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Calculating the Bimolecular Rate of Protein-Protein Association 

with Interacting Crowders

Eng-Hui Yap1,3,† and Teresa Head-Gordon1,2,3,4*

1UCSF and UC Berkeley Joint Graduate Group in Bioengineering, 2Department of Chemistry, 
3Department of Bioengineering, 4Department of Chemical and Biomolecular Engineering, 

University of California, Berkeley, CA 94720

We have recently introduced a method termed Poisson-Boltzmann semi-analytical method (PB-

SAM) for solving the linearized Poisson-Boltzmann equation for large numbers of arbitrarily

shaped dielectric cavities with controlled precision. In this work we extend the applicability of

the PB-SAM approach by deriving force and torque expressions that fully account for mutual

polarization in both the zero and first order derivative of the surface charges, that can now be

embedded into a Brownian dynamics scheme to look at electrostatic-driven mesoscale assembly

and kinetics. We demonstrate the capabilities of the PB-SAM approach by simulating the protein

concentration  effects  on  the  biomolecular  rate  of  association  of  barnase  and  barstar,  under

periodic boundary conditions and evaluated through mean first passage times. We apply PB-

SAM to the pseudo-first order reaction rate conditions in which either barnase or barstar are in

great excess relative to the other protein (124:1). This can be considered a specific case in which

the PB-SAM approach can be applied to crowding conditions in which crowders are not inert but

can form interactions with other molecules.

† Current address: Department of Systems and Comp. Bio., Albert Einstein College of Medicine, 

1300 Morris Park Avenue, Bronx, NY 10461.



1. INTRODUCTION

The formation of protein-protein interactions is required for such diverse cellular processes as

signaling,  metabolic  regulation,  and  motility.  The  ability  to  understand  and  control  the

mechanism  of  protein  complex  formation  and  the  rate  of  association  are  all  needed  for

understanding function, especially in the cellular milieu which gives rise to crowding effects1-4.

Therefore the development of new models and algorithms for protein-protein complex formation

kinetics under in vivo conditions of crowding is a central problem in computational biology. 

Since  electrostatic  forces  often  orchestrate  the  earliest  of  recognition  events  for

biomolecular  complex  formation,  a  realistic  complexation  study  must  include  an  accurate

treatment of bulk electrolytes. This can be modeled using continuum mean-field theory with the

Poisson-Boltzmann (PB) equation, which under low field condition be further simplified to the

linearized Poisson-Boltzmann equation (LPBE). Various analytical and numerical treatments can

be used to  solve the LPBE5.  Analytical  methods typically allow rapid solution of the LPBE

equation under specialized geometries such as spheres or cylinders6-11. Our group has achieved a

fundamental result in deriving the first completely general analytical solution to the LPBE for

computing the  full  mutual polarization  and screened (salty)  electrostatic  interaction  between

arbitrary numbers of spheres of arbitrarily complex charge distributions, separated by arbitrary

distance or concentration12. 

In  contrast,  numerical  methods (see  reference [5]  for a  recent  survey) such as  finite-

difference  (FD)13-15 and  finite-element  (FE)16-18 methods  can  handle  arbitrary  dielectric

boundaries by solving for the PB potential on a 3-D grid or mesh. Recent theoretical advances

have addressed some of the critical limitations in traditional FE and FD formulations: charge

singularities19-21 were  mitigated,  and  electric  displacement  continuity  was  enforced  across

dielectric boundaries using matched-interface techniques22, 23. However, analytical formulations

of forces, as derived by Gilson 24 and Im et. al.25, are based on one single macromolecule, and

therefore do not account for mutual polarization effects of the gradient due to movement of one

macromolecule with respect to another. To correctly account for mutual gradient polarization in

the FD or FE context, one could employ the ‘virtual work’ approach26, whereby the electrostatic

energy is recalculated after a small displacement in the x, y, and z direction respectively, and the

force in each direction given by the difference in energy over the displaced distance. Even with

the  assumption  of  rigid  macromolecules,  this  would  still  require  four  finite  difference



computations for each macromolecule, making it computationally laborious. Most importantly,

the requirement that the solution be solved on a grid limits its practical application to spatial

domains of either two to three typical macromolecules at reasonably high resolution (~0.2Å), or

to larger numbers of macromolecules with greatly diminished resolution (~2.0-5.0Å) and thus

solution accuracy, rendering them unsuitable for long-lengthscale association simulations. 

