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Abstract

Earthquake prediction: Simple methods for complex phenomena

by

Bradley Luen
Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Philip B. Stark, Chair

Earthquake predictions are often either based on stochastic models, or tested
using stochastic models. Tests of predictions often tacitly assume predictions do
not depend on past seismicity, which is false. We construct a naive predictor that,
following each large earthquake, predicts another large earthquake will occur nearby
soon. Because this “automatic alarm” strategy exploits clustering, it succeeds beyond
“chance” according to a test that holds the predictions fixed.

Some researchers try to remove clustering from earthquake catalogs and model the
remaining events. There have been claims that the declustered catalogs are Poisson
on the basis of statistical tests we show to be weak. Better tests show that declustered
catalogs are not Poisson. In fact, there is evidence that events in declustered catalogs
do not have exchangeable times given the locations, a necessary condition for the
Poisson.

If seismicity followed a stochastic process, an optimal predictor would turn on
an alarm when the conditional intensity is high. The Epidemic-Type Aftershock
(ETAS) model is a popular point process model that includes clustering. It has many
parameters, but is still a simplification of seismicity. Estimating the model is difficult,
and estimated parameters often give a non-stationary model. Even if the model is
ETAS, temporal predictions based on the ETAS conditional intensity are not much
better than those of magnitude-dependent automatic (MDA) alarms, a much simpler
strategy with only one parameter instead of five. For a catalog of Southern Californian
seismicity, ETAS predictions again offer only slight improvement over MDA alarms.
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Chapter 1

Introduction to earthquake
predictions and forecasts

1.1 Outline

If the locations and times of large earthquakes could be predicted accurately, lives
could be saved, for instance by evacuation. Despite occasional claims of success,
no existing method is reliable enough to justify such drastic action. More recently,
seismologists have focused on “forecasting” earthquakes. Forecasting is taken to imply
less accuracy than prediction, but the distinction is somewhat arbitrary.

The distinction between deterministic and probabilistic forecasts is clearer. What
is random? Interpreting probabilistic forecasts is easier if the predictions are consid-
ered to be random and the seismicity is not. However, it is more common to consider
seismicity to be random. Unfortunately, that makes a frequentist interpretation of
probabilistic forecasts impossible. It is possible to interpret the probability of an
earthquake as a parameter of a stochastic model. If the model is not testable on a
human time scale, the probability assertions are of little value.

To assess whether earthquake predictions or forecasts are successful, we need to
define “success.” A deterministic prediction in a space-time region is successful if one
or more earthquakes occur in the prediction region. It is difficult, however, to deter-
mine whether predictive success is “significant.” Many statistical tests of forecasts
hold predictions fixed and examine their success on randomly generated seismicity.
This can be misleading, because predictions usually depend on the observed seismic-
ity: if the observed seismicity were different, the predictions would be different. In
chapter 2, we study a naive alarm strategy that simply predicts that an earthquake
will be followed by another earthquake within a small space-time window. This pre-
dictor may appear to have significant success in a statistical test that employs a
null hypothesis of random seismicity—not because the predictor is good, but because
under the null hypothesis, clustering is unlikely.
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One way of dealing with clustering is to “decluster” earthquake catalogs by re-
moving events that occur close to others. It has often been claimed that declustered
catalogs are Poissonian [2, 5]. In chapter 3, we test the hypothesis that times of
a declustered catalog are a realisation of a Poisson process, and the much weaker
hypothesis that times are exchangeable given the locations. We reject the Poisson
hypothesis and, for some catalogs, the exchangeable times hypothesis.

If earthquake sequences are not Poissonian, earthquakes can, to some extent, be
successfully forecasted from previous seismicity. The best predictor, in a sense, of
a point process is its conditional intensity. If we assume seismicity adheres to a
stochastic model, we can make predictions based on the conditional intensity.

A well-known stochastic point process model for earthquake occurrence is the
epidemic-type aftershock (ETAS) model. In this model, any earthquake can trigger
further shocks; those further shocks may trigger more shocks, and so on. In chapter 4,
we examine the simulation and estimation of the model. In chapter 5, we examine
prediction for renewal and ETAS models. We address limitations and pathologies
of the ETAS model, and compare its predictive success to that of simpler models.
Chapter 6 states the implications of this dissertation for statistical seismology. It also
describes directions for further work.

The rest of this chapter attempts to clarify the meaning of deterministic and prob-
abilistic earthquake predictions and forecasts. Section 1.2 examines the definitions
of earthquake predictions and earthquake forecasts. Section 1.3 explains some termi-
nology in statistical seismology, and gives some notation. Section 1.4 discusses the
interpretation of earthquake probabilities and shows, as an example, that it is diffi-
cult to interpret the forecasts issued by the Working Group on California Earthquake
Probabilities in 2008.

1.2 What are earthquake predictions and forecasts?

For many years, a major criticism of earthquake forecasts was that predictions
were vague and hard to test. Allen [6] and Geller [7], among others, have emphasised
criteria a prediction must satisfy to be well-defined: it should claim an earthquake
with a magnitude in a specified range will occur in a specific time and space window.
Predictions may be based on past seismicity alone, extra-seismic variables, or some
combination of the two. Some seismologists require a physical basis for predictions
so that they can be verified; others find statistical verification more persuasive in the
long term. This dissertation focuses on statistical verification.

Many statistical methods of testing prediction and forecasting schemes have been
proposed. We discuss the shortcomings of some of them in chapter 2. Tests are
generally performed by comparing success of predictors to some baseline. Predicting
real seismicity better than a Poisson process can be predicted is a low hurdle, as
almost any scheme that makes use of clustering meets this standard. For a scheme
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that employs extra-seismic information to be valuable, it should perform better than
the best model that uses only past seismicity, and certainly better than a model that
uses past seismicity in a very simple way. We give various criteria for measuring
performance, in this and subsequent chapters.

Predictions versus forecasts

Geologists often draw a strong distinction between predictions and forecasts. Pre-
dictions are taken to be more specific than forecasts, particularly in time. Though
they were dealing with volcanic eruptions and not earthquakes, the following defini-
tions by Wright and Pierson [8] give some indication of how the terms are used in the
field:

• “A forecast is a comparatively imprecise statement of the time, place, and
ideally, the nature and size of impending activity.”

• “A prediction is a relatively precise statement giving the time and place. . . ”

Jackson [9] proposed the following definitions: “Earthquake forecasting means
specifying the long-term probability of earthquakes per unit area, magnitude, and
time. It may incorporate modest time-dependence. Earthquake prediction, by con-
trast, means identifying special conditions that make the immediate probability much
higher than usual, and high enough to justify unusual action.”1 This and similar def-
initions leave a substantial grey area in which it is not clear whether something is a
prediction or a forecast.

Seismologists in recent years have tended to prefer the term “forecast” where
possible, perhaps because the term “prediction” is taken by some to imply an accuracy
yet to be achieved. In a debate at nature.com,2 Robert Geller wrote that “[t]he
public, media, and government regard an ‘earthquake prediction’ as an alarm of an
imminent large earthquake, with enough accuracy and reliability to take measures
such as the evacuation of cities.” He regarded such prediction in the foreseeable
future as impossible. Highly publicised failures of schemes trumpeted by their authors
as “predictions” may have also contributed to an aversion to the term. The only
prediction to have been generally regarded as successful was that of the 1975 Haicheng
earthquake, and even that has been brought into question in recent years [9].

Generally speaking, the same statistical tools are used to assess both predictions
and forecasts, so to at least some extent, the distinction seems arbitrary. Of course,
one-off predictions are not amenable to statistical testing—see section 1.4.1 for an
example.

1Following Jackson, we consider the calculation of time-dependent hazard as a forecast or pre-
diction; some authors do not.

2http://www.nature.com/nature/debates/earthquake/

http://www.nature.com/nature/debates/earthquake/
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1.2.1 Types of predictions

Predictions and forecasts may be categorised in several ways. Firstly, predictions
and forecasts that are deterministic may be distinguished from those that are prob-
abilistic. In the former, in each region or subregion of the prediction area, either
an earthquake is predicted, or no earthquake is predicted. Probabilistic predictions
assign a probability of one or more earthquakes (or, less commonly, a probability dis-
tribution for the number of earthquakes) for each region or subregion. There may also
be a probability distribution on the magnitude of the earthquakes that occur, or on
the maximum magnitude event in each region. It is not clear, however, that seismicity
is a stochastic process—the occurrence of earthquakes may be deterministic. Care
must thus be taken in interpreting probabilistic predictions. These generally cannot
be interpreted in the usual frequentist way: no standard interpretation of probability
seems adequate [10], as discussed in the following section.

Earthquake “early warnings” [11], issued after the onset of rupture but up to a
minute or so before significant shaking occurs, are sometimes considered predictions;
we shall not consider them here.

Deterministic and probabilistic forecasts may be further distinguished by the time
(or times) at which they are issued relative to the period that they are forecasting.

• Periodic forecasts are issued at regular intervals in time. These will most com-
monly make a prediction for a length of time equal to the periodicity at which
they are issued. For example, a predictor may, at the beginning of each year,
give a probability for the occurrence of one or more large earthquakes that
year, in a given spatial region. The M8-MSc algorithms [12] declare “times of
increased probability” for specified regions every six months, though these times
last longer than six months.

• Moving target forecasts have regular or irregular updates that supersede pre-
vious predictions. We can make an analogy to weather forecasts: a forecast
of Wednesday’s weather issued on Monday will be superseded by a forecast
of Wednesday’s weather issued on Tuesday. The California 24-hour aftershock
forecast map [13] issues hourly maps giving the “probability of strong shaking”
(MMI VI or greater) some time during the next day. The maps show little
change from hour to hour unless an earthquake occurs in the region.

• Alarm strategies turn an “earthquake alarm” on or off. if the risk of an earth-
quake in the near future is considered high. If the risk is considered low, the
alarm is turned off. These strategies are deterministic. Whether the alarm
is on at time t may depend on any data observed up to, but not including,
time t. predictions of the VAN group [14] were similar to these, though those
predictions were somewhat unspecific as to their space-time extent.
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• Stochastic rate models give a predicted rate per unit time of earthquakes in a
certain magnitude range for the near future. Forecasts from these models may
be deterministic or probabilistic. Stochastic point process models such as the
ETAS model (see chapter 4) are examples of these.

In meteorology, the following terms are used:

• Forecast period: the length of time for which the forecast is valid

• Lead time: the length of time between the issue time of the forecast and the
beginning of the forecast validity period

• Forecast range: lead time plus forecast period; can be thought of as a “horizon.”

Thus periodic forecasts have fixed forecast periods; alarms and rate models do not
require lead time; while moving target forecasts may make predictions at a range of
lead times.

Lead time is important in practice: an accurate forecast issued a month before
an earthquake is more useful than the same forecast issued one day in advance. The
relative values of these forecasts may be estimated in cost-benefit analyses. Further,
moving target predictions may be issued for a (possibly continuous) range of lead
times, and a scheme that is successful at one lead time may fail at another. In
weather forecasting, the approach seems to be to assess each lead time separately,
but the multiple testing complications have to date been insufficiently addressed.

1.3 Terminology and notation

• Hypocenter (or focus): The point within the earth where an earthquake
rupture starts.

• Epicenter: The point on the earth’s surface vertically above the hypocenter.
The distance between the hypocenter and the epicenter is the depth of the
earthquake. The locations of hypocenters and epicenters are estimated from
measurements taken at multiple seismographic stations—for instance, by mea-
suring the difference between arrival times of longitudinal P-waves and slower
transverse S-waves to estimate the distance from each station, and triangulat-
ing. All calculated hypocenters and epicenters are estimates.

• Magnitude: A numeric characterisation of an earthquake’s relative size, ac-
cording to one of several scales. For instance, the well-known Richter scale
(no longer used by seismologists) is based on measurements of the maximum
amplitude recorded by a seismograph.



1.3. TERMINOLOGY AND NOTATION 6

• Seismic moment (M0): A measure of the size of an earthquake. It is the
product of the shear modulus (ratio of shear stress to shear strain), the area of
fault rupture, and the average displacement during rupture.

• Moment magnitude (Mw) scale: The magnitude scale preferred by seismol-
ogists, as it is applicable to earthquakes of all sizes. It is calculated from seismic
moment as

Mw =
2

3
log10 (M0)− 10.7, (1.1)

where M0 is in dyne-cm.3 The constants were chosen to make the scale ap-
proximately consistent with older magnitude scales, such as the Richter local
magnitude scale.

• Foreshocks, main shocks, and aftershocks: In standard usage, the largest
(in magnitude) earthquake in a sequence is the main shock. Smaller earthquakes
following a main shock in a sequence are called aftershocks. Smaller earthquakes
preceding a main shock are called foreshocks. There is no universally accepted
definition as to what constitutes an earthquake sequence. Seismologists may
thus disagree as to whether a particular earthquake is a foreshock, main shock
or aftershock.

Occasionally, “main shock” is used to refer to the initial shock in a sequence,
and not the largest (and then all subsequent events are considered aftershocks).
I shall instead refer to these events as “first shocks.”

1.3.1 Earthquake catalogs

An earthquake catalog is a list of information, such as estimated hypocenters,
times, and magnitudes, about a set of earthquakes in some geographical region. Cat-
alogs may be local, like that of the Southern California Earthquake Data Center, or
global, like the Global Centroid Moment Tensor Catalog. All catalogs are incomplete:
that is, left-censored with respect to magnitude. Small earthquakes are harder to de-
tect and locate. The level of completeness depends on geographical location. Some
regions of the world, such as California, are well-covered by seismographic stations,
while other regions, such as the oceans, are covered sparsely. Completeness also de-
pends on time. Because the number of stations has increased and equipment has
become more sensitive, magnitude thresholds for completeness are lower for recent
data.

3One dyne-cm in SI units is 10−7 newton metre.
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1.3.2 Point process models for seismicity

Suppose we wish to model or predict earthquakes in a study region of space-time-
magnitude

V = A× (0, T ]× [m0,∞). (1.2)

Call A the study area, (0, T ] the study period,4 and m0 the minimum magnitude. We
refer to earthquakes occurring in the study region as events.

Assume that the events may be ordered chronologically, without ties. We may
model the events in a study region using a temporal point process, or a space-time
point process. The point process may be marked or unmarked. In a marked space-
time point process, the ith event is characterised by its epicentral latitude Xi and
longitude Yi, its time Ti and its magnitude Mi. We ignore other characteristics of
earthquakes, such as depths.

In a marked temporal point process, the ith event is characterised by its time
Ti and its magnitude Mi. We know that all events occur in the study area A, but
otherwise ignore spatial locations. In an unmarked temporal point process, the ith
event is characterised by its time Ti only. An unmarked temporal point process can
also be characterised by N(t), its counting function:

N(t) =


0 for 0 < t < T1

i for Ti ≤ t < Ti+1, i ∈ {1, . . . , n− 1}
n for Tn ≤ t ≤ T,

(1.3)

where n = N(T ) is the number of events in the study region. The counting function
is a right-continuous step function with jumps of size 1 at the times of events. We
primarily focus on marked and unmarked temporal point process.

Let Ft0 be the σ-algebra [15] generated by the process in the interval [0, t0] and
by F0 (the information known about the process prior to time 0: for example, obser-
vations of events before the start of the study period).

The intensity at time t is the expected rate of events at t; this expectation may
or may not be conditional on some σ-algebra. The conditional intensity λ(t) is the
expected rate of events conditioned on the history of the process up to (but not
including) time t:

λ(t) = lim
∆↓0

E[N(t+ ∆)−N(t)|Ft−]

∆
. (1.4)

(See Appendix C for a measure-theoretic definition.) We assume λ(t) exists and has
finite expectation for all t ∈ (0, T ], and that it is absolutely continuous with respect
to Lebesgue measure with probability 1 (where the probability distribution is on
realisations of the process). The conditional intensity is a measurable function of the

4The left side of the interval is open in case time 0 is set to be the time of an event.
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random history of the process, up to, but not including, time t—it is previsible.
We examine predictions that take the form of alarm strategies. These are written

as H(t) or Ht(ω), for temporal point processes (H(t, x, y, ω) for space-time point
processes). The range of H is [0, 1]. The value 0 means the alarm is off at time t;
the value 1 means the alarm is on. For 0 < H < 1, the function gives the probability
that the alarm is on.5

Whether marked or unmarked, temporal or space-time, a point process is just
a model. It does not account for all features of real seismicity. These models may,
however, be useful for studying patterns of earthquake occurrence, and for forecasting.

1.4 Interpreting earthquake probabilities

Many earthquake forecasts are probabilistic. Usually, it is the seismicity that is
assumed to be stochastic, rather than the predictions. This leads to difficulties in
interpretation.

For example, working groups of the U.S. Geological Survey have produced esti-
mates of the chance of a magnitude 6.7 or greater earthquake occurring in the San
Francisco Bay Area over the following thirty years. The 1999 estimate (for 2000 to
2030) was 0.7 ± 0.1; the 2002 estimate, 0.62 with 95% confidence bounds of 0.37 to
0.87. A 2008 working group estimated the probability of a magnitude 6.7 or greater
earthquake occurring in the California area in the time period 2007 to 2036 as “greater
than 99%.” These probabilities are based on a combination of a wide range of phys-
ical and statistical models and simulations, as well as subjective elements. For this
reason, and because it is not apparent what concept of probability is being used,
interpreting such probabilities is difficult.

Stark and Freedman [10] identified the problems in applying standard definitions
of probability to forecasts, in particular that of the 1999 USGS working group. These
problems concerned interpretation more than the numerical values. In the frequentist
view, the probability of an event is the limit of its relative frequency in repeated trials
under the same conditions. For USGS forecasts, no particular thirty-year period can
be repeated: it only occurs once.6 In the (subjective) Bayesian view, probability is a
measure of a state of belief on a scale from 0 to 1. However, the USGS forecasts are
not Bayesian: they do not start from a prior, nor do they update probabilities using
Bayes’ rule.7

5The notion of probability here is different from that in probabilistic forecasts. Here, the alarm
is on with some probability; in probabilistic forecasts, probability is intrinsic to the model.

6One could postulate an infinite number of worlds, of which one is selected at random, but such
a paradigm seems, in the words of Feller, “both uninteresting and meaningless.” [16]

7 Some apparently subjective probabilities are used to weight branches of a decision tree to select
models in a Monte Carlo simulation of seismicity. However, these probabilities cannot represent
degrees of belief. For instance, it is implausible that a Poisson model for seismicity is correct, but
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Working group Forecast period Prob. of M ≥ 6.7 event 95% confidence range
WG99 2000-2030 70% 50% to 90%
WG02 2002-2031 62% 37% to 87%

WGCEP 2007 2007-2036 63% 41% to 84%

Table 1.1: USGS-sanctioned 30-year Bay Area earthquake forecasts. Probability
forecasts of WG88 (50%) and WG90 (67%) were for events of magnitude “about 7”
and may not be directly comparable.

A promising avenue for interpretation of earthquake forecasts is that a probability
may be viewed as a property of a mathematical model designed to describe some real-
world system. George Box said that “all models are wrong, but some are useful.” [17]
The usefulness is dependent on the degree of agreement with the real-world system.

Such a model-based interpretation of probability may be the most natural paradigm
for earthquake probabilities. A stochastic model is proposed. That model produces
as output a number, called a “probability.” That number—which exists only in the
model—is interpreted as having something to do with the real world, namely, it is
taken to be the chance of an earthquake in some region of space, time, and magni-
tude. However, predictions for earthquakes are difficult to test, because of the time
scales involved; most of the USGS working group forecasts, for example, cannot be
subjected to a meaningful statistical test, as no repetition is possible. This makes the
predictions of little value unless we have good reason to be confident in the model.

1.4.1 Example: The 2008 USGS Working Group forecast

The USGS working groups that created long-term forecasts for regions of Califor-
nia were succeeded by a group commissioned to develop a statewide forecast. The
Working Group on California Earthquake Probabilities (referred to as WGCEP 2007,
although the forecast was not published until 2008) consisted of scientists and en-
gineers from a variety of disciplines. It was sponsored by the USGS, the California
Geological Survey, and the Southern California Earthquake Center. The group in
turn sought the opinions of the broader seismological community. As well as a fore-
cast for the entire state, forecasts for subregions—Northern and Southern California
and the San Francisco and Los Angeles regions—were to be generated, for minimum
magnitude thresholds from 6.7 to 8.0. A key purpose was to create a model that
could be used by the California Earthquake Authority to set earthquake insurance
rates. Estimation of shaking or ground motion, however, was outside the scope of the
project.

that model is given positive weight in the decision tree. Bayes’ rule is mentioned as an alternative
approach that is not pursued.
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Date Location Magnitude
April 18th, 1906 San Francisco 7.8
April 21st, 1918 San Jacinto 6.8
Jan 22nd, 1923 Humboldt County 7.2
June 29th, 1925 Santa Barbara 6.8
Nov 4th, 1927 Lompoc 7.1
Dec 31st, 1934 Cerro Prieto 7.0
May 19th, 1940 Imperial Valley 6.9
July 21st, 1952 Kern County 7.5
Nov 8th, 1980 Humboldt County 7.3
Oct 18th, 1989 Loma Prieta 6.89

April 25th, 1992 Cape Mendocino 7.15
June 28th, 1992 Landers 7.29
Oct 16th, 1999 Hector Mine 7.12

Table 1.2: M ≥ 6.7 earthquakes in the California earthquake catalog used by WGCEP
2007.

California is on the boundary of the Pacific and North American plates. The
San Andreas fault, a strike-slip transform fault, runs through the state and forms
the boundary between the plates. The physical reality is far more complex than this
single fault: hundreds of other known faults exist in the state.

The forecast by WGCEP 2007 incorporated ideas from geodesy, geology, seis-
mology, and paleoseismology. Data concerning relative plate movements and fault
locations and offsets, the history of observed earthquakes, and reconstructions of the
history of unobserved earthquakes were inputs. All this very different information
was then combined.

WGCEP 2007’s primary finding was that “the chance of having one or more
magnitude 6.7 or greater earthquakes in the California area over the next 30 years
is greater than 99%,” and that “the likelihood of at least one even more powerful
quake of at least magnitude 7.5 or greater in the next 30 years is 46%.” A magnitude
7.5 or greater event was considered more likely in the southern half of the state than
the northern half (37% chance against 15%). In the twentieth century, 13 events of
magnitude 6.7 or greater are thought to have occurred in the California area (see
Table 1.2). Note that there are uncertainties in all the magnitudes, with generally
larger uncertainties for earlier events. The 28-year stretch from 1952 to 1980 without
a M ≥ 6.7 event suggests a 30-year stretch without such an event is plausible, so the
99% probability is a strong statement. The San Andreas and Hayward faults were
considered to be at elevated risk: large earthquakes were thought to be more likely
in the period of study than the historical rates of earthquakes on this fault would
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suggest.
Let us set aside the issue of whether the model used makes sense, and focus on in-

terpreting the output probabilities. The working group drew an analogy between their
probabilities and the annual chance of being killed by lightning (“about 0.0003%”).
A problem with interpreting the lightning figure is that it questionably equates a
frequency with a probability. Each “trial” is an individual person-year; thus not all
trials are the same. The chance of being killed by lightning should vary from person
to person, depending on their location and their propensity to be outdoors during
thunderstorms.

The working group also drew an analogy between their forecast and weather fore-
casts. However, weather forecasts are testable. They can be compared to observed
weather on a daily basis. If, over a span of hundreds or thousands of days, weather
forecasts are found to be consistent with observations, we can have confidence in the
forecasting method. In contrast, large earthquakes in a particular region are uncom-
mon, occurring on a time scale of decades or longer. Earthquake forecasts on the scale
of days involve extremely small probabilities. This makes earthquake forecasts more
difficult to test and to interpret than weather forecasts. Some attempts to evaluate
earthquake forecasts have circumvented this issue by dividing a large study area into
many smaller cells of space and time. A difficulty is that the dependence structure
of seismicity between such cells is unknown and difficult to estimate.

The WGCEP 2007 forecasts are for one thirty-year period only. Consider the
forecast that the chance of one or more magnitude 6.7 or greater earthquakes in the
California area over the next 30 years is greater than 99%. If no such earthquake
occurs, there is strong evidence that the forecast was wrong. If such an earthquake
does occur, however, it is not strong evidence that the “99%” figure was accurate—
such an observation would also be consistent with a forecast probability of 80%,
or 30%. The “99%” is thus impossible to validate by itself. If the same method
were used to create a sequence of consecutive thirty-year forecasts of large California
earthquakes, validation might be possible. Even a small number of thirty-year periods,
however, exceeds a human lifespan.

As the study says, “Californians know that their State is subject to frequent—and
sometimes very destructive—earthquakes.” It is not clear that the study helps the
public to understand or to prepare for such events.

A further source of confusion is that it not clear whether the randomness in the
WGCEP forecast is assumed to be in the Earth or in the model. Seismicity is complex,
but there is no evidence that it is inherently random. Even if it were, there is no
correct stochastic model for seismicity. This is a major issue in statistical tests of
earthquake predictions, as many tests assume an inappropriate null hypothesis of
random seismicity. We examine this issue in the following chapter.
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Chapter 2

Testing earthquake predictions1

2.1 Introduction

Earthquake prediction has roots in antiquity [19]. Predictions have been based on
a variety of seismic and non-seismic phenomena, including animal behavior [20, 21,
22, 23, 19]; water level, temperature and composition in wells and springs [24, 25];
electric and magnetic fields and radio waves on the ground and in the air [26, 27];
electrical resistivity of the ground and the air [28, 29, 27]; cloud formations or other
atmospheric phenomena [30, 19]; infrared radiation [27]; pattern recognition [31, 32];
temporal clustering [33, 34]; and variations in the rate or pattern of seismicity [35].

There are large research efforts directed towards predicting earthquakes, such as
the Collaboratory for the Study of Earthquake Predictability.2 “Even a stopped clock
is right twice a day,” and almost any method for predicting earthquakes will succeed
occasionally—whether the method has merit or not. Indeed, prominent geophysicists
disagree about whether earthquake prediction is possible in principle.3 How, then,
ought we decide whether a method for predicting earthquakes works?

Earthquake predictions have been assessed using ideas from statistical hypothesis
testing: a test statistic is compared to its distribution under a null hypothesis [37, 33,
38, 39, 40, 41, 42, 43]. The null hypothesis is rejected at significance level α if the test
statistic exceeds the 1 − α quantile of its distribution under the null hypothesis. If
the null hypothesis is rejected, researchers tend to conclude—erroneously—that the
predictions must have merit.

The null hypothesis can be rejected for many reasons. A Type I error might

1 Previously published in a different form in IMS Lecture Notes—Monograph Series. Probability
and Statistics: Essays in Honor of David A. Freedman [18]. Some notation in this chapter differs
from the rest of the dissertation.

2http://www.cseptesting.org/
3See, e.g., http://www.nature.com/nature/debates/earthquake/equake_frameset.html

and [36].

http://www.cseptesting.org/
http://www.nature.com/nature/debates/earthquake/equake_frameset.html
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occur. Or the null hypothesis could be false, but in a way that does not imply that
the predictions work. For example, the null hypothesis might use a poor model for
seismicity. Or the null hypothesis might not account for how the predictions depend
on seismicity. We explore that possibility below.

Conclusions ultimately depend on details of the null hypothesis that can be dif-
ficult to justify, or that are known to contradict the data. For example, Stark and
Freedman [10] argue that standard interpretations of probability do not make sense
for earthquakes—especially for large events, the most important to predict. For rare
events, such as large earthquakes, there are not enough data to test or discriminate
among competing stochastic models. Models are often calibrated using empirical
scaling laws that tie the rates of occurrence of large earthquakes to the rates for
smaller earthquakes. Generally, these rules of thumb are themselves fitted to data
from other parts of the world: applying them to a region as small as the San Fran-
cisco Bay area, for example, is questionable. Thus, stochastic models for earthquake
occurrence do not seem like a good foundation for evaluating earthquake predictions,
especially predictions of large earthquakes.

Moreover, Stark [44, 45] argues that testing predictions using a stochastic model
for seismicity and conditioning on the predictions tends to be misleading, and that it
is preferable to treat seismicity as fixed and compare the success of the predictions
with the success of a simple rule. Consider rain forecasts as an analogy. The rule “if it
rains today, predict that it will rain tomorrow; otherwise, predict that it will not rain
tomorrow” works pretty well. If a meteorologist cannot do better, the meteorologist’s
predictions have little value.

