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Abstract

The transition state theory of fission is generalized to allow for
trajectories that return from saddle to compound-nuc1eus due to high viscosity
at the saddle point. This generalization includes neutron emission frdm the

saddle. Experimental indications seem to support the present approach.

Introduction

THe standard Bohr Nhee]er (BW) theory of fission decay 1], identi§a1
with the transition state theory for chemical reactions, is subject to serious
1imita£iohs of both quanta] and classical nature. We want to consider here
the most crucial approxihation of the theory, its possible failure, ahd a
generalization designed to overcome part of the difficulty. The BW theory
calculates the flux of the density distributibn in phase space across a
suitably chosen hypeksurface normal to the reaction coordinate. This flux is
then identified with thé reaction rate. This is both the beauty and the trap
of the theory. The flux and the reaction rate can bé.identified if and only
if no phase-space trajectory, after crossing the hypersurface, comes back and
crosses it again returning to the reactant's fégion. In order to eliminate,

or at least to alleviate, the problem, the "transition state", or the position
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of the hypersurface, is chosen to cut across the saddle point in coordinate
space, on the hope that, once the saddle point -is negotiated, the system
irreversibly rolls down towards the product region. This is certainly an
extreme approximation, requiring a substantial decoupling (low viscosity)
between collective and internal degrees of freédom near the transition state.
A more general approach to the problem of chemical reaction rates was
developed in 1940 by Kramersl2]. A particle moving in a viscous medium in
thermal equilibrium is subject to an effective force rapidly fluctuating in
time in a highly irregular way (brownian motion). If initially the particle
is captured in a potential hole, the diffusive force acting on the collective
degree of freedom can shuttle the particle over the potential barrier (Q).
The reaction rate is the result of the competition between diffusive force and
driving force along the path from the initial to the transition state. The
essential difficulties arising from the mathematical complexity of the
solution of.the diffusion equation for a nonstationary process can be overcome
if one considers a substantially high barrier. Under this condition a
distribution of Boltzmann type is soon established near the initial state, and
the resulting quasistatiohary diffusion can then be dealt with the
one-dimensional case where the potentials in the initial configuration and in
the transition state are approximated by harmonic oscillator type [2]. In
this one-dimensional model the crucial parameters that control the coupling
are the viscosity of the medium (n) and the frequency of the harmonic
potentials (w and w'). The diffusion over the barrier is characterized by
three different regimes according to whether the characteristic freauency for
viscosity (n) is coupled or not to the characteristic frequency for the
internal degrees of freedom in the initial state (w) and in the transition

state (w').

i) Intermediate viscosity (n >> w and n <cw '). Under these conditions the

strong coupling in the initial configuration leads to a Maxwell-Boltzman
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distribution for the generalized momentum of the fission coordinate. The
probability current across the barrier is_directed by the tail of this
distribution with no further resistance felt by the system in the transition
state. ' In this 1imit the transition method holds and gives for the reaction
velocity the equation r = w exp(-Q/T).
ii) Low viscosity (n << w and n << w'). Due to the small coupling 16 the
intial state the delivery of particle to the transition state is small and the
reaction velocity drops rapidly below the transition method value [3]
[r = n(Q/T) exp(-Q/t)].
iii) Large viscosity (n >> w and n >> w'). The reaction rate can be no longer
identified with the flow in the direction (initial configuration) »
(transition state) > (reaction product's region). The net flow through the
transition state, as a fesuit of the stfong coupling in this region (n > w),
becomes now sha]]er than the_transition method value [r =lw(2ww'/n) exp(-0/T)].
The extension of such stqdiés t6 high excita;ion energiés, where the
regime of large viscosity seems to be more likely, offers ihe stimulating
possibility of clarifying the role of viscosity and its dependence on the
temperature in the dynamics of the nut1éus from the tompound state to the
saddle point. While the general philosophy of our approach treads in
diffusion model's footsteps, the formal apparatus, as will appear clearly in
the next section, is somewhat different. We assume high viscosity in the
general saddle point‘neighborhood. As a result, the flux from the compound
nucleus is trapped in the saddle region, and the associated randomization
leads to a backflow towards the compound nucleus. Furthermore, it is
interesting to consider the possibility that, while the system is trapped in
the neighborhood of the saddle point, it may undergo particle decay, in
particular neutron emission. For this case a natural way to handle the .

problem is the use of the Master Equation.
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The model.

