
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Two Statistical Methods for Clustering Medicare Claims Data into Episodes of Care

Permalink
https://escholarship.org/uc/item/22p3r8rx

Author
Gibbons, Robert Lyon

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22p3r8rx
https://escholarship.org
http://www.cdlib.org/

Two Statistical Methods for Clustering Medicare Claims into Episodes of
Care

by

Robert Lyon Gibbons

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Deborah Nolan, Chair

Professor Dan Klein
Professor Martin Wainwright

Spring 2011

Two Statistical Methods for Clustering Medicare Claims into Episodes of
Care

Copyright 2011
by

Robert Lyon Gibbons

1

Abstract

Two Statistical Methods for Clustering Medicare Claims into Episodes of Care

by

Robert Lyon Gibbons
Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Deborah Nolan, Chair

Methods for clustering health care claims into episodes of care are important tools
for data analysis in evaluating health care outcomes and methods of payment. In this
research, we implement two statistical methods (1) using an ensemble classifier, Random
Forests, to estimate the strength of relationship in pairs of Medicare claims, and (2) using
a sequence model and an Expectation Maximization (EM) algorithm.

Previous researchers into episode of care clustering have implemented other meth-
ods, some based on decision rules and others based on statistical methods. Other research
in natural language processing, particularly conversation disentanglement, has developed
methods that were inspirational for the methods that we implemented in this research.

We acquired two sets of Medicare claims data, one containing claims from 2006
and 2007 for 1.9 million patients (a 5 percent sample), and the other containing claims
from 2007 and 2008 for 250 thousand patients. We tested our two statistical methods
on claims for 50 randomly selected patients who were age 65 and older, using independent
annotations by three licensed nurse practitioners. We found that the method using Random
Forests outperformed the sequence model and achieved accuracy comparable to the nurse
practitioner annotators. Future research into episode of care clustering might incorporate
more extensive data on clinical relationships and create a more flexible representation of
episode clusters, such as hierarchies and phases of care.

i

To Professors David Friedman and Leo Breiman,
U.C. Berkeley researchers and teachers whom I have greatly admired,

whose ideas have been both inspirational and enduring.

ii

Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Previous work 2
2.1 Similar methods used in Natural Language Processing 3

3 Medicare claims data 5
3.1 Medicare data used in this research . 5

4 First method for clustering Medicare claims: Pairs of line items, Random
Forests 9
4.1 Method of clustering line items . 10
4.2 Random Forests . 12

4.2.1 Implementation of Random Forests in this research 12
4.2.2 Example from Random Forests fitted model 13
4.2.3 Number of variables at each Random Forests branching step 14

4.3 Clinical Classifications Software . 14
4.4 Metathesaurus . 16
4.5 Kullback-Leibler divergence terms . 17
4.6 Modification of KL divergence terms . 20

5 Second method for clustering Medicare claims: generative model, EM
algorithm 26
5.1 Step 1: Randomly generate the starting days and diagnosis categories of new

episodes . 26
5.2 Step 2: For each new episode, randomly generate the episode as a Markov

chain . 27
5.3 Example of calculating probability of generating episodes 29
5.4 EM algorithm used to estimate parameters 31

5.4.1 Each EM iteration, episodes assigned using posterior probabilities . 31
5.5 Final assignment of diagnostic events to episodes 34

iii

6 Comparison of episodes against test set 36
6.1 Protocol for Nurse Practitioner review . 36
6.2 Comparison of review results . 37
6.3 Recall of complete episodes . 37
6.4 One-to-one accuracy . 38
6.5 Average pairwise agreement . 39
6.6 Differences in results across EM iterations 41
6.7 Differences in episodes among reviewers . 41

7 Conclusion 52

Bibliography 54

A SAS and R programs for first clustering method 57
A.1 SAS code for extracting line item pairs for same patient and provider 57
A.2 SAS code for improving estimated transition probabilities by multiplying

transition matrix . 60
A.3 SAS code for calculating SNOMED distances 63
A.4 SAS code for creating the independent and dependent variables on line item

pairs . 75
A.5 R code for fitting Random Forests model to line item pair data 84
A.6 SAS code for clustering line items into episodes of care 84

B SAS programs for second clustering method 94
B.1 SAS code for producing initial parameter estimates and updating with EM

algorithm . 94
B.2 SAS code for clustering line items into episodes of care using estimated pa-

rameters from EM algorithm . 114

iv

List of Figures

3.1 Among all 12,743 diagnoses (ordered from most to least frequent), empirical
cumulative probability distribution, for patients age 65 and older 7

4.1 For a selected patient, example of method for clustering line items into
episodes of care using weights from Random Forests 11

4.2 Example from fitted Random Forests model: Probability of same diagnosis
category given number of days between line items 13

4.3 Example from fitted model that allowed Random Forests to select the best
among all 8 variables at each branching step 15

4.4 Example from fitted model that limited Random Forests to the best of 3
randomly selected variables (out of 8 variables) at each branching step . . . 16

4.5 CCS “single-level” diagnosis groups that branch from “Diseases of the respi-
ratory system” . 22

4.6 Illustration of how we calculate SNOMED distance between diagnoses chronic
fatigue syndrome and post-varicella encephalitis 23

4.7 Among distinct pairs of ICD-9 diagnoses, proportion in the same CCS diag-
nosis category given SNOMED distance between the diagnoses 24

4.8 Improvement in estimated transition probabilities among selected hyperten-
sion, vaccine codes, using matrix multiplication 25

5.1 For a selected patient, illustration of how the second step of our statistical
model could generate three diagnostic events within an episode of care . . . 28

6.1 Example of how we calculated pairwise agreement for a selected line item . 46
6.2 Test set results across EM iterations . 47
6.3 Test set results, EM clustering look-ahead 48
6.4 Test set results, look-ahead, number of episodes 49
6.5 NP one-to-one accuracy compared to entropy 50
6.6 RF one-to-one accuracy compared to entropy 51

v

List of Tables

3.1 Among Medicare patients, mean and standard deviation of number of line
items, diagnoses, and providers during 2006-2007 6

3.2 For Medicare patients age 6t5 and older, the 10 most frequent ICD-9 diagnosis
codes . 8

4.1 Distribution of SNOMED distances between ICD-9 diagnosis code pairs . . 17
4.2 For the 6 diagnoses with the highest empirical probability conditional on

ICD-9 code 493.22 (chronic obstructive asthma), comparison of marginal
probability, conditional probability, and KL divergence term 19

