = 0.53), and depression 
(GDS) was moderately correlated with anxiety (STAI) 
with r = 0.62.

Figure 2 displays the individual profiles for each out-
come for 50 randomly selected participants. Tremor, 
PIGD, UPDRS total, MOCA, specific binding ratio (SBR) 
on striatum, GDS, and STAI were first measured prior to 
baseline (at screening). For all participants, the UPSIT 

score was taken only at baseline because it does not change 
with disease progression. While there was considerable 
variation between patients, individual trajectories also 
appear to show a slight progression (increase) over time.

Statistical Analysis
Figure 1a demonstrates that some of the outcomes 

more clearly distinguished between HC and PD than oth-
ers. These measures were likely to carry more informa-
tion related to latent time. Hence, our statistical analysis 
was limited to 8 of these outcomes, namely, PIGD, SBR 
striatum, SCOPA, tremor, UPDRS, UPSIT, CSF 
α-synuclein and REM sleep behavior disorder. An analy-
sis with all 17 outcomes is included in the online supple-
mentary Appendix (for all online suppl. material, see 
www.karger.com/doi/10.1159/000488780). 

Parameter Posterior 
mean

95% credible 
interval

CSF α-synuclein
Intercept 0.8976 (0.4341, 1.3793)
Age –0.0123 (–0.0200, –0.0050)
Female –0.1160 (–0.2745, 0.0401)
Latent time, γ1 0.0274 (0.0190, 0.0363)
Error variance, σ1 0.4288 (0.4023, 0.4552)

PIGD
Intercept –1.9367 (–2.6663, –1.1232)
Age 0.0114 (–5e-04, 0.0226)
Female 0.0866 (–0.1579, 0.3315)
Latent time, γ2 0.1415 (0.1225, 0.1621)
Error variance, σ2 1.1573 (1.1347, 1.1788)

REM sleep
Intercept 0.2397 (–0.1764, 0.6504)
Age –0.0053 (–0.0118, 8e-04)
Female –0.1052 (–0.2437, 0.0491)
Latent time, γ3 0.0446 (0.0364, 0.053)
Error variance, σ3 0.5806 (0.5646, 0.5968)

SBR striatum
Intercept –0.8843 (–1.2600, –0.5038)
Age 0.0157 (0.0098, 0.0215)
Female –0.0677 (–0.2017, 0.0604)
Latent time, γ4 0.0599 (0.0502, 0.0697)
Error variance, σ4 0.2118 (0.2002, 0.2237)

Heterogeneous parameters
τ1 5.1320 (4.4178, 5.8806)
τ2 –0.0071 (–0.018, 0.0033)
τ3 –0.0184 (–0.2247, 0.1919)

Table 4. Results of posterior estimates of parameters and corresponding 95% credible intervals for model with 8 outcomes from 
the Parkinson’s Progression Markers Initiative (PPMI)

Parameter Posterior 
mean

95% credible 
interval

SCOPA
Intercept –2.3726 (–2.7089, –2.0074)
Age 0.0336 (0.0279, 0.0387)
Female 0.5104 (0.3944, 0.6296)
Latent time, γ5 0.0406 (0.0338, 0.0486)
Error variance, σ5 0.4683 (0.4559, 0.4819)

Tremor
Intercept 0.3527 (–0.3759, 1.1549)
Age –0.0174 (–0.0295, –0.0064)
Female –0.1660 (–0.3967, 0.0813)
Latent time, γ6 0.1236 (0.1084, 0.1404)
Error variance, σ6 0.8108 (0.7962, 0.827)

UPDRS total
Intercept –0.2535 (–0.6679, 0.176)
Age 0.0059 (–8e-04, 0.0123)
Female –0.0364 (–0.1758, 0.0979)
Latent time, γ7 0.0880 (0.0769, 0.0999)
Error variance, σ7 0.3494 (0.343, 0.3559)

UPSIT
Intercept –1.2072 (–1.6254, –0.7688)
Age 0.0206 (0.0138, 0.0275)
Female –0.2175 (–0.348, –0.0731)
Latent time, γ8 0.0511 (0.0418, 0.0615)
Error variance, σ8 0.3688 (0.0688, 0.6602)