Let us consider a compound nucleus A, a saddle point region B, a region C
fér down the scission valley, and a nucleus D after one neutron emission. The
transition probabilities are M (from A to B), Ao (from B to A), A3
(from B to C), Ay (from A to D), Ay (from B to D).

The master equations are: J

op = vgrp — a0 )

og = oary — vplhp T a3 T a)

‘PC = ‘PBX3

800 = ‘PA)\n + ‘PB)‘n.

where the vs are the time-dependent populations. Two main differences with
respeét to the standard BW thepry are visible: a) there is a backflow from B
to A that makes the decay of A nonexponental (notice that by setting Ay = 0
we recover the Bwlexpression); b) neutrons are a1lowéd to be emitted from the
saddle region. '

The system of differential equations Ean be solved in a straightforward

way, and the exact solutions are

wo rlt r2t
Yy = - . (r2 + A1-+ xn) e - (r1 + M + xn) e
¢ [ r,t r t] ~
0 1 2
8" I, (rp T *ap +agle - e ,
”
Aq ) r.t r.t
173 1 2
Yo =¥, P [rze - rye + A]

v, ryt ' rot
= — rz(e - 1)[x1xn. - xn(r2+xl+xn)] - rl(e -1)[xlxn. - xn(r1+xl+xn)]



where
2 g s 1112
s = T(xz Fag -, - xl) + 4x1x21
. r1jp = (L2 ager * 2]
{‘) XTOT—AI"'XZ*’A +l +xn'
AA = Xl(X3 + Xn,) + xn(xz + )‘3 + ln')
The initial conditions have been chosen so that ~ )

«’A(t = 0) ’ ‘PB(t = 0) = Wc(t = 0)= SOD(t = 0) =0 .

From the populations at time‘infinity.one can obtain the following expression

for FNITF:
RTINS PR WS WS W SUS R - W W _ ,
D a1 "2°n "nn' : :

The first term to the right is the sténdard result. The above expression can
be obtained without solving the differential equations by sUmming’0ver the

probability tree.

o .1 | *3 - *2 g 3,
f~ (x 170 ) +x“7 (x2+x W (7 (i1+x ) x2+x3+x e

(*1*3)/(‘1‘3+‘1*n'+‘2*n+*3*n+*n*n-)

from which equationv(l) is 1mmed1ate1y obta1ned The néw expréssion (1)
favors neutron decay in two ways: ‘a) by a110w1ng neutron decay from the
saddle; b) mofe ﬁmportantiy, by red1rect1ng part of the f Tux from the saddle
region b&ck to the compouhd nuc leus.

An intermediate and more general situation can be envisaged as follows.
For a given viscosity at the saddle, there'wi11 be a critical velocity along

the fission coordinate, above which the system escapes altogether towards fission and
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below which the system gets trapped in the saddle region. The treatment can

be modified by splitting Ay as follows:

€
0
xl—-f-;{]’;(-E-)-fp(E-—BF—e)de"'fo(E—BF—e)de
0

(2)

‘g A

where o is the level density, BF the fission barrier, and ¢ the kinetic

energy along the fission coordinate. The first term to the right corresponds
to saddle trapping and the second to complete saddle negotiation. The meaning
of the critical velocity introduced in (2) becomes clear if we define

Tn m:n_l the characteristic time necessary to the onset of the

equilibration between the fission degree of freedom.x and all the other
degrees of freedom of the system in the saddle region. The critical value

A is then given from the relation €y & (llrn)2 R:nz.

For all the phase space trajectories wiih € > €y the system is
insensitive to the friction and behaves like a BW system. On the other hand
for the tragector1es along which the system enters into the saddle region with
£ < eo the equ111brat1on takes place and the associated randomization of
motion is responsible for a backflow towards the compound nucleus state.

