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Segmentation as Retention and Recognition: the R&R model
Raquel G. Alhama (rgalhama@uva.nl)

Willem Zuidema (zuidema@uva.nl)
Institute for Logic, Language and Computation, Science Park 107

Amsterdam, 1098XG, The Netherlands

Abstract

We present the Retention and Recognition model (R&R), a
probabilistic exemplar model that accounts for segmentation
in Artificial Language Learning experiments. We show that
R&R provides an excellent fit to human responses in three
segmentation experiments with adults (Frank et al., 2010),
outperforming existing models. Additionally, we analyze the
results of the simulations and propose alternative explanations
for the experimental findings.

Keywords: artificial language learning; segmentation;
statistical learning; cognitive modelling

Introduction
A crucial step in the acquisition of a spoken language is to
discover what the building blocks of a speech stream are.
Children perform such segmentation by exploiting a variety
of statistical and prosodic cues in the input. Understanding
the unique ability of humans to acquire speech requires an
understanding of the nature of this learning mechanism.

Artificial Language Learning (ALL henceforth) has, over
the last 20 years, become a key paradigm to study the nature
of learning biases in speech segmentation and rule general-
ization. In experiments in this paradigm, participants are ex-
posed to artificial stimuli designed to incorporate particular
aspects of speech and language, and they are subsequently
tested on whether and under which conditions they discover
the regularities in such artificial language.

A key result in this tradition is the demonstration that 8
month old infants are sensitive to transition probabilities be-
tween syllables, and can segment a speech stream based on
these probabilities alone (Saffran, Aslin, and Newport (1996),
Aslin, Saffran, and Newport (1998)). This ability to track
statistics over concrete fragments of the input, known in the
literature as statistical learning, has also been demonstrated
in adults (Saffran, Newport, & Aslin, 1996).

However, these experiments do not reveal whether the un-
derlying cognitive mechanism does operate over transitional
probabilities or, instead, it performs computations of an en-
tirely different nature but which can be described as transi-
tional probabilities. In order to reveal the precise underpin-
nings of such cognitive mechanism, a useful methodology is
computational modeling.

There exist several segmentation models in the literature,
offering alternative accounts of the nature of this process.
Thus, these models need to be compared and analyzed against
empirical data to validate their predictions. Possibly the
most comprehensive study for the evaluation of computa-
tional models in segmentation is presented in Frank et al.

(2010). In that study, the authors evaluate a range of mod-
els based on their goodness of fit to three segmentation ex-
periments that involve a great number of different conditions
–thus providing a rich dataset for comparing the models.

In this paper we present one model for to account for seg-
mentation experiments in ALL. Our model, called the Reten-
tion & Recognition model (henceforth R&R), is a novel pro-
cessing model that explains segmentation based on the reten-
tion and recognition of subsequences of the input. Follow-
ing Frank et al., we test our model against the experimental
data from their study, and compare the goodness of fit of our
model with those reported in previous studies.

The R&R Model
The model we propose, which we call the Retention-
Recognition Model (R&R), takes a sequence of syllables X =
〈xo,x1,x2, . . . ,xm〉 as input, and considers all subsequences of
length l = 1,2, . . . , lmax as potential segments to be memo-
rized.

The model maintains a memory M, which is a set of
segment types and their associated counts. The memory is
initially empty (M0 = /0) and it changes with update steps
that either add an entry (with count 1) or increase the count
of an existing entry:

ADD: Mt+1 ←Mt ∪{
〈〈

x j, . . . ,xk
〉
,1
〉
}

INCREMENT:
Mt+1 ←Mt −{

〈〈
x j, . . . ,xk

〉
,c
〉
}∪{

〈〈
x j, . . . ,xk

〉
,c+1

〉
}

For any candidate segment s ∈ S (with segments pro-
cessed in the order they are encountered in the stream), the
model checks whether it is stored in memory and, if so,
what the count of that segment in memory is (its ‘subjective
frequency’). The model may (with a probability p1 that
increases with that count) recognize it (i.e., match it with a
segment in memory). If it succeeds, the count is incremented
with 1. If it fails to recognize the segment, the model might
(with a probability p2 that decreases with the length of the
segment) still retain it (i.e., add it to memory with initial
count of 1 if it was not stored, or in the event that a previously
stored segment was not recognized and is retained –very
rare in practise– increase the count by 1 as a form of ’late
recognition’). In this way, the model builds a memory of
segments that have different degrees of familiarity depending
on their distribution in the stream. R&R’s flowchart is given
in Figure 2.

