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A novel physiological role for ARF1 in the 
formation of bidirectional tubules from the Golgi

ABSTRACT Capitalizing on CRISPR/Cas9 gene-editing techniques and super-resolution na-
noscopy, we explore the role of the small GTPase ARF1 in mediating transport steps at the 
Golgi. Besides its well-established role in generating COPI vesicles, we find that ARF1 is also 
involved in the formation of long (∼3 µm), thin (∼110 nm diameter) tubular carriers. The an-
terograde and retrograde tubular carriers are both largely free of the classical Golgi coat 
proteins coatomer (COPI) and clathrin. Instead, they contain ARF1 along their entire length 
at a density estimated to be in the range of close packing. Experiments using a mutant form 
of ARF1 affecting GTP hydrolysis suggest that ARF1[GTP] is functionally required for the tu-
bules to form. Dynamic confocal and stimulated emission depletion imaging shows that 
ARF1-rich tubular compartments fall into two distinct classes containing 1) anterograde car-
goes and clathrin clusters or 2) retrograde cargoes and coatomer clusters.

INTRODUCTION
ADP-ribosylation factor (ARF) family proteins are GTPase regulators 
of vesicle coat assembly and disassembly (Donaldson and Jackson, 
2011). Their activation cycle is tightly spatially and temporally regu-
lated by guanine nucleotide exchange factors (GEFs) that catalyze 
exchange of GDP with GTP on ARFs and GTPase-activating proteins 
(GAPs), which catalyze the hydrolysis of GTP on ARFs. The most 
abundant (Popoff et al., 2011) and well-studied member of the ARF 
family is ARF1, which has a well-established role in the assembly and 

budding of COPI vesicles at the Golgi (Kahn and Gilman, 1984; 
Ostermann et al., 1993; Bremser et al., 1999), namely, ARF1[GDP] is 
recruited to the Golgi membrane by p24 family proteins (Gommel 
et al., 2001), where it is activated by the GEF GBF1 (Claude et al., 
1999). Active ARF1[GTP] then recruits coatomer (Serafini et al., 1991; 
Palmer et al., 1993) for the formation of COPI-coated vesicles.

Visualization of the dynamics and nanoscale organization of ARF1 
in living cells has been challenging due to the difficulty of imaging 
molecular processes in the intrinsically crowded perinuclear area us-
ing standard, diffraction-limited imaging techniques. Another limita-
tion lies in the overexpression of single components of such machin-
ery, as these processes are tightly regulated at the endogenous 
level, and any stoichiometric disturbance could result in artifacts.

In addition to its role in COPI vesicle biogenesis implicated in 
retrograde and intra-Golgi transport, ARF1 has been also shown to 
control the budding of a wide variety of other types of coated vesi-
cles. It recruits the adaptor protein complexes AP1, AP3, and AP4, 
as well as GGA complexes (Stamnes and Rothman, 1993; Traub 
et al., 1993; Ooi et al., 1998; Boehm et al., 2001; Bonifacino, 2004) 
and exomer complexes (Paczkowski and Fromme, 2014) at the 
trans-Golgi network (TGN).

Technological advances in the field of live-cell light microscopy 
imaging in recent years have enabled tubular transport intermediates 
to be visualized alongside classical transport vesicles (Martinez-
Alonso et al., 2013). Both anterograde (ER-to-Golgi) and retrograde 
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cytoplasmic tubules (Figure 1c). An average of 82 ± 31 total cyto-
plasmic tubules/cell were observed in ARF1EN-Halo cells, whereas 
only 15 ± 11 tubules were observed in cells overexpressing ARF1-
Halo. The same trend was observed for Golgi-associated tubules, 
with 6.7 ± 1.7 tubules/cell in the gene-edited cell line versus 0.4 ± 
0.5 tubules/cell when ARF1 was overexpressed. Of note, chemical 
fixation with 4% paraformaldehyde (PFA) significantly disrupted tu-
bule integrity in all cases (Figure 1c).

We then used stimulated emission depletion (STED) microscopy 
to better discern cis from trans cisternae, which revealed that 
ARF1EN-Halo was distributed throughout the Golgi stack (Supple-
mental Figure S1). The remaining peripheral structures labeled by 
ARF1EN-Halo were identified as ER–Golgi intermediate compart-
ments (ERGICs) and recycling endosomes (Supplemental Figure S2). 
Live-cell STED imaging showed that the diameter (full-width at half-
maximum [FWHM]) of the Golgi-derived tubules was 110 ± 20 nm 
(Figure 1, e–g).

Of importance, the edited cells did not show any defect in secre-
tory transport (Supplemental Figure S3a), strongly supporting that 
endogenously tagging ARF1 at the C-terminus does not interfere 
with normal cellular function. In addition, ARF1EN-Halo cells are mor-
phologically comparable to unedited cells (Supplemental Figure S3, 
c–f). Fluorescence recovery after photobleaching experiments 
showed that ARF1EN-Halo cycles on and off the Golgi membranes 
with a half time of 30 ± 3 s (Supplemental Figure S3g). This rate is 
approximately twofold slower than previously reported (Presley 
et al., 2002) when ARF1 was overexpressed. Presumably, increasing 
the concentration of ARF1 in the cytosol by overexpression is ex-
pected to increase the rate of association of ARF1[GTP] to the Golgi 
and could readily explain this difference, which underscores the im-
portance of mammalian gene-editing techniques to address native 
function. We also confirmed that ARF1EN-Halo dissociated from the 
membrane in the presence of the ARF1 nucleotide exchange inhibi-
tor brefeldin A (BFA; Supplemental Figure S4). We do not believe 
that the Halo-tag or its structural features induced tubulation, as 
Golgi-proximal tubules were also observed with enhanced green 
fluorescent protein (EGFP)-, SNAP-, and hemagglutinin (HA)-tagged 
(under glutaraldehyde fixation) genome-edited ARF1 (Supplemen-
tal Figure S5). Of importance, ARF1EN-Halo–positive tubules were 
also observed in a haploid (HAP1; Essletzbichler et al., 2014) gene-
edited cell line (Supplemental Figure S6), ruling out that ARF1EN-
Halo diffuses into the tubules only as (passive) cargo in the hetero-
zygous HeLa cell line.

