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AN EFFECT OF THE EXISTENCE OF AN ELEMENTARY
*
QUARK ON HIGH ENERGY SCATTERING t
Stuart D. Anderson '
Iawrence Radiation laboratory
University of California
- Berkeley, California

May 17, 1968

ABSTRACT

An elementary quark, if supposed to exist and to couple in
quark-antiquark pairs to ordinary tWo-particle channels, giﬁes rise
to a Regge trajectory which would dominate high enérgy scattering at
lagge momentum transfer. A simple model theory emquying these features
is presented. Specifically, the model assumes & single scalar-scalar
pair to represeht the ordinary two-particle channel which is observed,
coupled to a spinor-spinor channel of large mass, and simple pole-type
potentials approximated in the effective range method. The Regge tra-
Jectory and sﬁbtraction generated by this coupling are computed, and
arguments given concerning their contribution to the cross section.
Comparison with proton-proton scattering suggests thatvif such an
elementary particle exists, its mass must be greater than about blb.

GeV.
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I. INTRODUCTION AND OUTLINE

Attempts to verify the existence of the quark by its external
production in high energy collisions have to date not met with success’.l
This paper suggests an idea, exemplified here in a simple model, where-
by the existence of a massive quark, at least as an iqternal particle
in a coliision process, might be made observable. This idea takés its
roots in the study of the asymptotic behafiﬁr, as generated by the
leading'Regge singularities of the amplitude; of the scattering of
"ordinary" particles (having integral baryonic and electric charge).
It is possible that the concept of the d;ementary quark may be confirmed
and better defined should this idea prove useful in.explaining ordinary
scattéring experiments in this high energy region.

Let us consider a Scattering amplitudé whoSe leading Regge
tragebuorleo fall below angular momentum J = O for.the_neéative of the
squared momentum transfer, t;’ less than some glven (negaulve) t(O)

the amplitude will thus fall asymptotically to zero for large values

‘of the squared energy s. This is apparently an adequate description

of a system of "ordiﬁary"vcomposite varticles. The same is true .of such
Lo which aré coupled eleméntary rarticles of infinite mass,
the in?inity of the mass effectively negating the coﬁpiing. If; hoﬁever;
the mass is finitse, coupling té‘the_eiementary varticle channel is

efTected, and there appears & new Rezge pole which alters this description.
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Let us assume these elementary particles to be our ideal of elementarity:

1
:5’

the quarks, conforming to the fundamental spin representation, J
and to the fundamental unifary spin representation {2}, thus coupling

in gquark-antiquark pairs to ordinary particle channels. We continue

to assﬁme, as the production experiments and the nonrélativistic models
suggest, that the quark mass is:quite large.

There is a criﬁical difference of character between this new
type of trajectdry; generated by the introduction of elementary particles,
ahd that typevﬁhich is:already familiar in high energy scattering, and
it is this difference which forms the basis of the idea of this work.

The fa&iliar Regge poles fall below J = O for -t large enough-perhaps
théy fall iﬁdefinitelyg-whereas this new type of trajectory is bounded
from below by J = 8 + S, - i, where sl and s2 are the spins

of thevélementary particles; i.é., Jd = 0 for the quark pair. Why

this is so will be arguéd immediately below, but the consequence is that
the nev trajectory is the dominant one and perhaps can be seen as actually
dominating-its strength or residue being here the point of attention-

for energy and momentum transfer large énngh. If the behavior of
experimental cross sections can be seen to conform with predictions
generated by this new trajectory's presence, properties of the elemen-

tary particles, the quarks, in particular the mass, can be obtained.

If such modification of present Regge theory is not necessary to obtain
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conformity at the energies and_@omentum.transfers now attainable, we
can at least place a lower bound on that mass.

The reason for this difference between the two types
of trajectéry is, of>course, bound to. the divergént concepts of the
elementary and fhe composite particle; The presence of a pair of
eleméntary particleé gives rise to a term in the.partial wave amplitude

proportional to the Kronecker delta & where n 1is a

- s
sl+s2 n,dJ

pésitiveb.integer.3 To see this, we_first note that;-for Jd a given
(half-) integral angularimoﬁentum, stateé having helicity [M| = J,

called sense states, are physical states at this J, whereas states hav-
ing IMI >J, nonsense'states, are unphysical there. In continuing |
from high J where ali states are physical, sense states, we first
encounter such unph&sical nonsénée states at the (half-)integer

J=s +s, -1 an& subsequently at'all (half-) integers J = s, * 8, - M
the nonsense (half-)integers. At these values of J +the problem of

the physical amplitude merely‘omits such states from consideration, via
the Kronecker delta, whereas that of the Regge amplitude, continued to
this J value, retains them. A difference between the two solutions

is ensured by the Regge continuation's having fictatious eleme'ntary '
particles (the ¢.D.D. poles) replaéing the nonsense states, which are

not at all present in the physical partial wave. An immediate conse-

quence of the existence of these Kronecker delta singularities is a
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"hardening" of the asymptétic behavior, the requirement of a subtraction
when = + s2 -120. Out of such a singularity mpves a Regge
trajectory-of this/new type-as the coupling to the channél is turned

on, approaching as 't - o the nonsense (half-)integer from which

it emerges, and in the simplest case bounded below b& it.

