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Abstract of the Dissertation

Topics in Nonsupersymmetric Scattering Amplitudes

in Gauge and Gravity Theories

by

Joshua David Nohle

Doctor of Philosophy in Physics

University of California, Los Angeles, 2015

Professor Zvi Bern, Chair

In Chapters 1 and 2, we introduce and review the duality between color and kinematics

in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In addition to

revealing interesting structures in Yang-Mills theory, this conjectured duality immensely

simplifies the computation of scattering amplitudes in theories of gravity.

In Chapter 3, we provide evidence in favor of the conjectured duality between color and

kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a

form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our

construction is valid in any dimension. We also describe a duality-satisfying representation

for the two-loop four-point amplitude with identical four-dimensional external helicities.

We use these results to obtain corresponding gravity integrands for a theory containing a

graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified

diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop

in four, six, and eight dimensions, and at two loops in four dimensions.

In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills

discussion of Chapter 3 to include fermions and scalars circulating in the loop with all

external gluons. This gives another nontrivial loop-level example showing that the duality

between color and kinematics holds in nonsupersymmetric gauge theory. The construction

is valid in any spacetime dimension and written in terms of formal polarization vectors. We
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also convert these expressions into a four-dimensional form with explicit external helicity

states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are

already present in literature.

In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently

renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the

subleading low-energy behavior.

Cachazo and Strominger recently proposed an extension of the soft-graviton theorem

found by Weinberg. In addition, they proved the validity of their extension at tree level. This

was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry.

As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In

contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional

regularization, the subleading behavior is anomalous and modified by loop effects. We argue

that there are no new types of corrections to the first subleading behavior beyond one loop

and to the second subleading behavior beyond two loops. To facilitate our investigation, we

introduce a new momentum-conservation prescription for defining the subleading terms of

the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes

before turning to gravity amplitudes.

In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully

determine the first subleading soft-gluon behavior and the first two subleading soft-graviton

behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are

valid in D dimensions and are similar to Low’s proof of universality of the first subleading

behavior of photons. In contrast to photons coupling to massive particles, in four dimensions

the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on

how such corrections arise from this perspective. We also show that loop corrections in

graviton amplitudes arising from scalar loops appear only at the second soft subleading

order. This case is particularly transparent because it is not entangled with graviton infrared

singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-

graviton Ward identities of extended BMS symmetry are not anomalous through the first
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subleading order.

Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent

effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss-

Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions.

Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class,

since it is dual to a cosmological-constant contribution. In this chapter, we show that

evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To

analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude

and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long

ago by Goroff and Sagnotti. We compare two pairs of theories that are dual inD = 4: gravity

coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-

form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal

anomaly — the coefficient of the Gauss-Bonnet operator — changes under p-form duality

transformations. We concur, and also find that the leading R3 divergence changes under

duality transformations. Nevertheless, in both cases the physical renormalized two-loop

identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its

renormalization-scale dependence is unaltered.
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Part I

Color-Kinematics Duality in

Yang-Mills Theory and Gravity
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CHAPTER 1

Introduction to Color-Kinematics Duality

Recent years have seen remarkable progress in computing and understanding scattering pro-

cesses in gauge and gravity theories, both for phenomenological and theoretical applica-

tions. (For various reviews see Refs. [6, 7, 8].) In particular, various new structures have

been uncovered in the amplitudes of these theories (see, for example, Ref. [9]). One such

structure is the duality between color and kinematics found by Bern, Carrasco, and Johans-

son [10, 11]. This Bern-Carrasco-Johansson (BCJ) duality is conjectured to hold at all loop

orders in Yang-Mills theory and its supersymmetric counterparts. Besides imposing strong

constraints on gauge-theory amplitudes, whenever a form of a gauge-theory loop integrand

is obtained where the duality is manifest, we obtain corresponding gravity integrands simply

by replacing color factors by specified gauge-theory kinematic numerator factors.

The duality between color and kinematics was noticed long ago for four-point tree-level

Feynman diagrams as a possible way to explain certain radiation zeros [12]. For higher points

or at loop level, the duality is rather nontrivial and no longer holds for ordinary Feynman

diagrams, but requires nontrivial rearrangements to display it. The duality has been con-

firmed in numerous tree-level studies [13, 14, 15, 16, 17, 18], including the construction of

explicit representations for an arbitrary number of external legs [19]. At loop level, the du-

ality remains a conjecture, but there is already nontrivial evidence in its favor, especially for

supersymmetric theories [11, 20, 21, 22, 23, 24, 25]. Beyond these explicit duality-satisfying

constructions, the duality implies nontrivial relations amongst gauge-theory color-ordered

partial tree amplitudes [10, 26]. There is also an partial understanding of the duality at

the level of the Lagrangian [15, 17, 27]. The BCJ duality also points to new hidden sym-
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metries. In particular, in the self-dual case an underlying infinite-dimensional Lie algebra

corresponding to area-preserving diffeomorphisms has been shown to be responsible for the

duality [17, 28]. Even after carrying out loop integrations, the duality points to strong links

between gravity and gauge-theory amplitudes [29, 30, 20, 31, 32].

In Chapter 3 and Chapter 4 we provide further evidence in favor of the duality at loop

level, explicitly showing that it holds for Yang-Mills one-loop four-point amplitudes (with

and without matter in the loop) for all polarization states in D dimensions. We also present

a duality-satisfying representation of the two-loop four-point identical-helicity amplitude of

pure Yang-Mills. In order to construct the one-loop four-point Yang-Mills amplitude, we use

a D-dimensional variant [33, 34] of the unitarity method [35]. Our construction begins by

finding an ansatz for the amplitude constrained to satisfy the duality. Since the amplitude

is fully determined from its D-dimensional unitarity cuts, we obtain a form of the amplitude

with the duality manifest by enforcing that the ansatz has the correct unitarity cuts. The

existence of such a form where both the duality and the cuts are simultaneously satisfied is

rather nontrivial. We do not use helicity states tied to specific dimensions but instead use

formal polarization vectors because we wish to have an expression for the amplitude valid

in any dimension and for all states. The price for this generality is that the expressions are

lengthier. Since the constructed integrand has manifest BCJ duality, the double-copy con-

struction immediately gives the corresponding gravity amplitude in a theory with a graviton,

dilaton, and antisymmetric tensor.

We use these results to study the ultraviolet divergences of the corresponding gravity

amplitudes. Recent years have seen a renaissance in the study of ultraviolet divergences in

gravity theories, in a large measure due to the greatly improved ability to carry out explicit

multiloop computations in gravity theories [36, 37, 11, 29, 30, 20, 38, 31, 32, 39]. The uni-

tarity method also has revealed hints that multiloop supergravity theories may be better

behaved in the ultraviolet than power-counting arguments based on standard symmetries

suggest [40]. Even pure Einstein gravity at one loop exhibits surprising cancellations as

the number of external legs increases [41]. The question of whether it is possible to con-
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struct a finite supergravity is still an open one, though there has been enormous progress on

this question in recent years, including new computations and a much better understand-

ing of the consequences of supersymmetry and duality symmetry (see e.g. Refs. [42, 43]).

In half-maximal supergravity [44], two- and three-loop examples are known where the di-

vergence vanishes, yet the understanding of the possible symmetry behind this vanishing

is incomplete [43, 38, 45, 31]. The duality between color and kinematics and its associ-

ated double-copy formula offer a new angle on the ultraviolet divergences in supergravity

theories [11, 20, 38, 31, 46].
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CHAPTER 2

Review of Color-Kinematics Duality and Gravity as a

Double Copy of Yang-Mills Theory

An m-point L-loop gauge-theory amplitude in D dimensions, with all particles in the adjoint

representation, may be written as

AL-loop
m = iLgm−2+2L

∑

Sm

∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

cjnj
∏

αj
p2αj

, (2.1)

where g is the gauge coupling constant. The first sum runs over the m! permutations of the

external legs, denoted by Sm. The Sj symmetry factor removes any overcounting from these

permutations and also from any internal automorphism symmetries of graph j. The j-sum is

over the set of distinct, nonisomorphic, m-point L-loop graphs with only cubic (i.e., trivalent)

vertices. These graphs are sufficient because any diagram with quartic or higher vertices can

be converted to a diagram with only cubic vertices by multiplying and dividing by the appro-

priate propagators. The propagators appearing in the graph are 1/
∏

αj
p2αj

. The nontrivial

kinematic information is contained in the numerators nj and depends on momenta, polariza-

tions, and spinors. In supersymmetric cases it will depend also on Grassmann parameters,

if a superspace form is used. The loop integral is over L independent D-dimensional loop

momenta, pl. Finally, cj denotes the color factor, obtained by dressing every vertex in graph

j with the group-theory structure constant, f̃abc = i
√
2fabc = Tr([T a, T b]T c), where the

hermitian generators of the gauge group are normalized via Tr(T aT b) = δab.

The numerators appearing in Eq. (2.1) are by no means unique because of freedom in

moving terms between different diagrams. Utilizing this freedom, the BCJ conjecture is that
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(i) (j) (k)

Figure 2.1: The basic Jacobi relation for either color or numerator factors. These three diagrams

can be embedded in a larger diagram, including loops.

to all loop orders, representations of the amplitude exist where kinematic numerators obey

the same algebraic relations that the color factors obey [10, 11]. In ordinary gauge theories,

this is simply the Jacobi identity,

ci = cj − ck ⇒ ni = nj − nk , (2.2)

where i, j, and k label three diagrams whose color factors obey the Jacobi identity. The

basic Jacobi identity is displayed in Fig. 2.1. The identity generalizes to any loop order

with any number of external legs by embedding it in larger diagrams, where the other parts

of the diagrams are identical for the three diagrams. Furthermore, if the color factor of a

diagram is antisymmetric under a swap of legs, we require that the numerator obey the same

antisymmetry,

ci → −ci ⇒ ni → −ni . (2.3)

The duality was noticed long ago for tree-level four-point Feynman diagrams [12]; beyond

this, it is rather nontrivial and no longer holds for ordinary Feynman diagrams. We note that

the numerator relations are nontrivial functional relations because they depend on momenta,

polarizations, and spinors, as discussed in some detail in Refs. [20, 8, 18].

While a complete understanding of the duality and its consequences is still lacking, a

variety of studies have elucidated it, especially at tree level. In particular, this duality

leads to nontrivial relations between gauge-theory color-ordered partial tree amplitudes [10,

26]. The duality (2.3) has also been studied in string theory [47, 13, 16]. In the self-dual
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case, light-cone gauge Feynman rules have been shown to exhibit the duality [17]. Explicit

forms of n-point tree amplitudes satisfying the duality have been found [19]. Although

we do not yet have a complete Lagrangian understanding, some progress in this direction

can be found in Refs. [15, 17]. The duality (2.2) does not need to be expressed in terms

of group structure constants but can alternatively be expressed in terms of a trace-based

representation [48]. Progress has also been made in understanding the underlying infinite-

dimensional Lie algebra [17, 28] responsible for the duality. The duality between color and

kinematics also appears to hold in three-dimensional theories based on three algebras [49],

as well as in some cases with higher-dimension operators [50]. Some initial studies of duality

and its implications for gravity in the high-energy limit have also been carried out [51].

At loop level, the duality remains a conjecture, but there is already nontrivial evidence

in its favor, especially for supersymmetric theories. At present, the list of loop-level cases

where duality-satisfying forms of the amplitude are known to hold includes:

• Up to four loops for four-point N = 4 super-Yang-Mills [11, 20] in a form valid in D

dimensions;

• up to two loops for five external gluons in N = 4 super-Yang-Mills theory [21];

• up to seven points for one-loop amplitudes in N = 4 super-Yang-Mills theory [22];

• up to two loops for four-point identical-helicity pure Yang-Mills amplitudes [11];

• through n points for one-loop all-plus- or single-minus-helicity pure Yang-Mills ampli-

tudes [23];

• through four loops for a two-point (Sudakov) form factor in N = 4 super-Yang-Mills

theory [24];

• one-loop four-point amplitudes in Yang-Mills theories with less than maximally super-

symmetric amplitudes [25].
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In Chapter 3 and Chapter 4, we add Yang-Mills one-loop four-point amplitudes (with and

without matter in the loop) in D dimensions to this list. Besides direct constructions, we

note that the duality also appears to be consistent with loop-level infrared properties of both

gauge and gravity theories [52].

Another significant aspect of the duality is the ease with which gravity loop integrands

can be obtained from gauge-theory ones, once the duality is made manifest [10, 11]. One

simply replaces the color factor with a kinematic numerator from a second gauge theory,

ci → ñi . (2.4)

This immediately gives the double-copy form of gravity amplitudes,

ML-loop
m = iL+1

(κ

2

)m−2+2L∑

Sm

∑

j

∫ L
∏

l=1

dDpl
(2π)D

1

Sj

ñjnj
∏

αj
p2αj

, (2.5)

where ñj and nj are gauge-theory numerator factors. Only one of the two sets of numerators

needs to satisfy the duality (2.2) [11, 15] in order for the double-copy form (2.5) to be valid.

The double-copy formalism has been studied at loop level in some detail in a variety of

cases [11, 29, 21, 20, 38, 31, 52, 22].

We briefly mention that the four-point one-loop amplitudes of Eq. (2.1)—which we will

be concerned with in Chapter 3 and Chapter 4—can be written as [53]:

A(1)
4 (1, 2, 3, 4) = g4

[

c
(1)
1234A

(1)
4 (1, 2, 3, 4) + c

(1)
1423A

(1)
4 (1, 4, 2, 3) + c

(1)
1342A

(1)
4 (1, 3, 4, 2)

]

. (2.6)

The A
(1)
4 ’s are the one-loop color-ordered amplitudes [54], which are independently gauge

invariant. The color factors, c
(1)
1i2i3i4

, are given by dressing the vertices of the one-loop box

diagram that has the external-leg ordering (1, i2, i3, i4) with the structure constants f̃abc.
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CHAPTER 3

Color-Kinematics Duality for Pure Yang-Mills and

Gravity at One and Two Loops

3.1 Introduction

In this chapter, we present duality-satisfying representations for pure Yang-Mills one-loop

four-point amplitudes for all polarization states in D dimensions as well as for the two-

loop four-point identical-helicity amplitude of pure Yang-Mills. The latter amplitude was

first given in Ref. [55] in a non-duality-satisfying representation, while Ref. [11] noted the

existence of a duality-satisfying form. Here, we explicitly give the full duality-satisfying form,

including contributions from diagrams absent from Ref. [55] that vanish under integration

but are necessary to make the duality manifest.

We use the gravity integrands constructed via the double-copy property to determine the

exact form of the ultraviolet divergences. We do so at one loop in dimensions D = 4, 6, 8. The

ultraviolet properties of one-loop four-point gravity amplitudes have already been studied in

some detail over the years, including cases with scalars or antisymmetric tensors coupling to

gravity [56, 57, 58, 59, 60, 41], so no surprises should be expected, at least at four points.

Nevertheless, it is useful to look in some detail at the ultraviolet properties to understand

them from the double-copy perspective. Here we examine the four-point amplitudes in a

theory of gravity coupled to a dilaton and an antisymmetric tensor, corresponding to the

double copy of pure Yang-Mills theory. While related calculations have been carried out, we

are unaware of any calculations of the ultraviolet properties in the theory corresponding to

the double-copy theory.
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We find that in D = 4, there are no one-loop divergences in amplitudes involving external

gravitons, though there are divergences in the remaining amplitudes involving only external

dilatons or antisymmetric tensors, as expected from simple counterterm arguments [56]. By

two loops, even the four-graviton amplitudes contain divergences, as we demonstrate by

computing the form and numerical coefficient of the divergence. In the two-loop case, the

divergence is proportional to a unique R3 operator which gives a divergence in the identical-

helicity four-point amplitude. This means that the identical-helicity four-point amplitude

is sufficient for determining the coefficient of the R3 divergence. In D = 6 and D = 8, we

find one-loop divergences in the four-external-graviton amplitudes. These results are not

surprising and are in line with the earlier studies. Our conclusion is that, by itself, the

double-copy structure is insufficient to render a gravity theory finite in D = 4 and requires

additional ultraviolet cancellations, such as those from supersymmetry.

This chapter is organized as follows. In Section 3.2, we present the construction of the

duality-satisfying pure Yang-Mills numerators at one and two loops. Then in Section 3.3, we

study the ultraviolet properties of gravity coupled to a dilaton and an antisymmetric tensor at

one loop in four, six, and eight dimensions. In the same section, we also present the ultraviolet

properties at two loops in four dimensions. Finally, in Section 3.4 we give our conclusions.

Appendices evaluating two-loop integrals needed in Section 3.3.2 are included. Appendix A

focuses on extracting the divergences in dimensional regularization. This procedure mixes

infrared and ultraviolet divergences; so, in Appendix B we give the infrared divergences that

must be subtracted to obtain the ultraviolet ones. Appendix C evaluates the integrals using

an alternative method for obtaining the ultraviolet divergences more directly, by introducing

a mass to separate out the infrared divergences from the ultraviolet ones.

3.2 Construction of Duality-Satisfying Integrands

We now describe the construction of a duality-satisfying representation of the one-loop four-

point amplitude in pure Yang-Mills. Since we want the form to be valid in all dimensions
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and for all D − 2 gluon states, we use formal polarizations instead of helicity states. This

complicates the expression for the amplitude, but has the advantage that it allows us to

straightforwardly study the amplitude and its gravity double copy in various dimensions.

In this section, we also present a form of the two-loop pure Yang-Mills identical-helicity

amplitude given in Ref. [55] that satisfies BCJ duality after some rearrangement and addition

of diagrams that integrate to zero. In Section 3.3.2, we use this amplitude to show that

although four-graviton amplitudes are ultraviolet finite in D = 4 at one loop, they diverge

at two loops, in accordance with expectations.

3.2.1 One Loop

=
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Figure 3.1: The Jacobi relations determining either color or kinematic numerators of the four-point

diagrams containing either a triangle or internal bubble.

For a one-loop n-point amplitude, the duality (2.2) can be used to express kinematic

numerators of any diagram directly in terms of n-gon numerators. In particular, for the

four-point case we have two basic relations determining triangle and bubble contributions

from box numerators as illustrated in Fig. 3.1,

n12(34);p = n1234;p − n1243;p ,

n(12)(34);p = n12(34);p − n21(34);p . (3.1)

The labels 1, 2, 3, 4 refer to the momenta and states of each external leg, while the label p
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Figure 3.2: The color or kinematic Jacobi relations involving a bubble on an external leg or a

tadpole. These diagrams have vanishing contribution to the integrated amplitude.

denotes the loop momentum of the leg indicated in Fig. 3.1. (The parentheses in the subscript

of the numerators indicate which external legs are pinched off to form a tree attached to

the loop.) Note that in the figure the momentum of each internal leg of each diagram is

the same as in the other two diagrams except for the single internal leg that differs between

the diagrams. In general, the bubble and triangle contributions are nonvanishing; indeed,

this explicitly holds for the BCJ representation of the one-loop four-point amplitude of pure

Yang-Mills theory that we construct.

Besides the diagrams in Fig. 3.1, there are diagrams with a bubble on an external leg and

diagrams with a tadpole, as shown in Fig. 3.2. The duality also determines the numerators

of these diagrams via

n1(234);p = n12(34);p + n1(43)2;p ,

n(1234);p = n(12)(34);p − n(12)(34);−p ,

n(1̂234);p = n1(234);p − n1(234);−p , (3.2)

corresponding respectively to the three relations in Fig. 3.2. (On the final line in Eq. (3.2),

the hat marks leg 1 as the location where the tadpole is attached.) We use these equations
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to impose the auxiliary constraint that the tadpole numerators determined by BCJ duality

vanish identically and that all terms in the bubble-on-external-leg diagrams integrate to zero

as they do for Feynman diagrams. Thus, these diagrams are not necessary for determining

the integrated amplitudes (though in D = 4 the bubble-on-external-leg diagrams do affect

the Yang-Mills ultraviolet divergence).

Once we impose the BCJ conditions, the amplitude is entirely specified by the box nu-

merators. Our task is then to find an expression for the box numerators such that we obtain

the correct amplitude. It is useful to impose a few auxiliary constraints to help simplify the

one-loop construction:

1. The box diagrams should have no more than four powers of loop momenta in the

pure Yang-Mills case, matching the usual power count of Feynman-gauge Feynman

diagrams.

2. Each numerator written in terms of formal polarization vectors respects the symmetries

of the diagrams. In particular, this condition implies that once a box diagram with

one ordering of external legs is specified, the other orderings are obtained simply by

relabeling.

3. The numerators of tadpole diagrams vanish prior to integration.

4. All terms in the bubble-on-external-leg diagrams integrate to zero, as they do for

Feynman diagrams.

While it is not necessary to impose these conditions, they greatly simplify the construction.

They ensure that the type of terms that appear in the ansatz are similar to those of ordi-

nary Feynman-gauge Feynman diagrams, avoiding unnecessarily complicated terms. (Using

generalized gauge invariance, one can always introduce arbitrarily complicated terms into

amplitudes, which cancel at the end.)

The first three conditions simplify the construction by restricting the number of terms

that appear. The purpose of the fourth auxiliary constraint is a bit more subtle. While
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bubble-on-external-leg Feynman diagrams are well defined in the on-shell limit, the freedom

to reassign terms used in the construction of BCJ numerators can introduce ill-defined terms

into such diagrams. As a simple example, consider the effect of the term (k1 + k2)
2ε1 · k2ε2 ·

k1ε3 ·ε4 when added to the numerator of the first diagram of Fig. 3.2 (with ki and εi external

momenta and polarizations). Even after integration, this contribution to the diagram is ill-

defined because of the on-shell intermediate propagator. Such singular contributions would

need to be regularized by an appropriate off-shell continuation to ensure that the introduced

singularities cancel properly against singularities of other diagrams. While in principle we

can introduce such a regulator, it is best to avoid this complication altogether. The fourth

condition ensures that we can treat the bubble-on-external-leg contributions in the same

way as for Feynman diagrams. In particular, with the constraint imposed, the bubble-on-

external-leg contributions match the Feynman-diagram property that they are proportional

to (k2
i )

(D−4)/2, after accounting for the intermediate on-shell propagator, and hence vanish

in D > 4, for ki on shell. We note that even with the fourth constraint, near D = 4

we encounter the same subtlety encountered with Feynman diagrams: Although bubble-

on-external-leg contributions are set to zero in dimensional regularization, they can carry

ultraviolet divergences. Such ultraviolet divergences cancel against infrared ones leaving a

vanishing result for on-shell bubble-on-external-leg diagrams. The net effect is that in gauge

theory, we need to account for such contributions to obtain the correct ultraviolet divergences.

In contrast, in gravity even near D = 4 there are neither infrared nor ultraviolet divergences

hiding in the bubble-on-external-leg contributions because an extra two powers of numerator

momenta give rise to an additional vanishing.

We start the construction with an ansatz containing all possible products of εi · εj, p · εi,
ki · εj, p · ki, p · p, s, and t, where the ki are three independent external momenta, p is the

loop momentum, εi are external polarization vectors, and

s = (k1 + k2)
2 , t = (k2 + k3)

2 , (3.3)
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are the usual Mandelstam invariants. By dimensional analysis, each numerator term must

contain four momenta in addition to being linear in all four εi’s. We also set ki · εi = 0 and

impose momentum conservation with k4 = −k1− k2− k3 and k1 · ε4 = −k2 · ε4− k3 · ε4. This
yields 468 terms, each with a coefficient to be determined.

Our first constraint on the coefficients comes from demanding that the box numerator

obey the rotation and reflection symmetries of the box diagram. This leaves us with 81

free coefficients. An ansatz for the full amplitude is then obtained by using the duality

relations (3.1), (3.2) to determine numerators for all other diagrams.

2

1

3

4
p

1

2

3

4p

2

3

4

1p− k1

3

4

1

2

p

4

1

2

3

p

1

2 3

4p 2

3 4

1p− k1

Figure 3.3: The seven diagrams for the color-ordered amplitude with ordering (1, 2, 3, 4).

The next step is to determine coefficients in the ansatz by matching to the unitarity

cuts of the amplitude. It is convenient to use a color-ordered form of the amplitude [54]

for this matching. The seven diagrams contributing to the color-ordered amplitude, that

is the coefficient of the color trace NcTr[T
a1T a2T a3T a4 ], are shown in Fig. 3.3. The other

color-ordered amplitudes are simple relabelings of this one. For the one-loop four-point am-

plitude, the s- and t-channel unitarity cuts—shown in Fig. 3.4—are sufficient to determine

this color-ordered amplitude up to terms that integrate to zero. One straightforward means
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4

p+ k4p− k1
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Figure 3.4: The (a) s-channel and (b) t-channel unitarity cuts used to determine the amplitude.

The exposed intermediate legs are on shell.

for determining the cuts is to construct the amplitude in Feynman gauge and then take its

unitarity cuts at the integrand level prior to integration. This automatically gives us an

expression for the cuts valid in D dimensions without any spurious denominators (such as

light-cone denominators from physical state projectors). This matching procedure nontriv-

ially rearranges the amplitude so that BCJ duality is manifest. After matching the cuts,

we also impose the fourth auxiliary condition to tame the bubble-on-external-leg contribu-

tions. Finally we impose that the tadpole numerators vanish. Including all the auxiliary

constraints with these conditions, we can solve for all but five free coefficients. Because the s-

and t-channel unitarity cuts are independent of these parameters, the integrated amplitude

should not depend on them.

Using the shorthand notation,

p1 = p , p2 = p− k1 , p3 = p− k1 − k2 , p4 = p+ k4 ,

Eij = εi · εj , Pij = pi · εj , Kij = ki · εj , (3.4)

and setting the free parameters to zero for simplicity, the box numerator is
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]

+ cyclic , (3.5)

where Ds is a state-counting parameter, so that Ds − 2 is the number of gluon states

circulating in the loop. The notation ‘+ cyclic’ indicates that one should include the three

additional cyclic permutations of indices, giving a total of four permutations (1, 2, 3, 4),
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(2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3) of all variables εi, ki, pi, s, t. Plain-text, computer-readable

versions of the full expressions for the numerators, including also gluino- and scalar-loop

contributions, can be found online [61]. In Eq. (3.5), we have written the expression for the

box numerator in a different form than that available online in order to exhibit the cyclic

symmetry.

We have explicitly checked that after reducing the pure Yang-Mills amplitude to an

integral basis,1 the expression is free of arbitrary parameters and inD = 4 matches the known

expression for the amplitude in Ref. [62], after accounting for the fact that the expression in

that chapter is renormalized. The reduction for four-dimensional external states was carried

out by expanding the external polarizations in terms of the external momenta plus a dual

vector [63].

As another simple cross check, we have extracted the ultraviolet divergences in D = 6, 8

and compared them to the known forms. In D = 6, 8, with our fourth auxiliary constraint

there are no ultraviolet contributions from bubbles on external legs. This allows us to directly

extract the ultraviolet divergences by introducing a mass regulator and then expanding

in small external momenta using the methods of Ref. [64]. We find complete agreement

with both earlier evaluations in Ref. [65]. We have also compared this to an extraction of

the ultraviolet divergences directly using dimensional regularization without introducing an

additional mass regulator and again find agreement.

3.2.2 Two Loops

We now turn to two loops. As we shall discuss in Section 3.3, the four-graviton amplitude

in the double-copy theory is ultraviolet finite at one loop. To test whether this continues at

two loops, we need the two-loop amplitude. As it turns out, the identical-helicity amplitude

is sufficient for our purposes because the divergence comes from an R3 operator whose

coefficient is fixed by this amplitude. We therefore now turn to finding a form of the two-

1We thank R. Roiban for cross-checking our computation.
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loop identical-helicity amplitude where BCJ duality is manifest. It would be interesting to

obtain a general two-loop construction valid for all states in D dimensions, but we do not

do so here.

The identical-helicity pure Yang-Mills amplitude has previously been constructed in

Ref. [55]. There the amplitude is given in the following representation:

A(2)
4 (1+, 2+, 3+, 4+) = g6

1

4

∑

S4

[

CP
1234A

P′

1234 + CNP
12;34A

NP
12;34

]

, (3.6)

where the sum runs over all 24 permutations of the external legs. We will describe the

all-plus-helicity case; the all-negative-helicity case follows from parity conjugation. The

prefactor of 1/4 accounts for the overcount due to symmetries of the diagrams. CP
1234 and

CNP
12;34 are the color factors obtained from the planar double-box and nonplanar double-box

diagrams shown in Fig. 3.5(a) and (b), respectively, by dressing each vertex with an f̃abc and

summing over the contracted color indices. AP′

1234 and ANP
12;34 are then the associated partial

amplitudes. These partial amplitudes are [55]

AP′

1234 = iT
{

s IP
4

[

(Ds − 2)
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16
(
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2 − λ2

pλ
2
q

)]

(s, t)

+ 4(Ds − 2)Ibow-tie
4

[(

λ2
p + λ2

q

)

(λp · λq)
]

(s)

+
(Ds − 2)2

s
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4

[

λ2
pλ

2
q((p+ q)2 + s)

]

(s, t)

}

,

ANP
12;34 = iT s INP

4

[

(Ds − 2)
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16
(

(λp · λq)
2 − λ2

pλ
2
q

)]

(s, t) , (3.7)

where the permutation-invariant kinematic prefactor is given by

T ≡ [1 2][3 4]

〈1 2〉〈3 4〉 , (3.8)

where the angle and square brackets are standard spinor inner products. For the all negative-

helicity case, the angle and square products should be swapped. The planar double-box
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(Fig. 3.5(a)), nonplanar double-box (Fig. 3.5(b)), and bow-tie integrals (Fig. 3.6) are

IP
4 [P(λi, p, q, ki)](s, t)

≡
∫

dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p+ q)2(p− k1)2(p− k1 − k2)2(q − k4)2(q − k3 − k4)2
,
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≡
∫
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dDq
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(2π)D
P(λi, p, q, ki)
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, (3.9)

where λp, λq, and λp+q represent the (−2ǫ)-dimensional components of loop momenta p, q,

and (p+ q).

Ref. [11] notes that a representation where the numerators satisfy the BCJ duality can

be obtained directly from the representation of the amplitude given in Ref. [55]. Here we

describe this in more detail, including additional diagrams that integrate to zero and are

undetectable in ordinary unitarity cuts, but are needed to make the duality manifest.

