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Abstract

HIV-1 Nef is a flexible, multifunctional protein with several cellular targets that is required for 

pathogenicity of the virus. This protein maintains a high degree of genetic variation among intra- 

and inter-host isolates. HIV Nef is relevant to HIV-associated neurological diseases (HAND) in 

patients treated with combined anti-retroviral therapy because of the protein’s role in promoting 

survival and migration of infected brain macrophages. In this study, we analyzed 2,020 HIV Nef 

sequences derived from 22 different tissues and 31 subjects using a novel computational approach. 

This approach combines statistical regression and evolved neural networks (ENNs) to classify 

brain sequences based on the physical and chemical characteristics of functional Nef domains. 

Based on training, testing, and validation data, the method successfully classified brain Nef 
sequences at 84.5% and provided informative features for further examination. These included 

physicochemical features associated with the Src-homology-3 binding domain, the Nef loop 

(including the AP-2 Binding region), and a cytokine binding domain. Non-brain sequences from 

patients with HIV-associated neurological disease were frequently classified as brain, suggesting 

that the approach could indicate neurological-risk using blood-derived virus or for the 

development of biomarkers for use in assay systems aimed at drug efficacy studies for the 

treatment of HIV-associated neurological diseases.
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Introduction

In the HIV-infected population, current combined antiretroviral therapy (cART) can reduce 

plasma viral loads (pVL) to undetectable levels and restore T-cell counts; however, the 

spectrum of HIV-associated neurocognitive disorders (HAND) remains a common co-

morbidity. Multiple studies have suggested that the HIV Nef protein plays a role in the 

development of HAND by acting directly and indirectly on brain cells (Khan et al. 2016; 

Ranki et al. 1995; Acharjee et al. 2014; Saribas, Khalili, and Sariyer 2015; Ghiglione and 

Turk 2011; Gray et al. 2011b). Nef increases monocyte and macrophage migration in animal 

models when injected into the brain (Mordelet et al. 2004; Overholser et al. 2003), and 

modulates cell-signaling pathways (Herbein et al. 2010). Nef contributes to an inflammatory 

environment by stimulating the production of inflammatory cytokines by macrophages (such 

as MIP-1α, MIP-1β, TNF-α, IL-1β, and IL-6) (Herbein et al. 2010), and corresponds to 

activation of the inflammatory factor NF-κB (Overholser et al. 2003; Olivetta et al. 2003). 

Nef is directly toxic to astrocytes and neurons in vitro, possibly through indirect activity of 

IP-10 (van Marle et al. 2004), and/or by stimulating the neurotoxin quinolinic acid (Smith et 

al. 2001). Nef is found in astrocytes of patients with HIV-associated dementia (HAD) and 

HIV encephalitis (HIVE) (Ranki et al. 1995), and astrocytic expression of Nef impairs 

spatial and recognition memory and increases neuronal loss (Chompre et al. 2013).

Previously, we compared twelve HIV Nef 3-dimensional (3D) protein structures, generated 

through sequencing and structural minimization, from AIDS patients with or without severe 

HIV-associated dementia (HAD) (Lamers, Poon, and McGrath 2011). We found several 

structural differences within Nef that could alter SH3 binding, change the orientation of the 

internal core domain, and make available an additional cysteine residue in the variable loop 

domain, which could alter membrane- or protein-binding potential. We proposed that these 

changes could play a functional role in the development of HAD. Others have also identified 

Nef structural-functional relationships (Geyer, Fackler, and Peterlin 2001; Arold and Baur 

2001). Interestingly, in another study, we found that host-specific nef DNA and RNA 

emerged prior to env, and that early (<90 days) convergent evolution in nef, but not env, was 

evident in brains of simian immunodeficiency virus SIVMac251-infected macaques (Lamers 

et al. 2015; Strickland et al. 2011). These findings led us to hypothesize that certain HIV nef 
isolates are better adapted to immune cells in the brain environment (Lewis et al. 2012; Jia et 

al. 2012; Olivieri et al. 2010; Gray et al. 2011a), which are presumably of myeloid lineage 

(Williams and Burdo 2012; Williams et al. 2001).

In the current study, we used a newly developed evolved neural network approach to 

determine if it was possible to classify brain and non-brain Nef sequences, and more 

specifically, to identify brain-specific Nef (Lamers et al. 2017; Lamers, Fogel, et al. 2016). 