Boundary element (BE) methods27-31 are an attractive alternative since they satisfy both

the Dirichlet  and von Neuman boundary conditions by construction,  singular charges can be

correctly treated, and most importantly the 2D solutions on the macromolecular surface removes

spatial  resolution  limitations  imposed  by  the  3D  grid  of  the  FD  or  FE  solvers.  However

increasing the number of boundary surface element results in an increasingly large dense matrix

to be solved with severe memory requirements,  a problem which scales with the number of

macromolecules. Acceleration of the BE approach28, 32 incorporating fast multipole methods have

rendered  BE  computational  times  comparable  to  state-of-the-art  software  packages  like  the

Adaptive  Poisson-Boltzmann  Solver  (APBS)13 based  on  FD  solutions.  A recently  available

algorithm, AFMPB33, allows calculation of electrostatics energy and forces, but it has yet to be

demonstrated to be efficient enough for dynamic simulation and only includes self polarization

effects. 

We have previously presented a new numerical approach to solving the LPBE equation,

Poisson-Boltzmann semi-analytical method (PB-SAM), that combines the advantages of both the

boundary element and our analytical formalism12, by representing a molecule as a collection of

overlapping spheres34. We showed that PB-SAM converges to the analytical solution with better

accuracy and at greatly reduced cost relative to the readily available public domain PB solver

APBS.13. In this work we extend our PB-SAM approach34 by deriving expressions for the forces

and torque that handles complete mutual polarization effects. 

To demonstrate the power of the PB-SAM approach, we apply our new LPBE algorithm

to study the bimolecular association of the ribonuclease barnase and its intracellular inhibitor,

barstar  under  conditions  of  crowding.  Barnase  /  barstar  association  is  a  classic  example  of

electrostatically-steered  diffusion-limited  association.  The  association  kinetics  has  been

extensively characterized,  both experimentally35 and computationally36,  37 using the  Northrup-

Allison-McCammon (NAM) method38; in the earlier computational study the electrostatics were

modeled  using  effective  charges,  which  accounts  for  self-polarization  but  not  mutual



polarization. The NAM method is based on the Smoluchowski equation38,  and its underlying

assumption is that the mobile molecule B only experiences isocentric forces from a stationary

molecule A, i.e. concentration effects that modulate intra-species interactions A:A and B:B as per

crowding are  not  taken  into  account.  A potentially  more  powerful  rate  constant  calculation

method would take these intra-species  interaction into account,  beyond the excluded volume

effect typically modeled under crowding conditions, however it demands an efficient algorithm

capable  of  computing the  electrostatic  forces and torques  for  multiple  molecules on the  fly.

Because  the  PB-SAM  method  enables  the  calculation  of  full  mutual  polarization  effects  in

systems of hitherto inaccessible spatial dimensions, it thereby allows the calculation of kinetic

parameters  of  rate  equations  which  can  in  turn  be  inputs  to  chemical  master  equations  or

stochastic simulations. 

The paper is organized as follows. In Section 2 we review the PB-SAM formalism, and

introduce for the first time the force and torque expressions for our new LPBE solver. We also

provide the necessary detail of the Brownian dynamics simulations and the molecular models of

barnase and barstar. In Section 3 we compare the results of the bimolecular rate of association of

a single barnase and barstar calculated using NAM and that calculated from a multi-molecular

PB-SAM simulation in which there is an excess concentration of either barnase and barstar, to

evaluate a pseudo-first order rate constant derived from mean first passage times of a docked

complex. We ignore hydrodynamic interactions which is almost certainly important for these

type of rate calculations, and could potentially limit a quantitative connection to experiments

performed on barnase-barstar under crowding conditions4. We emphasize that the purpose of our

work  here  is  to  present  new  PBE  methodology  and  the  ability,  for  example,  to  represent

crowding agents with more complex and realistic interaction potentials. Section 4 provides our

conclusions on the PB-SAM method and the outcome of our rate study which finds only a ~30%

rate enhancement on barnase-barstar association rates, in agreement with experiment4.

2. THEORY

The method for solving mutually polarized charge distribution has been previously presented in

[34]. Here we first summarize the principal result, namely the solution of the charge distribution

due to mutual polarization, followed by derivation of expressions for force and torque. Further

details are given in the supplementary materials.



Solution of mutually polarized charge distribution. The system of interest comprises of

Nmol macromolecules immersed in an implicit aqueous salty solvent. Each macromolecule  I is

represented as a collection of NS
(I) overlapping spheres with dielectric constant in, and embedded

with NC
(I) fixed partial charge. The solvent is treated as a continuum with dielectric constant out.

