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Pan-cancer analysis of whole genomes

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 

Cancer is driven by genetic change, and the advent of massively parallel sequencing has 
enabled systematic documentation of this variation at the whole-genome scale1–3. Here 
we report the integrative analysis of 2,658 whole-cancer genomes and their matching 
normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The 
Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, 
facilitated by international data sharing using compute clouds. On average, cancer 
genomes contained 4–5 driver mutations when combining coding and non-coding 
genomic elements; however, in around 5% of cases no drivers were identified, 
suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which 
many clustered structural variants arise in a single catastrophic event, is frequently an 
early event in tumour evolution; in acral melanoma, for example, these events precede 
most somatic point mutations and affect several cancer-associated genes 
simultaneously. Cancers with abnormal telomere maintenance often originate from 
tissues with low replicative activity and show several mechanisms of preventing 
telomere attrition to critical levels. Common and rare germline variants affect patterns 
of somatic mutation, including point mutations, structural variants and somatic 
retrotransposition. A collection of papers from the PCAWG Consortium describes  
non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies 
new signatures of mutational processes that cause base substitutions, small insertions 
and deletions and structural variation5,6; analyses timings and patterns of tumour 
evolution7; describes the diverse transcriptional consequences of somatic mutation on 
splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range 
of more-specialized features of cancer genomes8,10–18.

Cancer is the second most-frequent cause of death worldwide,  
killing more than 8 million people every year; the incidence of cancer 
is expected to increase by more than 50% over the coming decades19,20. 
‘Cancer’ is a catch-all term used to denote a set of diseases characterized 
by autonomous expansion and spread of a somatic clone. To achieve 
this behaviour, the cancer clone must co-opt multiple cellular pathways 
that enable it to disregard the normal constraints on cell growth, modify 
the local microenvironment to favour its own proliferation, invade 
through tissue barriers, spread to other organs and evade immune sur-
veillance21. No single cellular program directs these behaviours. Rather, 
there is a large pool of potential pathogenic abnormalities from which 
individual cancers draw their own combinations: the commonalities 
of macroscopic features across tumours belie a vastly heterogeneous 
landscape of cellular abnormalities.

This heterogeneity arises from the stochastic nature of Darwinian 
evolution. There are three preconditions for Darwinian evolution: 
characteristics must vary within a population; this variation must be 
heritable from parent to offspring; and there must be competition for 
survival within the population. In the context of somatic cells, heritable 
variation arises from mutations acquired stochastically throughout 
life, notwithstanding additional contributions from germline and 
epigenetic variation. A subset of these mutations alter the cellular 
phenotype, and a small subset of those variants confer an advantage 

on clones during the competition to escape the tight physiological 
controls wired into somatic cells. Mutations that provide a selective 
advantage to the clone are termed driver mutations, as opposed to 
selectively neutral passenger mutations.

Initial studies using massively parallel sequencing demonstrated the 
feasibility of identifying every somatic point mutation, copy-number 
change and structural variant (SV) in a given cancer1–3. In 2008, recog-
nizing the opportunity that this advance in technology provided, the 
global cancer genomics community established the ICGC with the 
goal of systematically documenting the somatic mutations that drive 
common tumour types22.

The pan-cancer analysis of whole genomes
The expansion of whole-genome sequencing studies from individual 
ICGC and TCGA working groups presented the opportunity to under-
take a meta-analysis of genomic features across tumour types. To 
achieve this, the PCAWG Consortium was established. A Technical 
Working Group implemented the informatics analyses by aggregating 
the raw sequencing data from different working groups that studied 
individual tumour types, aligning the sequences to the human genome 
and delivering a set of high-quality somatic mutation calls for down-
stream analysis (Extended Data Fig. 1). Given the recent meta-analysis 
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of exome data from the TCGA Pan-Cancer Atlas23–25, scientific working 
groups concentrated their efforts on analyses best-informed by whole-
genome sequencing data.

We collected genome data from 2,834 donors (Extended Data 
Table 1), of which 176 were excluded after quality assurance. A further 
75 had minor issues that could affect some of the analyses (grey-listed 
donors) and 2,583 had data of optimal quality (white-listed donors) 
(Supplementary Table 1). Across the 2,658 white- and grey-listed donors, 
whole-genome sequencing data were available from 2,605 primary 
tumours and 173 metastases or local recurrences. Mean read coverage 
was 39× for normal samples, whereas tumours had a bimodal cover-
age distribution with modes at 38× and 60× (Supplementary Fig. 1). 
RNA-sequencing data were available for 1,222 donors. The final cohort 
comprised 1,469 men (55%) and 1,189 women (45%), with a mean age of 
56 years (range, 1–90 years) across 38 tumour types (Extended Data 
Table 1 and Supplementary Table 1).

To identify somatic mutations, we analysed all 6,835 samples using 
a uniform set of algorithms for alignment, variant calling and quality 
control (Extended Data Fig. 1, Supplementary Fig. 2 and Supplementary 
Methods 2). We used three established pipelines to call somatic single-
nucleotide variations (SNVs), small insertions and deletions (indels), 
copy-number alterations (CNAs) and SVs. Somatic retrotransposition 
events, mitochondrial DNA mutations and telomere lengths were also 
called by bespoke algorithms. RNA-sequencing data were uniformly 

processed to call transcriptomic alterations. Germline variants identi-
fied by the three separate pipelines included single-nucleotide poly-
morphisms, indels, SVs and mobile-element insertions (Supplementary 
Table 2).

The requirement to uniformly realign and call variants on approxi-
mately 5,800 whole genomes presented considerable computational 
challenges, and raised ethical issues owing to the use of data from dif-
ferent jurisdictions (Extended Data Table 2). We used cloud comput-
ing26,27 to distribute alignment and variant calling across 13 data centres 
on 3 continents (Supplementary Table 3). Core pipelines were pack-
aged into Docker containers28 as reproducible, stand-alone packages, 
which we have made available for download. Data repositories for raw 
and derived datasets, together with portals for data visualization and 
exploration, have also been created (Box 1 and Supplementary Table 4).

Benchmarking of genetic variant calls
To benchmark mutation calling, we ran the 3 core pipelines, together 
with 10 additional pipelines, on 63 representative tumour–normal 
genome pairs (Supplementary Note 1). For 50 of these cases, we per-
formed validation by hybridization of tumour and matched normal DNA 
to a custom bait set with deep sequencing29. The 3 core somatic variant-
calling pipelines had individual estimates of sensitivity of 80–90% 
to detect a true somatic SNV called by any of the 13 pipelines; more 

Box 1

Online resources for data access, visualization and analysis
The PCAWG landing page (http://docs.icgc.org/pcawg) provides 
links to several data resources for interactive online browsing, 
analysis and download of PCAWG data and results (Supplementary 
Table 4).
Direct download of PCAWG data
Aligned PCAWG read data in BAM format are also available at 
the European Genome Phenome Archive (EGA; https://www.
ebi.ac.uk/ega/search/site/pcawg under accession number 
EGAS00001001692). In addition, all open-tier PCAWG genomics 
data, as well as reference datasets used for analysis, can be 
downloaded from the ICGC Data Portal at http://docs.icgc.org/
pcawg/data/. Controlled-tier genomic data, including SNVs and 
indels that originated from TCGA projects (in VCF format) and 
aligned reads (in BAM format) can be downloaded using the 
Score (https://www.overture.bio/) software package, which has 
accelerated and secure file transfer, as well as BAM slicing facilities 
to selectively download defined regions of genomic alignments.
PCAWG computational pipelines
The core alignment, somatic variant-calling, quality-control and 
variant consensus-generation pipelines used by PCAWG have each 
been packaged into portable cross-platform images using the 
Dockstore system84 and released under an Open Source licence that 
enables unrestricted use and redistribution. All PCAWG Dockstore 
images are available to the public at https://dockstore.org/
organizations/PCAWG/collections/PCAWG.
ICGC Data Portal
The ICGC Data Portal85 (https://dcc.icgc.org) serves as the main 
entry point for accessing PCAWG datasets with a single uniform web 
interface and a high-performance data-download client. This uniform 
interface provides users with easy access to the myriad of PCAWG 
sequencing data and variant calls that reside in many repositories 
and compute clouds worldwide. Streaming technology86 provides 
users with high-level visualizations in real time of BAM and VCF files 
stored remotely on the Cancer Genome Collaboratory.

UCSC Xena
UCSC Xena87 (https://pcawg.xenahubs.net) visualizes all PCAWG 
primary results, including copy-number, gene-expression, gene-fusion 
and promoter-usage alterations, simple somatic mutations, large 
somatic structural variations, mutational signatures and phenotypic 
data. These open-access data are available through a public Xena 
hub, and consensus simple somatic mutations can be loaded to the 
local computer of a user via a private Xena hub. Kaplan–Meier plots, 
histograms, box plots, scatter plots and transcript-specific views offer 
additional visualization options and statistical analyses.
The Expression Atlas
The Expression Atlas (https://www.ebi.ac.uk/gxa/home) contains 
RNA-sequencing and expression microarray data for querying 
gene expression across tissues, cell types, developmental stages 
and/or experimental conditions88. Two different views of the data 
are provided: summarized expression levels for each tumour type 
and gene expression at the level of individual samples, including 
reference-gene expression datasets for matching normal tissues.
PCAWG Scout
PCAWG Scout (http://pcawgscout.bsc.es/) provides a framework for 
-omics workflow and website templating to generate on-demand, 
in-depth analyses of the PCAWG data that are openly available to the 
whole research community. Views of protected data are available 
that still safeguard sensitive data. Through the PCAWG Scout web 
interface, users can access an array of reports and visualizations 
that leverage on-demand bioinformatic computing infrastructure 
to produce results in real time, allowing users to discover trends as 
well as form and test hypotheses.
Chromothripsis Explorer
Chromothripsis Explorer (http://compbio.med.harvard.edu/
chromothripsis/) is a portal that allows structural variation in the 
PCAWG dataset to be explored on an individual patient basis 
through the use of circos plots. Patterns of chromothripsis can also 
be explored in aggregated formats.

http://docs.icgc.org/pcawg
https://www.ebi.ac.uk/ega/search/site/pcawg
https://www.ebi.ac.uk/ega/search/site/pcawg
http://docs.icgc.org/pcawg/data/
http://docs.icgc.org/pcawg/data/
https://www.overture.bio/
https://dockstore.org/organizations/PCAWG/collections/PCAWG
https://dockstore.org/organizations/PCAWG/collections/PCAWG
https://dcc.icgc.org
https://pcawg.xenahubs.net
https://www.ebi.ac.uk/gxa/home
http://pcawgscout.bsc.es/
http://compbio.med.harvard.edu/chromothripsis/
http://compbio.med.harvard.edu/chromothripsis/
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than 95% of SNV calls made by each of the core pipelines were genu-
ine somatic variants (Fig. 1a). For indels—a more-challenging class of  
variants to identify with short-read sequencing—the 3 core algorithms 
had individual sensitivity estimates in the range of 40–50%, with pre-
cision of 70–95% (Fig. 1b). For individual SV algorithms, we estimated 
precision to be in the range 80–95% for samples in the 63-sample pilot 
dataset.

