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Abstract

Effective and timely disease surveillance systems have the potential to help public health

officials design interventions to mitigate the effects of disease outbreaks. Currently, health-

care-based disease monitoring systems in France offer influenza activity information that

lags real-time by one to three weeks. This temporal data gap introduces uncertainty that pre-

vents public health officials from having a timely perspective on the population-level disease

activity. Here, we present a machine-learning modeling approach that produces real-time

estimates and short-term forecasts of influenza activity for the twelve continental regions of

France by leveraging multiple disparate data sources that include, Google search activity,

real-time and local weather information, flu-related Twitter micro-blogs, electronic health

records data, and historical disease activity synchronicities across regions. Our results

show that all data sources contribute to improving influenza surveillance and that machine-

learning ensembles that combine all data sources lead to accurate and timely predictions.

Introduction

Influenza is a major public health problem causing up to five million severe cases and 500,000

deaths per year worldwide [1–3]. In France alone, the epidemic of 2018–2019 caused 9,500

deaths. During epidemic peaks, large increases of visits to general practitioners and to emer-

gency departments are observed and often lead to disruptions to healthcare delivery and thus

increase the risk of undesirable outcomes in patients with influenza infections. To reduce the

impact of influenza outbreaks in the population and to better design timely public health
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interventions, surveillance systems that produce accurate real-time and short-term forecasts of

disease activity may prove to be instrumental.

In France, an important influenza monitoring system was implemented by the Sentinelles

network in 1984 [4, 5]. This system centralizes information obtained from a group of volunteer

(1,314 in 2018) general practitioners and (116 in 2018) pediatricians that each week report the

proportion of patients with Influenza-Like-Illness (ILI, any acute respiratory infection with

fever above 38˚C, cough and onset within the last ten days) seeking medical attention. Data

collection, processing, aggregation and distribution processes of this information, at the

national and regional levels, introduce up to three weeks delays in the availability of flu activity

information. This temporal data gap prevents public health officials from having the most up-

to-date epidemiological information, and thus leads to the design of interventions that do not

take into consideration recent changes in disease activity [2, 6]. For example, if estimates were

available in real-time, information campaigns and vaccination prevention could be deployed

earlier and could lead to greater impact. Additionally, healthcare facilities could be better pre-

pared to respond to unexpected increases in the flux of high-risk patient during time periods

of increased disease activity.

With the motivation to alleviate this time delay, mathematical modeling and machine learn-

ing approaches have been proposed to produce disease estimates in real time and ahead of

healthcare-based surveillance systems in multiple nations around the world. Most of these

studies have been designed and tested in developed nations, such as the United States and

France, where information on disease outbreaks has been collected historically for decades [2].

Numerous research studies have been conducted on the use of traditional statistical methods,

like temporal series or compartmental methods, as well as the inclusion of disparate data

sources such as meteorological or demographic data to track flu activity, as discussed in Nsoe-

sie et al. 2014 and Yang and Shaman 2014 [7, 8]. And in recent years, multiple more studies

have emerged exploring the use of Internet-based data sources that capture aspects of human

behavior and environmental factors to track the spread of diseases. With over 3.2 billion web

users, data flows from the internet are huge and of all types. Some studies have used data from

Google [2, 3, 9–13], Twitter [14–18] or Wikipedia [19–22] to monitor flu specifically.

One of the first and most prominent studies on the use of internet data for monitoring

influenza epidemics is Google Flu Trends (GFT) [23, 24]. This web-based platform, created in

2009 and designed and deployed by Google, used the volume of selected Google search terms

to estimate ILI activity in real time. GFT led to multiple prediction errors during the 2009

H1N1 Flu Pandemic (due to changes in people’s search behaviour as a result of the exceptional

nature of the pandemic) and later produced large overestimations during the 2012–2013 US

flu season (due to the announcement of a pandemic that finally did not appear). These events

show the lack of robustness of their algorithm and led to eventual discontinuation of this dis-

ease monitoring platform [25]. Since then, multiple research teams have proposed improved

methodologies that are capable of extracting information more efficiently from flu-related

Google searches and produce improved flu estimates [2, 3, 9–13]. Among these methods, the

work of Shihao Yang et al. [2] explored a penalized regression methodology that combines his-

torical flu activity with Google search activity dynamically, called ARGO, to better predict flu.

Additional data sources have been explored to monitor flu activity such as clinicians’

searches, electronic health records (EHR), crowd-sourced flu monitoring apps [26–28].

Among these, electronic health records have been shown to track flu accurately and timely in

the US and France [6, 29–31]. Specifically, in United States, Santillana et al. [6] showed that a

model leveraging EHR data and a machine learning algorithms was capable to monitor flu

activity in multiple spatial resolutions that included the regional level. In France, Poirier et al.
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[29] similarly showed multiple statistical models that incorporate EHR and Internet-search

data, can yield accurate ILI incidence rates in real time at the national level.

In early 2019, Fred S. Lu et al. [9] extended the ARGO methodology to accurately track flu

activity in multiple states of the United States. In their approach, they included Google search

data, EHRs and historical flu trends. They developed also a spatial network approach, called

Net, to capture the synchronicity observed historically in flu activity between each states.

Finally, by dynamically combining estimates from ARGO and Net, they showed that an

ensemble approach, named ARGONet, led to improved results.

Our contribution

In this study, we propose a forecasting platform that combines multiple data sources and sta-

tistical models to track flu activity in France at a spatial resolution that, to our knowledge, has

not been explored before. Our forecasting platform produces accurate region-specific real-

time and short-term flu activity forecasts for the twelve continental French regions. In our

approach, we incorporated data sources such as Google data or Twitter microblogs, Electronic

Health Record data, and weather that were not considered in the US study [9]. In addition, the

EHR Data used here came directly from a clinical data warehouse rather than cloud-based bill-

ing and EHR company which required integrating structured and unstructured clinical data.

Additionally, historical synchronicities across regions are captured with a Network model. A

machine learning ensemble approach is proposed to improve predictions by dynamically com-

bining estimates from these two distinct approaches. Near real-time estimates as well as one-

and two-week ahead forecasts are presented.

Materials and methods

All the data used for this research were fully anonymized. For the EHR data, the IRB ethics

committee from the Rennes Academic Hospital approved this research (Approval number

16.69) and the data were fully anonymized before we accessed them. All other data sources are

publicly available and appropriately anonymized. The data data collected from Google and

Twitter complied with the terms and conditions for each website.