Screening effects due to mobile ions is modeled via the inverse Debye length . The linearized

PB equation (LPBE) gives the potential  at any point r in space 3 in e.s.u-c.g.s. convention as

 

  r   r    2 r   4fixed r  (1)

where (r) is the relative dielectric function,  fixed is the charge density due to the fixed protein

partial charges, and 

 

  8n e2 /outkBT , where 

 

n  is the bulk concentration of monovalent salt

in the solution,  e is the fundamental electronic charge,  kB the Boltzmann constant, and  T the

absolute temperature.

The potentials inside and outside a molecule I are given respectively by: 

 

out(r) 
1

4
e r r 

r  r 
h( I )( r )d r 

d ( I )








I 1

Nmol


 (2a)

 

 in
(I ) r  

1

r  r
( i)

q
(I )

 in 1

NC
( I )

      
1

4
1

r  r 
d ( I )
 f ( I ) r   d r 

 (2b)

where  f(r) and  h(r) are the  reactive and  effective surface charge distributions respectively. The

charge distribution on sphere  k,  denoted as f(I,k)(r) and h(I,k)(r), can be transformed into  reactive

and effective multipoles:

 

Fnm
(I ,k) 

1

4
f ( I ,k) r   a I ,k 

r 







n1

Ynm
(I ,k)( , )d r 

d ( I ,k)


               (3a)

 

Hnm
(I ,k) 

1

4
h( I ,k) r   r 

a I ,k 






n

ˆ i n( r )Ynm
(I ,k)( , )d r 

d ( i ,k)


(3b)

Coefficients of F(k,I) and H(k,I) can then be solved iteratively using

 

Fnm
I ,k   IE,nm

I ,k  ,WF( I ,k)

          (4a)

 

Hnm
I ,k 

ˆ i n(a I ,k  )
 IE ,nm

I ,k  ,WHH
( I ,k)

(4b)



where < > denotes an inner product, and WF(k,I) and WH(k,I) are scaled multipoles computed from

fixed charges and polarization charges from other spheres (see Supplementary Material  Eqns

S1.1a-b), and IE
(k,I) is a surface integral over the exposed surface, defined by

 

IE,lsnm
I ,k   1

4
Yls

I ,k  ( , )Ynm
I ,k  ( , )sin d d 

 E
E


(5)

The above surface integral is evaluated once before the simulation, using the quadrature method

with  each  sphere  discretized  uniformly  into  72,000  spiral  grid  points  using  the  method  of

Rakhmanov39. 

The interaction energy of sphere k is the inner product of its effective multipole H(I,k) with

its  local  expansion  of  external  (i.e.  intermolecular)  effective  charges,  LHN(I,k).  The  total

interaction energy of molecule  I is in turn the sum of interaction energies of all  constituent

spheres

 

W I   LHN I ,k  ,H I ,k 

k1

NS
( I )

  LHNnm
I ,k  H nm

I ,k 

mn

n


n 0

p


k1

NS
( I )


(6)

Force on an effective charge. The surface of each sphere can be discretized into MP grid

points,  of  which  ME are  exposed  and  MB are  buried.  We  only  need  to  consider  the  force

experienced at each exposed grid point  P, since buried grid points have no surface charge and

hence experience no force. We begin by deriving an expression for the force at  P,  and then

summing up contributions  from all  exposed charges  to  derive  the  total  force  and torque  on

molecule I. We only consider forces due to external field, because forces due to intramolecular

effective charges cancel out and do not contribute to the overall force and torque on molecule I.

We shall use the shorthand hP to denote  h(rP), the effective charge at space position  P.

The  multipole  coefficient  

 

HP
I ,k 

 is  the  product  of  hP and  the  spherical  harmonic

 

YP
I ,k   Y I ,k  (P ,P ).  The  force  fP acting  on  the  effective  charge at  point  P is  the  negative

gradient of the interaction energy of charge hP with the external field:

 

fP  PWP  P LHN I ,k  ,HP
I ,k 

  PLHN I ,k  ,HP
I ,k   LHN I ,k  ,PHP

I ,k 

  PLHN I ,k  ,HP
I ,k   LHN I ,k  ,PhP YP

I ,k   LHN I ,k  ,hP PYP
I ,k 

   (7)



In rigid body dynamics, the translational force on a molecule acting through its center of mass is

the sum of all forces acting on all its constituent parts. Summing up  fP from Eq. (7) from all

exposed points, we get the translational force fI as

 

fI  fP
all P

  fP
Pk


k

Nk( I )


   (8)

This can be expressed in terms of effective multipoles, local expansions and their gradients (see

Supplementary Material) as

 

fI   ˜ ILHN I ,k  ,H I ,k   LHN I ,k  , ˜ IH
I ,k 

k

Nk( I )


