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ABSTRACT 22 

Advances in remote sensing, informatics, software and microprocessors enable meter-23 
resolution two-dimensional (2D) hydrodynamic models that produce nearly a census of 24 
ecohydraulic conditions over long river segments with 105 to 108 computational elements. 25 
It is difficult to test statistical and spatial model performance at such scope using fixed-26 
point velocity measurements, because field methods are so expensive, laborious, slow, and 27 
restricted by safety factors. This study evaluated low-cost water surface particle tracking by 28 
kayak with real time kinematic GPS for 2D model validation using 7.2 km of the lower 29 
Yuba River in California. Observed flows were between 15 to 140 m3/s, which were in-30 
channel up to and including bankfull conditions. The coefficients of determination between 31 
5780 observations and 2D model predictions were 0.79 and 0.80 for velocity magnitude 32 
and direction, respectively. When surface speed was downscaled and compared to modeled 33 
depth-averaged velocity, median unsigned difference was 15.5%. Standard hydrological 34 
model performance metrics affirmed satisfactory validation. Surface tracking provided the 35 
novel benefit of enabling validation of velocity direction, and that testing found satisfactory 36 
performance using all metrics. Having 10 to 1000 times more data enables robust statistical 37 
testing and spatial analysis of both speed and direction, which outweighs the loss of depth-38 
averaged data. Both fixed-point and kayak particle tracking methods are useful tools to 39 
help evaluate 2D model performance. 40 

Keywords: 2D hydraulic modeling; hydraulic validation; river velocity; river drifters; 41 
particle tracking 42 
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1. INTRODUCTION 44 

For over 3,000 years people have recorded water velocity according to its literal definition by 45 

tracking the displacement of surface particles along a path through time. According to Lumpkin 46 

and Pazos (2007), surface particle tracking of ocean currents has been a common practice for 47 

centuries, but real-time radio and satellite tracking modernized the technique to produce 48 

continuous velocity vector data (Swallow, 1955; Davis, 1991). Today there are ~2,000 ocean 49 

drifters perpetually. Surface drifter data is taken as observational truth to calibrate other ocean 50 

observation systems (Ducet et al., 2000) and validate ocean circulation models (Lumpkin & 51 

Garzoli, 2005; Blockley et al, 2012). Overall, surface drifters are a legitimate, accurate, and 52 

widely accepted technology for surface water velocity observation (Fratantoni, 2001). Two 53 

journal articles (Stockdale et al., 2007; Han et al., 2016) and some conference proceedings tested 54 

drifters in nontidal rivers. Given the utility of drifters in validating ocean circulation models, this 55 

study evaluates that for two-dimensional (depth-averaged) hydrodynamic (2D) models of rivers. 56 

1.1. Need For More 2D Model Validation 57 

Today, 2D modeling is essential for river research, management, and rehabilitation, because it 58 

addresses spatial patterns of geomorphic processes and ecological conditions. This ascent 59 

synergizes with rapid progress in meter-resolution remote sensing (Mandlburger et al., 2015), 60 

faster microprocessors, large informatics systems, and computational parallelization (Huxley & 61 

Syme, 2016). Studies aiding 2D model development that address boundary conditions (Casas et 62 

al., 2010), wetting/drying schemes (Tchamen & Kahawita, 1998), and mesh discretization 63 

(Horritt et al., 2006) guide our understanding of model capabilities. 64 



One aspect of 2D modeling is being left behind – validation of velocity vectors. Airborne, 65 

boat, and ground technologies provide an abundance of depth data, while velocity validation 66 

remains reliant upon fixed-point, scaler speed measurement. Few studies report vector validation, 67 

as it requires precise orientation and a multidimensional sensor. Discussion of velocity methods 68 

and validation, including advantages and limitations, are in the supplementary file. 69 

1.2. Large-Scale Particle Image Velocimetry 70 

Large-scale particle image velocimetry (LSPIV) can map surface velocity vectors in a fixed, 71 

small domain by querying image frames through time (Fujita et al., 1998). Commonly, river 72 

LSPIV involves mounting cameras onto telescoping poles, helicopters, or electric drones, 73 

depending on cost, stability, flight time, and hazard considerations. Le Coz et al. (2010) 74 

demonstrated both the potential and numerous challenges with this technology (see 75 

supplementary file for further details). 76 

1.3. Kayak Surface Particle Tracking 77 

A handful of studies have piloted surface drifters with differential GPS in low-wind rivers to 78 

obtain velocity along floating paths, but for meter-scale 2D models, real-time kinematic (RTK) 79 

GPS is required (see supplementary section 1.3 for details). Drifters have fewer weather, flow, 80 

and accessibility limitations than LSPIV and data processing is simpler. They can travel long 81 

distances, operate for many hours, and sample a greater diversity of hydraulic conditions. For 82 

example, in one six-hour float of 14.3 km, two people recorded 10,250 observations from 0–4.2 83 

m/s, including in gyres and rapids. 84 

When a river has gradually varying changes to velocity, then depth and the thickness of 85 

the surface layer moving at the same velocity are key differences between oceans and rivers that 86 



change the technological specifications for a drifter. Ocean drifters use drogues that are 87 

submerged, tethered weights (or parachutes) to resist wind and move with the thick surface layer. 88 

However, rivers are usually too shallow for drogues. Even without drogues, passive drifters get 89 

stuck on the bed (Stockdale et al., 2007) or in vegetation. 90 

Often 2D models simulate complex hydraulics with abrupt current accelerations that 91 

drifters do not adjust to for some distance. This occurs at riffle/rapid entrances and exits, 92 

dissipating jets, in shear zones between fast and slow currents, and in flow recirculations (i.e. 93 

eddies or gyres) (Figure 1). The heavier a drifter is, the more it deviates when currents change 94 

abruptly. Consequently, drifters in these settings cannot be passive. They need help to move with 95 

accelerations. Today, the best solution is manual course correction. 96 

This study investigated such challenging hydraulics. For a 100-m wide river, a manned 97 

kayak is a suitable drifter, because it is < 1% of channel width and as wide as a computational 98 

element. Hull displacement depends on boat specifications and operator weight, but can be ~10 99 

cm. Operator weight aids drifter submergence deeper into the surface layer. 100 

We have performed seven years of testing kayak drifter observation with people of 101 

different paddling skills. Most of the time no manual correction is needed. People can be quickly 102 

trained to make infrequent minor adjustments in complex hydraulics. Even a small vector 103 

deviation is readily evident and countered almost instantly. Abundant bubbles and particles move 104 

with the current for a kayaker to monitor current pattern. More may be added as needed. 105 

Having a mindful operator enables beneficial operations that improve data collection, 106 

processing, and analysis. An operator can start/stop data collection in response to GPS precisions 107 

or an unsatisfactory kayak vector. An operator has control over the conditions being sampled to 108 



sample diverse conditions in complex hydraulics at question in 2D model performance (Brown 109 

& Pasternack, 2012). 110 

1.4. Study Objectives 111 

Given the goal of enhancing 2D model validation, study objectives involved (i) evaluating the 112 

capabilities of kayak surface velocity vector measurement for 2D model validation; (ii) 113 

comparing model-prediction errors of this technique with those of traditional fixed-point 114 

validation; (iii) testing for discharge dependence of steady-state model performance; and (iv) 115 

using drifter data to better evaluate spatial uncertainties in 2D models. Even though data from 116 

drifters and fixed-point observations are different and the metrics to decide what constitutes 117 

better performance vary between scientists, putting both types of data through thorough 118 

validation procedures provides insights about their advantages and disadvantages. Secondarily, 119 

the supplementary file presents a model validation sensitivity analysis of the parameter used to 120 

convert surface velocity to depth-averaged velocity. Regardless of surface particle tracking 121 

method, this study develops and tests how such velocity data is used to evaluate 2D models. 122 

Given strict journal page limits, full details and extra information for all sections of this study are 123 

provided in a supplementary file, including figures referred to as “Figure S#” below. 124 

2. STUDY AREA 125 

The regulated 37.5 km lower Yuba River (LYR) begins downstream of Englebright Dam, fed by 126 

a 3,490 km2catchment (Figure 2). It is a wandering cobble/gravel-bed river (Figure 1) with 127 

sparse woody vegetation, little entrenchment, an average channel slope of 0.16%, and an average 128 

bankfull width of 97 m. Daguerre Point Dam (DPD) is a low-height, historic, partial sediment 129 

barrier present in the LYR that influences the longitudinal profile of the river. Water diversions 130 



at DPD remove ~ 1–10 m3/s of the flow. River and diversion flows are quantified by gaging 131 

stations along the river, as explained in the supplementary materials file. Due to the storage of 132 

historical hydraulic mining sediments in the river valley and a relatively unconstrained winter 133 

flood regime, the LYR is unique in the region for having rejuvenation of diverse geomorphic 134 

units and streambed substrate (Wyrick & Pasternack, 2014; Pasternack & Wyrick, 2016). 135 

3. METHODS 136 

3.1. 2D Hydrodynamic Modeling 137 

Topography and bathymetry were mapped to produce a 1-m resolution DEM using ground-138 

based, boat-based, and airborne methods (Carley et al., 2012). To exemplify data resolution, 139 

within and beyond the wetted area at 24.92 m3/s, overall point density downstream of the 140 

Highway 20 Bridge was 59 and 554 points per 100 m2, respectively. As previous published in ten 141 

journal articles (e.g. Wyrick & Pasternack, 2014; Gonzalez & Pasternack, 2015, Gibson & 142 

Pasternack, 2016), SRH-2D (v. 2.1) was used to simulate meter-scale, non-vegetated, in-channel 143 

river hydraulics in the LYR from 8.50 to 3,126 m3/s (0.06 to 22 times bankfull discharge). 144 

3.2. Fixed-Point Hydraulic Data 145 

Fixed-point hydraulic data were obtained using standard methods detailed in the supplementary 146 

materials. Locations were within close radio range (~ 0-3 km) of an RTK GPS base station to 147 

keep time latency low and base station corrections more accurate. A total of 199 fixed-point 148 

observations of depth and velocity were made at ~ 2 m intervals along 17 cross sections (Figure 149 

S1), while a different set of 199 points captured water surface elevations. Data were collected on 150 

different dates at steady, regulated discharges of 15.26, 22.51, and 22.57 m3/s. 151 



3.3. Kayak Velocity Measurement 152 

Kayak drifter velocity vector data (5780 observations) were collected at six discharges (17.61–153 

141.9 m3/s) between December 15, 2009 and July 1, 2010 along 7.2 km, but this whole length 154 

was not traversed in one day. One path was done each day either upstream or downstream of 155 

DPD. There was no attempt to replicate or differentiate paths for different days or flows. The 156 

7.2-km length passed through 10 of the cross-sections. Others were located further upstream but 157 

still in the same river conditions. 158 

Kayakers simply got on a path and stayed on it. If the current took the boat closer to or 159 

father away from a bank, then so be it- that was left to chance. Today, we pause data collection 160 

frequently to move to different velocity streamlines. This maximizes the range of velocities 161 

observed, improves equal-effort sampling across the velocity range, and allows mapping of 162 

recirculations. 163 

To evaluate the efficacy of the drifting strategy to sample diverse hydrogeomorphic 164 

conditions, kayak velocity point locations were analyzed for proximity to the riverbank toe (point 165 

distance tool in ArcGIS® 10.x) and presence within each of the in-channel morphological units 166 

(spatial join tool in ArcGIS® 10.x) mapped by Wyrick and Pasternack (2014). For the entire 167 

LYR, the average width between bank toes is 59.4 m, so the average distance from bank toe to 168 

centreline is 29.7 m. Relative to those metrics, the range of distances of kayak velocity 169 

observations away from the bank toe was 0.03 – 37.6 m (median of 13.7 m, standard deviation of 170 

6.9 m). When “close to bank” is defined as within 1/5 of the average half width of the river (< 171 

5.94 m), then 13% of kayak velocity data met this criterion. Turning to morphological 172 

representation, fast glide (1711 points) and run (1134) were sampled most. Chute, pool, slow 173 

glide, riffle, and riffle transition each had 393-802 observations. The least sampled unit was 174 



slackwater, which still had 97 observations. These data substantiate that repeatedly drifting along 175 

a single streamline for several kilometers per day for a few days will capture hydraulic diversity. 176 