Particles composite in nature will not display such singular-
ities. When a particle can be treated as composite, the Kronecker sin-
gularity vanishes in the same way that Mandelstam showed the Amati-
Fubini-Stanghellini anomalous cuts to vanish. Thus no subtractions are
required if no particles ihteracting in a system are elementary, and
the ésymptotic behavior is softened. Any Regge poles which exist are
not bound below and we have the.familiar nearly linear trajecﬁories well
known in high'energy physics. vBut just how to treat an externél particle
as a compostie one is hot known. Thus in present theoretical schemes,

a scalar-scalar theory has_a single subtraction and a pole rising from

Jd =0. So in the‘model tovbevpreseﬁted here, we have éhosen to work

with a scalar~scalar theory, one ndt well realized in practice, buf one

" having its leading trajectory falling through J = 0, if only to J = -1.
Had we attempted to warkwith a ﬁheory of a pair of ordinary spinors
comparable with the experimentally well known nucleon-nucleon scattering,
already there would be a pole covering the one of particular interest,

that new one derived from the coupling of this channel to the quark -
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antiquark_spinof pair, which riseé ffom and remains near to J = O.

In Sectionbli we wili carry out the procedures of calculation
entailed in a model which exhibits the above features. This model and
those procedures are briefly outlined in the following. We take as
our only "ordinary'" particle channel in the scattering a pair of
scalars-because of the difficulty mentioned above-of equal mass, rétaining
only a minimum.number of parameters in this naive model. These are to
. be coupled to é quark-antiquark fair, represented by much heavier spin
one-half particles in two helicity channels. Simple potentials are‘
chosen and approximated by an effective-range type method. The N over
D method, which now reduces from integral equations to numerical
eqpations, is used to obtain the partial wa&e amplitude, whose poles
in J, ai(t), and reduced residue; in the ordinary particle channels,.
7i(t), are found. Returning to the scattering amplitude by a Sommerfeld-
Watson transformaﬁion, we obtain the large-energy amplitude and cross
section in the crossed (s) channél. In the concluding part of Section
' iI, the subtraction term is discussed. Finally, in Section TIT, compafison
of the behavior-of this imaginedvscalgr pair scattering with experimental
nucleon-nucleon scattering, forvexample, places an order of magnitude

_lower limit on the mass of the quark.
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IT. THE MODEL
In the first part of this section, we will set up the problem,
proceed through to the solution of the N over D equations in the
t channel, and comment briefly on the Sommerfeld-Watson transformation.
In the second, wevshall find the equations describing.the t channel
poles, and their residues and cohtributions to the asymptotic s-channel

amplitude. In the third, the subtraction term will be discussed.

A. N Over D Solutidn

1. Unitarity, the Right-Hand Cut

To begin, we write down the t channel unitarity equation for

the amplitﬁde, M, normalized appropriately:

Moy - M f2
ST = ZI%MZC _&T@[t'(Mcl““Mce)z] Mea 7
: (6]

()7 ca
(24.1)
in terms of which the cross section is
‘ g2
dcba _ EE Mba (2A.2)
o P, | E ’ )

Mosﬁ notations are the customary ones. The particle channels in the
problem to be considered are three: |

1) a pair of "ordinary" particles which in the model are likened
fo two piong, having no spin, mass p, and three-momentum g, but which
are to be compared in the final analysis with some pafticles whose

scattering is better known, for instance,. the nucleons; and
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2) a hélicity zero state, and
3) a helicity one state, of a pair of spin one-half antiparticle
conjugates of mass M and three-momentum p which are treated as
nucleon-antinﬁclebn in the model and which are finally comparable with
 the very heavy quarks. |
We are cbncerenéd here only with the dynamical aspects of the model;
no isotopic épih (or unitafy spin) COnsideratiéns are put forward.’ |

The angular momen tum projection of M 1in helicity states is

1

: J
!; _dz dxa%'b(e) Mba(t, z) - (24.3)

el

méa =

For spinless particles, the factors needed to remove threshold kine-

matic singularities are well known:

. ' m ’ .
J S R 1 2 -J-1 5
R R E'/ ds(q”) QJ(l +;;§> o, g -
(o]

