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Abstract

A current challenge is to compute the native structures of proteins from their amino acid 

sequences. A main approach of bioinformatics is threading, in which a protein to be predicted is 

computationally threaded onto protein fragments of similar sequence having an already known 

structure. However, ~15% of proteins cannot be folded in this way; this has been called the glass 

ceiling, and the proteins are called nonthreadables. For these, physical molecular dynamics (MD) 

modeling is promising because it does not require templates. We find that MD, when used with an 

accelerator called MELD, can fold many nonthreadables. For 41 nonthreadable proteins with 

fewer than 125 residues, MELD-accelerated MD (MELD × MD) folds 20 of them to better than 4 

Å error. In 10 cases, MELD × MD succeeds even when the force field does not properly encode 

the native state. In 11 cases, MELD × MD foretells its own success; seeing large Boltzmann 

populations in the simulations predicts it has converged to the correct native state. MELD × MD 

acceleration can be applied to a broad physical protein modeling range.
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1. INTRODUCTION

Computer modeling of proteins is valuable for understanding biological mechanisms of 

action, dynamical motions, biological function, and protein folding and binding and for 

designing ligands as drugs. An important challenge for computational methods, and a useful 

test bed, is to predict the native folded structure of a protein from its amino acid sequence. 

There are many methods, but they tend to range between two limits. (i) In bioinformatics, an 

early step in predicting an unknown protein structure is to find another protein, the template, 

that has a similar sequence and a known structure in the Protein Data Bank (PDB).1 In 

threading, a particular sequence is scored for suitability with known structural fragments 

from a database of different folds. These database-dependent methods are often relatively 

successful when the level of homology is high. (ii) In physical molecular dynamics (MD) 

simulations, no such template is required because computations are fully self-contained 

within the physics of the model, but physical modeling is limited by some imperfections in 

force fields and the need for extensive computing resources. MD has not yet been a practical 

way to compute folded structures of proteins.

However, we recently developed an accelerator for MD simulations, called MELD 

(modeling employing limited data).2,3 MELD-accelerated MD (MELD × MD) accelerates 

the search for important states when some limited (and often vague) information is available. 

For example, MELD × MD has been able to fold small proteins,4,5 including in the blind 

competitive event critical assessment of structure prediction (CASP),6–15 given only the 

knowledge that proteins have hydrophobic cores, are compact, and have secondary structure.
16–18 Here, we test MELD × MD in another situation that requires a physics-based method. 

In particular, ~15% of proteins cannot be threaded onto known templates and cannot be 

predicted using bioinformatics-based threading methods.19 Skolnick has called this 

limitation a glass ceiling and the proteins nonthreadable. Here, we ask if MELD × MD is 

capable of predicting the native structures of nonthreadable proteins. We describe here a 

number of successes, but we also comment on the challenges and current limitations.

2. METHODS

2.1. Modeling Employing Limited Data.

MELD accelerates MD simulations, obeys detailed balance, and satisfies Boltzmann’s law. 

MELD × MD is also a Bayesian inference method, where the force field-generated structural 

ensemble is the prior, heuristics from general knowledge about proteins provide the 
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likelihood, and the resulting structural ensemble is the posterior distribution. Data that are 

sparse, ambiguous, or unreliable can be effectively used in MELD × MD to limit 

conformational searching and accelerate simulations. Besides protein folding, MELD × MD 

also has applications in identifying pathways, determining protein–protein interactions, and 

ligand binding in drug discovery.20

2.2. Folding Simulations with MELD × MD.

MELD × MD uses Hamiltonian, temperature-replica exchange molecular dynamics (H,T-

REMD)21,22 with the AMBER ff14SBside23 force field in the GBneck2 implicit solvent (igb 

= 8),24 powered by OpenMM25 to run on graphical processor units (GPUs). Each MELD × 

MD run was performed with 30 replicas ranging in temperature from 300 to 450 K, using 