ARF1 GTPase activity is required for the formation of 
Golgi-derived tubules
When ARF1 binds GTP, it changes its conformation to expose its 
N-terminal myristoylated amphipathic helix, leading to its insertion 
into Golgi membranes. Indeed, it is this insertion that results in the 
tubulation of artificial bilayer membranes in vitro (Beck et al., 2008). 
This was also observed in cells when ARF1 was overexpressed 
(Krauss et al., 2008). However, the relevance of these observations 
was unclear because nonphysiological concentrations were used in 
both cases.

To test whether, at physiological concentrations, ARF1EN-Halo 
GTPase activity is a major factor in tubulation of Golgi membranes, 
we overexpressed either wild-type ARF1-GFP or the “on”-mutant 
ARF1-Q71L-GFP (slower GTP hydrolysis rates) in ARF1EN-Halo cells 
and monitored the frequency and length of the tubular ARF1EN-
Halo–positive transport intermediates in time-lapse experiments 
(Figure 2). In cells expressing relatively low concentrations of ARF1-
Q71L-GFP (corresponding to an average mean GFP intensity at the 

(Golgi-to-ER) markers have been observed in putative tubular trans-
port intermediates (Presley et al., 1997, 1998; Sciaky et al., 1997), 
suggesting a role for tubular transport at the ER–Golgi interface. 
The small GTPase Rab6 is believed to be involved in a COPI-inde-
pendent tubular-vesicular retrograde pathway from the Golgi back 
to the ER (White et al., 1999; Sengupta et al., 2015). Tubular 
post-Golgi transport intermediates have also been observed when 
imaging pulsed anterograde cargo such as Vesicular Stomatitis virus 
Glycoprotein (VSV G; Hirschberg et al., 1998; Toomre et al., 1999; 
Polishchuk et al., 2003) and E-cadherin (Lock and Stow, 2005).

There is little insight into the molecular mechanisms that pro-
duce tubules from Golgi membranes, probably accounting for the 
slow rate of progress being made in their detailed characterization. 
Several molecular mechanisms are known to produce or stabilize 
tubules from plasma membranes (McMahon and Boucrot, 2011) 
and from endosomes (Cullen, 2008); however, none of the proteins 
responsible in these cases has been reported to be located in the 
Golgi, suggesting that other tubulation mechanisms must be in-
volved there. In this regard, it is important that Beck et al. (2008) 
discovered that ARF1[GTP], acting as a dimer, can drive artificial 
lipid membranes into tubules and suggested a structural mecha-
nism that could explain this finding. However, the physiological rel-
evance of this important observation was difficult to establish due to 
the presence of endogenous ARF1 (Krauss et al., 2008). Another 
mechanism that has been suggested is that certain membrane lipids 
might contribute to deforming membranes into tubules based on 
their local production combined with their intrinsic propensity for 
curvature. Specifically, two lipid-modifying enzymes, lysophospha-
tidic acid acyltransferase-γ and phospholipase A2-α, were demon-
strated to have the ability to modulate the fission of tubules into 
COPI vesicles in vitro (Yang et al., 2011).

To investigate more effectively the possible role of ARF1 in 
Golgi-derived tubule formation, we combined gene editing to visu-
alize tagged ARF1 (and related proteins) at endogenous expression 
levels with super-resolution imaging. This enabled us to definitively 
visualize and establish the composition of individual Golgi-derived 
tubules in vivo.

RESULTS
ARF1EN-Halo localizes to Golgi-derived tubular transport 
intermediates
Although the role of ARF1 in the recruitment of machinery necessary 
for the assembly of transport vesicles at both the cis and trans faces 
of the Golgi is well established through biochemistry and genetics 
studies, the understanding of the spatiotemporal organization of 
these events in living cells is very limited (Presley et al., 2002). To be 
able to image ARF1 at physiological expression levels in living cells, 
we endogenously tagged ARF1 at its C-terminus with a Halo-tag 
using clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9. We then compared its localization with overex-
pressed ARF1-Halo (Figure 1, a–c) and validated the successful 
gene editing via Western blot (Figure 1d). Strikingly, only endoge-
nous tagging of ARF1 allowed the visualization of multiple concur-
rent tubular structures throughout the cytoplasm of the cells 
(Figure 1b and Supplemental Video S1), whereas overexpressed 
ARF1-Halo exhibited a substantial amount of cytoplasmic back-
ground and low occurrence of clearly identifiable tubular structures 
(Figure 1a); we believe the difficulty in identifying them was due to 
the high cytoplasmic background of soluble overexpressed (and 
tagged) ARF1 and the competition with endogenous ARF1. Next 
we quantified the number of ARF1EN-positive tubular structures 
based on their origin as 1) Golgi-derived tubules and 2) total 
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Q71L-GFP, the frequency of Golgi tubules 
dropped drastically (Figure 2, c and e). The 
underlying mechanism of this second phe-
nomenon is not known, but GTP hydrolysis 
might be needed to both initiate the tu-
bules and ultimately limit their growth.