Data sources

Sentinelles network data. We obtained weekly ILI incidence rates (per 100,000 inhabi-

tants) for the French regions (twelve) from the French Sentinelles network (websenti.u707.jus-

sieu.fr/sentiweb). We retrieved these data in August 2018 from 05 January 2004 to 13 March

2017. We considered these data as the gold standard and as our task for our prediction models.

Google data. We obtained the frequency per week of the 100 most correlated internet

queries (if correlation� 0.60) by French users from Google Correlate (https://www.google.

com/trends/correlate). Because our prediction period spans 05 January 2015 to 20 February

2017, we utilized the ILI signal for each French region, from January 2004 to December 2014

to obtain the most highly correlated search terms using the tool Google Correlate. In this way,

we obtained different search terms for each individual region. The signals obtained correspond

to queries performed by French users at the national level. We retrieved Google Correlate data

in August 2018 for the period going from 05 January 2004 to 13 March 2017.

Electronic health record data. We retrieved EHR data from the clinical data warehouse

(CDW) of Rennes University Hospital (France). This CDW, called eHOP, integrates struc-

tured (laboratory test results, prescriptions, ICD-10 diagnoses) and unstructured (discharge

letter, pathology reports, operative reports) patients’ data. It includes data from 1.2 million

inpatients and outpatients and 45 million documents that correspond to 510 million
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structured elements. eHOP consists of a powerful search engine system that can identify

patients with specific criteria by querying unstructured data with keywords, or structured data

with querying codes based on terminologies.

The first approach to obtain eHOP data connected with ILI was to perform different man-

ual queries to retrieve patients who had at least one document in their EHR that matched the

following search criteria: (1) Queries directly connected with flu or ILI with the keywords “flu”

or “ILI”; (2) Queries connected with flu symptoms with the keywords “fever”, “pyrexia”, “body

aches” or “muscular pain”; (3) Queries connected with flu drugs with the keyword “Tamiflu”;

(4) Queries with the ICD-10 terminology; (5) Queries connected with flu tests, positive or neg-

ative results.

In total, we performed 34 manual queries. For each query, the eHOP search engine

returned all documents containing the chosen keywords (often, several documents for one

patient and one stay). For query aggregation, we kept the oldest document for one patient and

one stay and then calculated, for each week, the number of stays with at least one document

mentioning the keyword contained in the query.

From the CDW eHOP, we built a database containing the time series constructed from the

structured data. In all, we have 1,335,347 time series. As Google Correlate, the Pearson correla-

tion between each signal of each region and the time series from the database was calculated.

In this way, for each region, the second approach was to retrieve the 100 most correlated sig-

nals to ILI signal. Because our test period is from 05 January 2015 to 20 February 2017, we cal-

culated the correlation between January 2004 and December 2014.

As a result, for each region, we obtained 134 variables from the CDW eHOP where there

are at least 34 variables common to all regions (manual queries). We retrieved retrospective

data in August 2018 for the period going from 03 January 2005 to 13 March 2017.

Weather data. We obtained region-specific weather data from the French climatological

website Info Climat (https://www.infoclimat.fr). It has been shown in several studies that

humidity is correlated with the spread of influenza [32]. In the absence of humidity data on

the Climat website, we retrieved precipitation and temperature data. This choice was made

knowing that both variables [33, 34], can be used as a proxy for humidity since they are directly

related by the Clausius–Clapeyron relation [35]. We obtained temperatures and precipitations

per day for the largest city of each region, and calculated the weekly mean for both temperature

and precipitation. We retrieved climatic data in August 2018 for the time period going from

07 January 2008 to 13 March 2017.

Twitter data. Geotag tweets were extracted as the national scale for France from Boston

Children’s Hospital Geotweet dataset with the following keywords pertaining to influenza

(“grippe”, “grippé”, “syndrome grippal”, “fièvre”, “toux”, “congestion”, “malade”, “faiblesse”,

“courbatures”, “tamiflu”, “la crève”). From there, we aggregated tweets to get weekly counts. In

this way, we obtained 11 variables from Twitter. We retrieved Twitter data in December 2018

for the period going from 30 December 2013 to 13 March 2017.

Statistical models

The ARGO model. The ARGO model is a regularized regression dynamically calibrated

weekly using the LASSO method [36] to combine multiple external data sources with historical

flu information. We performed the LASSO regression with the R package caret and the associ-

ated function fit with the method glmnet [37, 38]. We optimized the shrinkage parameter

lambda via a ten-fold cross-validation. To test the stationarity and whiteness of residuals, we

used Dickey Fuller’s and Box-Pierce’s tests available from the R packages tseries and stats [39].

The formulation of our model is:
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• Real time estimates:

yit ¼
X52

j¼1

Zjyit� j þ
X10

k¼1

akxkit þ
X10

l¼1

blzlit þ
X11

p¼1

gpvpt þ
X2

m¼1

dmwmit þ �it

• One-week ahead forecast:

yitþ1 ¼
X52

j¼1

Zjyit� j þ
X10

k¼1

akxkit þ
X10

l¼1

blzlit þ
X11

p¼1

gpvpt þ
X2

m¼1

dmwmit þ �itþ1

• Two-week ahead forecast:

yitþ2 ¼
X52

j¼1

Zjyit� j þ
X10

k¼1

akxkit þ
X10

l¼1

blzlit þ
X11

p¼1

gpvpt þ
X2

m¼1

dmwmit þ �itþ2

where yit corresponding to the flu incidence rate at time t for the region i,
P52

j¼1
Zjyit� j corre-

sponding to the historical flu incidence rates for the region i,
P10

k¼1
akxkit corresponding to the

10 most correlated variables from Google data for the region i,
P10

l¼1
blzlit corresponding to the

10 most correlated variables from hospital data for the region i,
P11

p¼1
gpvpt corresponding to

Twitter data,
P2

m¼1
dmwmit corresponding to climatic data for the region i, �t corresponding to

residuals. We applied this model for each region. The model was dynamically recalibrated

every week by incorporating all data available. In this way, the size of our training dataset

increases every week. We obtained estimates from January 2011 to March 2017.

The Net model. The Net model is a LASSO model dynamically calibrated weekly and

using the relationship between the regions to know how synchronicity could improve fore-

casts. Indeed, S1 Fig in S1 File (Heatmap of pairwise correlations between all regions) shows

that the flu incidence rates of the different areas are correlated. For each region, we used his-

torical data of all regions and estimates obtained with ARGO model for all regions expected

the region to be predicted. The formulation of our model is:

• Real time estimates:

yit ¼
X2

l¼1

X12

j¼1

ajyjt� l þ
X12

j¼1j6¼i

bjŷ jt þ �it

• One-week ahead forecast:

yitþ1 ¼
X2

l¼1

X12

j¼1

ajyjt� l þ
X12

j¼1j6¼i

bjŷjtþ1 þ �itþ1

PLOS ONE Influenza forecasting for French regions with a machine learning ensemble approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0250890 May 19, 2021 5 / 26

https://doi.org/10.1371/journal.pone.0250890


• Two-week ahead forecast:

yitþ2 ¼
X2

l¼1

X12

j¼1

ajyjt� l þ
X12

j¼1j6¼i

bjŷjtþ2 þ �itþ2

where yit corresponding to the flu incidence rate at time t for the region i,
P2

l¼1

P12

j¼1
ajyjt� l cor-

responding to two weeks of historical flu incidence rates for all regions,
P12

j¼1j6¼i
bjŷ jt corre-

sponding to ARGO predictions for all regions excepted the region i to be predicted and �t

corresponding to residuals. We applied this model for each region. We used a two years’ train-

ing dataset. We obtained estimates from January 2013 to March 2017.

