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The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning,
and can be induced by spike trains containing a small number of spikes occurring with
varying rates and timing, as well as with oscillations. We computed the influence of these
variables on the plasticity induced at a single NMDAR containing synapse using a reduced
model that was analytically tractable, and these findings were confirmed using detailed,
multi-compartment model. In addition to explaining diverse experimental results about
the rate and timing dependence of synaptic plasticity, the model made several novel and
testable predictions. We found that there was a preferred frequency for inducing long-term
potentiation (LTP) such that higher frequency stimuli induced lesser LTP, decreasing as 1/f
when the number of spikes in the stimulus was kept fixed. Among other things, the pre-
ferred frequency for inducing LTP varied as a function of the distance of the synapse from
the soma. In fact, same stimulation frequencies could induce LTP or long-term depression
depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli
induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes signifi-
cantly expanded the timing dependence of plasticity. Finally, we found that in the ∼5–15-Hz
frequency range both rate- and timing-dependent plasticity mechanisms work synergisti-
cally to render the synaptic plasticity most sensitive to spike timing.These findings provide
computational evidence that oscillations can have a profound influence on the plasticity of
an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this
process.

Keywords: STDP, calcium dependent plasticity, NMDA synapses, oscillations, 1/f, LTP, LTD

INTRODUCTION
Most experimental studies on synaptic plasticity have used one of
two protocols: a rate-based protocol or a timing based protocol.
A wealth of rate-based in vitro experiments have shown that sus-
tained low frequency stimulation of presynaptic afferents induces
long-term depression (LTD; Dudek and Bear, 1992), while high-
frequency stimulation generates long-term potentiation (LTP) of
synaptic strengths (Bliss and Lomo, 1973; Stevens and Sullivan,
1998; Malenka and Bear, 2004). Theoretically, this phenomenon
can be captured by a bidirectional, activity-dependent plasticity
rule (Bienenstock et al., 1982; Lisman, 1989). These experiments
and theories have mostly focused on the asymptotic values of
synaptic strengths, where additional stimuli do not induce more
LTP or LTD.

However, during behavioral tasks, neurons typically fire only
a small number of spikes, which can induce synaptic plasticity
in vitro (Dobrunz and Stevens, 1999) but are unlikely to satu-
rate the synaptic strengths (Dudek and Bear, 1992; Petersen et al.,
1998; Zhang et al., 2009). Further, behavioral data show that a
significant amount of learning can occur within a few trials. Con-
sistently, incremental and rapid changes in hippocampal place

cells’ firing, hypothesized to occur due to synaptic plasticity, have
been observed after only about a dozen spikes per neuron (Mehta
et al., 1997,2000). These studies support the hypothesis that during
learning, synaptic strengths evolve incrementally in response to a
small number of spikes, and thus operate in an unsaturated state.
In fact, saturation of synaptic strengths may limit the encoding
and learning capability of the network (Moser et al., 1998). Fur-
ther, NMDAR-dependent synaptic plasticity is strongly modulated
by precise spike timing (spike timing-dependent plasticity – STDP;
Magee and Johnston, 1997; Markram et al., 1997; Nishiyama et al.,
2000; Bi and Poo, 2001; Sjöström et al., 2001; Wittenberg and
Wang, 2006; Zhang et al., 2009). Typical STDP induction proto-
cols keep the spike rate fixed, whereas in natural spike patterns
both spike rate and timing vary simultaneously.

Therefore, to understand the role of synaptic plasticity in learn-
ing, it is important to characterize the evolution of synaptic
strengths in the sub-saturating regime where both spike rate and
timing vary. Here, we do so by using a commonly employed model
of synaptic plasticity based on postsynaptic calcium influx (Artola
and Singer, 1993; Cummings et al., 1996; Karmarkar and Buono-
mano, 2002; Shouval et al., 2002, 2010; Abarbanel et al., 2003).
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Kumar and Mehta Rate and timing-dependent synaptic plasticity

Notably, this widely studied model makes several novel predic-
tions about the role of oscillations and bursting in the induction
of synaptic plasticity when the effects of short-lasting spike pat-
terns are considered. Specifically, we show that when the number
of spikes used to induce plasticity was kept fixed, the amount of
LTP was a non-monotonic function of firing rate, and at firing rates
above ∼30 Hz the number of spikes in the stimulus affected the
amount of plasticity produced. These findings were obtained using
a reduced model that could be solved analytically. The findings
were further confirmed using more realistic, stochastic synapses as
well as using a detailed, multi-compartment model of a CA1 pyra-
midal neuron. The results obtained using these different methods
agree which shows that our results are mathematically and bio-
logically sound. Using the detailed neuron model we further show
that the dendritic location of a synapse can have a profound impact
on plasticity such that it can switch the sign of plasticity because
of changes in the dendritic distance-dependent amplitude of the
back-propagating action potential. The model suggests that spike
bursts can switch a network from rate-based learning to spike
timing based learning. These results provide a novel cellular mech-
anism for how different rhythms and spike patterns may influence
plasticity and learning (Sivan and Kopell, 2004). Our results imply
that oscillations may differentially modulate the plasticity induced
by top-down versus bottom-up influences (Buschman and Miller,
2007) in the neocortex, and by direct versus indirect inputs to the
hippocampus (Colgin et al., 2009). Additionally, this may reduce
interference between multiple memories during learning (Fusi and
Abbott, 2007).

MATERIALS AND METHODS
We simulated a synapse undergoing NMDAR-mediated postsy-
naptic calcium-dependent plasticity. Consistent with a large body
of evidence, in this model of synaptic plasticity we made three
main assumptions:

(1) Both LTD and LTP are determined by the amplitude and dura-
tion of postsynaptic calcium (Clement-Cormier et al., 1980;
Dudek and Bear, 1992;Yang et al., 1999; Nishiyama et al., 2000;
Johnston et al., 2003).

(2) The amount of synaptic weight change is proportional to
the duration of calcium transients until saturation is reached
(Dudek and Bear, 1992; Petersen et al., 1998; Mizuno et al.,
2001).

(3) The rate of change in synaptic strength as a function of cal-
cium concentration has an upper limit (Artola and Singer,
1993; Nishiyama et al., 2000; Shouval et al., 2002; Johnston
et al., 2003). This assumption is relaxed for the results shown
in Figure 6.

With these assumptions, we investigated the rate and timing
dependence of plasticity induced by a few tens of spikes as is
observed in natural spike patterns during behavior in vivo.

In its simplest form, the membrane potential at the synapse
located on the postsynaptic side can be described as a linear
sum of excitatory postsynaptic potentials [EPSP(t )] and the back-
propagating action potential [BPAP(t ); Shouval et al., 2002, 2010;

Cai et al., 2007], if the somatic membrane depolarization is above
spiking threshold, as described in Eq. 1:

V (t ) = Vrest + EPSP (t ) + BPAP (t ) (1)

where V rest = −65 mV is the resting potential of the neuron. In
plasticity experiments, typically the postsynaptic neuron is forced
to spike by external current injection; thus, the BPAP is always
present during the stimulation protocol. We modeled EPSP and
BPAP using separate differential equations, because BPAP propa-
gation and amplitude are determined by the dynamics of voltage
gated K+ and Na+ channels which are much faster than the sub-
threshold, passive mechanisms that govern the EPSP dynamics,
especially for the weak synapses considered here. For the rare
cases when the membrane potential is depolarized (≥ −50 mV),
or when the synapses are strong enough to activate voltage-
dependent Na+ and K+ dependent currents, the simplified model
described in Eq. 1 has to be revised. Further, non-linear effects
such as boosting of EPSPs due to BPAP are not included in this
simple model.