We begin with a rearranged form of the identical-helicity amplitude,

A(2)
4 (1+, 2+, 3+, 4+) = g6

∑

S4

[

1

4
CP

1234A
P
1234 +

1

4
CNP

12;34A
NP
12;34 +

1

8
CDT

1234A
DT
1234

]

. (3.10)

CDT
1234 is the color factor obtained from the stretched bow-tie or double-triangle diagram in
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Figure 3.5: The diagrams needed to describe an integrand for the identical helicity-amplitude

where the duality between color and kinematics is manifest. When integrated all diagrams, except

the (a) planar double-box, (b) nonplanar double-box, and (c) double-triangle integrals, vanish.
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Figure 3.6: The bow-tie integral appearing in the identical-helicity pure Yang-Mills amplitude.

Fig. 3.5(c). ANP
12;34 is given in Eq. (3.7), while AP

1234 and ADT
1234 are

AP
1234 = iT IP

4

[
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(
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)
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(
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(3.11)
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The double-triangle integral displayed in Fig. 3.5(c) is simply

IDT
4 [P(λi, p, q, ki)](s, t) =

1

s
Ibow-tie
4 [P(λi, p, q, ki)](s, t) , (3.12)

so that all integrals in the new representation of the amplitude are given by trivalent graphs.

This form of the amplitude differs from Eq. (3.6) by absorbing the bow-tie contribution

depicted in Fig. 3.6 into both the planar double box in Fig. 3.5(a) and the double triangle

in Fig. 3.5(c). When moving terms into the double box (a), we must multiply by a factor

of (p + q)2 in the numerator to cancel the central propagator, while in the double triangle

(c), we must multiply by a factor of s. In this rearrangement we have also included terms

that integrate to zero. In particular, the second term in the double-triangle contribution

in Eq. (3.11) proportional to (λp · λq) integrates to zero and does not contribute to the

integrated amplitude. We are therefore free to drop it. We can also modify the first term in

the double-triangle integral into the form appearing in Ref. [55] by using the fact that the

substitution,

(4p · q + 2(p− q) · (k1 + k2)− s) → 2(p+ q)2 + s , (3.13)

does not alter the value of the integrated amplitude: All terms that are proportional to p2,

q2, (p− k1 − k2)
2, and (q− k3 − k4)

2 yield scale-free integrals that integrate to zero. Finally,

to see the equivalence of the two representations, we note that the double triangle (c) has a

different color factor from that of the planar double box (a). However, we can convert the

double-triangle (c) color factor to the double-box (a) color factor via the color Jacobi identity

CDT
1234 = CP

1234 − CP
2134. This matches the color assignment used in Ref. [55]. Although not

manifest, the kinematic numerator reflects the antisymmetry of the Jacobi relations so that

the additional terms picked up by AP
1234 and AP

2134 are simply related by relabelings. Thus,

after integration our representation in Eq. (3.10) is equivalent to the one in Eq. (3.6), which

comes from Ref. [55].

The integrand in Eq. (3.10) satisfies BCJ duality once we include additional contributions

that integrate to zero. To find the full form, we consider Jacobi relations (2.2) around each
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internal propagator of the planar double box, the nonplanar double box, and the double

triangle, as well as all resultant integrals that arise from these Jacobi relations. Duality

relations where all three numerators are nonvanishing are depicted in Fig. 3.7. The need for

additional nonvanishing numerators depicted in Fig. 3.5(d)-(m) arises from these dual-Jacobi

relations. Other sample Jacobi relations where one of the numerators vanishes are shown in

Fig. 3.8. Up to relabelings, there are in total 16 such relations involving two nonvanishing

numerators and one vanishing numerator. A fully duality-satisfying form is given by the

numerators,

PP(λi, p, q, ki) =
(Ds − 2)2

2
(p+ q)2λ2

pλ
2
q + 16s

(

(λp · λq)
2 − λ2

pλ
2
q

)

+ (Ds − 2)
(

s
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 4(p+ q)2
(

λ2
p + λ2

q

)

(λp · λq)
)

,

PNP(λi, p, q, ki) = (Ds − 2)s
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16s
(

(λp · λq)
2 − λ2

pλ
2
q

)

,

PDT(λi, p, q, ki) =
(Ds − 2)2

2
(4p · q + 2(p− q) · (k1 + k2)− s)λ2

pλ
2
q

+ 8(Ds − 2)
(

λ2
p + λ2

q

)

(λp · λq)
(

p2 + q2 − (p− q) · (k1 + k2) + s
)

,

P(d)(λi, p, q, ki) =
(Ds − 2)2

2
(p+ q)2λ2

pλ
2
q + 4(Ds − 2)(p+ q)2

(

λ2
p + λ2

q

)

(λp · λq) ,

P(e)(λi, p, q, ki) = (Ds − 2)2
(

p2 + q2 − (p− q) · k1
)

λ2
pλ

2
q

+ 8(Ds − 2) (2p · q + (p− q) · k1)
(

λ2
p + λ2

q

)

(λp · λq)

P(f)(λi, p, q, ki) = −2(Ds − 2)2(p · k1)λ2
pλ

2
q − 16(Ds − 2)(q · k1)

(

λ2
p + λ2

q

)

(λp · λq)

P(g)(λi, p, q, ki) =
(Ds − 2)2

2

(

(p+ q)2λ2
p + p2λ2

p+q

)

λ2
q

+ 4(Ds − 2)
(

(p+ q)2
(

λ2
p + λ2

q

)

(λp · λq)− p2
(

λ2
q + λ2

p+q

)

(λq · λp+q)
)

,

P(h)(λi, p, q, ki) = 2(Ds − 2)2
(

(p · q)λ2
p + p2 (λp · λq)

)

λ2
q

− 8(Ds − 2)
(

3p2λ2
q − q2

(

λ2
p + λ2

q

))

(λp · λq) ,

P(i)(λi, p, q, ki) = −(Ds − 2)2

2
(4q · k2 + s)λ2

pλ
2
q − 4(Ds − 2)(4p · k2 − s)

(

λ2
p + λ2

q

)

(λp · λq) ,

P(j)(λi, p, q, ki) = 8(Ds − 2)s
(

λ2
p + λ2

q

)

(λp · λq) ,

P(k)(λi, p, q, ki) = (Ds − 2)2t λ2
pλ

2
q , (3.14)

23



1

2 3

4

p q
=

1

2 3

4
p q

−

2

1 3

4

p

q

(a)

1

2 3

4
p q

=

1

2 3

4
p q

+

1

2 3

4
qp

(b)

1

2 3

4

q

p = −

1

3 2

4

q

p −

2

3 1

4

p

q

(c)

1

2 3

4

p q

=

1

2 3

4
p q

+

1

2 3

4

p

q

(d)

1

2 3

4

p
q

=

1

2 3

4
p q

+

1

2 3

4

p

q

(e)

1

2 3

4

p
q

=

1

2 3

4

p q
+

1

2 3

4

p
q

(f)

1

2 3

4

p q

=

1

2 3

4p

q

+

1

2 3

4

p q

(g)

1

2 3

4

p
q

=

1

2 3

4
p

q
+

1

2 3

4

p
q

(h)

1

2 3

4

p
q

=

1

2 3

4

p
q

−

1

3 4

2

p

q

(i)

1

2 3

4

p
q

=

1

2 3

4
p

q
+

1

2 3

4

p
q

(j)

1

2 3

4

p q

=

1

2 3

4

p
q

+

1

2 3

4

p

q

(k)

1

2 3

4
p

q
=

1

2 3

4
p

q
−

1

3 4

2
p

q

(l)

1

2 3

4p

q

=

1

2 3

4
p

q
+

2

3 4

1p

q

(m)

Figure 3.7: The nontrivial duality relations (a)-(m) satisfied by the numerators of the identi-

cal-helicity two-loop amplitude. The shaded (red) leg marks the central leg of the applied Jacobi

identity.
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Figure 3.8: Sample duality relations (a)-(f) involving graphs with vanishing numerators. In each

relation, the leftmost diagram has a vanishing numerator. The shaded (red) leg marks the central

leg of the applied dual-Jacobi identity.

where each Px is the numerator of an integral Ix
4 [Px(λi, p, q, ki)](s, t) corresponding to dia-

gram x, depicted in Fig. 3.5. In contrast to the one-loop case, the duality-satisfying ampli-

tudes do contain tadpole diagrams with nonvanishing numerators.

Although BCJ duality gives us a set of well defined-numerators for all diagrams, those

diagrams with on-shell or vanishing intermediate propagators are ill-defined. However, all

such ill-defined diagrams diagrams give vanishing contributions after integration. They also

do not contribute to the standard two- and three-particle cuts. In more detail, using the

numerators from Eq. (3.14), diagrams (d)–(k) in Fig. 3.5 contain scale-free integrals that

vanish after integration. Note that diagrams (e), (f), and (h)–(k) are ill-defined. Diagrams

(f), (h), and (j) in Fig. 3.5 contain a tadpole subdiagram. We set these to zero, just as they

are set to zero in Feynman diagrams since the tadpole integral is scale free in dimensional

regularization. Diagrams (e), (i), and (k) are also ill-defined for on-shell external legs because

of the propagator carrying an on-shell momentum. With Feynman diagrams, this is normally

dealt with by taking the legs off shell; in principle, we can also define an off-shell continuation,

although it is nontrivial to do so consistently in our case. However, such ill-defined bubble-on-
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external-leg contributions again vanish in dimensional regularization, since the integrals are

also scale free. In the gauge-theory case, although vanishing, these integrals can potentially

contain ultraviolet divergences that cancel completely against infrared divergences. However,

in the gravity case, which we are interested in here, the integrals are suppressed by an

additional power of the on-shell invariant k2
i = 0 and therefore lead to ultraviolet divergences

with zero coefficient. Diagrams (d) and (g) in Fig. 3.5 may appear to have nonvanishing cut

contributions, but inverse propagators in the numerator cancel propagators, again leaving

scale-free integrals that vanish.

In summary, the two-loop four-point all-plus-helicity pure Yang-Mills amplitude in a

duality-satisfying representation is given by

A(2)
4 (1+, 2+, 3+, 4+) = g6

∑

S4

∑

x∈{diagrams}

1

Sx
Cx

1234A
x
1234 , (3.15)

where x labels diagrams in Fig. 3.5 with nonvanishing numerators. Sx is the symmetry factor

of diagram x, while Cx
1234 is the color factor. The partial amplitudes are given by

Ax
1234 = iT Ix

4 [Px(λi, p, q, ki)](s, t) , (3.16)

where all diagrams except for those in Fig. 3.5(a), (b), (c) integrate to zero in gauge theory.

In Section 3.3.2, we will use the double-copy relation (2.5) on these numerators to study the

two-loop ultraviolet behavior of gravity coupled to a dilaton and an antisymmetric tensor.

3.3 Ultraviolet Properties of Gravity

We now turn to the ultraviolet properties of the gravity double-copy theory consisting of a

graviton, dilaton, and antisymmetric tensor, from the perspective of the double-copy formal-

ism. The theory generated by taking the double copy of pure Yang-Mills corresponds to the
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low-energy effective Lagrangian of the bosonic part of string theory [66],

L =
√−g

(

− 2

κ2
R +

1

2
∂µφ∂

µφ+
1

6
e−2κφ/

√
D−2HµνρH

µνρ

)

, (3.17)

where Hµνρ = ∂µAνρ+∂νAρµ+∂ρAµν , and Aµν = −Aνµ is the rank-two antisymmetric tensor

field.

Pure Einstein gravity is one-loop finite in four dimensions [56]. However, when coupled

to a scalar (dilaton) [56] or to a rank-two antisymmetric tensor [58], the theory is divergent.

We find that the double-copy theory coupled to both a dilaton and an antisymmetric tensor

is also divergent, although for all these theories the four-point amplitudes with at least one

external graviton are finite, as expected from simple counterterm arguments. We will show

that the cancellation no longer holds at two loops, and the theory has an R3 counterterm,

in much the same way as it does for pure Einstein gravity [67]. In six dimensions, pure

Einstein gravity is ultraviolet divergent at one loop [59]. We find the same to be true in

our double-copy theory, and we find a divergence in eight dimensions as well. We will give

the explicit form of the divergences for these cases. In carrying out these computations we

use the four-dimensional helicity scheme [62, 68]. It would be interesting to compare our

results to ones obtained using the standard dimensional-regularization scheme, used in, for

example, Ref. [67].

3.3.1 One Loop

3.3.1.1 Four Dimensions

In four dimensions, there is no one-loop four-point divergence when one external leg is a gravi-

ton [56, 58] because the potential independent counterterms for such divergences vanish on

shell or can be eliminated by the equations of motion. Using the double-copy formula (2.5),

we have explicitly confirmed finiteness in one-loop four-point amplitudes containing at least

one external graviton, with the remaining legs either gravitons, dilatons, or antisymmetric
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tensors. We obtain the gravity numerator from the double-copy formula (2.5) by taking the

two Yang-Mills numerators, ñi and ni, to be equal to the BCJ form of the Yang-Mills numer-

ator (3.5). As an interesting cross check, we have obtained an asymmetric representation of

the gravity amplitudes by taking the ñi to be the numerators that satisfy BCJ duality and

the ni to be numerators obtained by gauge-theory Feynman rules in Feynman gauge, similar

to the procedure used recently for half-maximal supergravity [38, 31]. By generalized gauge

invariance [11, 15], this should be equivalent to the symmetric construction. Indeed, we find

identical results for the ultraviolet divergences.

To evaluate the ultraviolet divergences, we expand in small external momenta to reduce

to logarithmically divergent integrals [64]. We then simplify tensor integrals composed of

loop momenta in the numerators by using Lorentz invariance, which implies that the inte-

grals must be linear combinations of products of metric tensors ηµν . (See Ref. [20] for a

recent discussion of evaluating tensor vacuum integrals.) With the insertion of a massive

infrared regulator, we finally integrate simple one-loop integrals to find the potential ultra-

violet divergence. Due to our auxiliary conditions, contributions from bubbles on external

legs vanish, as they would for ordinary gravity Feynman diagrams. We therefore obtain our

entire result from box, triangle, and bubble-on-internal-leg diagrams.

For completeness we have also computed the divergences directly in dimensional regular-

ization without introducing a mass regulator, using techniques similar to those for two loops

in Appendix A. After subtracting the infrared divergence as computed in Appendix B, we

find complete agreement with our result found using vacuum integrals.

We obtain an expression for the divergence in terms of formal polarization vectors. By

taking linear combinations of the product of polarization vectors from each copy of Yang-

Mills, we can project onto the graviton, dilaton, and antisymmetric tensor states. In D = 4

this is conveniently implemented by using spinor helicity [69]. Graviton polarization ten-

sors correspond to the ‘left’ and ‘right’ copies of Yang-Mills according to εh+µν → ε+Lµε
+
Rν

and εh−µν → ε−Lµε
−
Rν. For the dilaton and antisymmetric tensor, we symmetrize and anti-

symmetrize in opposite-helicity configurations according to εφµν → 1√
2
(ε+Lµε

−
Rν + ε−Lµε

+
Rν) and
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εAµν → 1√
2
(ε+Lµε

−
Rν − ε−Lµε

+
Rν). By substituting the explicit polarizations, we find that all

configurations where at least a single leg is a graviton are free of ultraviolet divergences,

M(1)(1h, 2, 3, 4)
∣

∣

∣

div.
= 0 , (3.18)

where leg 1 is either a positive- or negative-helicity graviton, and the other three states are

unspecified.

We however find divergences for the cases with no external gravitons. For the four-dilaton

amplitude, we find

M(1)(1φ, 2φ, 3φ, 4φ)
∣

∣

∣

div.
=

1

ǫ

(κ

2

)4 i

(4π)2
1132− 92Ds + 3D2

s

120

(

s2 + t2 + u2
)

, (3.19)

corresponding to the operator,

1

ǫ

(κ

2

)4 1

(4π)4
1132− 92Ds + 3D2

s

240
(DµφD

µφ)2 . (3.20)

This result is similar to the one obtained long ago by ’t Hooft and Veltman [56]. However,

in our case we have an antisymmetric tensor which can circulate in the loop, altering the

numerical coefficient. We note that the operator in Ref. [56] looks different than above, but

it can be written in a similar way through use of the field equations of motion.

The amplitude with four antisymmetric tensors is also one-loop divergent in four di-

mensions. In four dimensions, the antisymmetric tensor is dual to a scalar field, so we

expect the divergence to be the same as that for dilatons. Indeed, the divergence in the

four-antisymmetric-tensor amplitude for a theory with an antisymmetric tensor coupled to

gravity is equal to that of the four-dilaton amplitude in a theory of a dilaton coupled to

gravity [58]. In congruence, we find the divergence for four external antisymmetric tensors

to also be given by the same expression as the four-dilaton divergence (3.19),

M(1)(1A, 2A, 3A, 4A)
∣

∣

∣

div.
= M(1)(1φ, 2φ, 3φ, 4φ)

∣

∣

∣

div.
. (3.21)
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In terms of the antisymmetric tensor fields, the divergence is generated by the operator,

1

ǫ

(κ

2

)4 1

(4π)4
1132− 92Ds + 3D2

s

2160
(HµνρH

µνρ)2 . (3.22)

The counterterm that cancels the divergence is given by the negative of this operator.

In addition to the above divergences, there is also a divergence in the D = 4, φφAA

amplitude. This divergence is given by

M(1)(1φ, 2φ, 3A, 4A)
∣

∣

∣

div.
=

1

ǫ

(κ

2

)4 i

(4π)4

(

1116− 76Ds −D2
s

120
s2

+
−1124 + 84Ds −D2

s

120
(t2 + u2)

)

, (3.23)

which corresponds to the operator,

1

ǫ

(κ

2

)4 1

(4π)4

(

1124− 84Ds +D2
s

60
HµρσHν

ρσDµφDνφ

− 1132− 92Ds + 3D2
s

360
HµνρH

µνρDσφD
σφ

)

. (3.24)

3.3.1.2 Six Dimensions

In six dimensions for external gravitons, the only independent invariant operator at one

loop [70] is

RαβµνR
µνρσRρσ

αβ. (3.25)

This corresponds to the known D = 6 one-loop divergence of pure Einstein gravity given in

Ref. [59]. We have computed the coefficient of the D = 6 divergence for the double-copy

theory of a graviton coupled to a dilaton and an antisymmetric tensor. In this case, the

divergence is given by the operator,

−1

ǫ

1

(4π)3
(Ds − 2)2

30240
RαβµνR

µνρσRρσ
αβ . (3.26)
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Appropriate powers of the coupling are generated by expanding the metric around flat space,

gµν = ηµν+κhµν . Although we do not include the explicit forms of the counterterms here, we

have also found divergences for the following amplitudes (as well as their permutations and

parity conjugates) involving external dilatons and antisymmetric tensors, where we restrict

the external states to four dimensions:

M(1)(1φ, 2+, 3+, 4+) , M(1)(1φ, 2φ, 3+, 4+) , M(1)(1φ, 2φ, 3φ, 4+) , M(1)(1φ, 2φ, 3φ, 4φ) ,

M(1)(1A, 2A, 3+, 4+) , M(1)(1A, 2A, 3φ, 4+) , M(1)(1A, 2A, 3φ, 4φ) . (3.27)

3.3.1.3 Eight Dimensions

In eight dimensions, there are seven linearly independent R4 operators [71]:

T1 = (RµνρσR
µνρσ)2 ,

T2 = RµνρσR
µνρ

λR
σ

γδκ Rγδκλ ,

T3 = RµνρσR
µν

λγR
λγ

δκR
ρσδκ ,

T4 = RµνρσR
µν

λγR
ρλ

δκR
σγδκ ,

T5 = RµνρσR
µν

λγR
ρ λ
δ κR

σδγκ ,

T6 = RµνρσR
µ ρ
λ γR

λ γ
δ κR

νδσκ ,

T7 = RµνρσR
µ ρ
λ γR

λ ν
δ κR

γδσκ . (3.28)

On shell, the combination,

U = −T1

16
+ T2 −

T3

8
− T4 + 2T5 − T6 + 2T7 , (3.29)

is a total derivative, so only six of the Ti are independent on shell. In terms of these operators,

the divergence for gravity coupled to a dilaton and an antisymmetric tensor at one loop in
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D = 8 is

1

ǫ

1

(4π)4
1

1814400
[(4274− 899Ds + 11D2

s)T1 − 40(466− 103Ds − 2D2
s)T2

− 2(1886 + 319Ds −D2
s)T3 − 180(1034 +Ds)T4 (3.30)

+ 16(1196 + 34Ds −D2
s)T6 + 64(12454 + 71Ds +D2

s)T7 + c U ] ,

where c is a free parameter multiplying the total derivative (3.29) .

We have also found that the following four-point amplitudes involving dilatons and an-

tisymmetric tensors diverge in D = 8:

M(1)(1φ, 2φ, 3+, 4+) , M(1)(1φ, 2φ, 3+, 4−) , M(1)(1φ, 2φ, 3φ, 4φ) , M(1)(1A, 2A, 3+, 4+) ,

M(1)(1A, 2A, 3+, 4−) , M(1)(1A, 2A, 3φ, 4+) , M(1)(1A, 2A, 3φ, 4φ) , M(1)(1A, 2A, 3A, 4A) ,

(3.31)

where we have again chosen the external states to be four dimensional. The other configu-

rations are finite.

3.3.2 Two Loops in Four Dimensions

Pure Einstein gravity in D = 4 is one-loop finite, but it does diverge at two loops [67].

This suggests that the two-loop four-graviton amplitude, including also the dilaton and

antisymmetric tensor, should diverge as well. For external gravitons, the only independent

operator is the same R3 operator for one loop in six dimensions (3.25). Our aim is to find

its coefficient.

The R3 operator generates a nonvanishing four-point amplitude for identical-helicity

gravitons, illustrated in Fig. 3.9. This means that we can determine the coefficient of this

operator by computing the four-graviton all-plus-helicity amplitude. Fortunately, as we

discussed in Section 3.2, we have the BCJ form of the required all-plus-helicity Yang-Mills

amplitude. Applying the double-copy formula (2.5) to the Yang-Mills amplitude in Eq. (3.15)
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Figure 3.9: The R3 operator diagrams that contribute to the all-plus-helicity four-graviton ampli-

tude. The solid dot represents vertices generated by the R3 operator.

immediately gives us the corresponding gravity integrand, simply by squaring the numera-

tors. Diagrams (d)-(k) in Fig. 3.5 integrate to zero in gravity just as they did in Yang-Mills.

In addition, as was mentioned in Section 3.2.2, the second term of the double-triangle in

Eq. (3.11) also integrates to zero; in fact, due to the simple identity,

−(p− q) · (k1 + k2) + s =
1

2
(p− k1 − k2)

2 +
1

2
(q + k1 + k2)

2 − 1

2
p2 − 1

2
q2 , (3.32)

all such terms will integrate to zero because the inverse propagators lead to scale-free inte-

grals. Thus, the four-graviton all-plus-helicity amplitude is given by

M(2)(1+, 2+, 3+, 4+) =
(κ

2

)6∑

S4

[

1

4
MP

1234 +
1

4
MNP

12;34 +
1

8
MDT

1234

]

, (3.33)
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where

MP
1234 = i T 2 IP

4

[(

(Ds − 2)2

2
(p+ q)2λ2

pλ
2
q + 16s

(

(λp · λq)
2 − λ2

pλ
2
q

)

+ (Ds − 2)
(

s
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 4(p+ q)2(λ2
p + λ2

q)(λp · λq)
)

)2]

(s, t)

= i T 2

{

IP
4

[(

(Ds − 2)s
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16s
(

(λp · λq)
2 − λ2

pλ
2
q

)

)2 ]

(s, t)

+ Ibow-tie
4

[

2

(

4(Ds − 2)(λ2
p + λ2

q)(λp · λq) +
(Ds − 2)2

2
λ2
pλ

2
q

)

×
(

(Ds − 2)s
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16s
(

(λp · λq)
2 − λ2

pλ
2
q

))

]

(s, t)

+ Ibow-tie
4

[

(p+ q)2
(

(Ds − 2)2

2
λ2
pλ

2
q + 4(Ds − 2)(λ2

p + λ2
q)(λp · λq)

)2 ]

(s, t)

}

,

MNP
12;34 = i T 2s2 INP

4

[(

(Ds − 2)
(

λ2
pλ

2
q + λ2

pλ
2
p+q + λ2

qλ
2
p+q

)

+ 16
(

(λp · λq)
2 − λ2

pλ
2
q

)

)2 ]

(s, t) ,

MDT
1234 = i T 2 IDT

4

[(

(Ds − 2)2

2
(4p · q + 2(p− q) · (k1 + k2)− s)λ2

pλ
2
q

)2 ]

(s, t)

= i T 21

s
Ibow-tie
4

[(

(Ds − 2)2

2
(4p · q + 2(p− q) · (k1 + k2)− s) λ2

pλ
2
q

)2 ]

(s, t) . (3.34)

We have explicitly confirmed that s-, t-, and u-channel unitarity cuts are satisfied. We did

so numerically keeping the internal states in integer dimensions D = 6 and D = 8.

To obtain the ultraviolet divergences, we integrate the amplitudes in dimensional regular-

ization. We carry out the extraction of the ultraviolet divergences in two ways. In the first

approach we simply use dimensional regularization and then subtract the known infrared

divergences, leaving only the ultraviolet ones. In the second approach we introduce a mass

regulator to separate the ultraviolet singularities from the infrared divergences, as carried

out in Appendix C. Either method yields the same result. In fact, the second method also

shows that the vanishing integrals that we dropped, including diagrams (d)-(k) in Fig. 3.5

and the second term of the double-triangle in Eq. (3.11), are not ultraviolet divergent.

The dimensionally regularized integrals are performed in Appendix A.2 Eq. (A.10) gives

2We thank L. Dixon for cross-checking our integrals.
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the planar double-box integrals; Eq. (A.17) gives the nonplanar double-box integrals; and

Eq. (A.21) gives the bow-tie integrals. The infrared divergence from Appendix B is

M(2)(1+, 2+, 3+, 4+)
∣

∣

IR div.
=− 1

ǫ

(κ

2

)6 i

(4π)4
T 2 (Ds − 2)2

120

(

s2 + t2 + u2
)

×
[

s log

(−s

µ2

)

+ t log

(−t

µ2

)

+ u log

(−u

µ2

)]

. (3.35)

We insert the divergent parts of the integrals evaluated using dimensional regularization

into Eq. (3.34), then insert these results into Eq. (3.33) and perform the permutation sum.

Finally we subtract the infrared divergence and arrive at the two-loop ultraviolet divergence

of gravity coupled to a dilaton and an antisymmetric tensor for four external positive-helicity

gravitons:

M(2)(1+, 2+, 3+, 4+)
∣

∣

UV div.
=

1

ǫ

(κ

2

)6 i

(4π)4
T 2

× (2D4
s − 136D3

s + 2883D2
s − 35164Ds + 103052)stu

10800
.

(3.36)

For our second method, we evaluate the ultraviolet divergences of the required integrals

by going to vacuum integrals and using a massive infrared regulator, sidestepping the need to

subtract the infrared divergence. The ultraviolet divergences of the individual integrals are

calculated in Appendix C. After permutations, the contributions of the planar double-box,

nonplanar double-box, and double-triangle components are

MP(1+, 2+, 3+, 4+)
∣

∣

UV div.
= −1

ǫ

(κ

2

)6 i

(4π)4
T 2 (2D

3
s − 63D2

s + 588Ds − 1420)stu

180
,

MNP(1+, 2+, 3+, 4+)
∣

∣

UV div.
= −1

ǫ

(κ

2

)6 i

(4π)4
T 2 (21D

2
s − 4Ds − 396)stu

240
,

MDT(1+, 2+, 3+, 4+)
∣

∣

UV div.
=

1

ǫ

(κ

2

)6 i

(4π)4
T 2 (Ds − 2)4stu

5400
. (3.37)

Summing these contributions, we find complete agreement with Eq. (3.36).
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We can re-express the two-loop divergence in terms of the operator that generates it. By

matching the amplitude generated by the diagrams with an R3 vertex shown in Fig. 3.9 to

the divergence in Eq. (3.36), we find that the operator,

−1

ǫ

(κ

2

)2 1

(4π)4
2D4

s − 136D3
s + 2883D2

s − 35164Ds + 103052

648000
RαβµνR

µνρσRρσ
αβ, (3.38)

generates the two-loop divergence for gravity coupled to a dilaton and an antisymmetric

tensor.

3.4 Conclusions

In this chapter, we constructed a representation of the one-loop four-point amplitude of

pure Yang-Mills theory explicitly exhibiting the duality between color and kinematics. This

construction is the first nonsupersymmetric example at loop level valid in any dimension with

no restriction on the external states. The cost of this generality is relatively complicated

expressions in terms of formal polarization vectors.

The duality between color and kinematics and its associated gravity double-copy structure

has proven useful for unraveling ultraviolet properties in various dimensions [11, 20, 38, 31,

46]. Using the one-loop four-point pure Yang-Mills amplitude with the duality manifest, we

obtained the integrand for the corresponding amplitude in a theory of a graviton, dilaton,

and antisymmetric tensor. In D = 4, we found that one-loop four-point amplitudes with

one or more external gravitons are ultraviolet finite, while amplitudes involving only external

dilatons or antisymmetric tensor fields diverge. This result is similar to those of earlier studies

involving gravity coupled either to a scalar, an antisymmetric tensor, or other matter and is

in line with simple counterterm arguments [56, 57, 58]. We gave the explicit form, including

numerical coefficients, for all four-point divergences in this theory. Since our construction

is valid in any dimension, we also investigated the ultraviolet properties of the double-copy

theory in higher dimensions. In particular, we showed that in D = 6, 8 the one-loop four-
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graviton amplitudes diverge, as expected, and gave the explicit form of these divergences

including their numerical coefficients.

In order to investigate whether the observed D = 4 ultraviolet finiteness of the ampli-

tudes with one or more external gravitons continues beyond one loop, we also computed the

coefficient of the potential two-loop R3 divergences. This was greatly simplified by the ob-

servation that the coefficient of the divergence can be determined from the identical-helicity

four-graviton configuration. The required gravity amplitude was then easily constructed via

the double-copy property, by first finding a representation of the pure Yang-Mills amplitude

that satisfies the duality. The existence of such a representation has already been noted in

Ref. [11]. Here we provided the explicit representation, including diagrams that integrate

to zero not present in the original form of the two-loop identical-helicity amplitude given in

Ref. [55]. We found that the two-loop amplitude with external gravitons is indeed divergent

and that the R3 counterterm has nonzero coefficient. This is not surprising given that pure

Einstein gravity diverges at two loops [67]. This chapter definitively shows that, as one might

have expected, the double-copy property by itself cannot render a gravity theory ultraviolet

finite. For ultraviolet finiteness, an additional mechanism such as supersymmetry is needed.

Further progress in clarifying the ultraviolet structure of gravity theories will undoubtedly

rely on new multiloop calculations to guide theoretical developments. We expect that the

duality between color and kinematics will continue to play an important role in this.