(2a.4)
For spinless particles, further kinematic singularities must be
« removed. From Frazer and Fulco we findu
g 2f 2 M 1
my <3 { P~ Ar + 5o (pA)[(J + 1) By, - J,BJ_lJ} (2A.5a)
- and

oj-

ny = Ee0 Bl e, o) (21.50)
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Note that certain linear combinations of these amplitudes are those of
defined parity and orbital angular momentum, not these quantities them-
selves. Writing aj = (pq)_JAJ, etc., for the projected invariant

amplitudes with threshold kinematics removed, we see that

2
my Y = ﬁ(Pq)-Jﬁél = 2{;%’ &y * 53‘%71[(J * l>(pq)2bJ+l_ JbJ'lj}
(2A.6a)
and
1
‘Y o Rpg) T md - o LD °
m, " = =(pa) My = 2>y T [oyy - (#2)7 By

' (28.6p)

are free of kinematic singularities, and that ih terms of these ampli-
tudes the unitarity equatidn becomes an equation of the discontinuity

across the right-hand cut:

J+ J- ' o '
"oa Ppag, Jx J _ JT -1 J
2i - e - Pe Mg, 2 ©F [m ]R = 7P ’
¢ (2a.72)
where ch is a diagonal matrix with elements
' 2J+1 : 2J-1 S
1 2 2, M
(D P :95) = [g_ﬁ—— Q(t - MH ), -_Eﬁ—f— G(t '_hM?)) *t
ng'l Eo(t - uNF)J (2A.70)
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2. The Potential, the Left-Hand Cut

The potential is chosen in the usual simplistic fashion:
double-spectral contributions are ignored, and only the poles are saved

(see Fig. 1):

Doyl = (@) x8(s - W) (2.8a)

[B] = (g')2 78(s -M2) . | (2A.8b)

S

We have éssumed a sdalar type,of coupling for the imaginéd pions, with
coupling constant gu (u inserted for conﬁenience). In the coupling
of the spin one-half particles to the spinless one, we assumé that the
coﬁpling constant -g' defined in analogy with that of nucleons to the
pion remains of order MQ =1 as the mass M Dbecomes large; how to
modify this assumption for other behavior in this mass parameter is
obvious. It is also quite easy to:modify the assumption made in_thé
interest df economy of parameters that the masses of the exchanged
particles are the same as those of the external "pion" and "nucleon."
The corresponding integrals over the'left-hand_cuts,the'
potential in the N over D method, are therefore |

m. 7 = 20T a2 (24.92)
L . N

m,”) = & 200 =) o ~ (2A.9b)
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and
J 2 1 -J 2 1

{ ), = -8 % ——————— (pa) ° (2" - 1) Q. (=) (2A.9c)

mBl L ) [J(T + 1) ]2 J o2 .
where

. 2 2 2
z = 1+BE— ana gz = B3 7 /S (2A.94d)
7 2q2 2pg

Now each part bethe potential is approximated by a pole, a
familiar scheme called thé effective range approximétion. The method
we have chosen in-fo.find_the position and residue of the pole for all
J by fitting at the channel 1 threshold (q2 - 0) to the value and deriva-

tive of the original form. For example:

Original Form Approximating Form
1 2, 2,-J-1 : a
) B (q ) Q;J(Zﬂ) . : t - ta
R | v
()20 2 WA HIr e
(T +,2) , s - t,
a_ ‘ 1 ,2-3 (3 +1) / J+1 . a ‘
32 ) lg2o0 5 W) > (C—=%) - —s 3
| - r(@+%) .~ 2u (b= - t,)
o
So we have that
1 2, 2,-J-1
51 (a7) ez )
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is approximated by

1
22 (g +1) . & ., 1
+

2yd-1 3, J+1 20 _ z
(D) " r@@ + %) hp (- 1+ 55

2

where Xx = t/hpg. The other parts of the potential are approximated in
a similar fashion.

In summary, we have approximated the potential by

a 100 a 001
{mJ]L = V(t) G L_{ 000 )+ t 1oo ——41—- ooo
1.\000 000 1oo

5 a V
G }: - (2A.10a)
. 1::1 .
where
22f1 @ r(J +1) )
G = Lu'g 5 5% 3 5 (2A.10D)
r(J + 2)
5 by % 2J + 1
& = Fr1l ¥ T AHQ = l-75T - 2(7 + 1)
(2A.10c)
, 3 )
L (?i_:f (:2 + 3 A
- )
2 & (T+1)T +2) + (J2 - Q)xg
', HEIDS |
X2 = —2 = 1L - ) 5 (EA‘lOd)

(3 + 1) +2) + (3° - 2)
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and ’
i 2 1 “
8 J[J+l+(3J+5)>\.] .
¢ 243078
x, = 25 =1 - <2 ) = (2A.10¢)
3 by ' JT+ 1+ (357 +5)2\7]

and where )\ = u/M is the anticipatedly small ratio of the masses.