Langevin dynamics, and a 4.5 fs time step with the hydrogen mass adjusted to 4.0 Da, but 

keeping the heavy atom and hydrogen pair mass the same. MELD × MD builds an initial 

extended structure from the sequence using tleap from AmberTools17.26 Sets of restraints 

that impose secondary structure, hydrophobic contacts, and hydrogen bonding between β-

strand pairs are tabulated from sequence information. Of all possible restraints generated, 

only a fraction are enforced at each time step; the energies of the restraints are calculated at 

each exchange step, and the lowest-energy restraints in each replica are activated. Secondary 

structure restraints are predicted with PSIPRED;27 all predictions for helices and sheets are 

accepted, and 70% of the lowest-energy PSIPRED-generated restraints are active at each 

time step. Sets of hydrophobic and hydrogen bond restraints are generated; hydrophobic 

pairing is enforced so that there are 1.2 contacts per residue, and secondary structure strand 

pairing is enforced at 45%. The H,T-REMD is implemented as follows. At high 

temperatures, the restraints have low force constants and are zero at the highest temperature, 

while at lower temperatures, the force constants are increased. Exchange between replicas 

happens by the metropolis Monte Carlo method. Detailed explanations of MELD can be 

found in ref 3 or 2.

We simulated 41 nonthreadable proteins starting from an extended conformation using 

MELD × MD. Each system was run for at least 1 μs; 1GYZ, 1HYW, 1KAF, 1PC0, 1RQ6, 

1A6S, 1EO0, and 1ND9 were run for 1.5 μs. The computational cost varied with protein 

size, but for every 1 μs of sampling, the nonthreadables used ~3000 XK node hours on the 

Blue Waters sustained petascale computing resource at the National Center for 

Supercomputing Allocations.

2.3. Selecting Nonthreadable Candidates for MELD × MD.

We selected nonthreadable proteins from the three databases at http://

cssb2.biology.gatech.edu/threading/download.html.19 These databases contain proteins 

identified by Skonlick and Zhou as having a template modeling score (TM score)28 of <0.4, 

below the value used to determine whether two proteins have the same fold.29 The number 

of unique nonthreadable sequences across the three lists was found to be 898:676 from 

HHpred,30,31 637 from SP3,32 and 719 from PROSPECTOR_4.33 Nonthreadable proteins 

come in a variety of sizes, from 30 to 3440 amino acids in length (though only five are 

longer than 215 amino acids), cover more than 700 Pfam families, contain a range of 

secondary structure features, and fold to low- and high-contact order structures (Figure 1 of 
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the Supporting Information). Running MELD × MD simulations on all 898 nonthreadables 

was not computationally feasible, so a smaller set was selected by filtering out proteins that 

MELD × MD is not currently optimized to fold. Protein sequences selected for MELD × 

MD included fewer than 125 residues, were single-chain monomers, had net charges of ≤±5, 

had an at least 50% secondary structure composition (as predicted by PSIPRED), had no 

missing residues, and were not known to be membrane proteins. After the pre-MELD filter 

had been applied, the list was reduced to 41 MELD × MD candidate proteins (Figure 1). The 

filter eliminated 318 nonthreadables on the basis of size and 370 on the basis of low 

secondary structure content. The remaining sequences were filtered out because they formed 

multimers or complexes with other molecules.

2.4. Force Field Stability Tests.

The quality of our modeling results depends on the quality of the force field. Therefore, to 

establish whether any successes or failures of our modeling were due to a lack of sampling 

by MELD × MD or flaws in the force field, we first ran control experiments. We ran non-

MELD × MD single-trajectory MD simulations (hereafter termed MD runs or stability tests 

to differentiate them from MELD × MD runs) of each protein starting from its known native 

conformation to determine whether the native state of the protein was stable in the force 

field and solvent model that we used in MELD × MD. Stability tests were run for 41 MELD 

× MD candidates with AMBER pmemd.cuda.26,34 For these MD runs, we used the native 

structure downloaded from the PDB as the starting conformation. The ff14SBside protein 

force field was used with the GBneck2 implicit solvent, the same as in MELD × MD folding 

simulations. Systems were minimized with 5000 steps of steepest descent followed by 5000 

steps of conjugate gradient. The MD systems were each run for 500 ns of production. 

Temperature REMD (T-REMD) was performed for systems 1PC0 and 1OQK, starting from 

the native conformation, with ff14SBside and GBneck2 using AMBER pmemd.cuda, from 

300 to 450 K (12 replicas for 1PC0 and 14 for 1OQK).

