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Many microorganisms produce phosphonates, molecules characterized by stable

carbon-phosphorus bonds that store phosphorus or act as antimicrobials. The role

of phosphonates in the marine biosphere is well characterized but the role of these

molecules in the intestine is poorly understood. Salmonella enterica uses its virulence

factors to influence the host immune response to compete with the host and normal

microflora for nutrients. Salmonella cannot produce phosphonates but encodes the

enzymes to use them suggesting that it is exposed to phosphonates during its life cycle.

The role of phosphonates during enteric salmonellosis is unexplored. We have previously

shown that STM3602, encoding a putative regulator of phosphonate metabolism, is

needed for colonization in calves. Here, we report that the necessity of STM3602 in

colonization of the murine intestine results from multiple factors. STM3602 is needed

for full activation of the type-3 secretion system-1 and for optimal invasion of epithelial

cells. The ∆STM3602 mutant grows poorly in phosphonoacetic acid (PA) as the sole

phosphorus source, but can use 2-aminoethylphosphonate. PhnA, an enzyme required

for PA breakdown, is not controlled by STM3602 suggesting an additional mechanism

for utilization of PA in S. Typhimurium. Finally, the requirement of STM3602 for intestinal

colonization differs depending on the composition of the microflora. Our data suggest

that STM3602 has multiple regulatory targets that are necessary for survival within the

microbial community in the intestine. Determination of the members of the STM3602

regulon may illuminate new pathways needed for colonization of the host.

Keywords: Salmonella, phosphonates, mice, infection, phosphonoacetic acid

INTRODUCTION

In the intestine the microflora and the host vie for nutrients that vary in availability along
the length of the intestine. Salmonella Typhimurium (STm) uses multiple strategies to gain
nutrients and survive in this niche. Non-typhoidal Salmonella, including STm, secrete effectors
via the type 3-secretion system-1 (TTSS-1). The effectors SipA, SopB, SopD, SopA, and SopE2
promote invasion, an influx of inflammatory cells, predominantly neutrophils, and alter the
composition of the microbial flora (Zhang et al., 2002; Raffatellu et al., 2005). STm uses
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the tetrathionate and nitrate, produced in the intestine as a result
of the inflammatory response, as terminal electron acceptors
(Winter et al., 2010; Lopez et al., 2012). In addition, STm uses
host-derived sugars, such as ethanolamine released by microbial
damage in the intestine, as energy sources during inflammation
(Thiennimitr et al., 2011). Metal scavenging through salmochelin
and high-affinity transporters allow STm to acquire essential
nutrients during infection (Raffatellu et al., 2009; Liu et al., 2012).
While these are some essential mechanisms salmonellae use to
acquire nutrients and replicate in the intestine, these mechanisms
may represent only a small fraction of the metabolic potential of
STm in the intestine.

Phosphonates are molecules with stable carbon-phosphorus
bonds. Microorganisms produce these molecules to store
phosphorus during periods of phosphate limitation (Villarreal-
Chiu et al., 2012). In addition to a metabolic utility of
these molecules, some of them have potent antimicrobial
activity, including fosfomycin and fosmidomycin, and may be
produced by microbes as antibiotics (Seto and Kuzuyama, 1999;
Metcalf and van der Donk, 2009). The carbon-phosphorus
bond is produced by coupled enzymes phosphoenolpyruvate
phosphomutase (Ppm) and phosphonopyruvate decarboxylase
(Ppd) to generate phosphonoacetaldehyde that is then converted
to 2-aminoethylphosphonate (2-AEP) by AEP transaminase
(Metcalf and van der Donk, 2009; Villarreal-Chiu et al., 2012).

FIGURE 1 | Salmonella enzymes with a putative role in phosphonate metabolism based on annotation. See text for description. Not included is PhnO

(STM4287), aminoalkylphosphonic acid N-acetyltransferase.

These are the first steps in the production of compounds
containing the stable carbon-phosphorus bond.

Although Salmonella lacks genes for the biosynthesis
of phosphonates, it can utilize these compounds (Jiang
et al., 1995; Errey and Blanchard, 2006). Salmonella has
two loci annotated for degradation of phosphonates via
the phosphonatase pathway, phnABO and phnVUTSRWX
(Jiang et al., 1995). There are four genes annotated for
phosphonate degradation, phnW (STM0431; 2-AEP-pyruvate
aminotransferase), phnX (STM0432; phosphonatase), phnA
(STM4289; phosphonoacetate hydrolase), and phnO (STM4287;
aminoalkylphosphonic acid N-acetyltransferase) (Figure 1; Jiang
et al., 1995; Errey and Blanchard, 2006). The phnVUTSRWX
locus is under the control of the pho regulon and is activated
during phosphate limitation (Jiang et al., 1995). Escherichia coli
degrades phosphonates using the C-P lyase system encoded
within a 14 gene operon (phnCDEFGHIJKLMNO; Metcalf
and Wanner, 1993). Thus, the mechanism for phosphonate
degradation seems to be different between Salmonella and its
close relative.