(9)

Solution of mutually polarized gradients.  We now need to compute gradients  

 

˜ IH
I ,k 

and  

 

˜ ILHN I ,k 
,  which account for how the position of  molecule  I changes the polarization

charges. The gradient 

 

˜ ILHN I ,k 
 is given by 

 

˜ ILHN I ,k   ˜ IT
( I ,k)(J , j )H J , j 

j

NS
( J )


J  I

  T
(I ,k)( J , j ) ˜ IH

J , j 

j

NS
( J )


J  I


(10)

where  T
(I,k)(J,j) denotes  the  multipole-to-local  re-expansion  operator  (see  Supplementary

Material).  The first sum can be computed from the converged solutions of effective multipoles

H. For the second sum, we would need 

 

˜ IH
J , j 

. That is, for each sphere, we need to compute

the gradient of its effective multipole H, with respect to every molecule I. 

The  gradient  polarization  step  thus  comprises  of  three  nested  iteration  loops.  The

outermost loop goes over 1 ≤ J ≤ Nmol to compute gradients with respect to each J. The middle

and innermost loops then solve for 

 

˜ J H
I ,k 

 of all spheres. Below we detailed the formulism for

solving 

 

˜ J H
I ,k 

 for a sphere (I,k).

To compute  

 

˜ J H
I ,k 

 with  respect  to  molecule  J,  we begin  by  applying the  gradient

operator 

 

˜ J  to equations (4a) and (4b):

 

˜ J Fnm
I ,k   IE,nm

I ,k  , ˜ J WF(I ,k)

 (11a)



 

˜ J
Hnm

I ,k 

ˆ i n(a I ,k  )
 IE ,nm

I ,k  , ˜ J WHH
( I ,k)

(11b)

If molecule I is fixed in orientation, IE, E(I,k), and LE(I,k) do not depend on position of I since their

positions move concertedly with I,  so 

 

˜ J WF(I ,k)

and 

 

˜ J WH(I ,k)

can be simplified to:  

 

˜ JWFnm
I ,k   ea I ,k 

nˆ k n(a I ,k  )  (2n1) ˆ k n1(a I ,k  )  ˜ J Hnm
I ,k   (2n1 n ) ˜ J Fnm

I ,k 

 a I ,k  nˆ i n(a I ,k  ) 
a I ,k   2 ˆ i n1(a I ,k  )

2n 3















˜ J LHnm
(I ,k)  LHNnm

(I ,k)   na I ,k  ˜ J LFnm
(I ,k) 

(12a)

 

˜ J WHnm
I ,k  

2n1
ˆ i n(a I ,k  )

 ea I ,k  ˆ k n(a I ,k  )








̃  J Hnm

I ,k   ˜ J Fnm
I ,k 

 a I ,k  ˜ J LFnm
(I ,k)  a I ,k  ˆ i n(a I ,k  ) ˜ J LHnm

( I ,k)  LHNnm
( I ,k)  (12b)

where  

 

    in / out.  During  each  middle-loop  iteration,  we  consider  one  sphere  (I,k),  and

compute  the  local  expansions 

 

˜ J LF(I ,k)

,  

 

˜ J LH(I ,k)

,  and  

 

˜ J LHN( I ,k)

 from  outer  spheres’

polarized gradients. The local expansions are defined below:

 

˜ J LF(I ,k)  T0
I ,k  I , j  ˜ J F

I , j 

j k

NS
( I )

 ; ˜ J LH I ,k   T
I ,k  I , j  ˜ J H

I , j 

j k

NS
( I )


(13)

 

˜ J LHN I ,k   ˜ J T
( I ,k)(M ,m)H M ,m 

m

NS
( M )


M  I

  T
(I ,k)(M ,m) ˜ J H

M ,m 

m

NS
( M )


M  I


(14)

Note  that  intramolecular  re-expansions  (within  same  molecule  I)  does  not  have  a  

 

˜ J TH

component, since for intramolecular re-expansion the operation T does not change with position

of  I.  Finally, with all local expansions computed, we can enter the innermost

loop to solve for 

 

˜ J F
(I ,k)

 

˜ J H
(I ,k)

 using Eqs. (11a-b) and (12a-b). Since mutual polarization is

a short-range effect, a cutoff rcut can be used during charge and gradient polarization to simplify

the computations. Intermolecular spheres whose surface-to-surface distances are greater than rcut



will not be included in each other’s external field.  The validity of cutoffs for intramolecular

spheres needs to be further investigated.