Velocity vector equations are in the supplementary materials file. Velocity magnitude 177 

was calculated as the horizontal displacement from one GPS position to the next, divided by the 178 

change in time between position measurements. This value was assigned to the midpoint 179 

coordinates. Velocity direction was assigned using the differences in northing and easting of 180 

consecutive position measurements. 181 

Kayak position was measured on a fixed time interval using a Trimble® R7 RTK GPS 182 

rover linked by radio to a local R7 base station GPS within 3 km of the rover, yielding 183 

centimetre-to-decimetre scale horizontal accuracy. GPS satellite clocks are specified to record 184 

time to within 40 ns of Coordinated Universal Time (Allan et al., 1997), but GPS data collectors 185 

only store values to the nearest 1 s. Initially, measurements were recorded at 3-s intervals, but the 186 

time step was adjusted to 5 s in later runs (17.6 m3/s, 23.1 m3/s, and 141.9 m3/s) to reduce the 187 

relative effect of GPS time-recording precision limitations on velocity calculations. For a fixed 188 

sampling interval, it does not matter if the GPS clock is exactly on the integer second for each 189 

sample, only that the sampling keeps a constant interval. Because the method of determining 190 

time does not change over time, the sampling interval should remain fixed. In this case, slower 191 

velocities are more prone to error than fast velocities, because they involve shorter distances, so 192 

positional error is a larger fraction of distance. Velocity precision was calculated as the sum of 193 

the GPS horizontal precisions for the two positions used to compute a velocity divided by the 194 

time to traverse between the two positions. Any velocity with absolute precision worse than 0.03 195 

m/s was discarded, so a strict quality criterion was applied. 196 

3.4. Data Analysis 197 



3.4.1. Validation Data Preparation 198 

Validation data consisted of three types: fixed-point observations, unadjusted surface velocity 199 

vectors, and adjusted (depth-averaged) velocity magnitude. For each location of an observation, 200 

GPS coordinates were imported to ArcGIS®. Then model values there were interpolated from 201 

triangulated irregular networks built using the irregular, meter-scale point clouds of model 202 

outputs. 203 

3.4.2. Model Performance Indicators 204 

There are no standards for 2D model validation. Common metrics are reviewed by Pasternack 205 

(2011), while others exist for hydrological validation (Moriasi et al., 2007). Concepts and 206 

algorithms for validating 2D model velocity direction in river eddies are non-existent whereas 207 

atmospheric and ocean studies often report visual comparisons. Metrics and their threshold 208 

values are detailed in the supplementary file. 209 

Metrics used herein include (i) basic statistical measures for signed and unsigned 210 

deviations and percent differences; (ii) regression analysis metrics of slope, y-intercept, r2, p-211 

value, regression slope standard error, and regression intercept standard error; and (iii) the 212 

hydrological metrics Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the root mean 213 

square error-observations standard deviation ratio (RSR). Regression slope standard error is the 214 

average distance that observed values fall from the regression line and thus indicates how wrong 215 

the regression model is on average using the units of the response variable. 216 

3.4.3. Direct 2D Model Validation 217 

Validation metrics were computed using fixed-point depth and velocity data collected by 218 

wading. They were also computed using observed kayak surface velocity direction versus 219 



modeled velocity direction. For raw kayak surface velocity magnitude, the only viable test 220 

involved regression analysis as surface and averaged velocities are related and different only by a 221 

scaling coefficient (Hulsing et al., 1966; Rantz, 1982). That does not affect the regression’s 222 

coefficient of determination or p-value. 223 

3.4.4. Adjusting Kayak Surface Velocity To Mean Velocity 224 

A depth-averaged velocity constant (DAVC) of 0.71 was taken from unpublished profiles 225 

collected at one site on the LYR by the authors, which also matched vertical velocity profile data 226 

collected in a similar setting (Pasternack et al., 2006). Similar values of 0.72–0.79 were reported 227 

by Dramais et al. (2011) for similar conditions. A DAVC sensitivity analysis is in supplementary 228 

section 3.4.4. 229 

3.4.5. Testing Discharge Dependence of Model Error 230 

The number of flows to be observed at steady state and over what range for 2D model validation 231 

is an important open question. Flood hazard models are used to protect society from extreme 232 

events never observed, yet parameters are necessarily calibrated and validated during safe, steady 233 

in-channel flows. If any aspect of a 2D model is discharge-dependent, it is the bed-roughness 234 

parameter. 235 

The deeper water is relative to bed roughness, the lower Manning’s n might be. 236 

Alternately, the increase in very rough, shallow areas along channel flanks that comes with 237 

increasing discharge can offset the increased bed submergence in the thalweg to keep the overall 238 

cross-sectional roughness the same. Increased roughness along the flanks affects thalweg 239 

hydraulics (Abu-Aly et al., 2013). 240 



There are no 2D model validation datasets as of yet involving meter-scale resolution 241 

topography in which Manning’s n was held constant, and then velocity and depth errors were 242 

inversely related to each other and both a function of relative submergence. Thus, fixed-point 243 

and kayak validations were checked for any trend in velocity error as a function of depth. There 244 

are also no specific tests of discharge-dependence of model performance, either. The kayak 245 

method enabled such a test infeasible by wading. Validation was performed using only the subset 246 

of velocities recorded during the lowest and highest observed flows (17.6 m3/s and 141.9 m3/s) to 247 

determine whether validation results would differ from those using data from all flows and see if 248 

the data plotted along the same trend line. 249 

3.4.6. Comparing Validation Outcomes 250 

Practitioners want to know what value they get for deploying a traditional fixed-point strategy or 251 

this new kayak drifter strategy at the holistic level. This does not require head-to-head sampling 252 

of the same points by the two methods, as it is a comparison of two strategies. One benefit in 253 

attempting comparison is not to say that one method is necessary “better” than another, but to 254 

convey what kinds of outcomes are likely in each case and why. Another benefit is to reveal how 255 

one’s sense of whether a model is validated or not might depend on the type and abundance of 256 

data collected, which is currently not understood. Finally, each approach can do unique things, so 257 

what is gained by trying direction validation and more spatial analysis of speed error? Readers 258 

can judge for themselves what technical metrics and qualitative comparisons to value. 259 

In our own assessment of fixed-point and kayak surface data collection methods for our future 260 

validation needs, we found value in four comparisons. The ability of the kayak method to yield 261 

abundant, diverse direction data is uncontested by typical fixed-point sampling, so that is not 262 



comparable. First, the range of flows and depths where velocities were measured, as well as the 263 

range of velocities, are meaningful comparative indicators of what each strategy can accomplish. 264 

Model validation data should span actual conditions. Second, head-to-head scatter plot validation 265 

tests need a roughly uniform distribution of velocity values as well as enough points in each 266 

velocity bin to represent the distribution of prediction deviations about the mean value in each 267 

bin. This was assessed using the velocity statistical data for each method. Third, all quantitative 268 

validation metrics were compared between methods. Finally, locations with > 50% model error 269 

were compared for the two techniques with a histogram analysis. Considered together, these 270 

provided a broad-based evaluation of fixed-point versus kayak 2D model validation strategies 271 

without necessarily aiming to say that one is better than another. 272 

4. RESULTS 273 

4.1. 2D Model Validation Using Fixed-Point Velocities 274 

Fixed-point velocity magnitude data showed a typical 2D model validation outcome, with the 275 

points generally along a 1:1 line for observed versus modelled and the best-fit line showing a 276 

bias (Figure 3a). Model validation metrics using fixed-point data exceeded all performance 277 

standards (Table 1). Thus, the 2D model is validated. 278 

4.2. 2D Model Validation Using Kayak Observations 279 

4.2.1. Statistical Velocity Validation 280 

The results of DAVC sensitivity analysis are in the supplementary file. Using the DAVC value 281 

of 0.71, performance indicators surpassed validation thresholds farther than they did using fixed-282 

point data (Figure 3b). There is so much data in the plot that it is not possible to see the outcome 283 



that the majority of the residuals are very close to the 1:1 line; thus, it is necessary to focus on 284 

the quantitative performance metrics (Table 1). Once again, the 2D model is validated by every 285 

single metric comparing against kayak observations. Considering the standard error of the 286 

regression slope and intercept values, both are low and they help to appreciate that a regression 287 

plot with thousands of points often hides the true precision of the results, which in this case is 288 

quite high. In fact, the standard error of the slope for the kayak data was 8.4 times lower than that 289 

for the fixed-point data, while that of the intercept was 5.9 times lower. Similar to fixed-point 290 

data, kayak data showed a bias in which low values were over-predicted and high values under-291 

predicted, indicating the typical 2D model problem of insufficient lateral velocity gradients. 292 

Descriptive statistics revealed a mean difference of -0.095 m/s, standard deviation (SD) 293 

of 0.228 m/s, mean velocity error of 4.4%, and error SD of 29.0%. Similar to the fixed-point data 294 

and other studies, the kayak data found the largest errors at the lowest observed velocities 295 

(Figure 4). The unsigned (aka absolute value) median error was 15.5%. Only seven observations 296 

had absolute errors > 160% and they were all for very low velocities. When velocity was above 297 

0.5 m/s, errors were almost all < 100%. Considering the cumulative distribution function of 298 

velocity error for all the kayak data, 12.7, 58.7, and 90% of the modeled values were within 0.03, 299 

0.15 m/s and 0.34 m/s, respectively. 300 

4.2.2. No Discharge Dependence of Model Error Found 301 

When steady state model performance was judged using only velocities observed at the highest 302 

and lowest flows (n=1,336; DAVC=0.71), the r2 was 0.80 and the slope was 0.90 (Figure 5). 303 

This represents a 1.4% difference in the r2 and a 9.4% difference in slope with the validation 304 

performed for the entire dataset. The mean difference in velocities and SD was -0.072 m/s and 305 

0.219 m/s, respectively, while the mean error was 6.1% (Table 2a). These represent 24, 4, and 306 



39% changes, respectively, from the values obtained from the entire dataset. Considering the 307 

cumulative distribution function of velocity error using only velocities observed at the highest 308 

and lowest flows revealed that 12.5, 61.9, and 90.0% of modeled values were within 0.03, 0.15, 309 

and 0.38 m/s, respectively. 310 

When velocity deviations between the model and fixed-point data were regressed against 311 

observed depth, there was no significant trend. The same outcome was obtained when deviations 312 

between model and kayak velocities were regressed against modeled depths. These results 313 

further affirm that there is no discharge dependence on model performance and there is no 314 

control of relative submergence on velocity error when using a constant Manning’s n in a 2D 315 

model of a gravel/cobble river over the full range of in-channel flows. These findings are 316 

important, as they go against expectation. Most likely, relative submergence is too small of an 317 

effect for in-channel flows. If it matters anywhere, it is in the shallowest edge zone and in 318 

vegetated terrain, where Manning’s n increases to values of 0.1-0.3. 319 

4.2.3. Spatial Velocity Validation 320 

Spatial analysis of velocity deviations enabled by kayak data revealed consistent locations of 321 

poor 2D model performance, either associated with localized DEM deficiencies or steep riverbed 322 

slopes. The discussion of the former is not novel and is relegated to the supplementary file. The 323 

study found consistently large differences at the entrances and exits of riffles, which is where 324 

abrupt slope changes occur (Figure 6). Because the kayak was manned and kept moving at the 325 

speed of the water in these locations, this error is attributable to the 2D model. Entrances and 326 

exits of riffles are often steeply sloped, causing a violation of the 2D model’s horizontal flow 327 

assumption in exactly this fashion. The average difference for the three areas shown in Figure 6 328 

was -0.18 m/s, with an absolute difference of 0.36 m/s, both of which are about double the values 329 



for the entire dataset. We have observed this effect before in our other unpublished validation 330 

datasets with fixed-point data, so we are confident to attribute this to the 2D model, but it is rare 331 

to have cross-sections in these locations that are challenging to holding position in (whether by 332 

wading or by motorboat), so there has been insufficient data to see this longitudinal effect clearly 333 

until now. 334 

4.2.4. Directional Validation 335 

Velocity direction validation plots and metrics substantially exceeded common threshold values 336 

for model performance (Table 1; Figure 7; Figure S8), though there were subpar locations. 337 