Next, we defined a strategy to merge results from the three pipelines 
into one final call-set to be used for downstream scientific analyses 
(Methods and Supplementary Note 2). Sensitivity and precision of 
consensus somatic variant calls were 95% (90% confidence interval, 
88–98%) and 95% (90% confidence interval, 71–99%), respectively, for 
SNVs (Extended Data Fig. 2). For somatic indels, sensitivity and preci-
sion were 60% (34–72%) and 91% (73–96%), respectively (Extended Data 
Fig. 2). Regarding somatic SVs, we estimate the sensitivity of merged 
calls to be 90% for true calls generated by any one pipeline; precision 
was estimated as 97.5%. The improvement in calling accuracy from 
combining different pipelines was most noticeable in variants with 
low variant allele fractions, which probably originate from tumour 
subclones (Fig. 1c, d). Germline variant calls, phased using a haplotype-
reference panel, displayed a precision of more than 99% and a sensitivity 
of 92–98% (Supplementary Note 2).

Analysis of PCAWG data
The uniformly generated, high-quality set of variant calls across more 
than 2,500 donors provided the springboard for a series of scientific 
working groups to explore the biology of cancer. A comprehensive 
suite of companion papers that describe the analyses and discoveries 
across these thematic areas is copublished with this paper4–18 (Extended 
Data Table 3).

Pan-cancer burden of somatic mutations
Across the 2,583 white-listed PCAWG donors, we called 43,778,859 
somatic SNVs, 410,123 somatic multinucleotide variants, 2,418,247 
somatic indels, 288,416 somatic SVs, 19,166 somatic retrotransposition 
events and 8,185 de novo mitochondrial DNA mutations (Supplemen-
tary Table 1). There was considerable heterogeneity in the burden of 
somatic mutations across patients and tumour types, with a broad 
correlation in mutation burden among different classes of somatic 
variation (Extended Data Fig. 3). Analysed at a per-patient level, this 
correlation held, even when considering tumours with similar purity 
and ploidy (Supplementary Fig. 3). Why such correlation should apply 
on a pan-cancer basis is unclear. It is likely that age has some role, as we 
observe a correlation between most classes of somatic mutation and 
age at diagnosis (around 190 SNVs per year, P = 0.02; about 22 indels 
per year, P = 5 × 10−5; 1.5 SVs per year, P < 2 × 10−16; linear regression 
with likelihood ratio tests; Supplementary Fig. 4). Other factors are 
also likely to contribute to the correlations among classes of somatic 
mutation, as there is evidence that some DNA-repair defects can cause 
multiple types of somatic mutation30, and a single carcinogen can cause 
a range of DNA lesions31.

Panorama of driver mutations in cancer
We extracted the subset of somatic mutations in PCAWG tumours 
that have high confidence to be driver events on the basis of current 
knowledge. One challenge to pinpointing the specific driver muta-
tions in an individual tumour is that not all point mutations in recur-
rently mutated cancer-associated genes are drivers32. For genomic 
elements significantly mutated in PCAWG data, we developed a ‘rank-
and-cut’ approach to identify the probable drivers (Supplementary  
Methods 8.1). This approach works by ranking the observed mutations 
in a given genomic element based on recurrence, estimated functional 
consequence and expected pattern of drivers in that element. We then 
estimate the excess burden of somatic mutations in that genomic  
element above that expected for the background mutation rate, and cut 
the ranked mutations at this level. Mutations in each element with the 
highest driver ranking were then assigned as probable drivers; those 
below the threshold will probably have arisen through chance and were 
assigned as probable passengers. Improvements to features that are 
used to rank the mutations and the methods used to measure them 
will contribute to further development of the rank-and-cut approach.

We also needed to account for the fact that some bona fide cancer 
genomic elements were not rediscovered in PCAWG data because 
of low statistical power. We therefore added previously known  
cancer-associated genes to the discovery set, creating a ‘compendium 
of mutational driver elements’ (Supplementary Methods 8.2). Then, 
using stringent rules to nominate driver point mutations that affect 
these genomic elements on the basis of prior knowledge33, we separated 
probable driver from passenger point mutations. To cover all classes 
of variant, we also created a compendium of known driver SVs, using 
analogous rules to identify which somatic CNAs and SVs are most likely 
to act as drivers in each tumour. For probable pathogenic germline 
variants, we identified all truncating germline point mutations and 
SVs that affect high-penetrance germline cancer-associated genes.

This analysis defined a set of mutations that we could confidently 
assert, based on current knowledge, drove tumorigenesis in the more 
than 2,500 tumours of PCAWG. We found that 91% of tumours had at 
least one identified driver mutation, with an average of 4.6 drivers per 
tumour identified, showing extensive variation across cancer types 
(Fig. 2a). For coding point mutations, the average was 2.6 drivers per 
tumour, similar to numbers estimated in known cancer-associated 
genes in tumours in the TCGA using analogous approaches32.

To address the frequency of non-coding driver point mutations, 
we combined promoters and enhancers that are known targets of 
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non-coding drivers34–37 with those newly discovered in PCAWG data; 
this is reported in a companion paper4. Using this approach, only 
13% (785 out of 5,913) of driver point mutations were non-coding 
in PCAWG. Nonetheless, 25% of PCAWG tumours bear at least one 
putative non-coding driver point mutation, and one third (237 out 
of 785) affected the TERT promoter (9% of PCAWG tumours). Overall, 
non-coding driver point mutations are less frequent than coding 
driver mutations. With the exception of the TERT promoter, indi-
vidual enhancers and promoters are only infrequent targets of driver 
mutations4.

Across tumour types, SVs and point mutations have different rela-
tive contributions to tumorigenesis. Driver SVs are more prevalent 
in breast adenocarcinomas (6.4 ± 3.7 SVs (mean ± s.d.) compared 
with 2.2 ± 1.3 point mutations; P < 1 × 10−16, Mann–Whitney U-test) 
and ovary adenocarcinomas (5.8 ± 2.6 SVs compared with 1.9 ± 1.0 
point mutations; P < 1 × 10−16), whereas driver point mutations have 

a larger contribution in colorectal adenocarcinomas (2.4 ± 1.4 SVs 
compared with 7.4 ± 7.0 point mutations; P = 4 × 10−10) and mature 
B cell lymphomas (2.2 ± 1.3 SVs compared with 6 ± 3.8 point muta-
tions; P < 1 × 10−16), as previously shown38. Across tumour types, there 
are differences in which classes of mutation affect a given genomic 
element (Fig. 2b).

We confirmed that many driver mutations that affect tumour-
suppressor genes are two-hit inactivation events (Fig. 2c). For exam-
ple, of the 954 tumours in the cohort with driver mutations in TP53, 
736 (77%) had both alleles mutated, 96% of which (707 out of 736) 
combined a somatic point mutation that affected one allele with 
somatic deletion of the other allele. Overall, 17% of patients had 
rare germline protein-truncating variants (PTVs) in cancer-predis-
position genes39, DNA-damage response genes40 and somatic driver 
genes. Biallelic inactivation due to somatic alteration on top of a 
germline PTV was observed in 4.5% of patients overall, with 81% of 
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these affecting known cancer-predisposition genes (such as BRCA1, 
BRCA2 and ATM).

PCAWG tumours with no apparent drivers
Although more than 90% of PCAWG cases had identified drivers, we 
found none in 181 tumours (Extended Data Fig. 4a). Reasons for miss-
ing drivers have not yet been systematically evaluated in a pan-cancer 
cohort, and could arise from either technical or biological causes.

Technical explanations could include poor-quality samples, inad-
equate sequencing or failures in the bioinformatic algorithms used. 
We assessed the quality of the samples and found that 4 of the 181 
cases with no known drivers had more than 5% tumour DNA contami-
nation in their matched normal sample (Fig. 3a). Using an algorithm 
designed to correct for this contamination41, we identified previously 
missed mutations in genes relevant to the respective cancer types. 
Similarly, if the fraction of tumour cells in the cancer sample is low 
through stromal contamination, the detection of driver mutations 
can be impaired. Most tumours with no known drivers had an aver-
age power to detect mutations close to 100%; however, a few had 
power in the 70–90% range (Fig. 3b and Extended Data Fig. 4b). Even 

in adequately sequenced genomes, lack of read depth at specific 
driver loci can impair mutation detection. For example, only around 
50% of PCAWG tumours had sufficient coverage to call a mutation 
(≥90% power) at the two TERT promoter hotspots, probably because 
the high GC content of this region causes biased coverage (Fig. 3c).  
In fact, 6 hepatocellular carcinomas and 2 biliary cholangiocarcinomas 
among the 181 cases with no known drivers actually did contain TERT 
mutations, which were discovered after deep targeted sequencing42.

Finally, technical reasons for missing driver mutations include fail-
ures in the bioinformatic algorithms. This affected 35 myeloprolif-
erative neoplasms in PCAWG, in which the JAK2V617F driver mutation 
should have been called. Our somatic variant-calling algorithms rely 
on ‘panels of normals’, typically from blood samples, to remove recur-
rent sequencing artefacts. As 2–5% of healthy individuals carry occult 
haematopoietic clones43, recurrent driver mutations in these clones 
can enter panels of normals.

With regard to biological causes, tumours may be driven by muta-
tions in cancer-associated genes that are not yet described for that 
tumour type. Using driver discovery algorithms on tumours with no 
known drivers, no individual genes reached significance for point muta-
tions. However, we identified a recurrent CNA that spanned SETD2 in 
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Fig. 3 | Analysis of patients with no detected driver mutations. a, Individual 
estimates of the percentage of tumour-in-normal contamination across 
patients with no driver mutations in PCAWG (n = 181). No data were available for 
myelodysplastic syndromes and acute myeloid leukaemia. Points represent 
estimates for individual patients, and the coloured areas are estimated density 
distributions (violin plots). Abbreviations of the tumour types are defined in 
Extended Data Table 1. b, Average detection sensitivity by tumour type for 
tumours without known drivers (n = 181). Each dot represents a given sample 
and is the average sensitivity of detecting clonal substitutions across the 
genome, taking into account purity and ploidy. Coloured areas are estimated 
density distributions, shown for cohorts with at least five cases. c, Detection 

sensitivity for TERT promoter hotspots in tumour types in which TERT is 
frequently mutated. Coloured areas are estimated density distributions.  
d, Significant copy-number losses identified by two-sided hypothesis testing 
using GISTIC2.0, corrected for multiple-hypothesis testing. Numbers in 
parentheses indicate the number of genes in significant regions when 
analysing medulloblastomas without known drivers (n = 42). Significant 
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cell carcinomas and pancreatic neuroendocrine tumours without known 
drivers. Patients are ordered on the y axis by tumour type and then by presence 
of whole-genome duplication (bottom) or not (top).
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medulloblastomas that lacked known drivers (Fig. 3d), indicating that 
restricting hypothesis testing to missing-driver cases can improve 
power if undiscovered genes are enriched in such tumours. Inactivation 
of SETD2 in medulloblastoma significantly decreased gene expres-
sion (P = 0.002) (Extended Data Fig. 4c). Notably, SETD2 mutations 
occurred exclusively in medulloblastoma group-4 tumours (P < 1 × 10−4). 
Group-4 medulloblastomas are known for frequent mutations in other 
chromatin-modifying genes44, and our results suggest that SETD2 loss 
of function is an additional driver that affects chromatin regulators in 
this subgroup.