The ARGONet model. The ARGONet model is an ensemble approach combining the

predictive power of ARGO and Net models. To combine the results of both models, we tested

three methods:

• First, for a given week, we choose ARGO’s estimate if it leads to the lowest mean prediction

error in the previous K weeks (compared to the Net model’s estimate). If this is not true, we

choose Net’s estimate. The values of K were inspired by Lu et al. [9] study and verified using

cross-validation during the training time period.

• A second method consists of calculating the mean value of the estimates produced by the

ARGO and Net models for a given week.

• In the final method, for a given week, ARGONet’s estimate is built as a linear combination

of estimates produced by ARGO and Net. The coefficients are dynamically calculated each

week to best predict new ground truth data available each week.

The autoregressive model. To assess the importance of external data sources, we built an

autoregressive model of order 52 (AR(52)). We used the LASSO regression with the previous

52 weeks of ILI incidence rates to predict the current week and the two weeks after.

• Real time estimates:

yit ¼
X52

j¼1

ajyit� j þ �it

• One-week ahead forecast:

yitþ1 ¼
X52

j¼1

ajyit� j þ �itþ1

• Two-week ahead forecast:

yitþ2 ¼
X52

j¼1

ajyit� j þ �itþ2
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where yit corresponding to the flu incidence rate at time t for the region i,
P52

j¼1
ajyit� j corre-

sponding to the previous 52 weeks, �t corresponding to residuals. We applied this model for

each region. We used a six years’ training dataset. The model was dynamically recalibrated

every week.

The baseline model. Finally, we included a baseline model that simply predicts that the

number of new flu cases in a week will be exactly the number of cases observed in the past

week.

Evaluation

Our test period consists on 115 weeks starting from January 2015 to March 2017.

Metrics. To assess the performance of the models, we compared estimates to the official

incidence rates from the Sentinelles network by calculating two metrics: the root mean squared

error (RMSE) and the Pearson correlation coefficient (PCC).

• RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1
ðŷi � yiÞ

2
q

PCC ¼
Pn

i¼1
ðyi � �yÞðŷi � �̂yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi� �yÞ2

Pn

i¼1
ðŷi � �̂yÞ2

p

where ŷi is the predicted value for the week i, �̂yi is the mean of predicted values, yi the real

value for the week i, �yi is the mean of real values.

We also estimated the relative efficiency of ARGONet model compared to the autoregres-

sive model AR(52) with 95% confidence interval (CI) by using a Bootstrap method. A relative

efficiency, calculated by
RMSEAR52

RMSEARGONet
higher that one, suggests increased predictive power of ARG-

ONet compared to the autoregressive model AR(52). The CI and relative efficiency have been

computed based on 100 Bootstrap samples of length 52. The 52 weeks were randomly selected

from estimates from January 2015 to February 2017.

Comparisons. First, we assessed the importance of adding external data sources by

comparing:

• RMSE and PCC of the AR(52) model and the ARGO model including historical data plus

the ten most correlated variables from hospital data and Google data. The individual contri-

bution of hospital data and Google data has already been shown in a previous study [29].

But, we added in appendices, two comparisons: A comparison with the ten most correlated

variables from hospital data and a comparison with the ten most correlated variables from

Google data.

• RMSE and PCC of the AR(52) model and the ARGO model including historical data plus

climatic data.

• RMSE and PCC of the AR(52) model and the ARGO model including historical data plus

Twitter data.

Second, we compared the baseline model, AR(52) model, ARGO model (including all the

data sources), Net model and ARGONet model.

Results

Evaluation of data sources as predictors

In order to assess the predictive value of each and all external data source, we compared

ARGO models that incrementally included external data sources with an autoregressive
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model, AR(52), model that only uses historical information as input. As shown in the next sec-

tions, we found that all external data sources improve flu estimates, specially EHR Data and

Google Data.

EHR data and Google data. Our first modeling experiment involved comparing ARGO

models that use Google search and EHR data simultaneously with the AR(52) in all French

regions. A detailed analysis on the individual contribution of Google data and EHR data into

predictions, separately, is provided for completeness in the supplementary materials. Our find-

ings suggest that each of these data sources individually improves predictions in all time-hori-

zons. This is consistent with the findings of a previous study conducted at the national-level

and the French region of Brittany [29], where both Google and EHR information were found

meaningful, but EHR data was shown to possess a stronger predictive power.

The join contribution of both EHR and Google data on predictions is presented below. In

real time (Table 1), in terms of correlation, estimates produced using EHR data and Google

data improve the accuracy for all the regions and for 9 regions in terms of error metrics. The

combination of both sources lead to correlation improvements of up to 5% for the region Bre-

tagne and decreases in error of up to 20% for the region Provence-Alpes-Côte d’Azur.

For one-week ahead estimate (Table 2), estimates obtained with EHR and Google data are

more accurate or comparable for eleven of the twelve regions in terms of correlation and nive

of the twelve region in terms of error metrics. The combination of both sources lead to correla-

tion improvements of up to 15% for the region Bourgogne and decreases in error of up to 25%

for the region Provence-Alpes-Côte d’Azur.

For two-week ahead predictions (Table 3), estimates obtained with EHR and Google data

are more accurate for all the regions in terms of correlation and for eleven of the twelve regions

in terms of error metrics. The combination of both sources lead to correlation improvements

of up to 30% for the region Centre and decreases in error of up to 25% for the region Pro-

vence-Alpes-Côte d’Azur.

