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A B S T R A C T   

Older adults are impaired at implicit associative learning (IAL), or the learning of relationships between stimuli 
in the environment without conscious awareness. These age effects have been attributed to differential 
engagement of the basal ganglia (e.g. caudate, globus pallidus) and hippocampus throughout learning. However, 
no studies have examined gray matter diffusion relations with IAL, which can reveal microstructural properties 
that vary with age and contribute to learning. In this study, young (18–29 years) and older (65–87 years) adults 
completed the Triplet Learning Task, in which participants implicitly learn that the location of cues predict the 
target location on some trials (high frequency triplets). Diffusion imaging was also acquired and multi
compartment diffusion metrics were calculated using neurite orientation dispersion and density imaging 
(NODDI). As expected, results revealed age deficits in IAL (smaller differences in performance to high versus low 
frequency triplets in the late learning stage) and age-related differences in basal ganglia and hippocampus free, 
hindered, and restricted diffusion. Significant correlations were seen between restricted caudate diffusion and 
early IAL and between hindered globus pallidus diffusion and late IAL, which were not moderated by age group. 
These findings indicate that individual differences in basal ganglia, but not hippocampal, gray matter micro
structure contribute to learning, independent of age, further supporting basal ganglia involvement in IAL.   

1. Introduction 

Implicit associative learning (IAL) refers to the acquisition of re
lationships between events in the environment without explicit aware
ness [1]. Crucial throughout the lifespan, IAL supports the acquisition of 
language during childhood via the formation of associations between 
phonemes that produce words, as well as the learning of relationships 
between important cues and outcomes during social interactions and 
technological adaptation [2–5]. The Triplet Learning Task (TLT) is one 
way to assess IAL in the laboratory [6]. On each trial, or “triplet”, par
ticipants respond to the location of a target that is preceded by two cues. 
Unbeknownst to participants, cue locations predict the target location 
on some trials (high frequency, HF) but not others (low frequency, LF). 
IAL is calculated as better accuracy or reaction time performance on HF 
compared to LF trials. Behavioral studies have reported reduced IAL in 
older versus younger adults, with larger age group differences in later 
stages of learning [7,5,6,8]. 

IAL performance, and age-related deficits therein, may be attributed 
to differential engagement of its neural correlates over the course of 
learning. For instance, we previously used functional magnetic reso
nance imaging (fMRI) to show that better late stage IAL was associated 
with learning-related activity (HF triplets > LF triplets) in bilateral 
caudate for young adults and in the hippocampus for older adults [9]. In 
a complementary study using diffusion tensor imaging (DTI), we showed 
positive relationships between early stage IAL and integrity of white 
matter tracts emanating from both the caudate and hippocampus in 
young and older adults, whereas late stage IAL was only related to 
caudate tract integrity in young adults but to caudate and hippocampus 
tract integrity in older adults [10]. Studies reporting no age group dif
ferences in the neural substrates of IAL often do not disaggregate results 
by learning stage. For example, one study using quantitative suscepti
bility mapping (QSM) found that iron concentration in caudate and 
globus pallidus positively correlated with overall IAL in both young and 
older adults [11]. As such, although there is converging evidence of 
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basal ganglia (caudate, globus pallidus) and hippocampal involvement 
throughout learning, a more comprehensive examination of relation
ships between learning and these neural substrates as a function of 
learning stage and aging is warranted, which is the focus of our current 
study. 

A novel imaging approach to assess the microstructural properties of 
these gray matter structures is Neurite Orientation Dispersion and 
Density Imaging (NODDI). Using diffusion imaging data, NODDI sepa
rates the total diffusion signal into tissue and non-tissue sources, or 
compartments [12]. This multi-compartment approach provides sepa
rate measures of restricted (modeled as sticks), hindered (modeled as the 
dispersion of sticks), and free (modeled as an isotropic sphere) diffusion 
that are thought to reflect intracellular (e.g. neurite density), extracel
lular (e.g. dendritic arborization), and non-cellular (e.g. cerebrospinal 
fluid) sources of diffusion, respectively [12–15]. In this way, NODDI 
accounts for contamination of free diffusion in its other diffusion met
rics, which may be prevalent in regions close to the ventricles (caudate, 
hippocampus) and in the aging brain [16]. 

Previous NODDI studies have reported age-related differences in 
microstructure of the hippocampus, seen as increases in free, hindered, 
and restricted diffusion [15,17–19] and select basal ganglia structures, 
seen as decreases in striatal (particularly caudate) hindered diffusion 
[15,20]. Researchers have interpreted these findings as older adults 
exhibiting differences in dendritic complexity in these regions compared 
to younger adults, although other neurobiological changes could be 
involved (e.g. iron accumulation, dendritic (de)arborization, vascular 
changes, and cell shrinkage) [21,22]. However, age-related differences 
in diffusion in other basal ganglia regions (e.g. globus pallidus, nucleus 
accumbens) have thus far been overlooked, and more importantly, no 
diffusion imaging studies have related gray matter microstructure to IAL 
or assessed age differences in these relationships. 