We previously determined that a mutant lacking STM3602
colonized ligated ileal loops in calves poorly (Elfenbein et al.,
2013). In the calf model, Salmonella Typhimurium is inoculated
into intestinal segments with undisturbed microflora and
promotes a profound neutrophilic inflammatory response (Frost
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et al., 1997; Santos et al., 2002). Salmonellae must compete with
the intestinal microbiota and withstand the host inflammatory
response to survive in this model. Here we report that STM3602
is necessary for colonization of the intestine of mice regardless
of the composition of the microflora. A ∆STM3602 mutant
does not fully activate the TTSS-1 and has reduced epithelial
cell invasion. However, this gene does not influence TTSS-2
expression and intracellular replication. The ∆STM3602 mutant
cannot grow if phosphonoacetic acid (PA) is provided as the
sole source of phosphorus, but is capable of growth in 2-
AEP. Finally, the gene encoding the known enzyme for PA
breakdown, PhnA, does not appear to be under the control
of STM3602, suggesting a different mechanism for utilization
of PA. Our data suggest that STM3602 may contribute to the

regulation of various processes needed for STm to thrive in the
intestine.

MATERIALS AND METHODS

Bacterial Strains and Plasmids
All bacterial strains are derivatives of ATCC 14028s and are
listed in Table 1. Unless stated otherwise, bacteria were grown
in Luria-Bertani (LB) broth or on LB agar supplemented
with the following antibiotics as appropriate: kanamycin (50
mg/L), nalidixic acid (50 mg/L), carbenicillin (100 mg/L),
streptomycin (100 mg/L), or chloramphenicol (20 mg/L).
Mutants were constructed by a modification of the λ–red
recombination technique and antibiotic cassettes were removed

TABLE 1 | Bacterial strains and plasmids.

Strain Genotype Reference or Source

HA420 ATCC14028.s (Spontaneous Nal-R) Bogomolnaya et al., 2008

HA964 14028 ∆SPI-1::cm (Cm-R) Elfenbein et al., 2015

HA697 ∆phoN::str (Str-R) Elfenbein et al., 2013

JE67 HA420 ∆phoN::str (Nal-R, Str-R) Bogomolnaya et al., 2013

HA1473 HA420 ∆STM3602::kan (Kan-R, Nal-R) Elfenbein et al., 2013

HA1474 HA420 ∆STM3602::kan + pWSK29::STM3602 (Kan-R, Nal-R, Amp-R) Elfenbein et al., 2013