Expressions for force and torque. The translational force on molecule I is given

 

 

fI   fI ,k
k

Nk( I )


(15)

where

 

fI ,k   ˜ ILHN I ,k  ,H I ,k   LHN I ,k  , ˜ IH
I ,k 

 (16)

The torque on a charge at position P about the molecule I’s center of mass c(I) is given by the

cross product of its position rP(I) with respect to c(I) and the force it experienced, fP. The total

torque on molecule I is then the sum of all torques: 

(17)

We can re-express rP(I) as the sum of vectors from center of molecule I to center of sphere k

(c(I,k)),  and from center of sphere k to point P(rP(I,k)). The total torque about the center of

molecule I is then: 

(18)

where 

 

fP   ˜ ILHN I ,k  ,HP
I ,k   LHN I ,k  , ˜ IHP

I ,k 

k

Nk( I )


(19)

and

 

HP
I ,k   h(P ,P )Ynm

( I ,k)(P ,P ),   x,y,z (20a)

 

˜ jHP ,
I ,k   ˜ jh(P ,P ) 


Ynm

( I ,k)(P ,P )
(20b)

Equations  (15-16)  and  equations  (18-20b)  will  be  used  to  compute  the  force  and  torque

respectively. 

Brownian  dynamics. We  have  adopted  the  Brownian  dynamics  simulation  protocol

developed by  Ermak  and McCammon40.  Each  molecule  I is  treated  as  a  Brownian  particle

experiencing a conservative force fI and torque  I, in addition to friction and random force due to



the  solvent.  Assuming  no  hydrodynamic  interaction  between  the  macromolecules,  the

displacement rI and angular rotation  I per timestep t are given by 

 

rI  DI ,transt
kBT

fI   SI (t)
(21a)

(21b)

where the stochastic displacement (S) and rotation () have the properties 

 

S  0,            S
2  2DI ,transt

(22a)

 

  0,            
2  2DI ,rott          = x,y,z

(22b)

where the index I runs over molecule 

 

1 I  N, and index 

 

1 i  3N run over x, y, and z particle

coordinates, Fi is the sum of systematic interparticle and external forces acting in direction i. The

translational and rotational diffusion constants of each molecule  I are set to the values used in

[36], with Dtrans = 0.015 A2ps-1 for both barnase and barstar, and Drot = 4.5 x 10-5 for barnase and 4

x 10-5 for barstar. Each molecule I is moved in turn, first undergoing displacement rI, followed

by rotation   I. Both displacement and rotation moves are checked for a collision, defined as

when any sphere of molecule I overlaps with spheres of other molecules. If a collision occurs, a

new stochastic displacement or rotation move is generated and checked, until a valid move is

obtained.

Protein models.  The structure of barnase and barstar were taken from the PDB (code

1BRS41. Chain A was used for barnase, with the missing residues 1 and 2 modeled using CE

alignment42 of  chain  B  onto  chain  A.  Chain  D  was  used  for  barstar.  The  pdb  chains  were

converted into PQR format using pdb2pqr43, 44, which assigned partial atomic charges using the

AMBER 99 force field45 and  calculated protonation states at pH = 8.0 (the pH of the original

experiment [35]) using PROPKA46, giving net charges of 2.0 and -5.0 for barnase and barstar

respectively. 

We then generated the solvent excluded molecular surface (SES) for each protein using

MSMS47, with probe radius = 1.5 Å and a density of 3.0. The SES and PQR files are inputted

into an in-house program to discretized the protein into spheres. At each iteration, the program

uses a greedy Monte Carlo algorithm to search for a sphere center that encompasses the largest



number of fixed partial charges. Charges within this sphere center were then removed, and the

search repeated with the remaining charges. A stipulated tolerance controls how far from the SES

can the sphere surface protrude. We experimented with two sets of tolerance: (i) 0.5 Å at the

binding interface  and 2.0  Å otherwise  (‘s2i0.5’);  and (ii)  1.0  Å at  the  interface  and 5.0  Å

otherwise (‘s5i1’). Figure 1 shows the barnase-barstar docked complex under the s5i1 and s2i0.5

representations. We find that both representations permit docking to occur under similar docking

criteria as that specified by Wade, hence the ‘s5i1’ representation is sufficient for docking and

was used in subsequent association studies. 