Two tumour types had a surprisingly high fraction of patients with-
out identified driver mutations: chromophobe renal cell carcinoma  
(44%; 19 out of 43) and pancreatic neuroendocrine cancers (22%;  
18 out of 81) (Extended Data Fig. 4a). A notable feature of the miss-
ing-driver cases in both tumour types was a remarkably consistent 

profile of chromosomal aneuploidy—patterns that have previously 
been reported45,46 (Fig. 3e). The absence of other identified driver muta-
tions in these patients raises the possibility that certain combinations 
of whole-chromosome gains and losses may be sufficient to initiate 
a cancer in the absence of more-targeted driver events such as point 
mutations or fusion genes of focal CNAs.

Even after accounting for technical issues and novel drivers, 5.3% of 
PCAWG tumours still had no identifiable driver events. In a research 
setting, in which we are interested in drawing conclusions about popu-
lations of patients, the consequences of technical issues that affect 
occasional samples will be mitigated by sample size. In a clinical setting, 
in which we are interested in the driver mutations in a specific patient, 
these issues become substantially more important. Careful and critical 
appraisal of the whole pipeline—including sample acquisition, genome 
sequencing, mapping, variant calling and driver annotation, as done 
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Fig. 4 | Patterns of clustered mutational processes in PCAWG. a, Kataegis. 
Top, prevalence of different types of kataegis and their association with SVs 
(≤1 kb from the focus). Bottom, the distribution of the number of foci of 
kataegis per sample. Chromoplexy. Prevalence of chromoplexy across cancer 
types, subdivided into balanced translocations and more complex events. 
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categorization. b, Circos rainfall plot showing the distances between 
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position. Lymphoid tumours (khaki, B cell non-Hodgkin’s lymphoma; orange, 
chronic lymphocytic leukaemia) have hypermutation hot spots (≥3 foci with 
distance ≤1 kb; pale red zone), many of which are near known cancer-associated 
genes (red annotations) and have associated SVs (≤10 kb from the focus; shown 
as arcs in the centre). c, Circos rainfall plot as in b that shows the distance versus 
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deleted (magenta) driver genes are indicated. Bottom, interbreakpoint 
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pattern of thymine mutations in a Cp TpT context.
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here—should be required for laboratories that offer clinical sequenc-
ing of cancer genomes.

Patterns of clustered mutations and SVs
Some somatic mutational processes generate multiple mutations in a 
single catastrophic event, typically clustered in genomic space, leading 
to substantial reconfiguration of the genome. Three such processes 
have previously been described: (1) chromoplexy, in which repair of 
co-occurring double-stranded DNA breaks—typically on different chro-
mosomes—results in shuffled chains of rearrangements47,48 (Extended 
Data Fig. 5a); (2) kataegis, a focal hypermutation process that leads to 
locally clustered nucleotide substitutions, biased towards a single DNA 
strand49–51 (Extended Data Fig. 5b); and (3) chromothripsis, in which 
tens to hundreds of DNA breaks occur simultaneously, clustered on 
one or a few chromosomes, with near-random stitching together of 
the resulting fragments52–55 (Extended Data Fig. 5c). We characterized 
the PCAWG genomes for these three processes (Fig. 4).

Chromoplexy events and reciprocal translocations were identified 
in 467 (17.8%) samples (Fig. 4a, c). Chromoplexy was prominent in 
prostate adenocarcinoma and lymphoid malignancies, as previously 
described47,48, and—unexpectedly—thyroid adenocarcinoma. Differ-
ent genomic loci were recurrently rearranged by chromoplexy across 
the three tumour types, mediated by positive selection for particu-
lar fusion genes or enhancer-hijacking events. Of 13 fusion genes or 
enhancer hijacking events in 48 thyroid adenocarcinomas, at least  
4 (31%) were caused by chromoplexy, with a further 4 (31%) part of com-
plexes that contained chromoplexy footprints (Extended Data Fig. 5a). 
These events generated fusion genes that involved RET (two cases) and 
NTRK3 (one case)56, and the juxtaposition of the oncogene IGF2BP3 
with regulatory elements from highly expressed genes (five cases).

Kataegis events were found in 60.5% of all cancers, with particularly 
high abundance in lung squamous cell carcinoma, bladder cancer, 
acral melanoma and sarcomas (Fig. 4a, b). Typically, kataegis com-
prises C > N mutations in a TpC context, which are probably caused 
by APOBEC activity49–51, although a T > N conversion in a TpT or CpT 
process (the affected T is highlighted in bold) attributed to error-prone 
polymerases has recently been described57. The APOBEC signature 
accounted for 81.7% of kataegis events and correlated positively with 
APOBEC3B expression levels, somatic SV burden and age at diagnosis 
(Supplementary Fig. 5). Furthermore, 5.7% of kataegis events involved 
the T > N error-prone polymerase signature and 2.3% of events, most 
notably in sarcomas, showed cytidine deamination in an alternative 
GpC or CpC context.

Kataegis events were frequently associated with somatic SV break-
points (Fig. 4a and Supplementary Fig. 6a), as previously described50,51. 
Deletions and complex rearrangements were most-strongly associ-
ated with kataegis, whereas tandem duplications and other simple 
SV classes were only infrequently associated (Supplementary Fig. 6b). 
Kataegis inducing predominantly T > N mutations in CpTpT context 
was enriched near deletions, specifically those in the 10–25-kilobase 
(kb) range (Supplementary Fig. 6c).

Samples with extreme kataegis burden (more than 30 foci) comprise 
four types of focal hypermutation (Extended Data Fig. 6): (1) off-target 
somatic hypermutation and foci of T > N at CpTpT, found in B cell non-
Hodgkin lymphoma and oesophageal adenocarcinomas, respectively; 
(2) APOBEC kataegis associated with complex rearrangements, notably 
found in sarcoma and melanoma; (3) rearrangement-independent 
APOBEC kataegis on the lagging strand and in early-replicating regions, 
mainly found in bladder and head and neck cancer; and (4) a mix of 
the last two types. Kataegis only occasionally led to driver mutations  
(Supplementary Table 5).

We identified chromothripsis in 587 samples (22.3%), most fre-
quently among sarcoma, glioblastoma, lung squamous cell carci-
noma, melanoma and breast adenocarcinoma18. Chromothripsis 

increased with whole-genome duplications in most cancer types 
(Extended Data Fig. 7a), as previously shown in medulloblastoma58. 
The most recurrently associated driver was TP5352 (pan-cancer odds 
ratio = 3.22; pan-cancer P = 8.3 × 10−35; q < 0.05 in breast lobular (odds 
ratio = 13), colorectal (odds ratio = 25), prostate (odds ratio = 2.6) and 
hepatocellular (odds ratio = 3.9) cancers; Fisher–Boschloo tests). In 
two cancer types (osteosarcoma and B cell lymphoma), women had a 
higher incidence of chromothripsis than men (Extended Data Fig. 7b). 
In prostate cancer, we observed a higher incidence of chromothripsis 
in patients with late-onset than early-onset disease59 (Extended Data  
Fig. 7c).

Chromothripsis regions coincided with 3.6% of all identified driv-
ers in PCAWG and around 7% of copy-number drivers (Fig. 4d). These 
proportions are considerably enriched compared to expectation if 
selection were not acting on these events (Extended Data Fig. 7d). The 
majority of coinciding driver events were amplifications (58%), followed 
by homozygous deletions (34%) and SVs within genes or promoter 
regions (8%). We frequently observed a ≥2-fold increase or decrease in 
expression of amplified or deleted drivers, respectively, when these loci 
were part of a chromothripsis event, compared with samples without 
chromothripsis (Extended Data Fig. 7e).

Chromothripsis manifested in diverse patterns and frequencies 
across tumour types, which we categorized on the basis of five charac-
teristics (Fig. 4a). In liposarcoma, for example, chromothripsis events 
often involved multiple chromosomes, with universal MDM2 ampli-
fication60 and co-amplification of TERT in 4 of 19 cases (Fig. 4d). By 
contrast, in glioblastoma the events tended to affect a smaller region 
on a single chromosome that was distant from the telomere, resulting 
in focal amplification of EGFR and MDM2 and loss of CDKN2A. Acral 
melanomas frequently exhibited CCND1 amplification, and lung squa-
mous cell carcinomas SOX2 amplifications. In both cases, these drivers 
were more-frequently altered by chromothripsis compared with other 
drivers in the same cancer type and to other cancer types for the same 
driver (Fig. 4d and Extended Data Fig. 7f). Finally, in chromophobe renal 
cell carcinoma, chromothripsis nearly always affected chromosome  
5 (Supplementary Fig. 7): these samples had breakpoints immediately 
adjacent to TERT, increasing TERT expression by 80-fold on average 
compared with samples without rearrangements (P = 0.0004; Mann–
Whitney U-test).

Timing clustered mutations in evolution
An unanswered question for clustered mutational processes is whether 
they occur early or late in cancer evolution. To address this, we used 
molecular clocks to define broad epochs in the life history of each 
tumour49,61. One transition point is between clonal and subclonal muta-
tions: clonal mutations occurred before, and subclonal mutations after, 
the emergence of the most-recent common ancestor. In regions with 
copy-number gains, molecular time can be further divided according 
to whether mutations preceded the copy-number gain (and were them-
selves duplicated) or occurred after the gain (and therefore present on 
only one chromosomal copy)7.

Chromothripsis tended to have greater relative odds of being clonal 
than subclonal, suggesting that it occurs early in cancer evolution, 
especially in liposarcomas, prostate adenocarcinoma and squamous 
cell lung cancer (Fig. 5a). As previously reported, chromothripsis was 
especially common in melanomas62. We identified 89 separate chromo-
thripsis events that affected 66 melanomas (61%); 47 out of 89 events 
affected genes known to be recurrently altered in melanoma63 (Sup-
plementary Table 6). Involvement of a region on chromosome 11 that 
includes the cell-cycle regulator CCND1 occurred in 21 cases (10 out 
of 86 cutaneous, and 11 out of 21 acral or mucosal melanomas), typi-
cally combining chromothripsis with amplification (19 out of 21 cases) 
(Extended Data Fig. 8). Co-involvement of other cancer-associated 
genes in the same chromothripsis event was also frequent, including 
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TERT (five cases), CDKN2A (three cases), TP53 (two cases) and MYC 
(two cases) (Fig. 5b). In these co-amplifications, a chromothripsis 
event involving multiple chromosomes initiated the process, creat-
ing a derivative chromosome in which hundreds of fragments were 
stitched together in a near-random order (Fig. 5b). This derivative 
then rearranged further, leading to massive co-amplification of the 
multiple target oncogenes together with regions located nearby on 
the derivative chromosome.