The seismic analogue is “if there is an earthquake with magnitude greater than the
threshold Mτ , predict that there will be an earthquake with magnitude M or above
within time t and distance d of the first.” Here, M , t and d might depend on the
location or magnitude of the first earthquake. Kagan [46] calls this the “automatic
alarm” strategy, and uses it to evaluate earthquake predictions for Greece (the VAN
predictions). The approach can also include a stochastic element to make a “semi-
automatic alarm” strategy: Stark [44, 45] compares the VAN predictions to the rule:
“If there is an earthquake with magnitude ≥ Mτ , toss a (biased) coin. If the coin
lands heads, predict that there will be another earthquake with magnitude ≥ M
within time t and distance d of the first. If the coin lands tails, do not make a
prediction.”

2.2 Phenomenology of earthquakes

See Bolt [47] for a lay review. The epicenter of an earthquake is the point on
Earth’s surface directly above the earthquake’s focus , the place that the motion nu-
cleates. Epicenters and foci are not known exactly: they are estimated from ground
motion at seismographic observing stations around the globe. Sizes of earthquakes
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are also estimated from ground motion measured at seismographic stations. There
are many measures of earthquake size, including several definitions of “magnitude.”

An earthquake catalog is a list of the estimated locations, times, and magnitudes of
earthquakes found by a given authority, such as the U.S. Geological Survey. Earth-
quake catalogs are incomplete below some magnitude (left-censored in magnitude)
because smaller events are harder to identify and locate. Moreover, unless some
minimum number of stations detect ground motion, the algorithms used to locate
earthquakes do not even conclude that there was an earthquake. (The incomplete-
ness as a function of magnitude tends to decrease with time, as equipment becomes
more sensitive and networks more extensive.)

Earthquakes occur to depths of 700 km or so in Earth’s mantle [48]; however, most
earthquakes and almost all large earthquakes occur within a few tens of kilometres
of the surface. Earthquakes cluster in space. Most earthquakes occur on pre-existing
faults. With very few known exceptions, epicenters of large earthquakes are close to
the margins of tectonic plates, because it takes large strains—the relative motions
of plates—to produce large earthquakes. Indeed, most large earthquakes occur in a
relatively narrow band around the Pacific Ocean, the “ring of fire.”

Earthquakes also cluster in time: large earthquakes invariably have aftershocks;
some have foreshocks; and there are “swarms” of moderate-to-large earthquakes.
Defining foreshocks and aftershocks is difficult. The terms “foreshock” and “after-
shock” are often taken to imply a causal connection to a main shock. Unfortunately,
earthquake physics is largely a mystery. Proximity in space and time can be co-
incidental rather than causal. One cannot tell whether an earthquake is the main
shock or a foreshock of a larger event except—at best—in retrospect.4 And stochas-
tic models for earthquakes can produce spatio-temporal clustering without physical
foreshocks or aftershocks per se (for example, gamma renewal models [50], discussed
in chapter 5.3.5).

The most common stochastic model for seismicity takes the epicenters and times
of shocks5 above some threshold magnitude to be a realisation of a spatially inho-
mogeneous but temporally homogeneous Poisson process. The spatial heterogeneity
reflects tectonics: some regions are more active seismically than others. The temporal
homogeneity is justified by appeal to the lengthy time scale of plate tectonics (tens of
thousands of years) relative to the time scale of observation, which is on the order of
centuries. The seminal reference on stochastic models for seismicity is Vere-Jones [51],
which considers temporal and marked temporal processes, but not spatial processes.
Some more recent models use branching processes [52, 53].

4 Identifying an event as a foreshock or aftershock is a causal inference based on association in
time and space. Causal conclusions from associations in non-experimental data are highly suspect.
See, e.g., Freedman [49].

5 Sometimes this is restricted to main shocks, which are difficult to separate from foreshocks and
aftershocks, as noted above and in chapter 3.
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2.3 Tests of earthquake predictions

There are two categories of earthquake predictions: deterministic or binary predic-
tions , which are of the form “there will be an earthquake of magnitude M ≥ 6 within
100 km of San Francisco, CA, within the next 30 days;” and probabilistic predictions ,
which are probability distributions, or statements of the form “there is a 90% chance
of an earthquake of magnitude M ≥ 6 within 100 km of San Francisco, CA, in the
next 30 days.” Stark and Freedman [10] point out some difficulties in interpreting
probabilistic predictions, using the USGS prediction for the San Francisco Bay Area
as an example; here we concentrate on deterministic predictions.

To keep the exposition simple, we take the goal to be to predict all earthquakes
that exceed some threshold magnitude M , that have epicenters in some region R
of Earth’s surface, and that occur during some time period T . We examine several
statistical approaches to testing whether predictions have merit.6

Let Q denote the total number of earthquakes of magnitude ≥M with epicenters
in R during T . Let A denote the number of alarms (predictions). The jth alarm is
characterised by Vj, a connected region of space, time and magnitude, and a value
pj, the probability the prediction assigns to the occurrence of an earthquake in Vj.
Deterministic predictions take pj = 1. They assert that an earthquake will occur in
Vj. Probabilistic forecasts assign a probability pj ∈ (0, 1) to the occurrence of an
earthquake in Vj. Let δj be the duration of Vj. When δj is on the order of weeks, Vj
is generally considered a “prediction.” When δj is on the order of a year or more, Vj
is generally considered a “forecast.” However, some authors use “prediction” to mean
deterministic prediction, and “forecast” to mean probabilistic prediction, regardless
of the time horizon.

Let λj denote the historical rate of earthquakes in the spatial and magnitude
range—but not the temporal range—covered by Vj.

7 The historical rates {λj}Aj=1

enter into some tests, as we shall see. Let Sj indicate whether the jth alarm is
successful:

Sa ≡
{

1, if there is an earthquake in Vj,
0, otherwise;

(2.1)

and for k = 1, . . . , Q let Pk denote whether the kth earthquake is predicted:

Pk =

{
1, if the kth event is in some Vj, j = 1, . . . , A,
0, otherwise.

(2.2)

6 Statistical terminology is used in some unfamiliar ways in the geophysical literature. For
example, “significance” and “confidence” sometimes denote 100% minus the P -value, rather than
the chance of a type I error for a fixed-size test (e.g., [42, p. 193] and [54, pp. 723, 731], which also
confuses the P -value with the chance that the null hypothesis is true). “Random probabilities” are
sometimes fixed parameters [38, p. 3773], and “parameters” sometimes means statistics [55, p. 263].

7 Typically, λj is the empirical rate over a span of a decade or more over a spatial region that
includes Vj .
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Let S ≡
∑A

j=1 Sj denote the number of successful alarms, and let P ≡
∑Q

k=1 Pk
denote the number of earthquakes that are predicted successfully. The number of
false alarms is F = A − S and the number of earthquakes that are missed—not
predicted—is M = Q− P . Let V be the volume of space-time studied,

V ≡
∫
R,T

dr dt, (2.3)

and let VA denote the total space-time volume of alarms,

VA ≡
∫
∪A

j=1Vj

dr dt. (2.4)

The fraction of the study volume covered by alarms is v = VA/V . Generally, the
smaller v is, the more informative the alarms are, but this can be distorted by spatial
heterogeneity of the distribution of earthquakes in R.8 The success rate of the pre-
dictions is s = S/A; the fraction of earthquakes successfully predicted is p = P/Q;
the false alarm rate is f = F/A; and the rate of missed events (failures to predict)
is m = M/Q. If we raise an alarm for the entire study volume and time V , we can
ensure that s = p = 1, but then v = 1, so the alarms are not informative.

Predictions are generally evaluated using a combination of s, p, f,m, and v. Pre-
diction methods can be ranked by adjusting their tuning parameters so that their
values of v are equal, then comparing their values of p, or vice versa. For a given
alarm volume v, the method with largest p is best. For a given value of p, the method
with the smaller v is best. Some evaluation strategies fix p and compare values of f ,
or vice versa.

2.3.1 Testing strategies

A common strategy for evaluating earthquake predictions statistically is to com-
pare the success of the predictions on the observed seismicity with the success of the
same predictions on random seismicity (e.g., [39, 56, 57, 58]). This strategy does not
make sense because predictions usually depend on past seismicity: if the seismicity
had been different, the predictions would have been different.9

8 To account for the spatial heterogeneity of events, some authors use normalised counting mea-
sure in space—based on the historical occurrence of events in a given volume—rather than Lebesgue
measure. See, e.g., Kossobokov et al. [42].

9 This is a bit like the Monte Hall or Let’s Make a Deal problem [59, Ch. 10]. A prize is hidden at
random behind one of three doors. The contestant picks a door. The host then reveals that the prize
is not behind one of the two doors the contestant did not pick. The contestant is now allowed to
switch his guess to the third door. Should he? Some erroneous arguments assume that the door the
host opens is independent of which door conceals the prize. That is not a good model for the game,
because the host never opens the door that hides the prize: which door the host opens depends on
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Several stochastic models for seismicity are common for testing predictions.

1. Some studies model seismicity by a homogeneous Poisson process with intensity
equal to the mean historical rate in the study region (e.g., [41]). Some studies
condition on the number of events and model seismicity as uniform over the
study region or subsets of the study region [60, 61, 41].

2. Some studies use a spatially heterogeneous but temporally homogeneous Poisson
process model, with rate in the spatial region Rj equal to the historical rate λj
[33, 42].

3. Some studies condition on the observed locations of past events, but model the
times of the events as Poisson or uniform [42, 62].

4. Some studies condition on the observed locations and the observed times, but
model the times as exchangeable [46, 63]. That is, if the observed time of the
jth event in the catalog is tj, j = 1, . . . , Q, then, according to the model, it is
equally likely that the times would have been tπ(j), j = 1, . . . , Q, where π is any
permutation of {1, . . . , Q}.

In the last approach (the permutation model, sometimes called “randomising a cat-
alog”), times of events in the study region are exchangeable, conditional on the ob-
served locations.10

There are variations on these approaches. For example, some researchers try
to remove putative aftershocks from the catalogs (e.g., [64, 46, 40]). This is called
“declustering.” The most common method for declustering is to make spatio-temporal
holes in a catalog: after each event, all smaller events that occur within a given time
interval and epicentral distance are deleted. The time interval and distance can
depend on the magnitude of the event [65, 66, 67]. (For more on declustering, see
chapter 3.) It is common to assume that a declustered catalog is a realisation of a
temporally homogeneous Poisson process.11 Assessments of earthquake predictions
are known to be sensitive to details of declustering and to spatial variability of the
rate of seismicity [68, 69, 70, 56, 44, 45, 71, 72].

Another approach to testing is to compare the success rate of predictions with
the (theoretical or empirical) success rate of random predictions that do not use any
seismic information [73]. This seems to be a straw-man comparison because such
random predictions ignore the empirical clustering of seismicity.

the contestant’s guess and on which door hides the prize. Similarly, holding the prediction fixed
regardless of the seismicity is not a good model for earthquake prediction. Whether a prediction is
issued for tomorrow typically depends on whether there is an earthquake today.

10See chapter 3.4.1 for an explanation of conditional exchangeability.
11 This kind of declustering produces a process that has less clustering than a Poisson process

because it imposes a minimum distance between events—see chapter 3.4.1.
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2.3.2 Jackson, 1996

Jackson [38] reviews methods for testing deterministic and probabilistic predic-
tions. The approach to testing deterministic predictions is based on a probability
distribution for the number of successful predictions, in turn derived from a null hy-
pothesis that specifies P (Sj = 1), j = 1, . . . , A. Jackson does not say how to find
these probabilities, although he does say that usually the null hypothesis is that seis-
micity follows a Poisson process with rates equal to the historical rates. He assumes
that {Sj}Aj=1 are independent, so S is the sum of A independent Bernoulli random
variables. Jackson advocates estimating the P -value, P (S ≥ Sobserved), by simulating
the distribution of the sum of independent Bernoulli variables, and mentions the Pois-
son approximation as an alternative. See Kagan and Jackson [39] for more discussion
of the same approaches. Both articles advocate a likelihood-ratio test for evaluating
probabilistic forecasts. They also propose a variant of the Neyman-Pearson testing
paradigm in which it is possible that both the null hypothesis and the alternative
hypothesis are rejected, in effect combining a goodness-of-fit test of the null with a
likelihood ratio test against the alternative.

2.3.3 Console, 2001

Console [55] addresses deterministic predictions and probabilistic forecasts. His
discussion of deterministic predictions includes several statistics for comparing al-
ternative sets of predictions. His discussion of probabilistic forecasts is based on the
likelihood approach in Kagan and Jackson [39], described above. The likelihood func-
tion assumes that predictions succeed independently, with known probabilities. For
Console, the null hypothesis is that seismicity has a Poisson distribution [55, p. 266].
He gives one numerical example of testing a set of four predictions on the basis of
“probability gain,” but no hint as to how to determine the significance level or power
of such tests. His test rejects the null hypothesis if more events occur during alarms
than are expected on the assumption that seismicity has a homogeneous Poisson dis-
tribution with true rate equal to the observed rate. Console also mentions selecting
prediction methods on the basis of a risk function, and Bayesian methods. The loss
function Console contemplates is linear in the number of predicted events, the num-
ber of unpredicted events, and the total length of alarms, all of which are treated as
random. He does not address estimating the risk from data, but it seems that any
estimate must involve stochastic assumptions about Q, S, F and M .

2.3.4 Shi, Liu & Zhang, 2001

Shi, Liu and Zhang [40] evaluate official Chinese earthquake predictions of earth-
quakes with magnitude 5 and above for 1990–1998. They divide the study region into
3,743 small cells in space, and years of time. In a given cell in a given year, either
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an earthquake is predicted to occur, or—if not—that is considered to be a prediction
that there will be no event in that cell during that year. They define the R-score as

R =
# cells in which earthquakes are successfully predicted

# cells in which earthquakes occur
−

# cells with false alarms

# aseismic cells
, (2.5)

which measures the concordance of the binned data with predictions of occurrence and
of non-occurrence. In computing the R-score, they first decluster the catalog using
the method of Keilis-Borok et al. [65]. Their hypothesis tests use the R-score as the
test statistic. They compare the R-score of the actual predictions on the declustered
catalog with the R-score of several sets of random predictions, generated as follows:

1. Condition on the number of cells in which earthquakes are predicted to oc-
cur. Choose that many cells at random without replacement from the 3,743
cells, with the same chance of selecting each cell; predict that earthquakes of
magnitude 5 or above will occur in those randomly-selected cells.

2. To take spatial heterogeneity into account, for the jth cell, toss a pj-coin, where
pj is proportional to the historical rate of seismicity in that cell. If the jth
coin lands heads, predict that an earthquake of magnitude 5 or above will occur
in the jth cell. Toss coins independently for all cells, j = 1, . . . , 3743. The
constant of proportionality is the ratio of the number of cells for which the
actual predictions anticipate events, divided by the historical annual average
number of cells in which events occur. This produces a random number of
predictions, with predictions more likely in cells where more events occurred in
the past.

3. Condition on the number of cells in which earthquakes are predicted to occur.
Choose that many cells at random without replacement from the 3,743 cells.
Instead of selecting cells with equal probability, select the jth cell with prob-
ability pj, with pj set as in (2.2). Predict that earthquakes of magnitude 5 or
above will occur in those randomly-selected cells.

The third approach is a blend of the first two approaches: the number of simulated
predictions each year is forced to equal the actual number of predictions, but the
chance of raising a prediction in the jth cell depends on the historical rate of seismicity
in the jth cell. None of these three comparison methods depends on the observed
seismicity during the study period, 1990–1998. In particular, none exploits clustering,
which is presumed to have been eliminated from the catalog.
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2.4 Some claims of successful predictions

2.4.1 Wyss and Burford, 1987

Wyss and Burford [41] claim to have predicted the magnitude ML = 4.6 earth-
quake that occurred on 31 May 1986 near Stone Canyon, California, about a year
before it occurred, using “seismic quiescence,” an anomalous paucity of earthquakes
over some period of time. They examine the rates of earthquakes on different sections
of the San Andreas fault and identify two fault sections in which the rate dropped
compared with the rates in neighboring sections. They say that “the probability [of
the prediction] to have come true by chance is < 5%.” The probability they calculate
is the chance that an earthquake would occur in the alarm region, if earthquakes
occurred at random, independently, uniformly in space and time, with rate equal to
the historic rate in the study area over the previous decade. That is, their null hy-
pothesis is that seismicity follows a homogeneous Poisson process with rate equal to
the historical rate; clustering is not taken into account.

2.4.2 VAN predictions based on Seismic Electrical Signals

There has been a lively debate in the literature about whether predictions made
by Varotsos, Alexopoulos and Nomicos (VAN) [26] of earthquakes in Greece suc-
ceeded beyond chance. See volume 23 of Geophysical Research Letters (1996). The
participants did not even agree about the number of earthquakes that were predicted
successfully, much less whether the number of successes was surprising. Participants
disagreed about whether the predictions were too vague to be considered predictions,
whether some aspects of the predictions were adjusted post hoc, what the null hy-
pothesis should be, and what tests were appropriate.

2.4.3 Kossobokov et al., 1999

Kossobokov, Romashkova, Keilis-Borok and Healy [42] claim to have predicted
four of the five magnitude 8 and larger earthquakes that occurred in the circum-
Pacific region between 1992 and 1997. They say “[t]he statistical significance of the
achieved results is beyond 99%.” (From context, it is clear that they mean that the
P -value is < 1%.) Their predictions are based on two algorithms, M8 and MSc,
which track the running mean of the number of main shocks; the difference between
the cumulative number of main shocks and a windowed trend in the number of main
shocks; a measure of spatial clustering of main shocks derived from the distance
between shocks and the diameters of the sources in a temporal window; and the
largest number of aftershocks of any event in a temporal window. These are used to
identify “times of increased probability,” which are predictions that last five years.
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The declustering method described above was used to classify events as main shocks
or aftershocks.

Kossobokov et al. [42] calculate statistical significance by assuming that earth-
quakes follow a Poisson process that is homogeneous in time but heterogeneous in
space, with an intensity estimated from the historical rates of seismicity, {λj}. Kos-
sobokov et al. [42] condition on the number of events that occur in the study area,
which leads to a calculation in which locations and times are iid across events, the epi-
centers and times are independent of each other, the temporal density of earthquake
times is uniform, and the spatial distribution of epicenters is given by the historical
distribution between 1992 and 1997. Their calculation does not take temporal cluster-
ing into account, and it conditions on the predictions. They calculate the chance that
S or more of the Q events would occur during alarms to be

∑Q
x=S QCxπ

x(1− π)S−x,
where π is the normalised measure of the union of the alarms. The measure is the
product of the uniform measure on time and counting measure on space, using the
historical distribution of epicenters in the study volume to define the counting mea-
sure.

2.5 A naive predictor

In this section we exploit the empirical clustering of earthquakes in time to con-
struct a predictor that succeeds far beyond chance according to tests that hold pre-
dictions fixed and treat seismicity as random. The chance model for seismicity uses
the observed times and locations of earthquakes, but shuffles the times: according to
the null hypothesis, the times of events are exchangeable given their locations and
magnitudes. However, the predictions are the same for all elements of the null. We
can simulate from the null model by randomly permuting the list of observed times
relative to the list of observed locations and magnitudes [46, 63]. That is, if the
locations, magnitudes, and times of the events in the catalog are {(rj,Mj, tj)}Qj=1,

we take the Q! outcomes {(rj,Mj, tπ(j))}Qj=1 (as π ranges over all Q! permutations of
{1, . . . , Q}) to be equally likely under the null hypothesis, given the predictions. We
do not claim that this predictor or this null hypothesis is good. Rather, we claim
that this approach to testing is misleading.

We apply the approach to the Global Centroid Moment Tensor (CMT) catalog12

for 2004 and for 2000–2004. We make two sets of predictions:

(i) After each earthquake of (body-wave) magnitude Mτ or greater, predict that
there will be another earthquake of magnitude Mτ or greater within 21 days,
and within 50 km epicentral distance.

12http://www.globalcmt.org/CMTsearch.html

http://www.globalcmt.org/CMTsearch.html
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(ii) After each earthquake of magnitude Mτ or greater, predict that there will be
an earthquake within 21 days and within 50 km that is at least as large as any
within 50 km within 21 days prior to its occurrence.

Predictor (ii) is equivalent to predictor (i) if an event is deemed eligible for prediction
only if there is no larger event within 50 km in the 21 days leading up to the event.

Let Mj be the magnitude of the jth event that triggers an alarm; let tj be the
time of the jth event that triggers an alarm; and let Rj be the set of points on Earth’s
surface that are within 50 km of the epicenter of the jth event that triggers an alarm.
Recall that an alarm is a connected region Vj of space, time, and magnitude. For
predictor (i),

Vj = Rj × [tj, tj + 21 days]× [Mτ ,∞), (2.6)

while for predictor (ii),

Vj = {Rj × [tj, tj + 21 days]× [Mj,∞)} \
⋃

k:Mk>Mj

{Rk × [tk, tk + 21 days]× [Mk,∞)}.

(2.7)
An event at time t and epicenter r with magnitude M is predicted by the second set
of predictions if and only if

M ∈
⋂
j

{[Mj,∞) : (t, r) ∈ [tj, tj + 21 days]×Rj}. (2.8)

Predictor (i) tends to predict more aftershocks: large events trigger alarms that
contain some of their aftershocks. Predictor (ii) prevents aftershocks from being
predicted by main shocks; however, it does not prevent aftershocks with magnitude
Mτ or larger from predicting still larger aftershocks of the same main event, provided
the predicted aftershock is the largest event in the preceding 21 days, within 50 km.
Predictors (i) and (ii) generate the same number of alarms and have the same total
duration, but not the same extent of space and magnitude. Note that these alarms
need not be disjoint.

We consider two values of the threshold magnitude Mτ : 5.5 and 5.8. We compare
the number of events successfully predicted by these two predictors with the distribu-
tion of the number that would be predicted successfully if seismicity were “random.”
Using the CMT catalog, we generate a set of alarms. Holding those alarms fixed, we
see how successful the alarms would be in predicting random seismicity—generated
by randomly permuting the times in the CMT catalog.

Table 2.1 summarises the results.13 Under the null hypothesis, both prediction
methods (i and ii) succeed well beyond chance for CMT data from the year 2004

13These simulations differ from the simulations in the previously published version of the paper. In
the latter, the naive predictions were not fixed; instead, they depended on the simulated seismicity.
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and the years 2000–2004, for both values of the threshold magnitude. That is not
because the prediction method is good; rather, it is because the stochastic model in
the null hypothesis fails to take into account the empirical clustering of earthquakes
and the dependence of the predictions on the seismicity. Holding predictions fixed as
seismicity varies randomly does not make sense.

2.6 Discussion

Interpreting earthquake predictions is difficult. So is evaluating whether predic-
tions work. To use a statistical hypothesis test, something must be assumed to be
random, and its probability distribution under the null hypothesis must be known.
Many studies model seismicity as random under the null hypothesis. That approach
has serious drawbacks, and details of the stochastic model, such as spatial hetero-
geneity, independence or exchangeability, matter for testing. Most null hypotheses
used in tests ignore the empirical clustering of earthquakes. Some try to remove clus-
tering with ad hoc adjustments as a prelude to probability calculations. It is often
assumed that the resulting data represent a realisation of a Poisson process. In the
next chapter, we show this is implausible. The standard approach to testing—hold
the predictions fixed while seismicity varies randomly according to some stochastic
model—does not take into account that in practice, the predictions would be different
if the seismicity were different. The result is that simple-minded schemes, such as the
“automatic alarm strategy,” succeed well beyond chance in hypothesis tests. This is
not because the predictions are good: it is because the tests are bad.
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year Mτ events succ succ max P -value τ
w/o sim (est)

2004 5.5 445 95 30 20 < 10−4 4.0× 10−4

2004 5.8 207 24 7 7 0.002 1.8× 10−4

2000–2004 5.5 2012 320 85 40 < 10−4 3.6× 10−4

2000–2004 5.8 995 114 29 18 < 10−4 1.8× 10−4

Table 2.1: Simulation results using the Global Centroid Moment Tensor (CMT) cat-
alog. We seek to predict events with body-wave magnitude Mτ and above. “Events”
is the total number of events in the time period with magnitude at least Mτ . Each
event with body-wave magnitude Mτ or greater triggers an alarm. In each row, the
number of alarms is equal to the number of events in column 3. The spatial extent of
the alarm is a spherical cap of radius 50 km centred at the epicenter of the event that
triggers the alarm. The temporal extent of the alarm is 21 days, starting at the time
of the event that triggers the alarm. We set the magnitude extent of alarms in two
ways. Column 4, ‘succ,’ is the number of successful predictions using predictor (i): it
is the number of events with magnitude at least Mτ that are within 21 days following
and within 50 km of the epicenter of an event with magnitude Mτ or greater. Column
5, ‘succ w/o,’ is the number of successful predictions using predictor (ii): it is the
number of events that are within 21 days following and within 50 km of the epicenter
of an event whose magnitude is at least Mτ but no greater than that of the event in
question. Events that follow within 21 days of a larger event are not counted; this
is intended to reduce the number of predictions satisfied by aftershocks. Column 6,
‘max sim,’ is the largest number of successful predictions in 10,000 random permuta-
tions of the times of the events in the Global CMT catalog, holding the alarms and
the locations and magnitudes of events in the catalog fixed. The alarms are those
corresponding to column 5—predictor (ii) in the text—that is, an event is eligible for
prediction only if its magnitude exceeds that of every event within 50 km within the
21 days preceding it. Column 7, ‘P -value (est),’ is the estimated P -value for predictor
(ii): the fraction of permutations in which the number of successful predictions was
greater than or equal to the observed number of successful predictions for the CMT
catalog. Column 8, ‘τ ,’ is an upper bound on the fraction of the study region (in
space and time) covered by alarms; it is not adjusted for overlap of alarms.
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Chapter 3

Are declustered earthquake
catalogs Poisson?

3.1 Overview

Earthquake catalogs are highly clustered in space and time. Some seismologists
have claimed they are able to process catalogs by thinning events from clusters so that
the declustered catalog is Poisson. However, the tests of the Poisson null hypothesis
that they use are weak. In this chapter, we perform tests that reject the hypothesis
that the declustered catalogs are Poisson. In fact, declustered catalogs may not even
have exchangeable times.

3.1.1 Earthquakes cluster in space and time

Earthquakes do not occur uniformly in space or in time. Even along a single fault,
some subregions are more active seismically than others. In a spatially and temporally
homogeneous Poisson process, the expected rate is constant in space and time. While
realisations of a homogeneous Poisson process will show some heterogeneity, observed
data are far more heterogeneous in space and time than is likely in such a process.

To model spatial heterogeneity, some seismologists [37] have fitted spatially het-
erogeneous, temporally homogeneous Poisson processes to seismicity. The rate of
events in any region is estimated from the historical rate of events, smoothed geo-
graphically. Such models can account for the spatial clustering of earthquakes, but
not the temporal clustering. Temporally heterogeneous Poisson models are unhelpful,
since we do not know in advance which times will have higher rates of events.

Many models for seismicity include clustering [74], either explicitly, like the ETAS
model (discussed in detail in chapter 4), or implicitly, like some renewal process
models.
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3.1.2 Declustering to fit simple models

Instead of modelling the clustered seismicity, a different approach is to delete some
events from the catalog and fit a temporally homogeneous stochastic model to the
remaining events. The thinning of clusters is known as declustering. We refer to
catalogs yet to be declustered as raw catalogs, and to catalogs from which clustered
events have been removed as declustered catalogs. Declustered catalogs are often used
to estimate “background” rates of seismicity—usually meaning the rate of “main
shocks,” vaguely defined [75, 76].

Declustering methods may be divided into several classes [77, 76]: main shock
window methods, linked-window methods, stochastic declustering methods, and oth-
ers. Main shock window methods remove the earthquakes in a space-time window
around every main shock, where the definition of “main shock” varies from method
to method. These methods can be thought of as “punching holes” adjacent to main
shocks in the catalog. Gardner and Knopoff [75, 2] created a widely-used set of rules to
determine window sizes, with larger main shocks having larger windows in space and
time. We examine declustering using the Gardner-Knopoff windows in section 3.2.1.