The approach elucidated structure-function properties of brain Nef that were not discernable 

by viewing sequence information alone. The study resulted in a comprehensive investigation 

into the physiochemical properties of brain-adapted Nef.
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Materials and Methods

Sequences and alignment

Sequences were downloaded from either GenBank or the HIV Database at Los Alamos 

(www.lanl.HIV.gov), and included 2,020 unique Nef sequences derived from the anatomical 

tissues of 31 subjects (Fig I; Supplemental Table I). All 31 subjects in the study had multiple 

sequences and 26 subjects had sequences from multiple tissues. For 23 subjects, the primary 

pathology of the subjects at death was known (other than HIV-1 infection) (Fig IA). No 

cause of death was associated with sequence data for 8 subjects. Sequences from 4 subjects 

were derived from a longitudinally studied cohort of donors who were cART adherent and 

who had an undetectable plasma viral load at death (C02*, C04*, C05* and C09*) (Lamers, 

Rose, et al. 2016). Most brain sequences available for the study were derived from HAD or 

HAND patients; however, there were 25 sequences generated from brain tissue of patient 

(AZ) who died from a brain hemorrhage due to severe atherosclerosis, and two sequences 

were derived from brain tissue of a patient with lung cancer (C05*). Only two subjects 

included in the study (CB1 and CB3) had sequences from anatomical tissues paired with 

peripheral blood mononuclear cells (PBMC)-derived sequences at death. Overall, 512 brain 

sequences and 1,359 non-brain sequences derived from other lymphoid tissues were 

available for study (Fig IB). We did not categorize a subset of sequences as “brain” or “non-

brain” that were obtained from CSF, spinal cord, and meninges because they can share 

similarity with either brain or lymphoid tissues (Lamers et al. 2011; Salemi et al. 2009; 

Gonzalez-Perez et al. 2012). These sequences were not used for neural network training or 

testing but were used as a validation set (as further described below) (Fig IB). Nine 

molecular clone sequences were included in the study (ADA, CAM1, HCB2, JRCSF, JRFL, 

MANC and 3 sequences derived from BAL). All amino acid sequences were aligned using 

Geneious software (ver. 10) (www.geneious.com) followed by manual editing to correct for 

any obvious alignment errors.

Feature generation and correlations

72 different features describing various physicochemical characteristics of amino acids were 

identified from the available literature and resources such as ProtScale and ProtParam 

(www.expasy.org) (Wilkins et al. 1999) (Table I). These features were grouped into six 

major classes: amino acid size, shape or structure (n=24), polarity (n=6), composition (n=5), 

hydrophobicity (n=26), and miscellaneous other features such as those associated with 

HPLC and pKa (n=8). For each translated sequence, all features were calculated for the 

complete Nef protein and 10 specific functional domains in separate analyses. The chosen 

domains were already known as important for proper or altered Nef function (Fig II). For 

example the myristoylation domain, known for its high degree of variation, is required for 

the association of Nef with cellular lipid membranes (Bentham, Mazaleyrat, and Harris 

2006). The conserved polyproline motif within the MHC1-DM domain is responsible for a 

number of functions, including MHC-1 down-modulation and positions associated with SH3 

binding (Kuo et al. 2012; Jung et al. 2011). Other structural motifs were also considered in 

the study, including two alpha helix motifs in the center of the structure and another region 

near the 3′ end; a flexible loop domain, flanked by two beta-sheets that is associated with 

AP2 binding; and a region associated with altered cytokine immune-system signaling 
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responses (Percario et al. 2015). This effort generated a total set of 72 features calculated for 

11 total regions, or 792 total features.

A standard regression analysis was used to determine which of the 792 features individually 

maximized class separation between Nef sequences derived from brain and non-brain 

tissues. 62 of the 792 features had slight class separation (R2>0.8) and are described in 

Supplemental Table I for each region.

These 62 features were then used as input in the development of evolved neural networks 

using ZAPP as described below (Fogel 2008; Porto, Fogel, and Fogel 1995; Fogel, Fogel, 

and Porto 1990). The set of all sequences with known brain or non-brain origin was divided 

randomly into training (n=1251 sequences) and testing (n=626 sequences). As noted 

previously, a validation set was generated using sequences derived from CSF, spinal cord, 

and meninges. The process of generating training and testing sets was repeated three times 

with random assortments of the sequence data to avoid sampling bias.

ZAPP utilizes an evolutionary algorithm to optimize a population of neural networks using a 

set of input features on training and testing data (Lamers, Fogel, et al. 2016; Lamers et al. 