ARF1-regulated anterograde tubular 
carriers attach to microtubules that 
guide them toward the cell periphery
To test whether the movement of ARF1EN-
Halo-labeled tubular carriers is microtubule 
dependent, we treated ARF1EN-Halo cells 
with the microtubule-depolymerizing drug 
nocodazole (Figure 3, a–d). Using time-
lapse experiments, we quantified the length 
(Figure 3c) and frequency (Figure 3d) of 
Golgi-derived tubules per minute. Un-
treated cells exhibited an average tube 
length of 2.9 ± 1.6 µm with a frequency of 
7.8 ± 3.7 tubules/min, whereas nocodazole-
treated cells exhibited a significant drop to 
1.5 ± 1.2 µm with a frequency of 1.4 ± 1.1 
tubules/min, indicating a clear dependence 
on polymerized microtubules. To image the 
relationship between microtubules and 
ARF1 tubules, we took advantage of a re-
cently developed labeling strategy for two-
color STED imaging in living cells (Bottanelli 
et al., 2016) using the STED-compatible dye 
pair siliconized rhodamine (SiR), in the form 
of the microtubule probe SiR-tubulin (Luki-
navicius et al., 2013, 2014), and ATTO590 
to label ARF1EN-Halo. Live-cell STED time 
lapses highlight that Golgi-derived tubules 
appeared to extend along and travel on mi-
crotubule tracks (Figure 3, e–g), as ARF1 tu-
bules extensively colocalized with microtu-
bules in space and time.

We next tracked the tubules to gain in-
sight into the directionality of transport. Tu-
bules emerging from the Golgi exhibited an 
average speed of 0.99 ± 0.05 µm/s (Figure 
3, h and i), which is comparable to the veloc-
ity of motor proteins traveling along micro-
tubules such as kinesin or dynein (Muller 
et al., 2010). Estimates of the pattern of 
optical flow around the Golgi were carried 
out with the Python Microscopy Envi-
ronment (PYME; http://david_baddeley 
.bitbucket.org/python-microscopy/; see the 
Supplemental Methods). ARF1EN-Halo shows 
a modest bias for outward versus inward 
flow (Figure 3, j and k), indicative of net 
movement of ARF1EN-Halo-positive struc-
tures away from the Golgi area. One simple 
interpretation of this would be that some 

tubules are headed toward the cell periphery, whereas others are 
headed inward. Note, however, that the ARF1EN-Halo flow measure-
ments do not explicitly segment tubules but also include the motion 
of ARF1-positive ERGIC and endosomal compartments, as well as 
the Golgi edge, all of which are observed to “wiggle” in place. 

Golgi of 65 ± 24 A.U.), we observed a significant increase in the 
length of the ARF1EN-Halo tubules (4.5 ± 1.4 µm; Figure 2, b and d) 
compared with cells expressing similar concentrations of wild-type 
ARF1-GFP (2.8 ± 0.5 µm; Figure 2, a and d). Of interest, in the popu-
lation of cells with higher concentrations of Golgi-localized ARF1-

FIGURE 1: Endogenous tagging of ARF1 highlights Golgi-derived tubular structures. Cells 
either transiently overexpressing ARF1-Halo (a) or expressing gene-edited ARF1EN-Halo (b) were 
labeled with SiR-CA and imaged with a confocal microscope. (b) A Golgi-derived tubule is 
highlighted by arrows. (c) Total numbers of tubules/cell and Golgi-derived tubules/cell were 
quantified in both cells both live and after fixation with 4% PFA. Result of a two-tailed, unpaired 
t test. ***p < 0.001, ****p < 0.0001 (n = 10 cells). (d) Gene editing was validated via Western 
blot using an antibody that recognizes class I ARFs (ARF1 and ARF3) due to the high protein 
sequence homology. The added amounts of ARF1EN-Halo (∼35%) and unedited ARF (∼70%) 
in the ARF1EN-Halo cell line match the amount of ARF1 (set to 100%) in CCL-2 HeLa cells. 
(e, f) ARF1EN-Halo cells were imaged on a custom-built STED setup. (g) The average width 
(FWHM) of the Golgi tubules was 110 ± 21 nm (n = 20). All STED images were deconvolved; 
the line profile represents raw image data. All error bars represent SD. Scale bars, 10 μm (a, b), 
5 μm (cropped images, a, b), 5 μm (e), 2 μm (f).
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ARF1EN-Halo tubules also contain clathrin. 
Because clathrin is tightly packed in the peri-
nuclear area in proximity to the Golgi, STED 
imaging is necessary to elucidate the spatial 
relationship between ARF1EN-Halo and clath-
rin (Figure 4). SNAP–clathrin light chain (CLC) 
clusters were observed on many of the 
ARF1EN-Halo tubules emanating from the 
Golgi (Figure 4, a–c, and Supplemental 
Video S2). The clathrin-containing clusters 
were ∼100 nm (99 ± 24 nm) in size (Figure 4d) 
and appeared as puncta that were distrib-
uted in an irregular manner along the length 
of the tubules, consistent with clathrin-coated 
buds. There was no enrichment of ARF1EN-
Halo in the SNAP-CLC buds (Figure 4e). As 
per the relative frequency of clathrin buds, 73 
± 13% (corresponding to 4.5 ± 1.2 tubules/
Golgi) of the ARF1EN-Halo tubular structures 
emanating from the main Golgi body were 
decorated by SNAP-CLC (Figure 4f).