4.3 For the 6 diagnoses with the highest empirical probability conditional on ICD-
9 code 493.22 (chronic obstructive asthma), comparison of KL divergence
terms using line items linked because of same provider, referring provider,
and same calendar quarter . 19

4.4 Initial estimated transition probabilities among selected hypertension and
vaccine codes, based on same provider link 20

4.5 Among providers in 5 percent sample with at least 30 patients with diagnoses
4011 and/or 4019, percent billing only one of these diagnoses 21

5.1 Calculating the probability of generating two episodes 30
5.2 Example of calculating posterior probabilities 33
5.3 Parameter estimates during EM iterations 34

6.1 Recall of complete episodes . 38
6.2 One-to-one accuracy . 39
6.3 Example of date of service numbers . 39
6.4 Average pairwise agreement within window k 41
6.5 Differences among reviewers in creating episodes 42

vi

Acknowledgments

In the course of this research, I received much valuable advice and assistance. First,
I would like to thank the members of my dissertation and exam committees, Professors
Michael Jordan, Dan Klein, Deborah Nolan, and Martin Wainwright. Professor Nolan
offered ideas and questions that led me to follow many creative avenues of thought that
greatly improved the statistical methods that we developed. The classes that I took from
Professors Jordan, Klein, and Wainwright gave me a broad understanding of statistical
learning methods that allowed me to experiment with methods of my own. I also would
like to thank Professor Russ Cucina from the University of California, San Francisco, for
his advice on sources of data to reveal clinical relationships between diagnosis codes.

I also would like to thank the three nurse practitioners who worked with me on
this research, Karen Hipkins, Eve Korshak, and Alice Sun. They took on the complex task
of annotating episodes of care for a sample of patient records, and they also offered many
valuable insights about the complex clinical issues that arose from those annotations.

I am truly grateful to my wife Sharon and my two sons, Ben and Peter, for their
patience through the long and intense journey that this research project became.

1

Chapter 1

Introduction

There is much public policy interest in effective methods for grouping health insur-
ance claims into episodes of care. These methods have important roles in paying for health
care and evaluating treatment outcomes. For example, many payers of health insurance
claims base payments on a fee-for-service approach, which can lead to overuse of services.
An alternative, based on paying for performance, might involve identifying providers who
play important roles in patients care and measuring the outcomes of that care based on
episodes(Davis, 2007; Macurdy et al., 2008; Damberg et al., 2009).

In this paper, we present two methods for grouping Medicare health insurance
claims into episodes of care. The first method uses a classification algorithm, Random
Forests, to estimate the strength of relationship between pairs of diagnoses. This method
then uses these results to cluster each patient’s diagnoses and dates of service into episodes
of care. The second method uses a statistical model to approximate the process by which
physicians and other medical providers generate diagnosis codes in health insurance claims.
The method uses the Expectation Maximization (EM) algorithm to estimate parameters of
the model. In this work, we go on to describe tests that we performed using Medicare claims
data to evaluate how effectively these methods work to group the claims into episodes.

For a random sample of 50 patients, we used several measures to compare episode of
care clusters based on annotations by three nurse practitioners, our two statistical methods,
and two more basic methods. We found that our first method (Random Forests) produced
results that were comparable to the nurse practitioner annotations, while our second method
(EM algorithm) did not perform quite as well.

2

Chapter 2

Previous work

A patient’s set of medical conditions over a time period are typically referred to
as “periods of illness”, which are further divided into “episodes of care”. An episode of
care is usually defined as a sequence of diagnostic and therapeutic encounters from one or
more providers for a specific medical condition (Solon, 1967; Damberg et al., 2009). Most
computerized methods for grouping health insurance claims into episodes of care have used
decision rules rather than statistical models. These decision-rule methods have primarily
consisted of the following components:

• A classification table that groups diagnoses into disease categories

• For each disease category, a time threshold such that, within the same category, a
new episode begins if the elapsed time without a health care encounter exceeds the
time threshold

• For diagnoses that are not part of disease categories, a method for assigning these to
episodes

For example, Cave (1995) classified diagnoses into 125 disease categories. Each
disease category was associated with a time threshold (such as 60 days for chest pain and
365 days for hypertension). Health insurance claims with diagnoses that fell into the same
disease categories were grouped into the same episodes of care, except that a new episode
was created if the gap between health care events exceeded the time threshold for that
disease category. Finally, each unassigned event that occurred during an existing episode
was assigned to that episode. If the unassigned event occurred during more than one
episode, the event was assigned to the episode with the highest risk, based on an “expected
resource intensity” scale.

Another study (Brailer and Kroch, 1999) used a very similar approach, using 214
disease categories to group International Classification of Diseases (ICD-9) diagnoses. These
214 disease categories were developed through a sequence of academic physician panels. In
this study, researchers examined the effects of adjusting the time thresholds for breaking
disease category groupings into episodes based on gaps in time. These researchers found that
when the time thresholds were extended, episodic care, in which treatment was provided
intermittently, was grouped into longer episodes.

3

A quite recent study (Biermans et al., 2008) developed a method to group diagnoses
into episodes of care based on decision rules applied to the time sequence of health care
events. The first diagnosis in the time sequence was assigned to the first episode. Subsequent
health care events were either linked to the first episode or began new episodes based on a
decision table developed by physicians. If these decision tables did not assign all diagnoses to
episodes, assignments could be made based on previously hand-labeled cases. An unassigned
health care event would be grouped with an event that had been assigned to an episode
based on the proportion (among the subset of hand-labeled cases with attributes similar
to the unassigned event) that had been assigned to that type of episode. The following
is an example from this study. Consider a patient with unassigned diagnosis “fainting”
and previously assigned diagnosis “hypoglycemia”. The “fainting” event would be assigned
to the same episode as the “hypoglycemia” event because in the hand-assigned data there
were 15 patients with this pair of diagnoses, of which 8 patients (53 percent) had this pair
hand-labeled into the same episode, which exceeded the cutoff (for this kind of pairwise
decision rule) of 48 percent used by the researchers. These cutoff points were determined
by optimizing the current grouping in the hand-assigned data (which was used as training
data).