3. N Over D Solution
We héve now discussed the quantities which are to be put into
the N over D method for m’: Egs. (2A.7), (2A.10), where

mJ = ND_l; The primary purpose in approximating the potential terms

by poles is that the integral equation for N now;reduces to a numerical

:equation. Tnserting Eq. (2A.10a) into this equation for N,

N(t) = v(t) + z J/'dt' vt ) - (t) o(t') N(+') 5 (2a.11)

R t'

we may write the solution

' ¥ al v
N(t) = G Z r— (2A.11a)
i=1 '
Y
with the numerical system of equations for the matrices vi 3
-
» 3 3
vi = Vg 1 - E: pijajvj - or 2: (613 lleaJ)v = Vi .
=1 3=1
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This is a system of 3 x 3 matrices in the pole index, the elements of
which are 3 x 3 in the channel number. We define here a matrix whose

o : symmetrical elements in the pole subscript space are

Pig = %[dt' : p(tv').‘ '
R (t - ti)(t - tj).

k (" - t,) -ty Py TPy
= T z T. = % - t.
i J i J
(PA.13%a)

whose diagonal elements in the channel number space are

0 o _ 0 a
a ' i J :
. - = 0 . o ——— 2A.13%3b
(le)aB B le : 075} ti - tj ’ ( 5 )

where

' . Oyt

Note that in the numbers pija or p.a

i s the subscripts denote the

index of the approximating pole and the superscripts, the chahnel

o number. Ixplicitly these quantities are

- . 2

1 2 g i1 . 2.
Py = =hp Y Tin g F(L, =J; %, Xi) B v _(2A.lha)
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2 -
2 2g° x -2J<T 7 ) 3, .2
pi = + I‘H-l 7 Sin JTJ >\- 3-+—_é_.- F(l} l JJ 29 xi>\' ) s
(2A.1hD)
and
> _ '_)425_2____“_{25( J )F(l ~J5 & x>\2)
P17 T 5T sin ad SIS A R
' (2a.1ke)

F(a, b; ¢; x) is the hypergeometric functioh.
The system (2A.12),_which is 9 x 9, is immediately reducéd to
a 5vx 5 vsystem by virture of the fact that four rows of v, are

zero, and is solved in terms of thé 3 x 3 determinant d,

21 2 21 3

. .
L4ag o 780005 T 8zP15P
33
_ , 1 21 2 21 3
d = R R T 83053035 » (2A.15)
a0 ol _ g2l 2 1 - g2 3
1 P13 2P23P20 33333

and its cofactor matrix elements dij' (the determinant'derived from
d in this form-by setting the ith row and jth column to zero, except A

for the (i, j) element which is set to one). Thus it is found that

a . a
2 )
it td4p o T4 34
1 1
v, = % 0 o o (2A.168)
1 7 al s (eA
0 0 0
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— ) a.5 .‘
-2y Pppldyy gy + dgp) dop Eg'd25
a-ad a
1 : 0D _ 32
vo = g 4o Ty tdsp L2 . 3 )
2 Po2 3 P33
0 0 o |
(24.16b)
and
— a “
3 2
- a a._ +d.. +a4d =4 a
5 P53(dy5 + dpg * dy) ay 32 33
1
v3 =3 0 0 ,O
d d-ad
d + 4 + d - 23 33
137 23 733 o o2 0 o)
» %o Pop 3 P33 |
" (2a.16¢)
The denominator function D(t) . is Vfound by merely integrating:
, _
D(t) = 1 - % ;/-dt' 2t) N(t') (2A.17)
; ,
R t t - t ’
which is
3 o .
D(t) = 1 - ). &, Py Vi | (2A;17a)7

i=1
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L1 ' 1
d - 1plo(d11 tdy + dgy) - ay(p]odp - a5(07d15
21 2 | 1 1
* azpzopzz(dlz tdyy +dg) * 05090 * Popdoz
o 1
+ + d + d +
- "30"33( %5 * 53) 730%52) . "30 3)
;2 , o o2
-1 : 20 ‘ 3 Poo
“al 2020(d12 *+ 4y 32) 4 - —2(d - dyp) a, 2 Aoz
22 Poo
. 3 3 |
: . a,. p P
2% 2 P30 P30
- a 4, +4d,, +4d —= .. d - d-d
| 3030(%15 * dpg + dy5) ay 3 52 2 ( 5)
33 P33
)
(24.17p)
where we bu_se the subscript O to denote ti =t = to. Its determinant
is found to be
o] = g ; | ‘ | (2A.18)
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11 2,1 1,,2 2 2,1 1
1+ 2 (pj;~ epg) - a5(p1p™ Ppg) (Pop™ P5g) - a5(013' P30)
53
b4 (933 P30)
101 2,1 1,2 2 2, 1 1
¢ = al(plQ— plo) 1 - ag(pgg_ 020)022_ pgo) - aB(DEB- 05 )
* (025 p30)
11 2,1 1,,2 2 2,1 1
a; (075 010) - 85(Pps= Pp) (Pop™ Pog) 1 = a5(p3s™ oag)
X (035- 030
In order to eliminate factors of d, we define
1
n=-37, | (24.19)

and £ "' to be the cofactor matrix of Dj i.e., D - = 77/|D;

hence

p-2.8 ‘ - » (28.17¢)

and

‘mJ . ?Zﬁ%li ) o : (2A{20):
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If A 1is small, or zero, due to large, or infinite, quark

mass, and J 1is not near zero, a good approximation is a, = a3 = 0.