Table 1. Real time estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and the ten most correlated variables from hospital and

Google data, for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 59.02 36.24 65.41 77.00 50.05 67.52 61.34 75.29 71.55 58.48 102.38 82.49

ARGO 65.24 34.99 56.83 64.52 52.39 82.30 56.67 64.17 65.87 50.19 97.84 67.71

PCC

AR(52) 0.958 0.898 0.916 0.919 0.952 0.915 0.935 0.879 0.919 0.946 0.815 0.929

ARGO 0.971 0.928 0.950 0.960 0.966 0.935 0.949 0.912 0.939 0.980 0.846 0.963

https://doi.org/10.1371/journal.pone.0250890.t001

Table 2. One-week ahead estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and the ten most correlated variables from hospital

and Google data, for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 105.36 59.41 99.54 122.54 83.21 103.89 101.55 110.63 117.00 102.94 139.49 134.43

ARGO 119.89 57.54 84.41 97.50 91.32 98.36 96.13 91.69 107.28 93.53 153.10 101.72

PCC

AR(52) 0.868 0.692 0.782 0.779 0.861 0.782 0.813 0.707 0.758 0.860 0.645 0.804

ARGO 0.896 0.827 0.881 0.903 0.909 0.875 0.847 0.813 0.834 0.923 0.600 0.914

https://doi.org/10.1371/journal.pone.0250890.t002
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Climatic data. When combining climatic data with historical activity via ARGO was shown

to consistently improve prediction results across all regions (Table 4). However, this improve-

ment is lower than the one observed with EHR and Google data. Indeed, climatic data lead to

correlation improvements of 2% for the region Pays de la Loire and decreases in error of 5%

for the region Hauts-de-France.

For one-week ahead estimate (Table 5), in term of correlation and error, results obtained

with Climatic data are better or comparable for all regions. Climatic data lead to correlation

improvements of up to 5% for the region Bourgogne-Franche-Comté and decreases in error of

up to 7% for the region Hauts-de-France.

For two-week ahead estimate (Table 6), results obtained with Climatic data are better for all

the regions. Climatic data lead to correlation improvements of up to 25% and decreases in

error of up to 11% for the region Bourgogne-Franche-Comté.

Twitter data. Overall, we found that national-level flu-related Twitter data improves pre-

diction results for all regions.

Table 3. Two-week ahead estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and the ten most correlated variables from hospital

and Google data, for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 144.22 69.89 116.89 155.47 111.85 124.06 129.82 132.51 145.67 128.13 157.68 164.00

ARGO 147.70 69.30 114.15 116.30 104.74 123.84 112.41 109.75 135.96 112.28 137.85 121.01

PCC

AR(52) 0.731 0.522 0.665 0.609 0.733 0.658 0.688 0.539 0.610 0.731 0.528 0.699

ARGO 0.820 0.708 0.779 0.832 0.834 0.823 0.775 0.714 0.720 0.849 0.664 0.858

https://doi.org/10.1371/journal.pone.0250890.t003

Table 4. Real time estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and only climatic data, for the period starting from January

2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 59.02 36.24 65.41 77.00 50.05 67.52 61.34 75.29 71.55 58.48 102.38 82.49

ARGO 57.89 35.65 62.53 76.56 48.76 64.21 60.13 73.30 69.29 58.41 102.37 80.72

PCC

AR(52) 0.958 0.898 0.916 0.919 0.952 0.915 0.935 0.879 0.919 0.946 0.815 0.929

ARGO 0.962 0.901 0.922 0.919 0.954 0.921 0.939 0.884 0.925 0.951 0.828 0.934

https://doi.org/10.1371/journal.pone.0250890.t004

Table 5. One-week ahead estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and only climatic data, for the period starting from

January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 105.36 59.41 99.54 122.54 83.21 103.89 101.55 110.63 117.00 102.94 139.49 134.43

ARGO 105.11 56.37 94.10 120.20 81.48 96.76 99.72 106.13 112.20 99.30 137.04 129.76

PCC

AR(52) 0.868 0.692 0.782 0.779 0.861 0.782 0.813 0.707 0.758 0.860 0.645 0.804

ARGO 0.867 0.726 0.809 0.788 0.867 0.808 0.825 0.740 0.787 0.852 0.669 0.820

https://doi.org/10.1371/journal.pone.0250890.t005
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In real time (Table 7), we see that between Twitter data and AR(52) results are comparable.

Twitter data lead to correlation improvements of 2% for the regions Occitanie and Pays de la

Loire and decreases in error of 5% for the region Centre.

For one-week ahead estimate (Table 8), estimates obtained with Twitter data are more

accurate for all the regions in terms of correlation and for ten regions in terms of error metrics.

Twitter data lead to correlation improvements of 10% for the region Pays de la Loire and

decreases in error of 7% for the region Bretagne.

For two-week ahead estimate (Table 9), results obtained with Twitter data are more accu-

rate for all the regions in terms of correlation and for nine regions in terms of error metrics.

Twitter data lead to correlation improvements of 20% and decreases in error of 6% for the

region Bourgogne-Franche-Comté.

Evaluation of statistical models

Here, we compare the predictive performance of five different modeling approaches the base-

line model, AR(52), ARGO, Net, and ARGONet for three time horizons: real-time, one-week

Table 6. Two-week ahead estimates—RMSE and PCC for ARGO models including only historical data (AR(52)) and only climatic data, for the period starting from

January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 144.22 69.89 116.89 155.47 111.85 124.06 129.82 132.51 145.67 128.13 157.68 164.00

ARGO 141.10 62.27 112.50 148.99 106.08 115.28 127.36 125.57 138.09 123.71 153.15 157.00

PCC

AR(52) 0.731 0.522 0.665 0.609 0.733 0.658 0.688 0.539 0.610 0.731 0.528 0.699

ARGO 0.743 0.651 0.709 0.647 0.759 0.719 0.701 0.610 0.655 0.758 0.590 0.726

https://doi.org/10.1371/journal.pone.0250890.t006

Table 7. Real time estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and only Twitter data, for the period starting from January

2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 59.02 36.24 65.41 77.00 50.05 67.52 61.34 75.29 71.55 58.48 102.38 82.49

ARGO 58.86 36.93 64.69 72.79 49.98 66.45 59.86 76.72 71.74 53.66 102.51 82.28

PCC

AR(52) 0.958 0.898 0.916 0.919 0.952 0.915 0.935 0.879 0.919 0.946 0.815 0.929

ARGO 0.960 0.893 0.914 0.931 0.954 0.914 0.945 0.871 0.919 0.961 0.830 0.933

https://doi.org/10.1371/journal.pone.0250890.t007

Table 8. One-week ahead estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and only Twitter data, for the period starting from

January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 105.36 59.41 99.54 122.54 83.21 103.89 101.55 110.63 117.00 102.94 139.49 134.43

ARGO 102.71 57.98 92.92 114.90 87.64 101.23 103.45 107.90 112.16 96.11 131.67 128.60

PCC

AR(52) 0.868 0.692 0.782 0.779 0.861 0.782 0.813 0.707 0.758 0.860 0.645 0.804

ARGO 0.881 0.712 0.821 0.833 0.873 0.787 0.846 0.723 0.811 0.883 0.703 0.834

https://doi.org/10.1371/journal.pone.0250890.t008
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and two-week ahead estimates. Fig 1 displays the ranking of each model for each time horizon

of prediction across regions during the out-of-sample evaluation time period (January 2015 to

March 2017). If a model is ranked in the first position, it means that it led to the best prediction

results in terms of error (RMSE) and in most cases this was also the case in terms of correla-

tion. As displayed in Fig 1, ARGONet is the most accurate model, ranking either first or sec-

ond in all regions in both, real-time estimates and the one-week prediction horizon, and

ranking first for the two-week prediction horizon.