In contrast to the rule-based methods described above, a recent study (Son et al.
2008) uses statistical models to group health care events into episodes. This study uses
a supervised method, requiring training data in which the episodes of care were correctly
labeled. Instead of just one statistical model, this method used three models: (1) a “local
model” that relates each health care encounter to the type of episode, (2) a “cohesion model”
that captures the probability that a pair of health care encounters will appear in the same
episode, and (3) an “evolutionary model”, which incorporates the probability within an
episode of the next health care encounter given the encounters in the episode so far. Each
of these models produces a cost function. The three cost functions are combined, and finally,
simulated annealing is used, beginning from some starting configuration (and its associated
cost function), new configurations are generated. If the new configuration lowers the cost,
then the new configuration replaces the old. Otherwise, the new configuration replaces the
old with some small probability, which decreases to zero according to a “cooling schedule”.

2.1 Similar methods used in Natural Language Processing

The process of clustering health care events into episodes of care is quite simi-
lar to the natural language processing (NLP) task of conversation disentanglement (also
referred to as “conversation threading”), for which there has been some quite recent re-
search. Natural language processing involves teaching computers to process language, such
as translating text between languages, answering questions posed by internet users, rec-
ognizing and translating speech, analyzing sentence structure, and many other language
tasks. In conversation disentanglement, researchers attempt to cluster text (such as chat
room transcripts) or speech into separate conversations. The units to be clustered consist
of sentences or groups of sentences (“utterances”) from the same speaker. There has been
even more research into the broader task of topic segmentation, but the statistical models
often used in topic segmentation do not have to account for temporal overlap among the

4

segments.
One research team (Elsner and Charniak, 2008) initially tried to develop a Bayesian

generative statistical model, but abandoned this (because the choice of prior had too much
influence) in favor of a “graph partitioning” approach. This approach first classified mes-
sage pairs into “alike/different”, then found a corresponding graph partition into clusters.
Another research group (Wang and Oard, 2009) developed a similarity measure based on
several features (temporal distance, word similarity, and name references to other partici-
pants in the message stream) and then used an agglomerative clustering approach to decide
iteratively whether to add messages to existing clusters (conversations) or start new clusters.

5

Chapter 3

Medicare claims data

In this research, our statistical model used Medicare health insurance claims.
Medicare is a health insurance program in the United States for the elderly and severely
disabled. As of calendar year 2008, there were 43 million beneficiaries enrolled in Medicare,
of whom 38 million were age 65 and older. The Medicare insurance benefit is divided into
four parts. Part A (hospital insurance) covers inpatient hospitalizations, hospice care, and
short-term care in a nursing home following an inpatient hospitalization. Part B covers all
other outpatient care, such as physician services, laboratory, and durable medical equip-
ment. Medicare beneficiaries can enroll in one of the Medicare managed care plans, which
is covered under Part C. Most prescription drugs are covered under Part D, a relatively new
benefit that began in January 2006.

3.1 Medicare data used in this research

The Medicare Carrier files consist of claims for payment (under Medicare Part B)
that are submitted to Medicare contractors by physicians and most other non-institutional
providers. Each claim lists one or more line items, which in turn are comprised of one or
more services (usually one service). The following is a description of the data that we relied
on in our research.

For this research, we primarily used Medicare Part B claims submitted by physi-
cians, laboratories, and other non-institutional providers. These included all Part B non-
institutional claims except those submitted by suppliers of durable medical equipment, pros-
thetics, orthotis, and supplies (DMEPOS), which are processed separately. These claims
data are usually referred to as the ‘Carrier files’, because (until recently) the Medicare
contractors that processed these claims were known as ‘Carriers’.

These Carrier claims data contain many data elements that allow Medicare to iden-
tify the patient and provider, to determine the correct payment and co-payment amounts,
and to capture information about the service that was provided. Each Medicare claim is a
claim for payment from one provider for one or more services rendered to a single patient.
These claims must be submitted by the end of the calendar year following the year in which
the service was rendered. Each Medicare claim is comprised of one or more ‘line items’,
which are distinct services provided by a provider to a patient, usually on a single day. For

6

Quantity (per patient) Mean Standard deviation
Line items 83.2 98.8
Line-item diagnoses 19.7 16.0
Providers 14.8 13.8

Table 3.1: Among Medicare patients, mean and standard deviation of number of line items,
diagnoses, and providers during 2006-2007

example, if a physician sees a Medicare patient for an emergency department ‘evaluation
and management’ service (such as HCPCS code 99282) and also performs a chest x-ray for
the same patient on the same day (such as HCPCS code 71010), the Medicare claim for
these two services will list these as two separate line items, each with a line-item diagnosis
code that corresponds to the need for each of these services.

These claims data also contain other data elements that we found useful in our
research. For example, these claims contained information that identified the provider, so
that it was possible to determine, for each patient, all of the claims that had been provided
by each provider. The claims also identified the referring provider (if any), the place of
service, and the date on which the service was provided.

We obtained several sets of Medicare claims data for this research. First, we
obtained limited datasets from the Carrier files (which include physician, lab, and other non-
institutional claims billed to Medicare part B) for services rendered during calendar years
2006 and 2007. These datasets contain all Medicare Part B Carrier claims for 1,899,249
Medicare patients, a random sample of five percent of all Medicare patients (we will refer to
this dataset hereinafter as the “5 percent sample”. Of these patients, 83 percent were age 65
or older at the time of their first Medicare claim in 2006 or 2007. These datasets contained
82,858,324 claims, which were further subdivided into 158,103,530 line items, which are the
individual service component of claims. These datasets only included the calendar quarter
of service, not the exact date of service. Table 3.1 displays several statistics regarding
the distribution of line items, line-item diagnoses, and number of providers among these
Medicare patients during 2006 and 2007.

For patients who were age 65 or older at the time of their first service in our 5
percent sample, there were 12,743 distinct values in the line-item diagnosis field. Figure 3.1
shows the empirical cumulative probability distribution in probability-rank order for these
diagnoses. As shown in this figure, most of the probability mass is accounted for by a small
portion of the diagnoses. For example, the top 100 diagnoses account for 55 percent of the
probability mass.

Table 3.2 lists the top 10 line-item diagnosis codes among patients 65 or older. As
can be seen from this table, some of these ICD-9 codes actually describe the procedure that
was performed (such as vaccination) rather than providing a diagnosis.