To address these gaps in the literature, we had young and older 
adults perform a version of the TLT and undergo diffusion imaging. We 
aimed to examine (1) age group differences in IAL as a function of 
learning stage, (2) age group differences in basal ganglia (caudate, pu
tamen, nucleus accumbens, globus pallidus) and whole hippocampus 
gray matter microstructure using NODDI, (3) relationships between 
early and late IAL and these neural substrates separately in each age 
group, and (4) whether these diffusion-learning relationships were 
moderated by age. Due to the influence of iron content (measured with 
R2*) on diffusion metrics [23] and its accumulation over the lifespan in 
the basal ganglia [24,25], iron was treated as a variable of no interest in 
all diffusion analyses. We expected to replicate prior work finding age 
deficits in IAL, particularly in late learning, as well as increased diffusion 
in the hippocampus and decreased diffusion in striatum (caudate, pu
tamen) in older adults compared to young adults, being the first to 
examine these effects in other basal ganglia structures (globus pallidum, 
nucleus accumbens) [15,17,18,20,19]. Based on the findings from other 
neuroimaging approaches, we further expected that better early stage 
IAL would relate to lower diffusion in the basal ganglia and hippocam
pus in both young and older adults, whereas late stage IAL would relate 
to lower diffusion in the basal ganglia in young adults and the basal 
ganglia and hippocampus in older adults, indicating a significant age 
group moderation of late learning-diffusion relationships. 

2. Methods 

2.1. Participants 

Forty young (20.94 ± 2.11 years old, range = 18–29 years) and thirty 
older adults (73.06 ± 6.59 years old, range = 65–87 years) were 
recruited from the University of California, Riverside undergraduate 
research pool and surrounding communities, respectively. Prior to 
enrollment in the study, potential participants were screened over the 
phone for normal global cognition (> 17 on a subset of the Montreal 
Cognitive Assessment (MoCA) adapted for phone screening [26]), 

history of neurological conditions that could influence their perfor
mance (e.g. depression, stroke), and to ensure they could be scanned 
safely (e.g. pregnancy, claustrophobia, having metal inside the body). 
After enrollment in the study, seven participants were excluded from 
final analyses due to poor TLT performance (Accuracy [ACC] below two 
standard deviations from the young or older adult sample means 
respectively [approximately 50 %]; 2 young, 3 older), incomplete TLT 
data due to attrition (1 young), researcher error (1 young), or file cor
ruption (1 older). The final sample consisted of 36 young (20.91 ± 2.19 
years old, range = 18–29 years) and 26 older adults (72.82 ± 6.53 years 
old, range = 65–87 years) (see Table 1). All participants gave informed 
consent and received either course credit or monetary compensation for 
participation. 

2.2. Procedure 

Participants completed two separate 75-minute testing sessions 
approximately one week apart. During the first testing session, a high- 
resolution structural scan and a multi-echo gradient recalled echo 
(GRE) sequence were acquired. During the second testing session par
ticipants performed eight sessions of the TLT. To maximize scan time, 
sessions 1–3 (early stage) and 6–8 (late stage) were completed during 
functional scans (only the behavioral data will be reported here) and 
sessions 4–5 during diffusion scans. Immediately after scanning, par
ticipants were given the TLT recognition task and a post-test interview. 

2.3. Triplet learning task 

This version of the TLT was adapted from previous behavioral [6] 
and neuroimaging [9] studies. During this task, participants viewed four 
empty circles lined horizontally on a screen. Each trial consisted of a 
“triplet” of events in which one circle filled in red (cue 1; 150 ms), then a 
second filled in red (cue 2; 150 ms), and then a third circle filled in green 
(target; 800 ms). Triplet events were separated by a 150 ms 
inter-stimulus-interval, with a 600 ms inter-trial interval between trip
lets (total trial time was 2000 ms). Participants were instructed to 
passively view the red cues and respond quickly and accurately to the 
location of the green target using one of four button responses that 
corresponded to each of the four circle locations. Participants held one 
MR-compatible button box in each hand, each with separate buttons 
under their index and middle fingers. ACC and reaction times (RT) were 
collected for all trials. 

Unbeknownst to participants, some triplets occurred with greater 
frequency and contained cues which predicted target locations (high- 
frequency, HF), while others occurred with lower frequency and were 
not predictive (low-frequency, LF). To optimize learning and remove 
triplet compositions occurring at other frequencies, HF triplets involved 
both first-order and second-order structure, meaning that the location of 
the first and second cue predicted the location of the target. As such, 
unlike other TLT versions [6], this task focused on the manipulation of 

Table 1 
Demographic characteristics of final sample.   

Young Older 

Sample size 36 26 
Age (in years)   

Mean ± SD 20.91 ± 2.19 72.82 ± 6.53 
Range 18 - 29 65 - 87 

Gender (% of sample)   
Female 24 (66.67 %) 11 (42.31 %) 
Male 12 (33.33 %) 15 (57.69 %) 

Level of Education (in years)   
Mean ± SD 13.86 ± 1.33 15.96 ± 3.62 

MoCA  
Mean ± SD 27.44 ± 1.40 27.19 ± 1.86 
Range 24 - 29 23 - 30 

Note. SD = standard deviation and MoCa = Montreal Cognitive Assessment. 
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joint (overall triplet frequency) but not conditional (within triplet sta
tistical relationships) probability, which may have led to greater 
salience of both HF and LF triplets for young and older adults as well as 
more favorable learning for older adults who may otherwise struggle 
learning complex sequences. 

Participants completed eight sessions of the task, each composed of 
four blocks of 32 triplets (1024 triplets total). For each block, four 
unique HF triplets were presented 6 times (24 H F triplets total) and 
eight unique LF triplets were presented once, forming a 3:1 ratio of HF 
(75 % frequency) to LF (25 % frequency) triplets. Triplets were coun
terbalanced to ensure that cues and targets occurred in each location 
equally often. Trials in every block were randomized, as well. Within a 
session, each block was separated by a 10 s break, during which “rest 
now” was presented in black text on a white screen. Sessions were 
separated by a break during which researchers manually restarted the 
task. Each session lasted approximately 5 min, with a total test time of 
approximately 47 min. 