SYNAPTIC INPUTS
The temporal evolution of the synaptic input EPSP(t ), which is
composed of both AMPAR- and NMDAR-mediated currents is
given by the following:

τm
d

dt
EPSP (t ) = rm [INMDA (t ) + IAMPA (t )] − EPSP (t ) (2)

where τm = 20 ms is the membrane time constant, and rm is the
membrane resistance, set to unity. The two synaptic currents are
given by:

IAMPA (t ) = gAMPAfAMPA (t )
(
V rev

AMPA − V
)

(3)

INMDA (t ) = gNMDAfNMDA (t ) B (V )
(
V rev

NMDA − V
)

(4)

where g AMPA, g NMDA (=0.1295, 1.295 μS) are the channels’ con-
ductances, V rev

AMPA, V rev
NMDA (=0, 0 mV) are the reversal potentials

of their AMPA and NMDA currents. g AMPA, g NMDA describe the
effective current (mediated by Na+ and K+ ions) flowing through
the two channels. The magnesium block, described by B(V ), is
defined below (Eq. 7). fAMPA, fNMDA are the AMPA and NMDA
activation functions respectively, with an exponential form:

fx (t ) =
∑

�
(
t − t

pre
i

)
exp

(
− t − t

pre
i

τx

)
(5)

where � is the step function,�(x) = 1 if x > 0 and �(x) = 0 other-
wise, t

pre
i is the time of the ith presynaptic activation, x = (AMPA,

NMDA) and τAMPA, τNMDA (=2, 40 ms) are the respective time
constants. The NMDA receptor mediated calcium influx is given
by:

INMDA,Ca
(
t , t

pre
i

) = gNMDA,CafNMDA
(
t , t

pre
i

)
B (V )

× (
V rev

NMDA,Ca − V
)

(6)
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Here, the reversal potential for calcium influx is V rev
NMDA,Ca =

130 mV. The value of the NMDA-dependent calcium conductance
g NMDA,Ca was varied across different simulations (cf. Results). This
calcium influx also contributes to the synaptic current in addition
to the NMDA and AMPA currents given in Eqs 3 and 4.

B(V ) describes the voltage-dependent relief of the NMDAR
blockage by magnesium ions (Jahr and Stevens, 1990):

B (V ) = 1

1 + 0.25exp (−0.068 V)
(7)

The BPAP was modeled as:

BPAP
(
t , t post) = �

(
t − t post) [70 exp

(
− t − t post

τB
f

)

+30 exp

(
− t − t post

τB
s

)]
(8)

The BPAP had a peak amplitude of A = 100 mV at time t post, and
subsequently decayed as a sum of two exponentials: 70% of the
BPAP decayed rapidly (τB

f = 3 ms), and the remaining repre-

sented the slow after-depolarization (τB
s = 40 ms; Magee and

Johnston, 1997). The frequency-dependent dynamics of the BPAP
are described below (Eqs 10–12).

For simplicity, we assumed that the NMDARs are the only
sources of plasticity-inducing calcium. Therefore, the postsynaptic
calcium concentration [Ca] was given by an ordinary differential
equation (Eq. 6). The Ca influx decayed with a time constant
τCa = 25 ms (Bloodgood and Sabatini, 2005) as:

τCa
d [Ca]

dt
= INMDA,Ca − [Ca] (9)

Additional sources of calcium can be readily incorporated into the
model, however they were not included in this study. Notably, the
main conclusions drawn in this paper are qualitatively indepen-
dent of the particular calcium source modeled. Further, we did
not explicitly model calcium buffering or the spread of calcium in
the spine. However, we assumed that calcium spreads in the spine,
and becomes available to plasticity processes, instantaneously.

FREQUENCY-DEPENDENT SYNAPTIC DEPRESSION AND FACILITATION
Here we used a stochastic model of frequency-dependent synap-
tic depression and facilitation that does not distinguish between
the pre- and postsynaptic mechanisms (Markram et al., 1998; Cai
et al., 2007). Thus, although we describe the short-term plasticity
in terms of the dynamics of synaptic vesicles, it applies equally
to postsynaptic receptors. We assumed that a synapse has N max

total vesicles and that of those N are available for release. Each of
the N vesicles can be released with a probability p, however only
one vesicle can be released for a presynaptic spike. This gives a
synaptic transmission probability P = 1 − (1 − p)N . When a vesi-
cle is released, N is decreased by one, thus reducing the synaptic
transmission probability P. Each vesicle has a recovery time con-
stant (τ rec), and a vesicle is replenished with an independent and
constant probability per unit time, 1/τ rec. Here we used N max = 3,
N = 1, p = 0.16, and τ rec = 500 ms (Cai et al., 2007). We used the

same stochastic model to model synaptic facilitation, except in this
case, upon arrival of a presynaptic spike the vesicle release prob-
ability was increased by a constant factor α. That is, after a spike
the new release probability pnew was changed from the previous
release probability (pprev) according to the following relationship:
pnew = pprev + αp. This increased release probability recovered to
the original value exponentially with a fixed time constant, τ F .
Here we used α = 0.8 and τ F = 100 ms (Cai et al., 2007).

FREQUENCY-DEPENDENT DEPRESSION OF BPAP
We used a phenomenological description of frequency-dependent
depression of BPAP based on the idea of an activity-dependent
usage of membrane resources. This is similar to the model
of frequency-dependent depression of synaptic amplitude used
above, developed by Markram et al. (1998). To model the activity-
dependent BPAP amplitude depression we scaled the BPAP
amplitude by a factor y (Eq. 11) that evolves in the following
way:

dx

dt
= z

τrec_bpap
− uxδ

(
t − t spike

)
(10)

dy

dt
= − y

τI _bpap
− uxδ

(
t − t spike−

)
(11)

dz

dt
= y

τI _bpap
− z

τrec_bpap
(12)

Where x, y, and z are the fractions of membrane resources that are
important for maintenance of the BPAP amplitude, i.e., the avail-
ability of Na+ channels (Colbert et al., 1997; Stuart et al., 1997;
Gasparini, 2011) in the recovered, active and inactive states, respec-
tively. Note that x, y, and z are phenomenological parameters.
τ rec_bpap is the recovery time constant from depression and τ I _bpap

is the inactivation time constant (Eqs 11 and 12). δ(t − t spike) = 1
if (t − t spike) = 0 and δ(t − t spike) = 0 otherwise. The Eqs 10–12
describe how the resource variable y is used by each spike at time
t spike. For activity-dependent depression of BPAP we kept the
variable u which describes the effective use of the resources, con-
stant. Here, we used τ I _bpap = 50 ms, τ rec_bpap = 20 ms to approxi-
mately fit the experimentally observed kinetics of BPAP depression
(Gordon et al., 2006).

CALCIUM CONCENTRATION-DEPENDENT CHANGE IN EPSP
AMPLITUDE
The synaptic weight w was updated according to a U-shaped
function of [Ca],

�w = η

∫ T

0
� [Ca] dt (13)

where T = N spike/f is the duration of the stimulation; N spike is the
number of spikes and f is the firing rate. The learning rate η = 0.01
was such that dw � w. The � function of calcium concentration
[Ca] was a difference of two sigmoids,

� ([Ca]) = 0.75σ2 ([Ca])-0.1σ1 ([Ca]) (14)

where σx ([Ca]) = exp(βx ([Ca]−αx ))

[1+exp(βx ([Ca]−αx ))] .
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Here we used β1 = 60, β2 = 100, α1 = 0.2, and α2 = 0.34. Basal
levels of calcium concentration ([Ca] ≤ θd ) produce no plastic-
ity, while modest and high elevations of calcium generate LTD
(θd ≤ [Ca] ≤ θp) and LTP ([Ca] ≥ θp) respectively. Notice that
� reaches a maximal value for a given threshold of calcium θ s

([Ca] ≥ 0.42 mM) above which the rate of LTP is constant. The
function is shown in Figure 1A. For the rate-dependent simula-
tions (Figures 1–5), pre- and postsynaptic stimuli were paired and
delivered with presynaptic stimuli occurring 1 ms before the post-
synaptic ones. Such paring was repeated 50 or 400 times at varying
frequencies. Aperiodic stimuli were modeled as homogeneous
Poisson process. Events occurring within less than 2 ms were dis-
carded to incorporate refractoriness. For timing-dependent pro-
tocols, the time between pre- and postsynaptic spikes was varied
between ±80 ms. All simulations, except the detailed neuron simu-
lations (see below), were performed using Matlab. The differential
equations were integrated using the fourth order Runge–Kutta
method with a time resolution of 0.1 ms.