Standard error of the regression slope and intercept were extremely low. The 2D model generally 338 

performed within the 9° criterion (Table 2b). The mean raw direction difference was -0.11° with 339 

a SD of 9.7°. Histogram analysis of differences revealed that 15% of model predicted values 340 

were within 1° of observed values, 62% were within 5°, and 86% were within 10°. The mean 341 

absolute error was 2.7% with a SD of 3.8%. A similar analysis of the directional error showed 342 

that 88%, 98%, and 99.8% of predicted values had errors less than 5%, 10%, and 25%, 343 

respectively. 344 

Although almost all differences were < 45°, there were 20 outliers. Of these, half 345 

occurred in model-predicted eddies along a complex bank that the kayak did not experience at 346 

those locations (Figures S5 and S8). This problem is attributable to mesh structure and resolution 347 

compared to submeter effects of topographic roughness along the water’s edge. Modelers do not 348 

carefully design meter-scale mesh structure along banks for long distances, and bank conditions 349 

changes with discharge anyway. 350 



Another effect observed in eddy validation involved the occurrence of a model eddy 351 

slightly shifted or scaled differently than the real eddy. This small spatial difference can cause a 352 

large apparent error in magnitude when compared at a fixed point, even if the results are correct 353 

for the same relative position in an eddy. Thus, head-to-head velocity direction comparisons are 354 

problematic in the vicinity of eddies.  355 

4.3. Comparing Validation Outcomes 356 

The maximum estimated depth-averaged kayak velocity was 2.44 m/s (double that measured 357 

while wading). The kayak data r2 was 0.22 higher than that for fixed-point data, backed by an 358 

order of magnitude more points to assess statistical assumptions and confidence. The smallest 359 

kayak regression slope was 0.9 (DAVC=0.64) and even that was larger than the highest 360 

benchmark established by Lane et al. (1999). Comparison of locations with error > 50% model 361 

error is in the supplementary file. 362 

Histograms of observed velocities between the two methods show that kayak 363 

measurements had a better distribution (Figure 8). Nearly 30% of fixed-point measurements 364 

were 0.25–0.5 m/s, while kayak-observed velocities had a peak with only 25% between 0.5–0.75 365 

m/s. Approximately 60% of velocities were < 1 and 0.75 m/s for fixed-point and kayak data, 366 

respectively. The upper tail is noticeably larger for kayak data. In the future, if mindful effort 367 

was made to direct the kayak through diverse and unwadable conditions, then the kayak dataset 368 

would far exceed the range and value of a fixed-point dataset. 369 

It was demonstrated in Section 4.2.3 that there were discrepancies between modeled and 370 

observed kayak velocities into and out of riffles. Velocities were measured on one of these riffles 371 

(Figure 6b) during the cross-sectional fixed-point survey (Cross-sections 3 and 4). Side-by-side 372 

visual inspection of both sets of data (Figure 9) at cross-section 4 revealed the trend that 373 



measurements made on the inside one-half of the channel (river-right) had larger differences 374 

(average absolute difference = 0.42 m/s) than the measurements made on the outside one-half of 375 

the channel (river-left) (average absolute difference = 0.20 m/s). This observation was consistent 376 

for both velocity measurement methods suggesting a 2D model problem, not a kayak method 377 

problem. 378 

5. DISCUSSION 379 

Using common fixed-point validation methods, our 2D model performed on par with scientific 380 

literature. The same occurred using kayak data. Most people prefer to get an outcome with less 381 

effort and lower cost. Having established satisfactory performance from both strategies, 382 

discussion focuses on the additional benefits enabled by kayak velocity reconnaissance. The 383 

supplementary file includes two additional subsections that detail limitations and future 384 

improvements. 385 

5.1. Improved Sampling of Deep And Fast Areas 386 

Compared to the < 1.3 m wadable depths for fixed-point measurement in the ambient currents, 387 

the kayak had no depth or velocity constraint in the testbed river. This also enabled a wide range 388 

of discharges to be sampled, including a flow above the representative bankfull discharge that 389 

covered point and medial bars. This capability is especially important for validating 2D models 390 

in floods and steeper mountain rivers (Pasternack & Senter, 2011). Kayaks use no fuel and 391 

require less maintenance and set-up time than a motorboat. Some comparison to acoustic 392 

Doppler current profiling is discussed in the supplementary materials file as is the discharge-393 

dependence analysis. 394 



5.2. Improved Sampling Of Statistical Structure 395 

Statistical analysis of model performance using kayak data differed from that using fixed-point 396 

data, because the former involved an order of magnitude more data spanning a wider range of 397 

flows, depths, and velocities. Collection of kayak data is less time consuming, so the same effort 398 

by both methods yields a substantial difference in test data. These advantages provide a 399 

beneficial capability for characterizing the statistical structures of deviation residuals. Specific 400 

numerical outcomes on statistical performance are discussed in the supplementary materials file. 401 

This study also showed that the kayak method more evenly represented velocities across 402 

a wider range (Figure 8). A 2D model can over-predict low velocities and under-predict high 403 

velocities, so a higher range, more evenly distributed dataset aids testing for this. May et al. 404 

(2009) found a significant local bias of this nature, but that study was impacted by the 405 

occurrence of most observations in the 1.5–3.0 m/s range. 406 

Kayak velocity measurements were made along longitudinal transects in this study, but 407 

paths were not always centered on the thalweg. As a result, data spanned morphological unit 408 

types with hundreds of points each and sampled all positions across the channel. This more 409 

appropriately represented the complete range of varying hydraulics typical of low-flow velocity 410 

fields in shallow gravel-bed rivers compared to the fixed-point approach that miss important 411 

transitions and peak velocities. 412 

5.3. Improved Spatial Testing 413 

Another novel outcome of this study was that modelers can now map and compare observations 414 

for long river segments using kayak drifters. When mapped, areas with higher uncertainty that 415 

would benefit from multiple sampling runs can be easily identified. In particular, for this study 416 



there were consistently large differences between model and observed results at the entrances 417 

and exits of riffles using both observational methods (Figure 6). With bathymetric LiDAR and 418 

multibeam echosounding, meter to sub-meter resolution 2D models are reaching the natural 419 

limitation in accuracy imposed by their inherent structural assumptions regarding 2D flows and 420 

sub-grid scale turbulence. 421 

5.4. Putting The 2D In 2D Model Validation 422 

The ability of surface particle tracking to map velocity direction adds a sorely needed dimension 423 

to 2D model validation. Test results showed a strong correlation between observed and predicted 424 

flow direction. The averaged and measured directions matched up well for the ambient flow, and 425 

where vectors converged or diverged. The more flow obstructions a river has, the more eddies it 426 

will have and thus the greater need for more comprehensive spatial pattern analysis of velocity 427 

vectors. 428 

Using a fixed-point method with a multi-axis sensor adds a significantly cumbersome 429 

requirement of precisely characterizing sensor direction in the same coordinates as used in a 2D 430 

model. The kayak, by contrast, was carried along by the water, which eliminated the uncertainty 431 

about direction of flow. GPS data collection with the kayak is natively set to collect data in the 432 

same coordinate system as the 2D model. Although some error is inevitable due to kayak 433 

momentum and GPS time-recording precision, operator course corrections was anecdotally 434 

highly beneficial. Direction validation is now practical and cost effective. 435 

6. CONCLUSIONS 436 

No hydrodynamic model is free of uncertainty, so modelers are responsible for evaluating and 437 

conveying limitations to stakeholders. As a community, 2D hydraulic modelers should tackle 438 



spatial patterns of velocity deviation and offer diverse statistical validation metrics. Standardized 439 

methods using drifter data can provide those advancements. With regard to the four primary 440 

objectives, this study found that: 441 

• Kayak surface velocity tracking is well suited for 2D model validation (section 4.2). 442 

• On a comparative basis, kayak data outperformed fixed-point data for all but one metric 443 

(sections 4.3 and 5). There is no metric that fixed-point methods can obtain that kayak 444 

methods cannot also obtain to test a 2D model. 445 

• There is no discharge dependence of 2D model performance in most cases, because there 446 

is nothing fundamentally different about open-channel hydraulics over a wide range of 447 

flows in many settings (section 4.2.2). 448 

• Kayak surface velocity tracking provides significantly more data for the same cost 449 

compared to fixed-point observation, it enables evaluation of velocity spatial patterns, 450 

and it addresses velocity magnitude direction (sections 4.2.3 and 4.2.4). 451 

Each data collection approach has assumptions, uncertainties, and limitations, though 452 

people are well acclimatized to those for fixed-point methods and so tend to downplay them. 453 

Although there is uncertainty when choosing a DAVC, the numerous benefits of kayak mapping 454 

discovered in this study suggest that practitioners should add this capability to more completely 455 

validate model predictions. Nevertheless, there are times when fixed-point methods are more 456 

useful than kayak methods, too. 457 

7. GEOLOCATION 458 

39°13′13″ N, 121°20′7″ W 459 
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Velocity
Validation metrics. Fixed-point Kayak direction
Trendline slope 0.78 1.00 0.90
Trendline r2 0.57 0.79 0.80

Regression slope 
standard error 0.0455 0.0054 0.0059

Regression intercept 
standard error 0.035 0.006 1.24
NSE 0.52 0.75 0.79
PBIAS -4.40% 9.87% 0.05%
RSR 0.69 0.50 0.46

Velocity magnitude

Table 1. Velocity validation metrics comparing fixed-point and 
kayak observations.

Note. NSE = Nash–Sutcliffe efficiency; PBIAS = percent bias; 
RSR = root mean square error‐observations standard deviation 
ratio.



Statistic VDiff ABS(VDiff) VError ABS(VError)
Mean -0.072 0.163 6.1% 18.2%
Standard Error 0.006 0.004 0.6% 0.4%
Median -0.066 0.109 8.3% 14.1%
Standard Deviation 0.219 0.162 22.8% 15.0%
Range 2.011 1.238 167.0% 94.5%
Minimum -1.238 0.000 -72.5% 0.0%
Maximum 0.772 1.238 94.5% 94.5%

Statistic DirDiff ABS(DirDiff) DirError ABS(DirError)
Mean -0.11 5.49 -0.06% 2.66%
Standard Error 0.13 0.10 0.06% 0.05%
Median -0.01 3.75 0.00% 1.81%
Standard Deviation 9.65 7.94 4.65% 3.82%
Range 406.06 228.48 196.68% 102.04%
Minimum -228.48 0.00 -102.04% 0.00%
Maximum 177.58 228.48 94.64% 102.04%

(A) Velocity magnitude (m/s)

(B) Velocity direction (deg)

Table 2. Descriptive statistics for modeled versus kayak-observed highest and 
lowest velocity magnitude and direction. ABS is the absolute value.



Figure Captions 564 

Figure 1. Photos illustrating the diversity of hydraulic conditions on the low Yuba River. 565 

Figure 2. Lower Yuba River corridor below the Highway 20 Bridge, its local and regional 566 

context, 2D model reach domains, and geomorphic reaches. 567 

Figure 3. Model predicted depth-averaged velocities versus observations from (a) fixed-point 568 

measurement and (b) kayak measured velocities using DAVC=0.71. It is not possible to convey 569 

the small residuals of the majority of kayak points, so refer to the standard error of the slope 570 

metric in the text. 571 

Figure 4. Absolute velocity error versus observed kayak velocities (DAVC = 0.71). 572 

Figure 5. Predicted model velocities versus kayak-based velocity results (DAVC = 0.71) for the 573 

highest and lowest flows in the study (141.9 and 17.6 m3/s, respectively). 574 

Figure 6. Differences between modeled and observed kayak velocities near riffles. 575 

Figure 7. Observed versus model-predicted direction of flow. The largest errors are in model-576 

predicted eddies that were either not present in reality or were not located where the kayak 577 

drifted. Even a small difference in model eddy size and shape can cause large directional 578 

deviations. 579 

Figure 8. Percent distribution of 2D model velocity errors binned by observed velocity, 580 

comparing results between fixed-point and kayak datasets. 581 

Figure 9. Differences of kayak and cross-section fixed-point velocities with modeled velocities 582 

showing consistency in trends across the channel. 583 

584 
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Kayak drifter surface velocity observation for 2D hydraulic model 1 

validation 2 

 3 

SUPPLEMENTARY MATERIALS 4 

This file is organized with sections that parallel those in the article for convenience in locating 5 

text to see more details on any topic of interest. 6 

1 Introduction Supplements 7 

1.1 Need For More 2D Model Validation 8 

Scientific progress benefiting from 2D modeling includes studies of river hydraulics (Waddle, 9 

2010; Strom et al., 2016), environmental flows (Reinfelds et al., 2010), hydrogeomorphic 10 

processes (Pasternack et al., 2008; Sawyer et al., 2010), floodplain inundation (Tayefi et al., 11 

2007), urban flooding (Yu & Lane, 2006; Mason et al., 2007), aquatic meso- and micro-habitat 12 

quality (Clark et al., 2008; Kammel et al., 2016), and river design assessment (Elkins et al., 13 

2007; Lee et al., 2010; Brown & Pasternack, 2016). In general, 2D modeling studies are using 14 

very little data for validating velocity performance, and this means that models just aim for the 15 

simplest performance criteria with little analysis of where and when such models work well or 16 

not. Studies that exemplify what is commonly done with 2D model velocity validation include 17 

Ghanem et al., 1996; Lane et al., 1999; Stewart, 2000; Ballard & Gard, 2003; Wheaton et al., 18 

2004; Pasternack et al., 2006; Elkins et al., 2007; Brown & Pasternack, 2008. Velocity is 19 

commonly observed at just 2-10 cross-sections, even when validating 1-10 km long models 20 



(see citations in previous paragraph for examples of this). Data collection usually involves 21 

standing in the flow with a 1D current meter or lowering a current meter on a cable from a boat 22 

to obtain time-averaged velocity measurements over 30-60 s at each of 1-3 locations in a 23 

vertical profile. This limits the locations and flows at which data are collected. Acoustic 24 