JE60 HA420 ∆STM3602::kan + pWSK29 (Kan-R, Nal-R, Amp-R) This study

JE346 HA420 ∆STM3602::frt (Nal-R) This study

JE280 14028 ∆phnA::kan (Kan-R) This study

JE347 HA420 ∆phnA::kan (Kan-R, Nal-R) This study

HA1270 HA420 + pNN387 (Nal-R, Cm-R) Zheng et al., 2013

HA1280 HA420 + pNN387::rpsMp (Nal-R, Cm-R) Zheng et al., 2013

HA1315 HA420 + pNN387::prgHp (Nal-R, Cm-R) Zheng et al., 2013

HA1319 HA420 + pNN387::ssaGp (Nal-R, Cm-R) Zheng et al., 2013

HA1320 HA420 + pNN387::sseJp (Nal-R, Cm-R) Zheng et al., 2013

JE248 HA1473 + pNN387::sseJp (Nal-R, Cm-R) This study

JE249 HA1473 + pNN387::prgHp (Nal-R, Cm-R) This study

JE250 HA1473 + pNN387::rpsMp (Nal-R, Cm-R) This study

JE251 HA1473 + pNN387::ssaGp (Nal-R, Cm-R) This study

JE255 HA1473 + pNN387 (Nal-R, Cm-R) This study

JE169 HA1473 ∆phoN::str (Nal-R, Kan-R, Str-R) This study

JE173 JE169 + pWSK29::STM3602 (Nal-R, Kan-R, Str-R, Amp-R) This study

JE175 JE169 + pWSK29 (Nal-R, Kan-R, Str-R, Amp-R) This study

JE349 HA420 phnA::lacZY (Nal-R, Kan-R) This study

JE351 JE346 phnA::lacZY (Nal-R, Kan-R) This study

JE10.1 HA964 ∆STM3602::kan (Cm-R, Kan-R) This study

Plasmid Description Reference or Source

pWSK29 Cloning vector; AmpR Wang and Kushner, 1991

pWSK29::STM3602 pWSK29::STM3602; AmpR Elfenbein et al., 2013

pCP20 flp recombinase; AmpR Datsenko and Wanner, 2000

pCLF3.1 Template for Cm-R KO PCR product Santiviago et al., 2009

pCLF4.1 Template for Kan-R KO PCR product Santiviago et al., 2009

pKD46 Lambda-red recombinase; AmpR Datsenko and Wanner, 2000

pKG136 pCE36; lacZY transcriptional fusion Ellermeier et al., 2002
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as described (Datsenko and Wanner, 2000; Santiviago et al.,
2009). Chromosomal transcriptional fusions to lacZY were
constructed as described previously (Ellermeier et al., 2002).
All mutations were moved to a clean genetic background
by bacteriophage P22-mediated transduction (Sternberg and
Maurer, 1991).

Mouse Infections
The Texas A&M University and University of California Davis
Institutional Animal Care and Use Committees approved all
animal experiments (approval numbers TAMU 2012-084 and
2011-167; UCD 19001). Mouse experiments were performed
using 10–12 week old female C57BL/6J or CBA/J mice as
indicated (Jackson Laboratories) as previously described (Barthel
et al., 2003).

In the acute murine colitis model, C57BL/6J mice were
administered 20mg streptomycin in 75 µL sterile water by
gavage. Twenty-four hours after treatment, mice were infected
with ∼108 CFU of an equivalent mixture of WT and mutant
bacteria in 100 µL volume by gavage. Feces were collected 24
h after infection. Mice were euthanized 96 h post-infection and
organs harvested, homogenized, serially diluted, and plated on
LB agar with appropriate antibiotics for enumeration of CFU.

In the chronic murine colitis model, CBA/J mice were
administered 20mg streptomycin in 75 µL water or 75 µL sterile
water by gavage. Forty-eight hours after treatment, mice were
infected as above. Feces were collected on the indicated days and
mice euthanized 14 days post-infection. Competitive index was
determined by comparing the ratio of WT to mutant bacteria in
the tissue to that of the inoculum.

Germ-free Swiss Webster mice were bred and housed
under germ-free conditions inside gnotobiotic isolators (Park
Bioservices, LLC). Weekly cultures were grown to monitor the
germ-free status of the mice. For experiments, male and female
6–8-week-old mice were transferred to a biosafety cabinet and
maintained in sterile cages for the duration of the experiment.
Mice were infected with ∼108 CFU of an equivalent mixture
of WT and mutant bacteria in 100 µL volume by gavage. Mice
were euthanized 24 h post-infection, cecal and colon contents
were homogenized, serially diluted, and plated on LB agar with
appropriate antibiotics for enumeration of CFU. The competitive
index was determined by normalizing the ratio of WT to mutant
bacteria in intestinal contents to that of the inoculum.

Invasion Assays
Cell lines were purchased from American Type Culture
Collection (ATCC) and used within 15 passages. HeLa cells
(human cervical adenocarcinoma epithelial, ATCC CCL-2) were
grown as recommended by ATCC. HeLa cells were seeded in
24-well plates at 5× 104 cells/well∼24 h prior to infection.

Invasion assays were performed as previously described
(Ibarra et al., 2010). Late-log phase cultures were prepared by
inoculating 10 ml LB-Miller broth with 0.3 ml overnight culture.
Flasks were grown at 37◦C with aeration for 3 h. Bacteria were
collected by centrifugation at 8,000 × g for 90 s, resuspended
in an equal volume of Hanks’ buffered saline solution (HBSS,
Mediatech) and added directly to mammalian cells seeded in

24-well plates for 10 min. The multiplicity of infection was
∼50:1 (bacteria:eukaryotic cell). Non-internalized bacteria were
removed by aspiration, monolayers washed three times in HBSS
and then incubated in growth media until 30 min post-infection.
Gentamicin was added at 50 µg/ml from 30 to 90 min post-
infection to kill extracellular bacteria and the media was replaced
with media containing 10 µg/ml gentamicin from 90 min post
infection. For enumeration of intracellular bacteria, monolayers
were washed once in phosphate-buffered saline, solubilized in
0.2% (w/v) sodium deoxycholate and serial dilutions were plated
on LB agar.