We note that after the work of this chapter was completed, a subsequent analysis has

revealed that at two loops there are evanescent counterterms not accounted for in our two-

loop analysis. The appearance of such counterterms is unexpected because there are no

corresponding one-loop divergences in D = 4 that can act as subdivergences. The net effect

is that the numerical coefficient of the divergence in Eq. (3.38) should be interpreted as a bare

result without counterterm or subdivergence subtractions. Consequently, the coefficient will

be modified, although the conclusion that there is a divergence is unaltered. This surprising

phenomenon, as well as the counterterm subtraction terms, will be described in Chapter 8.

37



CHAPTER 4

Color-Kinematics Duality in One-Loop Four-Gluon

Amplitudes with Matter

4.1 Introduction

At loop level, the duality between color and kinematics has been extensively studied for

supersymmetric cases but less so for the nonsupersymmetric case. In particular, four-point

one-loop amplitudes in nonsupersymmetric (N = 0) Yang-Mills (YM) theory that satisfy

the BCJ duality have been constructed in Chapter 3. They are valid in arbitrary dimensions

and written in terms of formal polarization vectors—i.e., the external states are not in a

helicity basis. The N = 0 YM theory of Chapter 3 contains only gluons. Here, we extend

that work by constructing duality-satisfying amplitudes that are valid for any adjoint matter

content circulating in the loop, still with external gluons. The construction closely follows

that of Chapter 3. We begin by building an ansatz for the amplitude in D dimensions. We

use formal polarization vectors instead of dimension-specific helicity states. The ansatz is

then constrained to satisfy the BCJ duality. Furthermore, we demand that the kinematic

numerator factors of the ansatz obey the same relabeling symmetries as their corresponding

diagrams. Using a D-dimensional variant [33, 34] of the unitarity method [35], we enforce

that the ansatz obey the same unitarity cuts as the amplitude under consideration. These

D-dimensional unitarity cuts completely determine the integrated amplitude.

Because we have both gluon- and fermion-loop contributions, we can compare our results

to previously obtained one-loop duality-satisfying amplitudes with four-dimensional external

helicity states. Namely, we look at theN = 4 super-Yang-Mills (sYM) amplitude of Ref. [72],
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the maximally-helicity-violating (MHV) N = 1 (chiral) sYM amplitude of Ref. [25], and the

all-plus-helicity N = 0 YM amplitude of Ref. [33]. We compare our results to the earlier

work by restricting the external states to four dimensions and putting the formal polarization

vectors into a helicity basis. While going to a helicity basis considerably simplifies our MHV

N = 1 (chiral) BCJ numerators, the all-plus-helicity N = 0 numerators are not particularly

simplified, because they contain complicated terms that integrate to zero.

We organize this chapter as follows. In Section 4.2, we present the BCJ numerators

with adjoint matter content circulating in the loop. These individual contributions are then

combined to construct BCJ numerators for the theories of N = 4 sYM, N = 1 (chiral)

sYM, and N = 0 YM. We show the simplification in combining our formal-polarization BCJ

numerators into the four-dimensional supersymmetric theories of N = 4 sYM and N = 1

(chiral) sYM in Appendix D. In Section 4.3, we review one technique for putting formal

polarization vectors into a helicity basis, with a slight digression found in Appendix E.

In Section 4.4, we compare our BCJ numerators with the existing literature. Finally, in

Section 4.5, we present our conclusions.

4.2 Formal-Polarization BCJ Numerators

In this section, we find the BCJ numerators for adjoint fermions and adjoint scalars cir-

culating in the four-point one-loop box diagram—Fig. 4.1(a)—with external gluons. For

completeness, we also provide the expression for a gluon in the loop. The box numerators

that we give are for the external-leg ordering (1, 2, 3, 4) and with the loop momentum label-

ing convention p1 ≡ p, where p1 is shown in Fig. 4.1(a). The other BCJ numerators, such

as those displayed in Figs. 4.1(b-g), are found by solving the numerator Jacobi relations

of Eq. (2.2). Figs. 4.2 and 4.3 show the Jacobi relations diagrammatically. We note that

the right-hand sides of Figs. 4.2 and 4.3 can be written solely in terms of boxes. In these

functional numerator relations, we encounter box numerators with different external-leg or-

derings and loop-momentum labels. However, we demand that these numerators are simply
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Figure 4.1: The labeling convention that we employ both for numerators with formal polarization

vectors and for color-ordered amplitudes. The external legs have the ordering (1, i2, i3, i4), with

outgoing momenta k1, ki2 , ki3 , ki4 . The loop momentum is denoted by p1 ≡ p, while p2, p3, and p4
are given by momentum conservation.

relabelings of the box numerator that we give. (In this procedure, the polarization vectors

must of course be relabeled in addition to the external momenta and the loop momentum.)

We also demand that the box numerator is unchanged under the three rotation relabelings

and four reflection relabelings—the automorphisms of the box diagram. The other numera-

tors have analogous relabeling properties, which follow from the color-kinematics duality.

=
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4
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2 3
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−
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2 4

3

=
3

41
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p

−
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1

2
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4

Figure 4.2: The Jacobi relations determining either color or kinematic numerators of the four-point

diagrams containing either a triangle or internal bubble.
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Figure 4.3: The color or kinematic Jacobi relations involving a bubble on an external leg or a

tadpole. These diagrams have vanishing contribution to the integrated amplitude.

The construction of these BCJ numerators closely follows that of Chapter 3. As we

will discuss, we generalize the constraints of Chapter 3 to accommodate matter in the loop,

and we also make additional constraints on internal bubble numerators (Figs. 4.1(f,g)) with

supersymmetry in mind. First, we build an ansatz for the box numerator with external-

leg ordering (1, 2, 3, 4). The ansatz is a sum of all (468 ) possible terms, each with an

undetermined coefficient. Next, we impose the color-kinematics duality and the relabeling

properties mentioned above. This allows us to generate the other numerators needed to

construct the color-ordered amplitudes of Eq. (2.6). Then, we enforce that these amplitudes

obey the appropriate two-particle D-dimensional unitarity cuts of Fig. 4.4. Fig. 4.1 displays

the seven diagrams that contribute to at least one of the two two-particle unitarity cuts of the

color-ordered amplitude A
(1)
4 (1, i2, i3, i4). Because of our relabeling properties, we need only

to consider one of the color-ordered amplitudes, say A
(1)
4 (1, 2, 3, 4). Imposing the duality,

relabeling, and cut conditions fixes 447 of the 468

To clean up the expression, we the fix 12 of the remaining 21 coefficients by demanding

that all tadpole numerators vanish prior to integration. That is, the left-hand side of the
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Figure 4.4: The two two-particle unitarity cuts in which the exposed internal propagators are

put on shell. The one-loop contributions to cut (a) come from Figs. 4.1(a,b,d,f), and the one-loop

contributions to cut (b) come from Figs. 4.1(a,c,e,g). Diagrams with a bubble on an external leg

and diagrams that contain a tadpole do not contribute to either cut.

bottom two equations of Fig. 4.3 are set to zero. (In fact, solving just the bottom equation in

the figure is sufficient.) Because the tadpole integrals are scale-free in dimensional regular-

ization, they vanish regardless of the coefficient choice (see Ref. [73]). An important benefit

of imposing that the tadpole numerators vanish prior to integration is that the maximum

power of loop momentum in each BCJ numerator is pV , where V is the number of vertices

in the loop. When supersymmetry is present, the maximum power is reduced to no more

than pV−2, with V − 2 ≥ 0. (At one loop, this well-known improved power counting can be

seen by using the second-order formalism for the fermion loop [74] and the background-field

gauge for the gluon loop.)

We now fix four additional coefficients so that the integrals arising from the diagram with

a bubble on external-leg 1—the first diagram of Fig. 4.3—are well-defined. (Our relabeling

properties ensure that the integrals from bubbles on different external legs are also be well-

defined.) In general, in the on-shell limit the intermediate propagator, 1/k2
1 ∼ 1/0, can

cause the the integrals to be ill-defined. Feynman diagrams avoid this because each term

in the bubble-on-external-leg-1 Feynman kinematic numerator contains at least one of the

following scalar products

p · ε1, p · k1, p2. (4.1)

This constraint along with the associated current conservation of the vacuum polarization
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ensures that the power of k2
1 after integration is no lower than (k2

1)
(D−4)/2. (In these integrals,

we use the prescription where k2
1 is not put on shell until the end of the calculation.) With no

powers of k2
1 in the denominator for D ≥ 4, the expression is well-defined. Thus, we demand

that each term in the bubble-on-external-leg-1 BCJ kinematic numerator contains at least

one of these scalar products, following the structure found with ordinary Feynman-gauge

Feynman diagrams. We now expound on this subtle restriction (see also Chapter 3).

Fig. 4.3 shows that there are no terms with an odd power of loop momentum in the

bubble-on-external-leg-1 numerator due to the vanishing-tadpole condition. We choose co-

efficients so as to eliminate terms with no loop momentum. Now, only terms quadratic in

the loop momentum remain, and they in fact contain at least one of the scalar products of

Eq. (4.1). By Lorentz invariance, we have

∫

dDp

(2π)D
pµ pν

k2
1 p

2 (p− k1)2
=

1

k2
1

(

gµνk2
1 A + kµ

1k
ν
1 B
)

, (4.2)

where A and B are scalar integrals. If one of the loop momentum vectors of Eq. (4.2)

is contracted with ε1, then k1 · ε1 appears in the prefactor of integral B. This vanishes

immediately, so these terms cause no problem. Aside from k1 · ε1, simple power counting

(and noting that k2
1 is the only scale in the integral) reveals that all other terms after

integration are at least proportional to (k2
1)

(D−4)/2, as mentioned above. So, the integrals

clearly vanish for D > 4. In D = 4, the integrals are now well-defined and vanish in

dimensional regularization. We do note that the integral

∫

dDp

(2π)D
k2
1

k2
1 p

2 (p− k1)2
=

∫

dDp

(2π)D
1

p2 (p− k1)2
(4.3)

vanishes through a cancellation of UV and collinear singularities (see Ref. [73]). Thus, these

integrals need to be included when calculating UV divergences in four-dimensional Yang-Mills

theory. It is interesting to note that in the corresponding gravity numerator of Eq. (2.5), we

ensure that there is an extra scalar product from Eq. (4.1) in each term from multiplying

two Yang-Mills numerators. Thus, in the gravity case, the integrals either vanish due to
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Ng Nf Ns(real)

N = 4 1 4 6
N = 2 1 2 2
N = 1 (vector) 1 1 0
N = 1 (chiral) 0 1 2

Table 4.1: Four-dimensional supersymmetric field content.

k1 · ε1 or go as (k2
1)

(D−2)/2, which also vanishes with no contribution to the UV divergence.

These tadpole and bubble-on-external-leg constraints generalize those of Chapter 3 to

deal with matter content in the loop. Unlike Chapter 3 where the remaining five coeffi-

cients are simply set to zero, here we add the additional simplifying constraint that the

terms without loop momentum vanish in the bubble numerator of Fig. 4.1(f). Internal

bubble and bubble-on-external-leg numerators now have no O(p0) terms, so they vanish

in supersymmetric theories due to the reduced maximum power of the loop momentum.

The internal bubble and bubble-on-external-leg conditions are also necessary for the further-

improved loop-momentum power counting in maximally-supersymmetric Yang-Mills theory

(e.g., N = 4 in D = 4 or N = 1 in D = 10). Namely, the maximum power is pV−4, where

V − 4 ≥ 0. This means that triangle and bubble numerators vanish identically and that box

numerators have no powers of loop momentum. Henceforth, we fix all 468 coefficients using

the above constraints.

Because the Jacobi relations are linear, the linear combinations of BCJ box numerators

also obey color-kinematics duality. Thus, we decompose the BCJ box numerator as follows:

n1234;p = Ng n
(gluon)
1234;p +Nf n

(fermion)
1234;p +Ns n

(scalar)
1234;p , (4.4)

where 1234 refers to the external-leg ordering and p is the loop momentum. n
(gluon)
1234;p , n

(fermion)
1234;p ,

and n
(scalar)
1234;p are the BCJ box numerators corresponding to individual field contributions in

the loop, which we provide below. The prefactors Ng, Nf , and Ns are the number of gluons,

fermions, and real scalars, respectively, circulating in the loop. For instance, the allowed

field content for supersymmetric theories in four dimensions is given in Table 4.1.
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Using the shorthand notation,

p1 = p, p2 = p− k1, p3 = p− k1 − k2, p4 = p+ k4,

Eij = εi · εj, Pij = pi · εj, Kij = ki · εj ,
(4.5)

and using the labeling convention of Fig. 4.1(a), the contribution from a real scalar field

circulating in the loop is as follows:

n
(scalar)
1234;p = −i

[

− 1
24

E12 E34 p21 p23 + 1
24

E13 E24 p21 p23 + 1
8
E14 E23 p21 p23 + 1

6
E12 P33 P44 p

2
1

− 1
6
E13 P22 P44 p

2
1 − E14 P22 P33 p

2
1 − 1

6
E24 P11 P33 p

2
1 +

1
6
E34 P11 P22 p

2
1

+ P11 P22 P33 P44 − 1
12

E13 K42 P44 p
2
1 − 1

12
E23 K41 P44 p

2
1 +

1
12

E12 K23 P44 p
2
1

− 1
12

E13 K12 P44 p
2
1 +

1
12

E14 K42 P33 p
2
1 − 1

12
E24 K41 P33 p

2
1 +

1
4
E12 K34 P33 p

2
1

− 1
6
E24 K31 P33 p

2
1 +

1
12

E12 K24 P33 p
2
1 − 1

12
E14 K12 P33 p

2
1 +

1
4
E34 K41 P22 p

2
1

− 1
12

E13 K34 P22 p
2
1 +

1
6
E34 K31 P22 p

2
1 +

1
12

E13 K24 P22 p
2
1 − 1

12
E14 K23 P22 p

2
1

− 1
6
E14 K13 P22 p

2
1 +

1
12

E34 K42 P11 p
2
1 − 1

12
E23 K34 P11 p

2
1 − 1

12
E23 K24 P11 p

2
1

− 1
12

E24 K23 P11 p
2
1 +

1
12

E34 K12 P11 p
2
1 +

1
12

E34 K41 K42 p
2
1 − 1

12
E13 K34 K42 p

2
1

+ 1
12

E34 K31 K42 p
2
1 − 1

6
E23 K34 K41 p

2
1 − 1

12
E23 K24 K41 p

2
1 − 1

12
E24 K23 K41 p

2
1

+ 1
12

E34 K12 K41 p
2
1 − 1

12
E23 K31 K34 p

2
1 +

1
12

E12 K23 K34 p
2
1 − 1

12
E13 K12 K34 p

2
1

− 1
12

E23 K24 K31 p
2
1 − 1

12
E24 K23 K31 p

2
1 +

1
12

E34 K12 K31 p
2
1

]

+ cyclic. (4.6)

The notation ‘+ cyclic’ indicates a sum over the three additional cyclic permutations of

indices, giving a total of four permutations (1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), and (4, 1, 2, 3)

of the possible variables εi, ki, pi, s ≡ (k1 + k2)
2, and t ≡ (k2 + k3)

2.

The contribution from the gluon is the sum of a piece proportional to the scalar contri-

bution and extra terms, denoted n
(extra)
1234;p . Explicitly,

n
(gluon)
1234;p = Dg n

(scalar)
1234;p + n

(extra)
1234;p , (4.7)

where the proportionality factor, Dg ≡ D− 2, is the number of gluonic states—i.e., on-shell

degrees of freedom. The extra terms contribute the following:
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n
(extra)
1234;p = −i

[

E12 E34 p21 p23 − E13 E24 p21 p23 − E12 E34 p21 p22 + E13 E24 p21 p22 − E14 E23 p21 p22
+ E14 E23

(

p21
)2

+ 4 E23 K41 P44 p
2
1 − 4 E12 K34 P33 p

2
1 + 4 E24 K31 P33 p

2
1 − 4 E34 K41 P22 p

2
1

− 4 E34 K31 P22 p
2
1 − 4 E13 K24 P22 p

2
1 + 4 E23 K34 P11 p

2
1 + 4 E23 K24 P11 p

2
1 + E12 E34 p22 s

− E13 E24 p22 s+ E14 E23 p22 s− E14 E23 p21 s+ 2 E13 P22 P44 s+ 2 E24 P11 P33 s

− 4 E34 P11 P22 s− 2 E34 K41 K42 p
2
1 − 2 E34 K31 K42 p

2
1 − 2 E13 K24 K42 p

2
1 + 2 E14 K23 K42 p

2
1

+ 6 E23 K34 K41 p
2
1 + 4 E23 K24 K41 p

2
1 − 2 E34 K12 K41 p

2
1 + 2 E23 K31 K34 p

2
1

− 2 E12 K23 K34 p
2
1 + 2 E23 K24 K31 p

2
1 + 2 E24 K23 K31 p

2
1 − 2 E34 K12 K31 p

2
1

− 2 E13 K12 K24 p
2
1 + 2 E14 K12 K23 p

2
1 + 4K24 K42 P11 P33 − 8K23 K34 P11 P22

− 8K13 K34 P11 P22 − 2 E34 K41 P22 s+ 2 E13 K34 P22 s+ 2 E13 K24 P22 s− 2 E14 K23 P22 s

− 2 E34 K42 P11 s− 2 E23 K34 P11 s− 2 E23 K24 P11 s+ 2 E24 K23 P11 s− 2 E34 K12 P11 s

− 4K23 K34 K42 P11 + 4K23 K24 K42 P11 + 4K13 K24 K42 P11 + 4K12 K23 K24 P11

+ 4K12 K13 K24 P11 +
1
2
E14 E23 s2 − 2 E23 K24 K41 s− 2 E12 K23 K34 s− 2 E23 K24 K31 s

− 2 E12 K23 K24 s− 4 E14 K12 K23 s− 2 E14 K12 K13 s+K13 K24 K31 K42 + 2K12 K23 K34 K41

+ 4K12 K23 K31 K34 + 2K12 K13 K31 K34 + 4K12 K23 K24 K31 + 4K12 K13 K24 K31

]

+ cyclic.

(4.8)

Finally, we give the contribution from the fermion loop:
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n
(fermion)
1234;p = −iDf

[

− 1
12

E12 E34 p21 p23 + 1
12

E13 E24 p21 p23 − 1
8
E14 E23 p21 p23 + 1

8
E12 E34 p21 p22

− 1
8
E13 E24 p21 p22 + 1

8
E14 E23 p21 p22 − 1

8
E14 E23

(

p21
)2 − 1

6
E12 P33 P44 p

2
1 +

1
6
E13 P22 P44 p

2
1

+ E14 P22 P33 p
2
1 +

1
6
E24 P11 P33 p

2
1 − 1

6
E34 P11 P22 p

2
1 − P11 P22 P33 P44 +

1
12

E13 K42 P44 p
2
1

− 5
12

E23 K41 P44 p
2
1 − 1

12
E12 K23 P44 p

2
1 +

1
12

E13 K12 P44 p
2
1 − 1

12
E14 K42 P33 p

2
1

+ 1
12

E24 K41 P33 p
2
1 +

1
4
E12 K34 P33 p

2
1 − 1

3
E24 K31 P33 p

2
1 − 1

12
E12 K24 P33 p

2
1

+ 1
12

E14 K12 P33 p
2
1 +

1
4
E34 K41 P22 p

2
1 +

1
12

E13 K34 P22 p
2
1 +

1
3
E34 K31 P22 p

2
1

+ 5
12

E13 K24 P22 p
2
1 +

1
12

E14 K23 P22 p
2
1 +

1
6
E14 K13 P22 p

2
1 − 1

12
E34 K42 P11 p

2
1

− 5
12

E23 K34 P11 p
2
1 − 5

12
E23 K24 P11 p

2
1 +

1
12

E24 K23 P11 p
2
1 − 1

12
E34 K12 P11 p

2
1

− 1
8
E12 E34 p22 s+ 1

8
E13 E24 p22 s− 1

8
E14 E23 p22 s+ 1

8
E14 E23 p21 s− 1

4
E13 P22 P44 s

− 1
4
E24 P11 P33 s+

1
2
E34 P11 P22 s +

1
6
E34 K41 K42 p

2
1 +

1
12

E13 K34 K42 p
2
1 +

1
6
E34 K31 K42 p

2
1

+ 1
4
E13 K24 K42 p

2
1 − 1

4
E14 K23 K42 p

2
1 − 7

12
E23 K34 K41 p

2
1 − 5

12
E23 K24 K41 p

2
1

+ 1
12

E24 K23 K41 p
2
1 +

1
6
E34 K12 K41 p

2
1 − 1

6
E23 K31 K34 p

2
1 +

1
6
E12 K23 K34 p

2
1

+ 1
12

E13 K12 K34 p
2
1 − 1

6
E23 K24 K31 p

2
1 − 1

6
E24 K23 K31 p

2
1 +

1
6
E34 K12 K31 p

2
1

+ 1
4
E13 K12 K24 p

2
1 − 1

4
E14 K12 K23 p

2
1 − 1

2
K24 K42 P11 P33 + K23 K34 P11 P22

+ K13 K34 P11 P22 +
1
4
E34 K41 P22 s− 1

4
E13 K34 P22 s− 1

4
E13 K24 P22 s+

1
4
E14 K23 P22 s

+ 1
4
E34 K42 P11 s+

1
4
E23 K34 P11 s+

1
4
E23 K24 P11 s− 1

4
E24 K23 P11 s+

1
4
E34 K12 P11 s

+ 1
2
K23 K34 K42 P11 − 1

2
K23 K24 K42 P11 − 1

2
K13 K24 K42 P11 − 1

2
K12 K23 K24 P11

− 1
2
K12 K13 K24 P11 − 1

32
E13 E24 s t + 1

16
E14 E23 s t− 1

8
E13 K24 K42 s +

1
4
E23 K24 K41 s

− 1
8
E24 K23 K41 s− 1

8
E13 K12 K34 s− 1

4
E13 K12 K24 s+

1
4
E14 K12 K23 s− 1

8
K13 K24 K31 K42

− 1
4
K12 K23 K34 K41 − 1

2
K12 K23 K31 K34 − 1

4
K12 K13 K31 K34 − 1

2
K12 K23 K24 K31

− 1
2
K12 K13 K24 K31

]

+ cyclic. (4.9)

Here, there is also a well-known proportionality factor, Df , that denotes the number of

states—i.e., on-shell degrees of freedom—of each fermion. The minimal spinor type corre-

sponding to each spacetime dimension is provided in Table 4.2 along with its number of

states (see Ref. [75]).

It is now simple to obtain BCJ numerators with four-dimensional external states that we
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Dimension (D) Minimal Spinor Type # of States (Df )

3 Majorana 1
4 Majorana 2
5 Dirac 4
6 Weyl 4
7 Dirac 8
8 Pseudo-Majorana 8
9 Pseudo-Majorana 8
10 Pseudo-Majorana and Weyl 8
11 Majorana 16

Table 4.2: The number of states in minimal spinors, dependent on dimension. We note that in

D = 5, 6, and 7, a symplectic Majorana condition can be applied among an even number of spinors.

We ignore this condition here.

use to compare to earlier work in Section 4.4:

nN=4
1234;p = n

(gluon)
1234;p

∣

∣

∣

Dg=2
+ 4 n

(fermion)
1234;p

∣

∣

∣

Df=2
+ 6 n

(scalar)
1234;p , (4.10a)

n
N=1(chiral)
1234;p = n

(fermion)
1234;p

∣

∣

∣

Df=2
+ 2 n

(scalar)
1234;p , (4.10b)

nN=0
1234;p = n

(gluon)
1234;p

∣

∣

∣

Dg=2
. (4.10c)

To explicitly see the simplification due to supersymmetry, we provide the N = 4 and N = 1

(chiral) box numerators in Appendix D. In Section 4.4, we compare the numerators of

Eqs. (4.10) to the N = 4 numerators of Ref. [72], the N = 1 (chiral) MHV numerators of

Ref. [25], and the N = 0 all-plus-helicity numerators of Ref. [33]. But first, we discuss how

to put these formal-polarization expressions into a helicity basis in the next section.

Before we proceed, we clarify a few points related to our inclusion of matter. First, we

reiterate that using nonsupersymmetric field content in Eq. (4.4) still yields valid BCJ nu-

merators, but numerators with internal bubbles or bubbles on external legs no longer vanish

and the loop momentum power counting is not improved. Second, our N = 0 numerators—

generated by the box numerator of Eq. (4.7)—differ from those presented in Chapter 3

because of our restrictions on the internal bubble numerators. Third, we emphasize that
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we are only considering numerators with external gluons. Amplitudes with arbitrary field

content on the external legs do not always straightforwardly allow a BCJ representation. In

particular, consider two different flavors of scalars minimally coupled to nonsupersymmetric

YM theory. We notice at tree level that four external scalars of two different flavors can

only scatter in one channel. Thus, we cannot satisfy color-kinematics duality because the

numerator Jacobi relations relate three different channels. A remedy in this situation is to

add a four-point contact interaction that mixes the different flavors [32, 76, 77]. This is the

interaction that arises when nonsupersymmetric pure YM theory is dimensionally reduced

from six dimensions to four dimensions. This has been studied in some detail in the context

of multi-Regge kinematics in Ref. [76]. We expect similar properties for external fermions.

Namely, we expect that the duality works straightforwardly with only one flavor1; however,

for multiple flavors, we anticipate the need for flavor-mixing Yukawa interactions. Such in-

teractions are seen in N = 2 sYM theory in four dimensions. (N = 2 sYM theory in four

dimensions can be constructed by dimensionally reducing six-dimensional N = 1 (vector)

sYM theory, which has only one fermion flavor.) There are no such issues for our one-loop

amplitudes with external gluons and multiple flavors of matter in the loop; each diagram

can only have one flavor circulating in the loop at a time. However, this is not the case for

higher loop orders.

Finally, we mention that our BCJ numerators can be used in Eq. (2.5) to calculate am-

plitudes in gravity theories. For our amplitudes, the external states can consist of gravitons,

antisymmetric tensors, and dilatons, as discussed in Chapter 3. As an example of field con-

tent in the loop, we note that the product of our gluon box numerator and fermion box

numerator, n
(gluon)
1234;p × n

(fermion)
1234;p , gives the box numerator for a gravitino and fermion circulat-

ing in the loop. This agrees with simple state counting. The tensor product of the gluon

and fermion states yields Dg ×Df states. Likewise, the total number of states of a gravitino

and a fermion is (Dg − 1)Df +Df = Dg ×Df .

1We note the restrictions of Ref. [78]: The four-fermion tree amplitude, Atree

4
(1ψ, 2ψ, 3ψ, 4ψ), can only

satisfy color-kinematics duality in D = 3, 4, 6, 10. We thank Radu Roiban for bringing this to our attention.
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Plain-text, computer-readable versions of the full expressions for the numerators can be

found online [79].

4.3 Polarization Vectors in a Momentum Basis

To compare our results to existing literature, we consider our numerators in specific four-

dimensional helicity configurations. (Because we use dimensional regularization, the loop

momentum is in D = 4 − 2ε.) We do this by putting the formal polarization vectors into a

momentum basis, as in Ref. [63]. Because we are dealing with four-point amplitudes in four

dimensions, the momentum basis consists of three independent external momentum vectors

and an orthogonal dual vector. The dual vector is formed by contracting three independent

external momentum vectors with the four-dimensional Levi-Civita symbol:

vµ ≡ ǫ(µ, k1, k2, k3) ≡ ǫµαβγk1αk2βk3γ . (4.11)

We take care to preserve the phase factors associated with the polarization vectors. Phase

factors arise naturally in the spinor-helicity formalism via

〈ij〉 =
√

|sij |eiφij , [ij] =
√

|sij |e−i(φij+π), (4.12)

where particles i and j have positive energy, i.e., k0
i > 0 and k0

j > 0 (cf. Ref. [80]). Also, we

define sij ≡ (ki + kj)
2, so s ≡ s12 = s34, t ≡ s23 = s14, and u ≡ s13 = s24 = −s − t are the

standard Mandelstam variables. By antisymmetry of the spinor products and momentum

conservation,

φji = φij + π, φ24 = −φ13 + φ14 + φ23 + π, φ34 = −φ12 + φ14 + φ23. (4.13)

The combination of phase factors that appear in our calculations are immediately identified
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with spinor-helicity expressions. For reference, we list the four-point combinations that arise:

e−2i(φ14+φ23) =
[12] [34]

〈12〉 〈34〉 ∼ helicity : + + + +,

e2i(φ12+φ13−φ14−2φ23) = −st

u

[24]2

[12] 〈23〉 〈34〉 [41] ∼ helicity :−+++,

e2i(2φ12−φ14−φ23) = − t

s

〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉 ∼ helicity :−−++.

(4.14)

Of course, some care is needed when using dimensional regularization. The external

momenta, kµ
i ; formal polarization vectors, εµi ; and dual vector, vµ, are still four-dimensional

objects. However, the loop momentum, call it l̃µ, is in 4−2ε dimensions. We denote the four-

dimensional components of the loop momentum as lµ and the spacelike (−2ε)-component as

lµ[−2ε]. The −2ε dimensions only affect the l̃2 inner product. Specifically,

l̃ · ki = l · ki, l̃ · v = l · v, l̃2 = l2 − l2[−2ε] ≡ l2 − µ2, (4.15)

noting that we use the mostly-minus metric convention. The µ2 ≡ l2[−2ε] can be treated as

an effective mass of the loop momentum. (For the importance of the µ2 in loop calculations,

we direct the reader to Ref. [81].)

Using identities of the Levi-Civita symbol, we find the following properties of the dual

vector:

v2 = −1
4
stu, (4.16)

(l · v)2 = −1
4

[

tτ51(tτ51 − 2uτ52) + (cyclic permutations of 1,2,3) + stu(τ̃55 + µ2)
]

, (4.17)

where we define

τ5i ≡ l · ki, τ̃55 ≡ l̃2. (4.18)
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Because the propagators in our amplitudes contain the (4 − 2ε)-dimensional l̃2’s, we write

the l2 term in (l · v)2 as l̃2 +µ2. This is the only vehicle through which µ2 terms arise in our

expressions.