In these cases of amplified chromothripsis, we can use the inferred 
number of copies bearing each SNV to time the amplification process. 
SNVs present on the chromosome before amplification will them-
selves be amplified and are therefore reported in a high fraction of 
sequence reads (Fig. 5b and Extended Data Fig. 8). By contrast, late 
SNVs that occur after the amplification has concluded will be present 
on only one chromosome copy out of many, and thus have a low variant 

allele fraction. Regions of CCND1 amplification had few—sometimes 
zero—mutations at high variant allele fraction in acral melanomas, in 
contrast to later CCND1 amplifications in cutaneous melanomas, in 
which hundreds to thousands of mutations typically predated ampli-
fication (Fig. 5b and Extended Data Fig. 9a, b). Thus, both chromoth-
ripsis and the subsequent amplification generally occurred very early 
during the evolution of acral melanoma. By comparison, in lung squa-
mous cell carcinomas, similar patterns of chromothripsis followed by  
SOX2 amplification are characterized by many amplified SNVs, sug-
gesting a later event in the evolution of these cancers (Extended Data 
Fig. 9c).

Notably, in cancer types in which the mutational load was sufficiently 
high, we could detect a larger-than-expected number of SNVs on an 
intermediate number of DNA copies, suggesting that they appeared 
during the amplification process (Supplementary Fig. 8).
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Germline effects on somatic mutations
We integrated the set of 88 million germline genetic variant calls 
with somatic mutations in PCAWG, to study germline determinants 
of somatic mutation rates and patterns. First, we performed a genome-
wide association study of somatic mutational processes with common 
germline variants (minor allele frequency (MAF) > 5%) in individuals 
with inferred European ancestry. An independent genome-wide associ-
ation study was performed in East Asian individuals from Asian cancer 
genome projects. We focused on two prevalent endogenous muta-
tional processes: spontaneous deamination of 5-methylcytosine at 
CpG dinucleotides5 (signature 1) and activity of the APOBEC3 family of 
cytidine deaminases64 (signatures 2 and 13). No locus reached genome-
wide significance (P < 5 × 10−8) for signature 1 (Extended Data Fig. 10a, 
b). However, a locus at 22q13.1 predicted an APOBEC3B-like mutagen-
esis at the pan-cancer level65 (Fig. 6a). The strongest signal at 22q13.1 
was driven by rs12628403, and the minor (non-reference) allele was 
protective against APOBEC3B-like mutagenesis (β = −0.43, P = 5.6 × 10−9, 
MAF = 8.2%, n = 1,201 donors) (Extended Data Fig. 10c). This variant 
tags a common, approximately 30-kb germline SV that deletes the 
APOBEC3B coding sequence and fuses the APOBEC3B 3′ untranslated 
region with the coding sequence of APOBEC3A. The deletion is known 

to increase breast cancer risk and APOBEC mutagenesis in breast can-
cer genomes66,67. Here, we found that rs12628403 reduces APOBEC3B-
like mutagenesis specifically in cancer types with low levels of APOBEC 
mutagenesis (βlow = −0.50, Plow = 1 × 10−8; βhigh = 0.17, Phigh = 0.2), and 
increases APOBEC3A-like mutagenesis in cancer types with high lev-
els of APOBEC mutagenesis (βhigh = 0.44, Phigh = 8 × 10−4; βlow = −0.21, 
Plow = 0.02). Moreover, we identified a second, novel locus at 22q13.1 
that was associated with APOBEC3B-like mutagenesis across cancer 
types (rs2142833, β = 0.23, P = 1.3 × 10−8). We independently validated the 
association between both loci and APOBEC3B-like mutagenesis using  
East Asian individuals from Asian cancer genome projects 
(βrs12628403 = 0.57, Prs12628403 = 4.2 × 10−12; βrs2142833 = 0.58, Prs2142833 = 8 × 10−15) 
(Extended Data Fig. 10d). Notably, in a conditional analysis that 
accounted for rs12628403, we found that rs2142833 and rs12628403 
are inherited independently in Europeans (r2<0.1), and rs2142833 
remained significantly associated with APOBEC3B-like mutagenesis 
in Europeans (βEUR = 0.17, PEUR = 3 × 10−5) and East Asians (βASN = 0.25, 
PASN = 2 × 10−3) (Extended Data Fig. 10e, f). Analysis of donor-matched 
expression data further suggests that rs2142833 is a cis-expression 
quantitative trait locus (eQTL) for APOBEC3B at the pan-cancer level 
(β = 0.19, P = 2 × 10−6) (Extended Data Fig. 10g, h), consistent with  
cis-eQTL studies in normal cells68,69.
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Fig. 6 | Germline determinants of the somatic mutation landscape.  
a, Association between common (MAF > 5%) germline variants and somatic 
APOBEC3B-like mutagenesis in individuals of European ancestry (n = 1,201). 
Two-sided hypothesis testing was performed with PLINK v.1.9. To mitigate 
multiple-hypothesis testing, the significance threshold was set to genome-
wide significance (P < 5 × 10−8). b, Templated insertion SVs in a BRCA1-
associated prostate cancer. Left, chromosome bands (1); SVs ≤ 10 megabases 
(Mb) (2); 1-kb read depth corrected to copy number 0–6 (3); inter- and 
intrachromosomal SVs > 10 Mb (4). Right, a complex somatic SV composed of a  
2.2-kb tandem duplication on chromosome 2 together with a 232-base-pair 
(bp) inverted templated insertion SV that is derived from chromosome 5 and 
inserted inbetween the tandem duplication (bottom). Consensus sequence 
alignment of locally assembled Oxford Nanopore Technologies long 
sequencing reads to chromosomes 2 and 5 of the human reference genome 
(top). Breakpoints are circled and marked as 1 (beginning of tandem 
duplication), 2 (end of tandem duplication) or 3 (inverted templated insertion). 
For each breakpoint, the middle panel shows Illumina short reads at SV 

breakpoints. c, Association between rare germline PTVs (MAF < 0.5%) and 
somatic CpG mutagenesis (approximately with signature 1) in individuals of 
European ancestry (n = 1,201). Genes highlighted in blue or red were associated 
with lower or higher somatic mutation rates. Two-sided hypothesis testing was 
performed using linear-regression models with sex, age at diagnosis and 
cancer project as variables. To mitigate multiple-hypothesis testing, the 
significance threshold was set to exome-wide significance (P < 2.5 × 10−6).  
The black line represents the identity line that would be followed if the 
observed P values followed the null expectation; the shaded area shows  
the 95% confidence intervals. d, Catalogue of polymorphic germline L1 source 
elements that are active in cancer. The chromosomal map shows germline 
source L1 elements as volcano symbols. Each volcano is colour-coded 
according to the type of source L1 activity. The contribution of each source 
locus (expressed as a percentage) to the total number of transductions 
identified in PCAWG tumours is represented as a gradient of volcano size, with 
top contributing elements exhibiting larger sizes.
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Second, we performed a rare-variant association study (MAF <0.5%) 
to investigate the relationship between germline PTVs and somatic 
DNA rearrangements in individuals with European ancestry (Extended 
Data Fig. 11a–c). Germline BRCA2 and BRCA1 PTVs were associated 
with an increased burden of small (less than 10 kb) somatic SV dele-
tions (P = 1 × 10−8) and tandem duplications (P = 6 × 10−13), respectively, 
corroborating recent studies in breast and ovarian cancer30,70. In 
PCAWG data, this pattern also extends to other tumour types, includ-
ing adenocarcinomas of the prostate and pancreas6, typically in the 
setting of biallelic inactivation. In addition, tumours with high lev-
els of small SV tandem duplications frequently exhibited a novel and 
distinct class of SVs termed ‘cycles of templated insertions’6. These 
complex SV events consist of DNA templates that are copied from 
across the genome, joined into one contiguous sequence and inserted 
into a single derivative chromosome. We found a significant associa-
tion between germline BRCA1 PTVs and templated insertions at the  
pan-cancer level (P = 4 × 10−15) (Extended Data Fig. 11d, e). Whole-genome 

long-read sequencing data generated for a BRCA1-deficient PCAWG 
prostate tumour verified the small tandem-duplication and templated-
insertion SV phenotypes (Fig. 6b). Almost all (20 out of 21) of BRCA1-
associated tumours with a templated-insertion SV phenotype displayed 
combined germline and somatic hits in the gene. Together, these data 
suggest that biallelic inactivation of BRCA1 is a driver of the templated-
insertion SV phenotype.

Third, rare-variant association analysis revealed that patients with 
germline MBD4 PTVs had increased rates of somatic C > T mutation 
rates at CpG dinucleotides (P < 2.5 × 10−6) (Fig. 6c and Extended Data  
Fig. 11f, g). Analysis of previously published whole-exome sequencing 
samples from the TCGA (n = 8,134) replicated the association between 
germline MBD4 PTVs and increased somatic CpG mutagenesis at the 
pan-cancer level (P = 7.1 × 10−4) (Extended Data Fig. 11h). Moreover, 
gene-expression profiling revealed a significant but modest correlation 
between MBD4 expression and somatic CpG mutation rates between 
and within PCAWG tumour types (Extended Data Fig. 11i–k). MBD4 
encodes a DNA-repair gene that removes thymidines from T:G mis-
matches within methylated CpG sites71, a functionality that would be 
consistent with a CpG mutational signature in cancer.