Linked-window methods calculate a space-time window for every event in the
catalog—not just for main shocks. An event is included in a cluster if and only if
it falls within the window of at least one other event in that cluster. For example,
suppose that earthquake B occurred in the window of earthquake A and earthquake C
occurred in the window of earthquake B. Then earthquakes A, B, and C are all in the
same cluster, regardless of whether earthquake C was within the window of earthquake
A. After clusters are determined, a declustered catalog is created by reducing every
cluster to a single event—for instance, by removing all events in a cluster except
the first, by removing all events except the largest, or by replacing the whole cluster
with a single “equivalent event” with magnitude representing the summed moment
of all events in the cluster. The most widely used linked-window method is that of
Reasenberg [67], discussed in section 3.2.2.

Stochastic declustering methods employ a random element to decide whether to
remove a particular shock. Applying such a method twice to the same raw catalog
may not produce the same declustered catalog both times. The best-known method
of this type was introduced in 2002 by Zhuang, Ogata, and Vere-Jones [76], though
the underlying ideas date back several decades [74]. We discuss this method in sec-
tion 3.2.4.

Other methods, such as the “waveform similarity approach” of Barani, Ferretti,
Massa, and Spallarossa [78], do not fit into any of the three classes described above;
we do not consider them here.



3.1. OVERVIEW 27

3.1.3 Are declustered catalogs Poisson?

It has often been claimed that declustered catalogs are “Poissonian” [2, 5]. The
basis for the claim is that a test of the hypothesis that the times follow a Poisson
process does not reject that hypothesis. The test that has been used ignores the spatial
locations of events and largely ignores the temporal order of events: it partitions the
catalog period into (arbitrary) time intervals, counts the number of intervals with k
events (up to some arbitrary maximum), then performs a chi-square test comparing
these counts with those expected if seismicity were a realisation of a temporally
homogeneous Poisson process (with rate estimated from the data) [2, 78]. This test is
approximate and ad hoc. It has limited power against many alternatives, and ignores
space.

If seismicity follows a Poisson process, then, conditional on the number of events
that occur, the times of those events are independent, identically distributed (iid)
uniform random variables. This condition can be tested directly, without estimating
a rate or making arbitrary choices of intervals and bins, using a Kolmogorov-Smirnov
test. This exact test does not require parameter estimation or arbitrary choices of
intervals or bins—it retains all the temporal information about the events. It is
more powerful than the chi-square test against many, but not all, plausible alterna-
tives. However, like the chi-square test, it ignores the spatial locations of events.
Section 3.3 tests the hypothesis that event times in catalogs of Southern Californian
seismicity declustered using Gardner-Knopoff windows are Poisson. A portmanteau
chi-square and Kolmogorov-Smirnov test rejects at level 0.05: we would conclude that
the declustered catalogs are not Poisson in time.

What about spatio-temporal processes? We know a priori that catalogs declus-
tered using window methods cannot be Poisson in space-time. If two events are very
close in space-time in a raw catalog, at least one will be deleted by the declustering.
In a Poisson process, two events may occur arbitrarily close to one another in space
and time.

However, the declustered catalogs may have some of the simple properties of
Poisson processes. In a temporally homogeneous Poisson process, the times are iid
uniform. This implies a weaker condition: that conditional on the locations of events,
the process has exchangeable times. This means that, given a set of n catalog locations
and n catalog times, all n! assignments of the times to the locations are equally likely.

In sections 3.4 and 3.5, we use methods based on the work of Romano [79, 80]
to test whether, conditional on the locations and times of the events in declustered
catalogs, all permutations of the times are equally likely. This is a much weaker hy-
pothesis than the hypothesis that events follow a spatially heterogeneous, temporally
homogeneous Poisson process. We performed this test on three declustered catalogs
of Southern Californian earthquakes. One catalog was declustered using Reasenberg’s
method. The second used Gardner-Knopoff windows in a main shock window method;
the last used Gardner-Knopoff windows in a linked-window method. The estimated
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M L(M) (km) T (M) (days)
2.5 19.5 6
3.0 22.5 11.5
3.5 26 22
4.0 30 42
4.5 35 83
5.0 40 155
5.5 47 290
6.0 54 510
6.5 61 790
7.0 70 915
7.5 81 960
8.0 94 985

Table 3.1: Window radius and duration as functions of magnitude, as given by Gard-
ner and Knopoff [2]. For an event of magnitude M , the radius is L(M) and the
duration is T (M). For values of M falling between values given in the table, the sizes
of the window are linearly interpolated.

P -value for the test of the catalog declustered using Reasenberg’s method was 0.003.
The estimated P -values for the tests of the catalogs declustered using the Gardner-
Knopoff windows were 0.025 and 0.069 for the main shock window method and the
linked-window method respectively. Detailed test results are given in section 3.5.

3.2 Declustering methods

3.2.1 Gardner-Knopoff windows

Gardner and Knopoff [75, 2] gave radii and durations for windows as increas-
ing functions of magnitude. These windows can be used in a main shock window
declustering algorithm [5, 76, 81] or in a linked-window algorithm [77].

Table 3.1 gives window sizes from their 1974 paper, which superseded those given
in their 1972 paper. For magnitudes not given in the table, the sizes are linearly
interpolated. Gardner and Knopoff stated they did not have “any strong affection
for these particular windows,” which they found by visually scanning for clusters in a
catalog of Southern Californian earthquakes, then fitting functions relating duration
and radius to main shock magnitude.

There are a number of ways to use a set of windows to decluster catalogs. The
following list is not exhaustive.
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• Method 1: Remove every event that occurred in the window of some other
event [2].

• Method 2: Divide the catalog into clusters as follows: include an event in a
cluster if and only if it occurred within the window of at least one other event
in the cluster. In every cluster, remove all events except the largest [2].

• Method 3: Consider the events in chronological order. If the ith event falls
within the window of a preceding larger shock that has not already been deleted,
delete it. If a larger shock falls within the window of the ith event, delete the
ith event. Otherwise, retain the ith event [75].

Methods 1 and 2 are linked-window methods. Gardner and Knopoff found that
using Methods 1 and 2 with their windows produced “remarkably similar” declustered
catalogs when applied to a raw Southern Californian catalog [2]. Method 3 is a main
shock window method.

3.2.2 Reasenberg declustering

The most widely used linked-window declustering method is that of Reasen-
berg [67]. Reasenberg claimed that Gardner-Knopoff windows are excessively large
and that declustering using these windows removes too many events. He gave his
own windows, called “interaction zones.” The name emphasises that they are based
on physics.

We give the formulae for Reasenberg’s windows, and the physical assumptions
behind them, momentarily. For now, suppose we have calculated a window for every
earthquake in a raw catalog. If one earthquake is followed by a second earthquake
within the window of the first, the two events are considered to be related—that is,
in the same cluster. If a third event is in the window of either the first event or the
second event, it belongs to the same cluster. And so on. An event in the window of
any prior event joins the cluster to which that prior event belongs.

Like the Gardner-Knopoff windows, the Reasenberg windows are spatially larger
for events with greater magnitude. Unlike the Gardner-Knopoff windows, the Reasen-
berg windows are temporally smaller for events with greater magnitude. However, the
space-time size of a cluster with many events may be much larger than the space-time
size of the window of any event in the cluster.

The following subsections derive formulae for the spatial and temporal extent of
windows.

Spatial extent of Reasenberg windows

Reasenberg estimated the source dimension of an event as the radius of a circular
fault that would generate the same seismic moment as that event, assuming a con-
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stant stress drop of 30 bars. In the public version of Reasenberg’s code,1 the source
dimension in kilometres for an event of magnitude M is modelled as

r(M) = 0.011× 100.4M . (3.1)

This radius is capped at 30 km.2

The windows are calculated in chronological order, event by event. Before we find
the window of the ith event, we must find which, if any, existing cluster the event
belongs to by determining whether it falls within the window of any previous event.
Suppose the ith event is in cluster J . Let Mi be the magnitude of the ith event, and
M∗

J,i be the magnitude of the largest event in the Jth cluster up to and including the
time of the ith event. (If the ith event does not fall in the window of any previous
event, it is in a new cluster, and M∗

J,i = Mi.) Reasenberg’s method uses hypocentral
distance (the Gardner-Knopoff method uses epicentral distance). The window of the
ith event is spatially spherical with radius

Qr(Mi) + r(M∗
J,i), (3.2)

where Q is a constant. Q is typically taken to be 10. This is an estimate of the
maximum distance over which “stress-relieving processes” such as afterslip can act.
For Q = 10, Reasenberg’s windows are generally smaller in epicentral extent than the
Gardner-Knopoff windows, especially for low magnitude earthquakes not in the same
cluster as a large main shock.

Reasenberg acknowledged the physics are oversimplified in this window calcula-
tion. The geometry of faults is neither spherically nor circularly symmetric—it varies
from fault to fault. It is also not clear what value the proportionality constant Q
should take, though Reasenberg contended that both the number of clusters identi-
fied and the number of earthquakes in each cluster were “remarkably insensitive” to
choices of Q. Nor is it clear that the form of equation (3.2) is a good model for the
maximum distance over which stress-relieving processes can act.

Temporal extent of Reasenberg windows

Let t be the time after a particular main shock. Suppose the raw catalog consists
of events above magnitude Mmin, and is complete after time t0 has elapsed since
the last main shock. Assume that the rate of aftershocks with magnitude at least
Mmin at time t after the main shock, occurring close in space to the main shock, is

1ftp://ehzftp.wr.usgs.gov/cluster2000/cluster2000x.f
2For the physics connecting the radius of a circular fault and the magnitude of an earthquake,

see Kanamori and Anderson [82]. Alternative expressions for the fault radius are sometimes used.
For example, Helmstetter, Kagan, and Jackson [83], following the empirical work of Wells and
Coppersmith [84], used an uncapped radius of r(M) = 0.01× 100.5M .

ftp://ehzftp.wr.usgs.gov/cluster2000/cluster2000x.f
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approximately
δn

δt
≈ C

t
, for t > t0, (3.3)

where C is a function of Mmax, the magnitude of the main shock, and of Mmin.
Equation (3.3) is Omori’s law, a well-established empirical relationship between the
rate of aftershocks and the time after the main shock. We discuss Omori’s law further
in chapter 4. Reasenberg stated that C was approximately empirically related toMmax

and Mmin as
C = 102(∆M−1)/3, (3.4)

where ∆M ≡Mmax −Mmin. The expected number of events between times ti and T
is then

n(ti, T ) ≡ 102(∆M−1)/3

∫ T

ti

1

t
dt

= 102(∆M−1)/3 log

(
T

ti

)
.

Reasenberg modelled each aftershock sequence as a time-dependent Poisson pro-
cess with rate as given in equation (3.3) and C as given in equation (3.4). Suppose
we have observed an aftershock at time ti after a main shock. Under Reasenberg’s
assumptions, the probability of observing at least one event in the interval (ti, ti + τ)
is

1− exp [−n(ti, ti + τ)] = 1−
(
ti + τ

ti

)
exp

[
−102(∆M−1)/3

]
. (3.5)

Reasenberg claimed this probability is

P = 1− exp

[
−102(∆M−1)/3

(
τ

ti

)]
. (3.6)

The right-hand sides of (3.5) and (3.6) are approximately equal when τ is small
compared to ti. Rearranging equation (3.6) to make τ the subject,

τ =
− ln (1− P )

102(∆M−1)/3
ti. (3.7)

Reasenberg concludes that if an earthquake occurs at a time ti after the main shock,
the chance that the next event in the sequence will occur in the interval (ti, ti + τ ] is
P .
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The temporal duration of the window of the event at time ti is

τ ′ ≡


τmin, if τ < τmin

τ, if τmin ≤ τ ≤ τmax

τmax, if τ > τmax.

(3.8)

Reasenberg used the values τmin = 1 day and τmax = 10 days. In contrast, Gardner-
Knopoff windows may be hundreds of days long.

To summarise, in Reasenberg’s declustering scheme, the window of an event is
spatially spherical with radius given by equation (3.1), and lasts a duration τ ′ after
the event. If one earthquake falls in the window of another, both are in the same
cluster.

After the clusters are identified, each is replaced with a single equivalent event.
This event has the following properties:

• Its time is the time of the largest event in the cluster.

• Its seismic moment is the sum of the moments of all the events in the cluster.
That is, moment magnitudes are converted to seismic moments and summed;
then the sum is converted to a moment magnitude, as in equation (1.1).

• Its hypocenter is the unweighted centroid of the hypocenters of the events in
the cluster.

The magnitude threshold below which a catalog is incomplete is often higher
following large main shocks than it is during periods with no large events. The
current version of the Reasenberg algorithm allows the minimum magnitude cut-off
inside a cluster to depend on the size of the main shock [83]. The cut-off is governed
by two parameters: xmeff, the magnitude cut-off outside of clusters, and xk. Inside a
cluster, the cut-off is

xmeff + xkMmax. (3.9)

Code for Reasenberg declustering is freely available online (see footnote 1). The
implementation in the MATLAB package ZMAP allows eight parameters to be set:

• τmin (default 1 day)

• τmax (default 10 days)

• P : the probability in equation (3.6) (default 0.95)

• xmeff: minimum magnitude cut-off outside of clusters (default 1.5)

• xk: coefficient for main shock magnitude in equation (3.9) (default 0.5)
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• rfact: same as Q in equation (3.2) (default 10)

• epicentral error, assumed to be the same for all events (default 1.5 km)

• depth error, assumed to be the same for all events (default 2 km)

If epicentral or depth errors are specified, they are converted to a hypocentral error
and the spatial radius of every window is reduced by twice that distance. Changing
any of these parameters may result in a different declustered catalog.

Reasenberg’s declustering algorithm is complex, requiring many parameter choices,
and, if it is to be justified physically, many assumptions. The spatial radius of the
window of an event approximates the maximum hypocentral distance at which an
aftershock caused by that event can occur. This radius depends heavily on an arbi-
trary parameter Q. The temporal duration of a window is chosen so that if a host of
stylised assumptions hold, the next event in that cluster will occur within the window
95% of the time. In fact, there is empirical evidence the assumptions do not hold.
For example, times of aftershocks are not a realisation of a Poisson process with rate
given by Omori’s law (see chapter 4).

3.2.3 Comparison of windows

Davis and Frohlich [77] evaluated five window declustering schemes. Three of
these—their own, that of Reasenberg [67] and that of Shlien-Toksöz [85]—were linked-
window methods. The two others — that of Gardner-Knopoff [2] and that of Knopoff-
Kagan-Knopoff [86]—could be applied either as main shock window methods or as
linked-window methods. In the Knopoff-Kagan-Knopoff method, only events with
magnitude greater than some minimum threshold are eligible to be classified as main
shocks. The window sizes do not depend on magnitude in the Shlien-Toksöz and
Davis-Frohlich methods, but do in the other three methods.

Davis and Frohlich created synthetic raw catalogs by simulating main shocks and
aftershocks using a method they devised. They examined the performance of the
declustering schemes when applied to these catalogs. The methods were scored for
correct and incorrect identification of the aftershocks. The Gardner-Knopoff and
Knopoff-Kagan-Knopoff methods scored higher as linked-window methods than as
main shock window methods. While the scores of all the linked-window methods
were similar, the Shlien-Toksöz and Davis-Frohlich methods scored marginally higher
than the others. This success, it should be noted, was for simulations, and may not
reflect performance in reality.

3.2.4 Stochastic declustering

Main shock window and linked-window methods make arbitrary choices for the
sizes of windows. Different choices give different declustered catalogs and different
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estimates of the background seismicity.
An alternative is stochastic declustering. “Stochastic” indicates a random element

is used to determine which events to delete. Many stochastic declustering methods
fit a model that gives for each event in the catalog a likelihood of being a background
event. The following algorithm is common:

1. Set j = 1.

2. Using the fitted model, find the likelihood φj that the jth event in the raw
catalog is a background event.

3. Generate a uniform random number Uj in [0, 1]. These are independent for all
j.

4. If Uj < φj, label the jth event as a background event and retain it. Otherwise
consider it an offspring event and delete it.

5. If j = N , the set of retained events is the declustered catalog; stop. Otherwise,
set j = j + 1 and go to step 2.

Zhuang, Ogata, and Vere-Jones [76] proposed a declustering method that fits
a branching process model called the epidemic-type aftershock (ETAS) model [87]
to raw catalogs. The ETAS model distinguishes between two types of event. A
background event is not directly caused by previous earthquakes. An offspring event
is “triggered” by exactly one preceding event. Both background and offspring events
may trigger offspring. The goal of declustering is to delete offspring events, but not
background events.

The ETAS model is the subject of chapter 4; equation (4.4) gives its standard
functional form. For now, suppose we have fitted the ETAS model to a raw catalog
with n events.

Marsan and Lengliné [88] proposed a similar method that fits a nonparametric
Hawkes branching process to a raw catalog. (The ETAS model is a special case of a
Hawkes process. See chapter 4.2.1 for further discussion of Hawkes processes.)

The RELM group [89] also used a declustering scheme that included stochas-
tic elements. They independently sampled parameters for Reasenberg declustering
from prior distributions. For example, τmin was sampled uniformly from the interval
[0.5, 2.5]; τmax was sampled uniformly from the interval [3, 15]. They then declustered
a raw catalog using the sampled parameters. For each raw catalog, they indepen-
dently repeated the sampling and declustering 10,000 times. The 10,000 declustered
catalogs were then combined into a single probabilistic catalog. For each event, the
probability of being a main shock was equal to the proportion of the 10,000 declus-
tered catalogs in which it was retained. This method avoids the problem of using one
arbitrary parameter combination but creates a larger problem by using an arbitrary
joint prior for the parameters.
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3.3 Tests for homogeneous Poisson times

The title of Gardner and Knopoff’s 1974 paper was “Is the sequence of earthquakes
in Southern California, with aftershocks removed, Poissonian?” The abstract, in its
entirety, was “Yes.” To show this, they used a chi-square test, which we describe
in section 3.3.1. In this problem, the assumptions of a standard chi-square test are
not satisfied. Moreover, the test has little power against plausible alternatives. The
Kolmogorov-Smirnov test, described in section 3.3.2, can be also used to test the
hypothesis that seismicity follows a temporally homogeneous Poisson process. The
assumptions of the Kolmogorov-Smirnov test are satisfied. While the test does not
have good power against all alternatives, it has better power than the chi-square test
against many plausible alternatives.

Both the chi-square test and Kolmogorov-Smirnov test use only the sequence of
declustered catalog times {t1, . . . , tn}, ignoring the spatial locations of events. We
give a spatio-temporal test in section 3.4.2.

3.3.1 Chi-square test

Both Gardner and Knopoff [2] and Barani, Ferretti, Massa, and Spallarossa [78]
performed chi-square tests of the hypothesis that catalogs they declustered were “Pois-
sonian.” Details were not stated completely, but we believe the tests proceed as
follows.

1. Partition the study period into K time intervals of length T/K. The choice of
K (or, equivalently, the choice of the length of time intervals) is ad hoc.

2. For k ∈ {1, . . . , K}, count the number of events in the Kth interval:

Nk ≡
n∑
i=1

1((k − 1)T/K < ti ≤ kT/K). (3.10)

3. Pick B > 2, the number of “bins.” The choice of B is ad hoc. For b ∈
{0, . . . , B − 2}, count the number of intervals containing b events:

Ob ≡
K∑
k=1

1(Nk = b). (3.11)

Also count the number of intervals with B − 1 or more events:

OB−1 ≡
K∑
k=1

1(Nk ≥ B − 1). (3.12)
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4. Estimate the rate of events per interval for the Poisson process. One simple
estimate is

λ̂ = n/K. (3.13)

As we show below, this is not necessarily the best estimate for the chi-square
test.

5. Assuming λ̄ is the true rate, calculate the expected number of intervals with b
events for b ∈ {0, . . . , B − 2}:

Eb ≡ Ke−λ̂
λ̂b

b!
. (3.14)

Find the expected number of intervals with B − 1 or more events:

EB−1 ≡ K −
B−2∑
b=0

Eb. (3.15)

6. Calculate the chi-square statistic:

χ2 ≡
B−1∑
b=0

(Ob − Eb)2

Eb
. (3.16)

Calculate the (approximate) P -value by finding the corresponding quantile of a
chi-square distribution with d degrees of freedom:

P ≡ 1− γ(d/2, χ2/2)

Γ(d/2)
. (3.17)

The choice of d is discussed below. Note that if Eb is too small for some value
of b, the approximation in equation (3.17) will be poor.

The results of the test can depend on choices K and B and on the method of esti-
mating λ.

Gardner and Knopoff performed the chi-square test on a number of declustered
catalogs. For instance, they tested a declustered catalog of earthquakes with magni-
tude at least 3.8 occurring in the Southern Californian Local Area from 1932 to 1971.
The raw catalog had 1751 events; the declustered catalog had 503 events. They di-
vided the forty-year period into ten-day intervals, and counted the number of events
in each interval. They found the number of intervals with b events for all b. They
found the chi-square statistic, and compared this to a chi-square distribution with 2
degrees of freedom.
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They did not explicitly state the number of bins they used; we are uncertain
whether they used d = B − 1 or d = B − 2. Heuristically, one degree of freedom is
lost in estimating λ. From our simulations below, we believe that d = B − 2 gives
the better approximation.

Does the chi-square approximation hold?

Under the null hypothesis of the simple chi-square test [90] for goodness of fit, the
probability of an interval falling in bin b is known and identical for all K intervals, and
the numbers of events in the intervals are independent. The distribution of counts
in the B bins is multinomial. The asymptotic distribution of the test statistic is
chi-square with B − 1 degrees of freedom.

The test here departs from the assumptions of the simple chi-square test. The
bin probabilities are not known. Instead, the rate parameter of the Poisson process is
estimated, and the bin probabilities calculated from this. However, conditional on the
estimate of the rate, the numbers of events in the intervals are no longer independent,
and the distribution of bin counts is not multinomial.

In the case where the bin probabilities are given by a p-parameter distribution, and
the bin probabilities are calculated from an efficient estimator based on the likelihood
of the bin counts, the test statistic has an asymptotic chi-square distribution with
B − p − 1 degrees of freedom [90]. The estimate λ̂ = n/K cannot be derived from
the bin counts alone, so that if this is the estimate Gardner and Knopoff use in their
test, it is not apparent that the chi-square statistic has an asymptotic chi-square
distribution. The MLE based on the bin counts solves∑B−2

b=1 bOb

λ
+

∑∞
i=B−2 λ

i/i!∑∞
j=B−1 λ

j/j!
Ob−1 = K. (3.18)

However, this must be solved numerically.
We simulated 106 independent realisations of a rate 1 Poisson process over a period

of 500 time intervals, then counted the number of intervals with 0, 1, 2, or 3 or more
events. For every realisation, we performed the above chi-square test with four bins,
estimating the rate as λ̂ = n/K. The null hypothesis is true, so a level 0.05 test
should reject 5% of the tests. In fact, a chi-square test with 2 degrees of freedom
rejected 5.01% of the time. In contrast, a chi-square test with 3 degrees of freedom
rejected 2.02% of the time. Similar tests with different rates and different numbers of
bins confirm that setting the degrees of freedom to B−2 is the better approximation.
However, we only simulated a limited variety of processes.
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Power of the chi-square test

Even if the chi-square test has the correct asymptotic level, it has low power
against many plausible alternatives. To see this, suppose all the intervals with events
occurred at the beginning of the study period. Under the null, this would be very
unlikely. However, because the chi-square test does not account for the order of the
intervals, it will not reject if the observed counts are close to the expected counts for
each bin. The Kolmogorov-Smirnov test, described in the following subsection, has
more power against this and similar inconsistencies with the Poisson times hypothesis.

Furthermore, the chi-square test does not incorporate the spatial locations of the
events. Even if the sequence of times is consistent with a temporally homogeneous
Poisson process, the set of locations and times is not necessarily consistent with
a spatially heterogenous, temporally homogeneous Poisson process: while the time
distribution of events over the entire region may appear uniform, events in small
subregions may be more clustered or more dispersed in time than is likely under a
temporally homogeneous Poisson model. See section 3.5.1 for a trivial example of a
process that is homogeneous in time but heterogeneous in space-time.

3.3.2 Kolmogorov-Smirnov tests

The Kolmogorov-Smirnov test compares the empirical distribution of the times
of a random variable to a specified reference distribution function F (x). The test
rejects when a statistic quantifying the “distance” between F (x) and the empirical
distribution function Fn(x) is large. The Kolmogorov-Smirnov (K-S) statistic is

Dn ≡ sup
x
|Fn(x)− F (x)| . (3.19)

The Kolmogorov-Smirnov test has been used by Reasenberg and Matthews [91, 92]
as part of a suite of tests (also including the Cramer-von Mises and Anderson-Darling
tests and a test based on the difference in rate between intervals and their comple-
ments) of uniformity of declustered earthquake sequences preceding main shocks. If
the tests are generated by a homogeneous Poisson process, then conditional on n,
they are drawn independently from a uniform distribution on (0, T ]. So F (x) = t/T ,
and the K-S statistic is

Dn = sup
x

∣∣∣∣∣ 1n
n∑
i=1

1(ti ≤ t)− t

∣∣∣∣∣ . (3.20)

This statistic requires neither parameter estimation nor the partition of time into
intervals. The test has asymptotic power 1 against any fixed alternative that the
data are iid F ′ 6= F .

The Dvoretzky-Kiefer-Wolfowitz inequality, as tightened by Massart [93], states
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Process Chi-square test power K-S power
Heterogeneous Poisson 0.1658 1

Gamma renewal 1 0.0009

Table 3.2: Estimated power of level 0.05 tests of homogeneous Poisson null hypothesis
for two temporal point processes, estimated from 10,000 simulations of each process.
The chi-square test is described in section 3.3.1. It uses ten-day intervals and four bins.
The Kolmogorov-Smirnov test is described in section 3.3.2. In the “Heterogeneous
Poisson” process, events occur at rate 0.25 per ten days for twenty years, then at rate
0.5 per ten days for a further twenty years. The Kolmogorov-Smirnov test rejects
in all simulations, while the chi-square test usually does not reject. In the “Gamma
renewal” process, the times between events are independent and follow a gamma
distribution with shape 2 and rate 1. The chi-square test rejects in all simulations,
while the Kolmogorov-Smirnov test rarely rejects. The two tests are powerful against
different alternatives.

that
P (Dn > x) ≤ 2 exp (−2nx2). (3.21)

We can use this inequality to calculate conservative P -values for the hypothesis that
times are homogeneous Poisson.

3.3.3 Tests on simulated data

In this subsection we estimate the power of the chi-square and Kolmogorov-
Smirnov tests for uniform times against contrasting alternatives. All tests in this
section are at level 0.05. Results are summarised in Table 3.2.

Consider realisations of the following temporally heterogeneous Poisson process
over a forty-year study period:

• For the first twenty years of the study period, events occur at rate 0.25 per ten
days.

• For the next twenty years of the study period, events occur at rate 0.5 per ten
days.

We applied the following tests at level 0.05 to 10,000 simulations of the process:

• A chi-square test with ten-day intervals and four bins.

• The Kolmogorov-Smirnov test.
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The chi-square test rejected in 1658 of the 10,000 simulations. The power of the test
is low because the chi-square test does not take the order of the intervals into account.
The Kolmogorov-Smirnov test rejected in all 10,000 simulations. The increased rate
in the second half of the study period is an obvious departure from uniformity.

Now consider a process in which the inter-event times are independent with a
Gamma(2,1) distribution (where the time unit is ten days). We simulated 10,000
forty-year realisations of this process. The chi-square test rejected in all 10,000 sim-
ulations. The test notes that more intervals have one event and fewer have 2 or
more events than would be expected under the Poisson hypothesis. The Kolmogorov-
Smirnov test rejected in only 9 of the 10,000 simulations. The power is low because
the “non-uniformity” is spread out through the study period.

The Kolmogorov-Smirnov test is sensitive to the distribution across the whole
study period, but not to local variations. The chi-square test, in contrast, is sensitive
to local variations but not to the overall shape of the distribution of times. Neither
test uses spatial information: they test whether a catalog is Poisson in time, not in
space-time.

3.3.4 Tests on declustered catalogs

Gardner and Knopoff applied Method 1 of section 3.2.1 using their windows to
thin raw catalogs of seismicity in Southern California [2]. They carried out a number
of tests on different declustered catalogs using a variety of bin widths. None of the
tests gave a significant value for the χ2-statistic.