Multiple distinct carriers form at the TGN 
and shuttle distinct cargoes to the plasma 
membrane (Guo et al., 2014). The fact that 
these tubules contained ARF1EN-Halo along 
their length and also clathrin clusters implied 
that they may form at the TGN, which is the 
site of ARF1-dependent clathrin-coated ves-
icles budding from the Golgi (Stamnes and 
Rothman, 1993; Traub et al., 1993). If these 
are indeed anterograde-directed carriers, 
these tubules should contain at least a sub-
set of anterograde-directed cargoes. Possi-
ble candidate cargoes include “nonraft” 
cargo exemplified by VSV G protein (Keller 
et al., 2001) and “raft”-directed glyco-
sylphosphatidylinositol (GPI)-anchored pro-
teins (Deng et al., 2016) (Figure 5). To distin-
guish between these possibilities, we first 
used an engineered GPI-containing protein 
that spontaneously aggregates in the ER 
to prevent its exit. Exit is then triggered 
by drug-induced depolymerization (Rivera 
et al., 2000). When released from its aggre-
gated state in the ER, the “raft” cargo GFP-
FM4-GPI was rarely observed (only in 3 ± 5% 
of the cases) in the ARF1EN-Halo tubules 
(Figure 5, a–c and f). GPI-anchored proteins 
are known to cluster into specialized lipid 
budding platforms at the TGN that are en-
riched in sphingolipids, sterols, and satu-
rated lipids (Surma et al., 2012).

To test a “nonraft” class of anterograde 
cargo, we used a reversible temperature-
sensitive folding mutant of VSV G (ts045) 

that accumulates in the ER at the restrictive temperature but then 
folds and exits from the ER after shifting to the permissive tem-
perature of 32°C. Thirty minutes after triggering release from the 
ER, VSV G–SNAP was strikingly observed in 80 ± 13% of ARF1EN-
Halo–positive, Golgi-derived tubules (Figure 5, d, e, and g, and 
Supplemental Video S3). This was further supported by two-color 
STED of VSV G–SNAP and CLC-Halo, which showed that the 

Because these structures comprise a larger fraction of the ARF1EN-
Halo labeling than the tubular structures, they account for the bulk 
of the back-and-forth motion, and we expect the net motion of tu-
bular carriers to be significantly higher.

The observed trend for net outward flow of ARF1-positive struc-
tures, together with the interaction of ARF1 with clathrin adaptors at 
the TGN (Guo et al., 2014), prompted us to test whether some of the 

FIGURE 2: ARF1 GTPase activity is required for the formation of Golgi-derived tubules. 
ARF1EN-Halo cells (magenta) were electroporated with plasmids encoding for (a) ARF1-GFP and 
for ARF1-Q71L-GFP (green) at (b) low and (c) high expression levels. (a, b) Examples of tubules 
are highlighted by arrows. (d) Cells expressing low levels of ARF1-Q71L-GFP show a significant 
increase in the length of tubules. Result of a two-tailed, unpaired t test.***p < 0.001 (ARF1-GFP, 
13 cells; ARF1-Q71L-GFP, 20 cells). (e) When the mean GFP fluorescence at the Golgi of 
ARF1-Q71L-GFP reaches a certain threshold (86 A.U.), the frequency of tubules drops drastically. 
Data points from 20 different time-lapse experiments were fitted to a sigmoidal curve (ARF1-
Q71L-GFP). (f) No change in frequency of the tubules is observed when ARF1-GFP is 
overexpressed (13 time-lapse experiments). Error bars represent SD. Scale bars, 10 μm.
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Testing this hypothesis required cells containing tagged coat-
omer and ARF1 both expressed at endogenous levels. We used 
CRISPR/Cas9 genome editing to insert the coding sequence for the 
SNAP tag downstream of the β-COP gene in the ARF1EN-Halo back-
ground (Figure 6). The β-COPEN-SNAP protein localizes to the rims 
of the Golgi (Figure 6, a and b) and peripheral ARF1EN-Halo–positive 
ERGIC puncta (Figure 6, a and c). Western blot analysis showed that 
β-COPEN-SNAP is the dominant species and the untagged β-COP is 
hardly expressed (Figure 6d). Of importance, the double-gene-ed-
ited cells did not exhibit any functional and morphological defects 
(Supplemental Figure S3).

Next we used deep–total internal reflection fluorescence (TIRF; 
Tokunaga et al., 2008) dual-color imaging to characterize the spatial 
relationship between coatomer and ARF1-tubules in live cells at 
3 Hz. Strikingly, we observed that the coatomer was present in dis-
tinct clusters along some of the ARF1EN-Halo tubules, as observed 
earlier for clathrin (Figure 6e and Supplemental Video S4). The 

Golgi-derived, VSV G–positive tubules are also decorated by clath-
rin clusters (Supplemental Figure S7). Although ARF1EN-Halo–posi-
tive tubules and VSV G-SNAP colocalize when exiting the Golgi 
(Figure 5, d and e), these carriers were not observed to fuse with 
the plasma membrane (Supplemental Figure S8), which suggests 
that ARF1EN-Halo may mainly be involved in the formation of TGN-
to-cell periphery carriers and that final delivery of cargo requires a 
further sorting step.

A subpopulation of ARF1EN-Halo-coated tubular 
intermediates are retrograde Golgi-to-ER carriers
The previous experiments support that ∼70% of the Golgi-derived 
tubules are directed anterograde, carrying cargo such as VSV G pro-
tein, and are decorated with clusters of clathrin. One attractive pos-
sibility is that the remaining ∼30% of the ARF1-containing tubules 
carry retrograde cargo and may be positive for coatomer (COPI), 
which is recruited to Golgi membranes by ARF1.