The key components of the model are the equations for
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computing the recognition probability (p1) and retention
probability (p2). Recognition should become more proba-
ble the more often a segment has been recognized, but de-
crease with the number of segment types in memory (|M|).
Hence, we define p1 as follows, with B and D free parame-
ters (0 6 B,D 6 1) that can be fitted to the data:

p1(s,M) = (1−BCOUNT(s,M)) ·D|M| (1)

If a segment is not recognized, the model considers retain-
ing it with a probability that decreases with the length of the
segment (l(s)), and which can be boosted if there are addi-
tional cues favoring this segment (e.g., a pause preceding it).
Hence, we define p2 as follows, with A and µ free parameters
(0 6 A 6 1; 0 6 µ) that can be fitted to the data:

p2(s) = Alength(s)·µ ,where µ =

{
µwp after a pause
µnp otherwise (2)

The A parameter thus describes how quickly the retention
probability decreases with the length of a segment. The prob-
ability is also affected by the presence of additional cues; in
this paper, we consider only the pauses between sentences as
additional cues. 1

Putting everything together, the model can be described in
pseudocode as in Figure 1. As can be seen, R&R is a simple
model, but it gives a surprisingly accurate match with empiri-
cal data, as we will explore in the next sections, without even
taking processes such as forgetting, priming, interference and
generalization into account.

Related Models
There exist several models of segmentation in the literature.
We do not have the space to address them all here, but we
discuss how our model relates to those to which it has more
similarities.

The recognition component of our model yields rich-get-
richer dynamics (and thus consistently produces very skewed
count distributions over segments in memory) similar to that
of non-parametric Bayesian models, such as the Bayesian
Lexical Model (BLM henceforth) in Goldwater, Griffiths, and
Johnson (2009) (adapted for ALL in Frank et al. (2010)). The
BLM implements such dynamics with a Dirichlet process.
The main assumptions of this process are: (i) the probabil-
ity of a word in the ith position is proportional to the num-
ber of occurrences of this word in previous positions; (ii) the

1An earlier version of R&R (Alhama, Scha, and Zuidema (2016),
Alhama and Zuidema (2016)) features a different probability for re-
tention, with a binary switch over an attenuation parameter. This
design was inspired by experimental studies in which the stimuli
eventually contained 25ms pauses, a duration that is supposed to be
perceived by humans only subliminally. The stimuli we plan to use
for our simulations, based on Frank et al. (2010), differ significantly
in the use of pauses, which have a duration of 500ms (and therefore
should be clearly perceived). The retention probability we present
here is more general, since the effect of pause length could be ac-
counted for with different values of µ.

Input: Stream X , and empty memory M0← /0.
Output: Memory Mn+1.
/∗ Compute candidate segments: ∗/
S← 〈s0,s1, . . . ,sn〉
/∗ Process each segment: ∗/
for i = 0 to n:

/∗ Compute the recognition probability: ∗/
p1 = p1(si,Mi)
/∗ Compute the retention probability: ∗/
p2 = p2(si,Mi)
/∗ Draw two random numbers ∗/
r1 ∼U(0,1)
r2 ∼U(0,1)
/∗ Recognize, retain or ignore: ∗/
IF (r1 < p1)

Mi+1← increment(si,Mi)
ELSE IF (r2 < p2)

Mi+1← add(si,Mi)
ELSE

Mi+1←Mi

Figure 1: Pseudocode describing the R&R model.

relative probability for a new word type in the ith position
is inversely correlated with the total number of word tokens,
and (iii) a new word type is more probable if it is shorter.
Assumption (ii) does not allow for direct comparison, since
R&R is not a generative model, and therefore it does not pro-
vide a probability for new types —rather, the incorporation
of new types to the memory of the model depends on the re-
tention probability, and it is based on a preference for shorter
sequences (an intuition encoded also in assumption (iii) of the
Bayesian model). As for assumption (i), the same principle
is incorporated in the recognition process in R&R; however,
in our model, the counts of the number of occurrences of a
word is based on the subjective frequencies resulting from
memorization, while in the BLM, these counts are based on
absolute frequencies of the current hypothesis. This reflects
a fundamental difference between the two approaches, which
concerns their level of analysis (Marr, 1982). The Bayesian
model is framed at Marr’s computational level, and thus, it
operates over the whole stimuli, since it does not incorporate
perceptual or memory constraints (although some of the ex-
tensions in Frank et al. (2010) experiment with limitations on
memory capacity, leading to a somewhat hybrid model; we
return to this point later). In other words, the BLM is not pro-
posed as a mechanistic explanation of the cognitive processes
involved in the experiment; on the contrary, R&R is a pro-
cessing model, which postulates that cognitive processes of
retention and recognition, and psychological representations
of exemplar segments are responsible for segmentation.