We did not have the catalog used by Gardner and Knopoff. We instead used the
SCEC catalog from 1932 to 1971, covering the same time period and approximately
the same spatial region as the Gardner-Knopoff study. We declustered a catalog of
Southern Californian seismicity using the Gardner-Knopoff windows. The Gardner-
Knopoff raw catalog contains 1,751 events with magnitude at least 3.8, whereas our
raw catalog contains 1,556 such events.

We created three declustered catalogs, using the three methods from section 3.2.1.
Our declustered catalogs contained 437, 424, and 544 events after applying Methods 1,
2, and 3 respectively. The Gardner-Knopoff declustered catalog of events with mag-
nitude at least 3.8 contained 503 events.

We tested the Poisson hypothesis using the chi-square test with B = 4 and d = 2
and the Kolmogorov-Smirnov test. We accounted for multiple testing using Bonfer-
roni’s inequality, which is conservative. We rejected the null hypothesis if either the
chi-square test or the Kolmogorov-Smirnov test gives a P -value of less than 0.025.
This ensures that if the null hypothesis is true, a Type I error has probability no
greater than 0.05. We also compare chi-square tests using λ̂ = n/k to the tests using
the solution of (3.18) as the estimate of λ. In the cases we studied, the differences
between these two estimates are negligible.
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Method Chi-square P -value MLE chi-square P -value K-S P -value Reject?
1 0.087 0.087 0.012 Yes
2 0.297 0.295 0.0064 Yes
3 6× 10−6 4× 10−6 0.022 Yes

Table 3.3: P -values for tests of Poisson null hypothesis for Southern Californian seis-
micity declustered using Methods 1, 2, and 3 from section 3.2.1. “Chi-square P -value”
is for the test using n/K as the estimate for λ. “MLE chi-square P -value” is for the
test using the maximum likelihood estimate of λ from the bin counts (solving (3.18)).
The hypothesis is rejected at level 0.05 if the P -value from either the chi-square test
or the Kolmogorov-Smirnov test is less than 0.025.

Results are given in Table 3.3. We rejected the null hypothesis for all three
declustering methods: this contradicts Gardner and Knopoff’s conclusion. In all three
methods, the difference between the empirical distribution of times and a uniform
distribution was large enough to cause the Kolmogorov-Smirnov test to reject at level
0.025. The chi-square test would reject at level 0.025 in one of the three cases.

3.4 Space-time distribution

3.4.1 Weakening the Poisson hypothesis

In a spatially heterogeneous, temporally homogeneous Poisson process, the marginal
distribution of times is Poisson. The tests in the previous section reject the hypoth-
esis that the marginal distribution of times is Poisson. Hence they also reject the
hypothesis that the data come from a spatially heterogeneous, temporally homoge-
neous Poisson process.

In fact, we know a priori that a catalog declustered using a window method
cannot be a realisation of such a process. In a spatially heterogeneous, temporally
homogeneous Poisson process, two events may occur arbitrarily close to one another
with strictly positive probability. A window declustering method, on the other hand,
will not leave any pairs of events closer than some minimum distance in space-time
(this distance depends on the method and the catalog magnitude threshold). If a
raw catalog contains two events very close in space and time, the later event will fall
within the window of the former, and one or both of them will be deleted.

Consider a spatially heterogeneous, temporally homogenous Poisson process on
spatial domain A on time (0, T ]. The space-time rate is the product of the marginal
spatial rate and the constant temporal rate. In any Poisson process, conditional on
the number of events, the events are iid, with probability density proportional to the
space-time rate. Conditional on the locations of events, the marginal distribution of
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times is just the normalised temporal rate: that is, conditional on the locations, the
times are iid uniform.

We shall test a weaker condition: conditional on the locations, times are ex-
changeable. Suppose a catalog, not necessarily in chronological order, contains n
earthquakes. Let the location of the ith event be (xi, yi), where xi is longitude and
yi is latitude. We do not consider depths. Let Ti be a random variable representing
the time of the event at (xi, yi). Let Π be the set of all n! permutations of {1, . . . , n}.
We say the process has exchangeable times if, conditional on the locations,

{T1, . . . , Tn}
d
= {Tπ(1), . . . , Tπ(n))} (3.22)

for all permutations π ∈ Π.
Under a null hypothesis of exchangeability, given the locations {(xi, yi)} and the

times {ti}, no assignment of times to locations is more or less likely than any other.
(It follows that conditional on both the observed locations and observed times, the
locations and times are independent.) For example, suppose we condition on the
occurrence of earthquakes at locations A,B, and C and at times 1, 2, and 3. If the
times are exchangeable, the following pairings of locations and times are equally likely:
{(A, 1), (B, 2), (C, 3)}, {(A, 1), (B, 3), (C, 2)}, {(A, 2), (B, 1), (C, 3)}, and so on for all
six permutations. In a process that is not exchangeable, assignments in which events
close in space are also close in time may be more likely (space-time clustering, which
does not occur in a Poisson process) or less likely (which also does not occur in a
Poisson process).

The remainder of this section outlines a nonparametric test of the hypothesis
of exchangeable times. In section 3.5.3, we perform the test on several declustered
catalogs.

3.4.2 Testing earthquake catalogs for exchangeable times

Romano [79, 80] used empirical process theory to develop methodology for boot-
strap and randomisation tests of “nonparametric” hypotheses such as independence,
symmetry, and exchangeability. The tests evaluate the absolute differences in mea-
sures of individual sets under the empirical distribution and under a transformation
of the empirical distribution. The sets for which the probabilities are evaluated are
required to be a Vapnik-Chervonenkis (VC) class.3 The transformation maps dis-
tributions that do not satisfy the null onto distributions that do. For distributions
satisfying the null, the transformation is the identity. The test statistic is proportional
to the largest absolute difference in measure over all sets in the VC class. We give
general details of Romano’s methodology in Appendix A. Here, we focus on testing
the specific hypothesis of exchangeable times.

3Or, more generally, a Glivenko-Cantelli class.



3.4. SPACE-TIME DISTRIBUTION 43

Let P̂n be the empirical measure and τ(P̂n) be the transformation of the empirical
measure into the set of exchangeable measures. The measure P̂n has mass 1/n at
every observed point of longitude, latitude, and time (xi, yi, ti). The measure τ(P̂n)
is the average of the (hypothetical) empirical measures for all n! permutations of the
data. We informally call τ(P̂n) the empirical null measure. Since after a permutation
operation any spatial location may be paired with any observed time, the empirical
null measure has support at every one of the n2 points (xi, yi, tj) for 1 ≤ i, j ≤ n.
All permutations are equally likely, so the empirical null measure places equal weight
1/n2 on every one of these points.

Let V be the set of lower-left quadrants in R3. Then V is a VC class. Identify
each quadrant {(−∞, x] × (−∞, y] × (−∞, t]} by its corner (x, y, t). Let the test
statistic be the supremum of the distance between P̂n and τ(P̂n) evaluated over all
lower-left quadrants:

sup
V ∈V
|P̂n(V )− τ(P̂n)(V )|. (3.23)

This is a generalisation of the Kolmogorov-Smirnov statistic (3.19) from one dimen-
sion to three dimensions.

The empirical measure of a lower-left quadrant with corner (x, y, t) is

P̂n(V ) =
1

n

n∑
i=1

1(xi ≤ x, yi ≤ y, ti ≤ t). (3.24)

By conditional independence, the empirical null measure of a lower-left quadrant
with corner (x, y, t) is

τ(P̂n)(V ) =
1

n!

∑
πj∈Π

1

n

n∑
i=1

1(xi ≤ x, yi ≤ y, tπj(i) ≤ t) (3.25)

=
1

n

n∑
i=1

1(xi ≤ x, yi ≤ y) · 1

n

n∑
k=1

1(tk ≤ t). (3.26)

To find the maximum distance over all lower-left quadrants, it is sufficient to find
the maximum distance over a set of n3 quadrants: those with corners (xi, yj, tk), for
0 ≤ i, j, k ≤ n. To see this, we classify every quadrant as one of two types according
to its corner (x′, y′, t′). Quadrants of the first type have x′ less than the minimum
longitude in the catalog, or y′ less than the minimum latitude, or t′ less than the
minimum time. Both the empirical measure and the empirical null measure of these
quadrants will be zero. This means we do not have to consider quadrants of this type
when finding the greatest distance between the two measures.

Quadrants of the second type have x′ ≥ min{xi}, y′ ≥ min{yj}, and t′ ≥ min{tk}.
Let I(x′) =

∑
1(xi ≤ x′); that is, the number of points with x-coordinate less than
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or equal to x′. Similarly, let J(y′) =
∑

1(yi ≤ y′) and K(t′) =
∑

1(ti ≤ t′). Also
record the order statistics of the points in each of the three dimensions: let x(L) be
the Lth largest value of x observed in the catalog, y(L) be the Lth largest value of y
in the catalog, and t(L) be the Lth largest value of t in the catalog.

Following equation (3.24), the empirical measure of a lower-left quadrant V ′ with
corner (x′, y′, t′) is

P̂n(V ′) =
1

n

n∑
i=1

1(xi ≤ x′, yi ≤ y′, ti ≤ t′) (3.27)

=
1

n

n∑
i=1

1(xi ≤ x(I(x′)), yi ≤ y(J(y′)), ti ≤ t(K(t′))). (3.28)

This holds because no event in the catalog has an x-value between x(I(x′)) and x′, or a
y-value between y(J(y′)) and y′, or a t-value between t(K(t′)) and t′. (If a point between
x(I(x′)) and x′ existed, there would be more than I(x′) points with an x-coordinate no
greater than x′, yielding a contradiction.)

Similarly, following (3.26), the empirical null measure of a quadrant V ′ with corner
(x′, y′, t′) is

τ(P̂n)(V ′) =
1

n

n∑
i=1

1(xi ≤ x(I(x′)), yi ≤ y(J(y′))) ·
1

n

n∑
k=i

1(ti ≤ t(K(t′))). (3.29)

That is, for every lower-left quadrant with non-zero empirical measure or empirical
null measure, there exists a lower-left quadrant with a corner of the form (xi, yj, tk)
for 0 ≤ i, j, k ≤ n that has the same empirical measure and empirical null measure.
So to find the supremum of the absolute difference between these two measures over
all lower-left quadrants, we need only find the maximum over the set of n3 lower-left
quadrants with corners of that form. Moreover, it is sufficient to consider the order
(or ranks) of the events in each of the three dimensions.

The exact conditional null distribution of the test statistic is found by comput-
ing the statistic for all permuted catalogs. Since there are n! permutations, this is
computationally unfeasible for catalogs with more than a dozen or so events. We
instead look at N = 1000 randomly permuted catalogs for each test. Under the null
hypothesis, the N+1 values obtained from the catalog test statistic and the statistics
for the permuted catalogs are equally likely. So a test that rejects the null when
the catalog statistic is larger than the 50th-largest value of the 1000 statistics for the
permuted catalogs has estimated level 0.05.4 The estimated P -value is the proportion

4To be more accurate, the estimated level is 50/1001. This is the probability under the null that
the catalog test statistic is one of the 500 largest elements of the concatenated vector of length 1001,
ignoring ties. Also note that this assumes sampling without replacement. In practice, we sample
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of the elements of the concatenated vector that are greater than or equal to the test
statistics for the unpermuted catalog.

The P -value is an estimate because of sampling variability. A sample of 1000
permutations only allows the sampling distribution to be determined with limited
accuracy. If the P -value estimated from all n! permutations were 0.05, the standard
error of the P -value estimated from 1000 permutations would be

√
.05× .95/1000 ≈

0.007. We would not like the result of a test based on a sample of permutations to
differ from the result of a test based on all permutations. Therefore, if the P -value
estimated after 1000 permutations was between 0.01 and 0.1, we continued sampling
permutations up to a total of 10,000. (We do not sample 10,000 permutations for all
tests because of the computational expense.) This two-step process introduces some
bias for P -values near 0.01 or 0.1, but negligible bias for P -values near 0.05.

3.4.3 Test algorithm

We used the statistical computing software R to perform tests for exchangeable
times on raw and declustered catalogs. R code for the test is given in Appendix B.
These are the steps of the algorithm.

1. Sort the catalog of longitudes, latitudes, and times in time order: this facilitates
step 3. Label the sorted points {xi, yi, ti} for i ∈ {1, . . . , n}. Find the longitude
and latitude ranks of every event. The longitude rank of the ith event is

n∑
j=1

1(xj ≤ xi).

2. Find the empirical spatial measure for all lower-left quadrants in R2 with corners

(yi, xj), 1 ≤ i, j ≤ n. (3.30)

In the R implementation in Appendix B, this spatial distribution is stored in
the matrix xy.upper. In that matrix, the entry indexed by (i, j) is

1

n

n∑
i=1

1(yi ≤ y, xj ≤ x). (3.31)

This is the number of events in the catalog with latitude less than the latitude
of the ith event in the catalog and with longitude less than the longitude of
the jth event in the catalog. (Note that here we store points as (yi, xj) to be
consistent with the indexing of R.)

with replacement. Since the sampling fraction is miniscule, the difference between sampling with
and without replacement is negligible.
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3. Find the absolute differences between the empirical measure (3.24) and the
empirical null measure (3.26) for all n3 lower-left quadrants with corners

(xj, yi, tk), i, j, k ∈ {1, . . . , n}.

Find the maximum value of all these differences; this is the test statistic S.
Because an object with n3 elements may cause memory problems in R, the
code finds the distances for quadrants with corners (xj, yi, tk) for every value of
k successively; that is, we find

S = max
k

[
max
j,i

∣∣∣P̂ (V (j, i, k))− τ(P̂ )(V (j, i, k))
∣∣∣] ,

where V (j, i, k) is the lower-left quadrant with corner (xj, yi, tk).

4. Set N1 = 1000 and N2 = 10,000. Set the permutation counter H = 1.

5. Create a random permutation {1, . . . , n}. Apply this permutation to the loca-
tions while keeping times fixed. (We could apply the permutation to the times
while keeping locations fixed, but this would require the additional step of re-
sorting the catalog in time order.) The spatial measure has not changed, but its
indexing has, so also apply the permutation to both the rows and the columns
of xy.upper.

6. As in step 3, find the absolute differences between the empirical measure and the
empirical null measure for the n3 lower-left quadrants. Let SH be the maximum
value of all these distances.

7. If H = N1, go to the next step. If H = N2, go to step 9. Otherwise set
H = H + 1 and go to step 5.

8. Estimate a preliminary P -value

P̂ =

N1∑
h=1

1

N1

1(Sh ≥ S).

If P̂ < 0.01, reject the hypothesis and stop. If P̂ > 0.1, do not reject the
hypothesis and stop. If 0.01 ≤ P̂ ≤ 0.1, set H = H + 1 and go to step 5.

9. Compare S to the distribution of SH . The estimated P -value is

P̂ =

N2∑
h=1

1

N2

1(Sh ≥ S).
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Reject the hypothesis if this value is less than 0.05. Stop.

3.5 Test cases and results

3.5.1 Tests for exchangeable times on simulated catalogs

We first trialled the test on data we knew to be a realisation of a spatial point
process in which times are exchangeable, given the locations. We applied the permu-
tation test to a simulation of 500 points of a uniform process on [0, 1]× [0, 1]× [0, 1].
This process satisfies the null hypothesis: conditional on the number of points, the
locations and times are independent and identically distributed.

Figure 3.1 plots the two spatial co-ordinates against each other, as well as each
of the spatial co-ordinates against time. No surprising clustering is evident in any
case, as expected from the independence of the co-ordinates. Figure 3.2 compares the
simulation test statistic to its sampling distribution under the null, estimated from
1000 random permutations of the catalog. The simulation test statistic is near the
centre of the histogram. The test gave an estimated one-tailed P -value of 0.546. The
hypothesis that the process is exchangeable is not rejected at the 0.05 level. No Type
I error occurred; the test result was as expected.

We then performed a test on data we knew to be a realisation of a spatial point
process in which times are not exchangeable, given the locations. We generated such
a set of points using the following algorithm:

1. Generate event times as a homogeneous Poisson process of rate 500 on (0, 1].

2. For events with time in (0, 0.5], generate spatial co-ordinate x uniformly in
(0, 0.5]. For events with time in (0.5, 1], generate spatial co-ordinate x uniformly
in (0.5, 1].

3. For events with time in (0, 0.25] ∪ (0.5, 0.75], generate spatial co-ordinate y
uniformly in (0, 0.5]. For events with time in (0.25, 0.5] ∪ (0.75, 1], generate
spatial co-ordinate y uniformly in (0.5, 1].

The times of these simulated events are a realisation of a homogeneous Poisson pro-
cess, and the expected number of events in any spatial region during time (0, 1] is
proportional to the area of the region. The process is not, however, homogeneous in
space-time. Some space-time regions cannot contain points. For example, at spatial
co-ordinates x = 0.1, y = 0.1, events can only occur for times in (0, 0.25], and not
in (0.25, 1]. Thus some combinations (xi, yi, tk) are impossible in this process, and
times are not exchangeable. Figure 3.3 plots the two spatial co-ordinates against each
other, as well as each of the spatial co-ordinates against time. The plots of t against
x and y show there are space-time regions in which points do not occur.
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Figure 3.1: Realisation of a uniform process of 500 events on [0, 1] × [0, 1] × [0, 1].
Conditional on the number of events, x, y and t are all independent.
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Figure 3.2: Estimated sampling distribution of the test statistic (3.23) for the uniform
catalog depicted in Figure 3.1. The distribution is estimated from 1000 permutations
of the catalog. The test statistic for the original catalog is represented by the dashed
line. The estimated one-tailed P -value is 0.546; the hypothesis of exchangeable times
is not rejected.
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Figure 3.3: Realisation of the heterogeneous point process described in section 3.5.1,
with 491 events. The event times {ti} were generated as a homogeneous Poisson
process of rate 500 on (0, 1]. For each event with ti ∈ (0, 0.5], xi was generated inde-
pendently from a uniform distribution on (0, 0.5]. For each event with ti ∈ (0.5, 1], xi
was generated independently from a uniform distribution on (0.5, 1]. For each event
with ti ∈ (0, 0.25] ∪ (0.5, 0.75], yi was generated independently from a uniform dis-
tribution on (0, 0.5]. For an event with ti ∈ (0.25, 0.5] ∪ (0.75, 1], xi was generated
independently from a uniform distribution on (0.5, 1]. The process of times is homo-
geneous Poisson; however, at any given location, events may only occur at certain
times. For example, an event at location x, y < 0.5 can occur for t ∈ (0, 0.25] but not
for t ∈ (0.25, 1]. Event times are therefore not exchangeable.
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Figure 3.4: Estimated sampling distribution of the test statistic (3.23) for the het-
erogeneous catalog depicted in Figure 3.3. The distribution is estimated from 1000
permutations of the catalog. The test statistic for the original catalog, represented by
the dashed line, exceeds by far any of the statistics for the permuted catalogs. The
estimated one-tailed P -value is less than 0.001; the hypothesis of exchangeable times
is rejected.
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Figure 3.4 compares the simulation test statistic to its null sampling distribution,
as estimated from 1000 random permutations of the catalog. The simulation test
statistic is larger than any of the statistics for the permuted catalogs. The test gave
an estimated one-tailed P -value of less than 0.001. The hypothesis that the process
has exchangeable times is rejected at the 0.05 level. The test detects the obvious:
times are not exchangeable. This example shows that catalogs with times that come
from a temporally homogeneous Poisson process may still exhibit clustering in space-
time. A test for a Poisson process that only includes times will not detect this.

3.5.2 Tests of exchangeable times on recent SCEC catalogs

Our first test on a real catalog was on a Southern California Earthquake Center
(SCEC) catalog5 of 753 events of magnitude 2.5 or greater in Southern California
during the year 2009. Figure 3.5 plots the locations of the events over a map of
Southern California. The events are not uniformly distributed over the spatial region;
there is a greater density of events near the San Andreas and related faults. The null
hypothesis of our test permits spatial heterogeneity. The test conditions on locations,
so spatial heterogeneity in itself will not cause a rejection.

Figure 3.6 compares the test statistic for the raw catalog to its null sampling
distribution, as estimated from 1000 random permutations of the catalog. The raw
catalog test statistic is larger than any of the statistics for the permuted catalogs.
The test gave an estimated one-tailed P -value of less than 0.001. The hypothesis that
the raw catalog is exchangeable is rejected at the 0.05 level.

What if we decluster this catalog? We applied the implementation of Reasenberg’s
algorithm in Stefan Wiemer’s ZMAP package for MATLAB6 to decluster the 2009
SCEC catalog of events of magnitude 2.5 or greater, using default parameters, as
given in section 3.2.2. After declustering, 475 events remained in the catalog. (Small
changes in the parameters do not result in the reclassification of more than a few
events.) Figure 3.7 plots the locations of the events. Again, there is clustering around
known faults. Figure 3.8 compares the test statistic for the declustered catalog to
its null sampling distribution, as estimated from 1000 random permutations of the
catalog. The declustered catalog test statistic is out in the right tail. The test gave
an estimated one-tailed P -value of 0.003. The hypothesis that the declustered catalog
is exchangeable is rejected at the 0.05 level.
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Figure 3.5: Raw SCEC catalog of events of magnitude 2.5 or greater in Southern
California during year 2009. The catalog contains 753 events. The events are not
spatially homogeneous.
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Figure 3.6: Estimated sampling distribution of the test statistic (3.23) for the raw
SCEC catalog of events of magnitude 2.5 or greater in Southern California during
year 2009. The distribution is estimated from 1000 permutations of the catalog. The
test statistic for the original catalog, represented by the dashed line, exceeds by far
any of the statistics for the permuted catalogs. The estimated one-tailed P -value is
less than 0.001; the hypothesis of exchangeable times is rejected.



3.5. TEST CASES AND RESULTS 55

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

Figure 3.7: SCEC catalog of events of magnitude 2.5 or greater in Southern California
during year 2009, declustered using Reasenberg’s method. The declustered catalog
contains 475 events.
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Figure 3.8: Estimated sampling distribution of the test statistic (3.23) for the SCEC
catalog of events of magnitude 2.5 or greater in Southern California during year
2009, declustered using Reasenberg’s method. The distribution is estimated from
1000 permutations of the catalog. The test statistic for the declustered catalog,
represented by the dashed line, is greater than almost all of the statistics for the
permuted catalogs. The estimated one-tailed P -value is 0.003; the hypothesis of
exchangeable times is rejected at level 0.05.
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Figure 3.9: Raw SCEC catalog of events of magnitude 3.8 or greater in Southern
California from 1932 to 1971. The catalog contains 1,556 events.
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Figure 3.10: SCEC catalog of events of magnitude 3.8 or greater in Southern Cal-
ifornia from 1932 to 1971, declustered using Gardner-Knopoff windows in a linked-
window method. The declustered catalog contains 424 events.
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Figure 3.11: Estimated sampling distribution of the test statistic (3.23) for the 1932-
1971 Southern Californian catalog of events of magnitude 3.8 or greater, declustered
using Gardner-Knopoff windows in a linked-window method. The distribution is esti-
mated from 10,000 permutations of the catalog. The test statistic for the declustered
catalog, represented by the dashed line, exceeds most of the statistics for the permuted
catalogs. The estimated one-tailed P -value is 0.005; the hypothesis of exchangeable
times is rejected at level α = 0.05.
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Figure 3.12: SCEC catalog of events of magnitude 3.8 or greater in Southern Califor-
nia from 1932 to 1971, declustered using Gardner-Knopoff windows in a main shock
window method. The declustered catalog contains 544 events.
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Test statistics for permuted MSW declustered 1932−71 SoCal catalog
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Figure 3.13: Estimated sampling distribution of the test statistic (3.23) for the 1932-
1971 Southern Californian catalog of events of magnitude 3.8 or greater, declustered
using Gardner-Knopoff windows in a main shock window method. The distribu-
tion is estimated from 10,000 permutations of the catalog. The test statistic for the
declustered catalog, represented by the dashed line, exceeds many but not all of the
statistics for the permuted catalogs. The estimated one-tailed P -value is 0.069; the
hypothesis of exchangeable times is not rejected at level α = 0.05.
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3.5.3 Tests of exchangeable times on catalogs declustered us-
ing Gardner-Knopoff windows

As in section 3.3, we used the raw SCEC catalog of events of magnitude 3.8 or
greater in Southern California from 1932 to 1971. Figure 3.9 plots the locations of
the events. We applied the Gardner-Knopoff windows to the raw catalog in two ways.
The first was the linked-window method Gardner and Knopoff used in their 1974 pa-
per [2]. This was Method 1 from section 3.2.1. Secondly, we used the Gardner-Knopoff
windows in a main shock window method. This was Method 3 from section 3.2.1.

The first method left a declustered catalog of 424 shocks. Figure 3.10 plots the
locations of the events. Figure 3.11 compares the test statistic for the declustered
catalog to its null sampling distribution, as estimated from 10,000 random permu-
tations of the catalog. The declustered catalog test statistic is far out in the right
tail. The test gives an estimated one-tailed P -value of 0.005. The hypothesis that
the declustered is exchangeable is rejected at the 0.05 level.

The second method left 544 main shocks. Figure 3.12 plots the locations of the
events. Figure 3.13 compares the test statistic for the declustered catalog to its
null sampling distribution, as estimated from 10,000 random permutations of the
declustered catalog times. The declustered catalog test statistic is out in the right
tail. The test gives an estimated one-tailed P -value of 0.069. This is a small P -value,
but not small enough to reject the hypothesis that the declustered is exchangeable at
the 0.05 level.

3.6 Discussion

“Ok, so why do you decluster the catalog?”
This is a question posed in the online FAQ for the Earthquake Probability Mapping

Application of the USGS.7 The reasons given are “to get the best possible estimate for
the rate of mainshocks,” and that “the methodology [of the Earthquake Probability
Mapping Application] requires a catalog of independent events (Poisson model), and
declustering helps to achieve independence.” It is not clear, however, that modelling
only main shocks is better than modelling all shocks or that declustered catalogs
consist of independent events.

Accurate estimation of the rate of main shocks requires an unambiguous defini-
tion of “main shocks.” Often, main shocks are taken to be the set of events that
remain after a catalog is declustered—a circular definition. A deterministic declus-
tering method will produce the same declustered catalog every time it is applied to

5http://www.data.scec.org/catalog_search/data_mag_loc.php
6http://www.earthquake.ethz.ch/software/zmap
7http://earthquake.usgs.gov/learn/faq/?faqID=280

http://www.data.scec.org/catalog_search/data_mag_loc.php
http://www.earthquake.ethz.ch/software/zmap
http://earthquake.usgs.gov/learn/faq/?faqID=280
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a particular raw catalog. Different methods, however, will produce different declus-
tered catalogs. Furthermore, the complexity of some declustering methods makes it
difficult to interpret what it means for an event to be classified as a main shock or an
aftershock. Instead of using a declustering method to identify main shocks, it seems
preferable to state a simple and clear definition of “main shock,” then identify main
shocks in this way—or to model all large events, main shocks or otherwise, because
all large shocks can do damage.

We tested whether Southern Californian earthquake catalogs, declustered using
the Gardner-Knopoff windows, followed a temporally homogeneous Poisson hypothe-
sis. The chi-square test used by Gardner and Knopoff did not always reject, but the
Kolmogorov-Smirnov test did. Neither test takes spatial locations into account.

We knew a priori that declustered catalogs are not truly Poisson in space and time.
But declustered catalogs may still have properties in common with Poisson processes.
In a spatially heterogeneous, temporally homogeneous Poisson model, two events
may occur arbitrarily close to one another with strictly positive probability. As we
stated in section 3.4.1, very close events cannot occur in a catalog declustered using a
window method, so the catalogs are not exactly Poisson. We instead tested the weaker
hypothesis that declustered catalogs had exchangeable times, given the locations. For
catalogs declustered using the Reasenberg method and the Gardner-Knopoff windows
in a linked-window method, one-tailed tests at level α = 0.05 rejected the hypothesis
of exchangeable times. This suggests that linked-window declustered catalogs are
not even exchangeable. This may be because too many events are being removed,
meaning that events close in space are unlikely to be close in time. However, the
hypothesis of exchangeable times was not rejected at the α = 0.05 level for a one-
tailed test of a catalog declustered using Gardner-Knopoff windows applied as a main
shock window method. This is not evidence that main shock window declustering is
superior to linked-window declustering—the hypothesis of exchangeable times could
be rejected for a larger catalog declustered using main shock windows.