2.5. Seeded MELD × MD Simulations.

For proteins that never sample native conformations in any of the MELD × MD ensembles, 

we seeded new MELD × MD simulations with the native structure to test whether the 

problem was insufficient sampling or the force field. The only difference between these 

simulations and the MELD × MD folding simulations described above is that the lowest-

temperature replica started from the native conformation rather than from the extended 

conformation.

2.6. Ensemble Processing.

We postprocessed trajectories with a combination of scripts included with MELD × MD and 

CPPTRAJ35 from AmberTools17. For MELD × MD simulations, trajectories from the five 

lowest-temperature replicas were clustered using the average-linkage hierarchical 

agglomerative algorithm with ϵ 2 Å. The conformational clustering was based on the root-

mean-square deviation (RMSD) of Cα and Cβ atoms of secondary structure residues, as 

predicted by PSIPRED. The first 250 ns of trajectory frames was omitted for clustering. 

Representatives from the top five clusters were assessed in terms of their similarity to the 

native state by calculating the RMSD of Cα and Cβ atoms of residues in predicted 

Robertson et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



secondary structure elements from the experimental PDB structure. Cluster representatives 

with RMSDs of <4.0 Å were considered folded to native. MD and T-REMD stability tests 

were analyzed with CPPTRAJ.

3. RESULTS AND DISCUSSION

3.1. MELD × MD Folds Nonthreadable Proteins.

We find that MELD × MD successfully folded 20 of our 41 nonthreadable targets (Figure 2 

and Table 1 of the Supporting Information). We refer to proteins that MELD × MD 

successfully folded as “folders” and the rest as “nonfolders”. Of the 20 folders, 14 folded to 

structures having the single lowest free energy. For the other six, the true native was among 

the three lowest-free energy conformations.

3.2. MELD × MD Often Foretells When It Succeeds with Large Populations.

An important challenge is to know in advance when to trust that a computer simulation may 

have found the native state. The power of physical modeling, such as force field-based MD, 

is that it gives free energies and, hence, populations. Therefore, when MELD × MD 

converges on a state with a large population, it is evidence that the force field “thinks” it has 

found the state with the lowest free energy among all the states it has sampled. Indeed, we 

found this to be a good sign of success. When MELD × MD cluster populations exceeded 

40%, the structure it found was within4.0 Å of native in all cases but one (Figure 3). 

Therefore, for blind predictions, this criterion is a good measure of confidence that the 

simulation has found the native state. When we see smaller conformational populations, it is 

inconclusive (Figure 2 of the Supporting Information).

3.3. MELD × MD Rescues 10 Predictions for Which the Native Protein Is Not Stable in the 
Force Field.

MELD × MD is just a search strategy, in principle always limited by the quality of the force 

field on which it relies. If a simulated protein is put into the true experimental native 

structure and if that structure is not stable in the force field, we should not expect a sampling 

strategy like MELD × MD to fix it. However, remarkably, we find that MELD × MD 

correctly identifies the native states of 10 proteins that are not stable in the force field 

(Figure 4 and Figure 3 of the Supporting Information). For example, initiating 1AA3 in its 

true native state in stability tests leads to its complete unfolding to structures 10 Å from 

native, but MELD × MD starting from unfolded found the correct native state and populated 

it. There were also nine other examples. The reason, apparently, is that external knowledge 

of secondary structures and a hydrophobic core were sufficient to help the force field find 

the correct native state.

However, not surprisingly, MELD × MD cannot always rescue force field failures. For 

example, 1W09 has a proline in the middle of the third helix. Typically, this predicts helix 

breaking. MELD × MD generated a kinked third helix. However, the true native structure 

has three straight helices. The force field problems shown with 29 nonthreadables that 

sample non-native ensembles provide additional data for benchmarking new protein force 

fields. Especially interesting for force field development might be the 10 proteins that 
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MELD × MD folded despite the force field favoring other conformations. This indicates that 

secondary structure propensities are likely at fault and the restraints used in MELD × MD 

for secondary structure help push those conformations to higher energies. In addition, two 

all-β proteins, 1PC0 and 1OQK, were failures of insufficient MELD × MD sampling, not the 

force field. Both proteins were mostly in low-RMSD conformations at 300 K in the T-

REMD stability tests, indicating that the force field was not the reason MELD × MD did not 

populate these native conformations (Figure 4 of the Supporting Information).