An existing model that is also pitched at Marr’s process-
ing level is PARSER (Perruchet & Vinter, 1998). PARSER
is a symbolic model, built around basic principles of associa-
tive learning and chunking, that shares many similarities with
R&R. Both PARSER and R&R are exemplar-based models
that build a lexicon of segments (exemplars), and use this
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Figure 2: R&R:The Retention-Recognition Model

lexicon of already-memorized segments to decide on further
segments to memorize. Each segment in the lexicon is stored
together with a score that determines the impact of this seg-
ment in the next steps of the segmentation process. Thus, the
models are similar in their procedure, but there are notable
differences between them. One of them is the probabilistic
nature of their components. For PARSER, the stochasticity is
limited to the random selection of the size of the next segment
to read from the stream. In contrast, R&R considers all pos-
sible subsequences of the stream (up to a maximum length),
as inspired by research in Data-Oriented Parsing tradition
(Scha (1990), Zuidema (2006)). Additionally, the model is
inherently probabilistic in its basic processes of retention and
recognition.

There exist other differences in the procedure of these ap-
proaches. To begin with, the process of retention in R&R
penalizes longest segments, on the basis that they would re-
quire more working memory. However, PARSER is a chunk-
ing model, so it implements the opposite principle: whenever
several segment candidates are possible, it selects those that
are built of the longest units, creating in this way a bias for
larger units. As for the process of recognition, it is implicitly
implemented in PARSER when it maps the next segment to
be read against the units in memory. This process involves a
binary threshold: only units with weight above the threshold
can be recognized as components of the segment (but those
below the threshold are retained). In contrast, the interac-
tion between recognition and retention in R&R is based on a
graded probabilistic choice. Finally, an important difference
between the models is that R&R does not implement any form
of forgetting. Although we do not claim that humans are en-
dowed with perfect memory, our results suggest that forget-
ting does not seem to play a key role in the timecourse of the
experiments.

On the other extreme, at Marr’s implementational level, we
find TRACX (French et al., 2011; French & Cottrell, 2014),
a connectionist proposal that is also based on the recogni-

tion of subsequences. TRACX is an autoencoder model that
learns a representation for the input data. The error of the out-
put layer is computed by comparing it with the input, and it
serves as an indication of the degree of recognition of the in-
put. The model processes the input stream sequentially, main-
taining a context window. After successful recognition of a
segment, the internal representation learned by the network
is used as the context for the next segment to be presented.
In this way, contiguous segments that are successfully recog-
nized are gradually represented as a single chunk, and there-
fore can be recognized as a unit. This approach shares with
R&R the intuition that words are consolidated in memory af-
ter repeated recognition; however, like PARSER, TRACX is
a chunking model, that is, it is oriented to the integration of
syllables in order to build larger fragments. In contrast, in
R&R, words emerge in a process that actually penalizes larger
fragments, as a consequence of consolidated memorization of
statistically salient segments.

To sum up, R&R constitutes a new approach to modelling
segmentation that offers a processing level explanation of the
identification of words in a speech stream, which emerges as
a result of the interplay between probabilistic memory pro-
cesses. We now proceed to validate this model against empir-
ical data.

Fitting R&R to Experimental Data
Experimental Results

Frank et al. investigate how distributional aspects of an arti-
ficial language have an effect on the performance of human
adults in segmentation. Each of their three experiments in-
volves a range of conditions that vary in one particular dimen-
sion: (i) sentence length, (ii) amount of exposure (number of
tokens) and (iii) vocabulary size (number of word types).

The stimuli consists of an auditory sequence of sentences,
each of which is created from a sample of artificial (unexist-
ing) words. The sentences are separated with a silence gap
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of 500 ms, while there is no acoustic nor prosodic cue indi-
cating the separation between words within a sentence. After
the participants have been exposed to a sample of sentences
thus constructed, they participate in a 2-Alternative-Forced-
Choice test (2AFC). The two alternatives in the test consist on
one word from the artificial language (a correctly segmented
sequence), and one “part-word” (a sequence resulting from
incorrect segmentation).