Model criteria
WAIC 61054.80
LOOIC 62158.01
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We analyzed the data using the model described in sec-
tion 3 with three Markov chains, each run for 8,000 itera-
tions, including a warm-up of 4,000 iterations, which was 
discarded. The LTJMM and the proposed LTJMM-H 
were implemented and the best model was selected ac-
cording to two model selection criteria, the WAIC and 
the LOOIC. The LTJMM-H was chosen over the LTJMM 
since it produced lower WAIC and LOOIC values of 
61,054.8 and 62,158.01 compared to 61,203.94 and 
62,290.43 for the homogeneous version, respectively. For 
the analysis of all 17 outcomes, WAIC and LOOIC for the 
LTJMM-H were 117,860 and 120,166.7, which were low-

er compared to the LTJMM values of 143,431.9 and 
145,055.2, respectively.

Posterior means with corresponding 95% posterior 
credible intervals are reported in Table 4 for the selected 
model. Figure 3 shows the density plot of estimated ran-
dom latent time shifts by diagnostic categories. Although 
diagnostic category was not included in the model, the 
model seemed to accurately reveal the temporal ordering 
of disease state consistent with the diagnosis groups and 
biology of PD. The distribution of latent time overlapped 
much more between the HC and prodromal groups com-
pared to the HC and PD groups. This was not surprising 
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Fig. 2. Observed subject-specific profile showing the profiles for 50 
randomly selected subjects per outcome and by disease category. 
PIGD, posture instability and gait difficulty; RBD, REM sleep be-
havior disorder; UPSIT, University of Pennsylvania Smell Identi-
fication Test; MOCA, Montreal Cognitive Assessment; HVLT, 

Hopkins Verbal Learning Test; GDS, Geriatric Depression Scale; 
SFT, Semantic Fluency Test; SCOPA, Scale for Outcomes in Par-
kinson’s; LINEORT, Line Orientation Test; UPDRS, Unified Par-
kinson’s Disease Rating Scale; STAI, State Trait Anxiety Index; PD, 
Parkinson’s disease; HC, healthy control.
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since HC shared some nonmotor features (sleep distur-
bances, constipation, olfactory deficits, depression) with 
both prodromal and PD, but HC shared fewer features 
with PD than prodromal. Thus, the latent time shift esti-
mates provided a continuous alternative to diagnosis, 
which was objectively derived from a comprehensive 
joint model of longitudinal measures of disease progres-
sion [9]. Comparing results from the two sets of out-
comes, Table 4 and online supplementary Table A.1 show 
that the model was generally robust to the inclusion of 
less informative outcome measures, but density plots, in 
Figure 3 and online supplementary Figure A.1, show that 
latent time was more successful in parsing out the diag-
nosis groups when the less informative outcomes were 
omitted.

Figure 4 (and online suppl. Fig. A.2 for all outcomes) 
shows the correlation of random slopes between pairs of 
outcomes. Consistent with the observed correlation ma-
trix in Figure 1b, we observed that the slopes for PIGD 
were correlated with UPDRS total. Similarly, GDS short 
and STAI showed moderate association. In general, we 
observed that the biological markers shared a stronger 
pair-wise association compared to their association with 
clinical markers.

Figure 5 shows the subject-level predicted severity 
versus age for 10 randomly selected participants. The 
model reasonably predicted the trend and direction of 
individual trajectories, albeit with some variation. For 
subjects with more time points, the predicted trajecto-
ries appeared to perform better, with some reduction in 
the difference between the observed and predicted tra-
jectories compared to subjects with fewer time points. 
Placed side-by-side in Figure 6a and b are the observed 
and predicted subject-level trajectories against age. The 
two sets of trajectories appeared similar, giving an indi-
cation that the model was predicting reasonably well. In 
addition, SBR striatum and total UPDRS in Figure 6a 
and b clearly showed the discriminability of these mea-
sures between disease stages in the observed and pre-
dicted trajectories.