Now, we put the polarization vectors into a momentum basis. We define a four-dimensional

representation of the polarization vector corresponding to an external leg with momentum

ki by

εµhi
(i; j1, j2) ≡ Phi

(i; j1, j2)

√

2

sij1sij2sj1j2
×

[

(kj1 · kj2) kµ
i + (ki · kj2) kµ

j1
− (ki · kj1) kµ

j2
+ i hi ǫ(µ, ki, kj1, kj2)

]

. (4.19)

The arguments i, j1, j2 correspond to the external momenta ki, kj1, kj2, where kj1 and

kj2 are the reference momenta. µ is a free Lorentz index and hi = ±1 defines the helicity

state, which we sometimes simply denote as hi = ±. Phi
(i; j1, j2) is a phase factor that we

determine in Appendix E to be

Phi
(i; j1, j2) = −e−ihi(φij2

−φj1j2
+φij1). (4.20)

The coefficients of the basis vectors were determined by demanding the following:

ki · εhi
(i; j1, j2) = 0, kj1 · εhi

(i; j1, j2) = 0, ε∗±(i; j1, j2) = ε∓(i; j1, j2),

εhi
(i; j1, j2) · εhi

(i; j1, j2) = 0, εhi
(i; j1, j2) · ε∗hi

(i; j1, j2) = −1.

(4.21)

Note that i 6= j1 6= j2; otherwise, ǫ(µ, ki, kj1, kj2) = 0, and Eqs. (4.21) cannot be satisfied.

This implies that sij1sij2sj1j2 = stu.

Choosing different reference momenta in Eq. (4.19) changes the expression by at most a
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εi · εj ε1 ε2 ε3 ε4

ε1 0 −1
2
(1− h1h2)

1
2
(1 + h1h3)

1
2
(1− h1h4)

ε2 −1
2
(1− h1h2) 0 1

2
(1 + h2h3)

1
2
(1− h2h4)

ε3
1
2
(1 + h1h3)

1
2
(1 + h2h3) 0 −1

2
(1 + h3h4)

ε4
1
2
(1− h1h4)

1
2
(1− h2h4) −1

2
(1 + h3h4) 0

Table 4.3: The inner product εi · εj in the representation given by Eqs. (4.23) with phase factors

suppressed. hi = ±1 corresponds to the helicity of leg i.

gauge shift. For example,

εµh1
(1; 3, 4) = εµh1

(1; 2, 3)−
(

Ph1
(1; 2, 3)

√

2
stu

t

)

kµ
1 , (4.22a)

εµh3
(3; 4, 1) = εµh3

(3; 1, 2) +

(

Ph3
(3; 1, 2)

√

2
stu

t

)

kµ
3 , (4.22b)

where we enforce momentum conservation. We choose the following reference momenta that

simplify our N = 1 (chiral) result, which we present later:

εµ1 → εµh1
(1; 3, 4), (4.23a)

εµ2 → εµh2
(2; 3, 1), (4.23b)

εµ3 → εµh3
(3; 4, 1), (4.23c)

εµ4 → εµh4
(4; 3, 1). (4.23d)

For consistency, we use this choice throughout the remainder of the chapter. Other gauge

choices do not affect the N = 4 result, and the N = 0 expression will be equally lengthy

regardless of reference momenta choices. With this representation, we tabulate the inner

products εi · εj in Table 4.3, where we suppress the phase factors, and εi · ε∗j in Table 4.4.

Also, we suppress the phase factor along with
√

2/(stu) and list εi · kj in Table 4.5.

We draw attention to the fact that putting the polarization vectors into a momentum

basis using the prescription above introduces a degree of non-locality. Each expression in a
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εi · ε∗j ε∗1 ε∗2 ε∗3 ε∗4

ε1 −1 −1
2
(1 + h1h2)

1
2
(1− h1h3)

1
2
(1 + h1h4)

ε2 −1
2
(1 + h1h2) −1 1

2
(1− h2h3)

1
2
(1 + h2h4)

ε3
1
2
(1− h1h3)

1
2
(1− h2h3) −1 −1

2
(1− h3h4)

ε4
1
2
(1 + h1h4)

1
2
(1 + h2h4) −1

2
(1− h3h4) −1

Table 4.4: The inner product εi ·ε∗j in the representation given by Eqs. (4.23). hi = ±1 corresponds

to the helicity of leg i

εi · kj k1 k2 k3 k4

ε1 0 −1
2
st 0 1

2
st

ε2
1
2
su 0 0 −1

2
su

ε3
1
2
tu −1

2
tu 0 0

ε4
1
2
tu −1

2
su 0 0

Table 4.5: The inner product εi · kj in the representation given by Eqs. (4.23), suppressing the

phase factor and
√

2/(stu).

four-point numerator will have the non-local factor 4/(stu)2 since ε1, ε2, ε3, and ε4 are present

in each term. This is the same degree of non-locality that is present in the N = 1 (chiral)

numerators of Ref. [25]. In addition, the relabeling symmetries of the formal-polarization

numerators in Section 4.2 are, in general, lost once the polarization vectors are put into a

momentum basis. Thus, instead of one box numerator, there are now three unrelated by

relabeling.

4.4 BCJ Numerator Comparisons

Here, we compare our BCJ numerators to existing representations in literature. Even if two

sets of BCJ numerators satisfy the color-kinematics duality and obey the same unitarity cuts,

we do not expect exact agreement because of the freedom of generalized gauge invariance [15].

Regardless, we show that the discrepancy in the amplitudes vanish upon integration.
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l

k1

k2 k3

k4
1

l

k1

k4 k2

k3
2

l

k1

k3 k4

k2
3

l

k1

k2

k3

k4
4

l

k2

k3

k4

k1
5

l

k3

k4

k1

k2
6

l

k4

k1

k2

k3
7

l

k1

k3

k4

k2
8

l

k2

k4

k1

k3
9

l

k1

k2 k3

k4
10

l

k1

k4 k2

k3
11

l

k1

k3 k4

k2
12

Figure 4.5: The labeling convention for numerators with polarization vectors put into a momentum

basis. The labeling is identical to that of Ref. [25].

4.4.1 N = 4 Super-Yang-Mills BCJ Numerators

As a warm-up exercise, we find duality-satisfying kinematic numerators in a helicity basis

for N = 4 sYM theory. We do not immediately exploit the simplicity of the one-loop N = 4

box numerator, namely that it is proportional to the tree amplitude. Thus, the procedure
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that we outline here can be used in the more complicated cases described in the following

subsections.

In general, we lose the relabeling properties mentioned in Section 4.2 when we convert

formal polarization vectors to a helicity basis. So, we first relabel Eq. (D.2) to get the three

independent box numerators with external-leg orderings (1, 2, 3, 4), (1, 4, 2, 3), and (1, 3, 4, 2).

(The box numerator with external-leg ordering (1, 4, 3, 2), for example, is the same as the box

numerator with external-leg ordering (1, 2, 3, 4) up to a relabeling of the loop momentum.)

Then, we make the polarization-vector substitutions of Eqs. (4.23). Solving the numerator

Jacobi relations, we generate all other independent numerators. (Alternatively, we could

find all of the numerators with formal polarization vectors first, then apply Eqs. (4.23).) In

this and the following subsections, we refer to Fig. 4.5 for numerator labeling conventions.

We use ni to denote the kinematic numerator corresponding to Fig. 4.5(i).

For the all-plus- and single-minus-helicity configurations,

h1 = ±, h2 = +, h3 = +, h4 = +, (4.24)

our N = 4 numerators vanish identically,

n1-12 = 0. (4.25)

For the MHV configuration,

h1 = −, h2 = −, h3 = +, h4 = +, (4.26)
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our numerators are

n1-3 = −is2e2i(2φ12−φ14−φ23)

= stAtree
4 (1−, 2−, 3+, 4+), (4.27)

n4-12 = 0, (4.28)

where Atree
4 is the color-ordered four-point tree amplitude. These results are expected since

Eq. (D.2) was already identified as stAtree
4 in Appendix D even before external helicities

were specified. It is well known that the tree amplitude is nonvanishing only for the MHV

configuration. Also, the crossing symmetry of stAtree
4 (1−, 2−, 3+, 4+) assures us that all three

box numerators should be identical. Because the box numerators are identical and there is no

loop momentum present—as discussed in Section 4.2—that might need to be relabeled, the

numerator Jacobi equations show that the non-box numerators vanish. All of these results

agree with Ref. [72].

4.4.2 N = 1 (chiral) Super-Yang-Mills MHV BCJ Numerators

Using the same procedure as Section 4.4.1, we now construct N = 1 (chiral) numerators in

the MHV configuration, similar to those in Ref. [25]. We again use the labeling convention

of Fig. 4.5, which is identical to the convention of Ref. [25]. Also, we extract a factor of

stAtree
4 (1−, 2−, 3+, 4+) from our numerators [37, 20, 25]. We define the quantity Ni by

ni = stAtree
4 (1−, 2−, 3+, 4+)Ni. (4.29)

57



The resulting Ni’s are then,

N1 =
1

2s2
(4τ51τ53 + 4τ52τ53 − 2tτ51 + 2uτ52 + sτ̃55) +

µ2

s
, (4.30a)

N2 =
1

2s2
(4τ51τ53 + 4τ52τ53 + 2sτ53 + sτ̃55) +

2i
s2
(l · v) + µ2

s
, (4.30b)

N3 =
1

2s2
(4τ51τ53 + 4τ52τ53 + 2sτ53 + sτ̃55) +

µ2

s
, (4.30c)

N5 = − 2i
s2
(l · v) , (4.30d)

N7 =
1
s2
(tτ51 − uτ52 − sτ53) +

2i
s2
(l · v) , (4.30e)

N8 =
2i
s2
(l · v) , (4.30f)

N9 =
1
s2
(tτ51 − uτ52 + sτ53) +

2i
s2
(l · v) , (4.30g)

N4 = N6 = N10 = N11 = N12 = 0, (4.30h)

where v, µ2, and τ5i are as defined in Eqs. (4.11), (4.15), and (4.18), respectively. These

numerators have the same simplicity as those of Ref. [25]—which we denote Ñi—but they

do not match exactly. (In this section and the next, we use a tilde to denote the results con-

structed from existing literature, Ref. [25] in this case.) Furthermore, the exact numerators

of Ref. [25] cannot be obtained simply by choosing different reference momenta in Eq. (4.23).

The differences between our box numerators and theirs are

∆N1 =
i

2s2tu

[

stu(τ̃55 + 2µ2)− 4s2τ51τ52 − 4u2τ51τ53 − 4t2τ52τ53 + 2tu2τ51 − 2t2uτ52
]

,

(4.31a)

∆N2 = ∆N1, (4.31b)

∆N3 =
i

2s2tu

[

stu(τ̃55 + 2µ2)− 4s2τ51τ52 − 4u2τ51τ53 − 4t2τ52τ53 + 2s2tτ51 − 2st2τ53
]

.

(4.31c)

(We use ∆ to denote our result minus the result from literature, eg. ∆Ni ≡ Ni − Ñi.)
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To verify that our numerators of Eq. (4.30) produce the same physical result as those

in Ref. [25], we show that the three independent color-ordered amplitudes A
(1)
4 (1, 2, 3, 4),

A
(1)
4 (1, 4, 2, 3), and A

(1)
4 (1, 3, 4, 2) of Eq. (2.6) give the same integrated result. The differences

in the integrands I4(1, 2, 3, 4), I4(1, 4, 2, 3), and I4(1, 3, 4, 2), are

∆I4(1
−, 2−, 3+, 4+) =

istAtree
4 (1−, 2−, 3+, 4+)

2s(s t)
∏4

i=1 p
2
i

[

s p21 p
2
2 + t p23 p

2
4 + u p24 p

2
1 + 2 s t µ2

]

, (4.32a)

∆I4(1
−, 4+, 2−, 3+) =

istAtree
4 (1−, 2−, 3+, 4+)

2s(t u)
∏4

i=1 p
2
i

[

u p21 p
2
2 + s p22 p

2
3 + t p23 p

2
4 + 2 t u µ2

]

,

(4.32b)

∆I4(1
−, 3+, 4+, 2−) =

istAtree
4 (1−, 2−, 3+, 4+)

2s(s u)
∏4

i=1 p
2
i

[

u p22 p
2
3 + t p23 p

2
4 + s p24 p

2
1 + 2 s u µ2

]

,

(4.32c)

where we use the labeling convention of Fig. 4.1 so that two-particle cut-free terms may be

readily identified (see Fig. 4.4). We notice that, aside from the µ2 term, this difference does

not survive either of the two-particle cuts. Integrals of this type—bubble-on-external-leg

integrals sans the on-shell intermediate propagator, as in Eq. (4.3)—vanish in dimensional

regularization (see Ref. [73]). Furthermore, the µ2 box integral does not contribute because

it is O(ε) [33]. Hence, our integrated color-ordered amplitudes agree with those of Ref. [25].

4.4.3 N = 0 Yang-Mills All-Plus-Helicity BCJ Numerators

The contribution from a real scalar in the loop of a four-point one-loop amplitude has been

computed in Ref. [33], where the external gluons are in the all-plus-helicity configuration.

In the all-plus-helicity sector, the color-ordered amplitude for a gluon in the loop is simply

twice that of a massless scalar,

Ã
(1) gluon
4

(

1+, 2+, 3+, 4+
)

=
[12] [34]

〈12〉 〈34〉

∫

d4p

(2π)4
d−2εµ

(2π)−2ε

2 µ4

∏4
i=1 p

2
i

, (4.33)
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where again we use a tilde to denote the results from existing literature. Because the spinor-

helicity prefactor and µ4 are invariant under relabelings of the external momenta and the

loop momentum, we can immediately read off the BCJ numerators:

ñ1-3 =
[12] [34]

〈12〉 〈34〉 2 µ
4, (4.34a)

ñ4-12 = 0, (4.34b)

where we again use the labeling conventions of Fig. 4.5. (We identify [12][34]
〈12〉〈34〉2µ

4 as a box

numerator because the four propagators present are those of the box diagram.)

Now, we construct all-plus-helicity N = 0 BCJ numerators in the same way as Sec-

tions 4.4.1 and 4.4.2. However, we find that each box numerator in the all-plus-helicity sector

is just as long as the formal-polarization expression; there is no simplification like we observed

in Section 4.4.2. Furthermore, the non-box numerators do not vanish as in Eq. (4.34b). The
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color-ordered amplitude integrands, too, are more complicated than Eq. (4.33). For instance,

∆A
(1) gluon
4

(

1+, 2+, 3+, 4+
)

=
[12] [34]

〈12〉 〈34〉

∫

d4p

(2π)4
d−2εµ

(2π)−2ε

1
(
∏4

i=1 p
2
i

)

6s2 t2 (s+ t)
×

[

s
(

−3s2 − 2ts+ t2
)

p23 p
6
4 + st(t− 5s) p21 p

6
4 +

(

3s3 + ts2 + t2s + 3t3
)

p43 p
4
4

+ s
(

6s2 + 11ts+ 9t2
)

p22 p
2
3 p

4
4 − 2t

(

−3s2 + 4ts+ 3t2
)

p21 p
2
3 p

4
4 + st(9s+ 17t) p21 p

2
2 p

4
4

+ 3t2(t− 3s) p41 p
4
4 + t

(

s2 − 2ts− 3t2
)

p63 p
2
4 − 2s

(

3s2 + 4ts+ 3t2
)

p22 p
4
3 p

2
4

− st(3s+ t) p21 p
4
3 p

2
4 − s2(3s+ 7t) p42 p

2
3 p

2
4 − 2st(7s+ 13t) p21 p

2
2 p

2
3 p

2
4 + t2(17s+ 9t) p41 p

2
3 p

2
4

− 2s2t p21 p
4
2 p

2
4 − 8st2 p41 p

2
2 p

2
4 − 6t3 p61 p

2
4 + st(s+ t) p22 p

6
3 + 3s2(s+ t) p42 p

4
3

+ st(5s+ 9t) p21 p
2
2 p

4
3 + 4s2t p21 p

4
2 p

2
3 + 4st2 p41 p

2
2 p

2
3 − 12i

(

s2 − t2
)

(l · v) p23 p44
+ 12i(s− t)t(l · v) p21 p44 + 12i

(

s2 − t2
)

(l · v) p43 p24 + 4is(3s+ 7t)(l · v) p22 p23 p24
− 4it(5s+ 3t)(l · v) p21 p23 p24 + 8ist(l · v) p21 p22 p24 + 24it2(l · v) p41 p24 − 12is(s+ t)(l · v) p22 p43
− 16ist(l · v) p21 p22 p23 + st

(

7s2 + 6ts− t2
)

p23 p
4
4 + s(11s− t)t2 p21 p

4
4

+ st
(

−s2 + 6ts+ 7t2
)

p43 p
2
4 − s2t(5s+ t) p22 p

2
3 p

2
4 − st2(13s+ 5t) p21 p

2
3 p

2
4 + 8s2t2 p21 p

2
2 p

2
4

+ 12st3 p41 p
2
4 − s2t(s+ t) p22 p

4
3 − 4s2t2 p21 p

2
2 p

2
3 + 24ist(s+ t)(l · v) p23 p24

− 24ist2(l · v) p21 p24 − 4s2t2(s+ t) p23 p
2
4 + 6st2

(

2sµ2 + 2tµ2 − st
)

p21 p
2
4

]

, (4.35)

where we again use the labeling convention of Fig. 4.1 so that two-particle cut-free terms

may be readily identified. (We do not include contributions from bubble-on-external-leg

diagrams since we demanded that they integrate to zero, as discussed in Section 4.2.) There

are no terms that survive either two-particle cut of Fig. 4.4. We then argue, as we did in

Section 4.4.2, that this difference vanishes after integration. The tensor integrals involving

p · v present no additional complications. By Lorentz invariance, the only objects that can

contract with the dual vector, vµ, after integration are external momenta. These scalar

products vanish. The other color-ordered amplitudes agree after integration, as well. Even

though our amplitudes agree with literature, converting the formal-polarization numerators

into a helicity basis using the method of Section 4.3 yields rather complicated terms that then
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integrate to zero. Of course, these terms can be dropped immediately upon encountering

them because they contain no s- or t-channel cuts.

4.5 Conclusions

In Chapter 3, a representation for the one-loop four-point amplitude of pure Yang-Mills

theory was constructed with the duality between color and kinematics manifest. In this

chapter, we extended the discussion by finding BCJ representations with fermions and scalars

circulating in the loop. The presented expressions are valid in arbitrary dimensions and are

written in terms of formal polarization vectors. Knowing the contributions from matter

in the loop allowed us to construct supersymmetric BCJ amplitudes with external gluons.

Furthermore, we found representations with improved loop-momentum power counting when

supersymmetric field content is present.

We then compared a subset of our results to three amplitudes in literature that obey

color-kinematics duality: the N = 4 sYM amplitude of Ref. [72], the N = 1 (chiral) MHV

sYM amplitude of Ref. [25], and the N = 0 all-plus-helicity YM amplitude of Ref. [33]. These

amplitudes were expressed in a four-dimensional helicity basis. Our formal-polarization BCJ

numerators are lengthy in comparison to previously obtained BCJ numerators given in four-

dimensional helicity representations, so it was interesting to see what simplifications occur

with helicity bases.

The N = 4 formal-polarization numerators were identified as stAtree
4 , so we immedi-

ately obtained the well-known results. Putting our N = 1 (chiral) numerators into a four-

dimensional MHV configuration revealed a simplification on par with Ref. [25]. While these

numerators are not in exact agreement with Ref. [25], we showed that both sets of BCJ nu-

merators produced the same amplitudes after integration. Likewise, our N = 0 numerators

in the all-plus-helicity configuration produced the same integrated amplitude as Ref. [33].

However, our all-plus-helicity numerators contained reasonably complicated terms that van-

ish on the unitarity cuts. For the generic case of nonsupersymmetric amplitudes there does
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not appear to be any such simplification.

In summary, we provided further examples showing that BCJ duality appears to extend

to loop level even without supersymmetry. It would be important, not only to construct

further loop-level examples, but to find a systematic means of constructing loop integrands

in a form compatible with BCJ duality without relying on an ansatz.
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Part II

Subleading Soft Theorems in

Yang-Mills Theory and Gravity
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CHAPTER 5

Introduction to Subleading Soft Limits

Interest in the soft behavior of gravitons and gluons has recently been renewed by a proposal

from Strominger and collaborators [82, 83] showing that soft-graviton behavior follows from

Ward identities of extended Bondi, van der Burg, Metzner and Sachs (BMS) symmetry [84,

85]. This has stimulated a variety of studies of the subleading soft behavior of gravitons

and gluons. In four spacetime dimensions, Cachazo and Strominger [83] showed that tree-

level graviton amplitudes have a universal behavior through second subleading order in the

soft-graviton momentum. In Ref. [86] an analogous description of tree-level soft behavior

for gluons at first subleading order was given. Interestingly, these universal behaviors hold

in D dimensions as well [87]. In four dimensions, there is an interesting connection between

the subleading soft behavior in gauge theory and conformal invariance [88, 89]. There are

also recent constructions of twistor-related theories with the desired soft properties [90]. Soft

behavior in string theory and for higher-dimension operators has also been discussed [91, 89].

Soft theorems have a long history and were recognized in the 1950s and 1960s to be

an important consequence of local on-shell gauge invariance [92, 93, 94, 95, 96]. (For a

discussion of the low-energy theorem for photons see Chapter 3 of Ref. [97].) For photons,

Low’s theorem [93] determines the amplitudes with a soft photon from the corresponding

amplitudes without a photon, through O(q0), where q is the soft-photon momentum.

The universal leading soft-graviton behavior was first discussed by Weinberg [94, 95]. The

leading behavior is uncorrected to all loop orders [98]. Using dispersion relations, Gross and

Jackiw analyzed the particular example of Compton scattering of gravitons on massive scalar

particles [99]. They showed that, for fixed angle, the Born contributions have no corrections
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up to, but not including, fourth order in the soft momentum. Jackiw then applied gauge-

invariance arguments similar to those of Low to reanalyze this case [100]. However, for our

purposes this case is too special because the degenerate kinematics of 2 → 2 scattering leads

to extra suppression not only at tree level, but at loop level as well. In particular, the soft

limits are finite at fixed angle. This may be contrasted with the behavior for larger numbers

of legs, where the amplitudes at all loop orders diverge as a graviton becomes soft, matching

the tree behavior. Thus, the results of Refs. [99, 100] cannot be directly applied to our

discussion of n-point behavior. A more recent discussion of the generic subleading behavior

of soft gluons and gravitons is given in Refs. [101, 102].
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CHAPTER 6

On Loop Corrections to Subleading Soft Behavior of

Gluons and Gravitons

6.1 Introduction

One might hope that at least the first subleading soft behavior discussed in Chapter 5 is a

theorem valid to all loop orders, as suggested by its link to BMS symmetry [83]. However,

symmetries at loop level are delicate because of the need to regularize ultraviolet and infrared

divergences. The required regularization can modify Ward identities derived from symme-

tries. In this chapter, we demonstrate in a simple way that graviton infrared singularities

imply that there are loop corrections to the subleading behavior of scattering amplitudes as

external gravitons become soft, when we use the standard definition of such limits. These

corrections are effectively a quantum breaking of the symmetry responsible for the tree-level

behavior.

In order to understand the loop-level behavior of soft gravitons, it is useful to first

look at the well-studied case of loop corrections to soft gluons in quantum chromodynamics

(QCD) [103, 104]. The subleading soft-gluon behavior was already discussed using the eikonal

approach [101]. A simple proof of the universal subleading soft behavior of gluons at tree level

was recently given [86], following the corresponding proof for gravitons [83]. The connection

between the two theories is not surprising. Gravity scattering amplitudes are closely related

to gauge-theory ones and can even be constructed directly from them [105, 106, 36, 98, 10, 11].

At one loop, the modifications to the leading soft-gluon behavior are directly tied to the

infrared singularities, and can be used to deduce the complete correction including finite
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parts [103]. When a gluon becomes soft, there is a mismatch between the infrared singular-

ities at n points and at n− 1 points, so loop corrections to the soft function are required to

absorb this mismatch. Following the gauge-theory case, we use the infrared singularities of

gravity loop amplitudes [94, 95, 107, 108] to deduce the existence of loop corrections to the

subleading soft-graviton behavior. As in QCD, discontinuities in the infrared singularities

arise as one goes from n points to n − 1 points by taking a soft limit in the standard way.

In gravity, the leading soft-graviton behavior is smooth because the dimensionful coupling

ensures that any discontinuity is suppressed by at least one additional factor of the soft

momentum [98]. However, since there is less suppression in subleading soft pieces, loop cor-

rections survive. This allows us to demonstrate in a simple way that the subleading behavior

of gravitons indeed has loop corrections similar to the loop corrections that appear in QCD.

As the loop order increases, the suppression increases. Hence, the first subleading behavior

is protected against corrections starting at two loops and the second subleading behavior is

protected against corrections starting at three loops.

This chapter is organized as follows. In Section 6.2, we give preliminaries on the tree-level

behavior of soft gluons and gravitons. In Section 6.3, we turn to the main subject of this

chapter: the behavior of the subleading contributions at loop level, showing that there are

nontrivial one-loop corrections to subleading soft-graviton behavior. In Section 6.4, we dis-

cuss the all-loop behavior. In Section 6.5, we briefly discuss our definition of dimensionally-

regularized soft limits. We give our conclusions in Section 6.6.

6.2 Preliminaries

In this section, we summarize the soft behavior of gravitons and gluons at tree level, including

their subleading behavior.
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n

a

Figure 6.1: The diagrams where leading and subleading contributions to the tree soft factor arise.

Leg n is the soft leg.

6.2.1 Soft gravitons

At tree level, consider the soft scaling of momentum kn of an n-point amplitude,

kαα̇
n → δkαα̇

n , λα
n →

√
δλα

n , λ̃α̇
n →

√
δλ̃α̇

n , (6.1)

where kαα̇
n = λα

nλ̃
α̇
n is the standard decomposition of a massless momentum in terms of

spinors. (See e.g. Ref. [80] for the spinor-helicity formalism used for scattering amplitudes.)

In the limit (6.1), an n-point graviton tree amplitude behaves as [83]

M tree
n →

(1

δ
S(0)
n + S(1)

n + δ S(2)
n

)

M tree
n−1 +O(δ2) , (6.2)

where δ is taken to be a small parameter. The soft operators are

S(0)
n =

n−1
∑

i=1

εµνk
µ
i k

ν
i

kn · ki
,

S(1)
n = −i

n−1
∑

i=1

εµνk
µ
i knρJ

νρ
i

kn · ki
,

S(2)
n = −1

2

n−1
∑

i=1

εµνknρJ
µρ
i knσJ

νσ
i

kn · ki
, (6.3)

where εµν is the graviton polarization tensor of the soft leg n and Jµν
i is the angular momen-

tum operator for particle i. S
(0)
n is the leading term found long ago by Weinberg [94, 95]. For

simplicity, we suppress powers of the gravitational coupling κ/2 here and in the remaining
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part of the chapter. In a helicity basis with a plus-helicity soft graviton, the explicit forms

of the operators are

S(0)
n = −

n−1
∑

i=1

[n i] 〈x i〉 〈y i〉
〈n i〉 〈xn〉 〈y n〉 ,

S(1)
n = −1

2

n−1
∑

i=1

[n i]

〈n i〉

( 〈x i〉
〈xn〉 +

〈y i〉
〈y n〉

)

λ̃α̇
n

∂

∂λ̃α̇
i

,

S(2)
n = −1

2

n−1
∑

i=1

[n i]

〈n i〉 λ̃
α̇
nλ̃

β̇
n

∂2

∂λ̃α̇
i ∂λ̃

β̇
i

, (6.4)

where λx and λy are arbitrary massless reference spinors, which reflect gauge invariance.

We follow the standard conventions of sab = 〈a b〉 [b a]. The case of a minus-helicity soft

graviton follows from parity conjugation. The first subleading behavior was discussed first

in Ref. [102].

It is convenient to present the subleading behavior in terms of a holomorphic scaling of

the spinors [83]. An advantage is that it makes the factorization channels clearer because

the universal subleading behavior appears as poles in the scattering amplitudes. Taking leg

n of an n-point amplitude to be a soft plus-helicity graviton, we scale the spinors as

kµ
n → δkµ

n , λα
n → δλα

n , λ̃α̇
n → λ̃α̇

n . (6.5)

Under this rescaling, tree-level graviton amplitudes behave as [83]

M tree
n →

( 1

δ3
S(0)
n +

1

δ2
S(1)
n +

1

δ
S(2)
n

)

M tree
n−1 +O(δ0) , (6.6)

where M tree
n is the n-point amplitude and M tree

n−1 is the (n− 1)-point amplitude obtained by

removing the soft leg n. The connection of the two scalings is through little-group scaling.

The proof of universality [83] of the subleading soft behavior (6.3) relies on all contribu-

tions arising from factorizations on 1/(ka + kn)
2 propagators in the soft kinematics (6.5), as

illustrated in Fig. 6.1.
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Some care is needed to interpret the soft behavior in Eq. (6.6) because the n-point

kinematics of the amplitude on the left-hand side of the equation is not the same as the

(n−1)-point kinematics normally used to define the amplitude on the right-hand side of the

equation. This becomes an issue for the subleading soft terms because of feed down from

leading terms to subleading ones, depending on the precise prescription. The prescription

chosen by Cachazo and Strominger is to explicitly impose n-point momentum conservation

on the amplitude on the left-hand side and (n − 1)-point momentum conservation on the

amplitude on the right-hand side. This constraint is conveniently implemented via

λ̃1 = −
m
∑

i=3

〈2 i〉
〈2 1〉 λ̃i , λ̃2 = −

m
∑

i=3

〈1 i〉
〈1 2〉 λ̃i , (6.7)

so that
∑m

i=1 λiλ̃i = 0. This constraint is imposed on the amplitudes on the left-hand side

of Eq. (6.6) with m = n and on the right-hand side with m = n− 1.

For our loop-level study, we use a different prescription. We interpret the expressions on

both sides of Eq. (6.6) as carrying the same n-point kinematics, without needing to apply any

additional constraints on the kinematics. The advantage is that this prevents complicated

terms from feeding down from higher- to lower-order terms in the soft expansion, which

would obscure the structure at loop level. This change in prescription effectively shifts

contributions between different orders in the expansion.1

6.2.2 Soft gluons

Following the same derivation as for gravitons, tree-level Yang-Mills amplitudes also have a

universal subleading soft behavior [86]. If we scale λn → δλn, the color-ordered amplitude

behaves as

Atree
n →

( 1

δ2
S
(0)
nYM +

1

δ
S
(1)
nYM

)

Atree
n−1 , (6.8)

1We numerically confirmed in many examples that the two prescriptions give identical results through
O(δ) in Eq. (6.2).
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where the leading soft factor is

S
(0)
nYM =

k1 · εn√
2 k1 · kn

− kn−1 · εn√
2 kn−1 · kn

. (6.9)

The subleading one is

S
(1)
nYM = −iεnµknν

(

Jµν
1√

2 k1 · kn
− Jµν

n−1√
2 kn−1 · kn

)

. (6.10)

Again we have suppressed the coupling constants. Using spinor-helicity, the plus-helicity

gluon leading soft factor is

S
(0)
nYM =

〈(n− 1) 1〉
〈(n− 1)n〉〈n 1〉 , (6.11)

while the subleading operator is

S
(1)
nYM =

1

〈(n− 1)n〉 λ̃
α̇
n

∂

∂λ̃α̇
n−1

− 1

〈1n〉 λ̃
α̇
n

∂

∂λ̃α̇
1

. (6.12)

An earlier description was given in Ref. [101].