To obtain the exact dates of service, we requested a second collection of identifiable
Medicare data, which consisted of a simple random sample of 250,000 Medicare patients
who were enrolled in Medicare during 2007 and/or 2008 (limited to the traditional fee-for-
service program, not including Medicare managed care). Hereinafter, we will refer to this

7

0 2000 4000 6000 8000 10000 12000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative distribution function for line item diagnoses

Rank (by descending probability)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Figure 3.1: Among all 12,743 diagnoses (ordered from most to least frequent), empirical
cumulative probability distribution, for patients age 65 and older

sample of claims for 250,000 patients as the “sample of 250,000 patients” to distinguish
it from the larger “5 percent sample” that we described above. For this sample, we ob-
tained both the Carrier file (the same file as the 5 percent sample) as well as the inpatient
claims data for these patients. In addition, we obtained Medicare enrollment data, which
contained demographic information about these Medicare patients. These patients were
limited to Medicare enrollees where were age 65 or older as of January 1, 2007. Of these
250,000 patients, we determined from the enrollment data that 223,137 had been contin-
uously enrolled in Medicare during all of 2007 and 2008. We then randomly partitioned
these 223,137 patients into a “test set” consisting of 22,313 patients and a “training set” of
200,824 patients. For these 223,137 patients, there were 21,044,533 Carrier line items for
service dates during 2007 and 2008.

8

EmpiricalDiagnosis
probability

250.00 Diabetes without mention of complication 0.031
401.1 Essential hypertension, benign 0.024
401.9 Essential hypertension, unspecified 0.023
427.31 Atrial fibrillation 0.021
272.4 Other and unspecified hyperlipidemia 0.018
V04.81 Need for vaccination: influenza 0.018
414.01 Coronary atherosclerosis of native coronary artery 0.013
786.50 Chest pain, unspecified 0.013
V58.61 Long-term (current) use of anticoagulants 0.012
285.9 Anemia, unspecified 0.012

Table 3.2: For Medicare patients age 6t5 and older, the 10 most frequent ICD-9 diagnosis
codes

9

Chapter 4

First method for clustering
Medicare claims: Pairs of line
items, Random Forests

In this method, we clustered the line items for each patient into episodes of care
based on weights associated with pairs of line items. These edge weights estimated the
strength of relationship between the characteristics of the line item pairs. We estimated
these weights using an ensemble classifier, Random Forests, with input features (derived
from the Carrier data and other sources) that were defined on the line item pairs. This
method is explained in detail below.

One ideal method for training Random Forests on line item pairs would have been
to use training data in which, for each pair, we were given a variable that would indicate
whether the line items were in the same episode of care. However, we did not have such
an indicator variable. As a proxy, we used an indicator variable that showed whether the
line items in the pair were in the same diagnostic category, as determined using software
developed by the U.S. Agency for Health Care Research and Quality (AHRQ). In the
Medicare Carrier data that we received (both our 5 percent sample and our sample of
250,000 patients), many of the diagnosis codes could be combined into categories using
Clinical Classifications Software (CCS), which is maintained by AHRQ. We used these
diagnosis categories to train Random Forests on pairs of line items, using “same diagnosis
category” as the dependent variable The CCS software and Random Forests are described
in more detail in Section 4.3 and Section 4.2 respectively. The independent variables that
we used in Random Forests are listed below.

• Number of days between line items (absolute value)

• Were both line items billed by the same provider?

• Did one of the line items list the provider of the other line item as the referring
provider?

• Was either procedure code on a list (which we developed) of procedures that do not

10

contain information about the most likely diagnoses? For example, most office visits
are on this list, but not a prostate-specific antigen test.

• SNOMED1 distance between diagnoses, with values in {0, 1, 2, 3, 4}

• SNOMED distance between procedure codes, with values in {0, 1, 2, 3, 4}

• minimum of: SNOMED distance between diagnosis for first line item and procedure of
the second, and SNOMED distance between diagnosis for second event and procedure
for the first, with values in {0, 1, 2, 3, 4}

• Kullback-Leibler (KL) divergence term for the diagnoses for these line items

The SNOMED distance is defined in Section 4.4, which describes the Unified
Medical Language System (UMLS) Metathesaurus. The KL divergence terms are defined
in Section 4.5.

4.1 Method of clustering line items

After we produced a fitted model using Random Forests algorithm, we clustered
patients’ line items into episodes of care. First, we created a database of all pairs of distinct
line items. For each pair of line items, we assigned a weight in [0,1] as follows. If the
diagnoses were in the same CCS diagnosis category, we assigned a weight of 1. Otherwise,
we assigned the probability from the fitted Random Forests model, based on the features for
the pair of line items. We then clustered line items into episodes using the agglomerative
clustering algorithm described below. We performed this clustering separately for each
patient.

Notation used in this section
Xi,j line item j for patient i
Ci,j,t cluster that line item Xi,j is a member of at iteration t

Li number of line item pairs for patient i
wa,b edge weight between line items a and b

W edge weight threshold used for allowing clusters to join
V threshold for difference in days between two line items

Let Xi,j denote line item j for patient i. Consider these line items as nodes in
a graph. Let Li be the number of all line item pairs (counting each of the two orderings
only once) for patient i. Then for a pair of line items Xi,j and Xi,k, let wi,j,k be the edge
weight between the line items, as assigned based on Random Forests and the CCS diagnosis
categories, as described above. Let Ci,j,t denote the cluster that Xi,j is a member of at
iteration t, for t ∈ {0, 1, . . .}.

1This research includes SNOMED Clinical Terms(R) (SNOMED CT (R)) which is used by permission
of the International Health Terminology Standards Development Organisation (IHTSDO). All rights re-
served. SNOMED CT (R) was originally created by The College of American Pathologists. ”SNOMED”
and ”SNOMED CT” are registered trademarks of the IHTSDO.

11

Example of clustering method

The pair (a,c) is selected, and in each pair (a,e) and (b,d), line

items are farther apart in days than threshold V. Therefore,

the average edge weight for this join =

4

ac ad bc bew w w w  

`
a

`
b

`
c

`
d

`
e

acw

bcw

adw

bew

Figure 4.1: For a selected patient, example of method for clustering line items into episodes
of care using weights from Random Forests

At t = 0, start with each line item in its own cluster. Choose a weight threshold
W , which will constrain the clustering process to highly linked events.
Let S1, S2, . . . , SLi be the set of line item pairs in descending order by edge weight, and for
the same edge weight, sort in ascending order by the difference in days, with any further
ties broken randomly. Do iterations t = 1 to Li. Let St = (Xi,j , Xi,k). From the previous
iteration t− 1, these line items are in clusters Ci,j,t−1 and Ci,k,t−1. Consider these clusters
as fully connected graphs, with the line items as nodes. If these two line items are not
already in the same cluster, that is, if Ci,j,t−1 6= Ci,k,t−1, then join these two clusters only if
the average of weights on the newly created edges (the edges that were not in Ci,j,t−1 and
Ci,k,t−1) is at least W . In calculating this average, we exclude edges for line item pairs that
are more than V days apart (this seems to improve clustering for chronic conditions). This
process of joining clusters is illustrated in Figure 4.1. The algorithm on which our final
results are based used V = −1, which allowed a pair of clusters to join based on the largest
of edge weights between pairs of items (with one item from each cluster).