The model of plasticity described above can be considered as a
hybrid model because it has both biophysical and phenomenolog-
ical components. The biophysical components of the model are
the dynamics of the EPSPs (Eqs 2–5), calcium currents (Eqs 6 and
9), and magnesium block (Eq. 7), which determines the strength
of the calcium current. The phenomenological components of the
model refer to the activity-dependent dynamics of the BPAP (Eqs

FIGURE 1 | Frequency-independent LTD at low rates. (A) The level of
intracellular calcium concentration determined �[Ca], the direction and
magnitude of synaptic modifications. Below the depression threshold θ d

(0.15 mM), no change in synaptic strength occurred. If calcium built up
beyond θ d , LTD was induced. For calcium levels above the potentiation
threshold θ p (0.33 mM), LTP was generated. Increasing calcium levels
resulted in a stronger LTP until an upper limit θ s (0.42 mM) was reached,
beyond which synaptic changes occurred at a constant rate �max (cf.
Figure 3B). (B) Individual calcium transients during 2 Hz stimulation.
Scenario I (red) when the NMDA-dependent calcium conductance gNMDA,Ca

was small, single spike pairing did not lead to LTD. Scenario II (blue) when
gNMDA,Ca was strong enough LTD was induced with single spike pairing. (C)

Change in synaptic strength as a function of stimulation frequency. LTD
was frequency-independent at frequencies below f α . The frequency f α was
mainly determined by gNMDA,Ca, and the effective time constant of the
system (τmax). In scenario I and scenario II (B) f α was 13 and 5 Hz
respectively.

10–12), the stochasticity of synapses, and the estimation of the
change in EPSP strength with calcium concentration (Eqs 13 and
14). We study the properties of this hybrid model of plasticity in
both a point neuron model and a detailed model of CA1 neuron
(see below).

DETAILED NEURON MODEL
The model of a CA1 pyramidal neuron was adapted from a
previous study by Golding et al.,2001; http://senselab.med.yale.edu
/ModelDB/ShowModel.asp? model = 64167). The multi-
compartment model consisted of three active conductances: a
voltage gated sodium conductance (gNa), a delayed rectifying
potassium conductance (gKDR), and an A-type potassium con-
ductance (gKA). The values of these conductances were taken from

FIGURE 2 | A preferred frequency for inducing maximal LTP. (A) For a
fixed number of spikes, maximal LTP was induced at intermediate
frequencies f max. The blue trace shows the dependence of synaptic weight
change on the stimulation frequency (using 50 spikes). Maximal LTP
(206%) occurred at f max = 30 Hz for gNMDA,Ca = 1.23 θ d (scenario II). The
orange trace shows the plasticity induced by a large number of spike
pairing (>400) which very likely saturated the synapses. With such a
protocol the 1/f dependence was not observed and the relative change in
synaptic strengths remained constant beyond f max. The gray trace shows
the 1/f dependence of LTP on stimulation frequency beyond f max. (B) The
increase in calcium concentration was higher for stimuli at 60 Hz (green),
but its duration was half as long compared to the 30-Hz stimulation (red) for
a fixed number of spikes. Calcium levels exceeded θ s during stimulation in
both cases to induce maximal LTP f max per unit time.
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FIGURE 3 | Dependence of frequency f max for inducing maximal

LTP on the amplitude and duration of calcium transients.

(A) The time course of calcium transient τ Ca was varied from 25 to
200 ms (solid lines) while keeping the area under the curve for the calcium
transients constant. With 50 spikes, the frequency f max was identical for all
values of τ Ca. Similarly, the 1/f dependence of LTP (gray dotted line) beyond
f max was also unaltered by changes in τ Ca (dotted gray line). (B) In contrast,

the amplitude of calcium transients, gNMDA,Ca, affected the f max such that an
increase in gNMDA,Ca reduced f max. Note that here the amplitude of the Ca
transient is shown in units of θ d . The 1/f dependence of LTP beyond f max was
unaffected by the amplitude of gNMDA,Ca. (C) Dependence of f max on gNMDA,Ca.
For very low calcium permeability the f max was as high as ∼200 Hz, whereas
for high values of gNMDA,Ca, f max was close to 10 Hz. Note that the y -axis is on a
log-scale.

FIGURE 4 | Dendritic and synaptic short-term dynamics influences the

frequency f max for inducing maximal LTP, but not the 1/f dependence of

LTP. (A) Morphology of a CA1 pyramidal neuron. Simulations were carried out
with a multi-compartment, biophysical model of a CA1 pyramidal neuron
(inset). The dendritic Na+ and K+ conductance were adjusted such that BPAP
amplitude decayed with distance from the soma (cf. Materials and Methods).
BPAP amplitude also decayed with repeated stimulation. At a distal synapse
(green dot) the BPAP amplitude was insignificant (∼0.1 mV). Synaptic
plasticity induced by a fixed number of spikes at various frequencies was
dependent on the location of the synapse on the dendritic arbor. As the
synapses’ distance from the soma was increased (solid lines, colors
correspond to the synapse position shown in the inset), from the most
proximal synapse (25 μm) to the most distal synapse (450 μm), the maximal

amount of LTP decreased from 188 to 108%, and the frequency f max for
inducing maximal LTP increased from 30 to 45 Hz. The 1/f dependence of LTP
beyond f max was unchanged. (B) Similar results were obtained using a
reduced, single-compartment model with a range of BPAP amplitudes
(colored lines). (C) Membrane potential at the location of the synapse in the
postsynaptic neuron in the presence of a strong BPAP (red trace), or without
the BPAP (blue trace). (D) Calcium concentration at the synapse in the
postsynaptic neuron in the presence of a strong BPAP (red trace), or without
the BPAP (blue trace). (E) The frequency dependence of LTD and LTP remains
unaffected by frequency-dependent depression (red). Adding
frequency-dependent synaptic facilitation (blue) increased the amount of
plasticity compared to a short-term depressing synapse. Notably, neither
depression or facilitation altered the 1/f dependence of LTP beyond f max.
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FIGURE 5 | Periodic stimuli induce stronger plasticity than

Poisson-distributed stimuli. (A) Plasticity was induced with 50 spikes,
delivered at various frequencies in either a periodic fashion (blue) or in a
Poisson-distributed fashion (red), using the same mean rate. The amount of
plasticity (averaged across 20 trials) induced by homogeneous Poisson spike
trains, with mean rates indicated on the x -axis, is shown in red (with gray
lines indicating the SE). The amplitude of the plasticity curve is smaller with
Poisson stimuli (maximal LTP = 137 ± 1.8% at 40 Hz, maximal
LTD = 10 ± 0.4% at 2 Hz) than with periodic stimulation (maximal LTP = 206%
at 30 Hz, maximal LTD = 41% at 15 Hz). (B) Comparison of the calcium time

course with periodic and aperiodic (Poisson type) stimuli delivered at a low
rate. Top row indicates periodic spikes (blue dots) and aperiodic spikes (red
crosses). The corresponding calcium transients for periodic (blue line) and
aperiodic (red lines) inputs are shown at the bottom. The low rate aperiodic
stimuli occasionally contain bursts of spikes that cross the threshold for
inducing LTP, while they induce LTD at other times. Due to this interference,
the low rate aperiodic stimuli induce less LTD than periodic ones. (C) Same as
in (B) but for high-rate stimuli. Once again, aperiodic stimuli fluctuate
between high and low rates resulting in both LTD and LTP, such that the net
LTP is less with aperiodic stimuli than with periodic ones.

Migliore et al. (1999) and were inserted in all compartments of the
cell, distributed as described in Figure 9 of Golding et al. (2001).
Specifically, potassium conductance in the dendrites was set to
100 mS/cm2, independent of distance from the soma, while the
sodium conductance increased linearly from 20 to 80 mS/cm2 as a
function of distance from the soma. With this choice of active con-
ductance in the dendrites, at 600 μm, the amplitude of an isolated
BPAP decayed below 0.1 mV. In the absence of any external input,
the neuron membrane time constant was 30 ms and the resting
potential was set to −65 mV (for details see Golding et al., 2001).
Synaptic currents were implemented as described by Eqs 2–4. In
addition, calcium dynamics were modeled according to Eqs 6, 7,
and 9. The detailed neuron simulations were performed using the
NEURON simulation platform (Hines and Carnevale, 1997).