6.3 One-loop corrections to subleading soft behavior

As shown by Weinberg [94, 95], the leading soft-graviton behavior has no higher-loop cor-

rections. In Ref. [83], Cachazo and Strominger demonstrated that their proposed theorem

for subleading soft-graviton behavior holds at tree level.

Here, we demonstrate that there are nontrivial loop corrections for the subleading soft-

graviton behavior analogous to the ones that appear in QCD for the leading soft terms,

using the standard definition of soft limits in dimensional regularization. As in QCD, loop

corrections linked to infrared divergences necessarily appear because of mismatches in the

logarithms of the infrared singularities at n and n−1 points. Divergences require a regulator

which can break symmetries at the quantum level. In this sense, we can think of the loop

corrections as due to an anomaly in the underlying symmetry. Its origin is similar to the
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Figure 6.2: At one loop, the simple tree-level soft behavior (a) is corrected by factorizing (b) and

nonfactorizing (c) contributions [103]. In gravity, the corrections are suppressed by factors of the

soft momentum kn, but they affect the subleading behavior.

twistor-space holomorphic anomaly [109], where extra contributions arise in regions of loop

integration that are singular.

In general, the structure of the loop corrections to soft behavior is entangled with the

infrared divergences. This phenomenon is familiar in QCD [110, 103], so we discuss this case

first before turning to gravity. Besides corrections that arise from infrared singularities, we

will find that there are other loop corrections due to nontrivial factorization properties [111,

112, 113], even for infrared-finite one-loop amplitudes.

6.3.1 One-loop corrections to soft-gluon behavior

In general, loop-level factorization properties of gauge theories are surprisingly nontrivial,

in part, because of their entanglement with infrared singularities [110]. This causes naive

notions of factorization in soft and other kinematic limits to break down; in massless gauge

theories, one can obtain kinematic poles also from the loop integration. However, because

the infrared singularities have a universal behavior, they offer a simple means for studying

soft limits of loop amplitudes with an arbitrary number of external legs.

Fig. 6.2 shows the types of contributions to the one-loop soft behavior when the am-

plitude is represented in terms of the standard covariant basis of integrals. These consist

of “factorizing” contributions, illustrated in Fig. 6.2(b), and “nonfactorizing” contributions,

illustrated in Fig. 6.2(c).2 The nonfactorizing contributions arise from poles in the S-matrix

2In light-cone gauge or the unitarity approach, by introducing light-cone denominators containing a
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coming from loop integration and not directly from propagators, as illustrated in Fig. 6.2(c).

As a simple example, consider the single-external-mass box integral, displayed in Fig. 6.3.

This is one of the basis integrals for one-loop amplitudes. The infrared-divergent terms of

this integral are [115]

I1m4 =
2i cΓ
sn1s12

[

1

ǫ2

(

( µ2

−sn1

)ǫ

+
( µ2

−s12

)ǫ

−
( µ2

−sn12

)ǫ
)

+ finite
]

, (6.13)

where the labels correspond to those in Fig. 6.3. We also have

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
, si1i2···ij = (ki1 + ki2 + · · ·+ kij)

2 . (6.14)

When leg n goes soft, the integral has a 1/sn1 kinematic pole from the prefactor. While

one might expect such poles to cancel out of amplitudes, they, in fact, remain due to their

entanglement with infrared singularities. However, this link ensures that they have a regular

pattern. In general, these nonfactorizing contributions need to be accounted for in loop-

level soft behavior and other factorization limits in gauge theories. The same holds for the

subleading soft behavior of gravity amplitudes.

A one-loop n-gluon amplitude in QCD has ultraviolet and infrared singularities given

by [116, 110]

A1-loop
n (1, 2, · · · , n)

∣

∣

∣

div.
= − 1

ǫ2
Atree

n (1, 2, · · · , n)σYM
n , (6.15)

where

σYM
n = cΓ

[ n
∑

j=1

(

µ2

−sj,j+1

)ǫ

+ 2ǫ

(

11

6
− 1

3

nf
Nc

− 1

6

ns

Nc

)]

. (6.16)

In this expression, nf is the number of quark flavors, ns is the number of scalar flavors (zero in

QCD) and Nc is the number of colors. Here, ǫ = (4−D)/2 is the dimensional-regularization

parameter, and µ2 is the usual dimensional-regularization scale. It turns out that it is best

to work with unrenormalized amplitudes containing also ultraviolet divergences because the

mismatch in the number of coupling constants at n and n − 1 points causes an additional

reference momentum, one can push all contributions into factorizing diagrams [114, 104].
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Figure 6.3: An example of an integral that has a “nonfactorizing” kinematic pole that contributes

to the soft behavior.

(trivial) discontinuity in the soft behavior. By working with unrenormalized amplitudes,

we avoid this. A key property of Eq. (6.16) is that the terms depending on the number

of quark and scalar flavors is independent of the number of external gluons. The terms in

the summation arise from soft-gluon singularities in the loop integration. In general, the

expression in Eq. (6.16) should be interpreted as being series expanded in ǫ, since terms

beyond O(ǫ0) that are usually not computed can mix nontrivially with these.

Consider the soft limit of the singular parts of the gauge-theory amplitude (6.15). The

tree prefactor obeys the simple soft behavior given in Eq. (6.8). The infrared singularities,

however, have a mismatch between n points and n− 1 points:

σYM
n = σYM

n−1 + σ′YM
n +O(ǫ2) , (6.17)

where

σ′YM
n = cΓ

(

1 + ǫ log

(−µ2s(n−1)1

s(n−1)nsn1

))

. (6.18)

It turns out that this mismatch can be used to deduce the complete one-loop corrections to

the leading soft factor by matching the infrared discontinuities in the basis integrals to the

infrared discontinuities in the amplitude [103].

The leading soft behavior of an n-gluon amplitude with any matter content for λn → δλn

is then [103, 104]

A1-loop
n → S

(0)
nYMA

1-loop
n−1 + S

(0)1-loop
nYM Atree

n−1 , (6.19)
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where the leading one-loop soft correction function is

S
(0)1-loop
nYM = −S

(0)
nYM

cΓ
ǫ2

(−µ2s(n−1)1

s(n−1)nsn1

)ǫ
πǫ

sin(πǫ)

= −S
(0)
nYMcΓ

(

1

ǫ2
+

1

ǫ
log

( −µ2s(n−1)1

δ2s(n−1)nsn1

)

+
1

2
log2

( −µ2s(n−1)1

δ2s(n−1)nsn1

)

+
π2

6

)

+O(ǫ) . (6.20)

The form on the first line is valid to all orders in ǫ. In applying this equation, it is important

to first expand in ǫ prior taking the soft limit.

Now consider the subleading soft terms. Taking the divergent part of the one-loop am-

plitude to have a soft limit of the form,

A1-loop
n

∣

∣

∣

div.
→
( 1

δ2
S
(0)
nYM +

1

δ
S
(1)
nYM

)

A1-loop
n−1

∣

∣

∣

div.
+
( 1

δ2
S
(0)1-loop
nYM +

1

δ
S
(1)1-loop
nYM

)

Atree
n−1

∣

∣

∣

div.
, (6.21)

we then solve for the divergent parts of the one-loop corrections to the soft operators, denoted

by S
(i) 1-loop
nYM . We do so by comparing the soft expansion of the left-hand side of Eq. (6.21) to

the terms on the right-hand side. Applying S
(1)
nYM to the infrared singularity of the (n− 1)-

point amplitude gives

S
(1)
nYMσ

YM
n−1 = −cΓǫ

( [1n]

[1 (n− 1)] 〈(n− 1)n〉 −
[(n− 1)n]

[(n− 1) 1] 〈1n〉

+
[(n− 2)n]

[(n− 2) (n− 1)] 〈(n− 1)n〉 −
[2n]

[2 1] 〈1n〉
)

, (6.22)

where we use the form of σYM
n−1 exactly as it appears in Eq. (6.16) without any additional

momentum-conservation relations imposed. Taking the one-loop correction to the subleading

soft function to be

S
(1)1-loop
nYM = − 1

ǫ2

[

σ′YM
n S

(1)
nYM −

(

S
(1)
nYMσ

YM
n−1

)

]

+O(ǫ0) , (6.23)

we find that Eq. (6.21) holds. The simple form of the correction relies on using the specific
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form for S(1)σn−1 in Eq. (6.22). We also interpret both sides of Eq. (6.21) as having the same

n-point kinematics.

It would be important to understand the infrared-finite terms as well. These also have

nontrivial corrections. For the case of the infrared-finite identical-helicity one-loop ampli-

tudes [117], numerical analysis through 30 points shows that the amplitudes behave exactly

as tree-level amplitudes with no nontrivial corrections. However, the one-loop amplitudes

with a single minus helicity [111] have nontrivial subleading soft behavior. As an example,

consider the one-loop five-gluon amplitude [118, 111],

A1-loop
5 (1−, 2+, 3+, 4+, 5+) =

i

48π2

1

〈3 4〉2
[

− [2 5]3

[1 2] [5 1]
+

〈1 4〉3 [4 5] 〈3 5〉
〈1 2〉 〈2 3〉 〈4 5〉2

− 〈1 3〉3 [3 2] 〈4 2〉
〈1 5〉 〈5 4〉 〈3 2〉2

]

,

(6.24)

as the momentum of leg 5 becomes soft. The four-point one-loop single-minus-helicity am-

plitude is [33, 62]

A1-loop
4 (1−, 2+, 3+, 4+) =

i

48π2

〈2 4〉 [2 4]3
[1 2] 〈2 3〉 〈3 4〉 [4 1] . (6.25)

Applying the tree-level operators to the four-point amplitude, as in Eq. (6.8), yields

( 1

δ2
S
(0)
nYM +

1

δ
S
(1)
nYM

)

A1-loop
4 (1−, 2+, 3+, 4+)

=
i

48π2

〈1 3〉3 〈2 4〉 [1 2]
〈2 3〉2 〈3 4〉3

(

1

δ2
〈4 1〉

〈4 5〉 〈5 1〉 +
1

δ

[5 2]

〈5 1〉 [1 2]

)

. (6.26)

After applying the operators, we applied five-point momentum conservation to remove the

anti-holomorphic spinors λ̃3, λ̃4.
3 This facilitates comparison with the soft limit of the

3We note that the momentum-conservation prescription of Ref. [83] gives the same conclusion.

77



five-point amplitude (6.24). With the same constraints applied, this is given by

A1-loop
5 (1−, 2+, 3+, 4+, 5+) → i

48π2

[〈1 3〉3 〈2 4〉 [1 2]
〈2 3〉2 〈3 4〉3

(

1

δ2
〈4 1〉

〈4 5〉 〈5 1〉 +
1

δ

[5 2]

〈5 1〉 [1 2]

)

+
1

δ

〈1 4〉3 〈3 5〉
〈1 2〉 〈2 3〉 〈3 4〉3 〈4 5〉2

(〈1 3〉 [1 5] + 〈2 3〉 [2 5])
]

.

(6.27)

While the leading order pieces are identical, the subleading pieces differ in Eqs. (6.26)

and (6.27).

The nontrivial behavior of the single-minus-helicity amplitudes is not surprising given

that they contain nontrivial complex poles that cannot be interpreted as a straightforward

factorization. In general, nonsupersymmetric gauge-theory loop amplitudes contain such

nontrivial poles. This phenomenon complicates the construction of gauge and gravity loop

amplitudes from their poles and has been described in some detail in Refs. [112, 113]. We

leave the discussion of such infrared-finite contributions to the future.

6.3.2 One-loop corrections to soft-graviton behavior

Applying a similar analysis, it is straightforward to see that one-loop corrections to the

subleading soft-graviton behavior do not vanish because of mismatched logarithms in the

infrared singularities. At one loop, the n-graviton amplitude contains the dimensionally-

regularized infrared-singular terms [119, 107, 108],

M1-loop
n

∣

∣

∣

div.
=

σn

ǫ
M tree

n , (6.28)

where M tree
n is the n-graviton tree amplitude, and

σn = −cΓ

n−1
∑

i=1

n
∑

j=i+1

sij log
( µ2

−sij

)

, (6.29)
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where cΓ is defined in Eq. (6.14). As in QCD, the logarithms that appear at n points are not

identical to the ones appearing at (n− 1) points. The logarithms in the infrared singularity

that differ between an n- and (n− 1)-graviton amplitude are

σ′
n = −cΓ

n−1
∑

i=1

sin log
( µ2

−sin

)

. (6.30)

While this mismatch does not affect the leading soft behavior because of the suppression

from the sin factors, it does affect subleading terms.

By absorbing the mismatches into corrections to the subleading soft operator, we find

that in the soft limit λn → δλn, the infrared singular terms behave as

M1-loop
n

∣

∣

∣

div.
→
(

S
(0)
n

δ3
+

S
(1)
n

δ2
+

S
(2)
n

δ

)

M1-loop
n−1

∣

∣

∣

div.
+

(

S
(1) 1-loop
n

δ2
+

S
(2) 1-loop
n

δ

)

M tree
n−1

∣

∣

∣

div.
, (6.31)

where

S(0) 1-loop
n

∣

∣

∣

div.
= 0 ,

S(1) 1-loop
n

∣

∣

∣

div.
=

1

ǫ

[

σ′
nS

(0)
n −

(

S(1)
n σn−1

)

]

,

S(2) 1-loop
n

∣

∣

∣

div.
=

1

ǫ

[

σ′
nS

(1)
n −

(

S(2)
n σn−1

)

+
n−1
∑

i=1

[n i]

〈n i〉

(

λ̃α̇
n

∂σn−1

∂λ̃α̇
i

)

λ̃β̇
n

∂

∂λ̃β̇
i

]

. (6.32)

Similar to the gauge-theory case, the simple form of these corrections to the subleading

soft operators relies on using the form of σn−1 obtained from Eq. (6.29) with no additional

momentum-conservation relations imposed. We again also interpret both sides of Eq. (6.31)

as having the same n-point kinematics. As in QCD, it is important to follow the standard

procedure of first series expanding the amplitude in ǫ prior to taking soft limits.

We have checked numerically through 10 points that the infrared-finite identical-helicity

graviton amplitudes [120] satisfy the same subleading soft behavior as the tree amplitudes.

However, more generally we expect a more complicated behavior due to the nontrivial factor-

ization properties of loop amplitudes [111, 112]. Such nontrivial factorization properties have
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Figure 6.4: Sample factorizing (a) one- and (b) two-loop contributions to the soft behavior.
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Figure 6.5: Sample nonfactorizing (a) one- and (b) two-loop contributions to the soft behavior.

been discussed for gravity theories in Refs. [121, 113]. Indeed, by numerically analyzing the

infrared-finite one-loop five-graviton amplitude with a single minus helicity from Ref. [121]

and the one-loop four-graviton amplitude with a single minus helicity from Ref. [122], we find

that the second subleading soft behavior has nontrivial corrections. We leave a discussion of

the infrared-finite corrections to the graviton soft behavior to the future.

6.4 All loop order behavior of soft gravitons

As we demonstrated in the previous section, the subleading soft behavior has loop corrections.

In this section, we argue that the first subleading soft behavior has no corrections beyond

one loop and that the second subleading behavior has no corrections beyond two loops.
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6.4.1 General considerations

The all-loop leading soft-graviton behavior has been discussed in some detail in Section 5.2

of Ref. [98]. Here we follow this discussion for the subleading behavior. As already noted

for gauge theory, potential contributions to the soft behavior can be divided into “factoriz-

ing” and “nonfactorizing” contributions [110] when the amplitude is expressed in terms of

covariant Feynman integrals. We consider these types of contributions in turn.

The factorizing contributions of the type displayed in Fig. 6.4 depend on the soft momen-

tum kn and one additional momentum ka. After the Lorentz indices of polarization tensors

are contracted, no other Lorentz invariants are present other than sna. By dimensional anal-

ysis, the L-loop correction contains an additional factor κ2L of the gravitational coupling

relative to the tree-level contribution in Fig. 6.1, and therefore must contain relative factors

of sLna. This gives a suppression of one soft momentum kn for each additional loop.

The nonfactorizing contributions displayed in Fig. 6.5 have a similar suppression. The

nonfactorizing contributions arise in regions where loop momenta become soft in addition to

the external soft leg. For example, in the one-loop case displayed in Fig. 6.5(a), as kn → 0,

we must also have the loop momentum go as l1 → 0 in order to obtain a nonfactorizing

contribution to the soft behavior; otherwise, there would be no large contribution for kn → 0,

or equivalently for λn → 0. In this region, l2 = l1 − kn, l3 = l1 − kn − kb and l4 = l1 + ka

all go on shell. After integration, this leads to potential kinematic poles in san or sbn, or

equivalently in λn. However, because gravity has an extra power of soft momentum, either

kn or l1 in the vertex attaching leg n to the loop will suppress the pole. Similarly, at two

loops, illustrated in Fig. 6.5(b), potential contributions arise when additional loop momenta

become soft, in this case l5. Once again, the dimensionful coupling ensures that there will

be additional factors of soft momenta in the numerator. More generally, after integration,

we get an additional L factors of sjn compared to the gauge-theory case, where j can be any

momentum in the amplitude.

The net effect is that there are no loop corrections to the leading soft behavior, no
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corrections beyond one loop for the first subleading soft behavior, and no corrections beyond

two loops for the second subleading soft behavior. We therefore expect the general form of

the L-loop behavior for a plus-helicity graviton with λn → δλn to have no loop corrections

beyond two loops.

6.4.2 All loop behavior of leading infrared singularities

Since there should be no corrections beyond two loops, we expect that the L-loop leading

infrared-divergent terms should behave in the soft limit as

ML-loop
n

∣

∣

∣

lead. div.
→

(

S
(0)
n

δ3
+

S
(1)
n

δ2
+

S
(2)
n

δ

)

ML-loop
n−1

∣

∣

∣

lead. div.

+

(

S
(1) 1-loop
n

δ2
+

S
(2) 1-loop
n

δ

)

M
(L−1)-loop
n−1

∣

∣

∣

lead. div.

+
S
(2) 2-loop
n

δ
M

(L−2)-loop
n−1

∣

∣

∣

lead. div.
. (6.33)

We check this using the known all-loop-order form of infrared singularities in gravity theo-

ries [94, 95, 107, 108]. The infrared singularities of gravity amplitudes are given by

Mn = SnHn , (6.34)

where Mn is a gravity amplitude valid to all loop orders and Hn is the infrared-finite hard

function. The all-loop infrared singularity function is a simple exponentiation of the one-loop

function (6.28):

Sn = exp
(σn

ǫ

)

. (6.35)

From this equation, we see that the leading infrared singularity at L loops is simply given

in terms of the tree amplitude:

ML-loop
n

∣

∣

∣

lead. div.
=

1

L!

(σn

ǫ

)L

M tree
n . (6.36)
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This gives us a simple means for testing Eq. (6.33) and also for finding the leading

infrared-singular part of the two-loop operator, S
(2) 2-loop
n . We do so by taking the difference of

the soft expansion on both sides of Eq. (6.33) and using the previously determined operators

in Eq. (6.32). We need the soft expansion of the leading infrared-singular part of ML-loop
n ,

given by

σL
n

L!
M tree

n → (σn−1 + δσ′
n)

L

L!

(

S
(0)
n

δ3
+

S
(1)
n

δ2
+

S
(2)
n

δ

)

M tree
n−1 , (6.37)

where σ′
n is defined in Eq. (6.30). We also need the results of acting on (σL

n−1/L!)M
tree
n−1 with

the tree-level soft operators,

(

S
(0)
n

δ3
+

S
(1)
n

δ2
+

S
(2)
n

δ

)

σL
n−1

L!
M tree

n−1 . (6.38)

Evaluating these, we deduce the leading infrared-divergent contribution to the two-loop soft

operator to be

S(2) 2-loop
n

∣

∣

∣

lead. div.
=

1

ǫ2

[

1

2
(σ′

n)
2
S(0)
n −σ′

n

(

S(1)
n σn−1

)

−
(

1

2

n−1
∑

i=1

[n i]

〈n i〉

(

λ̃α̇
n

∂σn−1

∂λ̃α̇
i

)2
)]

. (6.39)

The lack of higher-loop corrections to the soft operators is a consequence of the fact that

they are suppressed by additional powers of the soft momentum. As before, the form of σn−1

in the correction must be specifically as given in Eq. (6.29).

6.5 A Note On Dimensionally-Regularized Soft Limits

In this chapter we have used the standard definition of dimensionally-regularized soft lim-

its where one first series expands in the dimensional-regularization parameter before taking

the soft limit. We do so because it matches the one needed for scattering amplitudes and

associated physical processes as they are normally computed. After the appearance of the

first version of this work, a new paper appeared [123] showing that in some simple su-
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persymmetric examples, loop corrections to the soft operators can be removed by altering

the long-standing standard definition of soft limits. This alteration involves keeping the

dimensional-regularization parameter finite before taking the soft limit.

The lack of loop corrections found in the examples of Ref. [123] is not surprising and

is a simple consequence of the lack of discontinuities [110, 103] with the reordered limits.

This is connected to the well-known fact that with a finite dimensional-regularization pa-

rameter ǫ < 0, or equivalently D > 4, there are no infrared singularities. One can also view

the prescription as equivalent to taking soft limits on integrands instead of the integrated

expressions because one can push limits through the integral when they are smooth. (One

can apply soft limits directly at the integrand level, but that is a distinct problem from the

one for integrated amplitudes.) As an example, we immediately see from the first line of

Eq. (6.20) that one-loop corrections to the leading soft function in QCD vanish for kn → 0

if we hold ǫ < 0 fixed.

However, there are a number of reasons why it is important to use the standard dimensional-

regularization procedure of series expanding in ǫ prior to taking soft [103, 104] or other limits.

To be useful for obtaining cross sections, soft limits must be compatible with cancellations

of infrared singularities between real-emission and virtual contributions. One might imag-

ine keeping ǫ finite in both contributions in an attempt to treat them on an equal footing.

However, the use of four-dimensional helicity states on external legs makes this problem-

atic. Even in the well-understood standard definition of soft limits, one must be careful

not to violate unitarity because of the incompatible treatment of real-emission and virtual

contributions. (See for example Ref. [124].) Moreover, in QCD the modified prescription

disrupts the cancellation of leading infrared singularities when ǫ → 0 because it alters the

real-emission sigularities without changing corresponding virtual ones.

Even if there were a way to avoid difficulties with real-emission contributions, keeping

ǫ finite in virtual contributions would lead to serious complications as well. In general,

loop amplitudes are computed only through a fixed order in ǫ because the higher order

contributions are rather complicated, except in simple supersymmetric cases, and do not
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carry useful physical information for the problem at hand. (For an example of the typical

forms that loop amplitudes take, see Ref. [118].)

The single-minus helicity infrared-finite amplitudes are a good example of why it is best to

series expand in ǫ. As noted in Sections 6.3.1 and 6.3.2, these amplitudes have another type

of loop correction to soft behavior coming from nontrivial complex factorization channels and

not from infrared discontinuities. (Since the first version of our work appeared, He, Huang

and Wen thoroughly investigated the single-minus helicity amplitudes [125], among other

topics, confirming our finding of nontrivial loop corrections.) In general, such amplitudes

are known only for ǫ = 0 [111, 121]. It would be highly nontrivial to obtain the higher

order in ǫ contributions for the purpose of attempting to prevent renormalization of the soft

operators. Furthermore, we note that loop corrections to soft behavior are, in fact, quite

useful for understanding the analytic structure of amplitudes and their associated physical

properties. More generally, experience shows that it is overwhelmingly simpler to absorb

complications associated with dimensional regularization into loop corrections of soft limits

rather than to deal with higher order in ǫ terms in amplitudes.

Consequently, while it may be tempting to change the standard definitions of dimensional

regularization and soft limits in order to remove loop corrections to soft operators associated

with infrared singularities, we greatly prefer the standard definitions because of their well-

understood consistency, simplicity and applicability to problems of physical and theoretical

interest.

6.6 Conclusions

Recently a generalization of Weinberg’s soft-graviton theorem for the subleading behavior

was proposed [126, 83]. (See also previous work from White [102].) Here we showed that, un-

like the leading soft-graviton behavior, the subleading soft behavior requires loop corrections.

In QCD, loop corrections to the leading soft functions make up for mismatches in the infrared

singularities of n-point and (n− 1)-point amplitudes. Applying this observation to gravity,
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we obtained the leading infrared-singular loop contributions to the subleading soft-graviton

operators valid to all loop orders. This proves in a simple way that there necessarily are non-

vanishing loop corrections to soft-graviton behavior. In addition, in the simple example of a

five-graviton amplitude with a single minus helicity, we found additional corrections to the

second subleading behavior, not linked to infrared singularities. These come from the non-

trivial complex factorization properties of generic loop amplitudes [110, 111, 112, 121, 113].

Following the discussion for the leading soft-graviton behavior [94, 95, 98], we argued

that there are no loop corrections to the first subleading soft behavior beyond one loop and

no new corrections to the second subleading behavior beyond two loops. This is connected

to the dimensionful coupling of gravity. In the regions contributing to the soft limit, an

extra power of the soft momentum is obtained for each additional loop, suppressing the

contributions. By the third loop order, there are a sufficient number of powers of the soft

momentum to suppress further corrections to the soft operators.

We also discussed the form of subleading corrections to the soft behavior in gauge theory

as a warm-up for the gravity case. It is interesting to note that the subleading soft behavior

in QCD might be useful for improved soft-gluon approximations.

An important remaining task is to determine the loop corrections to the general sub-

leading soft behavior of the infrared-finite terms in both gauge and gravity theories. While

this is simple in special cases, such as for identical-helicity amplitudes [117, 120], in general,

the task is complicated by the nontrivial complex factorization properties of loop ampli-

tudes [110, 111, 112, 121, 113], on top of well-understood feed downs from infrared singu-

larities. We leave studies of the soft behavior of infrared-finite terms in gauge and gravity

amplitudes to future work.
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CHAPTER 7

Low-Energy Behavior of Gluons and Gravitons from

Gauge Invariance

7.1 Introduction

Extended BMS symmetry gives us a remarkable new understanding for the behavior of soft

gravitons in four spacetime dimensions [82]. However, given that universal soft behavior holds

also in D dimensions as well as for gluons, we expect that there is a more general explanation

not tied to four dimensions. In this chapter, we show that, just as for photons [93], on-

shell gauge invariance can be used to fully determine subleading behavior. We show that

in nonabelian gauge theory, on-shell gauge invariance dictates that at tree level the first

subleading term is universal and controlled by the amplitude with the soft gluon removed.

Similarly, in gravity the first two subleading terms at tree level are universal. Our proof

is valid in D dimensions because it uses only on-shell gauge invariance together with D-

dimensional three-point vertices.

We shall also explain how loop corrections arise in this context. In nonabelian gauge

theory and gravity, there are “factorizing” loop corrections to the three-vertex controlling

the soft behavior. However, in gravity, generically the dimensionful nature of the coupling

implies that there are no loop corrections to the leading behavior [98], no corrections beyond

one loop to the first subleading behavior, and no corrections beyond two loops to the second

subleading behavior (see Chapter 6).

As shown long ago, in gauge theory the factorizing contributions are suppressed: In

gauge theory they vanish at leading order in the soft limit [103, 104], but are nontrivial at
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the first subleading order (see Ref. [125] and Chapter 6). Similarly, we prove that for the

case of a scalar circulating in the loop, the factorizing loop corrections to the soft-graviton

behavior vanish not only for the leading order but for the first subleading order as well.

This case is particularly transparent because there are no infrared singularities [107, 108] or

contributions to the soft operators arising from them. We expect that for all other particles

circulating in the loop, only contributions associated with infrared singularities will appear

at the first subleading soft order. Indeed, this suppression has been observed in the explicit

examples of infrared-finite amplitudes studied in Ref. [125] and Chapter 6. These results

suggest that, up to issues associated with infrared singularities, the soft Ward identities

of BMS symmetry [82] are not anomalous. We note that while there are loop corrections

to the first subleading soft-graviton behavior linked with infrared singularities, they come

from a well-understood source and therefore should not be too disruptive when studying the

connection to BMS symmetry.

This chapter is organized as follows. In Section 7.2, we review Low’s theorem for the

case of a soft photon coupled to n scalars, showing how gauge invariance determines the

first subleading behavior. In Section 7.3, we repeat the analysis for a soft graviton. Next,

in Section 7.4, we study the case of a soft gluon where all external particles are gluons and

discuss spin contributions in some detail. The analysis for a soft graviton is extended to the

case where all external particles are gravitons in Section 7.5. In Section 7.6, we explain how

loop corrections to the soft operators arise from the perspective of on-shell gauge invariance

and show that there are no corrections to the first subleading soft-graviton behavior for

scalars in the loop. We give our conclusions in Section 7.7.

We note that while the work of this chapter was being finalized, a paper appeared con-

straining soft behavior using Poincaré and gauge invariance, as well as from a condition

arising from the distributional nature of scattering amplitudes [127]. In this way, the au-

thors determine the form of the subleading soft differential operators up to a numerical

constant for every leg.
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(a) (b)

Figure 7.1: Diagrams of the form (a) give universal leading soft behavior. The subleading behavior

comes from both diagrams types (a) and (b).

7.2 Photon soft limit with n scalar particles

In this section, we review the classic theorem due to Low [93] on the subleading soft behavior

of photons, for simplicity focusing on the case of a single photon coupled to n scalars. As

explained by Low in 1958, gauge invariance enforces the universality of the first subleading

behavior, allowing us to fully determine it in terms of the amplitude without the soft photon.

In subsequent sections, we will apply a similar analysis to cases with gravitons and gluons.