The  docking  criteria  we  used  was  adopted  from  that  specified  by  Gabdoulline  and

Wade36,  whereby the  encounter  complex is  defined in  terms of  residue  contact  pairs  whose

docking  distances  were  fitted  to  reproduce  Fersht’s  experimental  results  for  wild-type  and

mutants of the barnase and barstar system. Given the list of eight hydrogen-bond forming atoms

from [36] we identified the smallest spheres in the s5i1 representation that encompasses them

(‘contact-spheres’, see Table 1). To be considered docked i.e. forming the reactive encounter

complex, at least two contact-sphere pairs must be have surface-to-surface distances within 3.5

Å. This distance translate approximately to an atom-to-atom distance of 6.25 Å used by Wade.

Figure 2 shows the docked complex of 1BRS rendered in our s5i1 discretized sphere presentation

(Figure  2(a)),  and  representative  snapshots  of  encounter  complexes  satisfying  our  docking

criteria (Figures 2b-2d).  We note that  our adapted docking definition using s5i1 will  not be

exactly the same as an all-atom representation of barnase and barstar.

Simulation Parameters.  All simulations were performed at temperature T = 298.15 K,

the solvent and protein dielectric constants were s = 78 and p = 4 respectively. We used a salt

concentration of 50 mM as per 36, which correspond to an inverse Debye length  = 0.07374. A

variable timestep with minimum of 2 ps is used. At each time step, the system is solved with a

polarization  cutoff  rpolcut =  10  Å,  and a  force  cutoff  of rfcut =  100 Å.   All  spheres  within  a

separation distance of rpolcut from an external sphere undergo polarization of H(I,k) and  for

two iterative cycles. All multipole and gradient polarization are performed at pole order p = 10.

Each sphere surface is discretized into  Mp = 1000 points. At each time step, all molecules are

propagated  using  the  same  Brownian  dynamics  algorithm  described.  All  simulations  were



performed on a single processor on an Intel(R) Xeon(R) CPU 2.27GHz processor with 24GB of

physical memory. 

3. RESULTS

Northrup-Alison-McCammon (NAM) Methodology.  We first compute the bimolecular rate of

association of barnase and barstar using the NAM method under the PB-SAM model. Prior to

simulation,  each  protein’s  self-polarization  multipoles  are  pre-computed.  During  the  actual

simulation, barnase is fixed at the origin, while barstar is positioned 100 Å away, and allowed to

move with respect to barnase. If the docking criteria are met, the trajectory is considered docked

and then terminated. If the center of mobile barstar moves beyond the truncation sphere of radius

q = 500 Å from barnase,  the docking event fails and the trajectory is again terminated. The

docking frequency  δ is then the ratio of successful docking events against the total number of

trajectories, and the intrinsic bimolecular collision rate is then calculated as 

 

k k(b)
1 (1 )k(b) /k(q) (23)

where k(b) and k(q) are rates at which a molecule B starting at infinity reaches r = b and r = q

respectively, and which can be evaluated analytically from the Smouluchowski rate equation

 

k(R) 
1

4(Dtrans)

exp(U(r) /kBT)

r2R

 dr










1

(24)

At a screening length of κ = 0.0737, the electrostatic interaction U(r) is attenuated to less than

0.01 at the distance b = 100 Å and effectively zero at q = 500 Å, so the rates can be evaluated as 

 

k(b)  4(Dtrans)b  (24)     

 

k(q)  4(Dtrans)q      (25)

We simulated 10,051 trajectories and monitored the number of trajectories that docked

according  to  our  docking  criteria.  We  recorded  22  docked  trajectories,  corresponding  to  a

collision frequency of 2.189 ± 0.099  x 10-3, with error bounds estimated by adding or removing

one docking trajectory and recomputing the collision frequency. Using Eq. (23), we obtained a

rate constant of k = 6.21 ± 0.28 x 107 M-1s-1. Our NAM rate is comparable to the experimentally

determined value35 of k = 2.86 x 108 M-1s-1, and the value calculated by Gabdoulline and Wade37

of  k =  3.88  x  108 M-1s-1  using NAM and atomistic  docking criteria.  Our  slower  NAM rate



constant compared to the previous theoretical value is likely due differences in the molecular

representations. Regardless, the exact docking definition does not impact our question at hand,

which  is:  given the  same docking criterion,  will  the  NAM method and the  multi-molecular

simulation produce the same kinetic rate constants. 