Doppler current profilers (ADCPs) are infrequently used for velocity measurements by moving 25 

across a measured section and creating a series of 5-s averaged vertical velocity profiles (e.g. 26 

Tiffan et al., 2002; May et al., 2009). From the literature, there may be 10-30 observations per 27 

cross-section, yielding ~ 50-300 total observation points to test a model, and that still leaves 28 

velocity direction untested. 29 

Although 2D model validation using fixed-point velocity is well documented, there are 30 

important operational limitations. First, how many observations and in what pattern are needed 31 

to produce a satisfactory accounting of model performance? Many studies use fewer than 10 32 

cross-sections and choose transects with relatively simple velocity vector patterns, as these are 33 

often locations required for discharge measurements. For example, Tiffan et al. (2002) used 34 

just two ADCP cross-sections (one “simple” and one “more complex”) at two discharges to 35 

validate a 33-km long 2D model. A few hundred points sounds like a lot, but given the breadth 36 

of uncertainty of real velocity conditions, not only are individual measurements error-prone, 37 

but the statistical sampling regime is inadequate for models spanning tens to hundreds of 38 

kilometres. 39 

Large-scale 2D flow patterns are important to geomorphic processes and ecological 40 

conditions, and there is a pressing need to have the data to ensure that 2D models represent 41 

those correctly. The velocity vector field is the hallmark of 2D modeling, yet hardly anyone is 42 

validating such vectors in real-world applications. Velocity patterns can be significantly varied 43 



in a model by selection of a turbulence closure scheme and the associated parameter values. 44 

Overall, improvement of 2D model velocity validation is a key need to better characterize 45 

uncertainty in 2D models and improve the perception of 2D models by the public, which is 46 

often sceptical of numerical models (Ludwig, 2001; Van Asselt and Rotmans, 2002). 47 

Second, collection of point-velocity measurements and use of an ADCP are too time-48 

consuming and still have significant errors and uncertainties. Using a fixed-point velocity 49 

sensor, depth-averaged velocity data requires measurements made during 0.5–3 min per 50 

vertical, plus the time to set up and relocate. This creates an infeasible timeframe to collect a 51 

dense mesh of velocity points and span a large area at a reasonable cost. For ADCP, an 52 

individual vertical velocity profile only takes a minimum of 5 s (though > 30 s should be used 53 

to be consistent with standard fixed-point protocols), but transects should be made at a slower 54 

speed than the ambient velocity (20% of it), and transects need to be repeated 4–6 times to get 55 

a reasonable time-averaged estimate of the flow field. Proper recording of the orientation of the 56 

3D vector in the flow field is challenging. Operation of boats for ADCP aimed at velocity 57 

mapping is more difficult than for discharge gaging, because it involves navigating through 58 

diverse conditions, including locations where ADCP performs poorly, such as along the bank, 59 

in shallows, and where there are air bubbles. The diversity of hydraulics also generates more 60 

challenges for and uncertainties in ADCP velocity accuracy. ADCP has much promise, if it is 61 

further developed for velocity mapping instead of discharge gaging, including thorough testing 62 

for this purpose. Mueller et al. (2007) present important errors with ADCP velocity 63 

measurements, while Lee et al. (2011) make a compelling case for the need of a low-cost 64 

velocity vector mapping solution instead of ADCP. Ultimately, ADCP remains expensive, 65 



complex, and inaccessible to many potential 2D model users, especially biologists who are 66 

increasingly using 2D models but don’t want to become professional hydrographers as well. 67 

Third, wading and motorboat approaches to data collection are limited by flow 68 

conditions precluding 2D model validation in the most important places to understand 69 

geomorphic processes. Observations by wading requires a low combination of depth and 70 

velocity as well as a lack of hazards around the wader (Milanesi et al., 2015). Motorboats have 71 

a much wider range of capabilities, but they have trouble in shallows, near flow obstacles, over 72 

rapids, and in some flood conditions. These challenges inhibit equal-effort sampling among 73 

diverse ecohydraulic conditions, which ought to be required for 2D model validation. 74 

Finally, the scale of velocity observation and prediction are often incommensurate. 75 

Velocity sensors sample 0.5–100 mm, while 2D model grid cells are 500–10,000 mm, creating 76 

a mismatch for comparison, especially in light of turbulence, whose intensity also varies 77 

spatially and over these scales. ADCP units have a trade-off with range versus resolution (e.g. 78 

Sontek/YSI Inc, 2007), making them ineffective in rivers whose spatially variable depths and 79 

velocities transcend the selected range and resolution parameters. Historically the problem was 80 

particularly bad for shallow rivers, given that an ADCP cannot measure velocity close to the 81 

water’s surface due to its blanking distance. However, range and resolution options are 82 

improving. They also require precise orientation in the 2D model’s coordinate system, which is 83 

problematic with bottom tracking and differential GPS. Moreover, using a 3D velocity profiler 84 

to validate a 2D model can introduce errors due to differing averaging methods of varying 85 

spatial scales (Pasternack et al., 2006). 86 



1.2 Large-Scale Particle Image Velocimetry 87 

Some additional LSPIV studies include Creutin et al. (2003), Hauet et al. (2009), Fujita 88 

& Kunita (2011), Lewis & Rhodes (2015), Detert & Weitbrecht (2015), and Creëlle et al. 89 

(2016). For brevity, these citations had to be cut out of the article. More articles are likely 90 

available, especially including conference proceedings, as this a rapidly emerging area of 91 

inquiry. LSPIV has significant challenges for use in widespread velocity vector validation of 92 

2D models. Platforms are commonly operated in clear-sky weather over smaller channels 93 

accessible to camera mounting systems, whereas 2D model validation is needed for a wide 94 

range of river sizes with limited accessibility during a wide range of flows and precipitation 95 

intensity. Fixed-view domains at the scale of <100 m long by 70 m wide used in LSPIV have 96 

limited applicability for 2D models that span 10-100 km long by 10-500 m wide channels, 97 

which is a primary reason why oceanographers use drifters. The legal and regulatory context 98 

for aerial platforms is presently uncertain. Regardless of acquisition platform, LSPIV methods 99 

require substantial data processing with many additive potential sources of uncertainty at this 100 

time. Data acquisition and processing to obtain surface velocity vectors over tens to hundreds 101 

of kilometres is not presently available. 102 

1.3 Kayak Surface Particle Tracking 103 

There are only two journal articles (Stockdale et al., 2007; Han et al., 2016) and a few 104 

conference proceedings (Swick and MacMahon, 2009; Emory et al., 2010; Lee et al., 2011) 105 

testing drifters in nontidal rivers, and they all used differential GPS. None of these compared 106 

drifter results against fixed-point observations, though some report past studies of error 107 

estimates. The purpose of this supplemental section is to provide background information on 108 

those past studies, help readers understand the accuracy of kayak surface particle tracking 109 



method (using RTK GPS) in more detail, and explain why there is value in selecting RTK GPS 110 

over regular or differential GPS, when possible. 111 

Several of the past efforts have primarily served to report technological developments 112 

and secondarily to share descriptive data from test deployments. Stockdale et al. (2010) 113 

developed flat, packaged river surface drifters with on-board differential GPS. They produced 114 

a velocity vector map of a 400-m long test site. Swick and MacMahan (2009) developed 115 

cylindrical differential GPS drifters with ballast to keep them upright. They deployed 6-16 116 

drifters in 3 settings to produce both Lagrangian and Eulerian (averaged) statistical analyses. 117 

Emery et al. (2010) developed commercial spherical river drifters. They deployed five of them 118 

at one test site and one at another test site. Lee et al. (2011) developed another differential GPS 119 

drifter technology similar to that of Stockdale et al. (2010), but then in their research they 120 

added a thorough data-processing framework. They used drifters to collect 45 trajectories with 121 

~ 7000 observations to map velocity vectors in a 100 m long by 10-15 m wide channel. Finally, 122 

Han et al. (2016) developed a spherical drifter similar to that of Emery et al. (2010). They 123 

deployed 50 drifters to analyze riverine surface mixing characteristics. 124 

In general, with a good satellite configuration, GPS has ~ 3-m horizontal accuracy, 125 

while differential GPS has ~ 1-m horizontal accuracy. For an ambient current of 1 m/s moving 126 

in a straight line, two positions that are off by 1 or 3 m extra away from each other (i.e., the 127 

worst-case scenario) yield a velocity error of 300% or 700%, respectively. In contrast, an RTK 128 

GPS with 0.02-m or 0.05-m accuracy has a worse-case velocity error of just 4% or 10%, 129 

respectively.  That is an enormous difference, especially for 2D model validation. Our 130 

viewpoint is that most stakeholders and independent reviewers expect observational data to be 131 

of a high-quality to serve for model validation purposes.  Thus, the extra cost of RTK GPS is 132 



necessary. Other potential uses of river drifters may not require this. However, the cost of RTK 133 

GPS has dropped so much over the last decade that it is getting difficult to justify avoiding the 134 

expenditure.  In regions where RTK GPS is still excessively expensive or outright unavailable, 135 

more work would be required to ascertain if DGPS is satisfactory for 2D model validation 136 

purposes. 137 

Stockdale et al. (2008) used a Royaltek™ BlueGPS (RBT3000) that samples position at 138 

1 Hz, with a reacquisition time of 0.1 s for each reading on average. This unit a built-in 139 

differential capability using the United States’ Federal Aviation Administration Wide Area 140 

Augmentation System (WAAS) as well as Europe’s European Geostationary Navigation 141 

Overlay Service (EGNOS). These systems have similar specifications with their corrections. 142 

Differential corrections are provided every ~ 0.2 Hz. WAAS provides a conservative position 143 

accuracy of 3 m or better (for both lateral and vertical measurements) at least 95% of the time 144 

(Zhang et al., 2014). It is reported with different actual performances in horizontal accuracy, 145 

typically in the 1-3 m range (e.g., Ariens Specialty Brands LLC, 2014). 146 

Lee et al. (2011) used a MediaTek GPS module FPGMMOPA1. The technical 147 

specifications for this model number are no longer available on the MediaTek website, but the 148 

authors report a positional accuracy of 3 m, which is consistent with native GPS performance 149 

absent any differential correction. Lee et al. (2011) state a measured average velocity “error” of 150 

0.175 m/s comparing drifters versus fixed-point observations. 151 

Both Stockdale et al. (2008) and Lee et al. (2011) both applied additional statistical 152 

methods to help diminish the effects of individual point velocity estimation errors on bulk 153 

results for larger subsets of data. Stockdale et al. (2008) simply divided the river into cells and 154 

then computed the average velocity in each section. Lee et al. (2011) also divided the river into 155 



cells, but they computed a diversity of statistics to characterize motion of the bulk flow field. 156 

Such methods allow for more relaxation of point-scale expectations as long as the bulk field is 157 

acceptable to within specified tolerances for the derived statistics. It remains to be seen what 158 

performance metrics will be acceptable to the scientific and practitioner 2D modeling 159 

community for such approaches, but this is a good start. Overall, Stockdale et al. (2008) and 160 

Lee et al. (2011) provide enough discussion of velocity accuracy to insure that the method is 161 

worthwhile to develop further, and there is now ample justification for new studies to carefully 162 

test drifters more comprehensively. 163 

1.4 Study Objectives 164 

None. 165 

2 Study Site Supplements 166 

None. 167 

3 Methods Supplements 168 

Field data collection efforts were explicitly intended to characterize geomorphic, hydrologic 169 

and hydraulic attributes of the LYR at roughly meter-scale resolution in support of a near-170 

census approach to river assessment, including 2D hydrodynamic modeling. The types of data 171 

collected included topography and bathymetry (Pasternack, 2009; White et al., 2010; Carley et 172 

al., 2012) as well as hydraulic data: water surface elevation, depth, velocity magnitude and 173 

velocity direction (Barker, 2011; Pasternack et al., 2014). Details about spatial coverage, 174 

resolution and accuracy for the digital elevation model (DEM) and 2D hydrodynamic modeling 175 

used in this study are provided below. 176 



3.1 2D hydrodynamic modeling details 177 

This study only used the portion of the LYR topographic map from the highway 20 Bridge 178 

down to the confluence with the Feather River.  On September 21, 2008 Aero-Metric, Inc. 179 

(Seattle, WA) acquired Light Detection and Ranging (LiDAR) data of the river corridor during 180 

a constant low flow typical of the period when hydro facility maintenance takes place (24.437 181 

m3/s (863 cfs) between Englebright Dam and Daguerre Point Dam; 17.613 m3/s (622 cfs) 182 

below Daguerre Point Dam where irrigation diversions occur).  The target point spacing was 183 