In the detailed model, we did not include the diffusion and
redistribution of Ca++ in a synapse. Instead, we assumed that
calcium is available for the processes leading to the induction of
plasticity everywhere in the synapse. In other words, we mod-
eled the synapse as a point, instead of having an extended volume.
Based on the available data, we hypothesize that the results will not
change qualitatively when a more detailed model of intra-synaptic
Ca++ dynamics.

RESULTS
FREQUENCY-INDEPENDENCE OF LTD
To understand the contribution of a non-saturating number of
spikes to plasticity, we first investigated the case when spikes are

delivered at low frequencies. Given the small time constant of the
calcium transient (25 ms), at low stimulus frequencies (≤10 Hz)
little, if any, temporal integration of calcium transients occurred
across adjacent spikes in a stimulus. In this regime, we considered
two scenarios. In Scenario I, individual calcium transients elicited
by each spike were too small to cross the depression threshold
θd (Figure 1B), resulting in no plasticity (Figure 1C). In gen-
eral, repetitive stimulation at any frequency that was insufficient
to promote temporal integration of calcium signals was unsuc-
cessful in inducing LTD. In Scenario II, the NMDAR-mediated
calcium conductance was higher, or the threshold θd for LTD
induction was lower, so the calcium influx induced by individual
spikes was sufficient to cross θd (Figure 1B). Again, for all fre-
quencies where temporal integration was negligible, the duration
for which calcium levels exceeded θd was identical, thereby gener-
ating identical amounts of LTD (Figure 1C). Both scenarios imply
that below a critical frequency fα , the synaptic plasticity remains
frequency-independent. Its magnitude is either identically zero
(Scenario I, Figure 1C), or non-zero but constant (Scenario II,
Figure 1C). Only when the stimulus exceeded a critical frequency
fα did calcium integrate across adjacent spikes and produced LTD
in a frequency-dependent manner. With the biologically realistic
parameters, fα was 13 and 5 Hz in scenarios I and II respectively
(Figure 1C).

Intuitively, fα is a critical frequency at which temporally adja-
cent calcium transients begin to summate, thereby altering the
amount of LTD induced per spike. Thus, although fα can be
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influenced by many factors, it is mainly inversely proportional to
the effective time course (τ eff) of calcium transients. Conversely,
the shape of experimentally measured LTD curves could be used
to estimate τ eff , the effective time course of calcium transients.
For example, by pairing Schaffer collateral stimulation with CA1
whole-cell current injection at various frequencies, Johnston et al.
(2003) observed significant frequency-independent LTD below
10 Hz. This corresponds to the Scenario II above, suggesting a
τ eff ∼ 50 ms, which is consistent with experimental observations
of the calcium time course (Carter and Sabatini, 2004).

Further, the above simulations suggest that a change in the
amplitude of the calcium transient will have a small effect on
fα , but a substantial effect on the amount of LTD. Consistent
with this prediction, Johnston et al. (2003) found that the addi-
tion of a small amount of NMDA antagonist, that presumably
reduced the size of calcium transients, resulted in an absence
of LTD below 10 Hz, and LTP above 30 Hz. Thus, the amount
of LTD decreased significantly with the addition of NMDA
antagonists, but the frequency at which LTD became frequency-
independent remained largely unchanged. Although other mech-
anisms cannot be ruled out, these two experimental results can be
explained by our model as arising from the underlying calcium
dynamics.

PREFERRED FREQUENCY FOR INDUCING MAXIMAL LTP
At high frequencies, significant temporal integration occurred
across adjacent spikes, which allowed calcium concentrations to
cross the threshold θp for LTP induction. With the model assump-
tions stated above, we found a surprising frequency dependence
of LTP: maximal LTP was induced at a frequency (fmax), while fre-
quencies higher than fmax resulted in lesser LTP (Figure 2A). This
can be understood as follows. At a certain frequency, temporal
summation across adjacent spikes increased the effective size of
calcium transients, which crossed the LTP threshold θp to induce
LTP (Figure 2B). Increasing the stimulus frequency beyond this
range produced larger calcium transients until eventually reaching
the saturation level θ s (Figures 2B and 1A). With the parameters
used in this study (cf. Materials and Methods), calcium accumu-
lation reached θ s at ∼30 Hz. According to the third assumption
(cf. Materials and Methods), all frequencies greater than 30 Hz
were expected to induce the same amount of LTP per unit time,
as determined by �max. However, for a fixed number of spikes, an
increase in stimulation frequency necessarily results in a decrease
in stimulus duration (Figure 2B). Therefore, less LTP was induced
at higher frequencies (Figures 2A,B) than at intermediate frequen-
cies. This result can be derived analytically for frequencies above
fmax. If N spike is the number of spikes and f is the stimulation
frequency, the stimulus duration is T = N spike/f. If dw/dt is the
rate of change of synaptic strength per unit time, the total change
in synaptic strength �w in a period T at frequencies greater than
fmax is:

�w = dw

dt
.
Nspike

f
(15)

For all frequencies above fmax, where calcium influx exceeds the
critical value [Ca] ≥ θ s , the plasticity per unit time is independent

of calcium level and equal to the maximal value dw/dt = �max (cf.
Materials and Methods). Substituting this into Eq. 15 above yields:

�w = η�max
Nspike

f

(
f � fmax

)
(16)

�w ∝ 1

f

(
f � fmax

)
(17)

Thus, fmax is the frequency that induces a maximal amount of
plasticity per spike, such that at higher frequencies LTP decreases
as 1/f. This dependence is illustrated in Figure 2A, where the LTP
curve in the interval 35–150 Hz was fit with a function propor-
tional to 1/f (thick gray line). Here, 30 Hz stimuli induced fourfold
more plasticity than the same number of spikes applied at 150 Hz
(Figure 2B).

The 1/f dependence of LTP is predicted to occur only when a
small number spikes are used to induce plasticity. In fact, when
plasticity is induced with a large number of spikes (>400), as is
done in experiments which are designed to saturate LTP at all
frequencies, the frequency dependence can be masked. This was
tested explicitly in our model by using a saturating number of
400 spikes. As expected, in this case the model generated an equal
amount of LTP at all high frequencies (Figure 2A pale blue trace),
resulting in a plasticity curve that agrees with similar experimental
data, and theoretical calculations. Notably, the 1/f dependence of
LTP would be unaltered if the synapses did not saturate. That is,
for a small number of spikes that typically occur during behavior
and are unlikely to saturate synapses, the model makes a novel and
testable prediction about the rate-dependence of LTP. It also sug-
gests that among other parameters, at frequencies above ∼30 Hz,
the number of spikes in the stimulus is itself a crucial parameter
in determining the amount of plasticity.

THE PREFERRED FREQUENCY f MAX FOR INDUCING LTP DEPENDS ON
CALCIUM DYNAMICS
In Figures 1 and 2 we used a calcium time course of 25 ms. How-
ever, experimentally measured values of the calcium time course
take a wide range of values depending on the brain region and neu-
ron type (Helmchen et al., 1996; Carter and Sabatini, 2004; Yuste
and Konnerth, 2005). To understand the effect of the calcium time
constant we systematically varied its value from 25 to 200 ms while
keeping the total amount of calcium per spike constant. We found
that within a biologically realistic range of values of the calcium
time constant, the value of fmax, and the 1/f dependence of LTP,
remained effectively unchanged (Figure 3A). The calcium time
course will have a significant impact on the frequency dependence
of LTP when the duration of calcium far exceeds the duration of
stimulation.

Next, we investigated the effect of varying the amplitude of the
calcium transients, which was measured relative to the model para-
meter θd . To isolate the effect of amplitude, we fixed the temporal
extent of the calcium transients and varied their size. We found
that increasing the amplitude of the calcium transients reduced
the fmax (Figures 3B,C). In other words, synapses with higher
calcium permeability would need lower frequency stimulation to
induce maximal LTP. Notably, even though fmax varied from 20
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to ∼200 Hz, the 1/f dependence of LTP was observed for all the
values of fmax (Figures 3B,C).