2017; Fogel et al. 2015; Fogel et al. 2014; Porto, Fogel, and Fogel 1995). A population of 

neural networks was generated and scored with respect to minimization of mean squared 

error (MSE) on the output (in this case, the assignment of a sequence to either the brain or 

non-brain class). At each generation of the evolutionary optimization, models with lowest 

MSE were saved as “parent” neural networks for the generation of “offspring” neural 

networks with some variance in the weights associated with connections, or aspects of the 

neural network architecture itself. For neural network development, MSE is minimized on 

the training data, while performance on the testing data is measured every 50 generations to 

avoid over-fitting. The best neural network is then pulled from the population and assayed 

for performance on the training, testing, and validation sets. For the experiments conducted 

here, a population of fully-connected, feed-forward neural networks was used, with sigmoid 

functions for each node, and a fixed architecture. However, given the feature set had a 

maximum of 62 features, we forced the neural networks to use reduced sets of inputs, where 

the number of inputs was fixed at either 19 or 20 at a time, with the evolution allowed to 

randomly choose which of the 62 features to use at input. Evolutionary optimization was 

used to simultaneously optimize both the weights of the neural network and the features 

used as input. This approach allowed for the exploration of small feature subsets and their 

interdependency. In addition, the use of three different divisions of the training and testing 

data allowed us to determine if the same sub-selected features were obtained for all three 

replicates or if features were largely specific to each division of the data, which is important 

because a useful biomarker for brain vs. non-brain Nef would rely on features that were 

found to be common over as many divisions of the data as possible.

All neural networks were optimized using 50 parents and 50 offspring models in the 

evolving population, with tournament selection using 4 opponents. The number of 

generations of evolutionary optimization varied for each neural network architecture and 

dataset and was chosen as the maximum amount of training generations without increase in 

testing MSE. Once a best neural network was achieved, a binary discriminating threshold 
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was determined to maximize classification accuracy of the two classes brain and non-brain. 

This threshold was fixed prior to use with any testing or validation samples. In this way, the 

neural network output (ZAPP score) could be compared to the threshold for the purpose of 

binning sequences into one or the other class. The thresholds used for each dataset are 

provided in Table II.

VESPA, a web-based tool used to identify signature patterns in aligned sequence data 

(www.lanl.gov), was applied to two aligned sequence populations: those classified as brain 

and those classified as non-brain by the best neural network. VESPA calls a signature 

position when the most common character in the query data (in our case brain sequences) 

differs from the most common character in the background data (in our case non-brain 

sequences). and provides a frequency score.

Sequence Accession Numbers

AB221005, AB253432, AY314054-AY314063, AY713409, DQ357219-DQ357221, 

DQ358012-DQ358047, EF656973-EF656985, EF656994, EF656995, EF657017-EF657029, 

EF657035-EF657045, EF657063-EF657121, U63632, GQ868779-GQ869380, HM002302-

HM002466, HQ174334-HQ174415, JQ990945, KU645011- KU645017, KU645030- 

KU645194, KU709356- KU709831, MF511264- MF511677, MF579824-MF579855, 

U23487, U66543-U66556.

Results

Amino acid variation along the Nef sequence population used in the study is shown in 

“SeqLogo” format in Fig II. Only two positions in the alignment (shown as dark green in the 

identity plot) were conserved at 100% (66A, 227P). The performance of each of five 

separate neural network architectures was evaluated on both training and testing data for 

dataset 1 (DS1), dataset 2 (DS2), dataset 3 (DS3)(Supplemental Tables II & III). These 

results indicate that neural networks with as few as 10 inputs have reasonable accuracy in 

separating brain from non-brain Nef sequences. The 10-10-1 neural networks retained 

reasonable mean performance on training and testing while using reduced sets of features 

and using 10 hidden nodes rather than 5 for improved generality. Among the three best 

10-10-1 neural networks from the three datasets, only one feature, AA Comp SwissProt 2 in 

the SH3 binding domain, was common to all three, nine features were found in two of the 

three, and another nine features were unique to a single dataset (Table III). The most shared 

features were largely from the SH3 binding domain, Nef loop, cytokines binding, Alpha CD, 

and AP2 binding domain, suggesting that these domains have importance in the 

classification of brain vs. non-brain associated Nef. The 10-10-1 neural network from DS2 

had the highest predictive accuracy on training (85.4%) and testing (84.3%) and was then 

used to process all of the sequences from the validation set. The resulting output scores were 

used, along with the same discriminating threshold used for the analysis of training and 

testing data, to assign validation sequences to the class brain or non-brain (Figs III and IV). 

Note that the distribution of the training and testing sequences was roughly similar across 

patients and over the final scores.
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These results indicated that there were underlying physicochemical differences between Nef 

derived from patients with HAD as compared to other populations, particularly cancer 

patients (Fig III). 26 out of 27 of brain sequences from the two patients without neurological 

disease (C05, and AZ) were classified as non-brain. On the other hand, and 309 out of 451 

non-brain sequences from patients with HAD/HAND were classified as brain, suggesting 

that brain-associated features persist in Nef derived from non-brain body tissues of patients 

with neurological disease. The sequences from one HAND patient in the study who was on 

cART until death (C02*) scored similarly to patients with HAD. The 55 sequences from 

HAD subjects MACS1 and MACS2 had an intermediary neural network score and were 

somewhat differentiated from cancer subjects, whose neural network scores were routinely 

low (non-brain); however, just 6 of these sequences were derived from actual brain tissues. 