2.3.1. Recognition tests 
Participants completed a recognition test outside the scanner after 

completing the full TLT. On each trial, they viewed a single triplet using 
the same stimuli and timing as in the TLT. They were instructed to 
indicate whether the triplet occurred “frequently”, “infrequently”, or 
“not at all” during the TLT using one of three button responses. The four 
unique HF triplets, eight unique LF triplets, and eight triplets that were 
not a part of the main study (no frequency, NF) were presented. NF 
triplets included those in which the first cue and target occurred in the 
same location (trills; e.g. 232, 434, where the numbers refer to the 
location of the three triplet events from the farthest left [1] to farthest 
right [4] circle) and those in which all triplet events occurred in the 
same location (repetitions; e.g. 333, 444). 

After the recognition task, participants completed an interview to 
further ascertain explicit awareness. Interview questions were acquired 
verbatim from J. H. Howard et al. [6] and included the following: (1) 
“What strategy did you use to improve your speed and accuracy in the 
experiment?”, (2) “Did you notice any relationship between either of the 
first two lights and the third light?”, (3) “Did all the lights turn on 
equally often, or did some lights come on more often than others?”, and 
(4) “In fact, there was a relationship between the first two lights and the 
third. What do you think it was for the first light? What about the second 
light?”. Two young participants were dropped from recognition analyses 
only due to missing data, but their interviews were reviewed to ensure 
they showed no explicit awareness. 

2.3.2. Calculating implicit associative learning (IAL) scores 
Implicit associative learning (IAL) scores were calculated for each 

participant using behavioral data from the first three (1–3) and last three 
(6–8) sessions of the TLT that were completed during fMRI acquisition. 
The functional scans generated an artifact that was recorded as the same 
incorrect button response on every sixth and seventh trial. These trials 
were excluded prior to calculating IAL scores. Because the artifact 
occurred systematically and throughout the task, it had minimal impact 
on these IAL scores. 

Mean accuracy and median reaction time on correct trials were 
calculated separately for HF and LF triplets for each block, and then 
averaged across blocks within each session. Mean of median reaction 
times for HF and LF triplets were then log-transformed to control for 
general slowing in age and separately averaged across sessions 1–3 
(early IAL) and sessions 6–8 (late IAL) [27,28]. For correlation analyses, 
the averages of these log-transformed HF and LF mean of median RTs 
were subsequently subtracted from each other and multiplied by -1 to 
acquire measures of early and late IAL for which larger positive scores 
indicate better learning. 

2.4. MRI scanning protocol 

Imaging data were acquired with a 3-T Siemens Prisma magnetic 
resonance imaging (MRI; Siemens Healthineers, Malvern, PA) scanner 
using a 32-channel receive-only head coil at the Center for Advanced 
Neuroimaging at University of California, Riverside. A mirror attached 
to the head coil allowed participants to view the stimuli presented on a 
screen behind the MRI during the scan. Head movement was minimized 
by placing fitted padding around the head of each participant. 

A single high-resolution structural image (magnetization-prepared 
rapid gradient-echo sequence, MP-RAGE) was acquired with the 
following parameters: echo time (TE)/repetition time (TR) = 2.72/2400 
ms, 208 axial slices, voxel size = 0.8 × 0.8 × 0.8 mm3, and a Generalized 
Autocalibrating Partially Parallel Acquisitions (GRAPPA) acceleration 
factor of 2 [29]. 

Multiecho data derived from a 12-echo 3D GRE sequence were ac
quired with the following parameters: TE/ΔTE/TR = 4/3/40 ms, FOV =
192 mm × 224 mm, matrix size = 192 × 224 × 96, slice thickness = 1.7 
mm, and GRAPPA acceleration factor = 2. Magnitude images were ob
tained for calculation of R2* values, which is a measure sensitive to iron 
concentration. 

DTI data were acquired with a diffusion-weighted echo-planar im
aging (EPI) sequence with the following parameters: TE/TR = 102/3500 
ms, FOV = 212 × 182 mm, matrix size of 128 × 110, voxel size = 1.7 ×
1.7 × 1.7 mm3, 64 axial slices, and multiband acceleration factor = 4. A 
second DTI scan was acquired with phase-encoding directions of oppo
site polarity for correction of susceptibility distortions [30]. For each 
DTI acquisition, bipolar diffusion encoding gradients (b = 1500 and 
3000 s/mm2) were applied in 64 directions, with six images having no 
diffusion weighting (b = 0; 12 total). 

2.5. Regions of interest segmentation 

Bilateral caudate, putamen, nucleus accumbens, and globus pallidus 
were automatically segmented on each participant’s MP-RAGE using 
FSL’s Integrated Registration and Segmentation Tool (FIRST; [31,32]), 
as illustrated in Fig. 1. Default settings were used for all regions except 
the hippocampus, where an additional flag specified a three-stage affine 
registration [33]. FIRST segmentations were based on observed in
tensities in each participants’ MP-RAGE that were fit to the most prob
able surface meshes derived from shape and appearance models that 
were initially manually segmented and provided by the Center for 
Morphometric Analysis (CMA), MGH, Boston. A tissue-based classifica
tion was used to correct for overlap in boundary voxels. All segmented 
structures were aligned to diffusion images using a rigid body trans
formation (degrees of freedom [DOF] = 6) between the participants’ 
MP-RAGE and their susceptibility distortion corrected DTI b = 0 image. 
All segmented structures were also aligned to R2* maps using a trans
formation (DOF = 6) between each participants’ MP-RAGE and the 
magnitude from the first echo of the 12-echo GRE acquisition. Aligned 
segmented structures were then binarized to create bilateral ROI masks. 