FIGURE 3: ARF1EN-Halo tubules move toward the cell periphery on microtubule tracks. The length and frequency of 
tubules in (a) untreated control (CTRL) ARF1EN-Halo cells and (b) nocodazole-treated (+Noc) ARF1EN-Halo cells. (c) In 
nocodazole-treated cells, the length of the tubules is strongly reduced, as shown by the cumulative distribution 
functions (CDF) of both treated and control cells. (d) In addition, the frequency of the tubules is greatly reduced. Results 
of a two-tailed, unpaired t test. ***p < 0.001 (10 time-lapse movies for both CTRL and +Noc cells). (e–g) ARF1EN-Halo 
(green) cells were treated with SiR-tubulin (magenta) to label microtubules and imaged on a custom-built STED 
microscope. (f, g) Examples of tubules emanating from the Golgi are highlighted by arrows. (h) Manual tracking with 
ImageJ of ARF1EN-Halo Golgi-derived tubules reveals (i) an average speed of 0.99 ± 0.05 μm/s. (j, k) Quantification of 
the outward optical flow of ARF1EN-Halo fluorescence with respect to the distance from the perinuclear Golgi.  
(j) ARF1EN-Halo flow is represented as blue-to-red arrows to visualize directionality. ARF1EN-Halo flow shows a modest 
bias for outward vs. inward flow. All STED images were deconvolved. Error bars represent SD (d) and SEM (i, k). Scale 
bars, 5 μm (a, b), 5 μm (e), 500 nm (f, g), 10 μm (h–j).
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by coatomer clusters when KDEL-R-GFP was expressed in β-COPEN-
SNAP cells (Figure 7, b and d).

In summary, these data show that there are at least two distinct 
types of ARF1-dependent/ARF1-containing tubules forming at the 
Golgi. About two-thirds of the tubules contain anterograde cargo 
and are sparsely decorated by clathrin clusters along their length. 
The remaining one-third instead contain retrograde-directed cargo 
and are sparsely decorated by coatomer clusters along their lengths. 
ARF1 did not seem to be concentrated in the coatomer clusters on 
the tubules (Figure 6, i and j). This was particularly surprising be-
cause ARF1 was previously found to be highly concentrated in COPI 
buds compared with surrounding Golgi (Orci et al., 1997). One pos-
sibility, considered in the Discussion, is that the tubule membrane, 
unlike the Golgi membrane, is highly enriched in ARF1 due to the 
mechanism of ARF1-dependent budding.

DISCUSSION
ARF1-dependent bidirectional tubular transport from  
the Golgi
Endogenously expressed ARF1EN-Halo labels transient tubular car-
riers that are readily observed to form at the Golgi ribbon (Figure 1). 
The effects of a mutant ARF1 that poorly hydrolyzes GTP (Figure 2) 
suggest that ARF1[GTP] functions in the formation and/or stability 
of these tubules. Although modifications at the C-terminus of ARF1 
have been suggested to alter ARF1 in vitro kinetics (Jian et al., 
2010), we believe that it is unlikely that the Halo-tag or its structural 

separations between the coatomer clusters along the length of 
these tubules remain constant until the tubules collapse into a 
point-shaped object, likely reflecting fusion with the target mem-
brane (Figure 6e).

These studies were further extended using live-cell STED imaging 
experiments in which β-COPEN-SNAP and ARF1EN-Halo were labeled 
with SiR-BG and 590-CA, respectively (Figure 6, f–k), allowing us to 
clearly visualize individual ARF1EN-Halo–positive tubules extending 
from the Golgi ribbon. As observed earlier (Figure 4), the staining of 
β-COPEN-SNAP was concentrated in immobile clusters (Figure 6, f 
and g, and Supplemental Video S5), which was revealed by super-
resolution to be ∼89 ± 24 nm in size, consistent with COPI buds. Of 
importance, 31 ± 19% of the observed ARF1EN-Halo–positive tubular 
carriers (corresponding to 2.5 ± 2.3 tubules/Golgi) were also positive 
for β-COPEN-SNAP (Figure 6h), suggesting that the coatomer-deco-
rated tubules account for most of the clathrin-free ARF1-tubules and 
consistent with the idea that they may be retrograde carriers.

Next we tested whether retrograde markers were enriched in 
the coatomer-positive ARF1-tubules, using a tagged KDEL-receptor 
SNAP-tag fusion (KDEL-R-SNAP). This receptor is known to trans-
port KDEL-tagged protein retrograde from the Golgi back to the ER 
and has been observed in tubular structures (Sciaky et al., 1997; 
Presley et al., 1998). About 22 ± 4% of the ARF1EN-Halo–positive 
tubules were found to contain KDEL-R-SNAP (Figure 7, a and c, and 
Supplemental Video S6). In addition, close to all (94 ± 9%) of the 
KDEL-R-GFP–positive tubular structures were found to be decorated 

FIGURE 4: The majority of ARF1 tubules are decorated by clathrin clusters. ARF1EN-Halo (green) cells were 
electroporated with a plasmid encoding for SNAP-CLC (magenta). (a–c) Cells were labeled with 590-CA and SiR-BG for 
two-color live-cell STED imaging on a custom-built microscope. (b, c) Examples of Golgi-derived tubules are highlighted 
by arrows. (d) A two-dimensional Lorentzian function was fitted to images of clathrin clusters, and FWHM of the fitted 
functions is represented in histograms. The average size is 99 ± 18 nm for both clathrin clusters on the tubules and on 
the Golgi (50 clusters). (e) A line profile along the tubule in b shows that there is no enrichment of ARF1 in the clathrin 
clusters. (f) Quantification of the number of clathrin-positive tubules shows that 73 ± 13% of the tubules are decorated 
by SNAP-CLC clusters. All STED images were deconvolved; the line profile represents raw image data. Error bars 
represent SD. Scale bars, 5 μm (a), 1 μm (b, c).
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HeLa cell line (Supplemental Figure S6); 3) a fraction of ARF1-Halo–
positive tubules contain KDEL receptor (Figure 7), and KDEL-posi-
tive tubules also are observed in cells with unedited ARF1; 4) no 
perturbation of cell morphology, and of importance, secretory 
trafficking was observed in ARF1-HALO edited cell lines; and 
5) untagged ARF1 is able to tubulate membranes in vitro (Beck 
et al., 2008).