ß-Galactosidase Assays
For induction of SPI-1 expression, bacterial cells bearing
plasmid constructs were grown overnight in LB with appropriate
antibiotics. Overnight cultures were diluted 1:100 and incubated
at 37◦C with agitation for 3 h. SPI-2 inducing media was used
as described (5 mM KCl, 7.5 mM (NH4)2SO4, 0.5 mM K2SO4, 8
µMMgCl2, 337 µM KH2PO4, 80 mM MES, 0.3% (v/v) glycerol,
0.1% (v/v) casamino acids, pH 5.8) (Coombes et al., 2004). Cells
were grown overnight in SPI-2 inducing media, diluted 1:50, and
incubated for an additional 24 h to evaluate SPI-2 expression. To
evaluate the expression of phnA in the presence of PA, overnight
cultures were diluted 1:100 in LB with 40 mM MOPS at pH 6.8
with the indicated phosphorus source. Cultures were incubated
at 37◦C with agitation for 3 h.

ß-galactosidase activity was determined using standard
methodology (Miller, 1972). Briefly, bacterial cells were pelleted
by centrifugation and resuspended in Z-buffer (60 mM
Na2HPO4, 40 mMNaH2PO4, 10 mMKCl, 1 mMMgSO4, 50 mM
ß-mercaptoethanol). Culture density was determined by OD600.
Bacteria were permeabilized with chloroform and 0.1% (w/v) SDS
prior to addition of substrate (o-nitrophenyl-β-D-galactoside;
ONPG 4 mg/mL). The reactions were performed at 28◦C and
were stopped with 1 M Na2CO3 for determination of OD420

and OD550. β-galactosidase activity (Miller units) was calculated
using the following equation: 1000 × [OD420–(1.75 × OD550)] /
[time× volume× OD600].

Phosphonate Growth
Modifications were made to a phosphorus-limited minimal
medium (Neidhardt et al., 1974) to assess the ability of different
bacterial strains to utilize different phosphorus sources. The final
media composition (MMMM) was as follows: 20 mM NH4Cl,
2.5 mM Na2SO4, 80 mM NaCl, 0.35 mM CaCl2, 20 mM KCl,
40 mM MOPS, 1 mM MgSO4, 0.01 mM FeSO4, 0.2% (w/v)
glucose, pH 6.8. Phosphorus sources were Na2HPO4 (Pi, Sigma),
2-aminoethylphosphonate (2-AEP, Sigma), and phosphonoacetic
acid (PA, Sigma) added at the concentrations indicated. Bacterial
strains were grown overnight at 37◦C with agitation in MMMM
with Na2HPO4 at the indicated concentration. Overnight
cultures were pelleted and pellets were resuspended in an equal
volume MMMM supplemented with the indicated phosphorous
sources. After re-centrifugation and resuspension in the starting
volume or the original culture, bacteria were diluted 1:100 into
fresh MMMM with indicated phosphorus source. Aliquots were
removed, serially diluted, and plated to determine CFU.
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Data Analysis
All data were log transformed prior to analysis. Statistical
significance was determined using Student’s t-test or analysis of
variance with significance set at P < 0.05.

RESULTS

STM3602 in Intestinal Colonization
STM3602 is necessary for STm to colonize the intestine of
calves in ligated ileal loops (Elfenbein et al., 2013). We used
the murine colitis model to further dissect the function of this
gene during infection (Barthel et al., 2003). In this model, mice
are treated with high doses of streptomycin prior to infection
promoting STm colonization and development of a neutrophilic
inflammatory response. We found that the ∆STM3602mutant is
shed in lower numbers than the wild type organism in the feces by
24 h post-infection, and colonizes Peyer’s patches and mesenteric
lymph nodes at lower levels than the wild type organism at 4 days
post-infection (Figure 2). This colonization defect was reversed
by complementation in trans. Colonization of the cecum by the
∆STM3602mutant was highly variable in different mice making
it difficult to determine with statistical confidence whether or
not mutants lacking STM3602 have a colonization defect in
the cecum. Regardless, our results are consistent with previous
data suggesting a requirement of STM3602 in colonization

FIGURE 2 | During acute colitis, the ∆STM3602 mutant colonizes the

murine Peyer’s patches and mesenteric lymph nodes poorly. Ten

C57BL/6 mice were treated with streptomycin (20 mg) then infected with

∼108 CFU of an equivalent mixture of WT (JE67) and ∆STM3602 mutant

bearing an empty plasmid (JE175) or complementing plasmid (JE173) 24-h

after antibiotic treatment. Feces (F) were collected 24 h after infection and

mice were euthanized 96-h post-infection for collection of Peyer’s patches

(PP), mesenteric lymph nodes (MLN), and cecum (C). The competitive index

(CI) was determined by comparing the ratio of WT to mutant in the tissue to

that of the inoculum. Each data point represents a single mouse with median

and interquartile range indicated by horizontal bars. Statistical significance was

determined by Student’s t-test, and is indicated by an asterisk (*), and

statistically significant differences between groups is indicated by two asterisks

(**) with P < 0.05.

of the intestine in the presence of a profound neutrophilic
inflammatory response.