3.4. MELD × MD Sometimes Cannot Rescue a Prediction from Poor Secondary Structure 
Predictions.

We found only one example in which predicting a large-population state did not correctly 

predict the native state (Figure 3 and Figure 5 of the Supporting Information). Upon further 

inspection, we found that the PSIPRED secondary structure prediction failed to predict the 

β-sheets present in the native conformation. Instead of PSIPRED predicting βααβα for 

1ND9, PSIPRED predicted ααα. The result was that MELD × MD folded 1ND9 to a 

structure 5.2 Å from native, with secondary structures that agreed with the PSIPRED 

prediction. Therefore as a test, we reran 1ND9 in MELD × MD, giving it only the correct 

native secondary structures this time. The best prediction was still non-native, now 5.1 Å 

from native. It was somewhat improved but with helices that were longer than those of the 

native form. The force field is known to overstabilize helices.23,36,37 Even so, by a different 

measure, the global distance test (GDT),38 the structure was found to be closer to native 

when given the correct secondary structures (Figure 5 of the Supporting Information). In 

short, while we know that MELD × MD can rescue structures from wrong input knowledge 

sometimes, it cannot always.

3.5. MELD × MD Found and Sampled Most Native Structures Well.

MELD × MD is an efficient search strategy that was previously shown to decrease folding 

time on 20 fast folding proteins by up to 5 orders of magnitude compared to those seen with 

single-trajectory, “traditional” molecular dynamics.3 Here, we show that MELD × MD finds 

native states of nonthreadables within 1 μs per replica simulation time. In fact, many fold to 

native within 250 ns per replica sampling time (see Figure 6 of the Supporting Information), 

although sampling was extended to see whether others would eventually find native or move 

away from native with an increased level of sampling.

For 15 proteins that never sampled native in the original MELD × MD runs, only one protein 

folded to native in seeded MELD × MD simulations (Table 2 of the Supporting 

Information). This suggests that the force field was responsible for 14 of these nonfolders, 

while sampling was an issue for 1LN4. The PSIPRED secondary structure predictions fed 

into the original MELD × MD simulation of 1LN4 were quite accurate, but the lowest-free 

energy structure was 10.5 Å from native with a helix in place of β2. In addition, the three 

other β-sheets were not properly paired. This suggests a combination of problems in 1LN4: 

the force field is stabilizing α over β, and MELD × MD is not properly pairing the other β-

sheets. A possible improvement for MELD × MD is a better β-strand pairing scheme. 

Ultimately, however, we found that by seeding 15 new MELD × MD simulations with their 
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true native structures, only one folded to native, indicating problems with the force field 

rather than sampling for those proteins.

3.6. What Protein Properties Determine Whether MELD × MD Can Fold Them or Not?

Here, we describe which proteins are foldable, and which are not, by MELD × MD (Figure 

5). First, we looked at protein size. Folding succeeded for proteins ranging in size from 46 to 

108 amino acids and failed for proteins ranging in size from 49 to 110 amino acids. 

Therefore, size, at least in this range, is not a critical determinant. However, not surprisingly, 

successes were greater for sequences in the range of 50–75 amino acids. Previous studies 

with MELD × MD have folded up to 97 amino acids with heuristics-informed restraints 

(same input as in this study) and up to 212 with experimental data-informed restraints.5 

Folding 1R5E (105 amino acids) and 1KAF (108 amino acids) demonstrates that MELD × 

MD goes beyond 100-mers without experimental data or co-evolutionary information. 

Importantly, MELD × MD folded 1R5E to within 2.5 Å, with a cluster population of 85%.

We looked at net charge. Proteins having a small net charge, ranging from −5 to +5, were 

equally likely to fold or not fold, indicating that this range of charges was tolerable. Proteins 

with higher net charges were prefiltered out to avoid known problems with implicit solvent 

models such as the one we use here.37

We also looked at the protein contact order, a measure of how nonlocal the average contacts 

are. Larger contact order proteins tend to fold more slowly,39 indicating that it is physically 

more difficult for the protein to find its native state in test tubes. However, MELD × MD 

folded proteins with relatively high contact orders (Table 3 of the Supporting Information). 