All segmentations in structural space and mask alignments in diffu
sion and R2* space were visually inspected to ensure accurate region 
capture. The latter revealed eight participants with misalignments (>1 
voxel displacement) in diffusion space for the caudate, four of which 
were due to underestimation of the caudate in their initial FIRST seg
mentation and one of which did not accurately align caudate segmen
tations from MP-RAGE to diffusion space. For these five participants, the 
misalignments were corrected by rerunning the FIRST segmentation 
using the following adjustments: (1) linearly aligning each participant’s 
MP-RAGE to a whole brain instead of a subcortical mask (the standard is 
a subcortical mask), (2) using the maximum number (336) of modes of 
variation for fitting (the standard number of modes for caudate is 40), 
and (3) using thalamus as a reference structure for intensity normali
zation (the standard uses the interior of the structure for intensity 
normalization). For the remaining three participants, misalignments for 
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caudate in diffusion space could not be fixed using these corrections and 
they were dropped from caudate analyses (3 young). Three participants 
also exhibited hippocampus segmentation issues in diffusion space and 
were dropped from hippocampus analyses after the previously described 
adjustments did not fix the issue (2 young, 1 older). Moreover, four 
participants exhibited globus pallidus segmentation issues in diffusion 
space which could not be corrected, and they were dropped from globus 
pallidus analyses (3 young, 1 older). One participant exhibited a 
misalignment (>1 voxel displacement) for the caudate in magnitude 
space, and they were dropped from caudate analyses. No individual 
participant was excluded from more than 2 region analyses. 

2.6. Diffusion data pre-processing 

For each participant, diffusion data were pre-processed using the 
FMRIB Software Library (FSL) and the Analysis of Functional Neuro 
Images (AFNI) suite [34–36]. AFNI’s 3D skull strip was used to remove 
non-brain tissue and generate a whole brain mask in the b = 0 image. 
Standard preprocessing steps were applied to correct for motion, 
eddy-current induced distortions, and susceptibility induced distortions 
in the DTI data using eddy in FSL [30,37]. b = 0 images from the two 
diffusion acquisitions were input into FSL’s topup and a field map was 
generated for susceptibility distortion correction. Uncorrected DTI data 
were input into FSL’s EDDY and data were corrected for eddy currents, 
susceptibility artifacts, and gross motion correction. 

Pre-processed data were then analyzed using the NODDI MATLAB 
toolbox (http://mig.cs.ucl.ac.uk/index.php) to acquire diffusion 
compartment estimates. A two-stage approach was used to separate the 

diffusion signal into three compartments: restricted (also known as 
intracellular volume fraction [fICVF] or neurite density index [NDI]), 
hindered (also known as orientation dispersion index, ODI), and free 
(also known as fraction of isotropic diffusion, fISO) diffusion [12,38]. 
During the first stage, the total diffusion signal was separated into tissue 
and non-tissue diffusion compartments, with the non-tissue component 
modeled as an isotropic sphere (free diffusion). During the second stage, 
the tissue component was further separated into restricted and hindered 
diffusion components, which are characterized as sticks and the 
dispersion of sticks respectively. Outputs included voxel-wise images of 
free, hindered, and restricted diffusion for each participant. 

2.7. R2* (Iron) data pre-processing 

GRE images were analyzed with a custom MATLAB script. R2* for 
each voxel was calculated by fitting the signal decay from the 12-echo 
GRE data to a monoexponential model, Si = S0exp(-R2*TE). Note that 
Si indicates the signal of a voxel at the ith echo time and S0 indicates a 
fitting constant. 

2.8. Acquiring diffusion metrics and R2* values from ROIs 

Free, hindered, and restricted diffusion metrics as well as R2* values 
were extracted separately from bilateral regions of interest (ROI; 
caudate, putamen, nucleus accumbens, globus pallidus, and hippocam
pus) for each participant. Free diffusion metrics were acquired by 
multiplying each bilateral diffusion space-aligned ROI mask by the 
voxel-wise free diffusion image before taking the average across voxels. 

Fig. 1. Regions of interest. For illustration, bilateral caudate, putamen, nucleus accumbens, globus pallidus, and hippocampus were automatically segmented on a 
standard image (MNI 125 1 mm3) using FSL’s Integrated Registration and Segmentation Tool (FIRST). 
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An inclusion mask was created for the remaining diffusion metrics by 
thresholding the free diffusion image to exclude voxels with low tissue 
content (free diffusion > 90 %). Hindered and restricted diffusion 
metrics were then acquired by multiplying each bilateral diffusion 
space-aligned ROI mask by these inclusion masks and then by the cor
responding voxel-wise diffusion images before taking the average across 
voxels. Bilateral diffusion metrics were then averaged to generate one 
diffusion metric per region per participant. 

R2* values were extracted separately from bilateral ROIs for each 
participant using the same approach. Each bilateral aligned ROI mask 
was multiplied by the voxel-wise R2* map before taking the average 
across voxels and mean R2* was obtained for each participant. 