STM3602 and SPI-1 Regulation
Salmonellae possess two type-3 secretion systems, encoded by
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). The
TTSS-1 and its associated effectors are essential for invasion of
non-phagocytic epithelial cells and penetration of the intestinal
epithelium (Zhang et al., 2002; Raffatellu et al., 2005). The TTSS-2
is needed for maintenance of the Salmonella-containing vacuole
and intracellular replication (Figueira and Holden, 2012). We
hypothesized that the intestinal colonization defect of∆STM3602
mutants could be due to reduced expression of TTSS-1.

We used plasmids containing lacZY under the control of
promoters of genes on SPI-1 or SPI-2 to determine whether
deletion of STM3602 resulted in an effect on activation of these
promoters (Zheng et al., 2013). Using a plasmid containing
lacZY under the control of the prgH promoter (a TTSS-1
structural gene), we found that the prgH promoter is activated
less efficiently in SPI-1 inducing conditions in bacteria lacking
STM3602 than in the WT (Figure 3A). Consistent with this
result, deletion of STM3602 also results in a similar reduction in
invasion in cultured epithelial cells (Figure 3B). Conversely, the
∆STM3602 mutant is capable of activation of TTSS-2 apparatus
(ssaG) and effector promoters (sseJ; Figure 3C) as well as survival
within cultured epithelial cells to the same level as the wild type
(Figure 3D). These results suggest that STM3602 plays a role in
the complex regulatory network of the TTSS-1.

Growth in Phosphonoacetate as Sole
Phosphorus Source
STM3602 belongs to the GntR family of transcriptional regulators
and is a part of the PhnR clade (Marchler-Bauer et al., 2015).
This gene shares 29.2% sequence similarity and 45.1% amino
acid identity with PhnR (STM0430; Sievers et al., 2011). We
hypothesized that STM3602 might regulate one or both of
the phosphonate utilization loci in STm. We characterized
the survival and growth of the ∆STM3602 mutant in media
containing either 2-AEP or PA as the sole phosphorus source.
When strains were grown in the presence of 5 mM PA, the
∆STM3602 mutant replicated poorly (Figure 4A). However, this
mutant grows normally in 5 mM 2-AEP or Pi (Figures 4B,C)
as sole phosphorus sources. PA is degraded to acetate and
inorganic phosphate (Figure 1). One possible explanation for
the phenotype of the ∆STM3602 mutant in PA-containing
medium is that this mutant may be unable to utilize or excrete
acetate. However, the ∆STM3602mutant exhibits similar growth
kinetics to WT in the presence of both 5 mM acetate and 5
mM Pi (Figure 4D) suggesting a mechanism specific to use
of PA. Overall, these data suggest a role for STM3602 in
phosphonoacetate utilization.

Next, we determined the growth kinetics of the ∆STM3602
mutant in media with 5 mM PA after phosphorus deprivation.
When bacteria were grown in phosphorus-limiting conditions
(0.5 mM Pi) and transferred to media containing 10 times
more phosphorus in the form of PA, the ∆STM3602
mutant lost viability over the course of the 6-h experiment
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FIGURE 3 | The ∆STM3602 mutant has reduced invasion efficiency into cultured epithelial cells due to poor activation of SPI-1. (A) Activation of a

terminal SPI-1 promoter (prgHp-lacZY ) in SPI-1 inducing conditions as determined by ß-galactosidase activity. (B) Invasion efficiency of ∆STM3602 (JE60) and

complemented ∆STM3602 (HA1474) mutants into HeLa epithelial cell monolayers normalized to the efficiency of the WT (HA420) at 1 h post-infection. (C) Activation

of two SPI-2 terminal promoters (sseJp-lacZY and ssaGp-lacZY ) in SPI-2-inducing conditions as determined by ß-galactosidase activity. (D) Fold-replication of

∆STM3602 and complemented ∆STM3602 mutants in HeLa cells; 7 h post-infection/1 h post-infection normalized to WT fold-replication. Bars represent the mean ±

SD. Assays were performed on three separate occasions. Statistical significance (*) was determined by Student’s t-test with P < 0.05.

(Figure 5). A mutant deleted for phnA, a gene that encodes the
phosphonoacetate hydrolase, had growth kinetics similar to the
WT in these conditions (Figure 5). These results suggest that
STM3602 is needed for activation of pathways necessary for
growth in the presence of PA and that there is a pathway for
metabolism of this compound that operates independently of
phnA.