features induced tubulation, for the following reasons: 1) ARF1-
positive, Golgi-proximal tubules were also observed with genome-
edited ARF1 tagged with EGFP or SNAP and, under glutaralde-
hyde fixation, with HA-tagged ARF1 (ARF1EN-HA; Supplemental 
Figure S5); 2) ARF1EN-Halo–positive tubules are observed in a 
gene-edited haploid HAP1 cell line, ruling out that ARF1-Halo did 
not actively contribute to the tubules observed in the heterozygous 

FIGURE 5: ARF1EN-Halo post-Golgi tubules contain the anterograde cargo VSV G-SNAP but not the raft-associated 
cargo GPI-GFP-FM4. ARF1EN-Halo cells were electroporated with GFP-FM4-GPI (a–c) and VSV G-SNAP (d, e) encoding 
plasmids. Cells were labeled with SiR-CA only (a–c) or 505-BG and SiR-CA (d, e). (a) Aggregated GFP-FM4-GPI was 
released from the ER by adding the disaggregating drug. (a–c) GFP-FM4-GPI was never observed in ARF1EN-Halo-
positive structures. (b, c) ARF1EN-Halo tubules devoid of GFP-FM4-GPI are highlighted by arrows. (d) VSV G-SNAP cells 
were grown overnight at 40.5°C and then shifted to 32°C on the microscope stage to release the cargo from the ER. 
(e) At ∼30 min after shifting the cells to the permissive temperature, tubules containing both ARF1EN-Halo and VSV 
G-SNAP were observed forming at the Golgi (arrows). (f) A negligible fraction of ARF1EN-Halo tubules contained the 
cargo GFP-FM4-GPI. The frequency of VSV G–positive tubules exiting the Golgi is 3 ± 1 tubules/min, and 80 ± 13% of the 
ARF1EN-Halo tubules also contained VSV G–SNAP (g). Error bars represent SD. Scale bars, 10 μm (a, c), 2 μm (b, d, e).
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and will necessarily concentrate ARF1[GTP] within such tubular re-
gions. If this same mechanism applied in vivo, we would expect that 
ARF1 would be similarly close packed on the surface of the tubules. 
We would further expect that such close packing would exclude 
COPI or clathrin buds that can be triggered by ARF1 binding, be-
cause these would require a different local arrangement of ARF1 
subunits on the membrane directed by the geometry of coat bind-
ing as distinct from that of curved tubule membrane binding.

Beck et al. (2008) found that dimers of ARF1[GTP] shape mem-
branes into tubules in vitro according to a simple physical-chemical 
mechanism in which a pair of spatially separated, solvent-exposed 
and myristoylated amphipathic helices insert into the outer leaflet, 
increasing its surface area relative to the inner leaflet. This expansion 
can only be accommodated by conversion of the ARF1[GTP]-con-
taining region into a tubular geometry. This mechanism necessarily 
requires that ARF1 occupies a large fraction of the tubule surface 

FIGURE 6: Coatomer clusters decorate the remaining fraction of ARF1EN-Halo tubules. (a–c) ARF1EN-Halo and 
β-COPEN-SNAP double-gene-edited cells were labeled with 505-BG (green) and SiR-CA (magenta) for confocal imaging. 
β-COPEN-SNAP localizes to (b) the rims of the Golgi cisternae and (c) peripheral ERGIC structures. (d) The correct 
tagging of endogenous β-COP was validated via Western blot. (e) ARF1EN-Halo and β-COPEN-SNAP cells were imaged 
with deep-TIRF at a frame rate of ∼3 frames/s on an OMX microscope. (e) Golgi-derived tubular structures labeled by 
ARF1EN-Halo and decorated by clusters of β-COPEN-SNAP were observed, and the distance between the clusters of 
coatomer remained constant. (f, g) The same double-gene-edited cells were labeled with 590-CA (green) and SiR-BG 
(magenta) for live-cell STED imaging on a custom instrument. (h) Single STED frames were used to quantify the number 
of coatomer-positive tubules/Golgi; 2.5 ± 2.3 tubules/Golgi were decorated by coatomer, which corresponds to 31 ± 
19% of the total tubules. (i, j) Line profile along a coatomer-positive tubule shows that there is no enrichment of 
ARF1EN-Halo in the β-COPEN-SNAP–positive clusters. (k) A two-dimensional Lorentzian function was fitted to images of 
coatomer clusters, and FWHM of the fitted functions is represented in histograms. The average size of coatomer 
clusters on the tubules is 89 ± 24 nm, similar to the size of clusters/buds at the Golgi (86 ± 24 nm). All STED images 
were deconvolved; the line profile represents raw image data. Error bars represent SD. Scale bars, 10 μm (a), 5 μm (b, c), 
2 μm (e), 5 μm (f), 1 μm (g, i).
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ARF1 tubular transport intermediates can account for a 
major portion of membrane flow out of the Golgi
The ability to perform time-lapse imaging experiments in living cells 
expressing tagged ARF1 at its physiological concentration also 
allows us to roughly estimate the contribution of the ARF1-depen-
dent tubules to the overall flow of membranes in the secretory path-
way (Figure 8 and Supplemental Information Note 2). By quantifying 
the rate of tubule production (number/cell/hour) and their average 
surface area, we can estimate the total amount of membrane flow 
and compare it with corresponding estimates of flow via COPII ves-
icles (ER-to-Golgi) and total membrane synthesis (mass doubling in 
the cell cycle). A detailed description of the calculations is given in 
Supplemental Information Note 2.