Future work will include testing other declustering methods. Particularly inter-
esting candidates for testing are the stochastic declustering methods of Zhuang et al.,
and of Marsan and Lengliné. The Hawkes process models in those methods assume
that the background seismicity is a realisation of a Poisson process—in particular,
they might have exchangeable times. Thus it seems plausible that declustered cata-
logs will resemble realisations of a heterogeneous Poisson process. More generally, one
could create a declustered catalog that appeared exchangeable by removing events at
random from the raw catalog until the remaining catalog passes a test for exchange-
able times. This is trivially guaranteed to work: a catalog with one event cannot fail
our test. This Procrustean declustering is unlikely to be useful.

Furthermore, simulations suggest that some of the events deleted are main shocks.
Sornette and Utkin [94] simulated catalogs from a stationary marked ETAS process
(see chapter 4) in which background events triggered offspring events. They then
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employed the declustering method of Zhuang et al., which uses the parametric form
of the ETAS model, to classify events as background or offspring. They found that
the declustering was “rather unreliable” for distinguishing between the two types of
event. If a declustering method has limited success in correctly classifying background
and offspring events when the model assumed by the method is true, the value of
declustering real catalogs is questionable. There is, on the other hand, inherent value
in modelling clustered events. Large aftershocks may do just as much damage as
main shocks. Removing them from the catalog after they occur will not repair the
damage they cause.
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Chapter 4

ETAS simulation and estimation

4.1 Introduction

Earthquake times in the ETAS model

As we saw in chapter 3, earthquakes cluster temporally. The modified Omori
law and the Gutenberg-Richter law are empirical relationships widely accepted by
seismologists as governing aftershock occurrence. The modified Omori law, or Omori-
Utsu law [95], proposes that the rate of aftershocks ∆n/∆t at time t after a main
shock approximately follows

∆n

∆t
=

K

(t+ c)p
. (4.1)

Here, K, c and p are assumed constant for a particular sequence, but vary between
sequences. Sequences following larger main shocks will tend to have larger estimated
values of K [96]. When estimated for real sequences, c is almost always positive.
Estimated values of p have been found to fall between 0.3 and 2 for observed sequences.

If the true rate of aftershocks followed the modified Omori law, the total number of
aftershocks would be the integral of the right-hand side of (4.1) from zero to infinity.
If p > 1, the integral is finite. If p ≤ 1, the integral is infinite. This seems unphysical,
yet the value of p estimated for many finite aftershock sequences is less than 1.

The epidemic-type aftershock, or ETAS, model, devised by Ogata [52, 3], is a
model for earthquakes with magnitude greater than or equal to some cut-off m0. All
earthquakes with magnitude ≥ m0 may trigger further shocks with magnitude ≥ m0.
(Earthquakes with magnitude less than m0 are not in the model.) The model classifies
shocks as background events, which are not triggered by previous seismicity, and
offspring events, which are directly triggered by one preceding earthquake. Offspring
events may have their own offspring (“aftershocks of aftershocks”).

We refer to a triggering event as a parent. Events directly triggered by a parent are
children. Events triggered directly or indirectly by some event are descendants of that
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event. An event can have 0 or 1 parents and any number of children and descendants.
The ETAS model thus fits a branching structure to earthquake catalogs. In fact, the
ETAS model is a version of a marked branching point process model called the Hawkes
process.

In the ETAS model, background events are generated by a Poisson process with
rate µ. For every event, the rate of offspring shocks decreases in time according to the
modified Omori law with the same value of p. The rate of aftershocks of an earthquake
with magnitude mi is proportional to 10αmi , where α is a non-negative parameter.
That is, the expected rate of offspring of an earthquake increases exponentially with
magnitude. In the temporal ETAS model, an earthquake at time ti with magnitude
mi, where mi is greater than some minimum magnitude m0, triggers further events
with magnitude greater than or equal to m0 at rate

φ(t, ti,mi) =
K · 10α(mi−m0)

(t− ti + c)p
(4.2)

where K,α, c and p are parameters. The total intensity λ of earthquakes with mag-
nitude at least m0 at some time t is the background rate µ of earthquakes with mag-
nitudes ≥ m0 not triggered by previous events, modelled as a constant rate Poisson
process; plus the rates of earthquakes triggered by previous events.

We can characterise the process by its conditional intensity function (see equa-
tion (1.4)). The ETAS conditional intensity is

λ(t|Ft) = µ(m0) +

N(t)∑
i=1

φ(t, ti,mi) (4.3)

= µ(m0) +

N(t)∑
i=1

K · 10α(mi−m0)

(t− ti + c)p
(4.4)

where ti and mi are the time and magnitude of the ith earthquake and Ft is the
σ-field generated by all previous earthquakes with magnitude ≥ m0.

The ETAS parameters are usually taken to be constant over the study region.
The model can be extended to become a space-time model. The background rate
µ may be allowed to vary spatially [4]; as may other parameters. An ETAS model
for times, magnitudes, and locations may incorporate a distribution for offspring
locations relative to the location of the parent. We briefly discuss space-time ETAS
models in section 4.2.2.
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Magnitudes in the ETAS model

Empirically, the relative frequencies of earthquakes at magnitudes up to about 8
follow the Gutenberg-Richter (GR) law. The relationship is

N ∝ 10−bm. (4.5)

Here N is the number of events at a magnitude m or larger in a given region of space
and time, while b is a constant, often assumed to equal 1. If b = 1, there are ten
times as many magnitude M − 1 earthquakes as magnitude M earthquakes. The GR
law has been found to fit well both main shock sequences and aftershock sequences.

The magnitudes of all events in the ETAS model are drawn independently at
random from a probability distribution with density p(M). The rate at which an
earthquake at time ti with magnitude mi triggers earthquakes of a particular magni-
tude M is

φ(t, ti,mi,M) = p(M)φ(t, ti,mi). (4.6)

An offspring event may be larger than its parent.
The magnitude distribution in the ETAS model is almost always a form of the

GR distribution1 on [m0,∞). The standard GR probability density is

p(M |m0) = b ln 10 · 10−b(M−m0). (4.7)

Equation (4.7) implies a non-trivial chance of an earthquake of M > 10—when no
such earthquakes have ever been observed—including the possibility of an M = 15
event, equivalent to tearing the earth in half. Thus the GR distribution is often
truncated, so that the maximum possible magnitude is m1 < ∞. The probability
density is

p(M |m0,m1) =
b ln 10 · 10−b(M−m0)

1− 10−b(m1−m0)
. (4.8)

Whether the magnitude distribution is truncated does not affect ETAS parameter
estimates (aside from b) when standard methods are used. However, truncation has
a huge effect on model properties, such as the branching ratio and the expected rate
of events. We prefer to use the truncated distribution, as the GR law is empirical,
and there is no empirical evidence for arbitrarily large earthquakes.

The ETAS model has been studied both analytically [97] and through simula-
tion [4], and has been fitted to real seismicity [3, 1]. When parameters are estimated
from data, those estimates often imply a non-stationary “explosive” process in which
an earthquake is expected to generate an infinite number of offspring. Some properties

1In this chapter, we use the terms “Gutenberg-Richter distribution” and “GR distribution” to
refer to both the empirical law and the probability distribution that results from sampling from
events obeying the empirical law.
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of various forms of the model are outlined in section 4.2.
The ETAS model is more complex than renewal process models. In a renewal

process, inter-event times are independent; in the ETAS model, they are not. In a
renewal process, conditional intensity depends only on the time since the last event;
in the ETAS model, conditional intensity depends on the entire history. Despite its
complexity, the ETAS model is a simplification of earthquake occurrence. There is
no reason to believe seismicity exactly follows the ETAS parametric form, and the
assumption that every earthquake is directly triggered by at most one previous event
is not considered correct by seismologists. Real earthquakes are thought instead to
be caused by complex interactions of fault systems.

Section 4.3 examines the simulation of ETAS processes. The fastest current
method uses the branching structure of the model and simulates the process as a
sum of heterogeneous Poisson processes. The rate of earthquake generation will be
too low if the simulation does not account for background events occurring before the
start of the simulation that produce offspring events after the simulation begins—
edge effects. When the Omori parameter p is greater than 2, there are algorithms
that give “perfect simulation” with no edge effects. Unfortunately, when Omori’s law
is fitted to data, the estimate of p is almost always less than 2. However, by using
long “burn-in” times, we can ensure that edge effects are small.

ETAS models have often been estimated by maximising the likelihood numeri-
cally. The log-likelihood is often very flat, so conventional numerical ascent methods
often fail to converge to the global maximum. Estimation can instead be viewed as
an incomplete data problem in which the branching structure of the process is unob-
served. Veen and Schoenberg [4] noticed this, and applied an “EM-type” algorithm
to estimate the model. We outline their method in section 4.4. We find that in simu-
lations, estimates produced by this method can be inaccurate, even when the number
of events is large. Furthermore, in simulations where the identification of events as
background or offspring events is known, fitting the ETAS model does a poor job of
identifying which events are background and which are offspring [94].

In this chapter, we examine the estimation of the temporal ETAS model, apply-
ing the Veen-Schoenberg method to both real and simulated catalogs. The bias and
variance of parameter estimates on simulated ETAS models varies considerably, de-
pending on the simulation parameters. Furthermore, some properties of real catalogs,
such as the distribution of inter-event times, are not reproduced by ETAS models with
estimated parameters. In chapter 5, we examine prediction when seismicity follows
an ETAS model.

4.2 ETAS model variations and their properties

The ETAS model is a form of Hawkes process. It was devised by Ogata [52,
3] based on work by Kagan and Knopoff [98, 99]. In this section, we give some
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background on Hawkes processes, space-time generalisations of ETAS, and properties
of the ETAS model.

4.2.1 Hawkes processes

The ETAS model is perhaps the mostly widely used linear marked Hawkes pro-
cess model [100, 101, 102]. “Linear” indicates that the contributions to conditional
intensity of past earthquakes stack linearly. Hawkes processes have been used fre-
quently as models in forestry and epidemiology [103], and recently as a model of
YouTube video viewing [104]. They were used to model earthquake occurrence before
the development of the ETAS model [105].

If N(t) is a Hawkes process, the conditional intensity λ(t) satisfies

P (N(t)−N(s) = 1|N(s)) = λ(s)(t− s) + o(t− s) (4.9)

P (N(t)−N(s) > 1|N(s)) = o(t− s) (4.10)

for s ≤ t. The process is self-exciting : heuristically, every event may trigger later
events. The intensity λ(t) of events at time t is determined by the process up to time
t:

λ(t) = µ+

∫ t

−∞
g(t− u,m(u))dN(u). (4.11)

Here, µ is a non-negative background rate and m(u) is the mark at time u. The mark
only exists at times at which an event occurs. Conditional on the times of the events,
the marks are generated independently at random. The kernel function g satisfies
g(s,m) ≥ 0 for s ≥ 0 and g(s,m) = 0 for s < 0.

The branching ratio, n, is

n = E

∫ ∞
0

g(s,m)ds (4.12)

when this exists. The expectation is over the mark distribution. The branching ratio
is the expected number of children for every event. If n < 1, the expected rate is finite
and identical for all t:

Eλ(t) =
µ

1− n
. (4.13)

The kernel for the ETAS model is

g(s,m) ≡ K · 10α(m−m0)

(s+ c)p
. (4.14)
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4.2.2 Generalisations to space-time

There are several proposed extensions of ETAS to space-time [98, 52, 97]. The
spatial aspect may be independent of the magnitude of the triggering earthquakes,
or it may scale with magnitude [106]. Kagan and Jackson [107] used a modified
ETAS model to generate “short-term seismic hazard estimates.” One of several ex-
tensions suggested by Ogata [52] uses circularly symmetric aftershock densities, in
which the squared distance between an offspring event and its parent follows a Pareto
distribution. This leads to the following conditional intensity function:

λ(t, x, y|Ft) = µ(m0, x, y) +

N(t)∑
i=1

K0 · 10α(mi−m0)

(t− ti + c)p((x− xi)2 + (y − yi)2 + d)1+ρ
(4.15)

where (xi, yi) are the co-ordinates of the ith epicenter, while d > 0 and ρ > 0 are
additional parameters governing the spatial distribution. The σ-field Ft is determined
by {ti, xi, yi,mi : i ≤ N(t)}. This chapter focuses on the temporal, non-spatial model.

4.2.3 Properties of the ETAS model

Branching ratios

The expected number of children of a particular earthquake with magnitude m is

nm =
K · 10α(m−m0)

(p− 1)cp−1
(4.16)

if p > 1. This varies immensely with m: for α = 0.5 (a typical value), an earthquake
with magnitude m+ 2 will on average generate ten times as many aftershocks as one
with magnitude m.

The ETAS branching ratio is the expected number of children, averaged over
all initial magnitudes. If we assume that magnitudes are independent and every
magnitude is drawn from an untruncated GR distribution, then from (4.12) this is

n(m0) =
K

(p− 1)cp−1

b

b− α
, (4.17)

provided p > 1 and α < b. If p ≤ 1 or α ≥ b, an initial shock is expected to have an
infinite number of children. Then n is infinite.

If magnitudes follow a truncated GR distribution, the branching ratio is

n(m0,m1) =
K

(p− 1)cp−1

b

b− α
1− 10(α−b)(m1−m0)

1− 10−b(m1−m0)
, (4.18)

provided α 6= b. For this to be finite, p must be greater than 1, but α need not be
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less than b. For the special case where α = b,

n(m0,m1) =
Kb log 10 · (m1 −m0)

(p− 1)cp−1 (1− 10−b(m1−m0))
. (4.19)

If n is finite, every primary aftershock will, on average, generate n secondary
aftershocks; every secondary aftershock will, on average, generate n third-order af-
tershocks; and so on. So if n < 1, the total number of aftershocks that an initial
shock is expected to generate is a geometric series. If the magnitude of the shock is
known to be m, and subsequent magnitudes follow an untruncated GR distribution,
the expected total number of aftershocks is

nm
1− n

(4.20)

If the magnitude of the initial shock is drawn at random from the untruncated GR
distribution, the expected total number of aftershocks is

n

1− n
(4.21)

If the background rate of shocks is µ, the average rate of shocks, including aftershocks,
is

µ

(
1 +

n

1− n

)
(4.22)

provided n < 1, which in turn requires p > 1 and α < b. Similar expressions can be
found for truncated GR.

When n is infinite, the expected number of children of a random-magnitude earth-
quake is infinite. When n is finite but greater than 1, a random-magnitude earthquake
has a finite expected number of children, but an infinite expected number of total
descendants: the process is unstable. When n is less than 1, the process is stable.

In 24 catalogs studied by Helmstetter and Sornette [97], the branching ratio cal-
culated from parameters estimated for ETAS models with untruncated GR is less
than 1 six times, greater than 1 but finite eight times, and infinite ten times. Under
truncated GR, the branching ratio is less than 1 thirteen times, greater than 1 but
finite five times, and infinite six times.

4.3 Simulation

As with many Hawkes process models, analytical results for ETAS are limited.
Many aspects of the model must be studied through simulation. A standard point
process simulation method is thinning. Events are generated at a higher rate than the
model specifies and accepted or deleted (“thinned”) with some probability. Ogata [108]
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gave a thinning algorithm for simulating Hawkes processes in which the conditional
intensity (4.11) is non-increasing between events; the intensity may increase at times
of events, as it does in the ETAS model. The probability depends on the history of
the process, as well as the rate at which events are generated. As the probability
of rejection may be high, such an approach may take too much computation to be
practical.

As alternatives to thinning, faster and more accurate algorithms that take advan-
tage of the branching structure have been recently been developed [109]. We discuss
these in the following subsection. We shall see that simulations of ETAS models us-
ing parameter values in the ranges that arise in seismology require very long burn-in
times to approach stationarity.

4.3.1 Simulation using the branching structure

If Q is a stationary marked Hawkes process, it may be decomposed into a marked
background process Q̄ and a set of marked offspring processes Q

(n)
0 . The background

times form a homogeneous Poisson process on R with intensity equal to the back-
ground rate µ. The nth offspring process Q

(n)
0 consists of times {T (n)

l } and magnitudes

{M (n)
l } of aftershocks of all orders of the nth event in Q̄. The “background” events of

Q
(n)
0 are the first-order aftershocks of the nth event in Q̄. The kth order aftershocks

in Q
(n)
0 are the (k + 1)th order aftershocks in Q. Background events in Q

(n)
0 occur at

a non-constant rate governed by g(s = t − tn,mn), the kernel of the n event of Q̄.
Thus the offspring processes are also Hawkes processes, with intensity

λn0 (s) = g(s,mn) +
∑
l

g
(
s− T (n)

l ,M
(n)
l

)
. (4.23)

The event times of the offspring processes are on R+, with time measured since
the event that triggered the process. As before, the marks are drawn from the GR
distribution, and are independent conditional on their times.

Let N be the process of times of Q, N̄ be the process of times of Q̄ and N
(n)
0 be

the process of times of Q
(n)
0 . Then if Sn are the event times of N̄ ,

N(t) = N̄(t) +
∑
n

N
(n)
0 (t− Sn), (4.24)

where N
(n)
0 (t) is defined as zero for t < Sn. If the branching ratio E

∫∞
0
g(t,m)dt

is less than 1, the component branching processes N
(n)
0 almost surely have a finite

number of points and N is a stationary process.
We can use this decomposition to efficiently simulate ETAS processes. The event

times Sn can be interpreted as background earthquakes (immigrants in the branching
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process literature). The event times {T (n)
l } are aftershocks (offspring or descendants).

An offspring event can be larger than its parent.
In ETAS, the process of children of an event (ti,mi), is a heterogeneous Poisson

process. The number of children, if it has finite expectation, will have a Poisson
distribution. The number of children before time T always has finite expectation∫ T

ti

g(t− ti,mi)dt =
K · 10α(mi−m0)

1− p
[
(T − ti + c)1−p − c1−p] (4.25)

and a Poisson distribution. Given the number of children of a parent at time ti, the
times between the parent and its children are independent and follow a probability
distribution on (0, T − ti] proportional to the modified Omori law. The distribution
function is

F (t) =
(t− ti + c)1−p − c1−p

(T − ti + c)1−p − c1−p (4.26)

for t > ti. This suggests the following algorithm for simulating a temporal ETAS
process on the interval (0, T ] generation by generation.

1. Generate the number of background events N0 from a Poisson distribution with
mean µT .

2. Generate the times of the background events T0,i, i ∈ {1, . . . , N0} by choosing
N0(t) times uniformly at random on (0, T ]. Generate their magnitudes M(0,i)

with density (4.7) for untruncated GR or density (4.8) for truncated GR.

3. Let g be the generation of aftershock; set g = 1.

4. For every event in the previous generation (Tg−1,i,Mg−1,i), generate the num-
ber of children Ng,i from a Poisson distribution with mean as in (4.25) and
ti = Tg−1,i. Thus, in the gth generation of aftershocks, there will be Ng =

∑
Ng,i

events. Generate the times of these events by generating uniform random vari-
ables Ug,i,j on (0, 1] and performing an inverse probability transform (invert-
ing (4.26)) onto (Tg−1,i, T ]:

Tg,i,j =
[
Ug,i,j(T − Tg−1,i + c)1−p + (1− Ug,i,j)c1−p] 1

1−p + Tg−1,i − c. (4.27)

5. To reduce the number of indices, relabel the generation g event times (Tg,i), i ∈
{1, . . . , Ng}. Generate magnitudes (Mg,i) with density (4.7) for untruncated GR
or density (4.8) for truncated GR. If Ng = 0, stop. Otherwise set g = g+ 1 and
go to step 4.
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4.3.2 Avoiding edge effects in simulation

Bravaccino et al. [110] derived bounds for the tails of the distribution of cluster
length (from background event to last descendant) for Hawkes processes satisfying
certain conditions. When the bounds hold, perfect simulation, with no edge effects,
is possible. For the ETAS model, however, these bounds only hold for p > 2. Unfor-
tunately, the value of p estimated for real data is almost always less than 2.

We instead use a burn-in period Tb <∞. We simulate the background process on
(−Tb, T ]. We then simulate the aftershock sequence of all events of the background
process up to time T . We consider the simulation to be the process on (0, T ].

Suppose p ≤ 2. Then there are almost surely events that occur before time −Tb
that have offspring after time 0, no matter the size of Tb. However, if Tb is large, the
rate at time 0 of aftershocks of background events before −Tb will be small compared
to the background rate. Simulation using the branching structure is inexpensive, so
we can use very large values of Tb.

4.4 Estimation

Maximum likelihood (ML) parameter estimates for ETAS are intractable analyt-
ically. Ogata [3, 1] used the Davidon-Fletcher-Powell optimisation algorithm to find
numerical ML parameter estimates. This method requires a careful choice of start-
ing parameter values. Ogata recommended starting with unexceptional values like
K = 0.01, p = 1.3, and µ chosen to give a rate of background events equal to a quarter
of the total rate of events.

Ogata fitted the untruncated temporal ETAS model to 24 earthquake catalogs,
mostly Japanese. We summarise the estimated parameter values in Table 4.1. Typi-
cally five parameters—µ,K, α, c, p—are estimated. In many of the 24 models, b was
set to be 1. Likewise, m0 is not estimated, but is selected to be some magnitude level
above which the catalog is thought to be complete. Only five of the 24 fitted sets of
parameters give a point process that is stationary.

Numerical maximum likelihood estimation may be unreliable because of the flat-
ness of the log-likelihood function, or because of multimodality. Veen and Schoen-
berg [4] gave an alternative EM-type estimator for the space-time ETAS model with
conditional intensity (4.15). In a personal communication, Veen provided us with
code for similar estimation of the temporal model (4.4). We consider the temporal
case here.

4.4.1 Maximising the complete log-likelihood

Dempster et al. [111] named and explained the expectation-maximisation (EM)
algorithm for parameter estimation in incomplete data problems (though earlier au-
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Parameter Minimum LQ Median UQ Maximum
m0 2.5 3.975 5 5.4 7
b 0.9 1 1 1 1.2
µ (per day) 0 0.00735 0.0215 0.04775 0.59
K 0.0002 0.00875 0.0155 0.047 5.2
c (days) 0.003 0.01075 0.025 0.135 11.6
p 0.85 1 1.115 1.327 3.5
α 0.155 0.5975 0.725 0.95 1.37

Table 4.1: Summary of parameter estimates for temporal ETAS models fitted using
maximum likelihood by Ogata [3, 1] for 24 catalogs. The columns give minimum,
lower quartile, median, upper quartile and maximum estimates for every parameter.
In many of the 24 models, b was set to be 1. m0 is also not estimated, but is selected
to be some magnitude level above which the catalog is thought to be complete.

thors had proposed versions of the algorithm [112]). The algorithm essentially finds
maximum likelihood parameter estimates for models with unobserved variables. In
practice, EM has been found to provide more stable estimates than conventional
numerical MLE in a variety of cases. However, EM estimates may still sometimes
converge to local maxima.

Fitting the ETAS model may be considered an incomplete data problem, with
the branching structure described by a set of unobservable variables. This approach
was proposed by Veen and Schoenberg [4] based on the “stochastic reconstruction”
declustering method of Zhuang et al. [76, 113], described in chapter 3.2.4. Veen and
Schoenberg gave a method for the estimation of spatio-temporal ETAS models; below
we give a method for temporal-only models.

Consider an ETAS model with a rate µ of background events on some area. Let θ
be the parameter vector {µ,K, α, c, p}. Let ui = j if the ith earthquake was the child
of the jth earthquakes (j < i); let ui = 0 if the ith earthquake was a background
event. Suppose ui is known for all i. Let Nb =

∑
i 1(ui = 0) be the number of

background events on (0, T ]; this has a Poisson distribution with mean µT . Let li be
the number of children of the ith event. The expected number of children by time T
is

Gi(θ) =

∫ T

ti

g(t− ti;mi)dt, (4.28)

as calculated in equation (4.25). The complete log-likelihood depends on Gi(θ). Like
Veen and Schoenberg, when we calculate the likelihood, for computational reasons
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we approximate (4.28) by

Gi(θ) =

∫ ∞
ti

g(t− ti;mi)dt = nm. (4.29)

The likelihood of Nb, the observed number of background events, is

P (Nb) =
exp [−µT ](µT )Nb

Nb!
. (4.30)

The likelihood that the ith event has li children is

P (li) =
exp [−Gi(θ)](Gi(θ))

(li)

li!
(4.31)

The product P (Nb)
∏

i P (li) gives the likelihood of the observed “tree” structure. The
complete likelihood also includes terms for the times of the events, specified in terms
of times between the triggering and triggered events. (Times of background events
do not enter the likelihood, since the background rate is the same at all times.) It is

Lc(θ) = P (Nb)
∏
i

P (li)
∏
i:ui 6=0

g(ti − tui
;mui

)

Gui
(θ)

. (4.32)

Taking logs and simplifying, we get the complete log-likelihood:

lc(θ) = − log(Nb!)− µT +Nb log (µT ) +
∑
i

[− log li!−Gi(θ) + li log (Gi(θ))]

+
∑
i:ui 6=0

[log(p− 1) + (p− 1) log c− p log(ti − tui
+ c)]. (4.33)

Still assuming that the {ui} were known, we could maximise by taking partial
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derivatives and setting to zero. The partial derivatives are

∂lc
∂µ

=
Nb

µ
− T (4.34)

∂lc
∂K

= − 1

K

∑
i

(Gi(θ)− li) (4.35)

∂lc
∂α

= −(log 10)
∑
i

[(mi −m0)(Gi(θ)− li)] (4.36)

∂lc
∂c

=
∑
i:ui 6=0

(
p− 1

c
− p

ti − tui
+ c

)
+
p− 1

c

∑
i

(Gi(θ)− li) (4.37)

∂lc
∂p

=
∑
i:ui 6=0

(
1

p− 1
+ log c− log(ti − tui

+ c)

)
+

(
1

p− 1
+ log c

)∑
i

(Gi(θ)− li) . (4.38)

Setting the right-hand side of (4.35) to zero requires
∑
i

(Gi(θ)− li) = 0, so setting

the right-hand sides of (4.37) and (4.38) to zero implies∑
i:ui 6=0

(
p− 1

c
− p

ti − tui
+ c

)
= 0, (4.39)

∑
i:ui 6=0

(
1

p− 1
+ log c− log(ti − tui

+ c)

)
= 0. (4.40)

The algorithm roughly set out below estimates parameters that maximise the com-
plete log-likelihood.

1. Set initial values.

2. Estimate µ.

3. Keeping other parameter estimates at their current values, set (4.35) and (4.36)
to zero and solve numerically for K and α.

4. Keeping other parameter estimates at their current values, solve (4.39) and
(4.40) numerically for c and p.

5. If estimates have changed by less than some stopping criterion, finish; otherwise
return to step 2.
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4.4.2 EM-type estimation

Since the parents {ui} are in practice unobservable, the complete log-likelihood
cannot be directly calculated in practice. Instead, an EM algorithm computes the
probability that the ith earthquake was triggered by the jth earthquake, conditional
on the current parameter estimates and on the observed events up to ti, for all j <
i. The algorithm calculates an expected complete log-likelihood, weighted by those
probabilities. Conditional on Ft (the σ-field generated by times and magnitudes, but
not the branching structure, up to time t), P (ui = j) is zero for j ≥ i, and

P (ui = j) =
g(ti − tj,mj)

µ+
∑i−1

r=1 g(ti − tr,mr)
(4.41)

for 1 ≤ j < i. The model probability that an event was a background shock is

P (ui = 0) =
µ

µ+
∑i−1

r=1 g(ti − tr,mr)
. (4.42)

Then the EM-type algorithm iterates between computing the expected complete log-
likelihood as above (the E-step), and maximising it (the M-step). One version of this
algorithm is:

1. Set the counter j = 1. Set the parameter vector θ to sensible initial values.

2. Use (4.41) and (4.42) and the current estimate of θ to calculate the triggering
probabilities.

3. Substitute
∑
i

P (ui = 0) for Nb in (4.34) and set to zero; solve for µ.

4. Substitute
∑
s≥i+1

P (us = i) for li in (4.35) and (4.36) and set to zero; solve for

K and α.