Expression of phnA
The ∆STM3602 mutant grows poorly in the presence of PA.
We hypothesized that STM3602 regulates the phnABO operon
because the annotation of phnA suggests that PhnA may degrade
PA. In order to test this hypothesis, we generated a mutant strain
bearing a lacZY fusion to the first 10 amino acids of phnA to
monitor transcription from the native phnA promoter. Using
this construct, we found that in rich media the expression of the
phnA promoter was not affected by the addition of PA at varying
concentrations (Figure 6). In addition, deletion of STM3602 did
not affect the expression of phnA in these conditions during
log phase growth (Figure 6), a condition where STM3602 is
expressed (Kroger et al., 2013). These data suggest that STM3602
does not regulate phnA in rich medium in the presence or
absence of PA.

Impact of Microbiota on ∆STM3602

Intestinal Colonization
The first phosphonate to be discovered, 2-AEP is present in
both ruminal and duodenal contents of sheep (Ankrah et al.,
1989). This compound is associated with ruminal protozoal and
bacterial populations and is less abundant in defaunated animals
compared with those with a normal microbial composition.
Phosphonoacetic acid is one product of 2-AEP metabolism
mediated by the enzyme PhnY, phosphonoacetaldehyde oxidase
(Agarwal et al., 2014). Although salmonellae lack a gene
with this annotated function, phyla found in the murine
intestinal microflora including Cyanobacteria, Proteobacteria
and Firmicutes encode genes to produce PA from 2-AEP (Stecher
et al., 2007; Martinez et al., 2010; Villarreal-Chiu et al., 2012).

We hypothesized that the colonization defect of the
∆STM3602 mutant might correlate with microbial colonization
of the host intestine. We used the chronic carriage mouse
model to determine the longer-term kinetics of the colonization
defect of this mutant. In streptomycin pre-treated mice
(altered microbiota) in competitive infection with the WT, the
∆STM3602 mutant failed to colonize the intestine beginning
very early at 1-day post-infection. In animals with an intact
microbiota (no streptomycin pretreatment) the colonization
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FIGURE 4 | STM3602 is required for adequate growth with phosphonoacetic acid as a sole phosphorus source. (A–D) Growth curve of WT (HA420) and

∆STM3602 (HA1473) in a minimal medium supplemented with 5 mM PA (A), 2-AEP (B), Pi (C) and 5 mM sodium acetate with 5 mM Pi (D). Bacteria were grown

overnight in MMMM with 5 mM Pi then diluted 1:100 into media with the indicated phosphorus and/or carbon additions. CFU were determined every 2 h on three

independent occasions. Data points represent mean ± SEM. CFU data were log transformed and statistical significance determined by ANOVA. Asterisk (*) indicates

significant difference between ∆STM3602 and WT with P < 0.05.

defect of the ∆STM3602 mutant took longer to develop
becoming apparent at 5 days post infection (Figure 7A). Thus,
the colonization defect of the ∆STM3602 mutant occurs much
earlier in animals with disrupted microbiota than with intact
microbiota.

One possible explanation for the reduced ability of the
∆STM3602 mutant to colonize the murine intestine is due to
reduced expression of the TTSS-1 (Figures 3A,B). To rule out
this possibility, we performed a competitive infection experiment
in a ∆SPI-1 genetic background (∆SPI-1 mutant vs. ∆SPI-
1∆STM3602 double mutant). In these experiments, the double
∆SPI-1∆STM3602 mutant colonizes the intestine poorly on the
first day post-infection in animals regardless of whether the
intestinal microflora were intact or disrupted (Figure 7B). The
phenotype of the ∆STM3602 mutant was significantly stronger
10 days post-infection in the animals that began with disrupted
microflora. These data suggest that the observed colonization
defects are unlikely to be due solely to poor activity of the TTSS-1
but more likely a result of inability to compete in the intestine.

Finally, we evaluated the fitness of the ∆STM3602 mutant
using competitive infections in germ-free mice to eliminate any
effects of microbiota on colonization efficiency of the∆STM3602

FIGURE 5 | Growth in PA as a sole phosphorous source requires

STM3602 but not phnA. Bacterial strains were grown overnight in 0.5 mM Pi

and diluted 1:100 into media with 5 mM PA. CFU were determined hourly. CFU

data were log transformed and statistical significance determined by ANOVA.