Consistently, robust LTP has been induced in vitro at rates
ranging from 40 to 400 Hz (Trepel and Racine, 2000; Johnston
et al., 2003). However, a direct numerical comparison between
the model and experiments is difficult because the model cal-
culates the rate-dependence of an isolated NMDA-dependent
synapse, whereas typical in vitro experiments stimulate a large
number of synapses that could cooperate and change the pre-
ferred frequency for LTP. Further, the presence of inhibition and
non-NMDA-dependent mechanisms such as voltage gated cal-
cium channels may also influence the rate-dependence of LTP.
Nonetheless, the novel predicted rate-dependence of an NMDA-
dependent synapse would contribute to plasticity induction in
complex networks.

BPAP AMPLITUDE CAN INDUCE A SWITCH IN THE DIRECTION OF
PLASTICITY
The BPAP amplitude attenuates as a function of both spike
frequency and distance from the soma. While BPAP can be
100 mV at proximal dendrites, it may decay completely by
the time it reaches a distal synapse (Golding et al., 2001).
The BPAP amplitude attenuation as a function of spike fre-
quency is small near the soma (about 20%), and was incor-
porated in the above simulations. To understand the influence
of these short-term BPAP dynamics on synaptic plasticity, we
simulated a multi-compartment model CA1 pyramidal neu-
ron (cf. Materials and Methods). The BPAP amplitude showed
dendritic-position and stimulation frequency-dependent attenu-
ation such that at 0.1 Hz stimulation the BPAP amplitude was
insignificant (∼0.1 mV) beyond 500 μm from the soma (Sprus-
ton et al., 1995; Golding et al., 2001). This multi-compartment,
biophysical neuron also showed the rate-dependence of LTP
and LTD (Figure 4A). The value of fmax producing maximal
LTP was larger for synapses located farther from the soma
(Figure 4A). The change in fmax with diminishing BPAP ampli-
tude was also captured by the reduced model (Figures 1A and
4B).

Notably, LTP was induced at even the most distal synapse simu-
lated (500 μm, fmax ≈ 50 Hz) where the BPAP amplitude was very
small. Here, temporal summation of adjacent EPSPs generated suf-
ficient depolarization to remove the magnesium block, and induce
large calcium influx and plasticity (Figures 4C,D). The dendritic
distance-dependent reduction of the BPAP amplitude was thus
responsible for the increase in fmax at distal synapses. By the same
token, an intermediate frequency (e.g., 20 Hz) that induced LTP
at a proximal synapse (Figures 4A,B, black trace) induced LTD
at a distal synapse (Figures 4A,B, blue or green trace). Such a
dendritic-position dependent switch from LTP to LTD has already
been observed experimentally (Letzkus et al., 2006; Sjöström and
Häusser, 2006).

Here, we excluded the effect of boosting of the BPAP by EPSP-
induced depolarization of the dendrite (Waters and Helmchen,
2004) for two reasons. First, this effect is pronounced only at the
distal dendrites whereas our key results hold even at the prox-
imal dendrites. Second, the BPAP amplitude in distal dendrites
decreases as a function of the dendritic distance, as well as with

repeated activation. While dendritic depolarization boosts the
amplitude of individual BPAPs, the effect of dendritic depolariza-
tion on repeated, high-frequency activation of BPAPs is unknown
and our model investigates precisely this parameter regime. As
long as the depolarization-induced boosting of BPAP keeps the
BPAP amplitude in the distal dendrites smaller than the BPAP in
the proximal dendrites, which is shown by most experiments, our
results would remain qualitatively unchanged.

SHORT-TERM DYNAMICS DO NOT ABOLISH THE RATE-DEPENDENCE OF
LTP
In addition to receiving BPAP-induced depolarization, synapses
also show short-term dynamics, such as frequency-dependent
facilitation and depression (Markram et al., 1997; Klyachko and
Stevens, 2006). To investigate the effects of short-term synaptic
dynamics on LTP, it is important to consider the stochastic nature
of synaptic transmission. The transmission probability P was
assumed to be dependent on the frequency of presynaptic spikes
(cf. Materials and Methods). As expected, frequency-dependent
facilitation resulted in more potentiation than depression. Notably,
the 1/f dependence of LTP on frequency was unchanged when con-
sidering frequency-dependent stochastic synapses (Figures 4E and
6D,F). These results demonstrate that while short-term dynamics
of the BPAP and synapses changed the preferred frequency of LTP
induction, they did not abolish the predicted rate-dependence of
LTP.

ENHANCED PLASTICITY WITH PERIODIC STIMULI
The above simulations used periodic stimuli, which are predomi-
nantly used in in vitro experiments. Similarly, natural spike trains
often display rhythmic activity (Buzsaki, 2006), which is thought
to be critical for learning and memory (Winson, 1978). By con-
trast, neurons also fire in an irregular, aperiodic fashion, where the
spike trains can be approximately described by Poisson statistics.
To understand the role of rhythmic activity in learning, we com-
pared the amount of plasticity induced by Poisson-distributed and
periodic spike trains with equal mean firing rates and numbers of
spikes.

We simulated a synapse receiving 50 spikes obeying homo-
geneous Poisson statistics with different average firing rates. The
resulting plasticity curve showed significantly reduced magnitudes
of LTD and LTP compared to the plasticity generated by periodic
stimuli (Figures 5A and 6E,F). The peak-to-peak amplitude of the
rate-dependent modulation of plasticity (max. LTP – max. LTD)
also decreased from ∼240% in the periodic case, to ∼140% in
the Poisson case. The peak LTP was reduced to 130% with Pois-
son type stimuli because even high average-rate stimuli contain
some instances of low rate spiking (Figures 5B,C). The peak LTD
was reduced dramatically (∼10%) with Poisson type stimuli. This
decrease in the amount of LTD can be attributed to the presence of
bursts of spikes with high intra-burst rates occurring in a low rate
Poisson spike train (Figures 5B,C). These results indicate that peri-
odic stimuli dramatically and significantly enhance LTP and LTD
compared to irregular stimuli. This provides a mechanism, at the
single synapse level, for the facilitating role of neural oscillations
in learning and memory (Winson, 1978).
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FIGURE 6 | Robustness of the frequency f max for inducing maximal LTP to

changes in the model parameters. Experiments show that the amount of
LTP is a saturating function of the amplitude of the calcium transient. This is
modeled by the � function (cf. Figure 1A main text), which saturates at high
values and makes [Ca] (and the amount of LTP) frequency-independent at
high frequencies. Here we tested the effect of different non-saturating �

functions (A) Different � functions with either saturating or non-saturating
behavior at high calcium concentrations. The two vertical gray lines mark the
calcium concentration for periodic (broken gray) and Poisson type spike trains
(solid gray) at 50 Hz. (C–F) Effect of a non-saturating � function on the
frequency dependence of LTP beyond f max. The colors of the traces are
matched with the corresponding � function shown in (A). (B) Calcium
concentration in a stochastic synapse for three different BPAP amplitudes as a
function of stimulation frequency. Each trace shows the average of 50 trials.
At higher frequencies the amount of calcium in a spine tends to saturate or
even decrease for distal synapses due to dominating frequency-dependent
depression. (C) Frequency dependence of LTP for a periodic (regular) spike
train impinging on a deterministic synapse. (D) Frequency dependence of LTP
for a periodic spike train impinging on a frequency-dependent and stochastic

synapse. (E) Frequency dependence of LTP for a Poisson type spike train
impinging on a deterministic synapse. (F) Frequency dependence of
LTP for a Poisson type spike train impinging on a frequency-dependent
and stochastic synapse. Evidently, with deterministic synapses,
independent of the spike pattern, the 1/f dependence of LTP is not
observed even for small changes in the saturation of the � function. By
contrast, with stochastic synapses saturation of the � function is not
required to observe the 1/f dependence of LTP beyond f max because the
amount calcium saturates (B). Thus, the 1/f behavior of LTP is robust for
stochastic synapses. (G) Comparison of frequency-dependent plasticity
induced by either periodic (blue) or Poisson type spike trains (pale blue),
when the synapse was modeled as deterministic. The blue trace is
the same as in (C), while the pale blue curve is plotted as the blue trace in (E).
(H) Same as in (G) for the stochastic synapse model. (G,H) Show that
independent of the synapse model, periodic spike trains induce more
plasticity than Poisson type spike trains. However, note that at high
frequencies, with the stochastic synapse model, both periodic and Poisson
type spike trains induce the same amount of plasticity. In (C–H), the traces
represent an average of 50 trials.