Then
P o= 1+ (o - ey (2A.18a)
and
o -1 ¢ %1 |
M), = S = - | (2A.21a)
7 Mu 71

If N is &mall, and if J is near zero, the approximation to be made

= 0, and in this case

is a2
) 1 vl 2, 1 1
L+ ) (7 - opp) - a5(oy5 = P30) (075 = p30)
¥ - |
1 1 2, 1. 1 3 3\

and

-1 ¢ ™ 2.3 _ 3

neé _)ll__ = :u—é KT 35(933 - P30)
11 11
X = x3 X - X X - x5 *

(2A.21D)
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This approximation of large quark mass is taken in the following as an
assumption to be verified by the final results, in comparison with
experiment, and will be seen then to be justified.

k. The Sommerfeld-Watson Transform

The procedure to be followed from here on is well known. One
solves the equation P = O for the Regge poles, J = oci(t), and their

reduced residues,

Nnd™),

Yi(t) = s . (2a.22)
: gg |

dei(t)_

so that by the Somerfeld-Watson transform the amplitude is, for large

.
Loy + %) Yi(—s).l

Moo= Z “2n® 1y sin no
= s
g | l"(Ot:.L + 2) i

A simplifying factorization is made by defining

1
L ra, +1)
1 3'(2 1
Y. = |3 Y. (2a.23)
i 2 204 3 i
wot r(a + %)

this factor.being included in 77 via the factor in G, from Eq.(2A.10b).

With this inserted,

Moo= z sin eré i ( > jTY( (COt JTOéi +1)
i

= 2:'NE . .'(EA.Eﬁ)

i
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We note in passing that for a pole whose position and residue are small

and of the same order of magnitude, the contribution to M is

7. -
v i = ss - . (2A.2h4a)
Ml = - a‘ - Yl {ﬂn ('“—2) + 1]‘[_] .

By crossing, M 1is the Reggeized asymptotic amplitude for scattering

in the crossed (s) channel, for which

at )
. 8g

[l

do = )'HT 'M'2 . (2A.25)

B. Regge Poles, Residues, and Asymptotic Contributions

1. Uncoupled Case

We first study the case of infinite quark mass for which

M= o, or A= 8y = a; = 0. The pole to be found in this case will,

3

of course, be present in the finite mass case, but perturbed by the

small but finite A. Here, setting Eq. (2A.18a) to zero, we have the

equation of the trajectory J = aI(‘x)c Explicitly this is

. 1
2 5 [F e i w) - TQ, a3 x)
+ 1 4

- '. Xl

- F' (1, -og; %; xl)] ’ | (2351)

with x, = xl(aI) =1 - [(1/2)/(aI.+ 1)]. Since F(1,-a; 3/2; x)

does not take a closed form exceptvfor o equal to any half-integer,
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for simplicity we shall find the pole positions in x for o, = -1,

-1/2, and O and interpolate.

At op = -1, x approaches -%/(OLI + 1) . (2B.2)
At ap = -1, Eq. (2B.1) becomes
‘ 1
l+<-5—+-—2->x = F(1, 55 %; X) = —T ln(——X£>
g g 2x2 1 - x2
(2B.3)

Thus, numerically or graphically, one can find X(_L): the pole
' 2

position in energy for angular momentum OLI = ——é— for any coupling g.

At the limits, x(_l)zl for g =0 and x( )=O for g = oo.
. 2 ’

-1
2

At oy =0, the 0/0 form is easily reduced, since

F(1, -Q; %; %) =1 - %-ax F(1, 1 %; x) =1 - 20(1 - u(x) (2B.L)

near o = 0, and

n(x) = (l . x)é In v[(—x)% + (1 - x)%] = (l ;{ X)% arc sih(x%)

-X
(2B.5)

The equation (2B.1) at- ap = 0 is thus

T [1 - % . } (x -3) = pux . " (2B.6)
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Again a numerical or graphical solution is easily obtained for X(O)"

The range in x of thé pole along J =0 with g varying is from

™

at g =0 to 1 at gg/ﬁ = 1, and there is no solution for g

smaller than this.