3. Results 

3.1. Behavioral results 

3.1.1. Age group differences in early versus late learning 
To assess age group differences in IAL as a function of learning stage, 

Learning Stage (Early, Late) x Triplet Type (HF, LF) x Age Group (Young, 
Old) repeated measures ANOVAs were conducted separately for mean 
accuracy and log-transformed mean of median RTs (see Fig. 2). Learning 
Stage and Triplet Type varied within-subjects while Age Group varied 
between-subjects. 

For mean accuracy, a significant main effect of Age Group (F (1, 59) 
= 5.10, p = 0.03, ηp

2 = 0.08), indicated that young adults (89.60 % ±

1.60) were more accurate than older adults (84.10 % ± 1.80). A sig
nificant Learning Stage x Age Group interaction (F (1, 59) = 6.26, p =
0.02, ηp

2 = 0.10) showed that the difference in accuracy for early versus 
late learning was smaller in young adults (Early: 90.30 % ± 1.90, Late: 
89.00 % ± 1.60; Mean Difference = -1.30 %) compared to older adults 
(Early: 82.10 % ± 2.20, Late: 86.20 % ± 1.90; Mean Difference = 4.10 
%). No other effects attained significance (ps > 0.21). 

For reaction time, there was also a significant main effect of Age 
Group (F (1, 59) = 44.16, p < 0.001, ηp

2 = 0.43), indicating that younger 
adults (2.66 ± 0.01) were faster than older adults (2.74 ± 0.01) overall, 
as is typical. Significant effects of Learning Stage (F (1, 59) = 16.13, p <
0.001, ηp

2 = 0.22) and Learning Stage x Age Group (F (1, 59) = 8.82, p =
0.004, ηp

2 = 0.13) were consistent with age group differences in skill 
learning. That is, RTs were faster in late learning (2.69 ± 0.01) 
compared to early learning (2.71 ± 0.01) and this difference was larger 
in young (Early: 2.67 ± 0.01, Late: 2.64 ± 0.01; Mean Difference = 0.03) 
compared to older (Early: 2.74 ± 0.01, Late: 2.74 ± 0.01; Mean Dif
ference = 0.004) adults. Significant effects of Triplet Type (F (1, 59) =
57.32, p < 0.001, ηp

2 = 0.50), Triplet Type x Learning Stage (F (1, 59) =
18.60, p < 0.001, ηp

2 = 0.24), and Triplet Type x Age Group (F (1, 59) =
5.57, p = 0.022, ηp

2 = 0.09) were consistent with age group differences in 
learning the associations. RTs were faster to HF triplets (2.69 ± 0.01) 
compared to LF triplets (2.71 ± 0.01). This learning effect was larger in 
late learning (HF: 2.68 ± 0.01; LF: 2.70 ± 0.01; Mean Difference = 0.02) 
relative to early learning (2.70 ± 0.01 versus 2.71 ± 0.01; Mean Dif
ference = 0.01) and in young adults (HF: 2.65 ± 0.01; LF: 2.67 ± 0.01; 
Mean Difference = 0.02) relative to older adults (2.73 ± 0.01 versus 
2.74 ± 0.01; Mean Difference = 0.01). However, the Learning Stage x 
Triplet Type x Age Group interaction did not reach significance (p =
0.634). 

3.1.2. No explicit awareness 
To test for explicit knowledge that HF triplets occur more frequently 

than LF triplets, a Triplet Type (HF, LF, NF) x Age Group (Young, Old) 
repeated measures ANOVA was conducted on mean response scores 
(calculated as the average of ‘frequently’, ‘infrequently’, and ‘not at all’ 
recognition judgements recoded as 2, 1, and 0, respectively). 

A significant effect of Triplet Type (F (2, 114) = 94.18, p < 0.001, ηp
2 

= 0.623), probed using pairwise comparisons, revealed no difference in 
mean response scores for HF compared to LF triplets (HF: 1.57 ± 0.05, 
LF: 1.53 ± 0.05; Mean Difference = 0.037; p = 0.405), but significant 
differences between mean response scores for NF triplets (NF: 0.832 ±
0.07) compared to HF (Mean Difference = 0.73; p < 0.001) and LF 
triplets (Mean Difference = 0.70; p < 0.001), indicating no difference in 
recognition judgements for HF and LF triplets even as participants 
endorse NF triplets as not having occurred frequently or at all. A sig
nificant Triplet Type x Age Group interaction (F (2, 114) = 5.81, p =
0.004, ηp

2 = 0.09) further revealed that older adults had significantly 
lower LF (1.42 ± 0.07) mean response scores compared to young adults 
(1.64 ± 0.06; Mean Difference = 0.23; p = 0.031), but showed no dif
ference in HF or NF triplet mean response scores (ps > 0.213), indicating 
a potential bias among older adults toward rating LF triplets as occurring 
more infrequently compared to young adults. No other effects 
approached significance (ps > 0.450). 

Additional evidence that participants had no explicit awareness of 
the associations was found in their interview responses, in that no 
participant was able to accurately describe any relationship between the 
cues and targets. 

3.2. Age group differences in gray matter microstructure 

We used one-way ANCOVAs to assess whether gray matter micro
structure varied by age group, with age group as a fixed factor, sepa
rately for each diffusion metric (free, hindered, restricted) in each ROI 
(caudate, putamen, nucleus accumbens, globus pallidus, hippocampus) 
while controlling for iron content in that region (see Fig. 3). 