(*) indicates significant difference between ∆STM3602 and WT with P < 0.05.

mutant. In the germ free murine model, the ∆STM3602 mutant
exhibited a small but significant colonization defect in the cecal
contents in theWT and∆SPI-1 genetic backgrounds (Figure 7C)
but only a significant colonization defect in the colon contents
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FIGURE 6 | Deletion of STM3602 does not affect phnA expression. The

expression of phnA::lacZY was determined in log phase cultures in rich

medium by measuring ß-galactosidase activity in both the WT (black bars,

JE349) and ∆STM3602 mutant (white bars, JE351) backgrounds. Bars

represent the mean ± SEM of 3 independent experiments.

in the ∆SPI-1 genetic background. Taken together, these data
suggest that STM3602 is required for colonization of the murine
intestine regardless of the host inflammatory response or the
microbial composition of the intestine.

DISCUSSION

We report that the putative GntR family regulator STM3602 is
necessary for colonization of the murine intestine, consistent
with the reduced ability of this mutant to colonize the bovine
intestine (Elfenbein et al., 2013). Two possible mechanisms for
these colonization defects are: (1) a role for STM3602 in the
activation of the TTSS-1 and/or (2) a role in use of the microbial-
derived product, phosphonoacetic acid. Our data are consistent
with a regulatory role of STM3602 in modulating STm virulence
and use in the intestine of the infected animal.

2-AEP was the first phosphonate discovered (Horiguchi and
Kandatsu, 1959). This compound is found in low amounts in
feed and is associated with bacterial and protozoan populations
within the intestine (Ankrah et al., 1989). 2-AEP is also found
in mammalian tissues likely from assimilation from microbial
and feed sources because mammals lack the enzymes to produce
such molecules (Shimizu et al., 1965; Alhadeff and Daves, 1971;
Metcalf and van der Donk, 2009). Numerous marine bacterial
phyla contain genes for the biosynthesis and degradation
of phosphonates (Villarreal-Chiu et al., 2012). However, the
production of phosphonates by microbes is not restricted to
the marine biosphere. The leading bacterial phyla containing
phosphonate biosynthetic genes from mammalian and bird
microbiome metagenomes are Firmicutes, Proteobacteria, and
Bacteroidetes (Yu et al., 2013). These phyla are abundant in the
murine cecum, although their relative abundance is substantially
altered following streptomycin treatment (Stecher et al., 2007).

A mutant in ∆STM3602 has both a colonization defect in
the intestine of mammals and fails to utilize phosphonoacetic
acid as a sole phosphorus source. The relationship between these
phenotypes remains unclear. We and others have previously
shown that a ∆STM3602 mutant is defective for intestinal

FIGURE 7 | The colonization defect of the ∆STM3602 mutant is

independent of the host inflammatory response and microbial

composition. (A,B) Ten CBA/J mice were treated with streptomycin (20 mg;

closed circles) or an equivalent volume of sterile water (open squares) and

infected 48 h later with ∼108 CFU of an equivalent mixture of (A) WT (HA420)

and ∆STM3602 mutant (HA1473) or (B) ∆SPI-1 (HA964) and ∆SPI-1

∆STM3602 (JE10.1) mutant by gavage. Feces were collected on the indicated

days. (C) Nine germ free Swiss Webster mice were infected with 108 CFU of

an equivalent mixture of WT and ∆STM3602 mutant (closed circles) or ∆SPI-1

and ∆SPI-1 ∆STM3602 mutant (open squares) by gavage. Animals were

sacrificed 1 day post-infection and bacterial numbers enumerated from cecal

and colon contents. Significant difference in CI (WT/mutant) is indicated by an

asterisk (*) and difference between groups is indicated by two asterisks (**)

with P < 0.05. Analyses for statistical significance determined as in Figure 2.

colonization of calves and pigs (Carnell et al., 2007; Elfenbein
et al., 2013). Here we found that the ∆STM3602 mutant also
poorly colonizes the intestine of mice. This colonization defect
persists regardless of the character of intestinal microbiota, and
is also present both in the presence and absence of TTSS-1
induced inflammation. Thus, the host may act as a source of
phosphonates, having absorbed them from the microflora or feed
sources and incorporated them into phosphonolipids (Shimizu
et al., 1965; Alhadeff and Daves, 1971). Further studies evaluating
the phosphonate content of intestinal fluid and tissue in animals
will be very informative.

The only gene in the STm genome with putative function
to catalyze the conversion of phosphonoacetate to inorganic
phosphate and acetate is phnA. No studies have evaluated the
regulation of phnABO. Our data suggest that phnA is expressed
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at low levels in rich medium and that the expression of phnA
is not induced in the presence of PA nor is it required for
growth with PA as a sole phosphorus source. Our data also
suggest that the expression of phnA is not affected by deletion
of STM3602. We measured phnA expression during log phase
growth, a time when STM3602 is expressed (Kroger et al.,
2013). The phosphorus content of LB broth is undefined, and
it is possible that the expression profile of phnA would differ
in the defined media in the presence of different phosphorus
sources. The ∆STM3602 mutant is unable to utilize PA as a
sole phosphorus source but the ∆phnA mutant can. One reason
may be that the ∆STM3602mutant fails to activate a transporter
for PA. While this would explain the lack of growth in the
∆STM3602 mutant, it does not explain the finding that the
∆phnA mutant grows with WT efficiency with PA as a sole
phosphorous source. This finding suggests that there may be
an additional mechanism for catalysis of PA encoded elsewhere
in the genome that is likely under the regulatory control of
STM3602.