12

4.2 Random Forests

The Random Forests algorithm, which was developed by Leo Breiman and Adele
Cutler (Breiman 2001) is an ensemble classifier that expands on Breiman’s earlier work on
Classification and Regression Trees (Breiman et. al. 1984). The original CART algorithm
produced a binary classifier by iteratively subdividing the data, each time choosing an exist-
ing subdivision, a single variable from among the independent variables, and a splitting point
from among the values of that variable. Each of these subdivisions is referred to as a “node”,
and the variable and splitting point are chosen to minimize some measure of “node impurity”
such as the Gini index of diversity, which for a node t is defined as i(t) =

∑
j 6=k p(i|t)p(j|t),

where the sum is taken across the categorical outcomes. For binary classification, with
outcome in{0, 1}, this reduces to i(t) = 2p(0|t)p(1|t). Therefore, if CART is using the Gini
index to evaluate splitting node t into two nodes tL and tR, the reduction in the Gini index
for binary classification will be 2 (p(0|t)p(1|t)− (p(0|tL)p(1|tL) + p(0|tR)p(1|tR))). In devel-
oping the CART algorithm, the authors also introduced enhancements to the basic method-
ology such as “pruning” fully-grown CART trees (which performed better than introducing
stopping rules), combining independent variables, and offering methods for dealing with
missing values.

For each classification tree, the Random Forests algorithm introduces random
selection into the original CART algorithm in two ways:

• The classification tree is based on a bootstrap sample of observations.

• At each branching step, a random subset of variables are selected as branching can-
didates.

These randomly generated classification trees are generated for a user-defined num-
ber of times, and then a final classification is produced for each observation based on
majority of votes among trees. Alternatively an average among trees can produce class
probabilities for each observation.

The Random Forests algorithm has been used in a wide range of research projects.
For example, Xu and Jelnick (2004) used Random Forests as an alternative to an n-gram
model for predicting the next word in a document given n-1 previous words. Pang et.
al. (2006) used Random Forests for evaluate which “pathways” (sets of genes) were most
strongly correlated with phenotype and clinical outcomes. Guo et. al. (2004) used Random
Forests to predict whether software modules were defective.

4.2.1 Implementation of Random Forests in this research

From our training subset of the sample of 250,000 patients, we generated all pairs
of line items (where each of the two orderings was generated only once). This resulted in a
dataset containing 1,843,232,546 line item pairs. Because this seemed larger than we could
reasonably use with Random Forests, we used a collection of random samples, as described
below.

We randomly partitioned this dataset of 1,843,232,546 pairs into 1,000 subsets.
Next, from each of these subsets, we randomly selected a random sample of 50,000 pairs,

13

in such a way that exactly half of these pairs were for line items in the same CCS diagnosis
category. For each of these 1,000 samples, we used Random Forests (with only 5 trees)
to generate a fitted model. To produce a final fitted model, we averaged the probabilities
across these 1,000 Random Forests fitted models.

4.2.2 Example from Random Forests fitted model

Figure 4.2 shows an example from the average fitted model produced by Random
Forests (that is, the average across the 1,000 random samples as described in the previous
subsection). In this example, we are holding constant all input features except the number
of days between line items. These constant values were set to:
Same provider = No
Referring provider = Yes
SNOMED distance: diagnosis = 2, procedure = 4, diagnosis compared to procedure = 4
KL divergence term for diagnosis pair = 0

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

Example from Random Forests model

Number of days between line items

P
ro

ba
bi

lit
y

sa
m

e
di

ag
no

si
s

ca
te

go
ry

Figure 4.2: Example from fitted Random Forests model: Probability of same diagnosis
category given number of days between line items

14

As shown in the figure, based on the fitted model from Random Forests, the prob-
ability that the diagnoses are in the same CCS category drops steeply when the difference
in days is near zero, then levels off with increasing difference in days.

4.2.3 Number of variables at each Random Forests branching step

As described earlier in this section, the Random Forests algorithm allows the user
to specify the number of randomly selected variables that will be branching candidates at
each step of producing the classification tree. While we were fitting the Random Forests
model, we noticed that this choice of number of variables has an important effect on the
resulting model, as illustrated in Figure 4.3 and Figure 4.4. As in our previous Random
Forests example, we are holding most of the variables constant at the values listed below,
allowing the KL divergence terms to vary within each figure.
Same provider = Yes
Referring provider = No
SNOMED distance: diagnosis = 4, procedure = 4, diagnosis compared to procedure = 4
Number of days between line items = 0

In Figure 4.3 we allow Random Forests to select the best branching variable from
among all 8 variables, while in Figure 4.4, Random Forests randomly selects at each step only
3 of the 8 variables as branching candidates. It appears that limiting the random selection to
only 3 variables substantially improves the resulting model, because the probability function
is much smoother with respect to increasing KL divergence term.

4.3 Clinical Classifications Software

We used the 2010 Clinical Classifications Software (CCS) as a preliminary indicator
of clinical similarity between diagnosis codes. This software was developed over many years
by the Agency for Healthcare Research and Quality (AHRQ), which is an agency of the
United States government. This software maps more than 14,000 ICD-9 diagnosis codes
and more than 3,900 procedure codes into clinically coherent groups. The software was
developed as a tool for health care policy research.

The CCS software offers two distinct classification options for diagnoses. The first
“single-level” option maps each ICD-9 diagnosis into only one of 283 diagnostic groups. For
example, the following are three categories for respiratory diseases:

• Lung disease due to external agents (ICD-9 code example: Asbestosis)

• Other lower respiratory disease (ICD-9 code example: Postinflammatory pulmonary
fibrosis)

• Other upper respiratory disease (ICD-9 code example: Chronic laryngitis)

We used this “single-level” option when we trained the Random Forests algorithm.
In the later descriptions of our two algorithms and results, whenever we refer to a “CCS
diagnosis category”, we always will be referring to this single-level option.