To analyze the results, the mean number of correct choices
is computed across participants in each condition. The curves
formed by these datapoints (ordered by condition value) is
taken as indication of how segmentation performance is af-
fected by the varied dimension. These curves (which are
shown in the continuous line in Figure 3) show that: (i) hu-
man adults have more difficulty in segmenting words when
sentences are longer, presumably because they do not benefit
from the extra cue provided by the silence gaps; (ii) when the
amount of word tokens is varied, more occurrences of words
facilitate the identification of such words, and (iii) the size
of the vocabulary seems to cause lower performance in the
experiment, with an almost-linear inverse relation.

Goodness of fit

The study by Frank et al. evaluates a number of segmen-
tation models in terms of their goodness of fit to the curve
that describes the average performance of the human subjects.
The evaluated models include the ones previously described
(BLM, PARSER, and later, also TRACX, reported in French
et al. (2011)), and four additional approaches, all of them con-
sisting on normative models: Transitional Probabilities (TP),
a Bayesian version of TP (by Frank et al.), Mutual Informa-
tion (MI), and a version of MI model that identifies words
when they exceed a threshold both on MI and raw frequency
counts (MI Clustering, Swingley (2005)).

In order to compare the models, Frank and colleagues con-
vert the output of each model to a metric that can be inter-
preted as behavioural predictions for the 2AFC task. To do
so, they employ the Luce Rule (Luce, 1963). Given a pair of
sequences s1 and s2 in test, the Luce Rule defines the proba-
bility of choosing s1 as can be seen in Equation 3:

P(s1) =
Sub jFreq(s1)

Sub jFreq(s1)+Sub jFreq(s2)
(3)

Once the scores have been transformed to probabilities, the
performance of the models is computed as the mean proba-
bility of choosing the correct item, averaged over participants
and test trials. These datapoints are arranged in a curve in the
same way as with human participants, and the correlation in
the shape of these curves —measured with Pearson’s r— is
taken as an indication of good fit.

Likewise, we run simulations of the three experiments with
R&R, transforming its output (the subjective frequencies)
into test trials with the Luce Rule. We run a search over
the parameter space, in order to find which parameters yield
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(a) Varying sentence length (experiment 1).
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(b) Varying the number of tokens (experiment 2).
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(c) Varying the vocabulary size (experiment 3).

Figure 3: Curve of performance for all conditions in the ex-
periments in Frank et al. (2010).

best correlation with human performance2 3. The best results
are shown in Table 1. As it can be seen, our model outper-

2The only parameter that we keep fixed in our search is µnp =
1.0, since the interpretation of the relative importance of pauses is
clearer if only one of the µ parameter is varied.

3We optimize our parameters on the same data we evaluate the
model on, as seems to have been the case for the models we compare
with. This brings the risk of overfitting, so in the discussion section
we briefly discuss better ways of evaluating models.
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Table 1: Comparison of model results to human performance. The reported metric is Pearson’s r. ∗Experiment 2 was not
reported in French et al. (2011). Therefore, the mean can be taken to be 0.63 (for a Pearson’s r of 0.0 in experiment 2) or 0.945
(averaging only over experiments 1 and 3).

Exp. 1: Exp. 2: Exp. 3:
Sentence Length Amount of tokens Word types Mean

1 Transitional Probabilities 0.84 0.43 -0.99 0.09
2 Mutual Information 0.83 -0.32 -0.99 -0.16
3 MI Clustering 0.11 -0.81 0.29 -0.13
4 PARSER 0.00 0.86 0.00 0.28
5 TRACX 0.92 — 0.97 —∗

6 BLM 0.94 0.89 -0.98 0.28
7 Bayesian TPs 4% data 0.82 0.92 0.96 0.90
8 BLM 4% data 0.88 0.85 0.90 0.87
9 BLM Uniform forgetting (types) 0.95 0.92 0.73 0.86

10 BLM Prop. forgetting (types) 0.88 0.87 0.88 0.87
11 BLM Uniform forgetting (tokens) 0.86 0.82 0.97 0.88
12 R&R 0.98 0.94 0.98 0.97

forms all the other models in the three experiments, with a
parameter setting that is common to the three experiments
(A = 0.008,B = 0.923,D = 0.866, µnp = 1.0, µwp = 0.234).
The curves of the performance of both human adults and
R&R can be see in Figure 3.

When it comes to experiment 1, one possible explanation
for this result is that R&R is the only model that explic-
itly models the effect of the silence gaps. By increasing the
length of sentences while keeping the number of types and
tokens constant, the stimuli necessarily consists of fewer sen-
tences when those are made longer; therefore, the number of
silence gaps also decreases. For this reason, the performance
of R&R declines with longer sentences, since it cannot obtain
the same benefit from exploiting silence gaps. This explana-
tion for the superior performance can be supported by looking
at the values of the µwp parameter: the best fit of the model
requires a low value for this parameter (µwp = 0.234)), so in
the presence of a pause it substantially boosts the otherwise
very small (Aµnp = 0.008) retention probability.