Real-time estimate. Table 10 summarizes results obtained with the baseline model, AR

(52), ARGO, Net and ARGONet models for the period starting from January 2015 to March

2017, for the twelve regions. Over this time period, the 90% confidence interval (CI) of the best

correlation is [0.915;0.971] with a median value equal to 0.950. The 90% CI of the blackbest

RMSE is [42.97;63.08] with a median value equal to 56.08 These values are mostly obtained

with ARGONet model which implies a reduction of the error from 15% to 41% compared to

the baseline. The lowest values in term of correlation and the highest values in term of error

are obtained with AR(52) and the baseline models. Because public health officials care more

about the flu season starting from week 40 to week 15 in the next year, we presented a similar

S7 Table in S1 File but calculating correlation and errors only during this time period. We

obtained comparable results, with ARGONet model giving the lowest errors and the highest

correlations.

Fig 2 is a visualization of results obtain in Table 10. It confirms, region by region, that the

best PCC and RMSE are mostly obtained with ARGONet. Nevertheless, for real-time estimate,

ARGO shows good performance. For seven regions ARGO is the model with the second lowest

Table 9. Two-week ahead estimate—RMSE and PCC for ARGO models including only historical data (AR(52)) and only Twitter data, for the period starting from

January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

AR(52) 144.22 69.89 116.89 155.47 111.85 124.06 129.82 132.51 145.67 128.13 157.68 164.00

ARGO 144.56 65.52 114.06 150.85 115.04 118.94 143.15 130.71 143.62 124.49 153.54 160.30

PCC

AR(52) 0.731 0.522 0.665 0.609 0.733 0.658 0.688 0.539 0.610 0.731 0.528 0.699

ARGO 0.746 0.615 0.753 0.696 0.765 0.685 0.712 0.559 0.685 0.790 0.563 0.744

https://doi.org/10.1371/journal.pone.0250890.t009

Fig 1. Ranks obtained by each model over the 12 French regions for PCC and RMSE.

https://doi.org/10.1371/journal.pone.0250890.g001

PLOS ONE Influenza forecasting for French regions with a machine learning ensemble approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0250890 May 19, 2021 11 / 26

https://doi.org/10.1371/journal.pone.0250890.t009
https://doi.org/10.1371/journal.pone.0250890.g001
https://doi.org/10.1371/journal.pone.0250890


RMSE and for 5 regions, ARGO is the model with the first highest PCC. In comparison, for

the one- and two-week time horizons, Figs 3–6 confirm that ARGONet outperforms all other

models.

Fig 7 is a visualization of estimates obtain with ARGONet and AR(52) models.

To assess the statistical significance of the improved prediction power of ARGONet, we

constructed a 95% confidence interval for the relative efficiency of ARGONet compared to the

autoregressive model AR(52) (the error of ARGONet is in the denominator). Table 11 shows

that in real-time, the improvement obtained thanks to the ARGONet model compared to the

Table 10. PCC and RMSE for real-time estimate for all french regions for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

Baseline 75.89 39.77 65.49 88.96 61.56 70.67 66.72 77.10 74.25 73.99 106.72 95.31

AR(52) 59.02 36.24 65.41 77.00 50.05 67.52 61.34 75.29 71.55 58.48 102.38 82.49

Argo 65.14 33.88 56.39 63.74 52.30 79.54 57.10 63.08 65.04 49.51 96.04 64.89

Net 64.46 37.65 70.84 65.35 45.90 58.76 68.22 76.19 64.45 57.15 105.28 66.06

K = 1 60.06 33.34 62.10 61.16 49.65 62.58 63.21 66.32 56.31 50.74 100.28 62.86

K = 2 59.58 32.97 61.33 66.30 46.22 65.27 62.50 65.08 56.87 49.46 99.33 61.23

K = 3 59.74 33.41 60.25 66.77 43.79 63.96 63.36 72.47 60.46 49.92 90.21 64.72

K = 4 64.77 33.49 63.97 63.51 49.07 70.37 60.07 66.10 61.07 49.12 92.07 66.28

Mean 61.42 31.77 59.27 59.62 44.86 60.47 60.07 65.20 61.83 47.06 92.05 55.77

Lm 55.16 31.02 52.72 60.96 42.97 55.34 54.64 78.06 63.55 44.55 100.11 58.91

PCC

Baseline 0.936 0.884 0.917 0.897 0.930 0.907 0.927 0.879 0.918 0.925 0.830 0.911

AR(52) 0.958 0.898 0.916 0.919 0.952 0.915 0.935 0.879 0.919 0.946 0.815 0.929

Argo 0.970 0.930 0.951 0.958 0.966 0.939 0.951 0.915 0.941 0.979 0.857 0.964

Net 0.964 0.892 0.906 0.942 0.963 0.933 0.928 0.881 0.936 0.956 0.830 0.957

K = 1 0.971 0.922 0.932 0.952 0.968 0.935 0.939 0.909 0.952 0.971 0.844 0.961

K = 2 0.971 0.922 0.934 0.946 0.969 0.931 0.941 0.911 0.952 0.971 0.845 0.966

K = 3 0.970 0.920 0.936 0.946 0.970 0.933 0.940 0.887 0.946 0.971 0.874 0.961

K = 4 0.967 0.919 0.929 0.948 0.964 0.912 0.945 0.905 0.944 0.975 0.869 0.956

Mean 0.971 0.923 0.937 0.955 0.969 0.946 0.944 0.909 0.943 0.974 0.870 0.970

Lm 0.966 0.926 0.948 0.952 0.969 0.940 0.948 0.878 0.938 0.979 0.841 0.965

https://doi.org/10.1371/journal.pone.0250890.t010

Fig 2. Visualization of correlation and errors obtained for real-time estimate with each model.

https://doi.org/10.1371/journal.pone.0250890.g002
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autoregressive model AR(52) is statistically significant for all regions. Depending on the

region, ARGONet allows to reduce the error by 8% to 32%.

Fig 8 shows a typical example of plot obtained for estimates in real time with ARGONet

and AR(52) models. This plot allows also us to visualize the forecast error. On this plot, we can

see that for the autoregressive model, there is a time lag more important. Fig 9 is a heatmap

showing the coefficients used in ARGO model. On the heatmap, we can see that ARGO model

uses mostly five variables including two variables from Google Data, two variables from Hospi-

tal Data and one variable from Historical Data. Similar plots are presented in Supplementary

for all the other regions.