The rate of flow of membrane out of the ER due to COPII vesicles 
is estimated to be ∼6000 µm2/cell/h (Thor et al., 2009; Barlowe and 
Helenius, 2016). The net growth of post-ER membrane surface that 
occurs with each cell doubling consists mainly of Golgi and plasma 
membrane and for BHK cells is ∼3400 µm2 for the plasma mem-
brane and ∼1700 µm2 for the Golgi (Griffiths et al., 1984), totaling 
∼5100 µm2/cell. This requires ∼500 µm2/h of net membrane synthe-
sis over the ∼10-h doubling time of a BHK cell. To maintain its sur-
face area in the steady state against the loss due to anterograde 
flow, the ER in such a cell would therefore need to receive about 
∼5500 µm2/h (6000 − 500 µm2/h) of surface area returned to it from 
the Golgi.

To test these predictions, we would need to measure the sur-
face concentration (density) of ARF1 on the tubules. Quantitative 
analysis of our data using independent internal standards (COPI 
vesicles and microtubules) enabled us to estimate these densities 
(Supplemental Table S1 and Supplemental Information Note 1). 
ARF1 is present on both classes of Golgi-derived tubules at 
∼10,000–20,000 molecules/µm2. This is comparable to the den-
sity of ARF1 in COPI vesicles (calculated from the cryo–electron 
microscopy [EM] data of Dodonova et al. (2015)) of ∼20,000 mol-
ecules/µm2, and although only an estimate, it suggests that ARF1 
literally coats the surface of the tubules, as the simple physical-
chemical budding mechanism would suggest. Further in this di-
rection, Dodonova et al. (2015) predict that at this density of 
ARF1 (50–100 nm2 per ARF1 molecule), an induced radius of 
∼100 nm is expected. Because similar ARF1 densities were esti-
mated for the tubules, we conclude that ARF1 is a major driving 
force for tubulation processes at the Golgi, although other fac-
tors, such as the four-phosphate-adaptor protein/specific lipid 
environment and/or the coats COPI and clathrin, might further 
contribute to the molecular mechanism of tubule budding (Godi 
et al., 2004; Deborde et al., 2008).

Our data also suggest that ARF1EN-Halo tubules bud en bloc 
from the Golgi, as previously suggested by Polishchuk et al. (2003), 
and are not formed by homotypic fusion of many small vesicles.

FIGURE 8: ARF1 tubules represent a major membrane flow out of 
the Golgi. ARF1-dependent retrograde and anterograde tubules are 
tightly packed with ARF1EN-Halo and contain the cargoes KDEL 
receptor and VSV G, respectively. Clusters of coat proteins (clathrin 
and coatomer) are observed on the tubules. Retrograde tubules 
account for a flow of membranes of ∼360 μm2/h, ∼7% of the flow 
necessary for membrane balance, if one takes into account the 
anterograde flow of COPII vesicles (∼6000 μm2/h) and the growth of 
Golgi and post-Golgi membranes (∼500 μm2/h). Anterograde tubules 
account for ∼900 μm2/h, approximately threefold of what is needed 
for plasma membrane (PM) growth (∼340 μm2/h). MTOC, microtubule-
organizing center. 

FIGURE 7: Coatomer-positive tubules contain the retrograde marker 
KDEL receptor. (a) ARF1EN-Halo cells were electroporated with a 
KDEL-R-SNAP–encoding plasmid and labeled with 505-BG and SiR-CA 
for confocal imaging. KDEL-R-SNAP–containing tubules were also 
decorated by ARF1EN-Halo (arrows). (c) We found that 1.3 ± 0.3 
ARF1EN-Halo tubules/min also contained KDEL-R, which corresponds 
to 22 ± 4% of the total ARF1EN-Halo tubules observed. (b) β-COPEN-
SNAP cells were electroporated with a KDEL-R-GFP–encoding 
plasmid and labeled with SiR-CA for confocal imaging. Nearly all 
observed KDEL-R-GFP tubules were positive for Coatomer (arrows). 
(d) We counted 1.9 ± 1.1 KDEL-R-GFP/ β-COPEN-SNAP tubules/min, 
which corresponds to 94 ± 9% of the total number of tubules 
observed. Error bars represent SD. Scale bars, 10 μm (a), 5 μm (b).
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nologies) supplemented with 10% fetal bovine serum (Life Technol-
ogies) and penicillin/streptomycin to prevent contamination. Tran-
sient transfection of plasmid DNA was carried out using a NEPA21 
electroporation system (1 × 106 cells were mixed with 1–10 µg of 
plasmid DNA, depending on the desired expression levels). No-
codazole, H89, and BFA were all purchased from Sigma-Aldrich and 
used at the following concentrations: nocodazole, 100 µg/ml; H89, 
50 µM; and BFA, 100 µg/ml.

Release of GPI-FM4-GFP was carried out by adding the disaggre-
gating drug D/D solubilizer (Clontech) at a concentration of 1 µM.

For the horseradish peroxidase (HRP) secretion assay, HRP activ-
ity in cells and medium samples was assayed using the TMB+ sub-
strate (Dako) following manufacturer’s instructions.

Preparation of cells for live imaging
For all of the imaging experiments, cells were seeded on a glass-
bottom dish (3.5-cm diameter, No. 1.5; MatTek,) coated with fibro-
nectin (Millipore). For live-cell STED experiments, the dishes were 
cleaned with 1 M KOH for 15 min in a sonic cleaner before coating. 
Labeling of living cells with SNAP and Halo substrates for imaging 
was carried out for 1 h using 1–5 µM stocks. SiR-BG (SNAP-Cell-647) 
is available from NEB. SiR-CA was a kind gift of Promega. 590-CA 
was synthesized in the lab as described in Bottanelli et al. (2016). 
Labeling with SiR-tubulin (Spirochrome) was carried out for 1 h with 
1 µM probe. Uptake of Transferrin-568 (ThermoFisher Scientific) was 
carried out for 1 h at 37°C with 25 µg/ml fluorescent transferrin. An 
acid wash at pH 5 (50 mM 2-(N-morpholino)ethanesulfonic acid and 
150 mM NaCl) was carried out before imaging to remove any trans-
ferrin bound to the plasma membrane. All live-cell experiments 
were carried out at 37°C.