As illustrated in Fig. 7.1, the scattering amplitude of a single photon and n scalar particles

arises from (a) contributions with a pole in the soft momentum q and (b) contributions with

no pole:

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
kµ
i

ki · q
Tn(k1, . . . , ki + q, . . . , kn) +Nµ

n (q; k1, . . . , kn) . (7.1)

For our purposes, it is convenient to not include the polarization vectors until the end of

the discussion. The full amplitude is obtained by contracting Aµ
n with the physical photon

polarization εqµ. The first term in Eq. (7.1) corresponds to the emission of the photon from

one of the scalar external lines as illustrated in Fig. 7.1(a) and is divergent in the soft-photon

limit, while the second term, illustrated in Fig. 7.1(b), is finite in the soft-photon limit. The

electric charge of particle i is ei.
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On-shell gauge invariance implies

0 = qµA
µ
n(q; k1, . . . , kn)

=
n
∑

i=1

eiTn(k1, . . . , ki + q, . . . , kn) + qµN
µ
n (q; k1, . . . , kn) , (7.2)

valid for any value of q. Expanding around q = 0, we have

0 =

n
∑

i=1

ei

[

Tn(k1, . . . , ki, . . . , kn) + qµ
∂

∂kiµ
Tn(k1, . . . , ki, . . . , kn)

]

+ qµN
µ
n (q = 0; k1, . . . , kn) +O(q2) . (7.3)

At leading order, this equation is

n
∑

i=1

ei = 0 , (7.4)

which is simply a statement of charge conservation [94, 95]. At the next order, we have

qµN
µ
n (0; k1, . . . , kn) = −

n
∑

i=1

eiqµ
∂

∂kiµ
Tn(k1, . . . , kn) . (7.5)

This equation tells us that Nµ
n (0; k1, . . . , kn) is entirely determined up to potential pieces

that are separately gauge invariant. However, it is easy to see that the only expressions local

in q that vanish under the gauge-invariance condition qµE
µ = 0 are of the form,

Eµ = (B1 · q)Bµ
2 − (B2 · q)Bµ

1 , (7.6)

where Bµ
1 and Bµ

2 are arbitrary vectors that are local in q and constructed with the momenta

of the scalar particles. The explicit factor of the soft momentum q in each term means that

they are suppressed in the soft limit and do not contribute to Nµ
n (0; k1, . . . , kn). We can
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therefore remove the qµ from Eq. (7.5), leaving

Nµ
n (0; k1, . . . , kn) = −

n
∑

i=1

ei
∂

∂kiµ
Tn(k1, . . . , kn) , (7.7)

thereby determining Nµ
n (0; k1, . . . , kn) as a function of the amplitude without the photon.

Inserting this into Eq. (7.1) yields

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
ki · q

[kµ
i − iqνJ

µν
i ]Tn(k1, . . . , kn) +O(q) , (7.8)

where

Jµν
i ≡ i

(

kµ
i

∂

∂kiν
− kν

i

∂

∂kiµ

)

, (7.9)

is the orbital angular-momentum operator and Tn(k1, . . . , kn) is the scattering amplitude

involving n scalar particles. Eq. (7.8) is Low’s theorem for the case of one photon and n

scalars.

Low’s theorem is unchanged at loop level for the simple reason that even at loop level, all

diagrams containing a pole in the soft momentum are of the form shown in Fig. 7.1(a), with

loops appearing only in the blob and not correcting the external vertex. If the scalars are

massive, the integrals will not have infrared discontinuities that could lead to loop corrections

of the type described in Chapter 6.

It is also interesting to see if there is any further information at higher orders in the soft

expansion. If we go one order further in the expansion, we find the extra condition,

1

2

n
∑

i=1

eiqµqν
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) + qµqν

∂Nµ
n

∂qν
(0; k1, . . . , kn) = 0 . (7.10)
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This implies

n
∑

i=1

ei
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) +

[

∂Nµ
n

∂qν
+

∂Nν
n

∂qµ

]

(0; k1, . . . , kn) = 0 , (7.11)

where the final set of arguments belongs to both terms in the bracket. Gauge invariance

determines only the symmetric part of the quantity ∂Nν
n

∂qµ
(0; k1, . . . , kn). The antisymmetric

part is not fixed by gauge invariance; indeed, this corresponds exactly to terms of the type

in Eq. (7.6). Then, up to this order, we have

Aµ
n(q; k1, . . . , kn) =

n
∑

i=1

ei
ki · q

[

kµ
i − iqνJ

µν
i

(

1 +
1

2
qρ

∂

∂kiρ

)]

Tn(k1, . . . , kn)

+
1

2
qν

[

∂Nµ
n

∂qν
− ∂Nν

n

∂qµ

]

(0; k1, . . . , kn) +O(q2) . (7.12)

It is straightforward to see that one gets zero by saturating the previous expression with qµ.

In order to write our universal expression in terms of the amplitude, we contract Aµ
n(q; k1, . . . , kn)

with the photon polarization εqµ. From Eq. (7.8), we have the soft-photon limit of the single-

photon, n-scalar amplitude:

An(q; k1, . . . , kn) →
[

S(0) + S(1)
]

Tn(k1, . . . , kn) +O(q) , (7.13)

where

S(0) ≡
n
∑

i=1

ei
ki · εq
ki · q

,

S(1) ≡ −i
n
∑

i=1

ei
εqµqνJ

µν
i

ki · q
, (7.14)

and Jµν
i is given in Eq. (7.9).
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7.3 Graviton soft limit with n scalar particles

We now turn to the case of gravitons coupled to n scalars. We shall see that in the graviton

case, gauge invariance can be used to fully determine the first two subleading orders in the

soft-graviton momentum q. Together with the subsequent sections, this shows that the tree

behavior through second subleading soft order uncovered in Ref. [83] can be understood as

a consequence of on-shell gauge invariance.

In the case of a graviton scattering on n scalar particles, Eq. (7.1) becomes

Mµν
n (q; k1, . . . , kn) =

n
∑

i=1

kµ
i k

ν
i

ki · q
Tn(k1, . . . , ki + q, . . . , kn) +Nµν

n (q; k1, . . . , kn) , (7.15)

where Nµν
n (q; k1, . . . , kn) is symmetric under the exchange of µ and ν. For simplicity, we

have set the gravitational coupling constant to unity. Similar to the gauge-theory case, we

contract with the graviton polarization tensor εqµν at the end. On-shell gauge invariance

of the soft leg requires that the amplitude be invariant under the shift in the polarization

tensor,

εqµν → εqµν + qµεqνf(q, ki) , (7.16)

where εqν satisfies εqν · q = 0 and f(q, ki) is an arbitrary function of the momenta. This

implies that

0 = qµM
µν
n (q; k1, . . . , kn)

=
n
∑

i=1

kν
i Tn(k1, . . . , ki + q, . . . , kn) + qµN

µν
n (q; k1, . . . , kn) . (7.17)

Strictly speaking, Eq. (7.17) is true only after contracting the ν index with either εqν or a

conserved current. Since we contract with polarizations at the end, we can use Eq. (7.17).
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At leading order in q, we then have

n
∑

i=1

kµ
i = 0 , (7.18)

which is satisfied due to momentum conservation. (As noted by Weinberg [94, 95], had

there been different couplings to the different particles, it would have prevented this from

vanishing in general; this shows that gravitons have universal coupling.)

At first order in q, Eq. (7.17) implies

n
∑

i=1

kν
i

∂

∂kiµ
Tn(k1, . . . , kn) +Nµν

n (0; k1, . . . , kn) = 0 , (7.19)

while at second order in q, it gives

n
∑

i=1

kν
i

∂2

∂kiµ∂kiρ
Tn(k1, . . . , kn) +

[

∂Nµν
n

∂qρ
+

∂Nρν
n

∂qµ

]

(0; k1, . . . , kn) = 0 . (7.20)

As in the case of the photon, this is true up to gauge-invariant contributions toNµν
n . However,

the requirement of locality prevents us from writing any expression that is local in q yet not

sufficiently suppressed in q. In fact, the most general local expression that obeys the gauge-

invariance condition qµE
µν = qνE

µν = 0 is of the form,

Eµν =
(

(B1 · q)Bµ
2 − (B2 · q)Bµ

1

)(

(B3 · q)Bν
4 − (B4 · q)Bν

3

)

, (7.21)

where the Bµ
i are local in q and constructed in terms of the momenta of the scalar particles. In

the amplitude, Eµν will be contracted against the symmetric traceless graviton-polarization

tensor εqµν , so there is no need to include potential terms proportional to qµ, qν or ηµν . The

two powers of q in Eq. (7.21) mean that such terms do not contribute to the soft expansion

at the orders in which we are interested.
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Using Eqs. (7.19) and (7.20) in Eq. (7.15), we write the expression for a soft graviton as

Mµν
n (q; k1 . . . kn) =

n
∑

i=1

kν
i

ki · q

[

kµ
i − iqρJ

µρ
i

(

1 +
1

2
qσ

∂

∂kiσ

)]

Tn(k1, . . . , kn)

+
1

2
qρ

[

∂Nµν
n

∂qρ
− ∂Nρν

n

∂qµ

]

(0; k1, . . . , kn) +O(q2) . (7.22)

This is essentially the same as Eq. (7.12) for the photon except that there is a second

Lorentz index in the graviton case. We will show that, unlike the case of the photon, the

antisymmetric quantity in the second line of the previous equation can also be determined

from the amplitude Tn(k1, . . . , kn) without the graviton.

But, before we proceed further, let us check gauge invariance. Saturating the previous

expression with qµ, we see that the first term is vanishing because of momentum conser-

vation, while all other terms are vanishing because qµqρ is saturated with terms that are

antisymmetric in µ and ρ. If, instead, we saturate the amplitude with qν , the first term is

vanishing as before due to momentum conservation, while the first term depending on an-

gular momentum is vanishing because of angular-momentum conservation. The remaining

terms are

qνM
µν
n (q; k1, . . . , kn) =

1

2
qρqσ

{ n
∑

i=1

(

kµ
i

∂

∂kiρ
− kρ

i

∂

∂kiµ

)

∂

∂kiσ
Tn(k1, . . . , kn)

+

[

∂Nµσ
n

∂qρ
− ∂Nρσ

n

∂qµ

]

(0; k1, . . . , kn)

}

= 0 , (7.23)

where the vanishing follows from Eq. (7.20), remembering that Nµν
n is a symmetric matrix.

Therefore the amplitude in Eq. (7.22) is gauge invariant. Actually, Eq. (7.20) allows us to

write the relation ,

−i

n
∑

i=1

Jµρ
i

∂

∂kiσ
Tn(k1, . . . , kn) =

[

∂Nρσ
n

∂qµ
− ∂Nµσ

n

∂qρ

]

(0; k1, . . . , kn) , (7.24)
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which fixes the antisymmetric part of the derivative of Nµν
n in terms of the amplitude

Tn(k1, . . . , kn) without the graviton. Inserting this into Eq. (7.22), we can then rewrite

the terms of O(q) as follows:

Mµν
n (q; k1, . . . , kn)

∣

∣

O(q)
= − i

2

n
∑

i=1

qρqσ
ki · q

[

kν
i J

µρ
i

∂

∂kiσ
− kσ

i J
µρ
i

∂

∂kiν

]

Tn(k1, . . . , kn)

= − i

2

n
∑

i=1

qρqσ
ki · q

[

Jµρ
i kν

i

∂

∂kiσ
− (Jµρ

i kiν)
∂

∂kiσ

−Jµρ
i kσ

i

∂

∂kiν
+ (Jµρ

i kσ
i )

∂

∂kiν

]

Tn(k1, . . . , kn)

=
1

2

n
∑

i=1

1

ki · q

[

(

(ki · q)(ηµνqσ − qµηνσ)− kµ
i q

νqσ
) ∂

∂kσ
i

− qρJ
µρ
i qσJ

νσ
i

]

Tn(k1, . . . , kn) . (7.25)

Finally, we wish to write our soft-limit expression in terms of the amplitude, so we contract

with the physical polarization tensor of the soft graviton, εqµν . We see that the physical-state

conditions set to zero the terms in Eq. (7.25) that are proportional to ηµν , qµ and qν . We

are then left with the following expression for the graviton soft limit of a single-graviton,

n-scalar amplitude:

Mn(q; k1, . . . , kn) →
[

S(0) + S(1) + S(2)
]

Tn(k1, . . . , kn) +O(q2) , (7.26)

where

S(0) ≡
n
∑

i=1

εµνk
µ
i k

ν
i

ki · q
,

S(1) ≡ −i
n
∑

i=1

εµνk
µ
i qρJ

νρ
i

ki · q
,

S(2) ≡ −1

2

n
∑

i=1

εµνqρJ
µρ
i qσJ

νσ
i

ki · q
. (7.27)

These soft factors follow from gauge invariance and agree with those computed in Ref. [83].
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n
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(a)

n− 1

1

n

(c)

n

n− 1

(b)

Figure 7.2: Diagrams (a) and (b) give leading universal soft-gluon behavior. The first subleading

behavior of the amplitude contained in the non-pole diagram (c) can be determined via on-shell

gauge invariance.

We have also looked at higher-order terms and found that gauge invariance does not fully

determine them in terms of derivatives acting on Tn(k1, . . . , kn).

7.4 Soft limit of n-gluon amplitudes

7.4.1 Behavior of gluon tree amplitudes

In this section, we generalize the procedure of Section 7.2 to the case of n-gluon tree ampli-

tudes prior to turning to the case of n gravitons in the next section. As we shall discuss in

Section 7.6, the soft-gluon behavior has loop corrections.

We consider a tree-level color-ordered amplitude (see e.g. Ref. [80]) where gluon n be-

comes soft, where we define q ≡ kn. As before, we find it convenient to contract the

expression with polarization vectors only at the end to obtain the full amplitude. In the

case of n gluons, we have two pole terms: one where the soft gluon is attached to leg 1 (see

Fig. 7.2(a)) and the other where the soft gluon is attached to leg n− 1 (see Fig. 7.2(b)). In

addition to the contributions containing a pole in the soft momentum, we have the usual

term Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) that is regular in the soft limit (see Fig. 7.2(c)). Together,
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the contributions in Fig. 7.2 give

Aµ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
δµ1

ρ kµ
1 + ηµµ1qρ − δµρ q

µ1

√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)

− δµn−1

ρ kµ
n−1 + ηµn−1µqρ − δµρ q

µn−1

√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) . (7.28)

We have dropped terms from the three-gluon vertex that vanish when saturated with the

external-gluon polarization vectors in addition to using the current-conservation conditions,

(k1 + q)ρA
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1) = 0 ,

(kn−1 + q)ρA
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q) = 0 , (7.29)

which are valid once we contract with the polarization vectors carrying the µj indices. By

introducing the spin-one angular-momentum operator,

(Σµσ
i )µiρ ≡ i (ηµµiηρσ − ηµρηµiσ) , (7.30)

we can write Eq. (7.28) as

Aµ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
δµ1

ρ kµ
1 − iqσ(Σ

µσ
1 )µ1

ρ√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)

−
δµn−1

ρ kµ
n−1 − iqσ(Σ

µσ
n−1)

µn−1

ρ√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+Nµ;µ1···µn−1

n (q; k1, . . . , kn−1) . (7.31)

Notice that the spin-one terms independently vanish when contracted with qµ.
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The on-shell gauge invariance of Eq. (7.31) requires

0 = qµA
µ;µ1···µn−1

n (q; k1, . . . , kn−1)

=
1√
2
A

µ1µ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)−
1√
2
A

µ1···µn−2µn−1

n−1 (k1, . . . , kn−2, kn−1 + q)

+ qµN
µ;µ1···µn−1

n (q; k1, . . . , kn−1) . (7.32)

For q = 0, this is automatically satisfied. At the next order in q, we obtain

− 1√
2

[

∂

∂k1µ
− ∂

∂kn−1µ

]

A
µ1···µn−1

n−1 (k1, k2 . . . kn−1) = Nµ;µ1···µn−1

n (0; k1, . . . , kn−1) . (7.33)

Similar to the photon case, we ignore local gauge-invariant terms in Nµ;µ1···µn−1

n because they

are necessarily of a higher order in q. Thus, Nµ;µ1···µn−1

n (0; k1, . . . , kn−1) is determined in

terms of an expression without the soft gluon. With this, the total expression in Eq. (7.31)

becomes

Aµ;µ1···µn−1

n (q; k1 . . . kn−1) =

(

kµ
1√

2(k1 · q)
− kµ

n−1√
2(kn−1 · q)

)

A
µ1···µn−1

n−1 (k1, . . . , kn−1)

− i
qσ(J

µσ
1 )µ1

ρ√
2(k1 · q)

A
ρµ2···µn−1

n−1 (k1, . . . , kn−1)

+ i
qσ(J

µσ
n−1)

µn−1

ρ√
2(kn−1 · q)

A
µ1···µn−2ρ
n−1 (k1, . . . , kn−1) +O(q) , (7.34)

where

(Jµσ
i )µiρ ≡ Lµσ

i ηµiρ + (Σµσ
i )µiρ, (7.35)

the spin-one angular-momentum operator is given in Eq. (7.30), and the orbital angular-

momentum operator is

Lµσ
i ≡ i

(

kµ
i

∂

∂kiσ
− kσ

i

∂

∂kiµ

)

. (7.36)
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Both angular-momentum operators satisfy the same commutation relations,

[Lµν
i , Lρσ

i ] = i (ηνρLµσ
i + ηµρLσν

i + ηµσLνρ
i + ηνσLρµ

i ) ,

[Σµν
i ,Σρσ

i ] = i (ηνρΣµσ
i + ηµρΣσν

i + ηµσΣνρ
i + ηνσΣρµ

i ) , (7.37)

where the suppressed indices on Σµν
i should be treated as matrix indices.

In order to write the final result in terms of full amplitudes, we contract with external

polarization vectors. On the right-hand side of Eq. (7.34), we must pass polarization vectors

ε1µ1
and εn−1µn−1

through the spin-one angular-momentum operator such that they will con-

tract with the ρ index of, respectively, A
ρµ2···µn−1

n−1 (k1, . . . , kn−1) and A
µ1···µn−2ρ
n−1 (k1, . . . , kn−1).

It is convenient write the spin angular-momentum operator as

εiµi
(Σµσ

i )µi
ρA

ρ = i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

εiρA
ρ . (7.38)

We may therefore write

An(q; k1, . . . , kn−1) →
[

S(0)
n + S(1)

n

]

An−1(k1, . . . , kn−1) +O(q) , (7.39)

where

S(0)
n ≡ k1 · εn√

2 (k1 · q)
− kn−1 · εn√

2 (kn−1 · q)
,

S(1)
n ≡ −iεnµqσ

(

Jµσ
1√

2 (k1 · q)
− Jµσ

n−1√
2 (kn−1 · q)

)

. (7.40)

Here

Jµσ
i ≡ Lµσ

i + Σµσ
i , (7.41)
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where

Σµσ
i ≡ i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

. (7.42)

In using Eq. (7.39), one must interpret Lµσ
i as not acting on explicit polarization vectors, i.e.,

Lµσ
i εi = 0. If one instead interprets polarization vectors as functions of momenta (see e.g.

Sect. 5.9 of Ref. [128]) and returns a nonzero value for Lµσ
i εi, then one should not include

the spin term (7.42). To be concrete, the action of the total angular-momentum operator on

momenta and polarizations is given by

Jµσ
i kρ

i = i (ησρkµ
i − ηµρkσ

i ) ,

Jµσ
i ερi = i (ησρεµi − ηµρεσi ) . (7.43)

We comment more on the action of the operator on polarization vectors in Section 7.4.2.

In conclusion, the first two leading terms in the soft-gluon expansion of an n-gluon am-

plitude are given directly in terms of the amplitude without the soft gluon. This derivation

is valid in D dimensions. We have explicitly checked the soft-gluon formula (7.39) using ex-

plicit four-, five- and six-gluon tree amplitudes of gauge theory in terms of formal polarization

vectors.

7.4.2 Connection to spinor helicity

To connect with the spinor-helicity formalism used in e.g. Refs. [83, 125] and Chapter 6, we

show that, up to a gauge transformation, the action of the above subleading soft operators

on polarization vectors expressed in terms of spinor helicity is identical to the ones defined as

differential operators acting on spinors. In the spinor-helicity formalism, polarization vectors

are expressed directly in terms of spinors depending on the momenta:

ε+ ρ
i (ki, kr) =

〈r| γρ |i]√
2 〈r i〉

, ε− ρ
i (ki, kr) = −〈i| γρ |r]√

2 [r i]
, (7.44)
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where ki is the momentum of gluon i and kr is a null reference momentum. Henceforth, we

will leave the ki argument implicit and only display the reference momentum. The spinors

are standard Weyl spinors. We follow the conventions of Ref. [80] aside from our use of angle

and square brackets instead of the ± angle-bracket convention. In our convention, we have

〈i| = 〈i−| , [i| = 〈i+| , |i〉 = |i+〉 , |i] = |i−〉 . (7.45)

In terms of spinors, the subleading soft factor for a tree-level gauge-theory amplitude

is [86]

S(1)λ
n =

1

〈(n− 1)n〉 λ̃
α̇
n

∂

∂λ̃α̇
n−1

− 1

〈1n〉 λ̃
α̇
n

∂

∂λ̃α̇
1

, (7.46)

where λα ≡ |i+〉α and λ̃α̇ ≡ |i−〉α̇. We consider the explicit action of S
(1)λ
n in Eq. (7.46) and

S
(1)
n in Eq. (7.40) on ε± ρ

1 (kr1) to show equivalence after contraction with the polarization-

stripped amplitude. The action on ε± ρ
n−1(krn−1

) follows similarly. We act with Eq. (7.46) on

the vectors in Eq. (7.44)—with i → 1 and kr → kr1—in turn:

S(1)λ
n ε+ ρ

1 (kr1) = − 1

〈1n〉
〈r1| γρ |n]√
2 〈r1 1〉

= − 〈r1 n〉
〈r1 1〉 〈1n〉

ε+ ρ
n (kr1) , (7.47)

and

S(1)λ
n ε− ρ

1 (kr1) = − 1

〈1n〉

(

−〈1| γρ |r1]√
2

)(

− [r1 n]

[r1 1]
2

)

=
[r1 n]

[r1 1] 〈1n〉
ε− ρ
1 (kr1)

=
[r1 n]

[r1 1] 〈1n〉

[

ε− ρ
1 (kn) +

√
2 [r1 n]

[r1 1] [n 1]
kρ
1

]

=
[r1 n]

[r1 1] [1n]

[

ε+ ρ
n (k1)−

√
2 [r1 n]

[r1 1] 〈1n〉
kρ
1

]

, (7.48)
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where we used

ε−ρ
i (kr) = ε−ρ

i (kr̃) +

√
2 [r r̃]

[r i] [r̃ i]
kρ
i , (7.49)

in the second-to-last line. The last line of Eq. (7.48) follows from

ε+ ρ
j (ki) =

[i j]

〈i j〉 ε
− ρ
i (kj) . (7.50)

We can write Eq. (7.48) more simply as

S(1)λ
n ε− ρ

1 (kr1)
∼= [r1 n]

[r1 1] [1n]
ε+ ρ
n (k1) , (7.51)

where the symbol ∼= denotes equivalence up to a term proportional to kρ
1 . Such terms will

vanish when contracted with the polarization-stripped (n−1)-point amplitude, so we are free

to drop them. Similar spinor-helicity algebra reveals that the action of S
(1)
n from Eq. (7.40)

on ε± ρ
1 (kr1) yields

S(1)
n ε+ ρ

1 (kr1) = −iε+nµ(krn)knσ
Σµσ

1√
2 (k1 · kn)

ε+ ρ
1 (kr1)

= − 〈r1 n〉
〈r1 1〉 〈1n〉

ε+ ρ
n (kr1) , (7.52)

and

S(1)
n ε− ρ

1 (kr1) =
[r1 n]

[r1 1] [1n]
ε+ ρ
n (k1) . (7.53)

We can summarize the action of the operators as

S(1)λ
n ε± ρ

1 (kr1)
∼= S(1)

n ε± ρ
1 (kr1) = −

(

ε±1 (kr1) · pn√
2(p1 · pn)

)

×











ε+ ρ
n (kr1), for + ,

ε+ ρ
n (k1), for − .

(7.54)

We see that, up to terms proportional to kρ
1, the action of S

(1)λ
n and S

(1)
n on the polarization
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vectors yield completely equivalent expressions as expected.

7.5 Soft limit of n-graviton amplitudes

In this section, we generalize what has been done for the case of n gluons to the case of n

gravitons. As before, we write the amplitude as a sum of two pieces: the first contains terms

where the soft graviton is attached to one of the other n − 1 external gravitons, giving a

contribution divergent as 1/q for q → 0, while in the second the soft graviton attaches to

one of the internal graviton lines and is of O(q0) in the same limit. Leaving the expression

uncontracted with polarization tensors for now, we write

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=

n−1
∑

i=1

1

ki · q
[kµ

i η
µiα − iqρ(Σ

µρ
i )µiα]

[

kν
i η

νiβ − iqσ(Σ
µσ
i )νiβ

]

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki + q, . . . , kn−1)

+Nµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1) , (7.55)

where

(Σµρ
i )µiα ≡ i (ηµµiηαρ − ηµαηµiρ) . (7.56)

The simple form of the three vertex used in Eq. (7.55) can be obtained from the standard

de Donder gauge one, using current conservation and tracelessness properties of external

polarization tensors and Mn−1, as well as assigning terms to Nn where the i/ki · q propagator
cancels. We note that it is important to keep the lowered indices ofMn−1 in their appropriate
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slots. On-shell gauge invariance implies

0 = qµM
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=

n−1
∑

i=1

[

kν
i η

νiβ − iqρ(Σ
νρ
i )νiβ

]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki + q, . . . , kn−1)

+ qµN
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1) , (7.57)

provided that as usual we will contract all free indices of Mn with polarization tensors at the

end. This includes contracting the ν index with a polarization vector εµn satisfying εn · q = 0.

Expanding the previous expression for small q, we find that the leading term vanishes because

of momentum conservation, while the next-to-leading term gives two conditions by taking

the symmetric and antisymmetric parts:

1

2

n−1
∑

i=1

ηµiαηνiβ
(

kµ
i

∂

∂kiν
+ kν

i

∂

∂kiµ

)

M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1)

= −Nµν;µ1ν1···µn−1νn−1

n (0; k1, . . . , kn−1) , (7.58)

and

n−1
∑

i=1

[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki, . . . , kn−1) = 0 . (7.59)

As in the earlier cases, we can ignore potential terms that are local in q and vanish when

dotted into qµ since they will not contribute to the desired order. The first condition deter-

mines Nµν;µ1ν1···µn−1νn−1

n (0; k1, . . . , kn−1) in terms of the amplitude without the soft graviton,

while the second one reflects conservation of total angular momentum. The factor of 2 in

front of the spin term in Eq. (7.59) reflects the fact that the graviton has spin 2.
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Finally, the terms of order q2 in Eq. (7.57) imply the following condition:

n−1
∑

i=1

qρ

[

kν
i η

νiβ
∂2

∂kiρ∂kiµ
− 2i(Σνρ

i )νiβ
∂

∂kiµ

]

M
µ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki, . . . , kn−1)

= −qρ

[

∂Nµν;µ1ν1···µn−1νn−1

n

∂qρ
+

∂Nρν;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1) . (7.60)

Using the previous results, for a soft graviton of momentum q, we have

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=
n−1
∑

i=1

1

ki · q

{

kµ
i k

ν
i η

µiαηνiβ

− i

2
qρ

[

kµ
i η

µiα
[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

+ kν
i η

νiβ [Lµρ
i ηµiα + 2(Σµρ

i )µiα]
]

− i

2
qρqσ

[

kν
i η

µiαηνiβLµρ
i

∂

∂kiσ
− 2i(Σµρ

i )µiα(Σνσ
i )νiβ − 2kσ

i η
νiβ(Σνρ

i )νiβ
∂

∂kiµ

+ 2
[

ηµiαkµ
i (Σ

νρ
i )νiβ + ηνiβkν

i (Σ
µρ
i )µiα

] ∂

∂kiσ

]}

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1)

+
1

2
qρ

[

∂Nµν;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρν;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1)

+O(q2) . (7.61)

As in the case of gluon scattering, it may seem that we cannot determine the order q

contributions in terms of Mn−1 because the antisymmetric part of the matrix Nn is still

present in Eq. (7.61). However, it turns out that there is additional information from on-

shell gauge invariance. When we saturate it with qµ, we get of course zero because this is

the way that Eq. (7.61) is constructed. When we saturate it with qν , however, we obtain the
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extra condition:

0 = qνM
µν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

= qρqσ

{

n−1
∑

i=1

[Lµρ
i ηµiα + 2(Σµρ

i )µiα]
∂

∂kiσ
M

µ1ν1··· νi···µn−1νn−1

n−1 α (k1, . . . , ki, . . . , kn−1)

+ i

[

∂Nµσ;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρσ;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1)

}

, (7.62)

which implies

n−1
∑

i=1

qρ [L
µρ
i ηµiα + 2(Σµρ

i )µiα]
∂

∂kiσ
M

µ1ν1··· νi···µn−1νn−1

n−1 α (k1, . . . , ki, . . . , kn−1)

= −iqρ

[

∂Nµσ;µ1ν1···µn−1νn−1

n

∂qρ
− ∂Nρσ;µ1ν1···µn−1νn−1

n

∂qµ

]

(0; k1, . . . , kn−1) . (7.63)

We can now use it in Eq. (7.61) to obtain our final expression giving the soft limit entirely

in terms of the (n− 1)-point amplitude:

Mµν;µ1ν1···µn−1νn−1

n (q; k1, . . . , kn−1)

=
n−1
∑

i=1

1

ki · q

{

kµ
i k

ν
i η

µiαηνiβ

− i

2
qρ

[

kµ
i η

µiα
[

Lνρ
i ηνiβ + 2(Σνρ

i )νiβ
]

+ kν
i η

νiβ [Lµρ
i ηµiα + 2(Σµρ

i )µiα]
]

− 1

2
qρqσ

[

[Lµρ
i ηµiα + 2(Σµρ

i )µiα]
[

Lνσ
i ηνiβ + 2(Σνσ

i )νiβ
]

− 2(Σµρ
i )µiα(Σνσ

i )νiβ
]

}

×M
µ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki, . . . , kn−1) +O(q2) . (7.64)

In order to write our expression in terms of amplitudes, we saturate with graviton polarization

tensors using εµν → εµεν where εµ are spin-one polarization vectors. As we did for the case

with gluons, we must pass the polarization vectors through the spin-one operators. We are
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then left with

Mn(q; k1, . . . , kn−1) =
[

S(0)
n + S(1)

n + S(2)
n

]

Mn−1(k1, . . . , kn−1) +O(q2) , (7.65)

where

S(0)
n ≡

n−1
∑

i=1

εµνk
µ
i k

ν
i

ki · q
,

S(1)
n ≡ −i

n−1
∑

i=1

εµνk
µ
i qρJ

νρ
i

ki · q
,

S(2)
n ≡ −1

2

n−1
∑

i=1

εµνqρJ
µρ
i qσJ

νσ
i

ki · q
. (7.66)

Here

Jµσ
i ≡ Lµσ

i + Σµσ
i , (7.67)

with

Lµσ
i ≡ i

(

kµ
i

∂

∂kiσ
− kσ

i

∂

∂kiµ

)

, Σµσ
i ≡ i

(

εµi
∂

∂εiσ
− εσi

∂

∂εiµ

)

. (7.68)

Since the graviton polarization tensor is quadratic in spin-one polarization vectors εµi , the

differential operator in Eq. (7.68) picks up factors of 2 as required for Eq. (7.65) to be

compatible with Eq. (7.64).