15

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

KL div terms, Random Forests, all variables

KL divergence term

P
ro

ba
bi

lit
y

sa
m

e
di

ag
no

si
s

ca
te

go
ry

Figure 4.3: Example from fitted model that allowed Random Forests to select the best
among all 8 variables at each branching step

The second “multiple-level” option maps ICD-9 codes into a branching hierarchy
of diagnostic groups, with each ICD-9 code belonging to up to four diagnostic groups in
the hierarchy. This hierarchy includes all of the single-level groups within the hierarchy,
although not always at the same branching level of the hierarchy. For example, the three
single-level respiratory disease groups listed above are part of an overall first branching-level
group “Diseases of the respiratory system” (one of 18 broad diagnosis groups at this level),
which includes 13 other groups from the single-level classification, such as “Asthma” and
“Acute bronchitis”, as illustrated in Figure 4.5. In this figure, the 13 “single-level” diagnosis
groups are contained in solid boxes, which branch off of the two diagnosis groups in the
dashed boxes. The “multiple-level” CCS classification also includes 28 additional diagnosis
groups that branch off of the 13 “single-level” groups in this figure.

16

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

KL div terms, Random Forests, 3 variables

KL divergence term

P
ro

ba
bi

lit
y

sa
m

e
di

ag
no

si
s

ca
te

go
ry

Figure 4.4: Example from fitted model that limited Random Forests to the best of 3 ran-
domly selected variables (out of 8 variables) at each branching step

4.4 Metathesaurus

One of the features that we included in the Random Forests model was the
“SNOMED distance” between two ICD-9 codes, where the distance was measured using
the Unified Medical Language System (UMLS) Metathesarus. This Metathesaurus, which
is maintained by the U.S. National Library of Medicine, consists of more than 100 med-
ical classification sets, code sets, thesauri, and lists of terms. Of these, we used only the
following four sets:

• International Classification of Diseases, 9th Edition (ICD-9)

• Systematized Nomenclature of Medicine (SNOMED)

• Current Procedural Terminology (CPT)2

2CPT codes, descriptions and other data are copyright 1966, 1970, 1973, 1977, 1981, 1983-2009 Amer-

17

SNOMED distance Number of diagnosis pairs
0 2,466
1 15,290
2 1,008,740
3 3,645,902
4 24,564,188

Table 4.1: Distribution of SNOMED distances between ICD-9 diagnosis code pairs

• Healthcare Common Procedure Coding System (HCPCS)

We used SNOMED to determine distances between pairs of ICD-9 diagnosis codes,
and similarly between pairs of CPT/HCPCS codes (which we will refer to as “procedure
codes”) and between diagnosis code - procedure code pairs. In the Metathesaurus, each
diagnosis code was assigned to a concept, which also corresponded to a SNOMED code.
For example, the ICD-9 code 78071 (Chronic fatigue syndrome) is assigned in the Metathe-
saurus to concept code C0015674, for which there is SNOMED element for “Chronic fatigue
syndrome”. The SNOMED classification also defines relationships among elements. For ex-
ample, chronic fatigue syndrome has a relation labeled “is a” to the SNOMED element
“Post-viral disorder”, for which the SNOMED concept corresponding to ICD-9 code 0520
(Post-varicella encephalitis) also is linked via an “is a” relationship. Thus the ICD-9 codes
78071 and 0520 are linked through a path of length 2, as illustrated in Figure 4.6. Since
there is not a shorter path, we assign a distance of 2 to the sibling relationship between
these two ICD-9 codes. Some ICD-9 codes are assigned to the same concept in the Metathe-
saurus, so these are assigned a distance of 0, while parent-child relationships in SNOMED
are assigned a distance of 1.

There are more than 14 thousand distinct diagnosis codes, so there are more
than 196 million ordered pairs of diagnoses. Of these, Table 4.1 shows the distribution of
SNOMED distances (calculated as above) up to a distance of 4.

As the SNOMED distance between pairs of diagnoses increases, the proportion of
these pairs that are in the same CCS category decreases, as shown in Figure 4.7. Therefore,
SNOMED distance is likely to perform well in determining the strength of relationship
between pairs of health care encounters for the same patient, based on the diagnoses.

4.5 Kullback-Leibler divergence terms

Similar to collocation methods in natural language processing, we used statistics
regarding pairs of line item diagnoses for the same patient and provider (where “same
patient and provider” is the relationship that we substituted for NLP collocation). In NLP,
these collocation methods use information about the frequency of words or phrases that are

ican Medical Association. All rights reserved. CPT is a registered trademark of the American Medical
Association.

18

in a specified relationship to one another (such as adjacent) to produce estimates about the
underlying joint probability distributions of these words or phrases.

From our 5 percent sample data, we created a dataset containing all ordered pairs
of line items that were billed for the same patient by the same provider. We excluded pairs
where the line items were identical, but we included pairs where the line item was different
(such as different dates of service) but the diagnosis was identical. For this analysis, we
only included physician, nurse practitioner, and physician assistant claims.

Notation used in this section
L number of distinct diagnosis codes
M number of ordered pairs of line items
(Yi, Zi) a pair of diagnosis codes from the ith pair of line items
dj diagnosis code j from the set of distinct ICD-9 codes
Nj Among the M ordered diagnosis pairs (Yi, Zi), number of pairs

with first diagnosis Yi = dj

Let M be the number of these ordered pairs of line items, and let (Yi, Zi) denote
the line item diagnoses from the ith of these ordered pairs. Suppose that there are L distinct
ICD-9 diagnosis codes, labeled {d1, . . . , dL}. Then if we let Nj =

∑M
i=1 1Yi=dj

be the number
of pairs with the first element equal to diagnosis dj , we then can calculate

pjk =
∑M
i=1 I ((Yi, Zi) = (dj , dk))

Nj

where I() is the indicator function. That is, pjk is the empirical conditional probability
that the second diagnosis is dk given that the first diagnosis is dj . Similarly, we calculate
the empirical marginal probability

qk =
∑M
i=1 I (Zi = dk)

M

Finally, we calculate the KL divergence term rjk = pjk log
(
pjk

qk

)
.

Since our goal was to estimate the strength of relationship between diagnosis pairs,
we used these KL divergence terms rjk rather than the conditional probabilities pjk because
they appeared to be superior in capturing these relationships. This is described below.

Table 4.2 shows the (empirical) conditional probability, marginal probability, and
KL divergence term for selected “to-diagnoses”, conditional on ICD-9 code 493.22 (Chronic
obstructive asthma, with acute exacerbation). ICD-9 code 493.22 was the “from-diagnosis”
in 98,180 of our same-provider, same-patient pairs. The “to-diagnoses” in this table are the
top six diagnosis codes based on the conditional probability, including statistics for ICD-9
code 493.22 paired with itself in the first row.