EFFECT OF A NON-SATURATING � FUNCTION ON THE
RATE-DEPENDENT PLASTICITY
The above calculations used the experimentally observed, saturat-
ing dependence of LTP on calcium concentration (Figure 1A).
Therefore, it is important to understand to what extent these
results depend on the assumption that the � function saturates
at high values of calcium. Hence, we relaxed this constraint and
considered several variations of a non-saturating � function such
that LTP was allowed to increase indefinitely as a function of cal-
cium levels (Figure 6A). With this modification in the � function,
i.e., without any saturation at high values, the frequencies fα and
fmax remained unaltered (Figure 6). The 1/f dependence was more
affected when using deterministic synapses (Figures 6C,E). In
contrast, stochastic synapses continued to exhibit approximately
1/f LTP (Figures 6D,F). This is because the calcium concentra-
tion saturates at high frequencies due to the frequency-dependent

depression in stochastic synapses (Figure 6B). Thus, a saturat-
ing � function was not required to obtain a frequency-dependent
decrease in LTP beyond fmax, and the novel rate-dependence of
LTP was robust, surviving relaxations of many assumptions of the
model as well as large and dynamic changes in synaptic strengths
and the BPAP amplitude.

JOINT INFLUENCE OF SPIKE TIMING AND SPIKE RATE ON PLASTICITY
In addition to spike rate, synaptic plasticity critically depends on
spike timing (Magee and Johnston, 1997; Markram et al., 1997;
Nishiyama et al., 2000; Bi and Poo, 2001; Sjöström et al., 2001;
Wittenberg and Wang, 2006). The postsynaptic calcium influx
is a determining factor in STDP induction (Magee and John-
ston, 1997), and STDP has been observed in several brain regions
including the neocortex (Markram et al., 1997; Sjöström et al.,
2001), hippocampal cultures (Bi and Poo, 1998, 2001), and in
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hippocampus in vitro (Nishiyama et al., 2000; Wittenberg and
Wang, 2006). Consistent with these hippocampal in vitro experi-
ments (Nishiyama et al., 2000; Wittenberg and Wang, 2006), our
model showed that when delivered at 5 Hz, pairs of pre- and post-
synaptic spikes induced LTD at all pre-post spike latencies between
±50 ms (Figure 7A).

Spike bursts strongly influence STDP (Sjöström et al., 2001;
Wittenberg and Wang, 2006). Consistently, we found that robust
LTP was induced when a presynaptic spike was paired with a
100-Hz burst of two postsynaptic spikes within −5 and +15 ms,
whereas LTD was induced at all other latencies up to ±50 ms
(Figure 7A; Nishiyama et al., 2000; Sjöström et al., 2001; Wit-
tenberg and Wang, 2006). Here, the synapses were in scenario II
(Figure 1B),where at a low rate calcium transients induced by pair-
ing one pre- and one postsynaptic spike were too small to induce
LTP, but were large enough to induce LTD. Increasing the latency
between pre- and postsynaptic spikes reduced the amplitude of the
calcium transient and hence the amount of LTD. Pairing a presy-
naptic spike with a burst of postsynaptic spikes nearly doubled the
size of the calcium transient, which was large enough to cross the
LTP threshold at small latencies. Similar results would be obtained
if the size of the calcium transient were made larger, resulting in
LTP at short latencies (Sjöström et al., 2001). Thus, the model
can capture the joint influence of spike timing and postsynaptic
bursting on STDP.

We next investigated the joint influence of spike rate and tim-
ing on plasticity (Figure 7B). At rates higher than the frequency
fmax for maximal LTP induction, there was no timing dependence
of plasticity because the adjacent spikes overlapped at all laten-
cies, generating identically large calcium influx and LTP. At low
frequencies, adjacent spikes were far enough apart such that the
calcium influx could be modulated by spike timing (Figure 7B).
In agreement with this, timing-dependent plasticity has been
observed experimentally at low rates (Sjöström et al., 2001).

To determine the influence of spike timing on plasticity induced
at each rate, we computed the difference between maximal LTP and
minimal LTD induced at any latency for each rate (Figure 7C),
termed STDP modulation. Interestingly, maximal STDP modula-
tion was observed at a rate slightly less than the optimal frequency
fmax. At rates much lower than fmax the STDP modulation was
low, while at rates higher than fmax there was no significant STDP
modulation. Thus, STDP modulation by spike rate was restricted
to a narrow range (∼5-15 Hz) when only one postsynaptic spike
was paired with a presynaptic spike. However, postsynaptic burst-
ing significantly increased the range of frequencies where strong
STDP modulation occurred. Similar results were obtained for
stochastic synapses (Figure 8). These results show a novel inter-
action between spike timing, spike rate, and spike bursting, that
determines the direction and the magnitude of plasticity.

DISCUSSION
Relative to standard plasticity induction protocols, natural spike
trains contain a small number of spikes with variable spike rate
and rhythmicity. Moreover, the latency between the pre- and post-
synaptic spikes, as well as the number of spikes generated in a
postsynaptic neuron in response to one presynaptic spike can vary.
Here, we computed the influence of these variables on the nature

of synaptic plasticity using a biophysical model of an isolated
NMDA-dependent synapse (Artola and Singer, 1993; Karmarkar
and Buonomano, 2002; Shouval et al., 2002; Abarbanel et al.,
2003; Cai et al., 2007). The model could explain a vast amount
of data on both the rate and timing dependence of synaptic
plasticity. Thus, the model provides a unified theoretical expla-
nation of those experimental observations, and also makes novel
predictions. The predictions of the simple, reduced model that
used deterministic synapses were confirmed using more biophys-
ical models that used stochastic synapses, short-term dynamics of
EPSPs and BPAP, and a multi-compartment neuron incorporating
the activity-dependent dynamics of dendrites.

MODEL PREDICTIONS AND THEIR SIGNIFICANCE
(1) A key finding was that for a fixed number of spikes used for

inducing plasticity, as is commonly done in most experiments,
maximal LTP was induced at a frequency fmax (Figures 2 and
3). For spikes delivered at frequencies higher than fmax the
amount of LTP induced decreased as ∼1/f. That is, with bio-
logically realistic parameters, at frequencies above ∼30 Hz,
the number of spikes is a crucial parameters that determines
the amount of plasticity of a synapse and the amount of
LTP induced per spike reduced with increasing stimulation
frequency. Alternatively, the number of spikes and the stim-
ulus duration are key parameters when synapses are paired
with tens of spikes. This effect disappears when hundreds of
spikes are used, that saturate plasticity. Hints of the inverted-
U frequency dependence can be found in some experimental
studies (Berry et al., 1989; Wang and Wagner, 1999). How-
ever, most studies do not report such frequency dependence,
potentially due to two reasons: (1) few studies have probed
the sufficiently high-frequency regime; (2) most studies use a
large number of spikes to induce LTP or LTD which saturates
synaptic strengths, thereby potentially masking the novel fre-
quency dependence in the sub-saturating regime. Indeed, in
the saturating regime, the plasticity curve predicted here con-
verges to the standard shape with a sufficiently large number of
stimulus spikes (Figure 2 pale blue trace). In order to test the
novel predictions of the model, an experiment is needed that
uses a small number of spikes to induce plasticity without sat-
urating the synaptic strengths. Further, the experiment would
need to span a wide range of frequencies to detect a decrease in
LTP with higher frequency stimulation, and test the predicted
1/f dependence of LTP at an NMDA-dependent synapse.