0.74 m.  Compared against 8769 ground-based RTK GPS observations of elevation along flat 184 

surfaces, 84.7% of LiDAR points were within 0.06 m, another 14.0% were within 0.12 m, and 185 

almost all of the remained of the data were within 0.18 m.  All in-water LIDAR points were 186 

removed from the dataset using a shoreline boundary polygon. 187 

Boat-based bathymetric surveys were performed during low flows in August and 188 

September of 2008 as well as during higher flows in March and May 2009 by Environmental 189 

Data Solutions.  An array of four echosounders were stationed across the bow with ~1.8 m 190 

spacing and used to obtain longitudinal swaths of bathymetric points. It was cost-prohibitive to 191 

wade all wetted areas inaccessible to the boat, but a set of key “data gap” locations was 192 

identified based on iterative map production checks and filled in by ground-based RTK GPS 193 

surveying in November 2009. 194 

A comprehensive set of uncertainty analyses were performed to ensure that the datasets 195 

were accurate and intercomparable (Barker, 2010).  Ground points on the uneven natural 196 

surface were compared between ground-based and boat-based surveys, ground-based and 197 

LiDAR surveys, and boat-based and LiDAR surveys.  Surveys were also inter-compared at 198 

carefully surveyed water surface elevation shots along the water’s edge, where there was less 199 



surface variability.  Vertical datums were checked between survey methods to ensure 200 

compatibility. 201 

After the final gap-fill survey, all the points were brought into ArcGIS® 9.3.1 software, 202 

visualized as a map, and edited to remove any obvious errors. In narrow backwater channels 203 

and other gap-fill areas that contained interpolation errors, breaklines were created to better 204 

represent landform features. Additionally, some large areas that contained very few points 205 

were augmented so that channel characteristics were maintained. Finally, using the spatial join 206 

function in ArcGIS, consistency between data sets was assessed to ensure there were not any 207 

major discrepancies between different mapping methods. 208 

Basic information describing topographic and bathymetric field data in the Yuba River 209 

in the areas investigated in this study are reported in the box below. 210 

 211 

Attribute Description 

Aerial extent From Highway 20 Bridge to confluence with Feather River 

Years of data 
collection 

Most bathymetry was mapped in late August to early September 2008, 
with some high-flow data collection in March and May 2009 as well as 
small additional near-bank and near-DPD gaps mapped in November 
2009. Ground-based topographic surveys were done in November 2008 
and November 2009. LiDAR of the terrestrial river corridor was flown 
on September 21, 2008. 

Bathymetric 
Resolution 

Within the 24.92 m3/s inundation area, points were collected along 
longitudinal lines, some cross-sections and some localized grids. The 
average grid point spacing is one point every 1.3 m. (59.8 pts/100 m2). 

Topographic 
Resolution 

Outside the 24.92 m3/s inundation area, points were mostly collected 
with lidar, yielding an average grid point spacing of one point every 0.43 
m. (554 pts/100 m2). 

Bathymetric 
Accuracy 

Comparison of overlapping echosounder and total station survey points 
at one site yielded observed differences of 50% within 0.15 m, 75% 
within 0.18 m and 94% within 0.3 m. Comparison of boat-based water 
edge shots versus RTK GPS surveyed water’s edge shots yielded 
observed differences of 75% within 0.03 m, 91% within 0.061 m and 



99% within 0.15 m. 

Topographic 
Accuracy 

Compared against 8,769 ground-based RTK GPS observations of 
elevation along flat surfaces, 54% of LIDAR points were within 0.03 m , 
86% were within 0.061 m and virtually all of the data were within 0.15 
m. Regular total station control point checks yielded accuracies of 
0.0091-0.018 m. RTK GPS observations had vertical precisions of 0.018 
m. Comparison of lidar water edge points versus the same for RTK GPS 
yielded observed differences of  30% within 0.03 m, 57% within 0.061 m 
and 92% within 0.15 m. 

 212 

In this study, the Sedimentation and River Hydraulics – Two-Dimensional Version 2.1 (SRH-213 

2D v2.1) model was used to simulate river hydraulics as well as predict flow velocities and 214 

directions (Lai, 2008). SRH-2D v2.1 focuses specifically on 2D modeling of river systems by 215 

using the depth averaged St. Venant equations: 216 
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where t is time, x and y are horizontal Cartesian coordinates, h is water depth, U and V are 220 

depth-averaged velocity components in x and y directions, respectively, e is excess rainfall rate, 221 

g is gravitational acceleration, Txx, Txy, and Tyy are depth-averaged turbulent stresses, Dxx, Dxy, 222 

Dyx, and Dyy are dispersion terms due to depth averaging, z = zb + h is water surface elevation, 223 

zb is bed elevation, ρ is water density, and τbx, τby are the bed shear stresses (friction). Dispersion 224 

terms represent the conversion of kinetic energy into internal energy by viscous shear stress 225 

since small scale turbulence is not fully represented in this model. Bed friction is calculated 226 

using the Manning’s roughness equation as follows: 227 
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where n is the Manning’s roughness coefficient. 229 

In order to solve these St. Venant equations a finite-volume numerical method was used 230 

which requires the use of a computational mesh. The Surface-water Modeling System® (SMS) 231 

version 10.1 graphical user interface (Aquaveo, LLC, Provo, UT) was used to produce the 232 

meshes. A hybrid structured-unstructured, arbitrarily-shaped mesh was produced in SMS using 233 

both quadrilateral and triangular elements. Typical nodal spacing for the mesh was ~1.5 m. 234 

Although this mesh size is smaller than the resolution of bathymetric data collected by the 235 

boat, several studies have shown that reasonable results can still be predicted in areas with 236 

sparse topographic coverage (Anderson and Bates, 1994; French and Clifford, 2000; Marks 237 

and Bates, 2000).  Based on past experience with mesh-resolution testing to evaluate issues 238 

such as numerical diffusion and numerical stability, this mesh resolution is more than high 239 

enough to avoid those problems for the finite-volume method. Topographic (x,y,z) points and 240 

breaklines were then imported from ArcGIS® software into SMS software where they were 241 

then used to interpolate elevations to the mesh. 242 

Because of the large size of the study area, the desire for computational efficiency, 243 

meter-scale model resolution commensurate with the best of the available topographic data, 244 

and the order-of-magnitude range of flows being assessed, the river between the Highway 20 245 

Bridge and the Feather River confluence was split into three model reaches: (1) Hammon 246 

Reach [HR – HWY 20 Bridge to DPD], (2) Daguerre Reach [DGR – DPD to Marysville 247 

Gauging Station], and (3) Feather Reach [FR – Marysville Gauging Station to Feather River 248 

Confluence]. These do not correspond with the geomorphic reach delineation for the LYR, but 249 

are purely for computational balance and efficiency.  Higher and lower flow meshes 250 



(corresponding with flow ranges of ~42-141 m3/s and <42 m3/s, respectively) were then 251 

created for each model reach to limit the amount of unnecessary dry areas being modeled in the 252 

lower-flow simulations. Models were run for 28 steady flows ranging from 8.50 to 3,126 m3/s 253 

(0.06 to 22 times bankfull discharge). 254 

Channel roughness was primarily addressed during the mapping effort by creating a 255 

highly detailed DEM, but unresolved roughness issues were addressed by using a global 256 

Manning’s n coefficient. The use of a constant roughness-coefficient value for unvegetated 257 

substrate was justified on the LYR, because the New Years 2006 flood with a peak flow of ~ 258 

3087 m3/s (~19.5·Qbankfull) was observed to erase much of the spatial variability in bed surface 259 

grain size distribution.  This occurs because the underlying valley fill is composed of relatively 260 

homogeneous hydraulic mining sediment deposited prior to the construction of Englebright 261 

Dam (Pasternack, 2008).  Substrate observation after the even larger 1997 flood found that it 262 

took 5-7 years for an armor layer to re-establish itself in riffles and chutes. Flows < 141 m3/s 263 

are mostly (but not always) constrained inside the bankfull channel dimensions devoid of 264 

vegetation, rendering it unnecessary to account for vegetation in the roughness coefficient in 265 

this study.  It is possible that adding additional roughness for near-bank vegetation and steep 266 

banks would improve hydraulic prediction, but without a systematic, objective approach to 267 

distributing near-bank roughness at the time this study was conducted, it is beyond the scope of 268 

this investigation. Observed WSE values obtained during the gap-fill survey were compared 269 

against model-predicted WSE values for different simulations using n=0.035, 0.04, and 0.045 270 

for all model reaches. Statistical error and histogram analyses comparing the different values 271 

found that 0.04 yielded the most accurate predictions, so that value was used in the model 272 

validation investigations reported in this study. 273 



Aside from channel roughness, turbulence closure and the model’s boundary conditions 274 

must also be assigned. Turbulence closure was achieved using the parabolic/zero equation 275 

model (Lai, 2008), with eddy viscosity varying as a function of depth and shear velocity, 276 

modified by an eddy viscosity coefficient of 0.6 based on the long-standing representative 277 

value taken from historical dye studies (Fischer et al., 1979). The eddy viscosity term is a 278 

practical strategy for calculation that ignores the small-scale vortices in the motion and 279 

calculates a large-scale motion with eddy viscosity which characterizes the transport and 280 

dissipation of energy in the smaller-scale flow. This approach and coefficient was previously 281 

validated for use in a pool-riffle-run sequence on this same river (Moir and Pasternack, 2008; 282 

Sawyer et al., 2010). Eddy viscosity should not be confused with eddy diffusivity, which is 283 

used with any dependent variable (a scalar or a component of a vector) in the discretization of 284 

the governing equations to represent the process by which substances are mixed.  285 

The boundary conditions required for SRH-2D are input flows and corresponding exit 286 

WSE. Input flows were obtained from the Yuba River at Smartville (#11418000), Deer Creek 287 

at Mooney Flat Road (#11418500), and Yuba River at Marysville (#11421000) United States 288 

Geological Survey (USGS) gaging stations. Corresponding downstream WSE values were 289 

collected in two ways. Since the DGR downstream boundary was located at the Marysville 290 

gauging station, WSE values were readily available from the professional rating relation for 291 

that gage. For the other model reaches, downstream WSE values were observed using a 292 

suitably mounted Level TROLL® 500 water level sensor (In-Situ Inc., Fort Collins, Colorado). 293 

The lag time between gage-recorded discharges and local WSE was optimized for by 294 

statistically matching fluctuations in corresponding records to yield the highest correlation 295 

between lagged records. 296 



Model simulations were comprehensively validated for flows ranging over an order of 297 

magnitude of discharge (0.1 to 1.0 times bankfull) using three approaches: (i) traditional cross-298 

sectional validation methods, (ii) comparison of LiDAR-derived water surface returns against 299 

modeled water surface elevations and (iii) Lagrangian particle tracking with RTK GPS to 300 

assess the velocity vectors. Model set-up and performance details are reported in the box 301 

below: 302 

 303 

Attribute Description 

Model domains For this study, there were 3 modeling reaches to make the computational process 
more efficient. They are given the abbreviations, HR, DGR and FR below. 

Computation 
mesh type 

All model domains use an unstructured mesh with triangular and polygonal 
elements. 

Computational 
Mesh 
Resolution  

HR: For flows 0-36.81 m3/s, 0.91 m internodal spacing. For flows 36.81-212.4 
m3/s, 1.5 m internodal spacing. For flows >283.2 m3/s, 3 m internodal spacing. 

DGR: For flows 0-36.81 m3/s, 1.5 m internodal spacing. For flows 36.81-212.4 
m3/s, 1.5 m internodal spacing. For flows >283.2 m3/s, 3 m internodal spacing. 

FR: For flows 0-36.81 m3/s, 1.5 m internodal spacing. For flows 36.81-212.4 
m3/s, 1.5 m internodal spacing. For flows >283.2 m, 3 m internodal spacing. 

Discharge 
Range of 
Model  

8.495 to 3126 m3/s. 

Downstream 
WSE 
data/model 
source  

HR: Continuous direct observation of WSE at flows <~623.0 m3/s. For higher 
flows the downstream WSE was taken as the upstream WSE from the HR model 
at that flow. 

DGR: Reach ends exactly at Marysville gaging station, so the WSE data is of 
the highest quality and abundance.  Continuous WSE data for all flows ~14.16 - 
3126 m3/s. 

FR: Continuous direct observation of WSE at flows <~623.0 m3/s. For higher 
flows the downstream WSE was set to yield an upstream WSE equal to that at 
the Marysville gage. 

River 
roughness 

Because the scientific literature reports no consistent variation of Manning’s n 
as a function of stage-dependent relative roughness or the whole wetted area of a 



specification  river (i.e., roughness/depth), a constant value was used for all unvegetated 
sediment as follows: 0.04 for the HR, DGR, and FR models (based on validation 
testing of 0.03, 0.035, 0.04, 0.045 and 0.05 as possible options).  This study did 
not use spatially distributed vegetated roughness, because the majority of flows 
were in-channel and it was not warranted. 