In the second experiment, normative models based on point
estimates (those based on TP and MI) do not offer a good fit
with the data, since those metrics do not benefit from the ac-
cumulation of evidence offered by the increased number of
tokens (contrary to humans). Frank et al. suggest that humans
may be forgetting much of what they hear, which would ex-
plain the increased performance with the number of tokens.
However, the extended versions of the BLM that incorporate
some form of evidence limitation (with input data restricted
to a random 4% sample) or forgetting exhibit mixed results
(rows 8, 9, 10, 11 on table 1). Moreover, these extensions ap-
pear unrealistic from a cognitive perspective (e.g. one of the
extensions forgets a random token when the memory capacity
is full), and additionally, the resulting models are somewhat
difficult to interpret, since after incorporating memory limita-
tions, they are not computational level approaches anymore.

PARSER offers a more intuitive account of forgetting, with
modest correlation with human data; however, this model
has zero correlation in the other experiments. So this pat-
tern of results suggests that a rich-get-richer form of recogni-
tion combined with a process of retention as defined in R&R
seems a more compelling explanation than a process of recog-
nition with forgetting.

Also on experiment 3, the R&R model exhibits the best
correlation with human data, followed closely by TRACX.
Again, normative models show the opposite trend from hu-
mans (rows 1, 2, 3, 6 on table 1), since they do not have any
memory limitations, and thus the effect of increasing vocab-
ulary size only has an effect in the distributional properties
of the stream, which result in less statistically coherent part-
words. This is the case also for PARSER and the BLM. Frank
et al. attribute this failure to the lack of forgetting in the mod-
els, but the same issues we have discussed above apply to
this experiment. Therefore, the more convincing approaches
are TRACX and R&R. But although TRACX naturally re-
produces the human results without forgetting, it is difficult
to interpret what is the component of the model that is re-
sponsible for its success in this experiment. Conversely, R&R
explicitly incorporates a parameter that penalizes recognition
based on the number of memorized types. In line with our
intuitions, the corresponding parameter value for the best fit
amounts to D = 0.86, which results in a relatively large pe-
nalization for recognition4. Therefore, in conditions of high
number of types, humans have an increased difficulty in rec-
ognizing sequences, most likely originating from the process
of matching the input segment to one of the many segments
stored in memory.

4Even though the values that parameter D can take range from
0.0 to 1.0, the number of types stored by R&R grow very rapidly
in our model due to the memorization segments of any length. For
this reason, small values are impracticable, since the probability of
recognizing a segment quickly drops close to zero.
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Discussion
With our model, R&R, we provide a theory of the process of
segmentation based on the interaction of two cognitive mech-
anisms of memorization. We believe that one of the best fea-
tures of our model is its transparency: pitched at the process-
ing level, and with a very simple formalization that involves
clearly identified components, R&R allows for straightfor-
ward interpretation of the results. Even though, for reasons
of space, we have not been able to report a thorough analy-
sis of the behaviour of the model under different parameter
settings, we have shown a glimpse on how these parameters
allow for the identification of the relative importance of each
component.

This study shows that our model can fit 2AFC data on hu-
man adults with a correlation that is at least on par with that
of other models. Even though we consider that the evalua-
tion data and procedure initiated by Frank et al. is one of the
most thorough in the ALL modelling literature, in Alhama et
al. (2015) we argue that averaging the responses over stimuli
classes is likely to mask important differences between other-
wise seemingly equivalent models. The work reported in this
paper is a necessary first step to confirm that R&R is com-
parable to other models, but for future work it is important
to move to evaluating models based on response distributions
over individual test items (albeit our first attempts to evaluate
our model with this procedure are inconclusive), and replace
the Luce choice rule and correlation metric with a more cog-
nitively realistic response model.

Finally, segmentation is a fundamental ability for language
learners, but any segmentation model must at some point be
related to other cognitive mechanisms that operate in natu-
ral and artificial language learning. In Alhama and Zuidema
(2016) we show that the subjective frequencies computed by
R&R have the necessary distributional properties to explain
some of the main results in rule learning in ALL. Future work
may explore how the model relates to other linguistic pro-
cesses (e.g. word learning), so that we can eventually achieve
a complete understanding of how segmentation relates to the
complete picture of language learning.
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