The last row in this table, for benign hypertension, illustrates why the KL diver-
gence term appeared to be superior to the conditional probability in estimating the strength
of relationship between diagnosis codes. Some diagnoses such as hypertension appeared fre-
quently overall (as reflected in the marginal probability), and this frequent appearance

19

Marginal Conditional KL divergenceDiagnosis
probability probability term

493.22 Chronic obstructive asthma, with acute
exacerbation

0.00015 0.21929 1.592

496 Chronic airway obstruction 0.00977 0.05853 0.105
493.20 Chronic obstructive asthma, unspecified 0.00044 0.04676 0.217
491.21 Chronic obstructive bronchitis, with
acute exacerbation

0.00261 0.03280 0.083

493.90 Asthma, unspecified 0.00251 0.02472 0.056
401.1 Essential hypertension, benign 0.03062 0.02072 -0.008

Table 4.2: For the 6 diagnoses with the highest empirical probability conditional on ICD-9
code 493.22 (chronic obstructive asthma), comparison of marginal probability, conditional
probability, and KL divergence term

Same Referring Same calendarDiagnosis
provider provider quarter

493.22 Chronic obstructive asthma, with acute
exacerbation

1.592 0.052 0.557

496 Chronic airway obstruction 0.105 0.156 0.124
493.20 Chronic obstructive asthma, unspecified 0.217 0.005 0.029
491.21 Chronic obstructive bronchitis, with
acute exacerbation

0.083 0.070 0.111

493.90 Asthma, unspecified 0.056 0.017 0.039
401.1 Essential hypertension, benign -0.008 -0.002 -0.004

Table 4.3: For the 6 diagnoses with the highest empirical probability conditional on ICD-9
code 493.22 (chronic obstructive asthma), comparison of KL divergence terms using line
items linked because of same provider, referring provider, and same calendar quarter

resulted in high conditional probabilities even where the “from-diagnosis” apparently was
clinically unrelated.

Table 4.2 only shows results based on same-provider links, but the Medicare claims
data contained a number of other possible link choices. For example, we could have linked
claims by referring provider (for the same patient, one line item lists a referring provider,
which appears as the provider on another line item), and temporal links (for the same
patient, two line items from different claims have dates of service in the same calendar
quarter).3 As illustrated in Table 4.3, the resulting KL divergence terms resulting from
these alternative linking methods were somewhat different from those resulting from same-
provider links.

3In the 5 percent sample data, we did not have the date of service, only the calendar quarter of service.

20

Diagnosis i Diagnosis j Transition probability pij
4011 4019 0.016
4011 V0481 0.023
4019 4011 0.019
4019 V0481 0.020

Table 4.4: Initial estimated transition probabilities among selected hypertension and vaccine
codes, based on same provider link

4.6 Modification of KL divergence terms

From the previous section on KL divergence terms, we let pij be the empirical
transition probability from diagnosis dj to dk. Upon examination of this transition ma-
trix, we noticed that it contained transition probabilities that apparently do not reflect the
clinical relationships among diagnoses. Perhaps these arise (1) due to small sample sizes
among pairs of diagnosis codes or (2) due to our choice of collocation data (same provider,
same patient collocations). For example, the following charts illustrate the transition prob-
abilities g̃ij among three diagnosis codes. Two of these codes are for benign hypertension
(ICD-9 code = 4011) and unspecified hypertension (4019), between which we might expect
relatively high transition probabilities, and the third is for influenza vaccine (V0481), which
we might expect to be only weakly related to the hypertension codes. However, as shown
in Table 4.4, our initial transition matrix has a slightly higher transition probability from
either of the hypertension codes to the vaccine code than in either direction between the
two hypertension codes.

We then developed a method for adjusting this preliminary transition matrix P0

based on our conjecture that the actual transition matrix P that we are estimating has an
ordering of the diagnoses (an ordering identical for rows and columns in which the most
related diagnoses are consecutive) such that P is almost the same as another matrix Q that
only has nonzero elements along a block diagonal. In other words, let Ca and Cb, with
a 6= b, be two distinct sets of diagnoses, where the diagnoses within Ca are clinically related
to one another, and similarly for Cb, but the diagnoses for Ca and Cb are not clinically
related, then the transition probabilities between Ca and Cb (and conversely between Cb
and Ca) are zero in matrix Q and nearly zero in matrix P . If we assume that Q is aperiodic,
then because Q is finite (there are finitely many diagnoses), then there exists a stationary
distribution π for Q such that π = (π1, π2, . . . πNc), where Nc is the number of these sets
of related diagnoses, and for each set Ci, πi is a stationary distribution (with at least one
nonzero element) for that block of the transition matrix Q.

In this case, if the assumption that nonzero elements exist only along a block
diagonal (given suitable ordering) is only approximately but not strictly true, we might still
improve our original estimated transition matrix by matrix multiplication. That is, there
might be some s ∈ {1, 2, . . .} such that P s0 is a better estimate for P than P0. On the other
hand, since the conjecture is not strictly true (the nonzero elements of P are not restricted
to a block diagonal), and therefore the stationary distribution τ for P is not simply the

21

Number of Percent ofBilling category
providers providers

Only diagnosis 4011 752 26.4%
Only diagnosis 4019 682 23.9%
Both 4011 and 4019 1416 49.7%
Total 2,850 100.0%

Table 4.5: Among providers in 5 percent sample with at least 30 patients with diagnoses
4011 and/or 4019, percent billing only one of these diagnoses

concatenation of the stationary distributions for diagnosis group blocks, {τi}, then for s
large, P s0 might be a worse estimate for P than P0.