Fourth, we assessed long interspersed nuclear elements (LINE-1; L1 
hereafter) that mediate somatic retrotransposition events72–74. We iden-
tified 114 germline source L1 elements capable of active somatic retro-
transposition, including 70 that represent insertions with respect to the 
human reference genome (Fig. 6d and Supplementary Table 7), and 53 
that were tagged by single-nucleotide polymorphisms in strong linkage 
disequilibrium (Supplementary Table 7). Only 16 germline L1 elements 
accounted for 67% (2,440 out of 3,669) of all L1-mediated transduc-
tions10 detected in the PCAWG dataset (Extended Data Fig. 12a). These 
16 hot-L1 elements followed two broad patterns of somatic activity (8 
of each), which we term Strombolian and Plinian in analogy to patterns 
of volcanic activity. Strombolian L1s are frequently active in cancer, 
but mediate only small-to-modest eruptions of somatic L1 activity in 
cancer samples (Extended Data Fig. 12b). By contrast, Plinian L1s are 
more rarely seen, but display aggressive somatic activity. Whereas 
Strombolian elements are typically relatively common (MAF > 2%) and 
sometimes even fixed in the human population, all Plinian elements 
were infrequent (MAF ≤ 2%) in PCAWG donors (Extended Data Fig. 12c; 
P = 0.001, Mann–Whitney U-test). This dichotomous pattern of activ-
ity and allele frequency may reflect differences in age and selective 
pressures, with Plinian elements potentially inserted into the human 
germline more recently. PCAWG donors bear on average between 50 
and 60 L1 source elements and between 5 and 7 elements with hot 
activity (Extended Data Fig. 12d), but only 38% (1,075 out of 2,814) of 
PCAWG donors carried ≥1 Plinian element. Some L1 germline source 
loci caused somatic loss of tumour-suppressor genes (Extended Data 
Fig. 12e). Many are restricted to individual continental population 
ancestries (Extended Data Fig. 12f–j).

Replicative immortality
One of the hallmarks of cancer is the ability of cancer to evade cellular 
senescence21. Normal somatic cells typically have finite cell division 
potential; telomere attrition is one mechanism to limit numbers of 
mitoses75. Cancers enlist multiple strategies to achieve replicative 
immortality. Overexpression of the telomerase gene, TERT, which main-
tains telomere lengths, is especially prevalent. This can be achieved 
through point mutations in the promoter that lead to de novo tran-
scription factor binding34,37; hitching TERT to highly active regulatory 
elements elsewhere in the genome46,76; insertions of viral enhancers 
upstream of the gene77,78; and increased dosage through chromosomal 
amplification, as we have seen in melanoma (Fig. 5b). In addition, there is 
an ‘alternative lengthening of telomeres’ (ALT) pathway, in which telom-
eres are lengthened through homologous recombination, mediated by  
loss-of-function mutations in the ATRX and DAXX genes79.
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Fig. 7 | Telomere sequence patterns across PCAWG. a, Scatter plot of the 
clusters of telomere patterns identified across PCAWG using t-distributed 
stochastic neighbour embedding (t-SNE), based on n = 2,518 tumour samples 
and their matched normal samples. Axes have arbitrary dimensions such that 
samples with similar telomere profiles are clustered together and samples with 
dissimilar telomere profiles are far apart with high probability. b, Distribution 
of the four tumour-specific clusters of telomere patterns in selected tumour 
types from PCAWG. c, Distribution of relevant driver mutations associated 
with alternative lengthening of telomere and normal telomere maintenance 
across the four clusters. d, Distribution of telomere maintenance 
abnormalities across tumour types with more than 40 patients in PCAWG. 
Samples were classified as tumour clusters 1–3 if they fell into a relevant cluster 
without mutations in TERT, ATRX or DAXX and had no ALT phenotype. TMM, 
telomere maintenance mechanisms.
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As reported in a companion paper13, 16% of tumours in the PCAWG 

dataset exhibited somatic mutations in at least one of ATRX, DAXX 
and TERT. TERT alterations were detected in 270 samples, whereas 
128 tumours had alterations in ATRX or DAXX, of which 71 were protein-
truncating. In the companion paper, which focused on describing pat-
terns of ALT and TERT-mediated telomere maintenance13, 12 features 
of telomeric sequence were measured in the PCAWG cohort. These 
included counts of nine variants of the core hexameric sequence, 
the number of ectopic telomere-like insertions within the genome, 
the number of genomic breakpoints and telomere length as a ratio 
between tumour and normal. Here we used the 12 features as an over-
view of telomere integrity across all tumours in the PCAWG dataset.

On the basis of these 12 features, tumour samples formed 4 dis-
tinct subclusters (Fig. 7a and Extended Data Fig. 13a), suggesting that 
telomere-maintenance mechanisms are more diverse than the well-
established TERT and ALT dichotomy. Clusters C1 (47 tumours) and 
C2 (42 tumours) were enriched for traits of the ALT pathway—having 
longer telomeres, more genomic breakpoints, more ectopic telomere  
insertions and variant telomere sequence motifs (Supplementary 
Fig. 9). C1 and C2 were distinguished from one another by the latter 
having a considerable increase in the number of TTCGGG and TGAGGG 
variant motifs among the telomeric hexamers. Thyroid adenocarci-
nomas were markedly enriched among C3 samples (26 out of 33 C3 
samples; P < 10−16); the C1 cluster (ALT subtype 1) was common among 
sarcomas; and both pancreatic endocrine neoplasms and low-grade 
gliomas had a high proportion of samples in the C2 cluster (ALT sub-
type 2) (Fig. 7b). Notably, some of the thyroid adenocarcinomas and 
pancreatic neuroendocrine tumours that cluster together (cluster C3) 
had matched normal samples that also cluster together (normal cluster 
N3) (Extended Data Fig. 13a) and which share common properties. For 
example, the GTAGGG repeat was overrepresented among samples in 
this group (Supplementary Fig. 10).

Somatic driver mutations were also unevenly distributed across the 
four clusters (Fig. 7c). C1 tumours were enriched for RB1 mutations or 
SVs (P = 3 × 10−5), as well as frequent SVs that affected ATRX (P = 6 × 10−14), 
but not DAXX. RB1 and ATRX mutations were largely mutually exclusive 
(Extended Data Fig. 13b). By contrast, C2 tumours were enriched for 
somatic point mutations in ATRX and DAXX (P = 6 × 10−5), but not RB1. 
The enrichment of RB1 mutations in C1 remained significant when 
only leiomyosarcomas and osteosarcomas were considered, confirm-
ing that this enrichment is not merely a consequence of the different 
distribution of tumour types across clusters. C3 samples had frequent 
TERT promoter mutations (30%; P = 2 × 10−6).

There was a marked predominance of RB1 mutations in C1. Nearly 
a third of the samples in C1 contained an RB1 alteration, which were 
evenly distributed across truncating SNVs, SVs and shallow dele-
tions (Extended Data Fig. 13c). Previous research has shown that RB1 
mutations are associated with long telomeres in the absence of TERT 
mutations and ATRX inactivation80, and studies using mouse models 
have shown that knockout of Rb-family proteins causes elongated 
telomeres81. The association with the C1 cluster here suggests that RB1  
mutations can represent another route to activating the ALT pathway, 
which has subtly different properties of telomeric sequence com-
pared with the inactivation of DAXX—these fall almost exclusively in 
cluster C2.

Tumour types with the highest rates of abnormal telomere mainte-
nance mechanisms often originate in tissues that have low endogenous 
replicative activity (Fig. 7d). In support of this, we found an inverse cor-
relation between previously estimated rates of stem cell division across 
tissues82 and the frequency of telomere maintenance abnormalities 
(P = 0.01, Poisson regression) (Extended Data Fig. 13d). This suggests 
that restriction of telomere maintenance is an important tumour-
suppression mechanism, particularly in tissues with low steady-state 
cellular proliferation, in which a clone must overcome this constraint 
to achieve replicative immortality.

Conclusions and future perspectives
The resource reported in this paper and its companion papers has 
yielded insights into the nature and timing of the many mutational 
processes that shape large- and small-scale somatic variation in the 
cancer genome; the patterns of selection that act on these varia-
tions; the widespread effect of somatic variants on transcription; 
the complementary roles of the coding and non-coding genome for 
both germline and somatic mutations; the ubiquity of intratumoral 
heterogeneity; and the distinctive evolutionary trajectory of each 
cancer type. Many of these insights can be obtained only from an 
integrated analysis of all classes of somatic mutation on a whole-
genome scale, and would not be accessible with, for example, targeted 
exome sequencing.

The promise of precision medicine is to match patients to targeted 
therapies using genomics. A major barrier to its evidence-based imple-
mentation is the daunting heterogeneity of cancer chronicled in these 
papers, from tumour type to tumour type, from patient to patient, from 
clone to clone and from cell to cell. Building meaningful clinical predic-
tors from genomic data can be achieved, but will require knowledge 
banks comprising tens of thousands of patients with comprehensive 
clinical characterization83. As these sample sizes will be too large for 
any single funding agency, pharmaceutical company or health system, 
international collaboration and data sharing will be required. The next 
phase of ICGC, ICGC-ARGO (https:// www.icgc-argo.org/), will bring 
the cancer genomics community together with healthcare providers, 
pharmaceutical companies, data science and clinical trials groups to 
build comprehensive knowledge banks of clinical outcome and treat-
ment data from patients with a wide variety of cancers, matched with 
detailed molecular profiling.

Extending the story begun by TCGA, ICGC and other cancer genom-
ics projects, the PCAWG has brought us closer to a comprehensive  
narrative of the causal biological changes that drive cancer phenotypes. 
We must now translate this knowledge into sustainable, meaningful 
clinical treatments.
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Methods

Samples
We compiled an inventory of matched tumour–normal whole-cancer 
genomes in the ICGC Data Coordinating Centre. Most samples came 
from treatment-naive, primary cancers, although a small number of 
donors had multiple samples of primary, metastatic and/or recurrent 
tumours. Our inclusion criteria were: (1) matched tumour and normal 
specimen pair; (2) a minimal set of clinical fields; and (3) characteri-
zation of tumour and normal whole genomes using Illumina HiSeq 
paired-end sequencing reads.

We collected genome data from 2,834 donors, representing all ICGC 
and TCGA donors that met these criteria at the time of the final data 
freeze in autumn 2014 (Extended Data Table 1). After quality assurance 
(Supplementary Methods 2.5), data from 176 donors were excluded 
as unusable, 75 had minor issues that could affect some analyses  
(grey-listed donors) and 2,583 had data of optimal quality (white-listed 
donors) (Supplementary Table 1). Across the 2,658 white- and grey-
listed donors, whole-genome sequences were available from 2,605 
primary tumours and 173 metastases or local recurrences. Matching 
normal samples were obtained from blood (2,064 donors), tissue 
adjacent to the primary tumour (87 donors) or from distant sites (507 
donors). Whole-genome sequencing data were available for tumour 
and normal DNA for the entire cohort. The mean read coverage was 
39× for normal samples, whereas tumours had a bimodal coverage 
distribution with modes at 38× and 60× (Supplementary Fig. 1). The 
majority of specimens (65.3%) were sequenced using 101-bp paired-
end reads. An additional 28% were sequenced with 100-bp paired-end 
reads. Of the remaining specimens, 4.7% were sequenced with read 
lengths longer than 101 bp, and 1.9% with read lengths shorter than 
100 bp. The distribution of read lengths by tumour cohort is shown in  
Supplementary Fig.  11. Median read length for whole-genome 
sequencing paired-end reads was 101 bp (mean = 106.2, s.d. = 16.7; 
minimum–maximum = 50–151). RNA-sequencing data were collected 
and re-analysed centrally for 1,222 donors, including 1,178 primary 
tumours, 67 metastases or local recurrences and 153 matched normal 
tissue samples adjacent to the primary tumour.