The relative contact order of the native state PDB structure was determined using Plaxco’s39 

perl script and the default 6 Å heavy atom cutoff. MELD × MD folded proteins 1HDN, 

1J27, and 1KN6, which had relative contact orders of 0.18, 0.19, and 0.21, respectively, 

which are all higher than 0.17, the highest contact order for a nonfolder. This shows that 

MELD × MD is not limited by proteins with both high contact order and sequence lengths 

approaching 100 amino acids, because 1HDN, 1J27, and 1KN6 had 85, 98, and 73 residues, 

respectively, though both MELD × MD folders with more than 100 amino acids (1KAF and 

1R5E) had relative contact orders close to 0.10.

We also looked at whether the quality of the secondary structure predictions that were input 

into MELD × MD was a predictor of folding success or failure. We used PSIPRED-

predicted secondary structure to enforce secondary structure restraints for α-helices, β-

sheets, and β-sheet strand pairing. The PSIPRED restraints for the set of MELD × MD 

candidates matched quite well with the native secondary structure content of these 

nonthreadables. The distributions of secondary structures were similar for folders and 

nonfolders, although folders had more α-helical content in the range of 50–75% and more β-

sheets compared to nonfolders. Poor PSIPRED predictions were overridden by MELD × 

MD in some cases but not in others. For example, PSIPRED was 70% accurate in predicting 

secondary structure for 1AA3, a protein that MELD × MD was able to fold. In contrast, 

PSIPRED was 96% accurate for 2EZK; however, the lowest-RMSD structure that MELD × 

MD sampled was only 4.2 Å, and the lowest-RMSD cluster representative was 6.6 Å, 

because of force field deficiencies.
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4. CONCLUSIONS

We have shown that molecular dynamics force field simulations, accelerated by a Bayesian 

method called MELD × MD, predict well the native structures of 20 nonthreadable proteins 

that are smaller than 125-mers. These are proteins that cannot currently be folded by 

bioinformatics-based threading methods. A virtue of such physics-based simulations is that 

they give free energies and state populations, which gives a confidence measure in advance 

that the method is finding the right structure. Proteins may have features that make them 

more or less likely to fold with our method, but none were identified in this study. MELD × 

MD may be useful for leveraging physics-based modeling for molecules or actions that are 

larger than can otherwise be handled by normal MD alone.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Subset of nonthreadables that were selected for MELD × MD. Nonthreadables were filtered 

out to eliminate sequences least likely to be folded by MELD × MD. A set of 41 protein 

monomers with fewer than 125 residues, a low net charge, and a high secondary structure 

content were selected for MELD × MD simulations.
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Figure 2. 
MELD × MD predictions vs true experimental natives. (Blue) MELD × MD predicted 

structures, folded from fully extended. (Gray) True natives from the PDB. Also given are the 

PDB identification numbers, sequence lengths in italics (>100-mers are underlined), and the 

root-mean-square deviations (RMSD) in angstroms of the MELD × MD structure from the 

PDB reference. The RMSD was calculated for residues in secondary structure elements.
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Figure 3. 
Large populations from MELD × MD foretell its success. Proteins that have large MELD × 

MD cluster populations fold to the native structure (low RMSD). Protein 1ND9 is an 

exception (see the text). MELD × MD also folded some proteins to native that had small 

cluster populations, but usually small populations imply non-native folds or a lack of 

convergence.
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Figure 4. 
MELD × MD distributions of folding compared to MD of native structures. (Top left) 

Example in which the native structure is stable in the force field and MELD × MD samples 

it well. (Top right) The force field gives the wrong structure, and MELD × MD finds the 

wrong structure. (Bottom left) The force field gives the wrong structure, but MELD × MD 

rescues it and finds the right structure. (Bottom right) The native structure is stable in the 

force field, but MELD × MD does not sample it. The number of occurrences of each type is 

given in parentheses. (Silver) True natives. (Blue) MELD × MD prediction. (Yellow) β-

Sheets of true native. In short, in half of the cases, MELD × MD finds good native 

structures, and in the other half, force field errors cannot be rescued by MELD × MD.

Robertson et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Features that do not determine MELD × MD success. Histograms of sequence and structural 

features for nonthreadable proteins (purple) folded by MELD × MD compared to those 

(green) not folded by MELD × MD with (solid line) a smoothed estimate of the distributions 

from kernel density estimation. For the features we examined, none could be used to predict 

MELD × MD success a priori.
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