Fig. 2. Associative learning performance. Mean accuracy (top) and mean of 
median log-transformed reaction times (bottom) to high frequency (HF, solid 
line) and low-frequency (LF, dashed line) triplets are shown separately for 
young (open circle) and older (closed circle) adults. Error bars denote standard 
error of the means. Significant learning was seen as faster (but not more ac
curate) responses to HF versus LF triplets, particularly in the late learning stage, 
with a significantly larger learning effect for young versus older adults. 
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The caudate revealed significantly higher free (F (1, 52) = 15.54, p <
0.001, ηp

2 = 0.23) and restricted (F (1, 52) = 21.66, p < 0.001, ηp
2 = 0.29) 

diffusion and significantly lower hindered diffusion (F (1, 52) = 14.94, p 
< 0.001, ηp

2 = 0.22) in older versus young adults. The putamen also 
exhibited significantly higher free (F (1, 56) = 5.20, p = 0.026, ηp

2 =

0.09) and restricted (F (1, 56) = 15.67, p < 0.001, ηp
2 = 0.22) diffusion 

and significantly lower hindered diffusion (F (1, 56) = 23.07, p < 0.001, 
ηp

2 = 0.29) in older versus young adults. Similarly, the hippocampus 
revealed significantly higher free (F (1, 53) = 24.75, p < 0.001, ηp

2 =

0.32), hindered (F (1, 53) = 100.52, p < 0.001, ηp
2 = 0.66), and restricted 

(F (1, 53) = 21.76, p < 0.001, ηp
2 = 0.29) diffusion in older versus young 

adults. For the nucleus accumbens, results revealed significantly higher 
free (F (1, 56) = 4.85, p = 0.032, ηp

2 = 0.08) and restricted (F (1, 56) =
73.03, p < 0.001, ηp

2 = 0.57) diffusion in older versus young adults, but 
no group difference for hindered diffusion (p = 0.271). For the globus 
pallidus, results revealed significantly higher restricted diffusion (F (1, 
53) = 12.23, p = 0.001, ηp

2 = 0.19) in older versus young adults, but no 
group difference for free (p = 0.509) or hindered (p = 0.906) diffusion. 
These results demonstrate effects of aging on at least one diffusion 
metric for all regions of interest, with age-related decreases in hindered 

diffusion for the caudate and putamen potentially signaling a unique 
neural substrate (e.g., moderate accumulation of iron throughout the 
lifespan). 

3.3. Age-independent relationships between IAL scores and gray matter 
microstructure 

We first assessed relationships between IAL and gray matter micro
structure separately in each age group. Partial correlations were con
ducted between each IAL score (early, late) and each diffusion metric 
(free, hindered, restricted) from each ROI (caudate, putamen, nucleus 
accumbens, globus pallidus, hippocampus) while controlling for iron 
content in that region separately for young and older adults (see Fig. 4 
and Table 2). Significant effects were Bonferroni corrected for three 
comparisons per dependent measure for each ROI (p < 0.017). Results 
include both significant and trending (p < 0.05) effects. 

For young adults, early IAL scores were significantly positively 
related to restricted caudate diffusion (r = 0.471, p = 0.009). Results 
also showed that late IAL scores marginally related to hindered caudate 
diffusion (r = 0.407, p = 0.026) and restricted globus pallidus diffusion 
(r = 0.420, p = 0.019). No other correlations attained significance (ps >
0.064). 

For older adults, late IAL scores were significantly related to hin
dered globus pallidus diffusion (r = 0.516, p = 0.014). Results also 
showed that late IAL scores marginally were related to hindered hip
pocampus diffusion (r = 0.466, p = 0.033). No other correlations 
approached significance (ps > 0.338). Thus, better early and late 
learning was associated with higher basal ganglia diffusion in both age 
groups (caudate and/or globus pallidum), with better late learning also 
relating to higher hippocampal diffusion in older adults. 

3.4. Age-dependent relationships between IAL scores and gray matter 
microstructure 

We then examined whether age group moderated relationships be
tween IAL scores and gray matter microstructure for any significant or 
trending effects reported in the previous section (see Figure 4) via 
separate multiple regression models which included age group, the 
diffusion metric, and the age group x diffusion metric interaction as 
predictor variables; iron content as a covariate; and the IAL score as the 
dependent variable. 

The interaction terms for the relationship between early IAL and 
restricted caudate diffusion (ΔR2 = .06, ΔF (1, 50) = 3.90, b = -1.08, t 
(50) = -1.98, p = 0.054) and between late IAL and hindered hippo
campus diffusion (ΔR2 = .07, ΔF (1, 50) = 3.99, b = 1.63, t (50) = 1.99, p 
= 0.051) were only marginally significant, indicating that age did not 
significantly moderate any of the learning-diffusion relationships. No 
other interactions approached significance (ps > 0.338). Moreover, re- 
analyzing these data using a Bayesian test provided additional, strong 
evidence in favor of there being no difference in previously reported 
learning-diffusion relationships between young and older adults (see 
Supplementary Tables 1 and 2). 

4. Discussion 

The present study examined age group differences in IAL as a func
tion of learning stage, age group differences in basal ganglia and hip
pocampal gray matter microstructure, relationships between IAL and 
gray matter microstructure across age groups, and whether these IAL- 
microstructure relationships were moderated by age. We extended 
earlier work by assessing microstructure of subcortical gray matter and 
by controlling for iron content, which is known to increase with age [24, 
39–42], affect diffusion [23,25], and relate to learning [11]. In line with 
our predictions, older adults exhibited deficits in IAL and differences in 
diffusion across all three metrics for the basal ganglia (caudate, puta
men) and hippocampus compared to young adults. Further, diffusion in 

Fig. 3. Age-related differences in diffusion. Diffusion metrics (free, hin
dered, restricted; controlled for region specific iron content) for basal ganglia 
and hippocampus regions of interest in young (white bar) and older (black bar) 
adults are shown separately. Error bars denote standard error of the means. The 
caudate, putamen, and hippocampus showed significant age group differences 
across all metrics, although the direction of these effects differed for hindered 
diffusion. ** = p < 0.001, * = p < 0.05. 
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the basal ganglia, but not hippocampus, was significantly related to 
early IAL in young adults (caudate) and late IAL in older adults (globus 
pallidum). However, none of the IAL-diffusion relationships were 
significantly moderated by age, indicating that basal ganglia micro
structure contributes to IAL performance across the lifespan. 