In conclusion, in the case of a soft graviton, on-shell gauge invariance completely deter-

mines the first two subleading contributions. Using the Kawai-Lewellen-Tye relations [105]

we have generated graviton amplitudes with formal polarization tensors up to six points. Us-

ing these we analytically confirmed Eq. (7.65) through five points and numerically through

six points.
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7.6 Comments on Loop Corrections

In gauge and gravity theories in four dimensions, the operators describing the soft behav-

ior have nontrivial loop corrections (see Ref. [125] and Chapter 6). Indeed, in QCD loop

corrections linked to infrared singularities are present already at leading order in the soft

limit [103, 104]. One may wonder how loop corrections to the soft operators arise from

the perspective of the constraints imposed by on-shell gauge invariance. In this section we

explain this. We first describe the case of gauge theory before turning to gravity.

a

n

µ

Figure 7.3: The potential factorizing contributions to the one-loop corrections to the leading soft

function which then cancel. Leg n is the soft leg which carries momentum q. At subleading order

there are additional contributions.

As explained in Ref. [103], we can separate the contributions into two distinct sources.

The first source of potential corrections is the “factorizing” one that, for leading order, arises

from loop corrections of the form displayed in Fig. 7.3 (see Refs. [103, 125] and Chapter 6).

The second type of contributions are “nonfactorizing” infrared-divergent pieces that can

come from discontinuities in the amplitudes associated with infrared divergences [110]. (Al-

ternatively these nonfactorizing contributions can be pushed into factorizing contributions

that have light-cone denominators coming from a careful application of unitarity [104].)

Here we will focus on the factorizing pieces. In gauge theory we will explain why they do

not enter in the leading soft behavior [103, 104]. For the case of scalars in the loops, which is

an especially clean case since there are no infrared singularities even for massless scalars, we

show that there are no factorizing loop corrections at the leading and first subleading orders

of the soft-graviton expansion. This suppression was discussed earlier in explicit examples

of soft limits of one-loop infrared-finite gravity amplitudes in Ref. [125] and Chapter 6.
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7.6.1 Gauge Theory

=

n

a

µ +

n

a

µ +

n

a

µ

a

n

µ

Figure 7.4: The diagrams with potential factorizing contributions to the one-loop soft function.

At subleading order there are additional contributions.

As a warm up to the gravity case, we first discuss the well-understood gauge-theory

case. The explicit forms of the factorizing one-loop corrections to the soft behavior have

been described in some detail in Refs. [103, 104] for QCD at leading order in the soft (and

collinear) limits.

For the case of external gluons, the potential factorizing contributions to one-loop modi-

fications of the leading soft behavior are shown in Fig. 7.3. We can expand these corrections

into triangle and bubble diagrams as shown in Fig. 7.4. As derived in Ref. [103], these

diagrams evaluate to

Dµ,fact =
i√
2

1

3

1

(4π)2

(

1− nf
Nc

+
ns

Nc

)

(q − ka)
µ
[

(εn · εa)−
(q · εa)(ka · εn)

(ka · q)
]

, (7.69)

where nf is the number of fundamental representation fermions, ns the number of funda-

mental representation complex scalars (using the normalization conventions of Ref. [103]),

and Nc is the number of colors. As usual we take the soft momentum of leg n to be q. After

integration this result is both ultraviolet- and infrared-finite, so we have taken ǫ = 0 in the

final integrated result. The all orders in ǫ form of Eq. (7.69) is given in Refs. [103, 104].

The result (7.69) has a few surprising features that explain why we cannot use it to obtain

the full subleading soft correction via gauge invariance. The first is that the correction to

the three-vertex is nonlocal because of the pole in q ·ka that arises from the loop integration.

Indeed, after we include the intermediate propagator −i/(ka + q)2, there is a double pole1

1While this might seem to violate basic factorization properties of field theories, in fact it does not,
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in q · ka. A second curious feature is that Eq. (7.69) is gauge invariant by itself: It vanishes

when εµn is replaced by qµ ≡ kµ
n for any value of the intermediate off-shell momentum. The

nonlocal nature of the result is what allows us to write such a gauge-invariant term with the

correct dimensions.

A third feature is that, in fact, there is no contribution from Eq. (7.69) to the leading

one-loop correction to the soft function, as noted in Refs. [103, 104]. To see this, we sew

Eq. (7.69) onto the rest of the amplitude across the factorization channel:

Dfact
µ

−i

2q · ka
J µ , (7.70)

as illustrated in Fig. 7.3. We observe that J µ is a conserved current:

(q + ka)µJ µ = 0 , (7.71)

assuming that all the remaining legs are contracted with on-shell polarizations. This imme-

diately implies

Dfact
µ

−i

2q · ka
J µ = O(q0) , (7.72)

because Dfact
µ is proportional to (q − ka)µ which is equivalent to 2qµ when dotted into a

conserved current. This reproduces the fact that there is no leading O(1/q) factorizing

contribution to the one-loop soft function [103, 104].

Unfortunately, the O(q0) terms in the full factorizing contributions are not under control

via gauge invariance. Once we allow for an extra 1/(q · ka) nonlocality arising from the

loop integration, we lose control over the subleading piece. This cannot happen at tree

level because there is no source of a second factor of 1/(q · ka). In fact, Eq. (7.69) is

incomplete for capturing all subleading contributions. The additional contributions have

already been described in some detail at one loop on a case-by-case basis in Refs. [111,

112, 113]. Unfortunately, no universal factorization formula is known for these types of

because for real momenta the double pole is reduced to a single pole. See Refs. [111, 112] for a detailed
discussion of this phenomenon.
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corrections, although case-by-case their forms appear to be relatively simple. An example

of this type of nontrivial factorization can be found in Eq. (61) of Ref. [111] or Eq. (3.9) of

Ref. [125]; the precise form of the correction depends on the helicities of other legs.

Interestingly, these contributions resemble an anomaly that seemingly vanishes if we take

the loop integrand strictly in four dimensions. This arises from the integration where a 1/ǫ

ultraviolet pole cancels a factor of ǫ from numerator algebra, leaving terms of O(1). This is

reminiscent of the way the chiral anomaly arises from triangle diagrams in dimensional reg-

ularization. Indeed, for the single minus-helicity case discussed in Ref. [125] and Chapter 6,

not only does this contribution vanish but the entire amplitude would vanish if we were not

careful to keep in the integrand in D = 4 − 2ǫ instead of four dimensions. It is interesting

that these types of contributions do not appear in supersymmetric theories.

Besides the loop contributions described above, there is a second type of loop correction

to the soft operators (7.40) arising from non-smoothness in the amplitude due to infrared

singularities [110]. In QED the integrals are smooth because the electron mass acts as

an infrared cutoff, but in QCD or gravity there is no such physical cutoff on gluons or

gravitons. It is therefore much more difficult to consistently introduce a mass regulator

without breaking gauge symmetry or altering the number of propagating degrees of freedom.

As is standard practice, it is far simpler to use dimensional regularization. As discussed in

some detail in Refs. [110, 103] and Chapter 6, as gluons become soft or collinear, the matrix

elements develop discontinuities that are absorbed into modifications of the loop splitting or

soft operators. Alternatively, by using light-cone gauge or carefully applying unitarity, one

introduces light-cone denominators containing a reference momentum, and one can push all

contributions into factorizing diagrams [114, 104]. Either way, the conclusion is the same:

There are nontrivial contributions due to infrared singularities not accounted for in the naive

tree-level soft limit.
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=

n

a

µ

ν
+
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Figure 7.5: The diagrams with potential factorizing contributions to the one-loop soft behavior

in gravity with a scalar in the loop. This captures all such potential leading and first subleading

contributions, but it is incomplete at second subleading order.

7.6.2 Gravity

We now show that the situation in gravity is similar. Here the dimensionful coupling ensures

that there are no loop corrections at leading order [98], only one-loop corrections at the first

subleading order, and only up to two-loop corrections at second subleading order, as shown

in Chapter 6. Thus, we need only analyze one loop to show that the factorizing contributions

do not modify the soft operator at first subleading order.

We focus on the case of a scalar in the loop. This case is particularly transparent because

there are no infrared singularities associated with scalars circulating in a loop [107, 108].

This allows us to study the soft behavior without being entangled with the issue of infrared

divergences. We can determine the behavior through the first subleading soft order simply

by computing the diagrams in Fig. 7.5.

We have carried out the analogous computation to the one performed in Ref. [103] for

gluons, but for gravity with a real scalar in the loop. The result of this computation is

Dµν,fact,s = − i

(4π)2

(κ

2

)3 1

30q · ka

(

(εn · εa)(q · ka)− (q · εa)(ka · εn)
)2

kµ
ak

ν
a +O(q2) , (7.73)

where we have kept all terms involving no more than one overall power of the soft momentum

q ≡ kn. Such terms naively appear to contribute at the first subleading order in the correction

to the amplitude. However, as in the gauge-theory case, the diagrams Dµν,fact,s contract into

a current Jµν which results in a suppression of an extra factor of the soft momentum q. In
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the gravity case we find

(ka + q)µJµν = f(ki, εi)(ka + q)ν , (7.74)

where f is some function of the momenta and polarizations of both the hard and soft legs.

With kµ
ak

ν
a contracting with Jµν , we then have

kµ
ak

ν
aJµν = (ka + q)µ(ka + q)νJµν +O(q)

= f(ki, εi)(ka + q)2 +O(q)

= 2f(ki, εi)q · ka +O(q)

= O(q) . (7.75)

Therefore as far the correction to the amplitude is concerned, we can effectively view Dµν,fact,s

as being of order q2. We then finally have

Dµν,fact,s i

2q · ka
Jµν = O(q) . (7.76)

After including the 1/q from the intermediate propagator, we find the potential correction to

the soft operator is of O(q) and therefore does not modify the first subleading soft behavior.

Unfortunately, for the second subleading soft behavior we lose control, in much the same way

that we did for the first subleading behavior of gauge theory. Indeed, nontrivial contributions

are found in explicit examples (see Ref. [125] and Chapter 6.

As in the QCD case (7.69), we expect the cases with other particles circulating in the loop

to be similar and that factorizing contributions not linked to infrared singularities should

appear starting only at the second subleading order in the soft expansion. In addition, the

explicit gravity examples studied in Ref. [125] and Chapter 6 are exactly in line with this

expectation. We leave a discussion of cases with infrared singularities to future work.
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7.7 Conclusions

In this chapter we extended Low’s proof of the universality of subleading behavior of photons

to nonabelian gauge theory and to gravity. In particular, we showed that in gauge theory, on-

shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior

at tree level. In gravity the first two subleading terms in the soft expansion found in Ref. [83]

can also be fully determined from on-shell gauge invariance. Our discussion is similar to the

ones given by Low [93] for photons and by Jackiw [100] for gravitons coupled to a scalar at

four points. We focused mainly on n-gluon and n-graviton amplitudes, but also discussed

simpler cases with scalars.

A motivation for studying soft-graviton theorems is to understand their relation to the

extended BMS symmetry. It will, of course, be very important to understand how BMS

symmetry relates to the proof of soft properties in n-graviton amplitudes given here.

Unlike the case of photons, for gluons there are loop corrections to the soft operators

starting at leading order. In gauge theory, leading-order corrections are linked to infrared

singularities, while subleading-order corrections can also arise from contributions not linked

to infrared singularities. Gravity also has loop corrections but not at leading order. In this

chapter we prove that for the case of a scalar circulating in the loop, there is no modification

to the soft behavior of graviton amplitudes until the second subleading order. We expect this

to hold in general for contributions not linked to infrared singularities. On the other hand,

graviton loop contributions that are infrared divergent give corrections to the soft operators

starting at the first subleading order, as shown in Chapter 6, using the standard definition

of dimensional regularization. Since infrared singularities are well-understood, we do not

expect this to be too disruptive for studying the consequences of extended BMS symmetry

at loop level. We will describe loop level in more detail elsewhere.
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Part III

Evanescent Effects in Gravity at Two

Loops
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CHAPTER 8

Evanescent Effects Can Alter Ultraviolet Divergences

in Quantum Gravity without Physical Consequences

8.1 Introduction

Although theories of quantum gravity have been studied for many decades, basic questions

about their ultraviolet (UV) structure persist. One subtlety is the conformal anomaly1, also

known as the Weyl or trace anomaly [129]. At one loop, the conformal anomaly provides

the coefficient of the Gauss-Bonnet (GB) term. The physical significance of this relationship

has not been settled, however. In particular, Duff and van Nieuwenhuizen showed that the

conformal anomaly changes under duality transformations of p-form fields, suggesting that

theories related through such transformations are quantum-mechanically inequivalent [130].

In response, Siegel argued that this effect is a gauge artifact and therefore not physical [131];

Fradkin and Tseytlin and Grisaru et al. have also argued that duality should hold at the

quantum level [132]. Furthermore, for D = 4 external states, one-loop divergences in gravity

theories coupled to two-form antisymmetric tensors are unchanged under a duality transfor-

mation relating two-forms to zero-form scalars [58, 133]. However, as we shall see, intuition

based on one-loop analyses can be deceptive.

As established in the seminal work of ’t Hooft and Veltman [56], pure gravity is finite at

one loop because the only available counterterm is the GB term, which integrates to zero

in a topologically trivial background. While amplitudes with external matter fields diverge

at one loop, amplitudes with only external gravitons remain finite. At two loops, however,

1Einstein gravity is not conformally invariant, so this is not an anomaly in the traditional sense.
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pure gravity diverges, as demonstrated explicitly by Goroff and Sagnotti [67] and confirmed

by van de Ven [134].

In this chapter, we investigate the UV properties of the two-loop amplitude for scattering

of four identical-helicity gravitons, including the effect of p-form duality transformations. We

use dimensional regularization, which forces us to consider the effects of evanescent operators

like the GB term, which are legitimate operators in D dimensions but vanish (or are total

derivatives) in four dimensions. We show that the GB counterterm is required to cancel

subdivergences and reproduce the two-loop counterterm coefficient found previously [67, 134].

Evanescent operators are well-studied in gauge theory (see e.g. Ref. [135]), where they

can modify subleading corrections. In contrast, we find that evanescent effects can alter the

leading UV divergence in gravity.2 Despite this change in the UV divergence, the physical

dependence of the renormalized amplitude on the renormalization scale remains unchanged.

This break in the link between the UV divergence and the renormalization-scale dependence

is unlike familiar one-loop examples. We arrive at a similar conclusion when comparing

the divergences and renormalization-scale dependences in gravity coupled to scalars versus

antisymmetric-tensor fields.

8.2 Setup

Pure gravity is defined by the Einstein-Hilbert Lagrangian,

LEH = − 2

κ2

√−gR , (8.1)

where κ2 = 32πGN = 32π/M2
P and the metric signature is (+−−−). We also augment LEH

by matter Lagrangians for one of the following: n0 scalars, n2 two-form fields (antisymmetric

2Effects of the GB term have also been studied in renormalizable, but non-unitary, R2 gravity [136].
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tensors) or n3 three-form fields:

L0 =
1

2

√−g

n0
∑

j=1

∂µφj∂
µφj ,

L2 =
1

6

√−g

n2
∑

j=1

Hj µνρH
µνρ
j ,

L3 = −1

8

√−g

n3
∑

j=1

Hj µνρσH
µνρσ
j . (8.2)

Here φj is a scalar field and Hj µνρ and Hj µνρσ are the field-strengths of the two- and three-

form antisymmetric-tensor fields Aj µν and Aj µνρ. The index j labels distinct fields. Standard

gauge-fixing for the two- and three-form actions, as well as for LEH, leads to a nontrivial

ghost structure. We avoid such complications by using the generalized unitarity method [36,

35, 6, 33, 55], which directly imposes appropriate D-dimensional physical-state projectors

on the on-shell states crossing unitarity cuts.

Under a duality transformation, in four dimensions the two-form field is equivalent to a

scalar:

Hj µνρ ↔ i√
2
εµνρα ∂

αφj , (8.3)

and the three-form field is equivalent to a cosmological-constant contribution via

Hj µνρσ ↔ 2√
3
εµνρσ

√

Λj

κ
. (8.4)

As usual, we expand the graviton field around a flat-space background: gµν = ηµν + κhµν .

Similarly, we expand the scalar, two-form field and three-form field around trivial background

values. It is interesting to note that the three-form field has been proposed as a means for

neutralizing the cosmological constant [137].
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8.3 One Loop

For a theory with n0 scalars, n2 two-forms and n3 three-forms coupled to gravity, the one-loop

UV divergence takes the form of the GB term [129, 67, 130],

LGB =
1

(4π)2
1

ǫ

(53

90
+

n0

360
+

91n2

360
− n3

2

)

×√−g(R2 − 4R2
µν +R2

µνρσ) , (8.5)

which is proportional to the conformal anomaly. The calculations of the conformal anomaly

and of the UV divergence are essentially the same, except that we replace a graviton po-

larization tensor with a trace over indices. Contracting Eq. (8.5) with four on-shell D = 4

graviton polarization tensors gives zero. This is because the GB combination is evanescent

in D = 4: It is a total derivative and vanishes when integrated over a topologically trivial

space; hence pure Einstein gravity is finite at one loop [56]. In a topologically nontrivial

space, the integral over the GB term gives the Euler characteristic. When matter is added

to the theory, the four-graviton amplitude is still UV finite at one loop, although divergences

appear in amplitudes with external matter states.

Using the unitarity method, we verified Eq. (8.5) by considering the one-loop four-

graviton amplitude with external states in arbitrary dimensions and internal ones in D =

4− 2ǫ dimensions. On-shell scattering amplitudes are sensitive only to the coefficient of the

R2
µνρσ operator, because the R2 and R2

µν operators can be eliminated by field redefinitions

at leading order in the derivative expansion. The GB combination is especially simple to

work with in dimensional regularization since there are no propagator corrections in any

dimension [138].

For the case of antisymmetric tensors coupled to gravity, another relevant one-loop four-

point divergence is that of two gravitons and two antisymmetric tensors, generated by the

operator,

LRHH =
(κ

2

)2 1

(4π)2
1

ǫ

√−g

n3
∑

j=1

Rµν
ρσHj µναH

αρσ
j . (8.6)
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Like the GB term, this operator is evanescent. In particular, in D = 4, we can dualize the

antisymmetric tensors to scalars, which collapses the Riemann tensor into the Ricci scalar

and tensor. Under field redefinitions, they can be eliminated in favor of the dualized scalars,

removing the one-loop divergence in two-graviton two-antisymmetric-tensor amplitudes with

D = 4 external states. The four-scalar amplitude does diverge.

The change in Eq. (8.5) under duality transformations is central to the claim by Duff

and van Nieuwenhuizen of quantum inequivalence under such transformations [130]. Here

we analyze their effects on the two-loop amplitude. First let us note that our unitarity-

based evaluation of Eq. (8.5) sews together physical, gauge-invariant tree amplitudes. This

explicitly demonstrates that the numerical coefficient of the R2
µνρσ term in Eq. (8.5) is gauge

invariant, in contrast to implications of Ref. [131]. This gauge invariance suggests that by two

loops, Eq. (8.5) could lead to duality-violating contributions to non-evanescent operators.

To see if this happens, we must account for subdivergences and renormalization.

8.4 Two Loops

At two loops, pure gravity diverges in D = 4. The coefficient of this divergence was de-

termined by Goroff and Sagnotti [67] from a three-point computation in the standard MS

regularization scheme and later confirmed by van de Ven [134]:

LR3 = − 209

1440

(κ

2

)2 1

(4π)4
1

ǫ

√−g Rαβ
γδR

γδ
ρσR

ρσ
αβ , (8.7)

where we account for the fact that Refs. [67, 134] define ǫ = 4−D instead of our ǫ = (4−D)/2.

The divergence in Eq. (8.7) uses four-dimensional identities to simplify it.

In order to reproduce the Goroff and Sagnotti result, we evaluate the identical-helicity

four-graviton amplitude. This is the simplest amplitude containing the two-loop divergence

(8.7). While a four-point amplitude may seem to be unnecessarily complicated with respect

to a three-point function, there are several advantages to considering an amplitude for a
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(a) (b) (c)
Figure 8.1: Representative diagrams of the (a) bare, (b) single-counterterm and (c) double-coun-

terterm insertions.

physical process with real momenta. The first is that we can use the unitarity method to

obtain a compact integrand [36, 35]. This method is particularly efficient for identical-helicity

particles, having been used to obtain compact integrands for the gauge-theory case [55].

More importantly, the question of quantum equivalence under duality transformations can

only be properly answered in the context of physical observables, such as renormalized and

infrared-subtracted 2 → 2 scattering amplitudes entering physical cross-sections.

To facilitate comparisons to the two-loop four-point amplitude, we need the R3 divergence

(8.7) inserted into the four-plus-helicity tree amplitude:

AR3 =
209

24

K
ǫ
, (8.8)

where

K ≡
(κ

2

)6 i

(4π)4
stu

(

[12][34]

〈12〉〈34〉

)2

, (8.9)

and s = (k1 + k2)
2, t = (k2 + k3)

2 and u = (k1 + k3)
2 are the usual Mandelstam invariants.

The last factor is a pure phase constructed from the spinor products 〈ab〉 and [ab] defined

in, for example, Ref. [139].

Fig. 8.1 shows that there are three types of contributions to consider: (a) the bare

two-loop contribution, (b) the one-loop single-counterterm subtraction and (c) the double-

counterterm subtraction. One might expect the net subdivergence subtractions (b) and (c)

each to be zero because there are no corresponding D = 4 one-loop divergences. However,

this is not correct. A careful analysis of the two-loop integrands [140] reveals subdivergences

associated with the GB term (8.5). For the case of two-forms, a subdivergence corresponding

to LRHH in Eq. (8.6) must also be subtracted. In principle, when three-forms are present,
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there might have been subdivergences due to operators containing three-forms, but these do

not appear. It is somewhat surprising that there are subdivergences at two loops without

any corresponding one-loop divergences in D = 4. However, because some legs external to

the subdivergence are in D dimensions, the cancellations that are specific to D = 4 do not

occur.

While Goroff and Sagnotti also subtracted subdivergences, they did so integral by inte-

gral, rather than tracking the operator origin of the subdivergences as we do. Here we use

dimensional regularization for both infrared and UV divergences; we subtract the well-known

infrared singularities [95, 107, 108, 141] from the final result.

We evaluate the bare and single-subtraction contributions via the unitarity method.

We take the external legs to be identical-helicity gravitons and each internal leg to be D-

dimensional. The bare integrand obtained in this way is similar to integrands found earlier

for gauge theory [6, 33, 55] and for the “double-copy” theory containing a graviton, an anti-

symmetric tensor and a dilaton (see Chapter 3). A key property of these integrands is that

they vanish when the loop momenta are taken to reside in D = 4, yet the amplitudes are still

nonvanishing. This phenomenon is related to the observation by Bardeen and Cangemi [142]

that the nonvanishing of identical-helicity amplitudes is connected to an anomaly in the

self-dual sector.

We follow the same regularization prescriptions used in Ref. [55], where algebraic manip-

ulations on the integrand are performed with ǫ < 0. We use the ’t Hooft-Veltman variant:

We place the external momenta and polarizations in D = 4 and take the loop momenta and

internal states to reside in D = 4−2ǫ dimensions. Here we focus on the UV divergences and

defer presentation of the integrands and finite terms in the amplitudes to Ref. [140].

We integrate over the loop momenta with the same techniques used to obtain two-loop

four-point helicity amplitudes in QCD, including their finite parts [143, 144]. As a cross

check, we also directly extract the UV divergences using masses to regulate the infrared.

(See the procedures in Chapter 3 and the relevant appendices.)
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8.4.1 Coupling Three-Form Fields to Gravity

1/ǫ lnµ2

bare −3431
5400

− 199n3

30
+ 6n2

3 −3431
2700

− 199n3

15
+ 12n2

3

GB 4·53−180n3

360
· 2·(13+180n3)

15
689
675

+ 199n3

15
− 12n2

3

GB2 24
(

4·53−180n3

360

)2
0

total 209
24

− 15
2
n3 −1

4

Table 8.1: Coefficients of the 1/ǫ UV pole and of lnµ2 in the identical-helicity four-graviton

two-loop amplitude for pure gravity coupled to n3 three forms. We omit the overall factor of K
defined in Eq. (8.9). The first row gives the bare two-loop contribution, the second row the single

GB-counterterm insertion at one loop, and the third row that of a double GB insertion at tree

level. The final row gives the total.

Consider first the case of n3 three-forms coupled to gravity. In Table 8.1, we give both the

divergence and renormalization-scale dependence of each of the three components illustrated

in Fig. 8.1. In the bare and one-loop single-insertion components, the lnµ2 dependence,

where µ is the renormalization scale, is proportional to the UV divergence. For the bare

two-loop part, the lnµ2 coefficient is twice the coefficient of the 1/ǫ divergence. For the single

counterterm, it is equal to the 1/ǫ coefficient, and for the double-insertion tree contribution, it

vanishes. This follows from dimensional analysis of the loop integrals, with measure
∫

d4−2ǫℓ

per loop, requiring an overall factor of µ2Lǫ at L loops. The counterterm subtractions are

pure poles that do not carry such factors. In the sum over terms, there is no simple relation

between the 1/ǫ and the lnµ2 coefficients, in contrast to many textbook examples at one

loop.

As seen from the last line of Table 8.1, with no three-form fields we match exactly the Go-

roff and Sagnotti divergence (8.8). The addition of n3 three-form fields shifts the divergence

from the pure gravity result. One might think that this shift would lead to a physical change

in the scattering amplitudes through a different dependence on µ. However, the lnµ2 column

of Table 8.1 shows that the n3-dependence of the bare and single-counterterm contributions

precisely cancels in the sum. The scale dependence is therefore unaffected by three-form
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fields. The differences in the divergent parts can be removed by adjusting the coefficient of

the 1/ǫ R3 counterterm. We have also obtained the amplitude’s finite parts [140]. Their

form allows for a finite R3 subtraction that completely eliminates the effects of three-form

fields in the two-loop renormalized identical-helicity amplitude.

8.4.2 Coupling Two- or Zero-Form Fields to Gravity

1/ǫ lnµ2

bare −3431
5400

− 277n0

10800
+

n2

0

5400
−3431

2700
− 277n0

5400
+

n2

0

2700

GB 4·53+n0

360
· 2·(13−n0)

15
689
675

− 199n0

2700
− n2

0

2700

GB2 24
(

4·53+n0

360

)2
0

total 209
24

− 1
48
n0 −2+n0

8

Table 8.2: Coefficients of the 1/ǫ UV pole and of lnµ2 in the four-graviton amplitude for gravity

coupled to n0 scalars. The table follows the same format as Table 8.1.

1/ǫ lnµ2

bare −3431
5400

+ 8543n2

10800
+

8281n2

2

5400
−3431

2700
+ 8543n2

5400
+

8281n2

2

2700

GB 4·53+91n2

360
· 2·(13−91n2)

15
689
675

− 18109n2

2700
− 8281n2

2

2700

GB2 24
(

4·53+91n2

360

)2
0

RHH 5n2 5n2

total 209
24

+ 299
48
n2 −2+n2

8

Table 8.3: Coefficients of the 1/ǫ UV pole and of lnµ2 in the two-loop four-graviton amplitude for

gravity coupled to n2 antisymmetric-tensor fields. The table follows the same format as Table 8.1.

The second-to-last row gives the contribution of the RHH counterterm inserted into the one-loop

amplitude.

We now turn to the case of duality transformations between antisymmetric-tensor fields

and scalars. In Tables 8.2 and 8.3, the coefficients of 1/ǫ and lnµ2 terms are collected.

The tables show that, while the individual components are quite different and the final

1/ǫ divergence changes under duality transformations, scalars and two-forms have exactly

the same renormalization-scale dependence. As for the case of three-forms, we find that
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the UV divergence does depend on the field representations, but the renormalization-scale

dependence does not. Again, finite subtractions can be found to make the dual pair of

renormalized amplitudes identical [140].

8.4.3 General Results

From Tables 8.1–8.3, we find that in all cases, the scale dependence in the identical-helicity

four-graviton amplitude follows a simple behavior:

M2-loop
4

∣

∣

∣

lnµ2

= −K Nb −Nf

8
lnµ2 , (8.10)

where Nb (Nf) is the number of bosonic (fermionic) four-dimensional states in the theory. We

only computed Eq. (8.10) explicitly for Nf = 0, but the identical-helicity graviton amplitude

vanishes in supersymmetric theories, forcing Eq. (8.10) to be proportional to Nb −Nf .

The lnµ2 dependence is clearly a more appropriate quantity for deciding whether a theory

should be thought of as nonrenormalizable. If the coefficient of the lnµ2 is nonvanishing,

as is the case for pure gravity, the coefficient will run, and we consider such a theory to be

nonrenormalizable. Our result shows that instead of focusing on the divergences, one should

study the lnµ2 coefficient to see if there is a principle that can be applied to set it to zero.

One obvious useful principle is that renormalization schemes should be chosen that maintain

the equality of theories related by duality transformations.

In this light, one might wonder if the recently-computed four-loop divergence of pure

N = 4 supergravity [39] is an artifact of the particular SU(4) formulation of the theory

that was used. However, with the uniform mass infrared regulator used in that calculation,

extensive checks reveal that all subdivergences cancel. Therefore the coefficient of lnµ2 is

proportional to that of the 1/ǫ divergence. When matter multiplets are added there are

one-loop subdivergences, but those are not evanescent. In other formulations, it is possible

that the divergences will change, but we do not expect the lnµ2 coefficients to change.
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8.5 Conclusions

In summary, our investigation of the ultraviolet divergences of nonsupersymmetric gravity

reveals a number of striking features. The first is the nontrivial role of the conformal anomaly

and the associated evanescent Gauss-Bonnet term entering subdivergences. It is remarkable

that a term that vanishes in four dimensions can contribute directly to the leading divergence

of a graviton amplitude. Another important feature is that the integrand of the identical-

helicity amplitude vanishes if the loop momenta are taken to be four-dimensional; this feature

of identical-helicity amplitudes, which follows straightforwardly from unitarity, is also tied to

anomalous behavior [142]. Similar connections to anomalous behavior [145, 77] were noted

in the four-loop divergence of N = 4 pure supergravity [39].