Only one lymphoma subject (PATU3) had a single sequence that scored as brain; however, 

all additional sequences from this patient had low scores.

Sequences from seven molecular clones available from the NCBI AIDS reagent resource 

were included in the study (Fig IV). Through random allocation, two were used in training, 

one was used in testing, and six of these isolates were used in the validation set. Notably. the 

only molecular clone sequence (JR-FL) validated as brain by ZAPP was derived from brain 

tissue. JR-FL is derived from the same patient as the sequence JR-CSF, which was obtained 

from cerebral spinal fluid, and classified by ZAPP as non-brain.

The most important features for classification were the composition of SH3 binding 

positions, the Welling hydrophobicity scale applied to the cytokines binding domain, and the 

polarity of the Nef Loop and AP-1 binding domains (Table III). Each of these features have 

important biological functions associated to the function of Nef in the brain, specifically to 

astrocyte and macrophage infection. These biological implications are considered in greater 

detail in the discussion.

VESPA (www.lanl.gov) was applied to two aligned sequence populations: brain and non-

brain as classified by the best 10-10-1 neural network from DS2. The program identified 13 

positions in the brain sequence alignment that differed from the most common amino acids 

in each position in the non-brain sequence population (Fig V). Of the 13 total positions, six 

occurred in the highly variable myristoylation domain; however, most of these were had 

relatively low frequency scores (<22%). Note that the neural networks also did not identify 

the myristoylation domain important for brain vs non-brain separation in any of the best 

evolved networks. This result is similar to reports by others (Johnson et al. 2016). Five other 

positions had a difference in frequency score between 35–53% and occurred in regions of 

Nef that were identified by the neural networks as important for brain classification 

(corresponding to Fig 2 alignment positions 110, 128, 129, 160, 190) (Fig V). We sampled 7 

brain and non-brain sequences from our alignment to view these 13 positions directly in 

sequences with known tissue origin; overall, it appeared unlikely that this signature alone 

could be used to correctly classify brain sequences (Fig V).
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Discussion

HIV-associated neurocognitive changes have been reported since early in the AIDS epidemic 

(Snider et al. 1983). These CNS symptoms were initially called “HIV Associated Dementia” 

or HAD (Navia, Jordan, and Price 1986; Antinori et al. 2007). HAD was associated with one 

or more histopathological abnormalities on autopsy that were unique to HIV patients, such 

as HIV encephalitis (HIVE), HIV leukoencephalopathy, and diffuse poliodystrophy (Budka 

1991; Budka et al. 1991; Budka et al. 1987). HIVE was defined as multiple disseminated 

foci of microglia, macrophages, and multinucleated giant cells. HIV leukoencephalopathy 

was defined as diffuse damage to white matter that included myelin loss, reactive 

astrogliosis, macrophages, and multinucleated giant cells with little or no inflammatory 

infiltrates. Diffuse poliodystrophy was defined as reactive astrogliosis and microglial 

activation involving the cerebral gray matter (Budka et al. 1991; Pumarola-Sune et al. 1987). 

Overall, the postmortem finding most strongly associated with HAD was the number of 

activated macrophages present within affected areas of the brain (Glass et al. 1995). In 

addition, dendritic loss (Masliah et al. 1997), neuronal loss (Bell 1998), and brain HIV viral 

load (Bhaskaran et al. 2008) were associated with HAD.

After the introduction of cART, the incidence of HAD declined dramatically (Bhaskaran et 

al. 2008); however, milder forms of HIV-associated neurological disorders became 

prevalent, found in up to 50% of HIV-infected individuals (Heaton et al. 2010) and led to a 

new nosology called “HIV-Associated Neurocognitive Disorders” (HAND), which includes 

a diverse spectrum of pathologies, from mild neurocognitive disorders to HAD (Antinori et 

al. 2007). cART-treated patients with HAND differ from pre-cART patients in many ways. 

They are less likely to have detectable HIV RNA or have high levels of certain inflammatory 

biomarkers in their CSF (McArthur et al. 2004). At autopsy, HAND may or may not 

manifest florid neuropathological changes (Everall et al. 2009; Koedel et al. 1999; Lamers, 

Rose, et al. 2016). Currently there is a re-evaluation of the pathogenic mechanisms of 

HAND, including interest in persistent brain viral reservoirs or HIV proteins that can act 

independently of intact HIV that may drive persistent CNS inflammation and neurotoxicity, 

all of which are still associated with roles for activated macrophages {Koedel, 1999 

#1711;Annunziata, 2003 #1712;Bergonzini, 2009 #1713;Fiala, 1996 #1714;Neumann, 1995 

#387;van Marle, 2004 #246;Khan, 2016 #1648;Lenassi, 2010 #1679}.