IAL was seen across age groups as faster responses to more versus less 
frequently occurring triplets (HF versus LF) that increased from the early 
to late learning stage, with this Trial Type difference being smaller for 
older versus younger adults. Although these learning and age effects are 
comparable to those seen in previous studies, we did not observe the 
expected three-way interaction between Age Group, Trial Type, and 
Learning Stage [7,6,9]. This may be due to the comparatively shorter 
number of trials utilized in this version of the TLT, as one study has 
indicated extensive practice is associated with age differences in IAL 
[43]. However, at least one other dataset that also shortened the TLT for 
MRI did observe a significant three-way interaction [27,28,9], indi
cating that our finding was not influenced solely by the reduced number 
of trials. Instead, our pattern of results is likely due to differences in 
triplet complexity. Truly probabilistic sequences that include all possible 
combinations of cue-target associations have used 64 unique triplets 

that occur with a range of different frequencies [6]. In contrast, the 
current TLT version used just 12 unique triplets (4 HF, 8 LF), which is 
also fewer than the 18 used in the previous TLT MRI study [9]. More
over, our counterbalanced, pseudo-random structure ensured that there 
was no overlap between cues that predicted target locations for HF and 
LF triplets, eliminating triplet combinations that occurred with other 
frequencies. Previous studies using similar, more deterministic se
quences (utilizing the Serial Reaction Time Task, SRTT) have also shown 
no age-related differences in IAL [44,45]. Whereas learning effects are 
consistently seen for reaction time, our lack of learning for accuracy was 
not unexpected given previous reports of both significant [6,27] and 
non-significant [5,9] learning effects, which may also result from dif
ferences in triplet complexity among other factors (e.g. whether feed
back is used to maintain accuracy, predictive order structure). 
Importantly, our ability to replicate earlier work demonstrates that 
shortened, less complex (i.e., fewer unique triplets, deterministic regu
larity) TLT versions, as used here, are appropriate for detecting signifi
cant learning and age group differences in learning within the 
constraints of the MRI environment. 

We further observed age group differences in hippocampal and basal 
ganglia gray matter microstructure. For the hippocampus, our finding of 
higher free, hindered, and restricted diffusion in older relative to young 
adults reflects previous reports of age-related increases in one [15,17, 
18] or all [19] NODDI metrics. For the basal ganglia, most regions 
exhibited higher free and restricted diffusion in older relative to young 
adults with either an age-related decrease (caudate, putamen) or no age 
group difference (nucleus accumbens) in hindered diffusion, whereas 
one region showed only an age-related increase in restricted diffusion 
(globus pallidus). At least two previous studies similarly found that older 
adults have lower hindered diffusion in the striatum (particularly 
caudate) than young adults [15,20], although we are the first to examine 
age effects on microstructure across multiple basal ganglia regions. 
Previous studies of gray matter microstructure have interpreted varia
tions in diffusion as reflecting differences in neurite complexity [21,22], 
myelin density [46], or dendritic processes [47], all of which are 
affected by aging. However, in the absence of comprehensive 
diffusion-histology research that can more accurately link biological 
substrates to the individual diffusion metrics, we can only posit that 
numerous neurobiological factors (e.g. neurite density, glial cells, cell 
swelling/shrinkage, and vascular changes) contribute to the observed 
age-related diffusion effects [21,22]. 

One neurobiological factor of particular interest here is iron, given 
that it accumulates in basal ganglia regions with age [23,25,40–42], 
attenuates the diffusion signal at acquisition [25], and relates to various 
cognitive functions [24,41,48], including IAL [11]. Interestingly, hin
dered diffusion, which showed the most variability in age effects across 
regions, appeared to track with the presence of iron. That is, the region 

Fig. 4. Relationships between learning and diffusion. Significant (bolded) and trending (italicized) correlations between early (left) and late (middle, right) log- 
transformed IAL scores and diffusion metrics (controlled for region specific iron content) are shown separately for young (A, top) and older (B, bottom) adults. Dotted 
lines denote 95 % confidence interval bands. Importantly, none of these relationships were significantly moderated by age group. 

Table 2 
Correlation coefficients between IAL scores and diffusion metrics.   