5. Substitute
∑
s≥i+1

P (us = i) for li in (4.39) and (4.40) and solve for c and p.

6. If the changes in parameter estimates are small, stop; otherwise, return to step
2.

Variations to increase the speed of the algorithm are possible.

4.4.3 Example: Southern California seismicity

Veen and Schoenberg fitted a space-time ETAS to the SCEC catalog of events of
magnitude 3 and greater occurring in Southern California from January 1st, 1984 to
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Parameter VS spatial estimate Temporal estimate
µ 0.165 per day 0.330 per day
K 0.0423 0.0225
α 0.449 0.688
c 0.0192 days 0.0377 days
p 1.22 1.39

Eλ 0.97 per day 0.92 per day

Table 4.2: Comparison of parameter estimates for space-time and temporal ETAS
models fitted to Southern Californian seismicity. The models are fitted to the SCEC
catalog of magnitude 3 or greater events, from January 1st, 1984, to June 17th, 2004.
The column “VS spatial estimate” gives temporal parameter estimates derived from
the Veen and Schoenberg [4] spatio-temporal ETAS parameter estimates.. In this
column, µ is the integral of Veen and Schoenberg’s spatial background rate estimate
over the area of study; K = πK0/(ρd

ρ) converts Veen and Schoenberg’s space-time
parameters to a temporal parameter by integration; and α is relative to base 10
(instead of base e). The column “Temporal estimate” gives parameter estimates
using a temporal ETAS model. The estimates are quite different. The space-time
model uses locations to help determine branching structure, which may be responsible
for the larger clusters in that model. The average rate of events Eλ differs by 5%
between the two models; this may be due in part to small differences in the catalogs,
and in part to rounding error.

June 17th, 2004. We fitted a temporal ETAS model to the same catalog using code
provided by Veen [114]. Table 4.2 shows the parameter estimates are very different.

4.4.4 Variability of estimates

Veen and Schoenberg studied the variability of the parameter estimates of their
EM-type algorithm using simulations of a space-time ETAS model with parameters
as given in Table 4.3. The parameters were intended to model earthquakes of mag-
nitude at least 2 in Southern California between longitudes −122◦ and −114◦ and
latitudes 32◦ and −37◦, and were chosen based on the work of Ogata and discus-
sions with seismologists. In their model, the squared distance between an offspring
event and its parent follows a Pareto distribution, as in equation (4.15). Converting
their space-time ETAS parameters to temporal ETAS parameters, we obtain a value
K = 0.00345. Using a GR distribution truncated at 8 for magnitude, the parame-
ters give a branching ratio of 0.953, implying stationarity. A background shock, on
average, generates 21 descendants. Small changes in almost any of these parameters
can lead to large changes in the expected total number of aftershocks per back-



4.4. ESTIMATION 80

Parameter Value
m0 2
m1 8
µ 0.032 per day in the region
α 1
b 1
c 0.01 days
p 1.5
d 0.015
ρ 0.8
K0 3.05× 10−5

Table 4.3: “Typical” space-time ETAS parameter values used by Veen and Schoen-
berg [4] to simulate Southern Californian seismicity.

Param. True value 200,000 day burn-in 10,000 day burn-in No burn-in
Mean RMSPE Mean RMSPE Mean RMSPE

µ 0.0008 0.00077 11.9 0.00078 13.1 0.00078 13.1
K 0.00345 0.00338 36.7 0.00339 43.0 0.00327 38.1
α 1 1.02 13.6 1.000 13.9 1.008 11.8
c 0.01 0.013 98.5 0.013 87.5 0.014 223
p 1.5 1.546 12.4 1.573 15.0 1.582 30.6

Table 4.4: Results of fitting ETAS model to three sets of 100 simulated catalogs, each
of length 100,000 days: one set with 200,000 days burn-in per catalog, one set with
10,000 days burn-in per catalog, and one with no burn-in. The simulation parameters
were as in Table 4.3. The magnitude distribution is truncated GR with 2 ≤ M ≤ 8.
“Mean” is the mean of estimates. “RMSPE” is root mean square percentage error.
Note that the estimator failed to converge for one of the catalogs with no burn-in;
this is not reflected in the table.
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Param. True value Mean RMSPE
µ 0.1687 0.3365 99.9
K 0.04225 0.03407 19.9
α 0.4491 0.1956 56.5
c 0.01922 0.04125 115.8
p 1.222 1.507 23.4

Table 4.5: Results of fitting ETAS model to 100 simulated catalogs, each of length
20 years (7305 days). The burn-in time was 1000 years. The simulation parameters,
in column “True value,” were those fitted by Veen and Schoenberg for Southern
California seismicity [4]. The magnitude distribution was truncated GR with 3 ≤
M ≤ 8. “Mean” is the mean of estimates. “RMSPE” is root mean square percentage
error. Note that the estimator failed to converge for one of the catalogs; this is not
reflected in the table.

Parameter Catalog length (days)
50,000 100,000 200,000

µ 17.9 11.9 9.1
K 74.7 36.7 30.1
α 21.6 13.6 7.0
c 358 98.5 34.0
p 32.0 12.4 5.4

Table 4.6: Root mean square percentage error for EM-type algorithm parameter esti-
mates for simulated ETAS catalogs with 200,000 days burn-in. One hundred catalogs
of each of the lengths 50,000 days, 100,000 days and 200,000 days were simulated and
fitted using Veen and Schoenberg’s EM-type algorithm. The simulation parameters
were the temporal ETAS parameters in Table 4.3. The magnitude distribution was
truncated GR with 2 ≤ M ≤ 8. Note that the estimator failed to converge for three
of the length 50,000 catalogs; this is not reflected in the table.
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ground shock. Veen and Schoenberg found substantially reduced bias in fitting using
the EM-type algorithm compared to conventional maximum likelihood—in the latter
case, convergence was poor if tolerance levels and stopping criteria were not optimal,
whereas the EM estimates were more stable. The variability of EM estimates was
still high, however, particularly in K0, α, and d.

Table 4.4 summarises estimation results for simulations using the parameters in
Table 4.3. Estimates of µ, α, and p were fairly accurate—usually within 20% of true
values. However, estimates of K and c were less accurate. Overall, estimates are
less accurate than Veen and Schoenberg found for their space-time ETAS estimates,
primarily due to bias. The space-time model is perhaps better at picking out the
correct branching structure. Simulations made without any burn-in time gave very
poor estimates for c and p when the temporal ETAS model was fitted. However,
estimates of α were, on average, slightly better for simulations with no burn-in. While
the 200,000-day burn-in simulations gave the most accurate estimates for µ,K, and
p, the 10,000-day burn-in simulations gave more accurate estimates of c.

Table 4.5 summarises estimation results for a different set of parameters, equiv-
alent to those estimated by Veen and Schoenberg for Southern California seismicity
for a space-time ETAS model. The simulations were for 20 years (7,305 days). The
results here are notably poorer. Table 4.6 indicates that estimation is more accurate
for larger catalogs. Error decreases as roughly

√
n for estimates of µ and K, and

more quickly than this for α, c, and p.

4.4.5 Goodness-of-fit

How well do estimated ETAS models fit seismicity? That is, can we test the hy-
pothesis that observed seismicity is a realisation of an ETAS process with parameters
equal to those fitted to the observed seismicity? Veen and Schoenberg [115] have pro-
posed a test of spatial goodness-of-fit. We assess a temporal ETAS model by applying
a test that treats times and magnitudes separately.

The temporal component of the test considers only the times between successive
events. The distribution of inter-event times in the estimated ETAS model may be
approximated through simulation. Figure 4.1 plots the empirical distribution of times
between magnitude 3 or greater events in the SCEC catalog from January 1st, 1984,
to June 17th, 2004 (7,474 days). It compares this to the inter-event time distribution
for the estimated ETAS model, and for a gamma renewal process. The catalog has
a greater proportion of inter-event times of less than two hours than occur in either
model.

We use the Kolmogorov-Smirnov statistic—the supremum of the differences be-
tween the ETAS cumulative distribution function for inter-event times and the em-
pirical cumulative distribution function for a sample of inter-event times—in a test
of goodness-of-fit. When the empirical data is the Southern Californian inter-event
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times, the Kolmogorov-Smirnov statistic is 0.151. Since the inter-event times in ETAS
are dependent, we cannot use the Dvoretzky-Kiefer-Wolfowitz inequality 3.21 or sim-
ilar bounds to find the P -value; instead, we use simulation to sample from the null
distribution for the statistic. We use the fitted ETAS model to simulate 100,000 cata-
logs, each of length 7,474 days (with 200,000-day burn-in). The Kolmogorov-Smirnov
statistics for the 100,000 simulated catalogs ranged from 0.004 to 0.082. The P -value
for the null hypothesis that the data are a realisation of an ETAS process is less than
10−5. Note that this test is conservative, as the ETAS parameters are estimated from
the data.

The magnitude distribution was not significantly different from truncated GR
(Kolmogorov-Smirnov P -value 0.6768).

4.4.6 Classification

As mentioned in chapter 3, the ETAS model can be used to classify events as back-
ground or offspring—essentially by solving equations (4.41) and (4.42) in the E-step
of the EM-type algorithm above. Sornette and Utkin [94] simulated ETAS catalogs.
They used stochastic declustering to classify events as background or offspring. This
essentially uses a similar method to the EM-type algorithm above to estimate the
branching variables {ui}. They found that classification was “rather unreliable.”

4.5 Summary

The ETAS model is an intuitively appealing clustering model for seismicity. It is
based on the well-established modified Omori and Gutenberg-Richter empirical laws.
It allows aftershocks, and aftershocks of aftershocks, but is still an oversimplification
of earthquake physics. Simulation from the model requires care—if the Omori param-
eter p is less than 2, very long burn-in times are needed. When the model is fitted to
real data using numerical maximum likelihood, the parameter estimates often imply
the process is explosive: every earthquake is expected to trigger an infinite number
of aftershocks.

Veen and Schoenberg showed that an EM-type algorithm performs better than
conventional numerical maximum likelihood for estimating a space-time ETAS model.
However, the EM-type algorithm for temporal ETAS does not estimate parameters
accurately from “realistic” simulated catalogs where the model is true—even for cat-
alogs over 500 years long. Furthermore, for real data, the fitted ETAS model does not
provide a statistically adequate fit to observed earthquake inter-event times. Short
inter-event times are significantly more common than the model predicts. In addition,
classification of events as background or offspring using ETAS models is inaccurate—
even when the ETAS model is true.
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Figure 4.1: Cumulative distribution functions of inter-events times attached. The
empirical inter-event distribution (SCEC catalog of Southern Californian M ≥ 3
earthquakes, 1984-2004, n = 6958) is significantly different from both the fitted ETAS
and gamma renewal models (in both cases, the P -value is less than 0.00001 for a test
using the Kolmogorov-Smirnov test statistic). Empirically, there are more inter-event
times under 2 hours than either fitted model would suggest. Beyond 12 hours, the
difference in empirical distributions is small (not pictured).
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If ETAS models did a good job of predicting real seismicity, they would still be of
value. We examine prediction in the following chapter.
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Chapter 5

Prediction of renewal processes
and the ETAS model

Earthquake predictions have been based on fitting ad hoc stochastic models of
earthquake occurrence—such as the ETAS model discussed in the previous chapter—
to observed seismicity. The predictions are then constructed to be optimal when the
stochastic model is true and the estimated parameter values are correct. However, the
statistical and physical justification of such models is quite weak. For many stochastic
models of earthquake occurrence, simple automatic alarms, which turn on for a fixed
interval after each sufficiently large event, are optimal. That is not the case for ETAS.
However, when the ETAS model is correct, the optimal predictions perform only
slightly better than a far simpler prediction scheme, magnitude-dependent automatic
alarms, which turn on after each sufficiently large event for an interval that depends
exponentially on the magnitude of that event.

5.1 Introduction

Earthquakes are incredibly complicated phenomena. Ab initio physical models of
earthquake occurrence remain relatively crude; stochastic phenomenological models
are common [74, 116, 117, 87], including Poisson processes; more general renewal
processes, including gamma, lognormal, Weibull, and others; and branching processes
like the ETAS model of the previous chapter. The connection between stochastic
descriptive models and the underlying physics is tenuous, and the utility of such
stochastic models for predicting real, destructive, earthquakes remains unproved. It
is implausible that any of these models is correct; in fact, there is statistical evidence
that none is.

If we pretend that seismicity really does adhere to a stochastic process model,
we could answer some interesting questions. This chapter addresses a few. How
predictable are earthquakes? What methods attain or approach the theoretical limits
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on predictive accuracy? Are there simple predictors that perform comparably to
theoretically optimal predictors on real seismicity? Answering these questions is
interesting because predictions that use extra-seismic data should improve on simple
methods that do not. If a method uses electrical signals [26], groundwater level and
temperature [118], or animal behavior [22, 23] to predict earthquakes, but does not
perform better than a simple method that bases predictions on past seismicity, it is
of little value.

In this chapter we study the limits of earthquake predictability on the assumption
that earthquakes follow a stochastic process—a convenient fiction. We study alarms
that are on when an earthquake is predicted, and off when no earthquake is predicted.
We characterise optimal alarms in terms of the conditional intensity of the stochastic
process. We study the accuracy of simple earthquake predictions, automatic alarms ,
which turn on after each sufficiently large earthquake and remain on for a window of
time w unless there is another sufficiently large earthquake while the alarm is on. In
that case, the alarm is refreshed so that it remains on for a period w after that new
earthquake. The window w may be the same for all earthquakes—simple automatic
alarms—or may depend on the magnitude of the earthquake—magnitude-dependent
automatic alarms.

Automatic alarms with constant w are in fact optimal for a large class of stochastic
process models, including Poisson and gamma renewal models for γ ≥ 1. Indeed, they
are nearly optimal for almost every1 stochastic model of seismicity we have seen in the
literature. Moreover, automatic alarms are simple and have an intuitive justification:
seismicity tends to cluster in time and space, so after each earthquake, it is reasonable
to expect more earthquakes near and soon. In general, larger earthquakes are more
frequently followed by further shocks. We find these observations to be a strong
argument for using automatic alarms as a touchstone method for more complicated
predictions and predictions that rely on extra-seismic data: if those predictions do not
substantially outperform automatic alarms, their complexity might not be worthwhile.

One measure of the success of an alarm strategy is the proportion of earthquakes
that occur when the alarm is on. However, we can trivially ensure this proportion
is always one by turning the alarm on for the entire region. When studying the
success of an alarm strategy, we therefore also consider the alarm fraction—that is,
the fraction of space-time that the alarm is on, either in expectation or for observed
seismicity. We wish to find the alarm strategy that maximises the expected number
of earthquakes that occur when the alarm is on, subject to fixing the alarm fraction.

Section 5.3 examines prediction of renewal processes. In these processes, the times
between earthquakes are independent and identically distributed. In some cases, the

1 They are not optimal for processes in which the conditional intensity increases with time after
earthquakes. Models based on the seismic gap hypothesis [119] are of this form. For such models,
delayed automatic alarms, which turn on after waiting a period after sufficiently large earthquakes,
are optimal.
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automatic alarm strategy is the optimal strategy; in others, it is the worst possible
strategy. The performance of the best-fitting renewal model is a widely applicable
measure of predictability.

Section 5.4 examines prediction of ETAS processes. The difference in predictive
performance between the optimal strategy and a magnitude-dependent automatic
alarm strategy is quite small, even when the true model is ETAS. Section 5.5 examines
optimal ETAS and automatic alarm prediction for Southern Californian seismicity. A
magnitude-dependent automatic alarm strategy, with two parameters and one degree
of freedom, does almost as well as the hard-to-fit five-parameter temporal ETAS
model.

Section 5.6 makes recommendations for the future use of the ETAS model. The
ETAS model has some predictive power. However, since a magnitude-dependent
automatic alarm strategy made predictions that were almost as good for the data we
examined, the value of the more complex model is limited.

5.2 Alarms, conditional intensity, and the error di-

agram

We wish to model the sequence of earthquakes with magnitude at least m0 in a
geographical study area A over a study period of time (0, T ] as a stochastic point pro-
cess. We ignore earthquakes with magnitude less than m0. An event is an earthquake
with magnitude at least m0 occurring in the study area during the study time. In
a marked temporal point process, a set of events is characterised by the event times
{Ti} and magnitudes {Mi}; the spatial locations are all in A but are otherwise ig-
nored. In a marked space-time point process, events are characterised by their times,
locations, latitudes, and longitudes.

Consider predictors that take the form of “alarms” in time or in space-time. At
any point in the study region A× (0, T ], the alarm is either on or off, depending on
previous seismicity. Roughly speaking, we want the alarm to be on when and where
events occur, and to be off over large regions where there are no events.

An alarm strategy H(t) ∈ {0, 1} is a rule to determine when and where the alarm
is on, with 1 representing “on” and 0 representing “off.” (Later we will consider
alarms that may be on with some probability in [0, 1].) The rule must be specified
before the beginning of the study period, but the alarms themselves may not be. An
example is the simple automatic alarm strategy. For predictions in time, this strategy
turns on the alarm for a fixed duration of time w after each observed event. For
predictions in space-time, the strategy turns on the alarm for duration w after each
observed event in an area of radius r around that event. We discuss automatic alarm
strategies further in section 5.2.4.
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5.2.1 Error diagrams

A simple way to evaluate alarm strategies is to use a scoring system that rewards
correct forecasts and punishes incorrect ones. Molchan [120] characterised the per-
formance of an alarm H(t) using two statistics: τ̂ , the alarm fraction (fraction of
space-time taken up by alarms), and ν̂, the fraction of events occurring outside of
alarms (fraction of failures to predict). For a temporal point process on (0, T ]:

τ̂ ≡
∫ T

0
H(t)dt

T
, (5.1)

ν̂ ≡
∫ T

0
H(t)dN(t)

N(T )
. (5.2)

(We may instead consider τ ≡ Eτ̂ and ν ≡ Eν̂ when these expectations exist; see
section 5.2.2.) Two other statistics that may be of interest are the number of times
the alarm is turned on and an event occurs before the alarm is turned off; and the
number of times the alarms is turned on and no event occurs before the alarm is
turned off.

Not all forecasts are expressed as alarms. For example, some probabilistic forecasts
partition the study region into cells. For each cell, they give a probability that at
least one event will occur in that cell. We can convert such a probabilistic forecast
to an alarm by comparing the forecast probabilities to some threshold probability
p0. If the forecast probability for a cell exceeds p0, then turn on the alarm over that
cell; otherwise, do not turn on the alarm. We can find ν̂ and τ̂ for the resulting
alarm. If the set of forecast probabilities is determined prior to the start of the study
period, we could choose the threshold p0 in advance to give a particular value of τ̂ .
However, the full set of forecast probabilities is not always known at the start of the
study period—for instance, if the forecast probability for a cell may depend on the
seismicity between the start of the study period and the start of the cell. In this case,
we can either choose p0 before the study and find τ̂ after the study, or else choose
τ̂ before the study and find the p0 that gives that value of τ̂ after the study.2 This
methodology allows different forecasting schemes to be compared if they have the
same value of τ̂ . The probabilistic nature of the forecasts is not utilised in such a
comparison.

The error diagram, or Molchan diagram [120], is a plot of a set of points (τ̂ , ν̂) ob-
tained by considering a continuum of alarm thresholds. For the probabilistic forecasts
outlined above, it calculates (τ̂ , ν̂) for all thresholds p0. The error diagram is a vari-
ation of the receiver operating characteristic (ROC) curves first used to measure the
performance of radar image analysis in the Second World War, and now widely used

2The test is still prospective if the forecasting method and the method for finding p0 are deter-
mined before the start of the study period and are not changed thereafter.
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Figure 5.1: Three hypothetical error diagram curves, compared to a reference line.
On the x-axis, τ̂ is the proportion of time covered by alarms. On the y-axis, ν̂ is
the proportion of events that do not fall within alarms, a measure of error. Curve 1
gives lowest error for τ̂ < 0.38. Curve 2 gives lowest error for τ̂ > 0.38. Curve 3 is
dominated by curve 2, and never gives lowest error. The reference line shows an error
diagram for “random guessing”: ν̂ = 1− τ̂ .
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in weather forecasting [121]. Unlike ROC curves, by convention the error diagram
y-axis gives failures, not successes.

The error diagram is widely used in seismology [117, 122]. It may be constructed
for any family of predictors that can produce alarms for multiple values of τ̂ . Fig-
ure 5.1 displays several error diagrams. If one error diagram gives a lower value of ν̂
than another for all values of τ̂ , then the former dominates the latter. Often, how-
ever, one forecast performs better for some thresholds, while another performs better
for others (see Figure 5.1). To choose between forecasts, we can determine summary
statistics based on their error diagrams. We could use the area under the curve for
this purpose—the smaller the area, the better the forecast. The smallest possible
area is 0; the largest possible area is 1. Using a random predictor (see the following
subsection), we would expect an area of 0.5. Note that this is a fairly arbitrary way
of choosing between forecasts. When using forecasts to make decisions, a cost-benefit
analysis may be more informative.

We assume that alarm regions are nested. That is, if τ̂1 < τ̂2, the alarm region
for τ̂1 is a subset of the alarm region for τ̂2. This results in error diagrams that are
non-increasing in τ̂ .

Drawing an error diagram for a particular forecast requires a rule to determine the
regions in which alarms are declared. For example, suppose a model gives a predicted
conditional intensity of events λ(t) for a temporal point process on (0, T ]. One rule is
to declare alarms whenever the conditional intensity exceeds some threshold Λ. We
may calculate values of τ̂ and ν̂ for the resulting alarms. By considering all possible
values for the threshold Λ, we obtain a set of (τ̂ , ν̂) pairs—that is, an error diagram.
Level sets nest, satisfying the requirement that alarm regions nest. A higher value of
τ̂ means the alarm is on more often, requiring a lower conditional intensity threshold.

If there is a Λ such that the level set {λ = Λ} has positive measure, there will
be a gap in the error diagram between points corresponding to strategies that just
include and just exclude this level set in alarms. We may leave these gaps blank, or
interpolate, or use a tiebreaking strategy to determine which parts of a region with
constant λ are added to the alarm region first.

5.2.2 Expected error diagrams

An empirical error diagram for some alarm strategy plots the observed fraction
of unpredicted events ν̂ for each value of the alarm fraction τ̂ . If we are predicting a
point process model for seismicity, and not seismicity itself, we may calculate expected
error diagrams. These plot ν, the expected fraction of unpredicted events, against τ ,
the expected alarm fraction, for a family of alarm strategies. The expectation is over
realisations ω of the point process.

An alarm strategy Ht(ω) may, in general, depend on the history of the process up
to, but not including, time t. This history is denoted by the σ-field Ft, a function of
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t and ω. For a temporal point process on (0, T ],

τ ≡ E

[∫ T
0
Ht(ω)dt

T

]
, (5.3)

ν ≡ E

[∫ T
0
Ht(ω)dN(t)

N(T )

]
. (5.4)

Example: random predictions

In a homogeneous temporal Poisson process, the conditional intensity of events is
constant: it does not depend on the history of the process. If, before the study period
begins, we choose an alarm set that covers a proportion τ of the study region, the
expected proportion of events that occur while the alarm is on is τ . The expected
error diagram is thus the line

ν = 1− τ. (5.5)

Now suppose we have a non-Poisson temporal point process. Consider the follow-
ing random alarm strategy:

1. Divide the time interval into K subintervals of equal length T/K, where the ith
subinterval is

((i− 1)T/K, iT/K] .

2. Randomly select j of the subintervals. Set H = 1 (that is, turn on the alarm) in
these subintervals; set H = 0 otherwise. The probability an alarm is declared
for a particular interval is τ = j/K.

Let the number of events in the ith subinterval be Ni. Then

N(T ) =
K∑
i=1

Ni.

The number of successfully predicted events in the ith subinterval is Ni if H = 1
for that subinterval, and 0 otherwise. The expected number of successfully predicted
events in the interval, conditional on Ni, is τNi. The expected total number of
successfully predicted events is ∑

i

τENi = τN(T ).

For all N(T ) > 0, if a fraction τ of the study period is covered with alarms by this
strategy, we expect a fraction τ of the events that occur on (0, T ] to be captured by
alarms, and a fraction 1− τ to be missed. The expected error diagram is thus given



5.2. ALARMS, CONDITIONAL INTENSITY, AND THE ERROR
DIAGRAM 93

by equation (5.5), and is the same as for predictions of a Poisson process. Note that
this strategy is one of many random alarm strategies that give the same result in
expectation.

If the process is not Poisson, a prediction scheme that exploits knowledge of the
history of the process should do better than this: for instance, by exploiting clustering.
Such a predictor should have 1− ν > τ , and, in a sufficiently long test, 1− ν̂ > τ̂ .

5.2.3 The optimal alarm strategy

Out of all alarm strategies that have the alarm on an expected proportion τ ∈ [0, 1]
of the time, what strategy maximises the expected number of events that occur when
the alarm is on? Below, we show turning on the alarm if and only if the conditional
intensity λ(t) is greater than some threshold Λ is optimal.3

Optimal alarm lemma: Let N(t) be an orderly4 temporal point process. Let
Ft ≡ σ{Ns : 0 ≤ s ≤ t} be the σ-field generated by the process up to time t.

Let µ be the product measure of Lebesgue measure on [0, T ] and the probability
measure on the space Ω of realisations ω of the point process. A stochastic process
H = Ht(ω) is adapted if Ht is Ft-measurable for each t ∈ [0, T ]. The previsible or
predictable σ-field P is the σ-field on [0, T ] × Ω generated by the left-continuous,
adapted processes. A stochastic process H is said to be previsible if (t, ω) 7→ Ht(ω)
is P-measurable. If H is previsible, then for any 0 ≤ t ≤ T the restriction of H to
[0, t] × Ω is Ft−-measurable, where Ft− ≡ σ{Ns : 0 ≤ s < t}. In particular, if H is
previsible, then Ht is Ft−-measurable for all t ∈ [0, T ].

Similarly, for t ∈ [0, T ], let µt be the product measure of Lebesgue measure on
[0, t] and the probability measure on Ft. We consider previsible functions of the form
Ht(ω) that take values in [0, 1] and are progressively measurable with respect to µt
for t ∈ [0, T ]. Then Ht is the probability that an alarm is on at time t, conditional
on the history of the process up to but not including time t.

We wish to find H maximising

E

[∫ T

0

Ht dN(t)

]
(5.6)

subject to

E

[
1

T

∫ T

0

Ht dt

]
= τ (5.7)

for a fixed τ ∈ [0, 1]. Equation (5.6) gives the expected number of events that occur
during alarms.

3We received a huge amount of assistance from Steven N. Evans for this section.
4In an orderly point process, events cannot occur simultaneously.
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The dual previsible projection is the unique non-negative, non-decreasing, right-
continuous Ft-previsible process L such that∫ t

0

XsN(ds)−
∫ t

0

XsL(ds) (5.8)

is an Ft-martingale for all bounded previsible processes X. Assume L is absolutely
continuous with respect to Lebesgue measure on [0, T ], almost surely with respect
to the probability measure on Ω. Then the conditional intensity process λ defined
by Lt =

∫ t
0
λ(s) ds is previsible. Also assume that Eλ(t) exists and is finite for all

t ∈ [0, T ]. Then:

(i) Existence: There exists an H satisfying (5.7) with

Ht =

{
1 when λ(t) > Λ

0 when λ(t) < Λ
(5.9)

almost everywhere with respect to µ, for some constant Λ ∈ [0,∞].

(ii) Sufficiency: If a function H satisfies (5.7) and (5.9) for some Λ, then it max-
imises (5.6) subject to (5.7).

(iii) Necessity: If a function H maximises (5.6) subject to (5.7), then for some Λ
it satisfies (5.9) almost everywhere with respect to µ.

Thus the optimal alarm strategy is to turn on the alarm when the conditional
intensity is greater than (or possibly equal to) some threshold Λ. “Optimal” means
that out of all strategies with alarm fraction τ , this strategy maximises the expected
rate per unit time of events that occur when the alarm is on. This is assumed by
Helmstetter and Sornette [97], and proved by Molchan [123] for stationary processes
by analogy to the the Neyman-Pearson lemma [124, 90]. We give a proof for both
stationary and non-stationary processes in Appendix C.