Assembling the information from these three wvalues of aI

[for (gz/n) > 1] and interpolating, we take for the Regge pole, the

form
v a
X = XI(J) = FTT¢ bI_+ cI(J’+ 1), | (2B.7)
where
a_.. = = 1 b = 2 -vx + 2%, ;3 and c. = 2[x - X,-174) -1.
I 20 P12 %0) T () =20 X)) Tt
(2B.7a)
inversely, we have
2 L
X = b+ [(x - bI) - haI cI]2
J = o (x) = -1+ — .(2B.8)
I - 2c
I
Thus P may be written
x - XI(J) B
P = Xi(jj - Xi(J) ’ (2B.9)

since P = O on the trajectory x = xi(J), and P=1 at x = xl(J).

Hence one may computed
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3

J=OéI

| -1 . = .
and from Eq. (2A.2la) C?Z{S )11’ in order to flnd T by
Eq. (PA.22):

1 (5_2_)
2 T T

I (2B.10)
((x - bI)2 -.haIcI]2

TI=

Therefore, for the uncoupled problem, the asymptotic behavior of the

amplitude‘in the s channel is
M = a7 { = (cot na. + i) = . (2B.11)
S 2 - T My

For (ge/ﬂ) < 1, we have

g
J, = aI(x) = =1 + E-—-_?; 3 (2B.8a)
with
1 : - ' : .
ap = -7 and bo=1+ X1y . (2B.8b)
énd
L(£) |
[ CES S (2B.108)
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In Fig. 2 we have drawn ai(x) and ?&(x), Eqs. (2B.8) and (2B.10),

picking arbitrarily the value '(ge/ﬁ)' = 2.

2. Coupled Case

Now we shall considef the éase when M 1is not iﬁfinite, but
is large and fiﬁité,' x;$< 1. Let ﬁs note the following general pbint
before cbntinuing on to'the-détgilé. Theglementsof ﬁ in its éecond
column as written in Eq. (2A.18) containing ag(pgg - pgo) are propor-
S . o

tional to X _(>\LL near J = -1) and those in the third column

) to A° (XB/JB‘ near J = 0). Thus the pole

... 2.3 3
containing aB(p33 - P3g

of the uncoupled case, aI(k),‘is only negligibly perturbed, and this

is also a pole of the coupled case, except near J = 0, x = X(O)

where the solution is,_as'yét, undetermined. A second zero of )

occurs for J near enough to zero that terms containing ag(p§3 - pgo)

» o 2,2 2 o
become considerable. Terms containing ae(p22.- p20) remgin always
negligibly small and we write as in Eq; (2A.18a),

B P

by tay
B R O
3173 SR

=
1l

The zero of ¢/¢l - ﬁ5 - ¢13 ¢3l/¢l , oppp(x), will be\#rgateé pelow?-
and it is a pole of the coupled case, except near i-:-x(o), where

apparently the two poles will cross each other, for (ga/n) > 1.



Q
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Actually, the poles will not cross each other in this anticipated

fashion, but break and rejoin near X = X(O)’ J = 0, so as to avoid

crossing while passing very close by.5 Since in what follows we are
concerned only with the region somewhat below this point, we may take

as the approximate poles of the coupled problem aI(x) and aIII(x),
defined as the zeros of P, and ﬁ/ﬁl.

With the approximations X << 1 and |Jl << 1 inserted to

lowest order into J, we now find « as the zero of ¥ Ei:

IIT
2 by "By
ﬁl = 1+ —i—(m - p_i) Ty . (2B.12a)
12 N2 H M
_ -2J A _ ______2 oot
¢5 = 1 + (J‘( 6 J3 (XO x3)<xo -»X5 HB 2
(2B.12b)
2 1 OW2 8 By = B 1 M
-2J A : 0 "Mz M T Hz
B.. P - (& )& ) A 6~ (x, - x - :)
13 731 (:r[ )(1( 3 0 3 XO - X3 Xl - X5
) B Ry = |
(:XP t-2—2),  (eB.120)
o~ f » X
where
, ' ' a
U‘l - H(Xl)} _@_9_-, and p-l E }_L(X)| ’ etc‘)
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and

and x = 1 - == .

l_l
no|
o
nO

e

From this it is apparent that J = (x) will be of order

11T

38/3 that is, not only are o and A both small, but as well,

IIT

<< xg, and x is large and negative. Inserting this further

o py ] 3

approximation we have, to lowest order in J/xg,

Lo o
5 = T2y 0
1 2 :
by = T3 m(z/en)
and
RPN &
3 )2

and for IXO] << |x5l Ty

Moy = M o B
=2 - zn( 'Jg) TN
0 3 3\ SN

Writing J/XB/5 = j, we have as the'numerically solvable equation for

jIII(X) = x'8/3 aIII(x), good to order AB/B,

a



/Py

with

h(x)