Rate  constant  from  multi-molecular  simulation. The  second  order  rate  equation

describing the bimolecular association of barnase (A) and barstar (B) is given by  

 

d[AB]

dt
 k[A][B]

(26a)

where [A], [B], and [AB] are the concentrations of barnase, barstar and the docked encounter

complex, in units of M, respectively, and k is the intrinsic bimolecular rate constant with unit M-

1s-1. We can rewrite the rate equation as 

 

d[AB]

dt
 k'[B]

(26b)

where  k’ =  k[A],  in units s-1.  In the limit of small  t,  concentrations [A] ≈ [A]t=0 ,  the initial

barnase concentration, so Eq.(26b) assumes the form of a pseudo-first order rate equation. The

pseudo first-order rate constant  k’ can be obtained using the first passage time approach. We

simulated N independent systems of NA barnase and NB barstar molecules, and recorded the time

taken to  form the  encounter  complex for  the  first  time,  ti,  for  each system. The fraction of

trajectories docked at time t is given by 

 

Pdocked(t)  No. of systems with ti   t  / N (27)

The pseudo-first order rate constant  k’ can be determined from fitting on the plotted data of

Pdocked(t) against t, using 

 

Pdocked 1 exp k'(t d) 
(28)

where  τd is the dead time required for the system to equilibrate. Finally, the bimolecular rate

constant was computed from 

 

k  k' / A  t0 (29)



For the multi-molecular method, a cubic simulation box with periodic boundaries was used. The

box length is chosen such that electrostatic forces are sufficiently attenuated after 1 box length,

so the minimum image convention can be used, which was 320 Å.  Table 2 lists the number of

barnase and barstar monomers (NA and  NB respectively), in which one simulation  NA=124 and

NB=1 and another simulation in which  NA=1 and  NB=124. For each combination ~ 500 initial

configurations were generated by placing the molecules’ geometric centers on a grid at equal

separation and randomly assigned the type of molecule (barnase or barstar) based on NA and NB;

then  randomly  rotated  each  molecule.  Figure  3  illustrates  a  representative  initial  system

configuration. 

The fitted values of  k’ and τd are also presented in Table 2. Correlation coefficients for

fitting the data to the pseudo-first order rate equation (Eq. 28) are in the range of 0.977-0.989,

providing support that the encounter complex formation can indeed be approximated as a first-

order reaction for small t. Standard errors for multi-molecular rates were computed using a jack-

knife approach: a single docking event was removed, the remaining data was refited to Eq. 28 to

obtain kJi’, and the process repeated for all Nd docking events. The resulting standard errors in k

and k’, given by

 

 

J mean
2  Nd 1  k'J i k'  2

/Nd
j 1

Nd


(30) 

are reported in Table 2. To assess convergence, we monitored the fit quality (through correlation

coefficients  R2)  and  k’ as  we  include  successively  longer  docking  times  into  the  fit

(Supplementary figures S1(a)-(b)). We confirmed convergence by observing (i) final  R2 values

have converged to 0.38% (for  NA=124:NB=1) and 1.00% (for  NA=1:NB=124) , and (ii)  final  k’

values have converged to 3.52% (for  NA=124:NB=1) and 0.87% (for  NA=1:NB=124). The rates

calculated, 7.45 x 107 M-1s-1  and 8.82 x 107 M-1s-1, are still within the same order of magnitude

compared to experimental and previous in silico NAM rates, however the rate constants from the

multi-molecular simulation are clearly 15-30% faster. Since both rate calculation methods used

exactly  the  same  protein  models,  force  field,  and  docking  definition,  the  difference  in  rate

constant can only arise from the differences in protein concentration.



4. CONCLUSION

We have  extended  our  semi-analytical  PB-SAM method for  solving  the  linearized  Poisson-

Boltzmann equation by presenting expressions for computing the forces and torques on the fly

that account for both self and full mutual polarization effects. We have applied the PB-SAM

method to model the systematic force in a Brownian dynamics simulation to study the diffusion-

limited association of barnase and barstar under crowding conditions. 

We demonstrated that  the traditional method of computing bimolecular  rate  constants

using  the  Smolouchowski-based  NAM  method38,  which  neglects  intra-species  interaction,

underestimates the rate constant by ~15-30%. Nonetheless, our association rate constants show

modest enhancement under crowding conditions that are in line with experiments that have used

both large agents such as PEG or small crowders such as ethylene glycol in which influence on

barnase and barstar association rates were also found to be small3, 4. The common explanation for

the marginally faster rate constant using the multi-molecular method is that the slowed diffusion

of  protein  molecules  in  general  is  balanced  against  the  intra-species  electrostatic  repulsion

andsteric hindrance that effectively reduces the available diffusion space to speed up the inter-

species encounter. In this particular case of barnase and barstar under pseudo-first  order rate

conditions, the interacting protein in excess is behaving no differently than a steric crowder that

are represented by excluded volume spheres2. 