The predicted 1/f frequency dependence of LTP was robust
to a number of model parameters and assumption, includ-
ing short-term plasticity (Figures 4E and 6D,F), the dendritic
location of the synapse (Figures 4A,B) and spike statis-
tics (Figure 5A). Synaptic facilitation lowered the value of
fmax where maximal LTP occurred, and synaptic depression
increased fmax, but the 1/f dependence of LTP beyond fmax

was unaltered in all cases. Similarly, the dendritic distance, and
stimulus frequency-dependent attenuation of BPAP changed
the numerical value of fmax but did not influence the 1/f
dependence of LTP (Figures 4A,B). Notably, the 1/f depen-
dence of LTP persisted even at the distal synapses where the
BPAPs were maximally attenuated. In such cases, LTP was
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FIGURE 7 | Co-dependence of synaptic plasticity on spike rate and

timing. (A) Each presynaptic spike was paired with a postsynaptic spike at
0.1 Hz, and the latency between the pre-post spike-times was varied between
(−80 and +80 ms. The synaptic strength gNMDA,Ca was chosen to be in scenario
II (Figure 1B, Materials and Methods). Here, for all latencies between ±50 ms
LTD was induced. However when each presynaptic spike was paired with a
burst of two postsynaptic spikes (inter spike interval ISI = 10 ms), LTP was
induced between −5 and +10 ms. LTD was induced in two temporal
windows: between −40 and −5 ms and between +10 and +60 ms. (B)

Rate-dependence of synaptic plasticity for three different values of spike
timings or latencies between pre- and postsynaptic spikes (red = 0 ms,

gray = 10 ms, green = −10 ms). Here, each presynaptic spike was
paired with two postsynaptic spikes (ISI = 10 ms). Spike timing had
a strong timing effect on the amount of plasticity induced at low
frequencies. However, at rates greater than f max, spike timing had
no impact on synaptic plasticity. (C) The modulation of synaptic
plasticity by spike timing was computed as the difference between maximal
and minimal plasticity (see text) for all latencies at a given rate. The timing
dependence of plasticity was maximal in a narrow range of rates just below
f max (blue). Pairing each presynaptic spike with a burst of two postsynaptic
spikes widened the range of frequencies (red) where timing dependence was
significant.

FIGURE 8 | Spike timing-dependent plasticity with stochastic synapses.

(A) Average change in EPSP amplitude for a stochastic synapse (cf. Materials
and Methods) when one presynaptic spike is paired with one postsynaptic
spike (blue) or with two postsynaptic spikes (red). The dotted lines show the

SD for the two traces. (B) Modulation of synaptic plasticity for stochastic
synapses. Similar to the deterministic synapses, the rate- and
timing-dependent plasticity work together to give maximal modulation
between ∼5 and 20 Hz.

induced entirely by cooperation between temporally adjacent
EPSPs, with no significant contribution from BPAPs. These
results were confirmed using a detailed, multi-compartment
model of a CA1 neuron. Thus, the novel 1/f dependence of LTP
on stimulation frequency is a robust phenomenon, and per-
sists with strong short-term plasticity. This prediction can be
tested experimentally by inducing LTP at an isolated synapse
with pharmacological manipulations that alter the amount
of synaptic facilitation and depression. Observation of a 1/f
dependence of LTP with different levels of synaptic facilitation
and depression would validate the model.

(2) In our model, rhythmic stimuli generated far greater LTP
and LTD than arrhythmic (Poisson type spike trains) stim-
uli (Figure 5A). Several experiments have shown that neural
activity becomes periodic under learning and memory tasks,
and that abolishing these oscillations results in learning
deficits (Winson, 1978; Stopfer et al., 1997; Fries et al., 2001;
Buzsaki, 2006). On the other hand, enhancement of neural
oscillations at specific frequencies can boost memory (Mar-
shall et al., 2006). Our model provides computational sup-
ports for these results and suggests that oscillations may play
an important role in learning and memory by facilitating LTP
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and LTD in a frequency-dependent fashion at the level of a sin-
gle synapse. This prediction is easily testable experimentally.
Observation of a greater amount of plasticity at any stimu-
lation rate with periodic stimuli compared to aperiodic ones
would provide a strong support for our model, and suggest
that oscillations can play a role in learning at the level of an
individual synapse.

(3) We investigated the joint effects of variation in spike timing
and spike rate on the resulting plasticity. We found that the
modulation of plasticity by spike timing was maximal at stim-
ulation rates just below fmax. Stimuli with rates higher than
fmax showed plasticity with virtually no timing dependence.
Further, the timing dependence of plasticity was restricted to
a narrow window (∼5-15 Hz) when each presynaptic spike
was paired with one postsynaptic spike (Figures 7B,C), but
less so when presynaptic spikes were paired with bursts of
postsynaptic spikes. This finding can be tested experimentally
by measuring the timing dependence of LTP with or with-
out postsynaptic spike bursts. Stronger amount of STDP with
spike bursts than with single spikes would validate our model.

The sharp change in the timing sensitivity of plasticity as a
function of spike rate could have a profound influence on net-
work models of learning. Further, we found that pairing each
presynaptic spike with a burst of postsynaptic spikes dramat-
ically increased the range of firing rates where spike timing
exerted a significant effect on synaptic plasticity. Thus, state-
dependent changes in neural activity from single spike to burst
mode could have a strong impact on the resulting plasticity
and learning. In single spike mode, networks would be more
likely to learn based on overall correlations, such as through a
rate code, whereas during the burst mode networks would be
more likely to learn based on precise spike timings, or through
a temporal code.

(4) Various physiological parameters can alter the frequency fmax

at which maximal LTP is induced. For example, the amplitude
of the BPAP is reduced with increasing dendritic distance from
the soma (Spruston et al., 1995; Magee and Johnston, 1997).
Thus, greater cooperation between adjacent spikes is required
at distal synapses to cross the LTP threshold, resulting in an
increase of fmax. Thus, if maximal LTP is induced at a low fre-
quency, e.g., 10 Hz, at a proximal synapse, maximal LTP would
be induced at a higher frequency, e.g., 30 Hz, at an identical
distal synapse. Further, the result that low frequency stimuli
could induce LTP at a proximal synapse while inducing LTD at
a corresponding distal synapses is consistent with experimen-
tal findings (Sjöström and Häusser, 2006). Thus, the plasticity
rule predicted here could use the same input rate to differ-
entially modulate the direction and magnitude of synaptic
plasticity depending on their dendritic location. We speculate
that the dendritic location-dependence of preferred frequency
for LTP induction may have strong implications for the influ-
ence of attention on learning. Typically, the bottom-up inputs
to the neocortex arrive at proximal dendrites, whereas top-
down inputs from higher cortical areas, which putatively carry
information related to attention, arrive at distal dendrites.

Our model predicts that the preferred frequency for induc-
ing LTP is higher at the distal dendrites compared to the

proximal ones (Figures 4A,B). Hence we speculate that higher
frequency oscillations may facilitate top-down learning of
inputs arriving at distal synapses, whereas lower frequency
oscillations may facilitate learning of the bottom-up inputs
at proximal dendrites (Buschman and Miller, 2007). In addi-
tion to the network based mechanisms (Niebur et al., 1993;
Sivan and Kopell, 2004), this could also provide another sin-
gle synapse based mechanism by which the high-frequency
gamma oscillations, that typically appear in tasks involv-
ing attention, can facilitate learning (Winson, 1978; Fries
et al., 2001; Buzsaki, 2006). Further, our results can explain
recent findings showing that glutamatergic inputs from the
entorhinal cortex and area CA3, terminating on the distal and
proximal dendritic segments of area CA1, prefer faster- and
slower-frequency gamma oscillations respectively during spa-
tial exploration (Colgin et al., 2009; Chen et al., 2011). Our
results suggest that the fast and slow gamma oscillations are
best suited for inducing maximal plasticity for the entorhinal
and CA3 inputs on CA1 respectively.

In addition to the BPAP amplitude, the calcium perme-
ability in the spines also affected fmax without altering the 1/f
dependence. For very low-permeability synapses, fmax was as
high as 200 Hz. In vivo LTP induction protocols in rat neocor-
tex have reported induction of LTP with eight spikes at 300 Hz
(McNaughton et al., 1978; Trepel and Racine, 2000). Our
model suggests that synapses with low calcium permeability
may be responsible.