The situation reminds one of the scaling limit theory applied to the
saddle point [4], where a characteristic time is defined after which the
driving force decodples the system from the heat bath and the system rolls

down towards the scission configuration. Using the expression (2) the general

result is now

T_/T. =
F/'°N Ay (2 +A3+x .7 AIS o

(++ )"‘Ax '
1F23 1573 _‘(3).
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Again it is reasonable, a1though not necessary, that, for the systqms trapped

in the saddle region Ag = Age If one disregards the contribution of the

neutron decay from the saddle region, one obtains the simple form:

\ ,
1F .. 1 s . = N
r —* ?.;__ : (4)

T N =

£/

S

In the equidistant model approximation the level density is given by the

expression
o(E) = exp [2(aE)1/21

where the preexponent1a1 energy factors have been om1tted
The trans1t1on probab111t1es xlF’ 15° and x then can be
. calculated in a straightforward way:
U1 1 fe 12y 124 o o 1/2 o o 112
Mg = ZwalE) 2af {[Zaf (E-BF) -1] exp rzaf (E'BF) ]
_'F2af1/2 (E - BF - 80)1/2_1] exp I'Zafll2 (E- B 1/%}

o | (5)
1 1 1/2 1/2 1/2 1/2
A F = _ZWE—)- ?ﬂ?{ ['Zaf (E—BF—EO) —1-‘ exp rzaf (E—BF_CO) ]}

27p E

%rz 112 (g )1/2 17 exp [Zai/Z(E-Bn)llz]}

where ag and a are the level density parameters-appropriate to the saddle

point and to eqhi]ibrium deformation, respectively. Substitution of (5) into

- (4) yields |
» - F2agH 2 (E-Bpc )1/2—11expf2a 2 (E-Bme )12
.
1/2 1/2 172 112_
/T = n (E-8,) ]+r(2 (E-B;) 11(6)
FIN Zaf[2a$/2(e;sh)1/2-1]
| eprZaf”z(E—BF)I/z 1/2(E 5 )1/2] /
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It is interésting to note that the above expression, in the limiting case of
no viscosity (eo » 0), reduces to the standard case, while for large

viscosity (eo > E - BF)’ it approaches the limit (1/2)(FF/rN) -0 The

€
o) .
latter result is a straightforward consequence of the assumption AZ = A3

for the systems with ¢ < €y v

Calculations

The viscosity parameter n is a function both of the intrinsic degrees of
freedom of the nucleus, and sovof its temperéture T, and of the collective
mode under consideration. The complete solution of this problem goes beyond
the scope of this paper. However, if the effect of the collective motion
(i.e. the dependence of the viscosity from the shape of the saddle point) is
set aside, the temperature dependence of n can be inferred'from qualitative
microscopic considerations. The number of quasiparticle collisions per unit
time (1/Tn) allowed by conservation of energy and momentum alone is reduced,
because of the blocking effect of the Pauli's principle, by a factor
(T/ep)*

following dependence upon the temperature:

s with.eF the Fermi energy. Thus we obtain for € the

c, = (1/Tn)2 ~|—1 ] .7 (7)

For the compound nucleus 180w’ fig. 1 shows the excitation function of v

PF/TN in the two limits of high viscosity at the saddle point (dashed {/_
Tine) and zero viscosity (full line). Both curves are calculated using the
expression (6), where, for simplicity, no effect due to angular momentum has
been taken into account. The values of B and B are from ref. [57.  For

the ratio af/an and for a the values 1.11 and A/10 are chosen, and for
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€, We use the simple form €g = cT’, where T = (E /af) and ¢ is a
constant adjusted to fit at low energy the zero viscosity (eo = 0) limit,
Note that, for increasing T, PF/rN calculated with € # 0 decrease
compared to FF/FN with € = 0. The general trend agrees with the

experimental data 6,71, which show at high excitation energy a decrease of

the fission probabi]ity_compared with the prediction of the standard model.