Eddy viscosity 
specification  

Parabolic turbulence closure with an eddy velocity that scales with depth, shear 
velocity and a coefficient (e0) that can be selected between ~0.05 to 0.8 based on 
expert knowledge and local data indicators. 

Q<283.2 m3/s: e0 = 0.6 

Q≥283.2 m3/s: e0 = 0.1 

Hydraulic 
Validation 
Range  

Point observations of WSE were primarily collected at 24.92 m3/s, with some 
observations during higher flows, but not systematically analyzed.  Velocity 
observations were collected for flows ranging from 15.01-141.9 m3/s.  Cross-
sectional validation data collected at 22.65 m3/s above DPD and 15.29 m3/s 
below DPD. 

Model mass 
conservation 
(Calculated vs 
Given Q) 

0.001 to 1.98 % 

WSE 
prediction 
accuracy  

At 24.92 m3/s there are 197 observations. Mean raw deviation is -0.0018 m. 
27% of deviations within 0.03 m, 49% of deviations within 0.076 m, 70% within 
1.5 m, 94% within 0.3 m. These results are better than the inherent uncertainty 
in LiDAR obtained topographic and water surface elevations. 

Depth 
prediction 
accuracy  

From cross-sectional surveys, predicted vs observed depths yielded a correlation 
(r) of 0.81. 

Velocity 
magnitude 
prediction 
accuracy  

5780 observations yielding a scatter plot correlation (r) of 0.887. Median error 
of 16%. Percent error metrics include all velocities (including V <0.3 m/s, which 
tends to have high error percentages) yielding a rigorous standard of reporting. 

Velocity 
direction 
prediction 
accuracy  

5780 observations yielding a scatter plot correlation (r) of 0.892. Median error 
of 4%. Mean error of 6%. 61% of deviations within 5 degrees and 86% of 
deviations within 10 degrees. 

 304 

Using the workflow of Pasternack (2011), SRH-2D model outputs were processed to 305 

produce rasters of depth and velocity within the wetted area for each discharge. The first task 306 



involved creating the wetted area polygon for each discharge. To do this, point files of depth 307 

results were first converted to triangular irregular networks (TIN) and then to a series of 308 

0.9144-m hydraulic raster files. Depth cells greater than zero were used to create a wetted area 309 

boundary applied to all subsequent hydraulic rasters. Next, the SRH-2D hydraulic outputs for 310 

depth and depth-averaged velocity were converted from point to TIN to raster files within 311 

ArcGIS 10.1 staying within the wetted area for each discharge. The complete dataset was a 312 

series of 0.9144-m resolution hydraulics rasters derived from SRH-2D hydrodynamic flow 313 

simulations at the following discharges: 8.5, 9.9, 11.3, 12.7, 15.0, 17.0, 17.6, 19.8, 22.7, 24.9, 314 

26.3, 28.3, 36.8, 42.5, 48.1, 56.6, 70.8, 85.0, 113.3, 141.6, 212.4, 283.2, 424.8, 597.5, 849.5, 315 

1195.0, 2389.9 and 3126.2 m3/s. 316 

Despite best efforts with modern technology and scientific methods, the 2D models 317 

used in this study have uncertainties and errors. Previously it has been reported that 2D models 318 

tend to underrepresent the range of hydraulic heterogeneity that likely exists due to insufficient 319 

topographic detail and overly efficient lateral transfer of momentum (Pasternack et al., 2004; 320 

MacWilliams et al., 2006). For this study those deficiencies result in a conservative outcome, 321 

such that there could be more fine details to the sizes and shapes of peak velocity patches than 322 

what is revealed herein. Overall, this study involves model-based scientific exploration with 323 

every effort made to match reality at near-census resolution over tens of kilometers of river 324 

length using current technology, but recognizing that current models do have uncertainties. 325 

3.2 Fixed-Point Hydraulic Data 326 

WSE observations were collected along the LYR between the Highway 20 Bridge and the 327 

Feather River confluence using a Leica® System 1200 RTK-GPS (ΔH= 1 cm, ΔZ=2 cm). In 328 

total, 199 points were used to compare observed and modeled WSE values. Measurements 329 



were collected over the course of two weeks in November 2009. During this period flows 330 

remained constant at 24.9 m3/s above DPD and 15.0 m3/s below. 331 

A total of 199 point-based field observations of depth and velocity were made at ~ 2 m 332 

intervals along 17 cross sections (Fig. S1) on December 8-10, 2009. Seventeen cross-sections 333 

constitute a large number relative to published journal articles that report 2D model validation 334 

(see citations in the article’s section 1.1), but a small number to assess a 36-km-long model 335 

domain. Discharge above Daguerre Point Dam was 22.521 and 22.57 m3/s, but 15.26 m3/s 336 

below it due to irrigation diversions. Cross-sections were chosen based on whether or not they 337 

were wadable and also if the given cross-section spanned a wide range of velocities. Wherever 338 

possible, measurements spanned the full channel, but in some cases, cross-sections became un-339 

wadable and measurements were only made as far out into the current as possible. This is a 340 

common problem limiting 2D model validation. The water surface elevation was also 341 

measured at the water’s edge on either side of the river. Point-velocity measurements were 342 

made using either a Marsh-McBirney® Flo-Mate (±33 mm s-1 root mean square error) 343 

electromagnetic current meter sampling at 30 Hz or a Price AA mechanical impellor current 344 

meter (Fulford, 2001).  Both methods averaged velocity measurements over 40 s with sensors 345 

positioned at 0.6 of the depth to obtain a measure of the depth-averaged velocity (Buchanan 346 

and Somers, 1969; Rantz, 1982; Smart, 1999; Pasternack et al., 2006). Depths for all points 347 

were measured using the depth-setting wading rods equipped with the velocity sensors. For the 348 

Marsh-McBirney Flo-Mate wading rod, depths were measured to a resolution of ±1 cm, while 349 

the Price AA flow meter wading rod depths were measured to resolution of ±3 cm. 350 

3.3 Kayak Velocity Measurement 351 

Kayak velocity data was collected at six discharges, including 17.61, 23.13, 30.95, 105.3, 352 



114.9, and 141.9 m3/s. Water surface velocity ( ) at time t was calculated by determining the 353 

total horizontal displacement from one point to the next and then dividing that displacement by 354 

the change in time ( ) between position measurements: 355 

 ∆NE = NE − NEFG ∆EE = EE − EEFG (5, 6) 356 

 dHE = ∆NE : + ∆EE :  (7) 357 

 VE =
LMN
∆E

 (8) 358 

where Nt is the northing, Et  is the easting, and dHt  is the total horizontal displacement at time 359 

t.  This velocity was then assigned to a horizontal coordinate (Xt,Yt) that is located at the 360 

midpoint of the observed positions used to calculate the velocity. 361 

 XE = EE-G +
∆QN
:

 (9) 362 

 YE = NE-G +
∆SN
:

 (10) 363 

Finally, in order to create a velocity vector, a direction value (θt) was assigned to each 364 

coordinate using the differences in the northing and easting of consecutive position 365 

measurements: 366 

 𝜃# = (tanFG ∆YZ
∆[Z
) ∗ G^_°

a
  ∆𝐸# > 0, ∆𝑁# > 0 (11a) 367 

 𝜃# = (tanFG ∆YZ
∆[Z
) ∗ G^_°

a
+ 360°  ∆𝐸# > 0, ∆𝑁# < 0 (11b) 368 

 𝜃# = (tanFG ∆YZ
∆[Z
) ∗ G^_°

a
+ 180°  ∆𝐸# < 0, ∆𝑁# < 0 (11c) 369 

where the direction is in degrees. When θt = 0, that means the vector is directed due east. 370 



 371 

Figure S1. Locations of the 17 cross-sections where wading velocity measurements were 372 

made. 373 
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3.4 Data Analysis 374 

3.4.1 Velocity Data Preparation 375 

None. 376 

3.4.2 Model Performance Indicators 377 

Among 2D hydrodynamic modeling studies, there is a common suite of validation metrics used 378 

in the peer-reviewed literature. Typical metrics include (i) basic statistical measures (i.e. mean, 379 

median, and standard deviation) for signed and unsigned deviations as well as those for signed 380 

and unsigned percent differences; (ii) regression analysis results in terms of slope, y-intercept, 381 

r2, and p-value; and (iii) the same as the previous two, but segregating velocity data into small 382 

versus large values, as values < ~ 0.5 m/s tend to have disproportionately higher error 383 

percentages. There is no systematic agreement as to the performance indicators for these 384 

metrics for 2D modeling, except that Ballard et al. (2010) proposed that r2 should be > 0.36 385 

(i.e. r > 0.6). Pasternack (2011) presented methodologies for 2D model validation and 386 

recommended a few more performance metrics. First, the mean and median of the unsigned 387 

velocity percent error should be < 30%. Second, the slope of the regression should be > 0.9, 388 

though this is a quite strict standard compared to most peer reviewed 2D models. Third, the y-389 

intercept should be < 5% of the maximum velocity. Finally the mean of unsigned velocity 390 

direction error should be within 10%. 391 

Given the lack of velocity direction validation studies, no performance benchmarks 392 

existed a priori. Direction varies over 360°, so a 5% error corresponds with 18°. However, for 393 

the mainstem thalweg where flow is directed downstream, then a more stringent criterion 394 



might be to limit the range to 180°, yielding a 5% error metric of 9°, which was used in this 395 

study. This is different from and more stringent than the 10% suggestion of Pasternack (2011). 396 

To go deeper into error analysis than is commonly done with standard statistical metrics 397 

for 2D model validation, this study also computed the metrics of regression slope standard 398 

error and regression intercept standard error. The application of these metrics in this study 399 

involved testing the 1:1 expectation of predictions versus observations. By definition, a 1:1 400 

relationship is linear (x=y). Therefore, the regression function is properly expected to be linear 401 

and the computation of standard error metrics assuming a linear regression is also proper for 402 

this application. 403 

In contrast to the 2D hydrodynamic modeling community, the hydrological modeling 404 

community typically uses different metrics as performance indicators for discharge prediction. 405 

The choice of metrics ultimately reflects the different nature of the data and different 406 

expectations for model performance. Although there is no official standardization of validation 407 

in hydrology either, there are a few widely used metrics. For example, Moriasi et al. (2007) 408 

present a review of such metrics and that article has been cited more than 1,800 times. Moriasi 409 

et al. (2007) does affirm the use of some common 2D modeling validation metrics, but it also 410 

describes three common hydrological metrics: Nash-Sutcliffe efficiency (NSE), percent bias 411 

(PBIAS), and the root mean square error-observations standard deviation ratio (RSR). The 412 

performance standards for these metrics, as reported in that article, often rest on a single 413 

reference, so they are not necessarily robust standards. Nevertheless, the standards for 414 

discharge prediction are NSE > 0.5, PBIAS within 25%, and RSR < 0.7. How these apply to 415 

depth and velocity vector prediction is unknown, as almost no one uses these in 2D model 416 



validation studies. As a new direction for 2D modeling validation, these metrics were applied 417 

in this study. 418 

Ballard et al. (2010a) suggested that an R-value of 0.6 (R2 =0.36) constitutes a validated 419 

2D model. Peer-reviewed reports and journal articles have reported R2 values and slopes 420 

ranged from 0.25-0.92 and 0.66-0.86, respectively, in similar comparisons of model-predicted 421 

versus field-measured velocities (e.g. Lane et al., 1999; Pasternack et al., 2006; Harrison and 422 

Keller, 2007; May et al., 2009; Ballard et al., 2010a,b; Pasternack and Senter, 2011). These 423 

values therefore were used as performance indicators, though the range of previously accepted 424 

benchmark values for “validation” is so broad that no effort was made to judge the 425 

appropriateness of a specific threshold value for use this study; it is left up to the reader to 426 

decide that relative to the peer-reviewed literature values cited above. Histogram analysis and 427 

descriptive statistics of differences between model-predicted and field-measured velocities 428 

were also used to test model performance. Absolute velocity errors were compared with 429 

observed velocities to determine how the model performed across the range of velocities and 430 

determine if there were any noticeable trends. Furthermore, to help explain the cause of 431 

velocity errors, model-predicted depths were evaluated as an indicator of topographic 432 

uncertainty and Manning’s roughness parameterization. Cross-sectional analysis of model 433 

performance relative to DEM structure was also evaluated to help visualize and explain model 434 

errors. The above analyses constitute the typical suite of tests performed for 2D models in the 435 

peer-reviewed journal literature.2D Model Validation Using Fixed-Point Velocities 436 

Wading-based depth and velocity data were directly compared with model results as one test of 437 

model performance. The data also served as a benchmark for kayak-based velocity 438 

performance. Observed velocities were graphed against model-predicted velocities and a linear 439 



best-fit trendline was added to the data (likewise for depths). The coefficient of determination 440 