Figure 7 displays the average long-term population 
trajectories for females with progressive disease. To gen-
erate these plots, it was necessary to “calibrate” the inde-
pendent variables age and latent time by assigning the 
latent time for any given age. For the purposes of these 
plots, we assumed the estimated median latent time 
among HC (–13 years) at the average age for the entire 
sample (61 years). This figure indicates that PIGD and 
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Fig. 3. Distribution of estimate of time shift 
by disease status. PD, Parkinson’s disease; 
HC, healthy control.
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tremor reached the 50th percentile later in the disease 
progression compared to UPDRS, which occurred much 
earlier. We also fitted the model treating the UPDRS sub-
tests I, II, and III as separate outcomes (see online suppl. 
Fig. A.3b). We found that UPDRS I (mental) reached the 
50th percentile level first on average, followed by UPDRS 
III (motor) and II (activities of daily living) in close suc-

cession. Due to the strong gender effect, as can be ob-
served from the table of estimates, a similar plot for males 
will position SCOPA differently in the ordering (see 
Fig. 8).

Figure 8, a positional variance diagram, shows the es-
timated variation in the ordering of marker abnormalities 
for females and males. Figure 8 was derived by slicing 
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Fig. 4. Correlation between random slopes for pair of outcomes. PIGD, posture instability and gait difficulty; 
RBD, REM sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification Test; SCOPA, Scale 
for Outcomes in Parkinson’s; UPDRS, Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s disease; HC, 
healthy control.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

   
   

   
   

   
   

   
   

  
13

2.
23

9.
14

2.
13

0 
- 

9/
7/

20
18

 7
:2

2:
43

 P
M



Iddi/Li/Aisen/Rafii/Litvan/Thompson/
Donohue

Neurodegener Dis 2018;18:173–190184
DOI: 10.1159/000488780

0

60 70 60 70 60
Age, years

70 60 70

0.25

0.50

0.75

1.00

Su
bj

ec
t-

le
ve

l p
re

di
ct

ed
 se

ve
rit

y

0

0.25

0.50

0.75

1.00

CSF α-synuclein PIGD REM sleep SBR striatum

SCOPA Tremor UPDRS total UPSIT

Fig. 5. Subject-level prediction for random subjects. Each color represents the predicted profile of a randomly 
selected individual. PIGD, posture instability and gait difficulty; REM sleep, rapid eye movement sleep behavior 
disorder; UPSIT, University of Pennsylvania Smell Identification Test; SCOPA, Scale for Outcomes in Parkin-
son’s; UPDRS, Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s disease; HC, healthy control.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
ni

v.
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

   
   

   
   

   
   

   
   

  
13

2.
23

9.
14

2.
13

0 
- 

9/
7/

20
18

 7
:2

2:
43

 P
M



Estimating the Evolution of Disease in the 
PPMI

185Neurodegener Dis 2018;18:173–190
DOI: 10.1159/000488780

0

30 40 50 60 70 80 90 30 40 50 60 70 80 90 30
Age, years

40 50 60 70 80 90 30 40 50 60 70 80 90

0.25

0.50

0.75

1.00

O
bs

er
ve

d 
se

ve
rit

y

0

0.25

0.50

0.75

1.00

CSF α-synuclein PIGD REM sleep SBR striatum

SCOPA Tremor UPDRS total UPSIT

Diagnosis

PD

HC

Prodromal

a
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gait difficulty; REM sleep, rapid eye movement sleep behavior disorder; UPSIT, University of Pennsylvania Smell 
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Figure 7 horizontally at the 50th percentile and observing 
the order of markers as they appear from left to right. We 
used the posterior distribution to evaluate the uncertain-
ty in these estimated orderings. For each draw from the 
posterior distribution, we generated curves similar to Fig-
ure 7 and sliced horizontally at the 50th percentile to de-
termine the ordering of marker abnormalities for that 
posterior sample. The diagram represents the distribu-
tion (proportion of MCMC samples) of the outcome or-
derings. The bolder the color of the cell, the higher the 
certainty of the ordering for that outcome. In Figure 9, we 
display the positional diagram based on subject-level pre-
dictions. For each subject in the sample, we ordered the 
outcomes based on the age at which the 50th percentile of 
the outcome is attained. As one might expect, there was 
greater variation in the orderings from subject to subject 
(Fig. 9) compared to the average ordering for the sample 
(Fig. 8). 