Let the conditional intensity λ(t) have distribution function

Ft(x) = P (λ(t) ≤ x). (5.10)

Suppose this distribution function is continuous. Then for any x, the measure of the
set {λ(t) = x} is zero. An optimal alarm strategy turns on the alarm when λ(t) > Λ
and turns off the alarm when λ(t) < Λ. The threshold Λ is chosen to satisfy

τ =
1

T

∫ T

0

[1− Ft(Λ)]dt. (5.11)
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The expected fraction of events occurring outside alarms is

ν =

∫ T
0

∫ Λ

0
xdFt(x) dt∫ T

0

∫∞
0
xdFt(x) dt

. (5.12)

Plotting ν against τ for all thresholds Λ gives an optimal error diagram.
If Ft(Λ) is discontinuous, randomisation (over and above sample-path randomness)

may be necessary to obtain some values of τ . Suppose there exists Λ ≥ 0 such that
P (λ(t) = Λ) > 0. Consider the following prediction strategy:

• Before the prediction period starts, flip a coin that comes up heads with prob-
ability q ∈ [0, 1]. If the coin comes up heads, turn on the alarm when λ(t) = Λ.
If the coin comes up tails, do not turn on the alarm when λ(t) = Λ.

• When λ(t) > Λ, turn on the alarm.

• When λ(t) < Λ, do not turn on the alarm.

For a stationary point process, the proportion of time covered by alarms is then

τ = 1− Ft(Λ) + qP (λ = Λ).

We can choose q to give any value of τ between P (λ(t) > Λ) and P (λ(t) ≥ Λ). The
expected fraction of events successfully predicted is

1− ν = lim
ε↓0

∫ ∞
l+ε

xdFt + qlF (l). (5.13)

This is equivalent to linear interpolation between two points on the error diagram—
the point given by declaring an alarm when λ > Λ and the point given by declaring
an alarm when λ ≥ Λ. Note there are non-randomised strategies that give the same
ν for each τ .

5.2.4 Automatic alarms

Automatic alarms for temporal processes

Consider a naive predictor of a temporal point process that, after an event with
magnitude Mi at time Ti, turns on an alarm for duration w(Mi) immediately following
the event—that is, on the interval (Ti, Ti+w(Mi)]. If no event occurs while the alarm
is on, the alarm is switched off until another event occurs. If the Jth event occurs
during an alarm, the alarm is extended to last until the time

max
j≤J

(Tj + w(Mj)). (5.14)
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This is an automatic alarm strategy [125, 44] for a temporal point process. We call
the case where the window duration w is the same for all magnitudes the simple
automatic alarm strategy, and the case where the duration depends on magnitude the
magnitude-dependent automatic alarm strategy, or MDA alarm strategy.

Since earthquakes cluster in time, the simple automatic alarm strategy will, in the
long run, predict earthquakes more successfully than a strategy that assigns alarms
uniformly at random within the study region. This success is not surprising, but it
provides a reference level of success that more complex predictors should surpass to
be useful.

Empirically, the rate of seismicity is elevated for longer after large earthquakes
than after small earthquakes. In an MDA alarm strategy, the window duration should
increase with magnitude. An MDA alarm strategy that scales sensibly with magni-
tude should outperform the simple automatic alarm strategy. We choose to use

w(M) = kuM . (5.15)

The parameter u can be fitted to data to optimise some goodness-of-fit or predictive
criterion. For example, in section 5.4.4, we choose u to minimise the area under the
error diagram when MDA alarms are applied to a training data set. Of course, other
window functions could be used. However, this exponential form seems intuitively
reasonable for most magnitudes, as seismic moment scales exponentially with the
moment magnitude scale.5

We can construct error diagrams for automatic alarm strategies. For the simple
automatic alarm strategy, we obtain a set of values of τ̂ and ν̂ by considering all
values of w in [0,∞). For the MDA alarm strategy, we assume the form (5.15), fix
u, and consider all values of k in [0,∞). We can compare the error diagram given
by some prediction strategy in some study region to that given by simple and MDA
alarm strategies. A useful prediction strategy should give lower values of ν̂ than both
simple and MDA alarm strategies for some or all values of τ̂ . A prediction strategy
is of little interest if it is dominated by simple automatic or MDA alarms.

Automatic alarms for space-time processes

An automatic alarm strategy for a marked space-time point process turns on an
alarm of duration w(Mi) in a spatial area r(xi, yi,Mi) following each event. That is,

H(x, y, t) =

{
1, if (x, y, t) ∈ ∪{R(xi, yi,Mi)× (Ti, Ti + w(Mi)]}
0, otherwise,

(5.16)

5A cap on alarm size to prevent alarms lasting decades may be required if very large earthquakes—
say M > 8—are observed.
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where R(xi, yi,Mi) is a spatial region containing the epicenter of the ith event. This
region can be chosen in a number of ways—it may be circular with radius scaling
with magnitude, or it may reflect the geometry of faults. The “naive predictor” (i)
of chapter 2.5 is an example of a simple automatic alarm strategy in space-time. In
that strategy, the regions R(xi, yi,Mi) are circular and centred at the epicenter, and
the durations and radii of alarms are the same for all events.

5.3 Prediction of renewal processes

Renewal processes are temporal point processes in which the times between oc-
currences of events are independent and identically distributed. They may be marked
or unmarked. The distribution of the renewal times may be defined by a distribution
function, or by a hazard function giving the conditional intensity as a function of the
time since the last event.

5.3.1 Alarms for a renewal process

Suppose that events occur according to a renewal process on R, and that the
process is in its stationary state at time 0. Let D(x) be the distribution function of
the inter-event times and δ(x) ≡ D′(x) be the probability density; assume D(x) is
continuous. The hazard function at time t is the limit of the probability that x falls
between t and t+ ∆t divided by ∆t, conditional on x ≥ t:

h(t) ≡ lim
∆t↓0

D(t+ ∆t)−D(t)

∆t1−D(t)
(5.17)

=
δ(t)

1−D(t)
. (5.18)

Denote by λ(t) the conditional intensity at time t. We have

λ(t) = h(Bt), (5.19)

where Bt is the length of time back to the last event before time t. It is well-
known [126] that Bt has density λ̄(1−D), where λ̄ is the reciprocal of the expected
inter-event time. As before, the optimal alarm strategy turns on the alarm when the
conditional intensity exceeds some threshold—that is, when h(Bt) is large.

Suppose that h is monotone decreasing with inverse function η. Then

P (λ(t) > x) = P (Bt < η(x)) (5.20)

= λ̄

∫ η(x)

0

(1−D(u)) du. (5.21)
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Therefore, if we want the alarm to be on an expected fraction τ of the time, we
optimally have the alarm on when the time back to the most recent event is less than
w(τ), where w(τ) solves

τ = λ̄

∫ w(τ)

0

(1−D(u)) du. (5.22)

This is the simple automatic alarm strategy for a renewal process. The simple auto-
matic alarm strategy is optimal when the hazard is decreasing. A necessary but not
sufficient condition for this is that δ(x) be decreasing.

What proportion of events will occur during alarms under this strategy? If an
event occurs at time t, then it will occur during an alarm if Bt < w(τ). Given that
an event occurs at time t, the conditional distribution of Bt is just the inter-event
time distribution. The expected proportion of events caught by automatic alarms of
length w is therefore D(w). If the measure of every level set of λ is zero, any value
of τ can be obtained without randomisation.

If the hazard is decreasing, then so is the density function, because δ = h(1−D)
is the product of two decreasing functions. Consequently, if the hazard is decreasing,
a strategy that declares an alarm when the density is large is equivalent to one that
declares an alarm when the hazard is large. The density function can, however,
decrease without the hazard decreasing. The hazard is

h(x) = − d

dx
log(1−D), (5.23)

so
d

dx
h(x) = − d2

dx2
log(1−D). (5.24)

So the hazard is decreasing if and only if the log of (1−D) is convex.
When an unmarked renewal process model is fitted to real seismicity, the hazard

function is generally decreasing (Figure 5.3). If the hazard is not always decreasing,
then the optimal strategy is still to turn on the alarm when the hazard is large, but
this will no longer give an automatic alarm strategy. If, for example, the hazard has
a single maximum away from 0, the optimal strategy may be to wait a time after the
observation of an event; if no event has occurred, then turn on the alarm for a fixed
length of time.

5.3.2 Marked renewal processes

In a marked renewal process, inter-event times are still iid, but the events have
marks. Most simply, the marks may be drawn independently from some distribu-
tion. For instance, a marked renewal process model of earthquakes may have magni-
tudes drawn independently from a truncated Gutenberg-Richter distribution. If the
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inter-event times and the magnitudes are independent, then the conditional intensity
depends only on the time since the last event, and the analysis of section 5.3.1 still
holds. More generally, the hazard function may depend on the magnitude of the last
event.

5.3.3 Success of automatic alarms

This subsection deals with the success of the simple automatic alarm strategy
applied to unmarked renewal processes. The work in this subsection is based on the
work of Kagan [117] and Molchan [123].

Error diagram

Consider a simple automatic alarm strategy that declares an alarm for a duration
w after each event. Suppose the renewal times have differentiable distribution function
D(x) and density function δ(x). The average rate of events is λ̄. From the previous
subsection, we have

ν(w) = 1−D(w) (5.25)

and τ(w) as given in equation (5.22).
We can find an alternative expression for τ(w) as follows. Consider (Ti, Ti+1], the

time interval between the ith and (i+1)th events. If Ti+1−Ti ≤ w, the entire interval
is covered by an alarm. If Ti+1 − Ti > w, only the first w of the interval is covered
by an alarm. So the expected time between (Ti, Ti+1] that is covered by an alarm is
w(1−D(w)) +

∫ w
0

[xδ(x)]dx. The expected fraction of time covered by alarms is

τ(w) = λ̄

[∫ w

0

xδ(x) dx+ w(1−D(w))

]
. (5.26)

This is equal to the right-hand side of equation (5.22).

5.3.4 Success of general and optimal alarms

Suppose that after the ith event occurs at time Ti we declare an alarm for the
period

Ai = (max{Ti + w1, Ti+1},min{Ti + w2, Ti+1}] (5.27)

for some w1 < w2, w1 ∈ [0,∞), w2 ∈ (0,∞]. That is, if no event occurs in (Ti, Ti+w1],
the alarm is switched on at time Ti + w1. (If an event occurs before the alarm
is switched on, the event is missed and the time until an alarm begins is reset to
Ti+1 + w1.) The alarm remains on until time Ti + w2, or until another event occurs,
whichever is sooner.
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For a renewal process, the expected proportion of time covered by the alarm under
this strategy is

τ(w1, w2) ≡ τ(w2)− τ(w1); (5.28)

that is, τ(w1, w2) is the alarm fraction for automatic alarms of length w2 minus the
alarm fraction for automatic alarms of length w1. Similarly, the expected proportion
of events that fall within the alarm is

1− ν(w1, w2) ≡ (1− ν(w2))− (1− ν(w1)) (5.29)

= ν(w1)− ν(w2). (5.30)

As with any other point process, the optimal alarm for a renewal process is on when
the conditional intensity is above some threshold. As stated earlier, the conditional
intensity for a renewal process is the hazard function of the time since the last event:

λ(t) =
δ(Bt)

1−D(Bt)
. (5.31)

If the hazard is unimodal in x, and the mode is neither 0 nor∞, an optimal predictor
is of the form (5.27) and satisfies

λ(w1) = λ(w2). (5.32)

5.3.5 Example: Gamma renewal processes

Daley and Vere-Jones [127] and Kagan [117] previously studied the predictability
of gamma renewal processes. We confirm their results here.

Suppose the inter-event times are independent with gamma distributions with
shape parameter κ and rate parameter β. The probability density function of the
inter-event times is

δ(x) =
βκ exp (−βx)

Γ(κ)
xκ−1. (5.33)

The distribution function is

D(x) =
γ(κ, βx)

Γ(κ)
, (5.34)

where γ(κ, βx) is the lower incomplete gamma function of κ and βx [128]. The mean
rate of events is λ̄ = β/κ.

Kagan [117] derived expressions for ν and τ for the automatic alarm strategy for
a gamma renewal process. The proportion of events not predicted is

ν(w) = 1− F (w) = 1− γ(κ,wβ)

Γ(κ)
. (5.35)
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The fraction of time taken up by alarms is

τ(w) =
β

κ

(
γ(1 + κ, βw)

Γ(κ)
+ wν(w)

)
. (5.36)

The hazard is

h(x) =
xκ−1βκ exp(−βx)

Γ(κ)− γ(κ, βx)
. (5.37)

For κ < 1, this is strictly decreasing, so automatic alarms are optimal. For κ > 1,
this is strictly increasing, so automatic alarms are anti-optimal: they are worse than
random guessing. In this case, the optimal predictor is of the form (5.27) with w2 =
∞. For κ = 1, hazard is constant: the process is homogeneous Poisson.

5.3.6 Applications of renewal processes

Renewal processes are widely used to model earthquake sequences [117, 127, 129,
130, 131, 132, 50, 133]. Parametric distributions, such as the gamma and lognormal,
are commonly used for inter-event times. Alternatively, one could nonparametrically
model the hazard function (or inter-event time distribution). Figure 5.3 shows an
estimated hazard function for Southern Californian earthquakes with magnitude ≥ 3.
We use the R function “muhaz” to calculate hazard from inter-event times using
kernel-based smoothing. The hazard gives an estimate of the expected rate of events
under a renewal model as a function of the time since the last event. The data are
the times of events in the SCEC catalog from 1984 to 2009. The estimated hazard
generally decreases as the time since the last event increases. We believe the rise
in estimated hazard for times of more than two weeks after the last event occurs
because the data are sparse—periods of more than two weeks without a magnitude
3 earthquake in Southern California are rare. The geographic pooling will obscure
effects on long time scales. To see periodicity or characteristic earthquakes, we would
have to isolate smaller regions.

In reality, inter-event times are not independent. Nevertheless, by allowing for
clustering, a renewal model should be more successful than a Poisson model at pre-
dicting real seismicity. Clustering corresponds to a hazard that decreases, at least
initially—so there might not be much difference between the optimal strategy and a
simple automatic alarm strategy.

5.4 Automatic alarms and ETAS predictability

If seismicity really were an ETAS process, how well could it be predicted based
on past seismicity alone? This depends on whether the true parameters of the model
are known, or whether they must be estimated. If the ETAS parameters are known,
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Figure 5.2: Error diagrams for gamma renewal processes. The dashed-dotted straight
line is the expected error diagram for a gamma renewal process with shape κ = 1,
i.e., a Poisson process. The solid line is the expected error diagram for automatic
alarms for a gamma renewal process with κ = 0.5. For this process, automatic alarms
are optimal. It is below the line for the Poisson, showing some predictive success.
The dotted line is the expected error diagram for automatic alarms for a gamma
renewal process with κ = 2. It is above the line for the Poisson, showing the strategy
does worse than random guessing. The dashed line is the expected error diagram for
optimal alarms for a gamma renewal process with κ = 2. It is the automatic alarm
error diagram for that process rotated 180 degrees about (0.5, 0.5). It is below the
line for the Poisson.
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Figure 5.3: Estimated hazard function for inter-event times between earthquakes
with magnitude 3 or greater in Southern California. The hazard is estimated from
the SCEC catalog from 1984 to 2009, using the “muhaz” smoothing function in R.
See section 5.3.6 for notes on the estimation of hazard. Note that only 60 out of 8093
inter-event times are longer than 10 days, so estimation for that region is poor. For
shorter times, the hazard function is decreasing.
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the conditional intensity predictor is optimal. If the amount of data available is
limited, the accuracy of conditional intensity predictions using estimated parameters
is weakened.

Suppose the true parameter values are known. In this case, we may calculate the
conditional intensity (4.4) at any point in time. An optimal predictor will turn on
an alarm if and only if the conditional intensity is above some threshold. We may
simulate future seismicity from the process, and determine τ , the proportion of time
the alarm is on, and ν, the proportion of events missed by the alarms. Finding τ and
ν for a continuum of thresholds gives an error diagram, commonly used to examine
predictive success. In this section, we apply this method to simulations of ETAS
models. In section 5.5, we shall do the same for real seismicity.

5.4.1 Previous work

Helmstetter and Sornette [134] examined the “intrinsic limits” of predictability
in the ETAS model by studying simulated temporal ETAS catalogs with parameters
m0 = 3, µ = 1, α = 0.8, c = 0.001, b = 1 and branching ratio n = 0.8 (they did not
explicitly state K and p). They attempted to examine how well ETAS seismicity could
be predicted if the parameter values were known, setting aside any errors in model
fitting. They claimed that the conditional intensity function is the best predictor of
the process; Molchan [123] established conditions under which this is true (see also
section 5.2.3). If the times and magnitudes of events up to time u have been observed,
and the parameters are known, the process from time u onwards can be simulated
with the exact probability law.

Molchan and Keilis-Borok [135] used the maximum distance between the error
diagram and the diagonal line ν = 1 − τ as a measure of predictive success or pre-
dictability. They found that the predictability for temporal ETAS simulations claimed
by Helmstetter and Sornette was broadly comparable to the predictability of simpler
renewal process models. Recall that, in terms of the error diagram, fitting a renewal
process model with decreasing magnitude-independent hazard is equivalent to using
a simple automatic alarm strategy.

5.4.2 ETAS conditional intensity and the error diagram

Recall that an expected error diagram for a point process alarm strategy plots the
expected proportion of unpredicted earthquakes ν as a function of the expected alarm
fraction τ . An error diagram where ν is low for most values of τ indicates a highly
predictable process, while a curve close to the line ν = 1−τ indicates unpredictability.

In optimal error diagrams, predictions are based on perfect knowledge of the condi-
tional intensity. These give the largest improvements over making random predictions
independently from the process history. More generally, conditional intensity is un-
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known: we instead construct a model and estimate conditional intensity from data.
Then the estimate is used to construct the predictor, which may be tested on further
data.

In section 5.2.3, we showed that the alarm strategy that minimises expected ν
for a given expected τ turns on the alarm if and only if the conditional intensity is
greater than some cut-off value Λ(τ). The optimal error diagram quantities τ and ν
can be calculated from the distribution of the conditional intensity, if this is known.
Let the distribution function of λ be F (Λ) = P (λ ≤ Λ). The optimal strategy turns
on the alarm when the conditional intensity λ is greater than Λ, and

τ(Λ) = 1− F (Λ) (5.38)

ν(Λ) =

∫ Λ

0
λdF (λ)∫∞

0
λdF (λ)

. (5.39)

The alarm fraction τ is an increasing function of Λ, while ν is a decreasing function
of Λ. For ETAS, the distribution of λ(t) is continuous for all t.

The simple automatic alarm strategy and the optimal alarm strategy do not give
identical prediction regions for the ETAS model. The conditional intensity may re-
main high for quite some time after a large number of earthquakes have occurred,
whereas the automatic alarm strategy may turn off the alarm if no earthquake has
occurred in some time, even if there have many earthquakes in the medium-term
past. Similarly, conditional intensity may be high in the medium-term following a
large earthquake, even if immediate aftershocks appear to have stopped. These two
situations—large numbers of earthquakes and a high magnitude earthquake—often
occur simultaneously.

Figure 5.4 displays how the ETAS conditional intensity differs from that of a ho-
mogeneous Poisson process and a renewal process. Figure 5.5 shows the empirically-
determined distribution of the conditional intensity of an ETAS model with parame-
ters µ = 0.01, K = 0.00345, α = b = 1,= 0.01, p = 1.5,m0 = 5,m1 = 8.

5.4.3 Predicting ETAS simulations

We simulated ETAS seismicity for several sets of parameter values, and com-
pared the success of the optimal predictor to that of simple automatic alarms. The
simulation parameters correspond to values fitted to several Japanese catalogs by
Ogata [3, 1] via maximum likelihood; they appear in Table 5.1. Five sets of param-
eters correspond to stationary ETAS processes; the sixth (“East of Izu”) does not.
Most simulations are of length 100,000 days, following a burn-in period of 10,000
days. The burn-in period is intended to reflect the length of historical catalogs, and
may not be long enough to reach stationarity (when a stationary state exists). In
addition, the simulation length may not be long enough to observe distribution tails
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Figure 5.4: Conditional intensities for simulated point processes. The top graph is
for a Poisson process. The middle graph is for a gamma renewal process with shape
parameter 0.5 and rate parameter 0.5. The bottom graph is for an ETAS process
with b = 1, µ = 0.5, K = 0.04, c = 0.1, α = 0.5, p = 1.1. Each process has an expected
rate of one event per unit time. The vertical dotted lines show times of events.
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Figure 5.5: Top: empirical conditional intensity distribution of the ETAS model with
parameters µ = 0.01, K = 0.00345, α = b = 1,= 0.01, p = 1.5,m0 = 5,m1 = 8. The
graph excludes the 1.2% of the time the conditional intensity exceeded 0.03. The
minimum value of the conditional intensity is 0.1, the background rate. The condi-
tional intensity is rarely much larger than the background rate. Bottom: empirical
distribution of conditional intensity just before the occurrence of an event, for ETAS
model with parameters as above. For 46% of events, conditional intensity was less
than 0.03. However, some events occur when conditional intensity is in the hundreds
or thousands. (Note that the x-axis scale is different from the top graph.)
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Figure 5.6: Error diagram for a simple automatic alarm strategy (solid line) and
conditional intensity predictor (dotted line) for a 200,000 (with 10,000 day burn-in)
day simulation of Tokachi seismicity based on parameters estimated by Ogata [1] from
the catalog from 1926-1945. The simulation parameters were m0 = 5,m1 = 9, b =
1, µ = 0.047, K = 0.013, c = 0.065, α = 0.83, p = 1.32. On the x-axis, τ gives the
fraction of time covered by alarms; on the y-axis, ν gives the fraction of earthquakes
of magnitude 5 or greater not predicted. The 10th percentile of interarrival times is
40 minutes, the median is 4.3 days, and the 90th percentile is 34 days.
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caused by extreme events.
Figure 5.6 gives an error diagram for one simulation. The optimal predictor out-

performs the simple automatic alarm strategy for all values of τ . However, for any
particular value of τ , the difference between the two predictors is small. Now, a small
difference may be important. For example, if even one in a thousand large earth-
quakes could be predicted with certainty, it would be a huge achievement. In this
case, it is not clear how much value is represented by the improvement in prediction
of the optimal ETAS predictor over simple automatic alarms—particularly as this is
a best-case scenario for ETAS, since the simulated catalog follows the ETAS model.

Table 5.2 summarises results for all six sets of simulation parameters. In every
case, a large proportion of shocks occur within a few hours of a previous shock, and
most shocks occur within a few days of their parent. The improvement of the optimal
predictor over the automatic alarm strategy never exceeds 5.4%, and is typically
below 2%. For ETAS seismicity, the optimal strategy is consistently better than the
simple automatic alarm strategy, but the improvement is modest.

Catalog m0 µ K α c p
Tokachi 1926-45 5.0 0.047 0.013 0.83 0.065 1.32
Izu Peninsula 2.5 0.022 0.035 0.17 0.003 1.35
Tokachi 1952-61 5 0.032 0.021 0.72 0.059 1.10
Matsuhiro swarm 3.9 0.0006 0.092 0.27 0.13 1.14
East of Izu 2.9 0.59 0.016 0.31 0.009 1.73

Table 5.1: Parameters estimated by Ogata [3, 1] for Japanese earthquake catalogs.
The Gutenberg-Richter parameter b was assumed to be 1 in every case. The estimates
for “East of Izu” imply an explosive process; the other sets imply a process with a
stationary state. We use these parameter estimates for simulations; the results are
given in Table 5.2.

5.4.4 Magnitude-dependent automatic alarms for ETAS

We can also assess the success of magnitude-dependent automatic alarms at pre-
dicting ETAS processes. Figure 5.7 plots error diagrams for predictors of a sim-
ulation of a ten-year catalog of Southern Californian seismicity, with parameters
m0 = 3, µ = 0.1687, K = 0.04225, α = 0.4491, c = 0.1922, p = 1.222. The MDA
alarms were of the form k × 3.7M , with the base 3.7 chosen to minimise the area
under the error diagram for a training set. Area under the error diagram for some
other predictors are given in Table 5.3. In the test set, the area under the MDA
alarm curve is 0.242. This is slightly better than simple automatic alarms (0.252)
and slightly worse than the optimal conditional intensity predictor using the true
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Figure 5.7: Error diagrams for predictors of a simulated temporal ETAS sequence.
The parameters used in the simulation were those estimated for Southern Californian
seismicity: m0 = 3, µ = 0.1687, K = 0.04225, α = 0.4491, c = 0.1922, p = 1.222.
Models were fitted to a 20-year training set and assessed on a 10-year test set. The
ETAS conditional intensity predictor with the true parameters (green dashed line)
performs very similarly to the ETAS conditional intensity predictor with estimated
parameters (blue dotted line). The magnitude-dependent automatic alarms have pa-
rameter u = 3.70, chosen to minimise area under the error diagram in the training
set. In the test set (solid black line), they perform slightly better than automatic
alarms (red dotted-dashed line) and slightly worse than the ETAS conditional inten-
sity predictors. No single strategy dominated any other single strategy.
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Set of m0 Auto alarm Optimal alarm
parameters success rate success rate
Tokachi 1926-45 5 39.7% 41.6%
Izu Peninsula 2.5 86.5% 87.4%
Izu Islands 4 65.8% 67.2%
Tokachi 1952-61 5 36.5% 39.4%
Matsuhiro swarm 3.9 55.8% 55.1%
East of Izu 2.9 79.9% 85.2%

Table 5.2: Success of alarms for ETAS simulations that are on 10% of the times. The
column “Set of parameters” names a catalog for which Ogata [3, 1] fitted temporal
ETAS models. The parameter estimates for these catalogs are given in Table 5.1,
while the column “m0” gives the catalog minimum magnitude. The third and fourth
columns give the percentages of events in simulations that fall within simple automatic
and optimal conditional intensity alarms respectively.

parameters (0.236). The optimal predictor performs only very slightly better than a
conditional intensity predictor that uses estimated parameters (0.237). In fact, Ta-
ble 5.4 suggests that predictions using estimated parameters are nearly optimal, even
when the training set is small.

5.5 Predicting Southern Californian seismicity

Figure 5.8 shows the performance of predictors on a training set. The parameter
u in the MDA alarms is chosen to minimise the area under the error diagram. (Other
selection criteria are possible—we could minimise ν for a fixed value of τ , or minimise
the area under the error diagram for a limited τ range, or use a measure of entropy
such as Kagan’s information score [117].) In fact, a conditional intensity predictor
using Veen and Schoenberg’s estimated space-time ETAS parameters and a condi-
tional intensity predictor using temporal ETAS estimated parameters do comparably
well. (See Table 4.2 for parameter estimates.) A conditional intensity predictor using
the typical parameters in Table 4.3 performs similarly. The value u = 5.8 minimises
the area under the error diagram for an MDA alarm strategy. This strategy per-
forms almost as well as the conditional intensity predictors, while simple automatic
alarms are notably worse. However, the more complex strategies have more degrees
of freedom.