STM3602 is a member of the GntR family of regulators,
characterized by N-terminal DNA-binding domains and variable
C-terminal small ligand binding domains (Haydon and Guest,
1991; Gorelik et al., 2006). The crystal structure of PhnF of both
E. coli and M. smegmatis, a regulator of the C-P lyase pathway
for phosphonate catalysis and member of the GntR family of
regulators has been solved and a small molecule ligand has been
modeled into a binding site although the actual ligand remains
unknown (Gorelik et al., 2006; Gebhard et al., 2014). STM3602
shares a conserved domain with PhnF, but has only 23.4% amino
acid identity across the entire protein. Salmonella lacks the gene
phnF but has a putative regulator of phosphonate utilization,
phnR (STM0430). STM3602 has 45.1% amino acid identity with
PhnR (Sievers et al. 2011). The GC content of STM3602 and
phnR differ substantially (49 and 59%, respectively), consistent
with recent acquisition of STM3602 likely with a mechanism
independent of the function of phnR.

Non-typhoidal Salmonella use the TTSS-1 to invade normally
non-phagocytic intestinal epithelial cells and induce a strong
neutrophilic inflammatory response (Tsolis et al., 1999; Zhang
et al., 2002; Raffatellu et al., 2005). The central importance of
this pathogenicity island is illustrated by the fact that salmonellae
lacking a functional TTSS-1 are avirulent in calf, pig, and
mouse models of infection (Tsolis et al., 1999; Zhang et al.,
2002; Barthel et al., 2003; Coombes et al., 2005). The regulatory
network controlling the expression of the TTSS-1 is intricate.
Transcriptional regulation is carefully controlled by regulatory
proteins encoded both within SPI-1 and located elsewhere
on the chromosome (Ong et al., 2010). The master regulator
of the TTSS-1, hilA, is encoded within SPI-1 and integrates
regulatory input from numerous sources to activate operons
necessary for the production of protein components of the
TTSS-1 and its associated effectors (reviewed in Ellermeier and
Slauch, 2007). We have shown a minor role for STM3602 in the
regulation of SPI-1 and invasion of tissue cultured epithelial cells.

However, a∆STM3602∆SPI-1 double mutant was more severely
compromised for colonization of the murine intestine than a
mutant lacking only SPI-1 (Figure 7). This finding suggests that

STM3602 plays a role in intestinal colonization that is not fully
explained by inadequate activation of SPI-1. However, the role of
STM3602 in regulation of SPI-1 remains an interesting area of
further study to contribute to the breadth of knowledge on this
essential virulence mechanism.

The genes neighboring STM3602 have recently been described
as important for utilization of fructose-asparagine during
colonization of the mouse intestine (Ali et al., 2014; Sabag-
Daigle et al., 2016). These genes (STM3602-STM3598; fraRBDAE)
share a similar GC content (47.7–51.3%) so were likely acquired
together. However, it is unclear whether these genes are co-
transcribed from the same promoter or whether they function
in the same genetic pathway. The colonization defect of
the ∆STM3601 mutant compared with its isogenic WT is
substantially greater than that of the ∆STM3602 mutant after 1
day infection in germ-free animals (Figure 7C), suggesting that
these genes may not operate in the same genetic pathway (Ali
et al., 2014). Further studies are needed to determine whether
these genes belong to an operon or have shared functions during
infection.

We have confirmed that STM3602 is needed for colonization
of the mammalian intestine. We report that a deletion mutant
lacking STM3602 grows poorly with PA as a sole phosphorus
source and that STM3602 has no effect on the expression of
phnA, the enzyme annotated for utilization of this compound.
Finally, we show that STM3602 plays a minor role in the
regulation of the TTSS-1. Phosphonates are compounds that
are produced by microorganisms and have been identified in
the intestine of mammals as a result of microbial colonization.
Further, studies evaluating the role of STM3602 in co-culture
with microorganisms known to produce diverse phosphonates
will elucidate the full complement of compounds to which
this regulator responds. In addition, definition of the STM3602
regulon may elucidate novel mechanisms for phosphonate
transport or utilization in the large complement of genes of
unknown function scattered within the genome of STm.
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