One-week ahead estimate. Table 12 shows results for one-week ahead estimates for the

time period January 2015-March 2017. Over this time period, the 90% CI of the best correla-

tion is [0.852;0.970] with a median value equal to 0.936. The 90% CI of the best RMSE is

[43.53;89.45] with a median value equal to 62.435. All these values are mostly obtained with

Fig 3. One-week ahead estimate obtained with ARGONet and AR(52) models from January 2015 to March 2017.

https://doi.org/10.1371/journal.pone.0250890.g003

Fig 4. Two-week ahead estimate obtained with ARGONet and AR(52) models from January 2015 to March 2017.

https://doi.org/10.1371/journal.pone.0250890.g004
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ARGONet model which implies a reduction of the error from 22% to 67% compared to the

baseline. In comparison to the best results, AR(52) and the baseline are the models giving the

highest errors and lowest correlations. In contrast to real-time estimates, ARGO and Net mod-

els are comparable. Indeed, for seven regions, Net model is the model having the second lowest

Fig 5. Error distribution.

https://doi.org/10.1371/journal.pone.0250890.g005
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Fig 6. Correlation distribution.

https://doi.org/10.1371/journal.pone.0250890.g006

Fig 7. Real-time estimate obtained with ARGONet and AR(52) models from January 2015 to March 2017.

https://doi.org/10.1371/journal.pone.0250890.g007

Table 11. Real-time estimate—relative efficiency being higher than one suggests increased predictive power of

ARGONet compared to the autoregressive model AR(52).

Region Relative efficiency 95% CI

Auv. 1.10 [1.06;1.14]

Bour. 1.20 [1.16;1.23]

Bre. 1.11 [1.06;1.15]

Cen. 1.29 [1.25;1.33]

Gd Est 1.17 [1.14;1.21]

Ht Fra. 1.27 [1.22;1.32]

Ile Fra. 1.07 [1.04;1.09]

Norm. 1.13 [1.10;1.17]

Aqui. 1.22 [1.19;1.24]

Occi. 1.40 [1.33;1.47]

Loi. 1.16 [1.13;1.19]

Pro. 1.45 [1.38;1.52]

https://doi.org/10.1371/journal.pone.0250890.t011
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errors. These results can be observed on Fig 10 and on the distribution of correlation and error

(Figs 5 and 6). Similar results are also observed for the flu season period (S8 Table in S1 File).

Fig 3 is a visualization of results obtain with ARGONet and AR(52) models for one-week

ahead estimates.

Table 13 shows that the improvement obtained with ARGONet model compared to the

autoregressive model AR(52) is statistically significant for all regions for one-week ahead esti-

mates. Depending on the region, ARGONet allows to reduce the error by 18% to 59%.

Fig 11 shows one-week ahead estimate obtained for the french region Nouvelle-Aquitaine.

On this plot, we can see that AR(52) still have a lag of one or two weeks in contrast to ARG-

ONet model. The heatmap on Fig 12, shows that ARGO model uses mostly seven variables

including three variables from Google Data, two variables from Hospital Data, one variable

from Climatic data and one variable from Historical data.

Two-week ahead estimate. Table 14 shows results for two-week ahead estimates for the

time period January 2015-March 2017. Over this time period, the 90% CI of the best correla-

tion is [0.825;0.935] with a median value equal to 0.885. The 90% CI of the best relative error is

[59.28;105.77] with a median value equal to 79.53. As for real-time and one-week ahead esti-

mates, ARGONet is the model giving the best results in terms of correlation and error whereas

AR(52) and the baseline model give the least accurate results. ARGONet allows a reduction of

the error from 37% to 67% compared to the baseline. For most of the french regions, the

method giving the highest correlation and lowest error for ARGONet is the method using the

mean between estimates obtained from ARGO and Net models.

Fig 13, allows to visualize that ARGONet is the best model for all regions in term of correla-

tion and error. These results are confirmed with the distribution of correlation and error of

each model obtained by calculating the PCC and RMSE for each flu season and each region.

(Figs 5 and 6).

Fig 4 allows to visualize estimates obtained with ARGONet and AR(52) models.

Table 15 shows that the improvement obtained with the ARGONet model compared to the

AR(52) model is statistically significant for all regions for two-week ahead estimate. Depending

on the region, ARGONet allows to reduce the error by 27% to 57%.

Fig 14 shows two-week ahead estimates for the region Nouvelle-Aquitaine. As for one-week

ahead estimate, we can see that estimates obtained with AR(52) is still delayed. It is not the

Fig 8. Nouvelle-Aquitaine real time estimate.

https://doi.org/10.1371/journal.pone.0250890.g008
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Fig 9. Coefficients Nouvelle-Aquitaine real-time estimate.

https://doi.org/10.1371/journal.pone.0250890.g009
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case for ARGONet model. On the heatmap, Fig 15, we can see that ARGO model uses mostly

nine variables, including six variables from Google Data, one variable from Climatic Data, two

variables from Historical data.

Discussion

We have introduced a machine learning ensemble methodology that combines multiple data

sources and multiple statistical approaches to accurately track flu activity in the twelve conti-

nental regions of France. To the best of our knowledge, this is a spatial resolution for which no

Table 12. PCC and RMSE for one-week ahead estimate for all french regions for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

Baseline 136.56 66.90 108.59 150.66 106.89 115.98 116.45 120.85 129.93 130.65 150.85 166.71