(R2) value of the best-fit line and slope were used as indicators of model performance. 441 

3.4.3 Direct 2D Model Validation 442 

None. 443 

3.4.4 Adjusting Kayak Surface Velocity To Mean Velocity 444 

According to Rantz (1982) using the data from the study conducted by Hulsing et al. (1966) 445 

natural channels have a DAVC of ~0.85-0.86 for surface velocities. The raw data was collected 446 

at cross-sections in channels classified into five types, phrased as: (1) natural trapezoidal-447 

shaped channel without overbank flow and no bridge piers or other manmade obstructions, (2) 448 

natural channel with bridge piers, abutments or manmade obstructions that may affect the flow 449 

pattern, (3) canal or manmade channel without overbank flow, (4) and (5) same as (1) and (3) 450 

above, but with overbank-flow sections. They also span discharges of 0.031 to 18,000 m3/s 451 

(Hulsing et al., 1966). As a result, the measurements generally reflect settings with a low 452 

roughness:depth ratio.  Meanwhile, Pasternack et al. (2006) collected full vertical velocity 453 

profiles over an artificially constructed gravel bed in the Mokelumne River (similar to the bed 454 

present in the lower Yuba River, except for the absence of any sand in the artificial 455 

Mokelumne bed) and found that the slope of the least squared regression equation between the 456 

observed mean column velocity and observed near‐surface velocity was 0.71, with a sample 457 

size of 23 and an R2 of 0.672. Although the magnitude of the slope coefficient may change 458 

with different depth:bed material ratios, the existence of this fundamental relation was 459 

persistent and reliable. Furthermore, vertical velocity profiles collected in Timbuctoo Bend on 460 

the LYR in an unpublished study (co-author Greg Pasternack, UC Davis) yielded a minimum 461 



DAVC of 0.65, indicating that there is a range of possible DAVC’s across rivers of diverse 462 

flow:geometry ratios (though that was in 2004 before the big floods that stripped off the armor 463 

layer causing the bed to become less rough).. Thus, in addition to testing Rantz’s published 464 

value of 0.85, the DAVC was varied to optimize three performance indicators with model-465 

predicted results. These indicators were (1) the mean velocity difference between observed and 466 

predicted velocities (i.e. difference of ~0 m/s), (2) the mean error (i.e. mean error ~ 0%), and 467 

(3) best-fit trendline slope of Vmodeled versus Vobserved (i.e. slope ~ 1). The goal of this test was 468 

to see how the three DAVC values compared with each other and with the value published by 469 

Rantz (1982). 470 

3.4.5 Testing Discharge Dependence of Model Error 471 

None. 472 

3.4.6 Comparing Validation Outcomes 473 

None. 474 

4 Results 475 

4.1 2D Model Validation Using Fixed-Point Velocities 476 

Velocities were measured in depths < 1.23 m. The mean velocity was 0.67 m/s, with a range of 477 

0.00–1.62 m/s. The average coefficient of variation of velocity was 0.39, with a range of 0.12–478 

0.70. Regression and correlation analyses of observed versus model-predicted depths and 479 

velocities yielded statistically significant trendlines and correlations above the 95% confidence 480 

level. For depth, the best-fit trendline had slope and R2 values of 0.73 and 0.64, respectively 481 

(Fig. S2a). For velocity, it had corresponding values of 0.78 and 0.57, respectively, indicating a 482 



better 1:1 performance, but worse correlation performance than depth (Fig. S2b).  Both 483 

relations show a bias in which low values are over predicted and high values are under 484 

predicted. Both indicators of performance are right in the middle of the range of peer-reviewed 485 

2D-model validations. When modeled results were regressed on observations, the standard 486 

error of the regression slope and intercept for velocity were 0.0455 and 0.035, respectively. 487 

Both of these values are low and they help to appreciate that a regression plot with thousands 488 

of points often hides the true precision of the results, which in this case is quite high. Using 489 

hydrological performance indicators, the values of NSE, PBIAS, and RSR were 0.52, -4.4%, 490 

and 0.69. These values are within the thresholds accepted by the hydrological community. 491 

 492 

Figure S2. Predicted model results versus measured, cross-sectional wading values with 493 

calculated best-fit trendlines and linear regression for: (a) depths; (b) velocities. 494 

The mean value of raw differences between modeled and observed depths was 0.025 m 495 

with a standard deviation (SD) of 0.140 m (Table S1). Histogram analysis showed that 20.1% 496 

of modeled depths were within 0.03 m. of observed values and 77.4% were within 0.15 m. For 497 

reference, the median bed material size in the vicinity of the cross-sections is ~0.06 m, so one 498 
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would not expect most deviations to be smaller than that.  The mean absolute error was 25.5% 499 

with a SD of 30.3%. 500 

The mean raw difference of modeled and observed velocities for all the points was 501 

0.029 m/s with a SD of 0.25 m/s (Table S1). The mean absolute error was 40.0% with a SD of 502 

81.6%. The largest velocity errors (200-800%) correlated with some of the smallest observed 503 

velocities (Fig. S3).  Histogram analysis found that 16.1% of the modeled values were within 504 

0.03 m/s of the observed values, 60.3% were within 0.15 m/s, and 90% were within 0.41 m/s. 505 

  506 



 507 

Table S1. Descriptive statistics for modeled versus wading-based 
hydraulics. 

     
 

Depth (m) 
  DDiff ABS(DDiff) DError ABS(DError) 

Mean 0.025 0.102 9.3% 25.5% 
Standard Error 0.010 0.007 2.7% 2.1% 
Median 0.027 0.075 5.0% 17.2% 
Standard 
Deviation 0.140 0.099 38.5% 30.3% 
Range 1.092 0.755 289.6% 215.3% 
Minimum -0.337 0.000 -74.3% 0.0% 
Maximum 0.755 0.755 215.4% 215.4% 
  Velocity (m/s) 

  VDiff ABS(VDiff) VError ABS(VError) 
Mean 0.029 0.176 22.0% 40.0% 
Standard Error 0.018 0.013 6.3% 5.8% 
Median 0.014 0.111 2.3% 18.2% 
Standard 
Deviation 0.253 0.183 88.2% 81.6% 

Range 1.753 0.931 952.2% 870.9% 
Minimum -0.932 0.001 -81.1% 0.2% 
Maximum 0.821 0.932 871.1% 871.1% 

 508 



 509 

Figure S3. Absolute velocity error versus wading velocities. 510 

Cross-sectional comparisons of the lateral patterns of observed and modeled depths and 511 

velocities help explain the significant causes of model error and bias (Fig. S4). As is typical, 512 

cross-sections have low depths and velocities along the banks, except where there is forced 513 

scour.  However, for some cross-sections, the model over-predicted both variables there (e.g. 514 

Fig. S4a,i,t,u).  A poor specification of roughness would yield an inverse bias between depth 515 

and velocity, so that is unlikely to be the main cause.  The choice to not use a different 516 

roughness value for banks than the ambient bed could still be a secondary factor causing bank 517 

velocities to be too high.  An excessive eddy-viscosity coefficient disproportionately affects 518 

velocity, so adjusting that down in future studies might improve model performance (but that 519 
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2006). Such error is attributable to the gap between the airborne LiDAR survey of terrestrial 522 

topography and the boat-based survey of bathymetry; wherever the boat could not get within a 523 

meter of the bank, meaningful landform variability may have been missed (Fig. S5). Although 524 

there was an extensive effort to avoid inaccuracies in the DEM due to the large scale of the 525 

project, inability to wade certain areas, along with time and monetary restrictions, a couple of 526 

locations were not as detailed as required for accurate model predictions. TIN-based 527 

interpolation during DEM production would then just cut off those features (e.g. Fig. S4l,n,r). 528 

In other instances, boat-based bathymetric measurements simply appear to be faulty (e.g. Fig. 529 

S4f,w). Observations made within 2.5 m of the model predicted wetted channel perimeter 530 

averaged a difference in velocity of 0.072 m/s which is ~2.5 times larger than the mean for all 531 

points. Furthermore, mean velocity error for the same points (45.8%) was ~24% higher than 532 

the total mean. 533 



 534 

Figure S4. Comparisons of observed versus predicted depths and velocities at all cross-535 

sections. Field observations were fit with a curve using the local average to reduce 536 

measurement noise. 537 
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 538 

Figure S4. Continued. 539 
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 540 

Figure S5. Maps of the DEM showing the absolute difference between model velocities 541 

and measured, wading velocities: (a) small differences in velocity because of accurate 542 

representation of the land surface due to good survey coverage [XS 1] and (b) large 543 

differences in velocities due to poor, in channel survey coverage [XS 8]. 544 

4.2 2D Model Validation Using Kayak Observations 545 

Mean observed surface velocity was 0.87 m/s, with a range of 0.15–3.44 m/s respectively. 546 

Kayak velocities were made at model-predicted depths of up to 4.37 m. Mean, minimum, and 547 

maximum kayak directional values were 208.0°, 134.7°, and 303.5° respectively. 548 
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largest dissimilarities, of the four DAVCs tested, with the modeled results. The mean 551 

difference was -0.285 m/s and SD was 0.286 m/s (Tables S2-S3). Mean error and SD of the 552 

error were 20.1% and 24.3% respectively. The best-fit trendline slope was 1.195 with a y-553 

intercept of 0.115. Mean velocity-difference optimization obtained a DAVC equal to 0.64, 554 

which resulted in a mean difference of 0.00 m/s, an absolute mean difference of 0.15 m/s, and a 555 

standard deviation of 0.21 m/s. DAVC equal to 0.64 resulted in the largest mean, standard 556 

deviation, and range for velocity error which was -6.1%, 32.3% and 388.4% respectively. 557 

Mean error optimization resulted in a DAVC of 0.68. Mean error came out to be 0.1% with an 558 

absolute error of 20.6% and a SD of 30.3%.  Finally, trendline slope optimization resulted in a 559 

DAVC equal to 0.71, the same as the value used for the 2D model validation. A description of 560 

those results can be found in the previous section. 561 

The analysis of varying the DAVC to optimize different parameters showed that DAVC 562 

values were low compared to published values, most of which come from deeper, slower 563 

channels with fine riverbed sediment. Although each of the DAVC metrics has its own 564 

benefits, there is no obvious best choice. The DAVC of 0.64 with an optimized mean velocity 565 

difference also has the best velocity difference distribution and error distribution. As 566 

mentioned in the section 3.6.3, unpublished vertical velocity profiles collected by co-author 567 

Pasternack and associates in Timbuctoo Bend on the LYR yielded a minimum DAVC of 0.65, 568 

which is close to this value (though that was in 2004 before the big floods that stripped off the 569 

armor layer causing the bed to become less rough). However, 0.65 was the lowest value found 570 

in the published literature, which raises the question: Should observed values be adjusted to 571 

match predicted values? While 0.64 seems like the best option based on the numbers, 0.71 is 572 

likely to be the more realistic value. First, this value is the same that was calculated by 573 



Pasternack et al. (2006) for 24 vertical profiles where full vertical velocity profiles were 574 

measured. Second, although the mean velocity difference was -0.1 m/s for DAVC=0.71, this 575 

can be explained by the fact that there were slightly more values at low velocities where the 576 

model tended to over-predict velocity. After further experimentation with 2D models in diverse 577 

channel settings, it is now thought that this can be improved in the future by significantly 578 

reducing the eddy-viscosity coefficient for shallow gravel-bed rivers from the generic value of 579 

~0.6-0.7 to ~0.075-0.1, thereby enhancing the lateral gradient in velocity magnitude.  It is 580 

recommended that studies adjust this value specifically for improving the lateral gradient as 581 

well as the pattern of eddies (Wheaton et al., 2004). Finally, this study was performed in a 582 

channel with a high roughness to depth ratio, whereas classic studies yielding DAVCs of >0.8 583 

were done in channels with low ratios. Extra roughness means a stronger vertical velocity 584 

gradient and a lower DAVC. This likely is the reason for the large dissimilarity between model 585 

and observed results when applying Rantz’s DAVC of 0.85. 586 

4.2.2 No Discharge Dependence of Model Error Found 587 

Probability density functions of the velocity deviations for each discharge are plotted, so 588 

interested readers who attempt this approach can compare their distributions (Figure S6). 589 

Mean, Standard deviation, skewness, and kurtosis values are 0.237, 0.263, 1.234, and 2.988 for 590 

the lowest flow and 0.314, 0.240, -0.026, and 0.766 for the highest flow. 591 



 592 

Figure S6. Probability density functions of velocity deviations between observed and 593 

predicted by the 2D model. 594 

 595 

4.2.3 Spatial Velocity Validation 596 

Despite efforts to avoid it, there were localized occurrences of poor topographic 597 

interpolation between in-channel single-beam echosounder points and out-of-water airborne 598 