Discussion

In this paper, we applied a joint mixed-effects model 
with latent time to analyze the various stages of PD in-
cluded in the PPMI study. We found that although diag-
nostic category was not included in the model, it seems to 
accurately reveal the temporal ordering of disease state 
consistent with diagnosis categorization at baseline. In 
other words, the distribution of the estimates of the latent 
time reflected the subjective assessment of patient disease 
status at baseline. 

In addition, the association between estimated ran-
dom effects revealed that biological markers share a 
stronger pair-wise association but a weaker association 
with clinical markers. The biomarkers not being very in-
formative (greater variance and lower signal-to-noise ra-
tio) probably explains this weak association with clinical 
outcomes. It is worth mentioning that the role of β-
amyloid and tau protein as biomarkers in PD is not well 
established, but a number of publications report altered 
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Fig. 7. Population-level predicted severity 
for females with mean age and median la-
tent time of a healthy control. The legend is 
ordered by the age at which the predicted 
severity level for each outcome is 0.5 (sliced 
horizontally). PIGD, posture instability 
and gait difficulty; REM sleep, rapid eye 
movement sleep behavior disorder; UPSIT, 
University of Pennsylvania Smell Identifi-
cation Test; SCOPA, Scale for Outcomes in 
Parkinson’s; UPDRS, Unified Parkinson’s 
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Fig. 8. Positional variance diagrams of the central ordering. a Female. b Male. The x axis is the event position. 
Difference in ordering may be attributed to the strong effect of gender on some of these outcomes. PIGD, posture 
instability and gait difficulty; REM sleep, rapid eye movement sleep behavior disorder; UPSIT, University of 
Pennsylvania Smell Identification Test; SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson’s 
Disease Rating Scale; PD, Parkinson’s disease; HC, healthy control.
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CSF Aβ1–42, total tau, or p-tau in patients with PD with 
or without dementia compared with HC [11]. Clinical 
markers also tend to be correlated among each other, with 
PIGD and total UPDRS, and GDS short and STAI sharing 
strong to moderate associations. Inspection of observed 
and predicted severity shows that SBR striatum and total 
UPDRS can provide better discrimination between dis-
ease stages. 

Long-term population-level trajectories were also de-
rived from the proposed model. The results indicated late 
manifestation of PIGD and tremor but earlier total  
SCOPA and total UPDRS abnormalities. The SCOPA and 
UPDRS include nonmotor features that appear at prodro-
mal disease stages (earlier in the course of the illness). The 
positional variance diagram provided an ordering consis-
tent with that from the population trajectories. Similar tra-
jectories can be obtained for any subgroup of the popula-
tion with ease using our modeling approach. It should be 
kept in mind that the data used to develop the models are 
restricted to short-term follow-up after enrollment (me-

dian < 4 years), which might limit predictive accuracy 
when evaluated over longer periods of disease progression.

We also demonstrated through a limited simulation 
study that allowing heterogeneity in the variance of latent 
time can improve LTJMM fit. The variance of the latent 
time was modeled in terms of observed baseline covari-
ates. Particularly, the simulation indicated that estima-
tion of parameters is consistent with the LTJMM model 
except that the between-subject latent time variance is se-
verely biased. Given the importance of the subject-specif-
ic latent time as a data-driven alternative to categorical 
disease status, it is critical that the latent time variance is 
accurately estimated. Violation of the homogeneous la-
tent time can, therefore, be detrimental. We encourage 
the exploration of different submodels to determine 
which baseline covariates are significant in explaining the 
between-subject latent time variation. In the application 
of the two models to the PPMI study, both WAIC and 
LOOIC favored the extended LTJMM model with hetero-
geneous latent time. 

UPSIT

SBR striatum

UPDRS total

SCOPA

CSF α-synuclein

REM sleep

PIGD

Tremor

1 2 3 4
Position

Proportion
0.25

0.20

0.15

0.10

0.05

0

5 6 7 8

Fig. 9. Positional variance diagram of the central ordering. PIGD, posture instability and gait difficulty; REM 
sleep, rapid eye movement sleep behavior disorder; UPSIT, University of Pennsylvania Smell Identification Test; 
SCOPA, Scale for Outcomes in Parkinson’s; UPDRS, Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s 
disease; HC, healthy control.
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