Demographically, the cohort included 1,469  men (55%) and 
1,189 women (45%), with a mean age of 56 years (range, 1–90 years) 
(Supplementary Table 1). Using population ancestry-differentiated 
single nucleotide polymorphisms, the ancestry distribution was heavily 
weighted towards donors of European descent (77% of total) followed 
by East Asians (16%), as expected for large contributions from European, 
North American and Australian projects (Supplementary Table 1).

We consolidated histopathology descriptions of the tumour sam-
ples, using the ICD-0-3 tumour site controlled vocabulary89. Overall, 
the PCAWG dataset comprises 38 distinct tumour types (Extended 
Data Table 1 and Supplementary Table 1). Although the most common 
tumour types are included in the dataset, their distribution does not 
match the relative population incidences, largely owing to differences 
among contributing ICGC/TCGA groups in the numbers of sequenced 
samples.

Uniform processing and somatic variant calling
To generate a consistent set of somatic mutation calls that could be 
used for cross-tumour analyses, we analysed all 6,835 samples using a 
uniform set of algorithms for alignment, variant calling and quality con-
trol (Extended Data Fig. 1, Supplementary Fig. 2, Supplementary Table 3 
and Supplementary Methods 2). We used the BWA-MEM algorithm90 
to align each tumour and normal sample to human reference build 
hs37d5 (as used in the 1000 Genomes Project91). Somatic mutations 
were identified in the aligned data using three established pipelines, 
which were run independently on each tumour–normal pair. Each of the 
three pipelines—labelled ‘Sanger’92–95, ‘EMBL/DKFZ’96,97 and ‘Broad’98–101 
after the computational biology groups that created or assembled 

them—consisted of multiple software packages for calling somatic 
SNVs, small indels, CNAs and somatic SVs (with intrachromosomal SVs 
defined as those >100 bp). Two additional variant algorithms102,103 were 
included to further improve accuracy across a broad range of clonal 
and subclonal mutations. We tested different merging strategies using 
validation data, and choses the optimal method for each variant type 
to generate a final consensus set of mutation calls (Supplementary 
Methods S2.4).

Somatic retrotransposition events, including Alu and LINE-1 inser-
tions72, L1-mediated transductions73 and pseudogene formation104, were 
called using a dedicated pipeline73. We removed these retrotransposi-
tion events from the somatic SV call-set. Mitochondrial DNA mutations 
were called using a published algorithm105. RNA-sequencing data were 
uniformly processed to quantify normalized gene-level expression, 
splicing variation and allele-specific expression, and to identify fusion 
transcripts, alternative promoter usage and sites of RNA editing8.

Integration, phasing and validation of germline variant call-sets
Calls of common (≥1% frequency in PCAWG) and rare (<1%) germline 
variants including single-nucleotide polymorphisms, indels, SVs and 
mobile-element insertions (MEIs) were generated using a population-
scale genetic polymorphism-detection approach91,106. The uniform 
germline data-processing workflow comprised variant identification 
using six different variant-calling algorithms96,107,108 and was orches-
trated using the Butler workflow system109.

We performed call-set benchmarking, merging, variant genotyp-
ing and statistical haplotype-block phasing91 (Supplementary Meth-
ods 3.4). Using this strategy, we identified 80.1 million germline 
single-nucleotide polymorphisms, 5.9 million germline indels, 1.8 mil-
lion multi-allelic short (<50 bp) germline variants, as well as germline 
SVs ≥ 50 bp in size including 29,492 biallelic deletions and 27,254 MEIs 
(Supplementary Table 2). We statistically phased this germline variant 
set using haplotypes from the 1000 Genomes Project91 as a reference 
panel, yielding an N50-phased block length of 265 kb based on haploid 
chromosomes from donor-matched tumour genomes. Precision esti-
mates for germline SNVs and indels were >99% for the phased merged 
call-set, and sensitivity estimates ranged from 92% to 98%.

Core alignment and variant calling by cloud computing
The requirement to uniformly realign and call variants on nearly 5,800 
whole genomes (tumour plus normal) presented considerable com-
putational challenges, and raised ethical issues owing to the use of 
data from different jurisdictions (Extended Data Table 2). To process 
the data, we adopted a cloud-computing architecture26 in which the 
alignment and variant calling was spread across 13 data centres on 3 
continents, representing a mixture of commercial, infrastructure-as-
a-service, academic cloud compute and traditional academic high-
performance computer clusters (Supplementary Table 3). Together, 
the effort used 10 million CPU-core hours.

To generate reproducible variant calling across the 13 data centres, 
we built the core pipelines into Docker containers28, in which the work-
flow description, required code and all associated dependencies were 
packaged together in stand-alone packages. These heavily tested, exten-
sively validated workflows are available for download (Box 1).

Validation, benchmarking and merging of somatic variant calls
To evaluate the performance of each of the mutation-calling pipelines 
and determine an integration strategy, we performed a large-scale 
deep-sequencing validation experiment (Supplementary Notes 1). We 
selected a pilot set of 63 representative tumour–normal pairs, on which 
we ran the 3 core pipelines, together with a set of 10 additional somatic 
variant-calling pipelines contributed by members of the PCAWG SNV 
Calling Methods Working Group. Sufficient DNA remained for 50 of 
the 63 cases for validation, which was performed by hybridization of 
tumour and matched normal DNA to a custom RNA bait set, followed 
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by deep sequencing, as previously described29. Although performed 
using the same sequencing chemistry as the original whole-genome 
sequencing analyses, the considerably greater depth achieved in the 
validation experiment enabled accurate assessment of sensitivity and 
precision of variant calls. Variant calls in repeat-masked regions were 
not tested, owing to the challenge of designing reliable validation 
probes in these areas.

The 3 core pipelines had individual estimates of sensitivity of 80–90% 
to detect a true somatic SNV called by any of the 13 pipelines; with >95% 
of SNV calls made by each of the core pipelines being genuine somatic 
variants (Fig. 1a). For indels—a more-challenging class of variants to 
identify in short-read sequencing data—the 3 core algorithms had indi-
vidual sensitivity estimates in the range of 40–50%, with precision 
70–95% (Fig. 1b). Validation of SV calls is inherently more difficult, 
as methods based on PCR or hybridization to RNA baits often fail to 
isolate DNA that spans the breakpoint. To assess the accuracy of SV 
calls, we therefore used the property that an SV must either generate 
a copy-number change or be balanced, whereas artefactual calls will 
not respect this property. For individual SV-calling algorithms, we 
estimated precision to be in the range of 80–95% for samples in the 
63-sample pilot dataset.

Next, we examined multiple methods for merging calls made by 
several algorithms into a single definitive call-set to be used for down-
stream analysis. The final consensus calls for SNVs were based on a sim-
ple approach that required two or more methods to agree on a call. For 
indels, because methods were less concordant, we used stacked logistic 
regression110,111 to integrate the calls. The merged SV set includes all calls 
made by two or more of the four primary SV-calling algorithms96,100,112,113. 
Consensus CNA calls were obtained by joining the outputs of six indi-
vidual CNA-calling algorithms with SV consensus breakpoints to obtain 
base-pair resolution CNAs (Supplementary Methods 2.4.3). Consensus 
purity and ploidy were derived, and a multitier system was developed 
for consensus copy-number calls (Supplementary Methods 2.4.3, and 
described in detail elsewhere7).

Overall, the sensitivity and precision of the consensus somatic vari-
ant calls were 95% (90% confidence interval, 88–98%) and 95% (90% 
confidence interval, 71–99%), respectively, for SNVs (Extended Data 
Fig. 2). For somatic indels, sensitivity and precision were 60% (90% con-
fidence interval, 34–72%) and 91% (90% confidence interval, 73–96%), 
respectively. Regarding SVs, we estimate the sensitivity of the merging 
algorithm to be 90% for true calls generated by any one calling pipeline; 
precision was estimated to be 97.5%. That is, 97.5% of SVs in the merged 
SV call-set had an associated copy-number change or balanced partner 
rearrangement. The improvement in calling accuracy from combining 
different pipelines was most noticeable in variants that had low variant 
allele fractions, which are likely to originate from subclonal popula-
tions of the tumour (Fig. 1c, d). There remains much work to be done 
to improve indel calling software; we still lack sensitivity for calling 
even fully clonal complex indels from short-read sequencing data.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The PCAWG-generated alignments, somatic variant calls, annotations 
and derived datasets are available for general research use for browsing 
and download at http://dcc.icgc.org/pcawg/ (Box 1 and Supplementary 
Table 4). In accordance with the data access policies of the ICGC and 
TCGA projects, most molecular, clinical and specimen data are in an 
open tier which does not require access approval. To access poten-
tially identifying information, such as germline alleles and underly-
ing read data, researchers will need to apply to the TCGA Data Access 
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.

cgi?page=login) for access to the TCGA portion of the dataset, and to 
the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) 
for the ICGC portion. In addition, to access somatic single nucleotide 
variants derived from TCGA donors, researchers will also need to obtain 
dbGaP authorization.

Beyond the core sequence data and variant call-sets, the analyses in 
this paper used a number of datasets that were derived from the variant 
calls (Supplementary Table 4). The individual datasets are available at 
Synapse (https://www.synapse.org/), and are denoted with synXXXXX 
accession numbers; all these datasets are also mirrored at https://dcc.
icgc.org, with full links, filenames, accession numbers and descriptions 
detailed in Supplementary Table 4. The datasets encompass: clinical 
data from each patient including demographics, tumour stage and vital 
status (syn10389158); harmonized tumour histopathology annotations 
using a standardised hierarchical ontology (syn1038916); inferred 
purity and ploidy values for each tumour sample (syn8272483); driver 
mutations for each patient from their cancer genome spanning all 
classes of variant, and coding versus non-coding drivers (syn11639581); 
mutational signatures inferred from PCAWG donors (syn11804065), 
including APOBEC mutagenesis (syn7437313); and transcriptional data 
from RNA sequencing, including gene expression levels (syn5553985, 
syn5553991, syn8105922) and gene fusions (syn10003873, syn7221157).

Code availability
Computational pipelines for calling somatic mutations are available to 
the public at https://dockstore.org/organizations/PCAWG/collections/
PCAWG. A range of data-visualization and -exploration tools are also 
available for the PCAWG data (Box 1).
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Extended Data Fig. 1 | Flow-chart showing key steps in the analysis of PCAWG 
genomes. After alignment to the genome, somatic mutations were identified 
by three pipelines, with subsequent merging into a consensus variant set used 

for downstream scientific analyses. Subs, substitutions; DKFZ/EMBL, the 
German Cancer Research Centre (DKFZ) and Europen Molecular Biology 
Laboratory (EMBL).
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Extended Data Fig. 2 | Distribution of accuracy estimates across algorithms 
and samples from validation data. a, F1 accuracy, precision and sensitivity 
estimates for somatic SNVs across the core algorithms and different 
approaches to merging the call-sets. The box plots demarcate the interquartile 
range and median of estimates across the n = 50 samples in the validation 

dataset. b, F1 accuracy, precision and sensitivity estimates for somatic indels 
(n = 50 samples). SVM, support vector machine; union, calls made by all variant-
calling algorithms; intersect2, calls made by any combination of two variant-
calling algorithms; intersect3, calls made by any three variant-calling 
algorithms.