- Actually, in this calculation we have overestimated the true result because we

have neglected the’neutron evaporation'from the sadd]e.‘ » _

Figure 2 diSp]ays the quantity s = [(rF/rN)‘— PF/PN)Bw]/(rF/rN)Bw es a
functionvef the temperature and‘for different values of c. It is interesting
to note the sensitivity of the deviation of our mode1 from the standard BW
theory to the variations of ¢ in the Tow- energy region. The. imnortance,of
this behavior is obv1ous in the 1ow-energy reg1on (i.e. the low v1scos1ty
region for our mode]) T ﬂ‘ must converge to the BW limit (FF/FN)BW,
and this cond1t1on 1s assured in our mode] by the phenomeno1og1ca1 constant. c.
The unigue determwnat1on of ¢ from fit of experimental data in th1s energy

region and the extension of such comparison to higher energies allows for a

\check of the mode]

It is a well known fact that at high energ1es the experwmenta]
determ1nat1on ofI‘F/I"N is uncertain due to the occurrence of two effecté:
a) the presence of higher order fission, i.e. the possibf]ity that the nucleus
undergoes f1ss1on after one or more neutrons have been em1tted b) the .
1ncreas1ng contr1but1on to the fission cross sect1on of 1ncomp1ete fusion

reactions, which cause uncerta1nty in the der1vat1on of the compound nuc]eus

~cross section. In the reg1me of h1gh temperature th1s is def1n1te1y a severe

handicap for the compar1son of any model with experimental data. The best way

to partially overcome it is to perform a direct measure of the prefission
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neutron emission <vp>e Disregarding in first approximation the charged

particle evaporation, <V > is given by

<v_>
n

S
:E: s P rTe
S F,sfl K=1 n,K
where e

n,K

(PF/FN)K is the branching ratio for the nucleus of mass A, = A, ; - 1 and

excitation energy E; = E;—l - Bn,K—l - 2TK_1. Bn,K—l and 2TK_1 are

the binding energy and the kinetic energy of the neutron evaporated from the

nucleus Ay ;. (FF/FN)K is calculated from (6) where for each step

Bn is taken from ref. [5]1; a = A/10; af/an = 1.02. For BF we use

the rotating liquid drop barrier times 0.8 as suggested from Gavron 81. A

constant value of Lepit = 70 [81 is given in input-for each excitation

énergy: the angular momentum removed from thé neutrons emitted is calculated

from ref. [9]. The effect of the backflow from saddle to compound,

responsible for the increasing number of neutrons emitted through the

inhibition of the fission channel, can be clearly seen in fig; 3 where the

quantity <v> is plotted versus excitation energy E* for the nuclei

170Yb, 180w, 18605. '
This general trend seems consistent with the result of recent accurate

measurements of prefission neutron emission [107, which for systems with high

fission barrier show substantially larger values of <v,> than predicted by "

the standard model. _ v
We have not performed a comparison with the experimental data because of

the strong approximation introduced in the expression (6). This

approximation becomes more severe at high temperature where the increasing
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role of viscosity implies a longer transition time through the saddle region.

This would enhance the possibility of neutrons beingvemitted'directly from the

transition region. -

This work was supported by the Director, Office of Energy Research,

Division of Nuclear Physics of the Office of High,Energy‘and Nuclear Physics

of the U.S. Department of Energy under Contract DE-ACO3-76SF00098.
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Figure Captions

Fig. 1.

Fig. 2.

for three compound nuclei (

‘Branching ratio rk/rh for the compound nuc]euﬁ:%gow versus

excitation energy E* for €y = 0 (full line) and € = 0.08 T4

(dashed line).

The quantity & = [(I?IIN) - (I%/IN)BNJ/(Ik/IN)BN

versus temperature for different value of the constant ¢ in the

180

expression € = cT4 and for the compound nucleus W.

Average prefission neutron emission <v,> versus excitation energy

170yp, 180y, 18605), The full ines

- are the result of the calculation with ¢ = 0, the dashed lines

with ¢ = 0.08 8.
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