Molecular biology and CRISPR/Cas9 gene editing
See the Supplemental Information

Immunofluorescence
Immunofluorescence was carried out as described previously (Lavieu 
et al., 2014). Anti-Gpp130 and anti-Golgin97 antibodies were 
purchased from Covance and Abcam, respectively. Anti-rabbit 
Atto594 (Rockland), anti-mouse Atto594 (Sigma-Aldrich), and anti-
mouse- and anti-rabbit 635P (Abberior) secondary antibodies were 
used for the STED experiments.

STED imaging
STED imaging was carried out on a recently described custom-built 
setup (Bottanelli et al., 2016) and on a commercial Leica TCS SP8 
STED 3X. Imaging parameters on the custom setup were chosen as 
described previously (Bottanelli et al., 2016). On the Leica system, 
594 and 650 nm were selected as excitation wavelengths on a 
white-light excitation source for excitation of Atto590/Atto594 or 
SiR/STAR635P, respectively. HyD 1 and HyD 2 were set to 604- to 
644- and 665- to 705-nm detection windows. The 775-nm depletion 
laser was used to deplete both dyes. The two color channels were 
imaged sequentially line by line.

Image processing and statistical analysis
For presentation purposes, raw STED images and confocal time 
lapses were smoothed using a Gaussian filter with 1-pixel SD using 
ImageJ (Abramoff et al., 2004).

Live-cell STED movies were deconvolved to reduce noise using 
Richardson–Lucy deconvolution (Richardson, 1972; Lucy, 1974) im-
plemented in the PYME package. Manual tracking was carried out 
using the manual tracking plug-in of Fiji (Schindelin et al., 2012).

Based on these considerations, retrograde ARF1-tubules could 
account for only ∼7% of the area returned to ER to maintain mem-
brane balance. Whereas COPI selects its cargo by binding to the 
coat, we suggest that ARF tubules may select their cargo based on 
their intrinsic preference for curvature. If so, retrograde tubules are 
likely to function in the recycling of specific classes of lipid or protein 
cargo that are not carried by COPI vesicles. These putative cargoes 
remain to be identified. Although some KDEL receptors are found in 
the tubules, the bulk of the recycled KDEL receptors are likely to be 
carried by COPI, as quantitative immuno-EM studies convincingly 
documented the concentration of KDEL receptors in Golgi-derived 
COPI vesicles (Orci et al., 1997). Similarly, it is unlikely that KKXX 
(and similarly)-tagged ER residents are primarily returned to ER via 
ARF1 tubules, because these proteins are concentrated in COPI 
vesicles by directly binding coatomer, and coatomer genes are 
clearly required for their retrograde transport (Cosson and Letour-
neur, 1994; Letourneur et al., 1994).

On the other hand, anterograde tubules could account for a very 
significant portion of anterograde flow of membranes out of the 
Golgi. The Golgi in each cell produces ∼900 µm2/h of anterograde 
ARF1-tubes as compared with the ∼340 µm2/cell net increase of cell 
surface that must be produced in the same period of time. It is not 
surprising that the estimate of the rate of production of anterograde 
ARF1 tubules at the Golgi exceeds the net rate of growth of cell 
surface. These tubules may contribute to intracellular compartments 
such as endosomes and much of the surface fluxing into the plasma 
membrane fluxes back inside via a coupled exo-endocytic mecha-
nism. Anterograde ARF1 tubules may represent a quantitatively im-
portant exit route from the TGN, although the rate of internalization 
and recycling from the plasma membrane back to the Golgi has not 
been taken into account in this study. Tubular carriers have been 
observed to transport various cargoes toward different post-Golgi 
destinations, including influenza virus HA– and GPI-anchored pro-
teins to the apical plasma membrane (Keller et al., 2001; Puertollano 
et al., 2001), VSV G and E-cadherin to the basolateral plasma mem-
brane (Hirschberg et al., 1998; Polishchuk et al., 2003; Lock and 
Stow, 2005) and mannose-6-phosphate receptor to the endolyso-
somal system (Puertollano et al., 2003; Waguri et al., 2003). ARF1-
positive anterograde carriers contain VSV G but not GPI-linked pro-
tein cargo, suggesting a major role of the ARF GTPase in nonraft 
pathways (Keller et al., 2001), which likely reflects basolateral traf-
ficking in polarized cells.

In summary, we provided physiological evidence for the relevance 
of a physicochemical tubulation process (Beck et al., 2008) at the 
Golgi driven by ARF1[GTP] assembly on membranes at both faces of 
the Golgi stack. It is likely that such post-Golgi tubules are important 
contributors to the secretory pathway and could potentially carry the 
majority of certain classes of plasma membrane cargo (represented 
by VSV G protein). The fusion targets of these tubules remain to be 
established. ARF1[GTP] is present at similar concentrations through-
out the Golgi stack along its cis–trans axis (Supplemental Figure S1), 
and this raises the possibility that analogous tubules may form at the 
rims of central cisternae in the stack and could represent intercister-
nal transport intermediates, especially under conditions in which 
there may be a shortage of available coatomer to pinch them off into 
vesicles (Trucco et al., 2004; Beznoussenko et al., 2014).

MATERIALS AND METHODS
Cell culture
All experiments were carried out in HeLa cells CCL-2 (American 
Type Culture Collection) and HAP1 cells (Essletzbichler et al., 2014) 
grown in an incubator at 37°C with 5% CO2 in DMEM (Life Tech-
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