L]

valid for Jxol

of ¢l’ X = XO'
Jppr(®)
and
Oppp(x)

One quantity of

3

J=0

I1T

12N\2
1+ (g—-g-> 311—%57 L2 (=) + n(x)1 = o,

-27-
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uy )%/ (x

(2B.13a)

[’“(2/3) "B T ()0 T

{zn<2/3> + 2pl +l.+ 2 ( "o

<< x-g/B and below (or above) the region of the zero

As A -0,

- (g'g)

,1/3 (__) & o

L )2/ 3805 1u3(35)

interest in computing the residue of this pole is

Jrpp(%)

I=dr11

The other is, from Eq. (2A.21b),

, 1232
-85 ggi ) 283 () [“-%-ﬁ—)

Jrrr

2 (x)

Xl)]
- )0 '(%?') by }

(2B.13b)

|
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<'?w'l>ulJ=a'm

<: :> rlapp +
~1 2
5

1+ ( '2> > o) + ;:]_ .

JIII

where analogously to Eq. (2B.13b),

3 En(2/3 +2L;l+1%é( l-(g >ul]

k(x) =

Thus, in summary of the propertiés of this pole,

e ot
L@ 2 O
I

—_ 111 :
") = opg % - by .2 ’
_ 271 S <: )
| | - : JIII J
: (2B.14)
and o ___(x) x8/3 jor(x), which is defined by Eg. (2B.13a). The
TTT IIT 7 ' .

contribution of this pole to the Reggeized asymptotic amplitude in the

& channel is, by Eq. (2A.2La),

T - . |
IIT = : a:
= - === -7 ﬂn(—)+ in] . (eB.15)
Mg R i [ Z | .
In Fig. 3 we have drawn jIII(x) = X—B/B (x) and I

III

?l

III(x) = x-8/3‘7III(X)’ from Eqs. (2B713a) and (2B.1k4), choosing
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arbitrarily the values '(gz/ﬂ) =2 and (g'2/x) = 1.

Finally we note that all approximations but one appear to be
correct to order of magnitude in the mass M, or ), and that one is
that the behavior of the coupling g', being unknown as a function of

A, was assumed to be -constant. If we allow (g'z/ﬂ) “to go to

(g'g/g) x6, in most instance x8/5 —?x(8+6)/5, and all the structure

of the model remains intact,

C. The Subtraction Term

Within the assumptions of the model we have now computed the

Reggeized asymptotic  amplitude in the s channel,

M, o= Mp o Moo . , (2c.1)
There yet remaing to compute the corresponding physical amplitude whose
gquare is proportional to the crOSS’section of the physical process.
These two cannot be the same; they differ by a constant in s, a

subtraction term, engendered by a Kronecker delta singularity in the

J plane at J = O:5

m, = m, + 5J,O(A1n) . _ (2¢.2)

To obtain the physical amplitude one must omit from the Reggeized

1

amplitude all contributions arising frgm terms in the potential connecting

sense channels to nonsense at all nonsense (half-) integers - here.

V13 = V}l and v25 = V52 at J = 0. If one attempts the calculatlon
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of Am within the confines of the model, it appears that the
subtraction is zero, due to divergences encountered at J = 0. This,
however, cannot in fact be so, and we now argue that éomething cah be
* known about the subtraction term, though the model denies us exact ;
knowledge of it. The pole aIII. emerges from the Kronecker

singularity as thevéoupling g‘z/ﬂ or A, is turned on, and it must

‘ exactly cancel it at gero coupling. A pole can cancel a delta function

if its residue and position are‘limitingly-small of’the same order of

magnitude and their ratio is equal (and opposite) to the coefficient

of the delta function:

Vs Yoo ‘
Lim . "J—-—:I-%— = - OTI—I—I- SJ,O s (EC.B)
aIIINYiIIfao II1 IiI
= . . - ' . 0
and YiII/aIII is finite at zero coupling, of order A . Thus the

real term Am must equal (?} /aIII) + Ms,vwhere MS,'a function

11
of t only, is of finite positive order in the coupling A. This

leaves us with the physical amplitudé:.
M = + M -7 mf £ + | (2c E). |

We can say no more of the subtraction term Ms,'so let us proceed to

see what can be said even in this ignorance.
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IIT. COMPARISON OF THE MODEL WITH EXPERIMENT

To make a comparison of the results of this model with
experiment, we allow that, of the terms contained in Mp’ MI
represent the contribution of ordinary falling Regge trajectories as
determined by present Regge fits; we do not attempt to allow that our
“aI pble as calculatéd above has any physical reality. .The rgmaihimg
terims we retain intact as representing in some féshion‘the contributions
of the'quark;induced.pole and subtraction. When and if energies and
momegtum transfers are reached at which contributions as these becéme
visible, data would be fitted to a theory similar to but more nearly
correct thaﬁ the model presented here, rendering a determination of the
“quark's mass and coupling.