HIV-1 Nef is a multifunctional protein required for pathogenicity of the virus (Kestler et al. 

1991). The protein maintains a high degree of genetic variation among intra- and inter-host 

isolates. Increased attention has focused on the role of Nef in HAND pathogenesis, as it is 

expressed abundantly from astrocytes (Sami Saribas et al. 2017) and has been identified in 

blood and brain exosomes during cART (Raymond et al. 2016; Khan et al. 2016). This could 

constitute a potential mode of intercellular communication (van Niel et al. 2006) as Nef 

could prime permissive cells or activate immune responses in myeloid cells (Sami Saribas et 

al. 2017). Nef also dysregulates autophagy, an adaptive response to stress, in several cell 

types (Saribas, Khalili, and Sariyer 2015; Gupta et al. 2017). As the actions of Nef continue 

to grow, we were interested if brain-derived Nef shared characteristics that could allow for 

its identification and would provide further support for the protein’s role in HAND 

pathogenesis.
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In this study we used statistical analysis combined with ENNs (Lamers et al. 2017; Lamers, 

Fogel, et al. 2016) to identify physicochemical alterations in Nef sequence domains that 

could be used to classify Nef sequences into either brain or non-brain classes. ENNs are 

nonlinear functions (neural networks) that map input variables/features to an output, through 

a hidden layer of nodes and processing functions. Evolutionary computation is used to 

search the space of nonlinear functions that has highest accuracy on training examples, while 

retaining useful generalization on unseen testing data. This approach allows for model 

optimization and simultaneous sub-selection of the features used as input to the model. In 

that sense, the approach provides a unique understanding of the features that are best suited 

for classification. This is in direct contrast to standard statistical methods that only use 

correlation analysis to search for “best” features one at a time. The best ENN discovered 

through this process had an 85.4% true positive and true negative classification accuracy on 

the training data set and 84.3% accuracy on the testing data set. Signature pattern analysis 

(Fig V) confirmed that changes associated with brain or non-brain data sets were more 

complex than simply the identity of the amino acids in positions across the Nef genome. The 

analysis suggests that subtle adjustments of amino acid physicochemical features within 

multiple functional domains helps define a Nef sequence associated with HAND tissues. 

These slight adjustments may only be identified through modeling approaches that allow for 

multiple features to be used simultaneously through a nonlinear processor. Despite the 

finding of brain-specific Nef sequences across numerous subjects, it remains difficult to 

translate this information into functional viral life cycle without further assessment of such 

variants in biological assays.

In all three ENN experiments with 10-10-1 neural networks, the composition of the Src 

homology-3 (SH3) binding domain was important in the classification of brain isolates. The 

SH3 binding capacity by Nef is required for many other HIV protein interactions to take 

place (Tokarev and Guatelli 2011; Arold et al. 1997; Alvarado et al. 2014). Nef interacts 

with SH3 domain proteins primarily via a conserved PxxP motif in its core domain; 

however, other positions in Nef are also associated with SH3 binding (Fig II) (Grzesiek et al. 

1996; Lee et al. 1996). One of the alignment positions involved in SH3 binding, 110G, had 

the a highly conserved brain amino acid signature, identified in 80% of brain sequences and 

in only 2% of non-brain sequences. One well-known binding partner of HIV Nef is the 

monocyte-specific kinase Hck (Grzesiek et al. 1996), and therefore a specific SH3-binding 

configuration would be consistent with infection of brain immune cells, e.g. monocyte-

derived macrophages (Cornall et al. 2013).

Polarity in the Nef Loop domain and the AP-2 binding domain (a subset of amino acids in 

the Nef loop) was used to classify brain viruses in two of the 10-10-1 neural networks. AP-2 

is a cell-specific transcription factor family consisting of five closely related proteins (α, β, 

γ, δ and ε) that regulate the expression of specific target genes (Damberg 2005; Eckert et al. 

2005). AP-2α and β are abundant isoforms in the brain and represent binding sites for 

putative transcriptional factors present in the Apolipoprotein E (ApoE) promoter. ApoE has 

been shown to co-localize with neuropathological lesions in Alzheimer’s disease. The Nef 

loop has other known functions, such as trafficking and Nef internalization (Zinkernagel 

1976). The CD4 binding domain is concentrated in the N-terminal flexible loop and the core 
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domain of Nef; recruitment of the partners AP and COP I is mediated by the C-terminal loop 

(Geyer, Fackler, and Peterlin 2001).