AR(52) 105.36 59.41 99.54 122.54 83.21 103.89 101.55 110.63 117.00 102.94 139.49 134.43

Argo 115.70 56.25 84.90 96.91 88.17 94.86 96.91 89.45 106.28 91.96 137.27 105.82

Net 120.74 42.07 93.78 91.97 76.19 86.38 113.57 112.50 98.63 84.34 154.18 87.44

K = 1 93.47 42.92 77.12 89.46 72.52 83.44 84.34 108.51 77.74 86.23 98.04 89.48

K = 2 109.39 46.51 78.70 92.20 80.97 92.23 104.61 110.08 84.42 86.52 121.87 84.05

K = 3 111.03 43.67 75.76 94.88 79.74 89.66 96.62 110.53 89.80 85.08 117.30 99.06

K = 4 112.71 40.34 69.04 103.34 81.70 89.91 94.96 110.37 79.24 85.63 121.59 105.17

Mean 75.95 39.93 64.33 59.84 48.54 71.84 72.44 90.96 60.54 51.23 117.64 54.75

Lm 70.84 37.46 67.18 70.46 43.53 70.23 85.18 105.60 62.65 61.20 132.59 60.61

PCC

Baseline 0.793 0.672 0.771 0.704 0.788 0.749 0.777 0.702 0.748 0.765 0.660 0.729

AR(52) 0.868 0.692 0.782 0.779 0.861 0.782 0.813 0.707 0.758 0.860 0.645 0.804

Argo 0.881 0.803 0.877 0.903 0.904 0.890 0.856 0.816 0.839 0.917 0.747 0.913

Net 0.864 0.861 0.828 0.886 0.906 0.859 0.824 0.716 0.867 0.916 0.654 0.928

K = 1 0.919 0.868 0.899 0.899 0.919 0.875 0.907 0.735 0.926 0.928 0.852 0.921

K = 2 0.908 0.854 0.902 0.896 0.910 0.859 0.865 0.727 0.921 0.957 0.787 0.930

K = 3 0.909 0.862 0.901 0.891 0.914 0.863 0.876 0.727 0.903 0.963 0.801 0.909

K = 4 0.905 0.888 0.927 0.885 0.916 0.864 0.884 0.730 0.919 0.955 0.785 0.895

Mean 0.947 0.882 0.922 0.953 0.966 0.913 0.922 0.816 0.945 0.970 0.783 0.971

Lm 0.944 0.894 0.915 0.936 0.965 0.904 0.909 0.752 0.943 0.966 0.728 0.965

https://doi.org/10.1371/journal.pone.0250890.t012

Fig 10. Visualization of correlation and errors obtained for one-week ahead estimate with each model.

https://doi.org/10.1371/journal.pone.0250890.g010
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forecasting approaches have been explored before in France. Our methodology provides real-

time estimates as well as one- and two-week ahead forecasts.

The success of our approach comes from the ability to dynamically identify the appropriate

method and data sources to produce the best disease activity estimates for a given location and

time horizon in a prospective way (out-of-sample). Specifically, we show that the ARGO

model alone (one that does not incorporate flu activity from neighboring regions) yields accu-

rate results for real-time estimates but fails to produce optimal predictions for longer-term

time-horizons. We find that the Net model (one that leverages information from neighboring

regions alone) leads to reasonable flu predictions but tends to overestimate epidemic peaks.

The proposed ensemble approach, named ARGONet (that combines information from both

ARGO and the Net model), an extension of a model proposed in the USA [9], produces fore-

casts with the lowest errors and highest correlation as captured by Fig 1. Particularly, the most

reliable longer-term forecasts are obtained with ARGONet’s method using the mean of esti-

mates from ARGO and Net models. This machine-learning ensemble approach displays both

Table 13. One-week ahead estimate—relative efficiency being higher than one suggests increased predictive power

of ARGONet compared to the autoregressive model AR(52).

Region Relative efficiency 95% CI

Auv. 1.47 [1.42;1.52]

Bour. 1.70 [1.62;1.78]

Bre. 1.54 [1.48;1.60]

Cen. 2.07 [1.95;2.19]

Gd Est 1.94 [1.85;2.04]

Ht Fra. 1.51 [1.47;1.55]

Ile Fra. 1.42 [1.37;1.46]

Norm. 1.38 [1.31;1.45]

Aqui. 2.05 [1.94;2.15]

Occi. 1.97 [1.86;2.08]

Loi. 1.45 [1.35;1.54]

Pro. 2.42 [2.30;2.55]

https://doi.org/10.1371/journal.pone.0250890.t013

Fig 11. Nouvelle-Aquitaine one-week ahead estimate.

https://doi.org/10.1371/journal.pone.0250890.g011
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accuracy and robustness to estimate ILI activity up to two-weeks ahead of time at the french

regional level. Our methodological approach was inspired by Lu et al. [9] using ARGO, Net

and ARGONet methods to track flu activity at state level in United States. However, Rangara-

jan et al. [40] have shown that potential improvements can be achieved in data-driven

Fig 12. Coefficients Nouvelle-Aquitaine one-week ahead estimate.

https://doi.org/10.1371/journal.pone.0250890.g012

Table 14. PCC and RMSE for two-week ahead estimate for all french regions for the period starting from January 2015 to March 2017.

Auv. Bour. Bre. Cen. Gd Est Ht Fra. Ile Fra. Norm. Aqui. Occi. Loi. Pro.

RMSE

Baseline 183.37 83.10 142.04 198.19 143.26 148.72 155.39 154.69 173.17 178.29 175.17 218.07

AR(52) 144.22 69.89 116.89 155.47 111.85 124.06 129.82 132.51 145.67 128.13 157.68 164.00

Argo 140.92 59.58 116.14 116.91 104.27 123.72 122.35 107.48 134.90 119.40 133.39 120.45

Net 161.43 46.06 113.19 114.30 122.32 112.73 140.13 129.32 177.22 81.00 144.54 124.58

K = 1 130.99 44.73 107.81 66.95 104.91 96.25 115.71 113.29 144.06 62.30 124.25 105.48

K = 2 143.37 43.62 115.40 76.26 110.01 94.20 120.63 116.80 144.78 67.12 124.46 108.19

K = 3 139.22 43.53 113.27 86.15 116.06 106.26 110.86 120.85 151.50 64.75 113.65 106.03

K = 4 139.90 43.86 117.70 91.28 119.35 105.56 114.64 113.98 154.33 68.86 113.83 125.38

Mean 107.89 41.48 80.62 87.88 71.24 88.21 86.90 91.60 102.77 68.05 111.15 78.44

Lm 105.77 38.58 120.10 87.78 91.78 77.39 128.37 119.14 173.22 59.28 120.66 82.49

PCC

Baseline 0.627 0.494 0.608 0.484 0.616 0.584 0.603 0.508 0.550 0.563 0.538 0.536

AR(52) 0.731 0.522 0.665 0.609 0.733 0.658 0.688 0.539 0.610 0.731 0.528 0.699

Argo 0.823 0.753 0.766 0.829 0.835 0.840 0.779 0.727 0.735 0.829 0.712 0.860

Net 0.759 0.832 0.786 0.814 0.781 0.775 0.775 0.677 0.700 0.905 0.631 0.847

K = 1 0.869 0.844 0.831 0.838 0.865 0.838 0.850 0.740 0.826 0.897 0.688 0.868

K = 2 0.856 0.861 0.829 0.846 0.862 0.856 0.857 0.722 0.814 0.904 0.749 0.891

K = 3 0.860 0.845 0.828 0.847 0.853 0.848 0.857 0.723 0.820 0.879 0.765 0.855

K = 4 0.857 0.814 0.826 0.832 0.850 0.853 0.858 0.741 0.767 0.901 0.750 0.860

Mean 0.901 0.857 0.876 0.895 0.909 0.873 0.893 0.825 0.858 0.938 0.802 0.935

Lm 0.886 0.876 0.795 0.852 0.833 0.865 0.850 0.745 0.754 0.906 0.744 0.917

https://doi.org/10.1371/journal.pone.0250890.t014
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Fig 13. Visualization of correlation and errors obtained for two-week ahead estimate with each model.

https://doi.org/10.1371/journal.pone.0250890.g013
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forecasting methods by exploiting sparsity structures in the predictors. Future studies could

explore the efficacy of these techniques for flu prediction in France.