It is better to measure predictive performance on a test set separate from the
data from which parameters were estimated. We do not quite keep training and test
data separate—although we find parameter estimates for an ETAS model from the
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Figure 5.8: Error diagrams for predictors of Southern Californian seismicity on a
training set of data. The catalog is the SCEC catalog of M ≥ 3 earthquakes from
January 1st, 1984 to June 17th, 2004. The estimated ETAS models and the MDA
alarm strategy (with parameter chosen to minimise the area under the curve) all
perform comparably well, and outperform a simple automatic alarm strategy for
most values of τ̂ .
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Figure 5.9: Error diagrams for predictors of Southern Californian seismicity. The
predictors were fitted to the SCEC catalog from January 1st, 1984 to June 17th,
2004, and tested on the SCEC catalog from June 18th, 2004 to December 31st, 2009.
For low values of τ̂ , simple automatic alarms do not perform as well as the ETAS
predictors. For high values of τ̂ , MDA alarms do not perform as well as the ETAS
predictors. Note that although success rates are determined for the test set only,
predictors used both training and test data to determine times since past events (for
simple automatic and MDA alarms) and conditional intensity (for ETAS predictors).
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Predictor Area under error diagram Area under left quarter
Optimal ETAS 0.236 0.127

Estimated ETAS 0.237 0.128
Typical ETAS 0.241 0.130
MDA, u = 3.7 0.242 0.130
MDA, u = 2 0.246 0.131
Simple auto 0.252 0.133

Table 5.3: Success of several predictors of a simulated ETAS sequence. Predictors are
trained on a 20-year simulated catalog, and tested on a subsequent 10-year simulated
catalog. The simulation parameters are m0 = 3, µ = 0.1687, K = 0.04225, α =
0.4491, c = 0.1922, p = 1.222. The measures of success are area under the error
diagram, and area under the left quarter of the error diagram (since alarms that
are on less often are more attractive). “Optimal ETAS” is a conditional intensity
predictor using the simulation parameters, given in the “VS spatial estimate” column
of Table 4.2. “Estimated ETAS” uses parameters estimated from a training set.
“Typical ETAS” uses the parameters in Table 4.3. “MDA, u = 3.7” is a magnitude-
dependent automatic alarm strategy with base determined by fitting alarms to a test
set. “MDA, u = 2” is an MDA alarm strategy with base 2. “Simple auto” is a simple
automatic alarm strategy.

training set and not the test set, we calculate conditional intensity given these esti-
mates by summing contributions from events in both the training and test sets (to
avoid inaccuracy at the beginning of the test set). Figure 5.9 shows error diagrams
for the predictors fitted to the above training set, tested on the SCEC catalog from
June 18th, 2004 to December 31st, 2009. There is very little difference in perfor-
mance between conditional intensity alarms using the parameters estimated by Veen
and Schoenberg for space-time ETAS, and conditional intensity alarms using the pa-
rameters we estimated for temporal ETAS—even though the parameters are very
different, the alarm times are similar. For example, if thresholds are set so that both
strategies turn on alarms for 10% of the study period, then for 9.4% of the study
period, both strategies have their alarms on. A conditional intensity predictor based
on the “typical” parameters in Table 4.3 gives a similar error diagram to those of the
estimated conditional intensity predictors. (For τ̂ = 10%, all three strategies have
alarms on simultaneously 8.7% of the time.) The areas under the curve are 0.340
for Veen-Schoenberg parameter estimates, 0.341 for temporal ETAS estimates, and
0.345 for typical parameters. (Recall that perfect prediction gives area 0 and random
guessing gives expected area 0.5.)

ETAS conditional intensity predictors outperform the simple automatic alarm
strategy by a small but clear margin for most values of τ̂ . The difference is most
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Training Optimal Estimated Typical MDA Simple
years ETAS ETAS ETAS w = 2 automatic

1 0.250 0.251 0.254 0.259 0.264
2 0.245 0.246 0.248 0.252 0.257
5 0.240 0.241 0.242 0.250 0.256
10 0.261 0.262 0.263 0.271 0.275
20 0.262 0.264 0.262 0.273 0.279
50 0.257 0.259 0.259 0.265 0.270

Table 5.4: Effect of length of training set on accuracy of prediction. The column
“Training years” gives the length of a simulated ETAS training set in years. The sim-
ulation parameters are m0 = 3, µ = 0.1687, K = 0.04225, α = 0.4491, c = 0.1922, p =
1.222. An ETAS model was estimated from the training set, then the parameter
estimates were used to calculate a conditional intensity predictor for a 10-year test
set. (Event in both the training and test sets were included in the ETAS conditional
intensity calculations.) The column “Estimated ETAS” gives the area under the er-
ror diagram for this predictor. Other columns give areas under the error diagram for
other predictors as comparisons. For each length of training set, all predictors were
assessed on the same set. In each case, the estimated ETAS predictor does slightly
worse than the optimal ETAS predictor. Training set length has little effect on the
accuracy of predictions from the estimated ETAS model. Note that predictions were
better for two years of training data than for 50 years—this is the result of sampling
variability.
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Predictor Training area Test area LQ test area
Space-time ETAS 0.234 0.340 0.161
Temporal ETAS 0.235 0.341 0.161
Typical ETAS 0.236 0.345 0.161
MDA, u = 2 0.253 0.348 0.165

MDA, u = 5.8 0.240 0.351 0.163
Simple auto 0.254 0.352 0.168

Table 5.5: Success of several predictors of Southern Californian earthquakes of mag-
nitude M ≥ 3. The predictors are fitted to a training set of data (the SCEC catalog
from January 1st, 1984 to June 17th, 2004) and assessed on a test set of data (the cat-
alog from June 18th, 2004 to December 31st, 2009). The predictors have parameters
estimated on the training set, but may use times and magnitudes of training events
in the test. The measures of success are area under the training set error diagram,
area under the test set error diagram, and area under the left quarter of the test set
error diagram. “Space-time ETAS” is a conditional intensity predictor using Veen
and Schoenberg’s space-time parameter estimates, given in the “VS spatial estimate”
column of Table 4.2. “Temporal ETAS” uses parameters estimated using a tempo-
ral ETAS model, given in the “Temporal estimate” column of Table 4.2. “Typical
ETAS” uses the parameters in Table 4.3. “MDA, u = 2” is a magnitude-dependent
automatic alarm strategy with base 2. “MDA, u = 5.8” is an MDA alarm strategy
alarm strategy with base determined by fitting alarms to a test set. “Simple auto” is
a simple automatic alarm strategy.

pronounced for small values of τ̂ . The MDA alarms with fitted parameter u = 5.8
perform comparably to the conditional intensity predictors for small values of τ̂ .
For large values of τ̂ , they perform slightly worse than both conditional intensity
predictors and simple automatic alarms. For the MDA alarm to capture half of
events, the alarm would have to be on 28% of the time. In comparison, an alarm
based on conditional intensity estimated from a temporal ETAS model would have to
be on 26% of the time to capture half of events. In both cases, the observed predictive
success is far from that required for operational earthquake prediction.

Table 5.5 gives the area under the training and test error diagrams for a number
of predictors. No predictor dominated any other predictor for all values of τ̂ . In fact,
each predictor was uniquely best for at least some values of τ̂ . The predictor based
on Veen-Schoenberg estimates was best most often (outright best for 47% of τ̂ values,
equal best for a further 10% of τ̂ values). We would like to perform similar analyses
on other geographic areas, as well as on subregions of Southern California, to see if
we obtain similar results.
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5.6 Discussion

The error diagram (Molchan diagram) allows evaluation of earthquake alarm
strategies. Empirical error diagrams display performance on data sets, while expected
error diagrams show the theoretical predictability of stochastic point processes. If seis-
micity actually followed a stochastic process, an optimal alarm would be “on” when
the conditional intensity of the process is above some threshold. The family of opti-
mal alarms determines an optimal error diagram. We can compare the performance
of optimal alarms for complex models to that of automatic alarms to study the value
of the extra complexity.

In a renewal process, conditional intensity is a function of the time since the last
event, so this time determines whether an optimal alarm is off or on. When seismicity
is a realisation of a renewal process with decreasing hazard, simple automatic alarms
are theoretically optimal. This is the case when the inter-event distribution is gamma
with shape κ ≤ 1. In practice, renewal models fitted to real seismicity generally have
decreasing hazard because of clustering.

Molchan and Keilis-Borok [135] previously found that the ETAS model was broadly
as predictable as realistic renewal process models for seismicity. We examined the
success of simple and magnitude-dependent automatic alarm strategies at predicting
simulations from the ETAS model. We found that MDA alarms performed slightly
worse than conditional intensity predictors, and simple automatic alarms performed
slightly worse than MDA alarms. No strategy was dominated. Over a variety of
training set lengths, whether parameters were known or estimated had little effect
on the conditional intensity predictor—despite the estimated parameters being very
different from the true parameters.

In a test on real seismicity (the SCEC catalog from June 18th, 2004 to December
31st, 2009), an ETAS model with “typical” parameters predicted about as successfully
as one with estimated parameters. Generally, both did slightly better than magnitude-
dependent automatic alarms, but MDA alarms were not dominated. (Optimising the
parameter u in the MDA alarms did not result in better prediction than fixing u = 2.)
MDA alarms, in turn, outperformed simple automatic alarms by a small amount, but
did not dominate them.

The ETAS model has some predictive power over and above MDA alarms—the
success of ETAS is not straightforwardly explained by the fact that large earthquakes
are frequently followed by aftershocks. What the value is in the small increase in
predictive success is up for debate. That ETAS parameter values have a weak effect
on predictive accuracy is comforting, as parameters generally cannot be estimated
accurately. Though different sets of ETAS parameters give very different conditional
intensities, they may give roughly the same topology of level sets. (For instance, the
parameter µ affects the conditional intensity, but does not change its level sets.) The
correct approach to ETAS would seem to be to use it as a comparison to physics-
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based models: just as stochastic models have no incremental value if they do not give
better predictions than an automatic alarm strategy, physics-based prediction have
no incremental value if they do not outperform ETAS. Properties of ETAS that are
sensitive to the parameters, such as the branching ratio and conditional intensity,
should be treated with scepticism.

In the future, we wish to examine the space-time aspect of prediction in more
detail. We would like to apply space-time MDA alarms, which we briefly described
in section 5.2.4, to real seismicity to establish a baseline against which to compare
more complicated methods.
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Chapter 6

Conclusion

6.1 Assessing models and predictions

All stochastic models of seismicity are wrong, but some are more wrong than
others. For instance, seismicity is not a stationary process over geological time scales,
but stationarity may be a reasonable assumption over human time scales, albeit a
difficult assumption to test. The assumption that seismicity is a branching process—
that every earthquake is triggered by no or one preceding event—is untrue, but may be
useful in earthquake modelling. If such assumptions are made, the models should not
be taken literally—a branching ratio, giving the expected number of events directly
triggered by every event in the process, is an artifact of the model, not something
that physically exists.

Stochastic models for seismicity have often been used as null hypotheses in sta-
tistical tests. Failure to reject a null hypothesis does not mean the null is true. The
test may not have sufficient power to detect departures from the null. Different tests
may have power against different alternatives, so it may be preferable to use multiple
tests, combining them using Bonferroni’s inequality. For example, it has been claimed
that declustered catalogs are Poisson. Evidence for this claim is that a chi-square test
does not reject the hypothesis that the times of the declustered catalog are a real-
isation of a temporal Poisson process. However, the claim is not true in time, as
shown by a Kolmogorov-Smirnov test, and it is not true in space-time, since, unlike
in a spatially heterogeneous, temporally homogeneous Poisson process, events in a
declustered catalog cannot occur arbitrarily close in space-time. We tested a weaker
space-time hypothesis: that conditional on the locations and times of the events in a
declustered catalog, all permutations of the times are equally likely. For three declus-
tering methods, we obtained P -values of 0.003, 0.005, and 0.069, rejecting the null in
two of three cases and casting doubt on the hypothesis of exchangeable times.

Furthermore, because no stochastic model for seismicity is true, tests that compare
earthquake models or predictions to a null hypothesis with random seismicity have
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limited interpretations. The null hypothesis may be rejected because the seismicity
model is wrong, and not because the test model or predictions are good. In addition,
tests must recognise that if the seismicity were different, predictions would be differ-
ent. We showed that a test of a naive predictor that held predictions constant while
allowing seismicity to vary under the null gave a statistically significant result—not
because the predictions were good, but because they took history into account.

Instead of performing tests assuming random seismicity, it is better to assess the
successes of predictions and forecasts by comparing them to simple predictors such
as automatic alarms. Automatic alarms are easy to fit to data. Simple automatic
alarms are optimal for many unmarked renewal processes, while magnitude-dependent
automatic alarms are a straightforward generalisation. The success of automatic
alarms should be taken be taken as empirical, and not as indicating anything causal,
or that the clustering structure is simple.

It is difficult to use automatic alarms as part of a null hypothesis in a probabilistic
test. There is no inherent randomness in automatic alarms—unless seismicity is
considered random, which is unwise for testing—and attempting to add randomness
through a semi-automatic alarm strategy can result in a loss of optimality, and a lower
threshold for “success” than that provided by automatic alarms. Testing predictions
is a difficult problem that we do not claim to have resolved. But outperforming a
random predictor by a statistically significant margin is not impressive—any predictor
that exploits clustering should be able to do this. On the other hand, outperforming
magnitude-dependent automatic alarms over a long test set requires at least some
skill.

6.2 Building models and predictions

We believe that the idea behind declustering is backwards. The occurrence of
earthquakes in space-time is very complex. The simplest observation we can make
about the structure of earthquake catalogs is that earthquakes cluster in space and
time. It is preferable to attempt to model this clustering, rather than attempt to
remove clustering, then assert the remaining structure is simple. Firstly, clustered
events occur, and can cause damage, whether or not we decluster the catalog. Sec-
ondly, though there may or may not be physical differences between “background”
and “offspring” events, all existing methods to differentiate between them based on
times, locations, and magnitudes are arbitrary. Thirdly, the declustered catalog can-
not simply be assumed to be a realisation of a simple model such as the Poisson, or
to have simple structure such as exchangeable times given locations, without rigorous
and varied testing. Fourthly, if notable features such as inhomogeneity are found in
the declustered catalog, it is difficult to tell if they are of physical interest or are
artifacts of the declustering procedure. Fifthly, if the declustered catalog does have a
simple structure, it may be that all features of interest have been removed from the
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data.
Fitting even unsophisticated clustering models to clustered data is better than

declustering, in part because unsophisticated clustering models can be made more
complicated. The simple automatic alarm strategy exploits the fact that earthquakes
cluster in space and time. We know that the rate of seismicity is elevated for longer
after large earthquakes, so we can add complexity to automatic alarms by making
them magnitude-dependent. Then we can compare the predictive performance of
these MDA alarms to that of yet more complicated models, like ETAS.

The ETAS model has substantial complexity, and substantial problems. It does
not provide a good fit to real data—for instance, short times between events are ob-
served more often in real catalogs than in the model. The ETAS branching ratio, a key
model property, is very sensitive to distributional assumptions and parameter values.
In fact, whether the model is stationary can depend on whether the Gutenberg-
Richter magnitude distribution is truncated. Parameter estimation for ETAS is poor
even for long catalogs, so the branching ratio should taken as a statistical artifact,
not something that reflects real seismicity.

Although real seismicity is substantially different from realisations of ETAS, the
model is still of some use as a predictor. For a point process, the alarm strategy that
minimises the expected fraction of events missed τ given an expected alarm fraction
τ declares an alarm when the conditional intensity exceeds some threshold. We
therefore obtain predictions from an ETAS model by turning on an alarm when the
conditional intensity is high. Predictions are sensitive to the times and magnitudes of
events in the catalog. This makes prediction at a lead time difficult. (One advantage
of automatic alarm strategies is that they are readily adaptable to prediction with
some lead time.) Predictions are surprisingly insensitive to exact parameter values.

We compared this conditional intensity predictor for ETAS to automatic alarm
strategies. Both when the true process is ETAS and for real Southern Califor-
nian data, ETAS conditional intensity predictors outperform simple and magnitude-
dependent automatic alarm strategies by a small margin for most values of τ̂ . This
indicates that the ETAS model has some value—as long as we do not take it too lit-
erally. On the other hand, the level of success we found for Southern Californian data
(to capture 50% of events, an alarm based on an estimated temporal ETAS model
would have to be on 26% of the time) was insufficient for operational earthquake
prediction.

We have only compared the performance of ETAS conditional intensity predictors
and automatic alarm strategies for one real catalog. In the near future, we wish to
examine other catalogs. We do not know if parameter estimates will resemble those
for Southern California. However, we expect relative success for ETAS conditional
intensity predictors and automatic alarms broadly similar to what we observed for
Southern Californian data.

Further effort should go into understanding the structure of earthquake clusters;
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however, it seems unlikely that a model that allows realistic modelling of clusters us-
ing only a few parameters exists. Real seismicity is more complex than any stochastic
model yet proposed. This does not mean that simple models have no value. Auto-
matic alarm strategies have almost all of the predictive success of the ETAS model,
while avoiding many of that model’s drawbacks.
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Appendix A

Resampling and randomisation
tests

Resampling techniques have become widely used since adequate computational
power has become commonly available [136, 137]. In particular, tests of significance
using randomisation or the bootstrap can often be used even when an analytic form
for the distribution of the test statistic is not known. Romano [79, 80] developed
methodology for bootstrap and randomisation tests of nonparametric hypotheses such
as independence, symmetry, and exchangeability. Before describing his approach in
detail, we first present a review of Vapnik-Chervonenkis theory.

A.1 Vapnik-Chervonenkis classes

Suppose the set D ⊂ χ has finite cardinality n. D is shattered by a collection
of sets V if all 2n subsets d ⊂ D can be written d = V ∩ D for some V ∈ V.
The Vapnik-Chervonenkis dimension [138], or VC dimension, of a collection V is the
cardinality of the largest set that can be shattered by V.1 If for all n there exists a
set of cardinality n that can be shattered by V, the VC dimension of V is infinite.
V is a VC class if and only if its VC dimension is finite.

In Rn, a lower-left quadrant is a set of the form

(−∞, t1]× . . .× (−∞, tn] : t1, . . . , tn ∈ R. (A.1)

The set of all lower-left quadrants on Rn is a VC class with VC dimension n. Note
that the Cartesian product of VC classes is also a VC class.

1In some definitions, the VC dimension is the smallest n for which no set of cardinality n can be
shattered. This definition gives a VC dimension one greater than does our definition.
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A.2 Romano-type tests

Let Ω be a known collection of distributions on sample space χ. Suppose we
observe a sample {Xj}nj=1 from a distribution P ∈ Ω. Let Ω0 be the set of distributions
in Ω that are invariant under a given idempotent transformation τ : Ω→ Ω0; that is,
τ(P0) = P0 for all P0 ∈ Ω0 ⊂ Ω. Let our null hypothesis be that P ∈ Ω0.

Romano [79, 80] proposes hypothesis tests that rely on a seminorm that generalises
Kolmogorov-Smirnov distance [79]. Let V be a VC class of subsets of χ. In particular,
if the sample space is Rn, then V may be the set of lower-left quadrants. Define
δV : Ω× Ω→ R+ as

δV(P,Q) ≡ sup
V ∈V
|P (V )−Q(V )|, (A.2)

for P,Q ∈ Ω. To perform a hypothesis test, select V and τ such that δV(P, τP ) = 0 if
and only if P ∈ Ω0. Let P̂n = P̂n(X) be the empirical measure of {Xj}nj=1. Romano
suggested the test statistic

Tn(X) ≡
√
n δV

(
P̂n, τ(P̂n)

)
. (A.3)

Informally, τ(P̂n) is like a “projection” of the empirical measure onto the set of
measures that satisfy the null hypothesis. The null hypothesis is rejected if this
test statistic is large; that is, when P̂n and τ(P̂n) are distant in the seminorm (A.2).

We need to estimate the sampling distribution of Tn under the null hypothesis.
Since τ(P̂n) is an element of the null set Ω0, we could take bootstrap samples from
τ(P̂n) and compute Tn for every one of these. The critical value of a level-α test will
be approximately the 1 − α quantile of the empirical distribution of the bootstrap
sample test statistics.

An alternative to the bootstrap is randomisation. Suppose there is a known finite
group of transformations Gn = {gnj} of the sample space such that all P0 ∈ Ω0 are
invariant under elements of Gn. The orbit X under Gn of a point x ∈ χ is the set

X ≡ {g(x) : g ∈ Gn}.

In a permutation test, Gn is some group of transformations. For example, if Gn

is a permutation group, the orbit consists of permutations of the data. Every point
in the orbit X is equally likely under the null hypothesis. To find a null distribution
for the test statistic, compute the statistic Tn(g(x)) for every g ∈ Gn. Then the one-
tailed permutation test P -value, conditioning on the orbit, is the proportion of the
statistics Tn(g(x)) that are greater than or equal to the observed test statistic Tn(x).
If a permutation test taking Tn(g(x)) to be the null sampling distribution of Tn(x) is
constructed to have level α given the orbit, it will also have level α unconditionally.

In both bootstrap and randomisation tests, we reject the null when the test statis-
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tic (A.3) is large. The methods differ in how they estimate the null distribution, and
hence in their critical values. Romano [79, 80] showed that under fairly general con-
ditions, bootstrap and randomisation tests are asymptotically equivalent: for a given
test statistic and sufficiently large samples, the methods have comparable power and
critical value.

Calculating exact significance levels for randomisation tests may require huge
amounts of computation. There are two main computational difficulties. Firstly, it
is difficult to find the global supremum defined in (A.2) if the sample space is multi-
dimensional. Pursuing Beran and Millar’s idea of stochastic testing [139], Romano
suggested that instead of searching through all sets in V, one could randomly choose s
search sets Vs ≡ {V1, . . . , Vs} ⊂ V according to a probability on V.2 The supremum
in (A.2) is then found over all sets in Vs, rather than over all sets in V. For the
test to be consistent, the number of search sets must grow quickly with the sample
size n [139]. The supremum over Vs is faster to find than the supremum over V but
may be quite different, and the power of the test can be compromised.

Romano asserted that the search sets could be the same for all permutations, or
could be selected independently for every permutation. We consider the former case
here.3 The distance seminorm becomes

δVs(P,Q) ≡ sup
V ∈Vs

|P (V )−Q(V )|, (A.4)

while the test statistic is

Tn ≡
√
n δVs

(
P̂n, τ(P̂n)

)
. (A.5)

The test statistic for the original data is Tn(x). Under the null hypothesis, every
permutation g(x) ∈ X of the data is equally likely. So under the null and conditional
on X ∈ X , Tn(x) is drawn uniformly at random from the set {Tn(g(x)), g(x) ∈ X} of
test statistics evaluated on all permutations of the data. An exact test may thus be
constructed by comparing Tn(x) to this set.

A second computational issue is that the orbit is large. For instance, if Gn is the
permutation group on n elements, there are n! permutations. Instead of calculating
the test statistic for all elements in the orbit, one may approximate the null distri-
bution by randomly sampling r transformations from Gn, then applying each to the
data and calculating the test statistic for the transformed data. Suppose the sample
is taken with replacement from the group. Let the test statistic evaluated on the
original data be Tn(x), and let the values of the statistic applied to the transformed

2Search sets chosen deterministically also give the correct level, but may miss regions of the
search space.

3Romano [140] showed that for the bootstrap, either way of selecting search sets results in tests
that have the correct asymptotic level under quite general conditions.
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data be (Tn(g1(x)), . . . , Tn(gr(x))). If the null hypothesis is true, then Tn(x) is drawn
from the same distribution as the elements of (Tn(g1(x)), . . . , Tn(gr(x))). The choices
of transformations, given n and r, are independent of the data and of each other.
Thus the elements of the concatenated vector (Tn(x), Tn(g1(x)), . . . , Tn(gr(x))), con-
ditional on X ∈ {x, g1(x), . . . , gr(x)}, are independent and identically distributed if
the null is true. If the sample of transformations is taken without replacement, the
random vector is exchangeable. In either case, under the null hypothesis, the proba-
bility that Tn(x) is one of the k largest elements of the vector is k/(r + 1) (provided
there are no ties), since r+ 1 is the length of the vector. So if Tn(x) is the kth-largest
element of the vector, k/(r + 1) gives an approximate P -value for the test that uses
all transformations in the group [80].
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Appendix B

R code for test of exchangeability

# Input catalog with columns "longitude"; "latitude"; "times"

catalog = read.table(file.choose(),header=T)

# Find catalog length

n = nrow(catalog)

# Sort in time order

catalog=catalog[order(catalog$times),]

# Extract ranks (assume no ties)

x.rank = rank(catalog$longitude)

y.rank = rank(catalog$latitude)

# Find empirical distribution of spatial ranks

xy.upper = matrix(NA,n,n)

for(I in 1:n){

for(J in 1:n){

xy.upper[I,J] = sum((y.rank<=y.rank[I])*(x.rank<=x.rank[J]))

}

}

# xy.upper[I,J] is the number of points

# with y <= y[i], x <= x[j]

# y is row, x is column
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### Distance function

distfind <- function(x.rank,y.rank,xy.upper){

n = length(x.rank)

# Set some stuff to zero

teststat = 0

xyz.temp = matrix(0,n,n)

# xyz.temp is the number of points

# with y <= y[i], x <= x[j], z <= Z

# i.e. empirical distribution at time Z

# Now go through search space chronologically

# update xyz.temp

# find the max; check the min isn’t close; if it is, look around

# this is where we really want to minimise the number of operations

for(Z in 1:n){

xyz.temp = xyz.temp + (y.rank>=y.rank[Z])%*%t(x.rank>=x.rank[Z])

dist.matrix = xyz.temp/n-xy.upper/n*Z/n

teststat = max(teststat,abs(dist.matrix))

}

return(teststat)

}

teststat = distfind(x.rank,y.rank,xy.upper)

# Number of perms

N = 10000

permustat = rep(NA,N)

### It’s permuting time

for(permu in 1:N){

o=sample(n)

x.perm = x.rank[o]

y.perm = y.rank[o]

xy.perm = xy.upper[o,o]

permustat[permu] = distfind(x.perm,y.perm,xy.perm)
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}

# P-value

mean(permustat>=teststat)
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Appendix C

Proof of the optimal predictor
lemma

This is a proof of the lemma in section 5.2.3.

Proof of (i): Existence

Let

τ−(Λ) = E

[
1

T

∫ T

0

1(λ(t) > Λ)dt

]
.

This is non-increasing and right-continuous, with 0 ≤ τ−(Λ) ≤ 1.
Let

τ+(Λ) = E

[
1

T

∫ T

0

1(λ(t) ≥ Λ)dt

]
.

This is non-increasing and left-continuous, with 0 ≤ τ+(Λ) ≤ 1.
Given 0 ≤ τ ≤ 1, there is a unique Λ such that τ−(Λ) ≤ τ ≤ τ+(Λ). The following

function satisfies (5.7):

Ht =


1 when λ(t) > Λ
τ−τ−(Λ)

τ+(Λ)−τ−(Λ)
when λ(t) = Λ

0 when λ(t) < Λ.

(C.1)

The process Ht is previsible because λ is previsible.

Proof of (ii): Sufficiency

Suppose that Ht satisfies (5.7) and (5.9). Let H∗t be some other previsible function
satisfying (5.7). Let S+ be the set for which H > H∗. For all {t, ω} in this set,
Ht > 0 and λ(t) ≥ Λ. Let S− be the set for which H < H∗. For all {t, ω} in this set,
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H∗t (ω) > 0 and λ(t) ≤ Λ. Note that∫
S+∪S−

Ht dµ =

∫
S+∪S−

H∗t dµ.

The difference in the expected number of events that occur during alarms is

E

[∫ T

0

Ht dN(t)

]
− E

[∫ T

0

H∗t dN(t)

]
= E

{∫ T

0

[Ht −H∗t ] dN(t)

}
= E

{∫ T

0

[Ht −H∗t ]λ(t)dt

}
=

∫
S+∪S−

[Ht −H∗t ]λ(t)dµ

Now, ∫
S+

[Ht −H∗t ]λ(t)dµ ≥ Λ

∫
S+

[Ht −H∗t ] dµ

and ∫
S−

[H∗t −Ht]λ(t)dµ ≤ Λ

∫
S−

[H∗t −Ht] dµ.

So ∫
S+∪S−

[Ht −H∗t ]λ(t)dµ ≥ Λ

∫
S+∪S−

[Ht −H∗t ] dµ

≥ 0.

Proof of (iii): Necessity

Suppose that some previsible H∗t maximises (5.6) subject to (5.7). Let Ht sat-
isfy (5.7) and (5.9). Let S+ be the set for which H > H∗ and S− be the set for which
H < H∗. Define the set S as

S = (S+ ∪ S−) ∩ {t, ω : λ(t) 6= Λ}. (C.2)

Then ∫
S+∪S−

(Ht −H∗t )(λ(t)− Λ)dµ =

∫
S

(Ht −H∗t )(λ(t)− Λ)dµ. (C.3)

Suppose that µ(S) > 0. On S, when Ht > H∗t , λ(t) > Λ; and when Ht < H∗t ,
λ(t) < Λ. So (Ht −H∗t )(λ(t)− Λ) is strictly positive on S. Thus∫

S

(Ht −H∗t )(λ(t)− Λ)dµ > 0. (C.4)
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This implies ∫
S+∪S−

Ht[λ(t)− Λ]dµ >

∫
S+∪S−

H∗t [λ(t)− Λ]dµ (C.5)

and hence that Ht gives a larger value of (5.6) than H∗t , yielding a contradiction.
Therefore µ(S) = 0, and H∗ = H almost everywhere with respect to µ, except where
λ(t) = Λ.
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