Young Older 

Diffusion Metric/ROI Early IAL Late IAL Early IAL Late IAL 

Free Diffusion     
Caudate 0.34 − 0.01 − 0.01 0.13 
Putamen 0.14 0.13 − 0.24 0.14 
Nucleus Accumbens 0.30 0.02 0.09 0.26 
Globus Pallidus 0.06 0.07 − 0.24 − 0.04 
Hippocampus 0.19 − 0.05 − 0.18 0.18 

Hindered Diffusion     
Caudate 0.33 0.41 − 0.24 0.11 
Putamen 0.32 − 0.01 − 0.01 − 0.24 
Nucleus Accumbens 0.09 0.19 0.06 − 0.11 
Globus Pallidus 0.08 0.22 0.37 0.52 
Hippocampus 0.04 − 0.06 0.22 0.47 

Restricted Diffusion     
Caudate 0.47 0.19 0.19 0.21 
Putamen 0.12 0.19 − 0.22 0.27 
Nucleus Accumbens 0.30 0.22 0.03 − 0.16 
Globus Pallidus 0.33 0.42 0.10 0.28 
Hippocampus 0.30 0.07 − 0.17 0.12 

Note. Significant (p < 0.017, Bonferroni-corrected; bolded) and trending (p <
0.05; italicized) correlation coefficients between log-transformed reaction time 
implicit associative learning (IAL) scores and diffusion metrics (free, hindered, 
restricted) from each region of interest (ROI) are shown separately for each age 
group (young, older) and learning stage (early, late), after controlling for region- 
specific iron content. 
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that accumulates minimal amounts of iron showed an age-related in
crease in hindered diffusion (hippocampus), regions that gradually 
accumulate a moderate amount of iron throughout the lifespan showed 
an age-related decrease in hindered diffusion (caudate, putamen), and 
the region that accumulates the most iron by early adulthood and pla
teaus across the lifespan showed no effect of age on hindered diffusion 
(globus pallidus) [49]. Of note, we attempted to minimize the potential 
confounding effect of iron by statistically controlling for its concentra
tion in our diffusion metrics. However, it remains possible that iron 
attenuates the diffusion signal at the time of acquisition [25], which may 
be driving these results for hindered diffusion. As such, it will be 
necessary to develop a diffusion sequence that is insensitive to iron in 
order to fully understand the effect of age on diffusion in regions with 
high iron concentration. 

After statistically controlling for these iron effects, we provide sup
port for basal ganglia involvement in IAL using NODDI measures of gray 
matter microstructure. Specifically, we observed that early IAL was 
significantly correlated with restricted caudate diffusion in young 
adults, whereas late IAL was significantly correlated with hindered 
globus pallidus diffusion in older adults. Marginally significant re
lationships were also observed between late IAL and hindered caudate 
and restricted globus pallidus diffusion in young adults, and hindered 
hippocampus diffusion in older adults. Larger learning effects in late 
compared to early IAL may have contributed to its apparent sensitivity 
to diffusion. Notably, none of these relationships were significantly 
moderated by age, indicating similar gray matter microstructural sub
strates of IAL in young and older adults. These results coincide with a 
growing body of functional [9,11,44,50–53], structural [10], and 
genotypic [28] evidence showing that basal ganglia (particularly 
caudate) relates to both early and late stages of learning. Moreover, our 
finding that globus pallidus, not just caudate, microstructure contributes 
to IAL performance is consistent with emerging work [11,53], poten
tially signifying that later learning is affected by differences in the 
presence of iron or other microstructural alterations like dendritic 
arborization that may have a larger impact on extracellular sources of 
diffusion captured by the hindered diffusion metric. In contrast, early 
learning may be impacted by differences in neurite density or other 
intracellular neurobiological substrates captured by the restricted 
diffusion metric in caudate. The directionality of these findings likely 
results from direct connections between these regions [54,55], with 
caudate involved in the early acquisition of the cue-target associations 
and globus pallidus engaged later in learning. 

Although we did observe a trending relationship between hindered 
hippocampus diffusion and late IAL, we were not able to replicate pre
vious findings implicating hippocampal involvement in early learning 
[9,51]. This may be due to the relatively small learning effect in early 
IAL, although we were able to detect a significant relationship between 
early IAL and restricted caudate diffusion in young adults. Alternatively, 
static measures of hippocampal gray matter diffusion may be less sen
sitive than dynamic measures of its activity during IAL, although we 
were previously able to detect a significant relationship between IAL and 
integrity of white matter tracts emanating from the hippocampus [10]. 
The contribution of hippocampal structure and function to early and late 
IAL will benefit from future multimodal imaging research. 

The positive nature of the significant IAL-basal ganglia diffusion 
relationships was unexpected. Previous NODDI studies of white matter 
integrity typically find negative relations to cognition, with lower 
diffusion (thought to reflect better integrity) relating to better perfor
mance [18]. Comparable studies of hippocampal gray matter also report 
negative relationships between diffusion and performance [18,56]. That 
said, at least one study observed a positive correlation between hippo
campus hindered diffusion and a measure of processing speed and 
working memory performance [15], and another study of basal ganglia 
gray matter observed both negative and positive diffusion-performance 
relationships, with lower and higher restricted putamen diffusion 
relating to goal-directed and habitual decision-making, respectively 

[57]. Because these positive relationships have been observed in 
subcortical gray matter structures with (basal ganglia) and without 
(hippocampus) significant iron concentrations, and the same region can 
show positive and negative relationships to cognition (putamen), it is 
unlikely that this result reflects regional differences in microstructural 
properties. Instead, we suspect that the nature of the cognitive measure 
and the corresponding behavioral measures drive the direction of 
diffusion-performance relationships. 

5. Conclusion 

In this first examination of relationships between IAL and gray 
matter microstructure in the basal ganglia and hippocampus, we found 
that older adults had worse IAL and disrupted diffusion in all subcortical 
regions relative to young adults. More importantly, early and late stage 
IAL was significantly related to caudate and globus pallidus micro
structure, respectively, with minimal evidence that these IAL- 
microstructure relationships vary with age. Even though age has a sig
nificant effect on both IAL performance and the microstructure of 
subcortical regions, it is individual differences in diffusion that affect 
implicit learning, independent of age groups. 
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