Extended Data Fig. 3 | Distribution of numbers of somatic mutations of 
different classes across tumour types. The y axis is on a log scale. The 2,583 
donors with the highest quality metrics (white-listed donors) are plotted. SNVs 

indicate substitutions; indels are taken as insertions or deletions <100 bp in 
size; retrotranspositions are the combined counts of somatic retrotransposon 
insertions, transductions and somatic pseudogene insertions.
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Extended Data Fig. 4 | Patients with no detected driver mutations in PCAWG. 
a, Number (red) of patients without detected driver mutations distributed 
across the different tumour types studied. b, Estimated sensitivity for 
detecting somatic point mutations genome-wide across tumour types (total 
sample size: n = 2,583 patients). Each point represents the estimate for a single 
patient, layered on violin plots that show the estimated density distribution of 

sensitivity values for that tumour type (the width proportional is to density).  
c, SETD2 expression levels across different medulloblastoma subtypes. Points 
represent individual patients, coloured by whether the gene exhibited focal 
copy number (CN) loss or a truncating point mutation, or was the wild-type 
gene. The coloured areas are violin plots showing the estimated density 
distribution of expression values for that medulloblastoma subtype.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Examples of clustered mutational processes.  
a, Chromoplexy example in a thyroid adenocarcinoma. Genes at the 
breakpoints are schematically depicted in their normal genomic context and 
again in the reconstructed derivative chromosomes below. b, Distinct kataegis 
signatures in the genome of a pancreatic adenocarcinoma sample. SVs and 
their classification are shown above the main rainfall plot, as well as the total 
and minor allele copy number. Tra, translocation; del, deletion; dup, 
duplication; t2tInv, tail-to-tail inversion; h2hInv, head-to-head inversion. 
Magnifications of the three foci on chromosomes 1, 8 and 12, respectively, 
highlight distinct manifestations of kataegis. Left, a novel process similar to 
signature 17 with T > N mutations at CT or TT dinucleotides. Middle, the 

prototypical APOBEC3A/B type with C > T (signature 2) and/or C>G/A 
(signature 13) substitutions at TpC. Right, an alternative cytidine deaminase(s) 
with a preference for substitutions at C/GpC. Most of the SNVs in each of these 
foci can be phased to the same allele and no evidence of anti-phasing is 
observed. c, Example of a chromothripsis event in a melanoma. The black 
points (top) represent copy-number estimates from individual genomic bins, 
with SVs shown as coloured arcs (translocation in black, deletion in purple, 
duplication in brown, tail-to-tail inversion in cyan, head-to-head inversion in 
green) that mostly demarcate copy-number changes. The mate chromosomes 
are displayed above translocations. Bottom, the variant allele fractions of 
somatic mutations distributed along the relevant chromosomal region.



Extended Data Fig. 6 | Patterns of intense kataegis. a, Distribution of the 
tumour types (colour-coded as in Extended Data Fig. 3) of the samples in the 
top 5% of kataegis intensity in each of the four identified genome-wide 
patterns: non-APOBEC, replication stress, rearrangement-associated and the 
combination of the last two. b, c, Distribution of leading/lagging strand (b) and 

replication timing bias (c) for rearrangement-(in)dependent APOBEC kataegis, 
based on n = 2,583 tumours. P values were derived using a two-sided Mann–
Whittney U-test. d, Example rainfall plots for each of the four identified 
kataegis patterns.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Association of chromothripsis with covariates and 
driver events. a, Odds ratios per cancer type of containing chromothripsis in 
whole-genome duplicated versus diploid samples (n = 2,583 patients). 
***q < 0.001; **q < 0.01; *q < 0.05. Two-sided hypothesis testing was performed 
using Fisher–Boschloo tests, corrected for multiple-hypothesis testing.  
b, Same as a for female versus male. c, Proportion of mutations explained by 
single-base substitution signature 1 and age at diagnosis in prostate cancer 
samples (n = 210 patients) with or without chromothripsis (q < 0.05). The early-
onset prostate cancer project drives the signal and was sequenced at lower 
depth. For the box-and-whisker plots, the box denotes the interquartile range, 
with the median marked as a horizontal line. The whiskers extend as far as the 
range or 1.5× the interquartile range, whichever is less. Two-sided hypothesis 
testing was performed using Mann–Whitney U-tests. d, Counts of co-
occurrence of chromothripsis with amplification (blue) and homozygous 
deletions (red) in driver regions: observed (thick line) versus randomized 
(shaded area and thin line). The cumulative number of drivers that were hit is 

plotted as a function of the number of times those drivers were hit. e, For each 
sample in which chromothripsis coincided with a driver event in those genes, 
we show the fold change in gene expression compared to the median 
expression of the gene in non-chromothripsis samples of the same cancer type, 
coloured by cancer type and shaped by the type of driver event. We show with 
added transparency the fold changes calculated the same way for samples with 
driver mutations hitting the same driver genes, but that had no evidence of 
chromothripsis. Analysis is based on n = 1,222 patients with RNA-sequencing 
data. f, Enrichment of co-occurrence of chromothripsis with driver events. The 
x axis shows the association of chromothripsis with a driver in a given cancer 
type compared with its rate of association with that driver in all other cancer 
types. The y axis shows the association of chromothripsis with a driver in a 
given cancer type compared with its rate of association with all other drivers in 
that type. Exact binomial tests are used and P values are corrected for multiple 
testing according to the Benjamini–Hochberg method.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Further examples of chromothripsis-induced 
amplification targeting multiple cancer-associated genes simultaneously 
in melanoma. a, Examples of amplifications that occurred early in the 
development of melanoma. The black points (top) represent copy-number 
estimates from individual genomic bins, with SVs shown as coloured arcs 
(translocation in black, deletion in purple, duplication in brown, tail-to-tail 
inversion in cyan and head-to-head inversion in green) that mostly demarcate 
copy-number changes. Bottom, the variant allele fractions of SNVs distributed 

along the relevant chromosomal region. The paucity of somatic mutations at 
high variant allele fractions in the most-heavily amplified regions indicates that 
these amplifications began very early in tumour evolution, before the lineage 
had had opportunity to acquire many SNVs. b, Example of an amplification that 
occurred late in melanoma development. The large numbers of somatic 
mutations at high variant allele fractions in the most-heavily amplified regions 
indicate that these amplifications began late in tumour evolution, after the 
lineage had already acquired many SNVs.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Timing the amplifications after chromothripsis in 
molecular time for 10 representative cases. a, Copy-number plot of 
chromothriptic regions categorized as ‘liposarc-like’ in five acral melanomas 
with CCND1 amplification. Segments indicate the copy number of the major 
allele. Points represent SNV multiplicities, that is, the estimated number of 
copies carrying each SNV, coloured by base change and shaped by strand. Small 
vertical arrows link SNVs to their corresponding copy-number segment. 
Kataegis foci are shown within black boxes and show typical strand 
specificities (all triangles or all circles), similar multiplicities and base changes 
of signatures 2 and 13 (red and black, respectively). A coloured bar (top right) 

represents the molecular timing of the amplification (red bar; high is early, low 
is late) and is coloured by the fraction of total SNVs assigned to the following 
timing categories: clonal [early], clonal mutations that occurred before 
duplications involving the relevant chromosome (including whole-genome 
duplications); clonal [late], clonal mutations that occurred after such 
duplications; and clonal [NA], mutations that occurred when no duplication 
was observed. b, Same as a in two cutaneous melanomas, one shows early 
amplification, the other late amplification. c, Same as a, b, for three lung 
squamous cell carcinomas and late amplification of SOX2.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Association between common germline variants and 
endogenous mutational processes. Genome-wide association of somatic CpG 
mutagenesis in individuals of European ancestry (n = 1,201 patients) based on 
mutational signature analysis (a) and NpCpG motif analysis (b). Two-sided 
hypothesis testing was performed using PLINK v.1.9. To mitigate multiple-
hypothesis testing, the significance threshold was set to genome-wide 
significance (P < 5 × 10−8). c, d, Locuszoom plot for somatic APOBEC3B-like 
mutagenesis association results, linkage disequilibrium and recombination 
rates around the genome-wide significant 22q13.1 locus in individuals with 
European (c) and East Asian (d) ancestry (n = 1,201 and 318 patients, 

respectively). Locuszoom plot for somatic APOBEC3B-like mutagenesis 
association results around the 22q13.1 locus in individuals with European (e) 
and East Asian (f) ancestry after conditioning on rs12628403. g, h, Association 
between rs2142833 and expression of APOBEC3 genes in PCAWG tumour 
samples (adjusted for sex, age at diagnosis, histology and population structure 
in linear-regression models with two-sided hypothesis testing not corrected 
for multiple tests). For the box-and-whisker plot, the box denotes the 
interquartile range, with the median marked as a horizontal line. The whiskers 
extend as far as the range or 1.5× the interquartile range, whichever is less. 
Outliers are shown as points.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Association between rare germline PTVs in protein-
coding genes and somatic mutational phenotypes. a–d, f, Data are based on 
two-sided rare-variant association testing across n = 2,583 patients, with a 
stringent P value threshold of P < 2.5 × 10−6 used to mitigate multiple-
hypothesis testing (significant genes marked with coloured circles). Blue/red 
circles mark genes that decrease/increase somatic mutation rates. The black 
line represents the identity line that would be followed if the observed P values 
followed the null expectation, with the shaded area showing the 95% 
confidence intervals. a, QQ plots for the proportion of somatic SV deletions, 
tandem duplications, inversions and translocation in cancer genomes. b, QQ 
plots for the proportion of somatic SV deletions in cancer genomes stratified 
by four size groups (1–10 kb, 10–100 kb, 100–1,000 kb and >1,000 kb). c, QQ 
plots for the proportion of somatic SV tandem duplications in cancer genomes 
stratified by four size groups (1–10 kb, 10–100 kb, 100–1,000 kb and >1,000 kb).  
d, QQ plot for the presence or absence of somatic SV templated insertion 
(cycles) in cancer genomes. e, Number of SV-templated insertion cycles in 
PCAWG tumours with germline BRCA1 PTVs. Only histological samples with at 
least one germline BRCA1 PTV carrier are shown (n = 1,095 patients combined). 
The box denotes the interquartile range, with the median marked as a 
horizontal line. The whiskers extend as far as the range or 1.5× the interquartile 
range, whichever is less. Outliers are shown as points. f, QQ plot for somatic 
CpG mutagenesis in cancer genomes based on NpCpG motif analysis. g, Violin 
plots show estimated densities of the proportion of somatic CpG mutations in 
PCAWG donors with germline MBD4 and BRCA2 PTVs. The box denotes the 