The experimental situation with which we have chosen to com-
pare thié model.in qualitative fashion is proton-proton scattering at
large angles. Immédiately after these considerations, a crudely

. . o .. '
guantitative comparison will be made with the data at 90  in the center

of mass. Huang and Pinsky have observed that the effective trajectory,
o, may be analyzed into two parts (see the schematic diagram Fiz. h):
e

the pemeranchon, OP’ and the dipomeranchon cut, «o_.. The trajectory

PP
ae  falls from ore to below zero as aP’ then rises slightly to the

aPP trajectory, and then falls off again as the aPP' to the experimental’
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limits on' -t in the présent data. Thus, below t = -3.7, where all

ordinary Regge poles (or cuts) have dropped below zero, is the

Y111
CQnVentional "dominant" pole-but not the dominating pole, since de
shows no signs of rising again to iero, as we might expect if a pole
at or near J = 0 were aétuallyvtoﬂdominate. So with present data
thére is no reason to supﬁose that a quark, aé we have described it,
should exist; our task is now to estimate (to order of maénitude_only)
what is the leaSt mass that ﬁquld be compatible with the present data,
. supbosing the quafk exists.

Since the imeginary part of the scattering amplitude,

) . :j. . o s ; A 2—9_ — Z

MImp = MImI - lﬁ/III’ is effectively MImI’ T 7III << MimI Mimp .
i2 2 . :

But lh&J _Z_MEmp. .Thus we derive the inequality which must be satisfied:
do by  2-2 _ dg .
=P % N Y1 = 3¢ . - (3.1a)

2
dt sq_ ITI = dt TmITT :
Similarly,
: o »
dao LHI - s \ . — do ) - :
. 5Qg M 'RellIXI .

The latter is of little use until we can compute MS, but in the follow-
ing its right-hand side with M_ = 0 will be displayed. .

In Fig. 5 the data of Akerlof et al.,7 for proton-proton

' . o L .. ' . do
scattering at G0 in the center of mass are compared with 3T o
‘ InIII, S0
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. : : 2
and do _ (for MS = 0) . We have arbitrarily chosen (%?) = 2

*.
4% ReTTT, 90°
-2
' .
(5—~J = 1 and calcuwlated these quantities at N = 0.2,0.1, and 0.05,

T
i.e., M= 5; 10, and 20 times the mass of the proton. In order to
satisfy the inequality, Eq. (3.1), M would certainly have to be
greater than about 10 GeV, and one may guess this to be a decent order

of magnitude lover bound on this mass as may be gleaned from these

data, under the many suppositions of the model.
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"IV. CONCLUSION
It éppéars fhat_whenever approximations are'made on our model,

they are'expectéd to be-bbrrect to order of magnitude ih the mass M
of the quark, éxcepfvthat the unknown behavior of the coupling constant
g' as a function of N, was assumed to be cénstant. Thus we can expect
our result tq be‘cdrréct bnly to order of magnitude, and none of the
-COnsequences‘of subtle details, like the misrepresentation of a spinor
by a scaiar, télbe portrayed with any fidelity. It is in this spirit
that'the result M ;y'lo GeV 1is statéd.

o It is not intended that the model presentéd here be more
than a naivé first effort towérds an anglytic approach to the confronta-
tion of idea and fact. The experimental facts, the data, are there; the
- idea may e well stated in its theoretical context: it is the mapping
betieen the ﬁwé worlds‘which is lacking, the model which must be improved.
. The'minor improvéments which could be made on this model are many, other
similar models could be suggested, or more radical means of relating the
idéa to the data may be tried. The idea remains‘aﬁ attractive one:
that there is a cfucial difference of character between composite
particles and elementary cnes, that if fhe latter exist, observable
effects wust arise, and that theée may be manifestations: of thé opera-~

tion of nigher symmetries.

«
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FIGURE CAPTTIONS

potential chosen in the model.

Fig. 1. The
_ 2
Fig. 2. aI(x) and 7I(x) for %7 =2,
Figi 3a. jIII(x) for S-=2, S=—-=1, and A = 0.2, 0.1, 0.05.
Fig. 3b. ;fIII(X) under the same conditions,
Fig. L. chhematic diagram of the trajectories of proton-proton
scattering.
Fig. 5. Comparison of the model with experiment for proton-proton

scathering

o . o
at 90 in the center of mass. The curve

rarked "proton-proton” is a close fit to the data of Akerlor

N

(S1V)

The

for

1

al., the broken-line portion denoting preliminary resulis.

do
at

Ty and

three pairs of curves are o
ImIII, 90

ReIII, S0M5=0

g'g

k18

A = 0.2, 0.1, 0.05, with

Aymm )

:.l and i = m'roton.
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