The  PB-SAM approach combined with Brownian dynamics simulated under  periodic

boundary conditions provides a  new methodological  approach to  systematically  studying the

effects of complex interactions between crowders and target proteins  on kinetics and mechanism

of  protein-protein  association.  Future  improvements  would  include  improved  parallelization,

hydrodynamic forces, and incorporation into a community simulation code.

SUPPLEMENTARY INFORMATION. We have supplied a  summary of  the  analytical  and

numerical re-expansion operations and convergence of the rate equations with longer simulation

times  and  docking  events. This  information  is  available  free  of  charge  via  the  Internet  at

http://pubs.acs.org/.

http://pubs.acs.org/
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TABLES

Table 1. Contact sphere pairs for docking criteria. Formation of encounter complex is defined as
two or more contact sphere pairs having surface-to-surface distances within 3.5 Å.

Barnase Barstar
Corresponding barnase:barstar

contact-pair in Wade[]Sphere Center Sphere
radius

Sphere Center
Sphere
radius

x y z x y z
28.30

1
44.68

9 7.816 1.824
23.55

6
36.17

6 1.911 1.661 NH2 Arg-59 : OE1  Glu-76      
22.93

1
39.92

6 16.517 7.382
38.50

1 41.571 -3.117 8.670 O     His-102 : ND2 Asn-33      
40.82

8 43.274 15.283 1.721
41.59

0 30.319 10.515 6.539 OE2 Glu-60  :    N   Leu-34
25.16

6 27.428 7.651 2.827
30.87

6 43.257 -3.615 2.920 N Arg-59      :  OD1 Asp-35     
30.21

9
46.39

7 8.927 1.487
29.51

4 34.511 -1.557 3.946 NZ Lys-27     : OG1 Thr-42      
26.67

1
32.09

2 10.255 1.487
30.99

1 44.349 3.364 3.917 O Arg-83       : OH  Tyr-29   
37.15

8 42.422 20.865 5.717
24.71

6 37.671 2.256 2.769 NH2 Arg-83  : OD1 Asp-39
37.15

8 42.422 20.865 5.717
28.56

1
43.73

0 4.147 1.824 NH1 Arg-83  :   O    Gly-43

Table 2. Bimolecular rates of association for barnase and barstar. The first row is the kinetic

rate calculated using the NAM method38 in which inter-protein interactions are not represented.

The next two entries correspond to the evaluation of a pseudo-first order rate constant in which

either  barnase  or  barstar  is  in  excess  of  the  other  protein.   is  the  ratio  of  the  number  of

successful docking events relative to the number of trajectories simulated.  The rate  constant

using NAM is evaluated from Eq. 23 while the pseudo-first order rate constant is determined

from the fit to mean first passage docking data using Eqs. 27-29. R2 is the measure of quality of

fit. The experimental rate value is k = 2.86 x 108 M-1s-1, and the value calculated by Gabdoulline

and Wade37  is k = 3.88 x 108 M-1s-1

NA Barnase [M] NB Barstar [M]  Pseudo 1st order values from fitting k [M-1s-1]
k’ [ ns-1] td [ns] R2

1 5.068 x 10-5 1 5.068 x 10-5 22/10531 N/A N/A N/A 6.21 ± 0.28 x 107

124 6.284 x 10-3 1 5.068 x 10-5 8/100 5.540 ± 0.271 x 10-4 3.524 0.989 8.82 ± 0.43 x 107

1 5.068 x 10-5 124 6.284 x 10-3 9/500 4.679  ± 0.248 x 10-4 2.027 0.977 7.45 ± 0.39 x 107



FIGURES

Figure 1. Surface representation of barnase and barstar under the PB-SAM model. (a) barnase

and (b)  barstar  using discretization  tolerance  of  1.0  Å at  the  interface  and 5.0 Å otherwise

(‘s5i1’); (c) barnase and (d) barstar using tolerance of  0.5 Å at the binding interface and 2 Å

otherwise (‘s2i0.5’). 

Figure 2. Docked barnase and barstar encounter complexes. (a) the docked complex (1BRS) of

barnase (red) and barstar (orange) under the s5i1 representation. (b-d) representative encounter

complexes under our docking criteria.

Figure 3.  A representative initial configuration for the multi-molecular method, showing 124

barnase molecules (red/white/blue spectrum) and 1 barstar (green) placed in a periodic cubic box

of length L = 320Å. The starting configuration is generated by placing the geometric center of

each molecule on a 5 x 5 x 5 grid, and the molecule type (barnase or barstar) and orientation are

then randomly assigned. 
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Figure 1. Yap and Head-Gordon
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Figure 2. Yap and Head-Gordon 



Figure 3. Yap and Head-Gordon 