interquartile range, with the median marked as a white point. The whiskers 
extend as far as the range or 1.5× the interquartile range, whichever is less. Two-
sided hypothesis testing, not corrected for multiple testing, was performed 
using linear regression models. h, Replication of germline MBD4 and BRCA2 
PTV associations with somatic CpG mutagenesis in TCGA whole-exome 
sequencing donors. Violin plots show the estimated density of the proportion 
of somatic CpG mutations in TCGA exomes with germline MBD4 and BRCA2 
PTVs. The box denotes the interquartile range, with the median marked as a 
white point. The whiskers extend as far as the range or 1.5× the interquartile 
range, whichever is less. Two-sided hypothesis testing, not corrected for 
multiple testing, was performed using linear-regression models. i, Correlation 
between MBD4 expression and somatic CpG mutagenesis in primary solid 
PCAWG tumours. Hypothesis testing was two-sided and not corrected for 
multiple testing, using linear-regression models. The box denotes the 
interquartile range, with the median marked as a horizontal line. The whiskers 
extend as far as the range or 1.5× the interquartile range, whichever is less.  
j, Data are mean ± s.e.m. across n = 20 tumour types. The dashed black line 
shows the fitted line to the data, estimated using linear-regression models. 
Hypothesis testing was two-sided and not corrected for multiple testing, using 
Spearman’s rank correlations. k, MBD4 effect sizes (open circles) with 95% 
confidence intervals (error bars) for individual cancer types were estimated 
using linear-regression analysis after (if available) accounting for sex, age at 
diagnosis (young/old) and ICGC project. Hypothesis testing was two-sided and 
not corrected for multiple testing.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Germline MEI call set. a, Left, dots show the number of 
transductions promoted by each hot element in individual samples. Arrows 
highlight retrotransposition burst. Right, the contribution of each hot locus is 
represented. The total number of transductions mediated by each source 
element is shown on the right. b, Source L1 activity rate (that is, measured as the 
average number of transductions mediated by an element) versus the 
percentage of samples with retrotransposition activity in which the germline 
element is active. For visualization purposes, extreme points observed for a 
source L1 with an activity rate of 49 and for a L1 active in 31% of the samples are 
shown at ≥20 and ≥10, respectively. c, Contrasting allele frequencies for 
Strombolian and Plinian source loci (sample sizes shown under each axis label). 
The box denotes the interquartile range, with the median marked as a white 
point. The whiskers extend as far as the range or 1.5× the interquartile range, 
whichever is less. Hypothesis testing was performed using two-sided Mann–
Whitney U-tests without correction for multiple tests. d, Numbers of active and 
hot source L1 elements per donor. Data are mean ± s.d. number of elements per 
donor. e, The novel Plinian source element on 7p12.3 mediates 72 transductions 
among only 6 cancer samples. This generates a transduction that induces the 
deletion of the tumour-suppressor gene CDKN2A. f, Violin plots show the 
estimated number of distinct germline MEI alleles per PCAWG donor. The box 
denotes the interquartile range, with the median marked as a white point. The 
whiskers extend as far as the range or 1.5× the interquartile range, whichever is 
less. Donors are grouped according to their genetic ancestry: AFR, African; 

AMR, admixed American; EAS, East Asian; EUR, European; SAS, South Asian. 
Sample sizes are shown under each axis label. g, For each type of MEI (L1, Alu 
and SVA) identified both in PCAWG and in the 1000 Genomes Project (1KGP), 
the correlations between allele frequency estimates per ancestry derived from 
both projects are displayed in a blue (0) to red (1) coloured gradient. n = 2,583 
PCAWG patients. Two-sided hypothesis testing was performed using 
Spearman’s rank correlations without correction for multiple tests. h, Example 
correlation between MEI allele frequencies derived from PCAWG and the 1000 
Genomes Project for individuals with European ancestry (n = 1,201 patients in 
PCAWG). Two-sided hypothesis testing was performed using Spearman’s rank 
correlations without correction for multiple tests. i, Evaluation of TraFiC-mem 
false-discovery rate on a liver hepatocellular carcinoma sample (DO50807) and 
a cell line (NCI-BL2087) sequenced using single-molecule sequencing with 
MinION (Oxford Nanopore). For each allele frequency bin (common, >5%; low 
frequency, 1–5%; rare, <1%), the percentage of events supported by N long reads 
is represented (N ranges from 0–1 to more than 5). MEIs supported by at least 
two Nanopore reads were considered to be true positives (blue palette) and 
were classified as false positives (red) otherwise. The total number of germline 
MEIs per allele frequency bin is shown on the right. j, Correlation between 
predicted MEI lengths from Illumina and Nanopore data. Two-sided hypothesis 
testing was performed using Spearman’s rank correlations without correction 
for multiple testing.
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Extended Data Fig. 13 | See next page for caption.



Extended Data Fig. 13 | Different mechanisms of telomere lengthening in 
cancer. a, Scatter plot showing the four clusters of tumour-specific telomere 
patterns identified across PCAWG samples, together with the clusters of 
matched normal samples, generated by t-distributed stochastic neighbour 
embedding. Circles represent tumour samples and triangles represent 
matched normal samples. Points are coloured by tissue of origin. Data are 
based on n = 2,518 tumour samples and their matched normal samples.  
b, Patterns of comutation of the relevant driver mutations across individual 
patients. Columns in plot represent individual patients, coloured by type of 
abnormality observed. c, Distribution of clonality of driver mutations in genes 
relevant to telomere maintenance across clusters. Clonal [early], clonal 

mutations that occurred before duplications involving the relevant 
chromosome (including whole-genome duplications); clonal [late], clonal 
mutations that occurred after such duplications; and clonal [NA], mutations 
that occurred when no duplication was observed. d, Relationship between the 
estimated number of stem cell divisions per year and rate of telomere 
maintenance abnormalities across tumour types. The analysis uses data on 
estimated rates of stem cell division per year across n = 19 tissue types 
previously collated from the literature82. Tumour types are coloured according 
to the scheme shown in Extended Data Fig. 3. Two-sided hypothesis testing was 
performed using likelihood ratio tests on Poisson regression models with no 
correction for multiple tests.
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Extended Data Table 1 | Overview of the tumour types included in PCAWG project

Adeno., adenocarcinoma; Ca., carcinoma; Comb., combined; F, female; HCC, hepatocellular carcinoma; M, male; Med, median; 10–90th, 10–90th centiles; SCC, squamous cell carcinoma.



Extended Data Table 2 | Ethical considerations of genomic cloud computing
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Extended Data Table 3 | Scientific output using PCAWG data, in bite-size chunks

Key findings are described further in associated papers4–18.
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available at: https://dockstore.org/search?labels.value.keyword=pcawg&searchMode=files. Individual software components are as 
follows: BWA-MEM v0.78.8-r455; DELLY v0.6.6; ACEseq v1.0.189; DKFZ somatic SNV workflow v1.0.132-1; Platypus v0.7.4; ascatNgs 
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WGS somatic and germline variant calls, mutational signatures, subclonal reconstructions, transcript abundance, splice calls and other core data generated by the 
ICGC/TCGA Pan-cancer Analysis of Whole Genomes Consortium are available for download at https://dcc.icgc.org/releases/PCAWG. Additional information on 
accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA 
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projects, most molecular, clinical and specimen data are in an open tier which does not require access approval. To access potentially identification information, 
such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://
icgc.org/daco) for the ICGC portion. In addition, to access somatic single nucleotide variants derived from TCGA donors, researchers will also need to obtain dbGaP 
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Sample size We compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre. Most samples came 
from treatment-naïve, primary cancers, but there were a small number of donors with multiple samples of primary, metastatic and/or 
recurrent tumours. Our inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a minimal set of clinical fields; and (iii) 
characterisation of tumour and normal whole genomes using Illumina HiSeq paired-end sequencing reads.  
We collected genome data from 2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time of the final data 
freeze in autumn 2014. No statistical methods were used to predetermine sample size. 

Data exclusions After quality assurance, data from 176 donors were excluded as unusable. Reasons for data exclusions included inadequate coverage, 
extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing errors (for example, through 8-
oxoguanine). Exclusion criteria were pre-determined.

Replication In order to evaluate the performance of each of the mutation-calling pipelines and determine an integration strategy, we performed a large-
scale deep sequencing validation experiment. We selected a pilot set of 63 representative tumour/normal pairs, on which we ran the three 
core pipelines, together with a set of 10 additional somatic variant-calling pipelines contributed by members of the SNV Calling Working 
Group. Overall, the sensitivity and precision of the consensus somatic variant calls were 95% (CI90%: 88-98%) and 95% (CI90%: 71-99%) 
respectively for SNVs. For somatic indels, sensitivity and precision were 60% (34-72%) and 91% (73-96%) respectively. Regarding SVs, we 
estimate the sensitivity of the merging algorithm to be 90% for true calls generated by any one caller; precision was estimated as 97.5% - that 
is, 97.5% of SVs in the merged SV call-set have an associated copy number change or balanced partner rearrangement. 

Randomization No randomisation was performed - this was a descriptive study, not an experimental study.

Blinding No blinding was undertaken - this was a descriptive study, not an experimental study.
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Population characteristics Patient-by-patient clinical data are provided in the marker paper for the PCAWG consortium (Extended Data Table 1 of that 
manuscript). Demographically, the cohort included 1,469 males (55%) and 1,189 females (45%), with a mean age of 56 years 
(range, 1-90 years). Using population ancestry-differentiated single nucleotide polymorphisms (SNPs), the ancestry distribution 
was heavily weighted towards donors of European descent (77% of total) followed by East Asians (16%), as expected for large 
contributions from European, North American and Australian projects. We consolidated histopathology descriptions of the 
tumour samples, using the ICD-0-3 tumour site controlled vocabulary. Overall, the PCAWG data set comprises 38 distinct tumour 
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types. While the most common tumour types are included in the dataset, their distribution does not match the relative 
population incidences, largely due to differences among contributing ICGC/TCGA groups in numbers sequenced. 

Recruitment Patients were recruited by the participating centres following local protocols. Samples obtained had to meet criteria on amount 
of tumour DNA available, meaning that the cohort is potentially somewhat biased towards larger tumours. Otherwise, we 
anticipate no major recruitment biases.  

Ethics oversight The Ethics oversight for the PCAWG protocol was undertaken by the TCGA Program Office and the Ethics and Governance 
Committee of the ICGC. Each individual ICGC and TCGA project that contributed data to PCAWG had their own local 
arrangements for ethics oversight and regulatory alignment.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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