Prediction error reductions are observed when using ARGONet over its autoregressive

counterpart (AR(52)) (up to 32% across regions) in real-time predictions. As the time-horizon

of prediction increases, the improvements of predictions are more evident, leading to up to

60% error reductions when comparing ARGONet with AR(52), and up to 70% error reduction

when comparing ARGONet with the baseline (Tables 12 and 14). S2 through S13 Figs in S1

File show these results graphically. As expected, autoregressive approaches show “within-

range” prediction values that consistently lag behind the observed disease activity and lead to

under-predictions close to peak activity.

We find that all external data sources contribute to improving local flu estimates, when

compared to the autoregressive model (AR(52)), specially for longer-term forecasts. Indeed,

for the two-week ahead estimates, the combination of EHR data and Google data lead to corre-

lation improvements of up to 30% and decreases in error of up to 25%. For Climatic data, this

improvement reaches 20% for correlation and 11% for the error. For Twitter data, it reaches

Table 15. Two-week ahead estimate—relative efficiency being bigger than one suggests increased predictive power

of ARGONet compared to the AR(52) model.

Region Relative efficiency 95% CI

Auv. 1.39 [1.35;1.43]

Bour. 1.91 [1.84;1.98]

Bre. 1.44 [1.38;1.49]

Cen. 2.36 [2.25;2.46]

Gd Est 1.54 [1.51;1.58]

Ht Fra. 1.62 [1.58;1.66]

Ile Fra. 1.49 [1.44;1.53]

Norm. 1.49 [1.45;1.53]

Aqui. 1.44 [1.39;1.49]

Occi. 2.24 [2.15;2.33]

Loi. 1.41 [1.35;1.47]

Pro. 1.99 [1.90;2.08]

https://doi.org/10.1371/journal.pone.0250890.t015

Fig 14. Nouvelle-Aquitaine two-week ahead estimate.

https://doi.org/10.1371/journal.pone.0250890.g014
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20% for correlation and 7% for the error. By analyzing heatmaps (S5, S9 and S13 Figs in S1

File) obtained for ARGO models, we can see that the contribution of different predictors (data

sources) changes over time and time-horizon of prediction, but all data sources appear to pos-

ses predictive power. Indeed, the most important data sources are EHR data and Google data

in real-time and for longer-term forecasts. Historical data is consistently used in real-time, but

less used for longer-term forecasting. Conversely, Climatic data and Twitter data are used

more prominently for longer-term forecasts than for real-time estimate.

The fact that we could only access EHR data from Rennes University Hospital, and thus

from the Brittany region, prevented us from being able to quantify the added valued of region-

specific EHR information on flu predictions in their respective region. This should be evalu-

ated in future research efforts. On the other hand, we find interesting the fact that data from a

hospital in Rennes can improve flu forecasting in other regions. Indeed, S4-S6 Tables in S1

File show that forecasts that include EHR information from Rennes, up to two weeks, are

more accurate for all the regions when compared to the autoregressive model (AR(52)). EHR

data appears to be more relevant for some regions than others. For example, it appears to be

an important predictor in the Brittany region (which contains Rennes) as expected, as well as

in Normandy, which shares a border with Brittany. For Occitanie, EHR data from Rennes

improves predictions, which is in alignment with the fact that historical information shows

that flu activity tends to occur synchronously (with a correlation of 0.93) as seen in S1 Fig in

S1 File. We hypothesize that having access to region-specific EHR data, from all the french

regions, will lead to prediction improvements across the board.

Twitter data was collected at the National level given the sparsity of relevant flu-related

Tweets at the regional level. This was the case as we only had access to the publicly available

data shared by Twitter’s API that only allows users to view up to 5% of all Geo-coded Tweets

(themselves a small fraction of about 5% of the total corpus of all Tweets). We also suspect that

gaining access to higher volumes of Tweets at the regional level could improve our forecasts.

For climatic data, we only had a access to weekly local temperature and precipitation.

Future studies may explore incorporating other climatic indicators known to be more directly

related to the transmission of the virus, such as humidity [32].

For historical data, the variables with highest predictive power include lags or 52 weeks

(one year). However, some other long-term lags show up as important in predictions (as 42

Fig 15. Coefficients Nouvelle-Aquitaine two-week ahead estimate.

https://doi.org/10.1371/journal.pone.0250890.g015

PLOS ONE Influenza forecasting for French regions with a machine learning ensemble approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0250890 May 19, 2021 23 / 26

https://doi.org/10.1371/journal.pone.0250890.g015
https://doi.org/10.1371/journal.pone.0250890


and 43 lags). Given the short time period of our study, we suspect that the flu seasons that we

studied may have had specific trends (an early season combined with a late season) that could

cause our methods to identify a meaningful influences of lags that are shorter than the intuitive

52 week lag.

Data retrieved from Google Correlate is normalized by Google in a (frequently) distinct

sample and over different time periods depending on the data request. This pre-normalization

can affect our results, but as shown in [2] the process of dynamic training minimizes the

impact of this instability.

Our methods were designed to produce point estimates and decision-makers who are

potential end-users of the output of our models would benefit from a quantification of the con-

fidence we have in our predictions. For such purposes, by conducting a historical analysis on

the errors between out-of-sample predictions and subsequent observations, we find that for a

forward looking prediction, the bracket (ŷt � RMSE; ŷt þ RMSE) can be thought of as a 95%

confidence interval for each region at every point in time (See S80-S82 Figs in S1 File). This is

consistent with previous work by Yang et al [2] where the collection of observed errors

between (out-of-sample) predictions and subsequent observations were fitted using a Gaussian

distribution (over a moving window of about 2 years, 104 observations) and the RMSE was

found to be comparable to the standard deviation of such distribution (See S83-S85 Figs in S1

File). This is an empirical result and suggests that in 100 out-of- sample observations, 95 will

fall within the suggested bracket around the point prediction. As shown in S80-S82 Figs in S1

File most observations fall within the proposed confidence intervals prospectively, confirming

the validity of our approach.

To conclude, we have shown that Internet-based data sources can yield accurate influenza

estimates in the twelve continental regions in France. Operational implementations of these

methods may prove to be useful for public health officials in the face of public health threats.

Our regional-level flu estimates may contribute to better management of patients’ flow in gen-

eral practitioners’ offices and in hospitals, particularly emergency departments.
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Supervision: Mauricio Santillana.

Validation: Mauricio Santillana.

Writing – original draft: Canelle Poirier.

Writing – review & editing: Yulin Hswen, Guillaume Bouzillé, Marc Cuggia, Audrey Lavenu,
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