The Welling scale applied to the cytokine-binding domain was found to be important the 

classification of brain vs. non-brain Nef sequences. This unique scale was developed based 

on the percentage of amino acids in known antigenic determinants of a variety of proteins 

compared with the percentage of the amino acids in the average composition of a protein 

(Welling et al. 1985). Increased antigenicity of HIV brain Nefs could associate with 

macrophages that produce inflammatory cytokines, which are important in driving adaptive 

immune responses (Koppensteiner, Brack-Werner, and Schindler 2012).

Other structural features identified through our approach (Fig VB) were within the first 

alpha-helix region A and two other smaller regions in the unstructured C-terminal Nef. 

Alpha-helix A is in the hydrophobic pocket in the core of the protein; proper positioning of 

the helix with a tryptophan residue at position 15 (Fig II) is thought to be necessary for 

positioning of Nef at membrane surfaces (Johnson et al. 2016). In our own Nef structural 

minimization experiments (unpublished data), we have observed that the smaller defined 

alpha-helices in C-terminal regions have varied potential for the formation of secondary 

structure which is typical for unstructured regions of the protein (Barnham et al. 1997).

A variety of subjects, tissues, and pathologies were evaluated in the study. Of the 13 patients 

diagnosed prior to death with neurological disease, 11 had sequences that were classified as 

brain. Furthermore, nef sequences from the non-brain tissues of these patients were also 

frequently classified as brain-like, suggesting that sequences derived from anatomical tissues 

outside the brain could be used a biomarker for HAND potential. An extensive phylogenetic 

study of the HIV env gene by Rife et al., using six CD8-depleted and twelve naturally 

progressing SIV-infected macaques, demonstrated early entry of virus into the brain, 

followed by a period of adaptation in the periphery that lead to neurotropism later in 

infection (Rife et al. 2016). The higher scores for non-brain sequences derived from end-

stage HAD patients are consistent with these findings, although evolution in env and nef is 

not always comparable (Lamers et al. 2015). Notably, 13 sequences derived from PBMCs 

from three patients with HAD (BI, CB1, and CB3) all classified as brain. A future study 

could apply ZAPP to pre-cART PBMC samples combined with post-mortem tissues, in 

order to substantiate the hypothesis that Nef derived from PBMCs, which scores in the brain 

class by ZAPP, is predictive of HIV-associated neurological disease.

Relatively low ZAPP scores were calculated for cancer patients, suggesting that a cancer-

associated Nef sequence population may exist. Therefore, a similar ZAPP workflow could 

be designed to identify a Nef biomarker for cancer potential in HIV-infected patients. This 

finding could relate to the alternative macrophage activation states in these disease processes 

(Lamers et al. 2012). During lymphoma pathogenesis, M2-activated macrophages produce 

anti-inflammatory cytokines and Nef stimulates MDMs to form conduits that selectively 

transfer Nef to B-cells, thus allowing the protein to bypass B-cell immunoglobulin receptors 

(Lamers, Fogel, et al. 2010; Xu et al. 2009; Moir and Fauci 2010). During HAD 

pathogenesis, M1-macrophages produce inflammatory cytokines that trigger the recruitment 

of further macrophages into the brain (Lamers et al. 2012).
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Most subjects in the study had an unknown course of cART; however, at least four were 

treated until death, at which time no measurable plasma viral load was detected. These 

tissues were derived from donors enrolled in the National Neuralological AIDS Bank 

(NNAB), which clinically treats and monitors patients with neurological disease or a severe 

life-limiting HIV-associated comorbidity. As we reported previously (Lamers et al. 2017; 

Rose et al. 2016), brain tissues from these subjects were assayed for HIV using a digital 

droplet PCR (ddPCR) approach as well as env-nef single genome sequencing of HIV RNA 

and DNA. While ddPCR confirmed the presence of HIV in the brain tissues for all four of 

these subjects, the larger segment of HIV DNA or RNA (env-nef) was only abundantly 

amplifiable from subject C02*, who was diagnosed with HAND and schizophrenia over a 

year prior to death (Lamers et al. 2017). Three different tissue biopsies from subject C05*, 

whose primary pathology at death was noted as metastatic lung cancer, yielded only two 

env-nef brain DNA sequences. However, all of these subjects had noted brain pathology at 

death: C02 with neoplastic infiltrate; C04, C05, and C09 with Alzheimer’s type-2 gliosis. 

Interestingly C02, C09 and C05 all had sequences (brain or not) that classified as brain-like, 

thus again suggesting that it could be possible to use our approach to indicate HAND-risk in 

patients on cART using Nef sequences derived from non-brain tissues such as blood.