A key lesson is that under duality transformations, the values of two-loop divergences

can change, contrary to the situation at one loop [58, 133]. However, the difference in these

divergences are unphysical, in the sense that they can be absorbed into a redefinition of

the coefficient of a local operator. In other words, our results for scattering amplitudes are

consistent with quantum equivalence under duality transformations when that equivalence

allows for the adjustment of coefficients of higher-dimension operators. The dependence on

the renormalization scale does not change under duality transformations in the examples we

studied; it is a more appropriate measure of the UV properties of the theory. It would be

quite interesting to establish this property beyond two loops. Together with recent examples

of ultraviolet finiteness in supergravity amplitudes, despite the existence of seemingly valid

counterterms [38, 31, 146], the results summarized in this chapter show that much more

remains to be learned about both duality at the quantum level and the ultraviolet structure

of gravity theories.
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APPENDIX A

Two-Loop Dimensionally Regularized Integrals

In this appendix, we explicitly compute the divergent parts of dimensionally regularized

two-loop integrals in D = 4−2ǫ, appearing in Section 3.3.2. In general, both ultraviolet and

infrared divergences appear as poles in ǫ so we must subtract the infrared ones in order to

obtain the ultraviolet ones.

We start with the planar double-box integral, displayed in Fig. 3.5(a), following the

discussion in Section 4 of Ref. [144],

IP
4 [P(λi, p, q, ki)](s, t)

≡
∫

dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p+ q)2(p− k1)2(p− k1 − k2)2(q − k4)2(q − k3 − k4)2
. (A.1)

Using Schwinger parameters, we rewrite the planar double-box integral with constant nu-

merator as

IP
4 [1](s, t) =

1

(4π)D

7
∏

i=1

∫ ∞

0

dti [∆P(T )]
−D

2 exp

[

−QP(s, t, ti)

∆P(T )

]

, (A.2)

where

∆P(T ) = (TpTq + TpTpq + TqTpq) , (A.3)

and

Tp = t3 + t4 + t5 , Tq = t1 + t2 + t7 , Tpq = t6 . (A.4)

Tp, Tq, and Tpq are sums of Schwinger parameters corresponding to propagators with loop
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momenta p, q, and p+ q, respectively. We also have

QP(s, t, ti) = −s

(

t1t2Tp + t3t4Tq + t6(t1 + t3)(t2 + t4)

)

− t t5t6t7 . (A.5)

To account for factors of λ2
p, λ2

q, and λ2
p+q in the numerator, we take derivatives on the

(−2ǫ)-dimensional part of the (Wick-rotated) integral:

∫

dλ−2ǫ
p dλ−2ǫ

q exp
[

−Tpλ
2
p − Tqλ

2
q − Tpqλ

2
p+q

]

∝ [∆P(T )]
ǫ , (A.6)

with respect to Tp, Tq, and Tpq. This introduces additional factors to be inserted in the

integrand in Eq. (A.2). For example,

(λ2
p)

4 → −ǫ(1 − ǫ)(2− ǫ)(3 − ǫ)

(

Tq + Tpq

∆P(T )

)4

,

(λ2
p)

3λ2
q → ǫ2(1− ǫ)(2− ǫ)

(Tq + Tpq)
2

∆P(T )3
− ǫ(1− ǫ)(2− ǫ)(3 − ǫ)

(Tq + Tpq)
2T 2

pq

∆P(T )4
,

(λ2
p)

2λ2
qλ

2
p+q → ǫ2(1− ǫ)2

1

∆P(T )2
+ ǫ(1− ǫ)(2− ǫ)

ǫ(T 2
q + T 2

pq) + 2TqTpq

∆P(T )3
(A.7)

− ǫ(1 − ǫ)(2− ǫ)(3− ǫ)
T 2
q T

2
pq

∆P(T )4
.

We account for extra factors of ∆a
P(T ) by shifting the dimension D → D − 2a. Following

Smirnov [147], we change six of the seven Schwinger parameters to Feynman parameters

with the delta-function constraint
∑

i 6=6 αi = 1:

IP
4 [P(λp, λq)](s, t) =

Γ[7−D + γ]

(4π)D

∫ ∞

0

dα6

∏

i 6=6

∫ 1

0

dαiδ

(

1−
∑

i 6=6

αi

)

[∆P(T )]
7− 3D

2
+γ

[QP(s, t, αi)]
7−D+γ

D(αi) ,

(A.8)

where D(αi) represents the extra factors in one term of Eq. (A.7), with ti → αi. The

parameter γ counts the factors of αi in D(αi) and can take on values 0, 2, and 4 for the

integrals under consideration here. Next we perform a change of variables that imposes the
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delta-function constraint [147]:

α1 = β1ξ3 , α2 = (1− ξ5)(1− ξ4) , α3 = β2ξ1 , α4 = ξ5(1− ξ2) ,

α5 = β2(1− ξ1) , α7 = β1(1− ξ3) , β1 = (1− ξ5)ξ4 , β2 = ξ5ξ2 . (A.9)

We then integrate these parameters to obtain a Mellin-Barnes representation, which we again

integrate. Finally we arrive at the dimensionally regularized results of our required planar

double-box integrals:

IP
4 [(λ

2
p)

4](s, t) = I ′P − 1

(4π)4
s+ 2t

360ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p+q)

4](s, t) = 2I ′P − 1

(4π)4
29s+ 4t

180ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

3λ2
q ](s, t) = − 1

(4π)4
s

480ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

3λ2
p+q](s, t) = I ′P +

1

(4π)4
s− t

360ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

2(λ2
q)

2](s, t) = O(ǫ0) ,

IP
4 [(λ

2
p)

2(λ2
p+q)

2](s, t) = I ′P − 1

(4π)4
s+ 2t

720ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

2λ2
qλ

2
p+q](s, t) =

1

(4π)4
s

720ǫ
+O(ǫ0) ,

IP
4 [λ

2
pλ

2
q(λ

2
p+q)

2](s, t) = − 1

(4π)4
s

240ǫ
+O(ǫ0) ,

IP
4 [λ

2
p(λ

2
p+q)

3](s, t) = I ′P − 1

(4π)4
5s+ t

180ǫ
+O(ǫ0) , (A.10)

where

I ′P ≡ 1

(4π)4

[

1

840sǫ2
(

2s2 + st+ 2t2
)

(−s)−2ǫe−2ǫγE

+
1

88200su4ǫ
(4s6 + 753s5t + 4306s4t2 + 9144s3t3

− 315π2s3t3 + 9381s2t4 + 4813st5 + 1019t6)

+
t3(11s2 + 7st+ 2t2)

840su3ǫ
log
( t

s

)

− s2t3

280u4ǫ
log2

( t

s

)

]

+O(ǫ0) . (A.11)
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All integrals above are symmetric under λp ↔ λq.

Next we look at the nonplanar double-box integrals:

INP
4 [P(λi, p, q, ki)](s, t)

≡
∫

dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p+ q)2(p− k1)2(q − k2)2(p+ q + k3)2(p+ q + k3 + k4)2
,

(A.12)

whose evaluation follows that of the planar double-box integrals quite closely. ∆NP(T ) takes

the same form as ∆P(T ) in Eq. (A.3), except that

Tp = t1 + t2 , Tq = t3 + t4 , Tpq = t5 + t6 + t7 . (A.13)

We then also have

QNP(s, t, u, ti) = −s
(

t1t3t5 + t2t4t7 + t5t7(Tp + Tq)
)

− t t2t3t6 − u t1t4t6 . (A.14)

In this case, we find it advantageous to only change the four Schwinger parameters associated

with Tp and Tq to Feynman parameters, resulting in

INP
4 [P(λp, λq)] =

Γ[7−D + γ]

(4π)D
(A.15)

×
7
∏

i=5

∫ ∞

0

dαi

4
∏

j=1

∫ 1

0

dαjδ

(

1−
4
∑

i=1

αi

)

[∆NP(T )]
7− 3D

2
+γ

[QNP(s, t, u, αi)]
7−D+γ

D(αi) .

We impose the delta-function constraint via further redefinition:

α1 = ξ3(1− ξ1) , α2 = ξ3ξ1 , α3 = (1− ξ3)(1− ξ2) , α4 = (1− ξ3)ξ2 . (A.16)

Once again we can straightforwardly integrate the parameters and use the Mellin-Barnes

131



representation to evaluate our required nonplanar double-box integrals:

INP
4 [(λ2

p)
4](s, t) = I ′NP − 1

(4π)4
215s2 + 342st+ 342t2

50400sǫ
+O(ǫ0) ,

INP
4 [(λ2

p+q)
4](s, t) =

1

(4π)4
s

80ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
3λ2

q ](s, t) = I ′NP − 1

(4π)4
215s2 + 342st+ 342t2

50400sǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
3λ2

p+q](s, t) = O(ǫ0) ,

INP
4 [(λ2

p)
2(λ2

q)
2](s, t) = I ′NP − 1

(4π)4
230s2 + 171st+ 171t2

25200sǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
2(λ2

p+q)
2](s, t) =

1

(4π)4
s

160ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
2λ2

qλ
2
p+q](s, t) =

1

(4π)4
s

1440ǫ
+O(ǫ0) ,

INP
4 [λ2

pλ
2
q(λ

2
p+q)

2](s, t) = O(ǫ0) ,

INP
4 [λ2

p(λ
2
p+q)

3](s, t) =
1

(4π)4
s

160ǫ
+O(ǫ0) , (A.17)

where

I ′NP ≡ 1

(4π)4

[

1

840sǫ2
(

2t2 + tu+ 2u2
)

(−s)−ǫ(−t)−ǫe−2ǫγE

+
1

352800s5ǫ
(5581u6 + 25188u5t+ 51783u4t2 + 64352u3t3

− 1260π2u3t3 + 51783u2t4 + 25188ut5 + 5581t6)

+
u3(11t2 + 7tu+ 2u2)

840s4ǫ
log
(u

t

)

− t3u3

280s5ǫ
log2

(u

t

)

]

+O(ǫ0) . (A.18)

As with the planar results, the above are valid under the exchange λp ↔ λq.

Finally we evaluate the bow-tie integrals:

Ibow-tie
4 [P(λi, p, q, ki)](s)

≡
∫

dDp

(2π)D
dDq

(2π)D
P(λi, p, q, ki)

p2q2(p− k1)2(p− k1 − k2)2(q − k4)2(q − k3 − k4)2
. (A.19)
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The bow-tie integrals are relatively simple because they are products of two one-loop inte-

grals. Similar techniques involving Schwinger parameters and Mellin-Barnes representations

can be used on each one-loop integral. Since bubbles with a massless leg vanish in dimensional

regularization, the replacement (p + q)2 → 2p · q is valid in the numerator. We also use the

tensor reduction (λp · λq)
2 → λ2

pλ
2
q/(−2ǫ). For the bow-tie integrals appearing in Eq. (3.34),

this tensor reduction is the only source of an ultraviolet divergence. When evaluating the

bow-tie contributions then, we expose (λp · λq)
2 factors through the substitutions,

λ2
p+q → λ2

p + λ2
q + 2(λp · λq) , (p+ q)2 → (2p(4) · q(4))− 2(λp · λq) . (A.20)

Only terms containing a (λp ·λq)
2 are ultraviolet divergent; there are no terms with (λp ·λq)

4

or higher powers of (λp · λq). The relevant bow-tie integrals are then given by

Ibow-tie
4 [(λ2

p)
2(λp · λq)

2](s) =
1

(4π)4
s2

720ǫ
+O(ǫ0) ,

Ibow-tie
4 [λ2

pλ
2
q(λp · λq)

2](s) =
1

(4π)4
s2

1152ǫ
+O(ǫ0) ,

Ibow-tie
4 [(λ2

p)
2λ2

q(λp · λq)
2](s) =

1

(4π)4
s3

8640ǫ
+O(ǫ0) ,

Ibow-tie
4 [(λ2

p)
2(λ2

q)
2(λp · λq)

2](s) =
1

(4π)4
s4

64800ǫ
+O(ǫ0) ,

Ibow-tie
4 [(λ2

p)
2(λp · λq)

2(2p(4) · q(4))](s, t) = − 1

(4π)4
s2(10s− t)

15120ǫ
+O(ǫ0) ,

Ibow-tie
4 [λ2

pλ
2
q(λp · λq)

2(2p(4) · q(4))](s, t) = − 1

(4π)4
s2(12s− t)

28800ǫ
+O(ǫ0) . (A.21)

These are also symmetric under the exchange λp ↔ λq.
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APPENDIX B

Two-Loop Infrared Divergence

In this appendix we obtain the two-loop infrared divergence for the four-point all-plus-helicity

graviton amplitude in the theory of gravity coupled to a dilaton and an antisymmetric tensor

using dimensional regularization in D = 4 − 2ǫ. We subtract the infrared divergence from

the total divergence to obtain the ultraviolet divergence. Infrared divergences in gravity can

be obtained by exponentiating the divergence found at the one-loop order [95, 107, 141, 52].

In the cases where there is a divergence at one loop, the infrared singularities are ‘one-loop

exact’; however, in the all-plus-helicity gravitons case, the first divergence occurs at two

loops. Nevertheless, the same principles apply. More specifically we are concerned with the

exponentiation of the gravitational soft function, which describes the effects of soft graviton

exchange between external particles.

Following the discussion of Ref. [107, 141], a gravity scattering amplitude can be written

as

Mn = Sn ·Hn , (B.1)

where Sn is the infrared-divergent soft function and Hn is the infrared-finite hard function.

Each quantity in Eq. (B.1) can be written as a loop expansion in powers of (κ/2)2(4πe−γE)ǫ:

Mn =

∞
∑

L=0

M(L)
n , Sn = 1 +

∞
∑

L=1

S(L)
n , Hn =

∞
∑

L=0

H(L)
n . (B.2)
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The soft function is given by the exponential of the lowest-order infrared divergence:

Sn = exp
[σn

ǫ

]

, σn =
(κ

2

)2 1

(4π)2−ǫ
e−γEǫ

n
∑

j=1

∑

i<j

sijlog

(−sij
µ2

)

, sij = (ki + kj)
2.

(B.3)

An L-loop amplitude can then be written as

M(L)
n =

L
∑

l=0

1

(L− l)!

[σn

ǫ

]L−l

H(l)
n (ǫ) . (B.4)

For four-point amplitudes, we have

σ4 =
(κ

2

)2 2

(4π)2−ǫ
e−γEǫ

[

s log

(−s

µ2

)

+ t log

(−t

µ2

)

+ u log

(−u

µ2

)]

, (B.5)

and the one-loop infrared divergence is given by

M(1)
4

∣

∣

∣

IR div.
=

σ4

ǫ
M(0)

4 . (B.6)

We used this to subtract the infrared divergence from our dimensionally regularized one-

loop result in Section 3.3.1.1 to isolate the ultraviolet divergence. The four-point two-loop

infrared divergence is given by

M(2)
4

∣

∣

∣

IR div.
=

1

2

[σ4

ǫ

]2

M(0)
4 +

σ4

ǫ
H

(1)
4 (ǫ)

∣

∣

∣

IR div.
. (B.7)

For the all-plus-helicity gravitons case, the tree amplitude M(0)
4 vanishes. The one-loop

amplitude is therefore infrared finite and equal to the one-loop infrared-finite hard function.

The one-loop amplitude can be computed using the double-copy procedure in Section 3.3.1.1

and is given by [119]

M(1)(1+, 2+, 3+, 4+) = −
(κ

2

)4 i

(4π)2

(

[1 2][3 4]

〈1 2〉〈3 4〉

)2
(Ds − 2)2

240

(

s2 + t2 + u2
)

. (B.8)
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The two-loop infrared divergence is then

M(2)(1+, 2+, 3+, 4+)
∣

∣

IR div.
=− 1

ǫ

(κ

2

)6 i

(4π)4

(

[1 2][3 4]

〈1 2〉〈3 4〉

)2
(Ds − 2)2

120

(

s2 + t2 + u2
)

×
[

s log

(−s

µ2

)

+ t log

(−t

µ2

)

+ u log

(−u

µ2

)]

. (B.9)
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APPENDIX C

Two-Loop Ultraviolet Divergences from Vacuum

Integrals

In this appendix we compute the ultraviolet divergences of the integrals in Section 3.3.2.

The techniques are very similar to those used to study the one-loop ultraviolet proper-

ties of gravity in Section 3.3. However, before we can use them, we must deal with the

(−2ǫ)-dimensional components λp, λq, and λp+q in the numerators of the integrals using the

techniques in Section 4.1 of Ref. [144].

The effect of inserting factors of λp, λq, and λp+q into the planar and nonplanar double-

box integrals is very similar to inserting factors of v · p, v · q, and v · (p+ q), where

vµ ≡ ǫµν1ν2ν3k
ν1
1 kν2

2 kν3
3 . (C.1)

Example parameter insertions for factors of λi are given in Eq. (A.7). For polynomials in

v · p and v · q, we have

(v · p)8 →105

(

stu

8

)4
(Tq + Tpq)

4

∆4
,

(v · p)6(v · q)2 →
(

stu

8

)4 [

15
(Tq + Tpq)

2

∆3
+ 105

(Tq + Tpq)
2T 2

pq

∆4

]

,

(v · p)4(v · q)4 →
(

stu

8

)4 [

9
1

∆2
+ 90

T 2
pq

∆3
+ 105

T 4
pq

∆4

]

,

(v · p)4(v · q)2(v · (p+ q))2 →
(

stu

8

)4 [

9
1

∆2
+ 15

3T 2
q + 3T 2

pq − 2(Tq + Tpq)
2

∆3
+ 105

T 2
q T

2
pq

∆4

]

.

(C.2)
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These are valid for both the planar and nonplanar double boxes provided the corresponding

definitions for ∆, Tp, Tq, and Tpq given in Appendix A are used.

We can also relate polynomials in v ·p and v ·q to the λi. The four-dimensional component

of the loop momenta p can be written as

pµ[4] ≡ cp1k
µ
1 + cp2k

µ
2 + cp3k

µ
3 + cpvv

µ, (C.3)

where

cp1 =
1

2su
[−t(2p · k1) + u(2p · k2) + s(2p · k3)] ,

cp2 =
1

2st
[t(2p · k1)− u(2p · k2) + s(2p · k3)] ,

cp3 =
1

2tu
[t(2p · k1) + u(2p · k2)− s(2p · k3)] ,

cpv =− 4

stu
ǫµν1ν2ν3p

µkν1
1 kν2

2 kν3
3 = − 4

stu
v · p . (C.4)

We therefore have

p2 + λ2
p = p[4] · p[4] = scp1c

p
2 + tcp2c

p
3 + ucp1c

p
3 −

1

4
stu(cpv)

2 , (C.5)

or

λ2
p = − 4

stu
(v · p)2 + P̂p , (C.6)

where

P̂p ≡− p2 + scp1c
p
2 + tcp2c

p
3 + ucp1c

p
3 . (C.7)
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Similarly, we have

λ2
q = − 4

stu
(v · q)2 + P̂q ,

λ2
p+q = − 4

stu
(v · (p+ q))2 + P̂pq , (C.8)

where

P̂q ≡− q2 + s cq1c
q
2 + t cq2c

q
3 + u cq1c

q
3 ,

P̂pq ≡− (p+ q)2 + s(cp1 + cq1)(c
p
2 + cq2) + t(cp2 + cq2)(c

p
3 + cq3) + u(cp1 + cq1)(c

p
3 + cq3) . (C.9)

These relations, along with the parameter replacements in Eqs. (A.7), (C.2), allow us to

rewrite the integrals involving factors λi in terms of integrals involving tensor products

between the loop momenta and the external momenta. For a general function f(p · ki, q · ki),
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we have

∫

(λ2
p)

4f =− ǫ(1− ǫ)(2− ǫ)(3− ǫ)

105

(

8

stu

)4 ∫

(v · p)8f

=− 16ǫ(1− ǫ)(2− ǫ)(3− ǫ)

(1− 2ǫ)(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫

P̂4
pf ,

∫

(λ2
p)

3λ2
qf =− 16ǫ(1− ǫ)(2− ǫ)(3− ǫ)

(1− 2ǫ)(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫

P̂3
p P̂qf

+
12ǫ(1− ǫ)(2− ǫ)

(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫ P̂2
pf

∆
,

∫

(λ2
p)

2(λ2
q)

2f =− 16ǫ(1− ǫ)(2− ǫ)(3− ǫ)

(1− 2ǫ)(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫

P̂2
p P̂2

q f

+
16ǫ(1− ǫ)(2− ǫ)

(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫ P̂pP̂qf

∆

− 6ǫ(1 − ǫ)

(5− 2ǫ)(7− 2ǫ)

∫

f

∆2
,

∫

(λ2
p)

2λ2
qλ

2
p+qf =− 16ǫ(1− ǫ)(2− ǫ)(3− ǫ)

(1− 2ǫ)(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫

P̂2
p P̂qP̂pqf

+
4ǫ(1− ǫ)(2− ǫ)

(3− 2ǫ)(5− 2ǫ)(7− 2ǫ)

∫ P̂p(P̂p + 2P̂q + 2P̂pq)f

∆

− 6ǫ(1 − ǫ)

(5− 2ǫ)(7− 2ǫ)

∫

f

∆2
, (C.10)

where a factor 1/∆ indicates that a shift in dimension of the integral should be made:

D → D + 2, ǫ → ǫ− 1 (ǫ’s in prefactors in Eq. (C.10) should not be shifted, however).

Once we have integrals in a form involving tensor products between the loop momenta

and external momenta, we expand in small external momenta to reduce to logarithmically

divergent integrals, just as we did in the one-loop case. This gives us vacuum integrals.

We then reduce the tensors involving loop momenta using Lorentz covariance and insert an

infrared mass regulator. By integrating we obtain the ultraviolet divergences. Since every

prefactor in Eq. (C.10) contains a factor of ǫ, to get the ultraviolet divergence, we only need

the 1/ǫ2 pole of the integrals on the right-hand side. These leading contributions have no

dependence on the mass regulator, so we are unaffected by subdivergence issues due to the

mass regulator. The ultraviolet divergences of the planar and nonplanar double-box integrals
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are then

IP
4 [(λ

2
p)

4](s, t) = O(ǫ0) ,

IP
4 [(λ

2
p+q)

4](s, t) = − 1

(4π)4
14s+ t

90ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

3λ2
q ](s, t) = − 1

(4π)4
s

480ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

3λ2
p+q](s, t) =

1

(4π)4
2s+ t

360ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

2(λ2
q)

2](s, t) = O(ǫ0) ,

IP
4 [(λ

2
p)

2(λ2
p+q)

2](s, t) =
1

(4π)4
s+ 2t

720ǫ
+O(ǫ0) ,

IP
4 [(λ

2
p)

2λ2
qλ

2
p+q](s, t) =

1

(4π)4
s

720ǫ
+O(ǫ0) ,

IP
4 [λ

2
pλ

2
q(λ

2
p+q)

2](s, t) = − 1

(4π)4
s

240ǫ
+O(ǫ0) ,

IP
4 [λ

2
p(λ

2
p+q)

3](s, t) = − 1

(4π)4
s

40ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
4](s, t) = − 1

(4π)4
s

80ǫ
+O(ǫ0) ,

INP
4 [(λ2

p+q)
4](s, t) = − 1

(4π)4
s

80ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
3λ2

q ](s, t) = O(ǫ0) ,

INP
4 [(λ2

p)
3λ2

p+q](s, t) = − 1

(4π)4
s

80ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
2(λ2

q)
2](s, t) = − 1

(4π)4
7s

1440ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
2(λ2

p+q)
2](s, t) = − 1

(4π)4
s

160ǫ
+O(ǫ0) ,

INP
4 [(λ2

p)
2λ2

qλ
2
p+q](s, t) =

1

(4π)4
s

1440ǫ
+O(ǫ0) ,

INP
4 [λ2

pλ
2
q(λ

2
p+q)

2](s, t) = O(ǫ0) ,

INP
4 [λ2

p(λ
2
p+q)

3](s, t) = − 1

(4π)4
s

160ǫ
+O(ǫ0) . (C.11)

The bow-tie integrals do not contain infrared divergences, and their ultraviolet divergences

were computed in Appendix A. Combining all the pieces then gives us the ultraviolet diver-
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gence in Eq. (3.36).
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APPENDIX D

SUSY BCJ Box Numerators

In this appendix, we provide the four-dimensional N = 4 and N = 1 (chiral) BCJ box

numerators with formal polarization vectors. As discussed in Section 4.2, supersymmetry

reduces the maximum power of loop momentum in our box numerators. Specifically, it is

reduced from O(p4) in N = 0 to O(p2) in N = 1 and O(p0) in N = 4. While clearly

seen in the N = 4 expression below, this property is not explicit in the N = 1 (chiral)

expression. The improved power counting is only manifest when the inverse propagators in

the numerators are expanded. For example, observing the labeling convention of Fig. 4.1 for

the box numerator with external-leg ordering (1, 2, 3, 4), we would have to expand p23 as so,

p23 = (p− k1 − k2)
2 = p2 − 2 (p · k1)− 2 (p · k2) + s2. (D.1)

The N = 4 BCJ box numerator in four dimensions is as follows:

nN=4
1234;p = −i

[

−1
4
E13 E24 s t + 1

2
E14 E23 s t+ 1

2
E14 E23 s2 − E13 K24 K42 s

− E24 K23 K41 s− 2 E12 K23 K34 s− E13 K12 K34 s− 2 E23 K24 K31 s

− 2 E12 K23 K24 s− 2 E13 K12 K24 s− 2 E14 K12 K23 s− 2 E14 K12 K13 s
]

+ cyclic. (D.2)

Even with formal polarization vectors, we can identify this as stAtree
4 (1, 2, 3, 4).

143



The N = 1 (chiral) BCJ box numerator in four dimensions is

n
N=1(chiral)
1234;p = −i

[

−1
4
E12 E34 p21 p23 + 1

4
E13 E24 p21 p23 + 1

4
E12 E34 p21 p22 − 1

4
E13 E24 p21 p22

+ 1
4
E14 E23 p21 p22 − 1

4
E14 E23

(

p21
)2 − E23 K41 P44 p

2
1 + E12 K34 P33 p

2
1 − E24 K31 P33 p

2
1

+ E34 K41 P22 p
2
1 + E34 K31 P22 p

2
1 + E13 K24 P22 p

2
1 − E23 K34 P11 p

2
1 − E23 K24 P11 p

2
1

− 1
4
E12 E34 p22 s+ 1

4
E13 E24 p22 s− 1

4
E14 E23 p22 s+ 1

4
E14 E23 p21 s− 1

2
E13 P22 P44 s

− 1
2
E24 P11 P33 s+ E34 P11 P22 s+

1
2
E34 K41 K42 p

2
1 +

1
2
E34 K31 K42 p

2
1 +

1
2
E13 K24 K42 p

2
1

− 1
2
E14 K23 K42 p

2
1 − 3

2
E23 K34 K41 p

2
1 − E23 K24 K41 p

2
1 +

1
2
E34 K12 K41 p

2
1 − 1

2
E23 K31 K34 p

2
1

+ 1
2
E12 K23 K34 p

2
1 − 1

2
E23 K24 K31 p

2
1 − 1

2
E24 K23 K31 p

2
1 +

1
2
E34 K12 K31 p

2
1

+ 1
2
E13 K12 K24 p

2
1 − 1

2
E14 K12 K23 p

2
1 −K24 K42 P11 P33 + 2K23 K34 P11 P22

+ 2K13 K34 P11 P22 +
1
2
E34 K41 P22 s− 1

2
E13 K34 P22 s− 1

2
E13 K24 P22 s+

1
2
E14 K23 P22 s

+ 1
2
E34 K42 P11 s+

1
2
E23 K34 P11 s+

1
2
E23 K24 P11 s− 1

2
E24 K23 P11 s+

1
2
E34 K12 P11 s

+K23 K34 K42 P11 −K23 K24 K42 P11 −K13 K24 K42 P11 −K12 K23 K24 P11

−K12 K13 K24 P11 − 1
16

E13 E24 s t+ 1
8
E14 E23 s t− 1

4
E13 K24 K42 s+

1
2
E23 K24 K41 s

− 1
4
E24 K23 K41 s− 1

4
E13 K12 K34 s− 1

2
E13 K12 K24 s +

1
2
E14 K12 K23 s− 1

4
K13 K24 K31 K42

− 1
2
K12 K23 K34 K41 −K12 K23 K31 K34 − 1

2
K12 K13 K31 K34 −K12 K23 K24 K31

−K12 K13 K24 K31

]

+ cyclic. (D.3)
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APPENDIX E

Determination of the Phase Factor

We determine the phase factor, Phi
(i; j1, j2), through comparison with the spinor-helicity

representation of the polarization vectors (cf. Ref. [80]):

εµ±(i; j1) ≡ ±
〈

j∓1
∣

∣ γµ |i∓〉√
2
〈

j∓1 |i±
〉 . (E.1)

Using the spin sum completeness relation in the massless limit,

/p =
∑

s=1,2

us(p)ūs(p) = u+(p)ū+(p) + u−(p)ū−(p) =
∣

∣p+
〉 〈

p+
∣

∣ +
∣

∣p−
〉 〈

p−
∣

∣ , (E.2)

and

〈

i−|j+
〉

≡ 〈ij〉 ,
〈

i+|j−
〉

≡ [ij] ,
〈

i+|j+
〉

= 0,
〈

i−|j−
〉

= 0, (E.3)

we find, for kj2 6= ki 6= kj1,

kj2 · εhi
(i; j1) = ±

〈

j∓1
∣

∣ /kj2
|i∓〉√

2
〈

j∓1 |i±
〉 =















+ 〈j1j2〉[j2i]√
2〈j1i〉 , if hi is +

− [j1j2]〈j2i〉√
2[j1i]

, if hi is −
= −

√

sj1j2sj2i
2 sj1i

e−ihi(φij2
−φj1j2

+φij1).

(E.4)
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Without loss of generality, we compare this result to the inner product of kj2 with the

momentum basis representation of Eq. (4.19),

kj2 · εhi
(i; j1, j2) = Phi

(i; j1, j2)

√

sj1j2sj2i
2sj1i

, (E.5)

to conclude that

Phi
(i; j1, j2) = −e−ihi(φij2

−φj1j2
+φij1). (E.6)

Since there are only three independent external momenta, there is nothing special about

choosing kj2 as both the second reference momentum in Eq. (E.5) and as the momentum to

contract with the polarization vectors in Eqs. (E.4) and (E.5). The other choice leads to the

same result: there is a minus sign from momentum conservation on the external legs and

also a minus sign due to momentum conservation in the phase factors from Eqs. (4.13).
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