LiDAR points, and these caused locally poor model performance (e.g. see Figure S7). In this 599 

study, there was an abundance of data available and breaklines were used in places where 600 

triangulation issues were evident at a coarser scale, but there were still localized data gaps.  601 

With ~ 36 km of river to map and model at one-meter resolution, it is costly and time-602 

consuming to inspect every locality within the map, despite reasonable efforts to do so. In 603 
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landscape DEMs to represent every nook and cranny. When creating a TIN through the gaps in 605 

the point data, a triangle sometimes interpolated laterally from the bank to a point in the 606 

channel creating a ridge extending into the channel (features circled in red Figure 76). The 607 

model would interpret these features as constrictions or barriers, and would either accelerate 608 

flow through the main channel (Figure S7a) or block flow (Figure S7b). Where available and 609 

suitable today, bathymetric LiDAR and multibeam echosounding are replacing single-beam 610 

echosounding, avoiding such problems. Another solution, though time-consuming, is to run a 611 

coarse-resolution 2D model quickly, test the model against data to find the worst performing 612 

localities, and fix them iteratively. 613 



 614 

Figure S7. Differences between modeled and observed kayak velocities due to locally 615 

inaccurate DEM interpolations. 616 

4.2.4 Directional Validation 617 

This study led to the realization that validation of eddies important to stakeholders requires 618 

focused kayak data collection in which the boat recirculates several times around the eddy on 619 

different paths. Slow eddies require slow GPS time interval sampling of 10-30 s. 620 



 621 

Figure S8. Vector fields on a small portion of the Daguerre Point Dam reach at 105 m3/s. 622 



 623 

Figure S9. Areas where the model predicted flow vectors differ greatly from the kayak 624 

measured velocity vectors due to model predicted eddies. 625 

4.3 Comparing Validation Outcomes 626 

Distributions of observed velocities with an ABS(Verror) > 50% for both fixed-point and kayak 627 

velocity datasets showed important differences (Figure S10). The fixed-point dataset had a log-628 



normal distribution, while the kayak dataset had an exponential distribution. The peak of these 629 

errors was higher with the fixed-point data than with the kayak data. The latter also showed a 630 

longer upper tail. 631 

 632 

Figure S10. Distribution of observed fixed-point and kayak velocities with V Error > 633 

50%. 634 

  635 



 636 

Table S2. Descriptive statistics for modeled versus kayak-based velocity 
deviations and percent errors for all DAVC values tested. 

       
  

(A) Velocity Differences, Modeled - Observed (m/s) 

  
DAVC = 0.64 

 
 DAVC = 0.68 

Statistic   VDiff ABS(VDiff)   VDiff ABS(VDiff) 
Mean 

 
0.001 0.150 

 
-0.054 0.159 

Std. Error 
 

0.009 0.006 
 

0.009 0.007 
Median 

 
0.013 0.109 

 
-0.036 0.111 

Std. Dev. 
 

0.210 0.147 
 

0.219 0.160 
Range 

 
2.042 1.154 

 
2.087 1.269 

Min 
 

-1.154 0.000 
 

-1.269 0.000 
Max   0.888 1.154   0.818 1.269 

  
DAVC = 0.71 

 
DAVC = 0.85 

Statistic   VDiff ABS(VDiff)   VDiff ABS(VDiff) 
Mean 

 
-0.095 0.175 

 
-0.285 0.314 

Std. Error 
 

0.010 0.007 
 

0.004 0.003 
Median 

 
-0.072 0.120 

 
-0.247 0.254 

Std. Dev. 
 

0.228 0.174 
 

0.286 0.254 
Range 

 
2.127 1.355 

 
2.377 1.756 

Min 
 

-1.355 0.000 
 

-1.757 0.000 
Max   0.772 1.355   0.620 1.757 

  
(B) Velocity Error (%) 

  
DAVC = 0.64 

 
DAVC = 0.68 

Statistic   VError ABS(VError)   VError ABS(VError) 
Mean 

 
-6.1 21.5 

 
0.1 20.6 

Std. Error 
 

0.42 0.33 
 

0.40 0.29 
Median 

 
-1.6 14.2 

 
4.3 14.2 

Std. Dev. 
 

32.2 24.7 
 

30.3 22.2 
Range 

 
388 292 

 
366 269 

Min 
 

-292 0.00 
 

-269 0.00 
Max   96.5 292   96.7 269 

  
DAVC = 0.71 

 
DAVC = 0.85 

Statistic   VError ABS(VError)   VError ABS(VError) 
Mean 

 
4.4 20.8 

 
20.1 27.0 

Std. Error 
 

0.38 0.27 
 

0.32 0.21 
Median 

 
8.4 15.6 

 
23.5 25.3 

Std. Dev. 
 

29.0 20.7 
 

24.3 16.2 
Range 

 
350 253 

 
292 195 

Min 
 

-253 0.00 
 

-195 0.04 
Max   96.8 253   97.3 195 
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Table S3. Histogram analysis of kayak observed velocity. 
 

     Velocity Difference 
Distribution 

DAVC = 
0.64 

DAVC = 
0.68 

DAVC = 
0.71 

DAVC = 
0.85 

Within 0.03 m/s 15.74% 13.91% 12.73% 4.88% 
Within 0.15 m/s 64.62% 63.03% 58.67% 28.13% 
Error Distribution         
Within 5% 19.88% 19.13% 17.37% 5.85% 
Within 10% 37.13% 37.35% 34.26% 12.40% 
Within 25% 73.04% 72.65% 70.48% 48.82% 
Best-Fit Line         
Slope 0.900 0.956 0.998 1.195 
Intercept (m/s) 0.087 0.092 0.096 0.115 

5 Discussion 638 

Using the same traditional methods of 2D-model validation as commonly reported in the peer-639 

reviewed literature, the LYR 2D model performed on par with past peer-reviewed studies 640 

(Figs. S2, S4). Observed velocities for cross-sections 1, 5, 9, 11, 12, 13, 15, and 16 match 641 

model-predicted velocity’s trends, while those for cross-section 2, 4, and 8 showed major 642 

discrepancies, which is typical in the literature. Depth and velocity test R2 values of 0.64 and 643 

0.57 were right in the middle to upper range of the values previously reported.  Note that some 644 

studies only report R (e.g. Ballard et al., 2010a,b), not R2, so care must be used in making 645 

comparisons.  Further, lateral patterns of deviations in depth and velocity showed smoothing 646 

across the channel with lows too high and highs too low. This is a typical occurrence of errors 647 

due to topographic uncertainty and errors due to an inadequate rate of velocity change 648 

associated with excessively efficient turbulent mixing (MacWilliams et al., 2006) and perhaps 649 

insufficient bank roughness (Abu-Aly et al., 2013). 650 

5.1 Improved Sampling of Deep And Fast Areas 651 

Boat-based ADCP can go into deep current, but it normally requires holding position to get a 652 



good measurement and it is extremely difficult to collect boat-based ADCP data in fast, 653 

hazardous conditions, locations with obstructions, and shallow water impacted by the ADCP’s 654 

blanking depth, all of which the kayak method can handle. 655 

Similar results were obtained by only using the highest and lowest flows, indicating 656 

that cost savings are possible and that model performance is likely insensitive to specific 657 

discharges. This is promising, because it indicates that it may be unnecessary to do validations 658 

at every discharge for which scientific analysis would be performed, and validating models for 659 

hazardous floods is rarely feasible. It is really only necessary to collect new model calibration 660 

and validation data when the hydraulic roughness structure changes a lot, such as when 661 

vegetation becomes submerged (Abu-Aly et al., 2013). 662 

5.2 Improved Sampling Of Statistical Structure 663 

Testing 2D-model performance with the kayak observations yielded a 39% higher value for r2 664 

(0.79 versus 0.57), and the value of DAVC did not matter for this metric. This high correlation 665 

between modeled and observed velocity is among the best in peer-reviewed reports and journal 666 

articles evaluating a shallow gravel-bed river. After adjustment with the DAVC, the 667 

comparative performance between velocity tracking versus fixed-point observations, as 668 

measured with the standard error of the regression slope and intercept metrics, was ~6-9 times 669 

better with the former approach. In terms of the hydrological performance metrics, both NSE 670 

and RSR were significantly better in the velocity tracking results, while PBIS was better in the 671 

fixed-point results. 672 

5.3 Improved Spatial Testing 673 

None. 674 



5.4 Putting The 2D In 2D Model Validation 675 

None. 676 

5.5 Important Kayak Limitations 677 

Sections 1.3 and 3.4 of the main article and supplementary file previously addressed the 678 

uncertainties in kayak RTK GPS surface velocity measurements, so the focus here is on the 679 

limitations of using such data in 2D model validation. Although the kayak RTK GPS method 680 

of measuring surface velocity was valuable for fast, low-cost 2D model validation, it did have 681 

some problems. First, there were major discrepancies between modeled and measured results at 682 

very low velocities (Figure 4). The best solution would be to adjust the GPS time interval for 683 

different flow speeds, so 5 s would be adequate for velocities of > 0.5 m/s, while 10–30 s 684 

might be needed for 0–0.5 m/s speeds. 685 

Second, GPS units only record time to the nearest second, so it is plausible that more 686 

error is arising from inaccurate time stamps than spatial precisions. If the fixed time interval 687 

sampling algorithm in the Trimble software uses the internal clock only to identify the time 688 

interval, then the exact time does not matter and the error in change in time is likely quite low. 689 

However, if the time interval is not truly fixed and hinges on the absolutely clock time, 690 

recorded only to the nearest 1 s, then that would introduce uncertain error. For a 5 s time 691 

interval, an error of 0.5 s (the worst possible for a 1 s clock) would yield a 10% error in 692 

velocity, so that is significant. However, for any instant in time with a 5 s sampling interval, 693 

the likelihood of 10% error is equal to that of 0% error, so one cannot account for this 694 

quantitatively. Third, no surface particle tracking method is viable in high winds. High winds 695 

can be more of a problem at slow base flows and over slow, shallow embayments than in the 696 



thalweg of a large flood in the middle of a big storm. Finally, for a large enough flood, it may 697 

be sensible to switch from a kayak to a larger boat, possibly motorized for safety and 698 

effectiveness in that regime. Initial testing with a motorboat found that it was more difficult to 699 

match the timing of speed adjustments and the boat was more sensitive to wind, but for large 700 

floods it would be viable. Conversely, if a stream was only 1-20 m wide, then a manned kayak 701 

would likely be too big of a drifter to be viable. Further discussion about future improvements 702 

to kayak velocity mapping is provided in the supplementary materials file in section 5.6. 703 

5.6 Future Improvements 704 

In this study, velocities were largely measured in the thalweg and observations did not 705 

accurately represent the whole range of velocities at each individual flow, especially with 706 

insufficient sampling along channel banks and in very slow conditions. This caused a 707 

clustering of observations and a velocity gap between high and low flows. Pasternack and 708 

Senter (2011) built on this pilot effort and tested 2D model performance in a steep mountain 709 

river over two orders of magnitude in the range in flow to assess validation sensitivity to 710 

discharge, among other things. They took the approach of being sure to sample the full range 711 

of safely accessible velocity bins by wading and kayak at every discharge, with less emphasis 712 

placed on spatial coverage in light of the remote setting. Therefore, each day’s dataset could be 713 

used to produce a scatter plot validation test, yielding an even more robust statistical analysis 714 

when all days were combined. This approach of mindful sampling to achieve a more equal 715 

representation of each velocity bin each time out guarantees that a scatter plot can be made 716 

from the available data even if higher flows never come, since one cannot usually preordain 717 

what flows a river will deliver during the validation period. Thus, the best procedure involves 718 

focusing on sampling a diversity of velocity vector conditions instead of staying on one 719 



streamline. People should spend time mapping recirculating eddies, observing zero-velocity 720 

locations, and going over the most aggressive chutes. This is done by starting and stopping the 721 

GPS data collection as needed, as well as using a path identifier in the data description field. 722 

Being on the drifter is the key to mindful mapping, and this in turn may lead to more robust 723 

validation testing, because it enables more sampling in the periphery where survey data and 724 

DEM representation are often worse making validation tests more useful to find such 725 

problems. Also, 2D models typically better represent deeper flows than very shallow flows, so 726 

more data collection in shallow, outlying areas of the channel would help strengthen the 727 

validation process. 728 

In the future, it may be beneficial to attach an echosounder and/or an ADCP to the 729 

kayak to measure depths and velocity profiles to get more data for validation and to aid 730 

interpretation of validation problems. Topographic error is the dominant cause of velocity error 731 

(Figure S5), even with the high-quality topography collected for this study, so dual observation 732 

is sensible. 733 

6 CONCLUSIONS 734 

None. 735 

7 GEOLOCATION 736 

39°13′13″ N, 121°20′7″ W 737 
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