The best neural network did not show perfect separation between brain and non-brain 

classes, which should be expected as the sequences are sampled from a very complex human 

system, and we might not have identified all of the features required to attain perfect 

separation. Furthermore, previous phylogenetic studies have shown that HIV/SIV from brain 

tissues can move across the blood-brain barrier and infect cells in the periphery (Lamers, 

Salemi, et al. 2010; Rife et al. 2016). Additional re-training and testing of such nonlinear 

classifiers using a larger number of brain sequences, especially from diverse donors, could 

increase the accuracy of the system. However, with an accuracy of 84.5%, the best neural 

network already has high potential to identify isolates with brain-like characteristics that 

could be used in vivo or in vitro to better understand HIV-associated neurological 

comorbidities.

While it can be difficult to generate an abundance of long HIV sequences (env-nef) from 

most cART+ subjects, recent studies have shown that defective proviruses from patients on 

cART can express HIV RNA species with unusual exon combinations that usually contain 

Nef, even when the full HIV genome cannot be detected (Imamichi et al. 2016), thus, the 

Nef protein remains an attractive target for biomarker development in cART+ patients in 

comparison with other HIV proteins. In order to increase our understanding of the HIV Nef 

protein’s role in HAND, additional studies are needed to identify if Nef proteins alone are 

frequently within brain tissues derived from patients on cART, even when quantitative PCR, 

which usually targets gag RNA, are negative.

HIV Nef is a fascinating protein due to its flexible structure, multiple functions and diverse 

cellular targets. Furthermore, HIV Nef is relevant to neurological disease in the cART-era 

when considering the protein’s role in promoting survival and migration of infected brain 

macrophages. In this study, we show that the novel ZAPP approach has strong potential to 

classify brain-tropic Nef sequences, especially with the generation of additional data for 

training and testing.
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Fig I. Number of nef sequences in study derived from anatomical tissues from subjects used in 
study
Panel A Subject IDs are on the left and are sorted by primary disease pathology (if known) 

at death. The number of sequences for each subject are on the y-axis. Asterisks indicate 

subjects who died while on cART with no measurable plasma viral load. Bars are colored by 

specific tissue of origin for each sequence. Panel B. Sequences in Panel A are sorted by 

major categories used for training and testing (brain and non-brain) and validation (CSF, 

meninges, PBMC and spinal cord) of the ENN.
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Fig II. Variation in Nef sequence alignment and location of functional domains studied
Amino acid sequence variation is presented as a “SeqLogo,” which shows the major amino 

acids along the alignments; the size of the letter coincides with its relative abundance at each 

position. Below the SeqLogo is an “identity” panel, where the height is equal to coverage at 

each position in the alignment and color represent conservation of amino acids with dark 

green = 100%, light green = 30–99%, red = less than 30%. Functional domains used for 

ZAPP development are indicated. Asterisks represent individual amino acids associated with 

SH3 binding.
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Fig. III. ZAPP scores for all subjects
Subject ID, subject pathology and compartments (brain, non-brain, and validation sequence 

populations from meninges, spinal cord, PBMC, CSF) are listed on left-hand columns. An 

asterisk indicates subjects who died with no detectable plasma viral load. ZAPP score is on 

the x-axis, with a calculated discriminatory threshold for Brain and Non-Brain designated as 

a vertical line at 0.77. Scores for sequence used for testing, training, validation are shown 

and colored according to legend.
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Fig. IV. ZAPP scores for sequences for selected cloned HIV-1 Nef sequences
Sequence names are listed on left-hand columns along with the tissue of origin (if known). 

ZAPP score is shown on x-axis, with a calculated discriminatory threshold for Brain and 

Non-Brain designated as a vertical line at 0.77. Scores for sequence used for testing, 

training, validation are colored according to the legend in Fig. 3.
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Fig. V. Signature analysis of predicted brain and predicted non-brain sequence populations
Panel A. A sequence alignment containing all DS2-predicted brain sequences was used to 

query against the background alignment containing all DS2-predicted non-brain sequences. 

A signature position (top row) is called when the most common character in the query data 

differs from the most common character in the background data. Signature amino acids for 

the brain alignment are colored green and for the non-brain alignment are colored light 

orange. Positions where the query differed from the background more than 30% are 

indicated with red boxes. In the middle and lower panels, a selection of brain and non-brain 
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signature positions derived from Nef sequences with known tissue origin are shown. The 

ZAPP scores for each particular sequences are shown in the second column. The signature 

positions are colored according to a brain signature (green) or a non-brain signature 

(salmon). Positions where the amino acid did not match either signature are not colored. 