(5) Our model predicts that below a certain frequency fα , LTD
is independent of frequency (Figure 1C). The value of fα
is inversely proportional to the time course of the stimulus-
evoked calcium transient. Thus, the shape of the LTD curve,
which can be measured in vivo, could provide an estimate
of the time course of intracellular calcium transients, with-
out explicit knowledge of calcium buffering kinetics. This
is useful because direct measurements of the calcium time
course are difficult due to the interference caused by calcium
indicators (Helmchen et al., 1996; Carter and Sabatini, 2004;
Yuste and Konnerth, 2005). Moreover, exact estimates of cal-
cium dynamics also require knowledge of calcium buffering
kinetics, which is even more difficult to measure. Preliminary
evidence for the frequency-independence of LTD predicted by
our model can be found in available experimental data (Wang
and Wagner, 1999; Johnston et al., 2003).

These results are based on a few commonly held and experi-
mentally supported assumptions, which have been successful in
explaining saturated state synaptic plasticity. The novel findings
of an optimal frequency for inducing LTP and enhanced plasticity
with periodic stimuli compared to aperiodic ones are generally
insensitive to model parameters. There is only one parameter that
largely determines this behavior, namely θ s , the value of calcium
concentration beyond which an increase in calcium levels does
not lead to increased LTP. Change in θ s would alter the preferred
frequency for inducing maximal LTP, but the results would remain
qualitatively unchanged. In fact, not only the model parameters,
but also some of the assumptions of the model can be changed
without a qualitative change in the results. For example, it is
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possible that the plasticity rule itself has a calcium dependence
in the sub-saturated regime that differs from the one measured
in the saturated state. In particular, it is conceivable that the rate
of LTP induction does not plateau above θ s , but continues to
increase with increasing levels of calcium. It can be easily deduced
from our model (Figure 6) that, as long as such growth is sub-
linear, the decline of LTP at high frequencies will be maintained,
although it may not take the characteristic 1/f dependence. In
addition, the stochastic and frequency-dependent behavior of a
synapse can restore the 1/f dependence of LTP beyond fmax, even
with a completely non-saturating � function (Figure 6).

We have assumed that plasticity occurs incrementally with
repeated stimulation. In this regard, it has been suggested that
single synapses operate as devices with two or more discrete states,
such that plasticity occurs through switch-like transitions between
these states (Petersen et al., 1998; O’Connor et al., 2005). However,
neurons typically make multiple contacts on their postsynaptic tar-
gets, each with a different threshold for plasticity induction. The
commonly observed graded plasticity could result from switch-
ing different fractions of the synapse population. In this scenario,
our analysis would describe the collective response of an ensem-
ble of synapses with a continuous range of plasticity thresholds. It
has been suggested that a small number of stimuli fail to induce
long-term synaptic plasticity at CA3–CA1 synapses, let alone sat-
urating LTP (Fink and O’Dell, 2009). On the other hand, recent
experiments involving precisely timed stimulation of a pair of pre-
and postsynaptic neurons show incremental change in synaptic
strength with increasing number of stimuli (Zhang et al., 2009).
More experiments are needed to determine if physiologically real-
istic, small numbers of spikes can induce LTP, and how it depends
on stimulus parameters.

Further, other factors, such as metabotropic glutamate recep-
tors, can have complex effects on the NMDA-dependent plasticity
(Nevian and Sakmann, 2006). Such effects could be incorporated
by expanding the model to include a more detailed model of the
presynaptic neuron (or bouton) and extracellular signaling path-
ways. For simplicity, we have considered only the contribution
of postsynaptic NMDAR-mediated influx of plasticity-inducing
calcium ions. Thus, here we have only focused on postsynaptic
mechanisms of synaptic plasticity. In our current model we have
also excluded additional sources of calcium, such as voltage gated
calcium channels and intracellular calcium stores. However, addi-
tion of such mechanisms would not change our predictions in
a qualitative manner if the following conditions are met: First,
synaptic modifications depend on both the amplitude and the
duration of a given plasticity-inducing signal. Second, the ampli-
tude of the signal determining the synaptic modification integrates
with repeated stimuli, with the caveat that the amount of plasticity
it produces is limited from above.

The model does not take in to account the influence of inhi-
bition during natural behavior. In the simple case that spikes are
periodic and excitation and inhibition occur at opposite phases of
the oscillation, the major findings are likely to remain unaltered.
However, precisely timed inhibition could alter the magnitude of
the BPAP, and thus could influence the fmax. More experimental
and theoretical studies are required to understand the interac-
tion between excitatory and inhibitory spike timing and synaptic

plasticity. Similarly, more experimental and theoretical studies are
needed to understand how the novel plasticity rule predicted here
will influence the connectivity and dynamics of a network of
excitatory neurons.

RELATIONSHIP WITH OTHER MODELS
Over the last decade a number of reduced phenomenological
(Guetig et al., 2003; Pfister and Gerstner, 2006), hybrid (i.e.,
phenomenological and biophysical; Karmarkar and Buonomano,
2002; Shouval et al., 2002, 2010; Abarbanel et al., 2003; Cai
et al., 2007; Clopath et al., 2010), and biologically realistic models
(Graupner and Brunel, 2010) have been proposed to explain one
or more aspects of STDP. In the reduced model, the main aim
is to find a mathematical function that can fit the experimentally
observed STDP curves (Bi and Poo, 1998). In the hybrid models of
synaptic plasticity, the membrane potential and calcium dynamics
are explicitly modeled using Hodgkin and Huxley type equations,
while the amount of plasticity is assumed to be proportional to
the calcium influx in a spine. More detailed biophysical models
have been used to relate the biochemical reactions responsible for
changes in calcium concentration to the resulting induction and
maintenance of plasticity (Graupner and Brunel, 2010). Hybrid
models have provided important clues about the influence of vari-
ous key parameters, such as the EPSP time constant, the magnitude
and time course of calcium transients, and the shape of the BPAP,
on the amount of plasticity (Karmarkar and Buonomano, 2002;
Shouval et al., 2002; Abarbanel et al., 2003; Cai et al., 2007).

On the other hand, the reduced and the phenomenological
models, which are more suitable for large network simulations,
have furthered our understanding of how STDP can help in learn-
ing temporal correlations (Guetig et al., 2003), and of the develop-
ment of activity-dependent structure in small recurrent networks
(Clopath et al., 2010). The reduced models have also been useful
in linking the experimentally observed timing-dependent synaptic
plasticity to the more general BCM rule (Bienenstock et al., 1982),
and eventually to metaplasticity (Shouval et al., 2002, 2010; Pfister
and Gerstner, 2006). Other models have also been proposed to fit
specific experimental data (Froemke et al., 2005).

All of these models followed the standard experimental pro-
tocol, such that the model synapse was stimulated for a fixed
duration and with a large of number spikes (≥100) that sat-
urate synaptic plasticity. The nature of plasticity induced by
a small number of spikes (∼20) occurring in a short period,
as commonly happens during behavior, has never been inves-
tigated systematically. However, as we have shown here using
both reduced and detailed models of synaptic plasticity, the num-
ber of spikes used to induce plasticity is a crucial parameter
that determines the total amount of plasticity observed in a
synapse. The surprising result is that the dependence of synap-
tic plasticity on stimulation frequency is remarkably different
for a small number of spikes compared to a large, plasticity-
saturating number of spikes. Notably, this effect of using a small
number of spikes, and other findings mentioned above, are not
restricted to the specific model we have chosen. Other reduced
models or more detailed models would give qualitatively sim-
ilar results. Finally, to our knowledge this is the first study to
show that for a physiological choice of parameters, the effects
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of spike rate and timing on plasticity combine synergistically
for stimuli at intermediate, or theta frequencies (5–15 Hz), and
thus synaptic plasticity is most sensitive to spike timing at these
frequencies.

In summary, using a standard model of synaptic plasticity we
provide explanations for a host of experimental observations, and
make novel testable predictions. Our results provide new insights
into the mechanisms underlying learning and memory and suggest
a novel role of oscillations and bursting in this process.
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