Panel B. 3D Nef JRCSF in “cartoon” format showing selected structural and functional 

regions. Identified signature positions are shown as “spheres”. Alpha Helices A and C, 

which were identified as useful for brain classification, are indicated.
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Table I

Physicochemical and structural features used for the study.

Class Features

A. Size, Shape, 
Structure

Molecular Weight (Gasteiger et al. 2005) Bulkiness (Zimmerman, Eliezer, 
and Simha 1968)

Antiparallel Beta Strand (Lifson and 
Sander 1979)

Beta Turn (Deleage and Roux 1987) Beta-sheet Levitt (Levitt 1978) Alpha Chou and Fasman (Chou and 
Fasman 1978)

Coil (Deleage and Roux 1987) Beta Strand (Lifson and Sander 
1979)

Parallel Beta (Lifson and Sander 
1979)

Surface Area (Darby and Creighton 
1993)

Volume (Darby and Creighton 
1993) Surface Exposure (Grantham 1974)

Average Flexibility(Grantham 1974) Mol. Fraction of Buried Res.
(Janin 1979)

Beta Chou and Fasman (Chou and 
Fasman 1978)

% Accessible Residues (Janin 1979) 2D Propensity (Lamers et al. 
2008)

Transmembrane (Zhao and London 
2006)

Avg. Area Buried (Rose et al. 1985) Membership Class (Grantham 
1974)

Mass Membership Class (Lamers et 
al. 2008)

Recognition Factors (Hofmann and 
Hadge 1987) Alpha Helix Levitt (Levitt 1978) Alpha Helix (Deleage and Roux 

1987)

B. Polarity
Polarity (Grantham 1974) Charge1 Charge Polarity (Zimmerman, 

Eliezer, and Simha 1968)

Charge Scale (Grantham 1974) Grantham (Grantham 1974)

C. Composition

Amino Acid Composition (McCaldon 
and Argos 1988) Length of V3 Amino Acid Composition Swiss Prot 

(Gasteiger et al. 2005)

Relative Mutability (Dayhoff, Schwartz, 
and Orcutt 1978)

Total Sequence Glycosylation 
(Van Baelen et al. 2007)

D. Hydrophobicity

Sweet et al. (Sweet and Eisenberg 1983) Kyte and Doolittle (Kyte and 
Doolittle 1982) Hydrophobicity (Grantham 1974)

Abraham and Leo (Abraham and Leo 
1987)

Bull and Breese (Bull and 
Breese 1974) Guy (Guy 1985)

Roseman (Roseman 1988) Wolfen et al.(Wolfenden et al. 
1981) Wilson et al. (Wilson et al. 1981)

Eisenberg et al. (Eisenberg et al. 1984) Hopp and Woods (Hopp and 
Woods 1981)

Manvalan et al. (Manavalan and 
Ponnuswamy 1978)

Fauchere et al. (Fauchere and Pliska 
1983) Janin (Janin 1979) Rao and Argos (Mohana Rao and 

Argos 1986)

Tanford (Tanford 1962) Welling et al. (Welling et al. 
1985) Chothia (Chothia 1976)

Cowan and Whittaker (Cowan and 
Whittaker 1990)

Parker (Parker, Guo, and 
Hodges 1986)

Browne (Browne, Bennett, and 
Solomon 1982)

Meek (Meek 1980) Aboderin(Aboderin 1971) Rose et al. (Rose et al. 1985)

Black and Mould (Black and Mould 
1991)

Miyazawa et al. (Miyazawa and 
Jernigan 1996)

E. Local Features

Glycosylation at Positions 6–8 (Van 
Baelen et al. 2007)

Charge at Position 30 (Milich, Margolin, 
and Swanstrom 1993)

Glycosylation at Positions 5,7,9 
(Van Baelen et al. 2007)

Charge at Position 12 (Milich, 
Margolin, and Swanstrom 1993)

F. HPLC and Other Retention at pH 2.1 (Meek 1980) HPLC/TFA (Browne, Bennett, 
and Solomon 1982) Refractivity (Jones 1975)
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Class Features

HP Scale (Grantham 1974) pKa alpha carboxylate (Anaspec 
2013) Exchange (Lamers et al. 2008)

pKa Amine (Anaspec 2013) pI at 25°C (Anaspec 2013)

1
“Charge” feature = [+1] for K and R; [−1] for D and E.
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Table II

Thresholds generated on the output of the best neural network on the training samples only, used for 

classification of all subsequent sequences in the testing and validation sets.

Neural Network Architecture (number of input-hidden-output nodes) DS1 DS2 DS3

62-10-1 0.82 0.87 0.77

20-10-1 0.72 0.76 0.79

10-10-1 0.75 0.77 0.78

10-5-1 0.73 0.72 0.76

5-3-1 0.78 0.78 0.74
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