Upon review of matrices P s0 for a number of values of s, it seems to us that a
relatively small value of s, such as s = 4, improves the estimated transition matrix, but the
estimate degrades for higher values of s. This is illustrated for the hypertension and vaccine
codes in Figure 4.8. For the KL divergence feature that we used as one of the inputs to
Random Forests, we used transition probabilities from matrix P 4

0 rather than P0.
It is not yet clear to us why P 4

0 is an improvement on P0. One possibility is that
much of the inaccuracy in P0 arises from small sample sizes used in producing the individual
transition probabilities, and that matrix multiplication increases the sample sizes brought
to bear on any estimated transition probability from diagnosis di to dj (because in P 4

0 , the
transition probabilities are calculated based on all paths of length 4 from di to dj , and some
of these paths might involve larger sample sizes). If this were true, that small sample sizes
explain the improvement then some smoothing method might be a more suitable solution, as
is often done in NLP applications. However, this does not explain the hypertension/vaccine
results shown above, because these codes were among the most frequently occurring in the
claims data, and so all of these estimated transition probabilities involved large sample
sizes. Another possibility is that providers were more likely to bill using only one or the
other of the two hypertension codes in this example, but seldom both. In this case, the
matrix multiplication that produced P 4

0 would increase the estimated transition probabilities
between the two hypertension codes via other diagnoses to which both hypertension codes
were strongly related, and closer examination of transition probabilities in P0 along short
paths between the hypertension codes supports this idea.

Based on the results displayed in Table 4.5, it does appear that providers are more
likely to bill using only one or the other of these two hypertension codes. We calculated
these statistics from our 5 percent sample of Medicare data, limited to physicians, nurse
practitioners, and physician assistant providers. In this table, we show that among providers
with at least 30 patients with diagnoses 4011 and/or 4019 in the 5 percent sample, 50.3
percent only billed one of the two codes for all patients in the 5 percent sample.4

4This was a 5 percent sample of patients, not providers, so that for any patient we could analyze all line
items for years 2006 and 2007, but for any provider we only could analyze a random sample of patients.

22

CCS diagnosis groups, respiratory

Diseases of the
respiratory system

COPD and
bronchiectasis

Asthma

Aspiration
pneumonitis

Pleurisy,
pneumothorax,

pulm.collapse

Respiratory
infections

Respiratory
failure,

insufficiency

Lung disease
due to external

agents

Other lower
respiratory

disease

Other upper
respiratory

disease

Pneumonia

Influenza

Acute and
chronic

tonsillitis

Acute bronchitis

Other upper
respiratory

infections

Figure 4.5: CCS “single-level” diagnosis groups that branch from “Diseases of the respira-
tory system”

23

Illustration of SNOMED distance

Chronic fatigue syndrome

(ICD-9 code = 78071)

Post-viral disorder

Post-varicella encephalitis

(ICD-9 code = 0520)

SNOMED “is a” relation

SNOMED “is a” relation

SNOMED distance

(path length) = 2

Figure 4.6: Illustration of how we calculate SNOMED distance between diagnoses chronic
fatigue syndrome and post-varicella encephalitis

24

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

SNOMED distance: Proportion in same CCS category

SNOMED distance

P
ro

po
rt

io
n

sa
m

e
C

C
S

Figure 4.7: Among distinct pairs of ICD-9 diagnoses, proportion in the same CCS diagnosis
category given SNOMED distance between the diagnoses

25

●

●

●

●

●

0 1 2 3 4

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Improvement in estimated transition probability

Power of initial matrix P_0 (log base 2 scale)

E
st

im
at

ed
 tr

an
si

tio
n

pr
ob

ab
ili

ty

● 4011 to 4019
4011 to V0481
4019 to 4011
4019 to V0481

Figure 4.8: Improvement in estimated transition probabilities among selected hypertension,
vaccine codes, using matrix multiplication

26

Chapter 5

Second method for clustering
Medicare claims: generative
model, EM algorithm

This second method used a statistical model for how Medicare line items are gener-
ated within episodes of care. In contrast, our first method did not use an explicit generative
model, but instead modeled the relationship between (1) features of line item pairs and (2)
the clinical similarity of the diagnoses within the pairs. In this second method, we used a
Monte Carlo version of the EM algorithm to estimate parameters. After estimating param-
eters, we clustered line items into episodes of care so that we approximately maximized the
probability (based on the generative model) of the resulting episode configuration.

We used the following statistical model to approximate the process by which
episodes of care, line item diagnosis categories, and dates of service are generated in Medi-
care claims data. Let t ∈ {1, . . . T} be the set of days in some time interval. In this chapter,
we will refer to a unique combination of patient, day (date of service), and diagnosis category
as a “diagnostic event ” or simply an “event”.

For each patient (independently of other patients), this generative model has two
steps: (1) randomly generate the diagnosis category and date of service combinations that
will start new episodes, and (2) for each of these new episode starts, randomly generate the
episode as a Markov chain. These two steps are described in more detail below.

5.1 Step 1: Randomly generate the starting days and diag-
nosis categories of new episodes

Let D be the number of single level CCS diagnosis categories. For each day
t ∈ {1, . . . T} and each diagnosis category i ∈ {1, 2, . . . , D}, let Xi,t be a Bernoulli random
variable such that Xi,t = 1 if and only if an episode starts on day t with diagnosis i. For
each i, we will assume that the set of random variables {Xi,t : t ∈ {1, . . . T}} are identically
distributed. During this step we will thus generate the following T ×D matrix:

27

X =

 X1,1 X1,2 . . . X1,D
...

...
. . .

...
XT,1 XT,2 . . . XT,D


This matrix of Bernoulli random variables requires TD parameters
{pit : t ∈ {1, . . . T} , i ∈ {1, . . . D}}, but because for any i ∈ {1, . . . , D} we have pit = pis for
any t, s ∈ {1, . . . , T}, we only require D parameters for which we suppress the day subscript
and simply write pi = P (Xi,t = 1) for any t.

We also assume that the larger set of random variables
{Xi,t : t ∈ {1, . . . T} , i ∈ {1, . . . D}} are independent but not necessarily identically
distributed. We realize that this assumption is not entirely realistic, but in fitting this
model to Medicare claims data we found that the estimated values of the parameters
{pi : i ∈ {1, . . . , D}} are so small that this approximation seems close enough, and it greatly
simplifies parameter estimation.

5.2 Step 2: For each new episode, randomly generate the
episode as a Markov chain

First, we number the episodes that started in step 1, with episode numbers in
{1, 2, . . . ,Ni} assigned in order by row of the matrix X , where Ni =

∑D
i=1

∑T
t=1Xi,t is the

number of episodes for this patient. For example, suppose that T = 3 and D = 2, and
suppose during step 1 we randomly generate the following matrix:

X =

 0 1
0 0
1 0


Then Ni = 2, episode 1 starts on day 1 with diagnosis category 2, and episode 2 starts
on day 3 with diagnosis category 1.

Next, for each episode m ∈ {1, . . . ,Ni} and each event number k ∈ {1, 2, . . .}, we
generate the following three random variables:

Random variable Description

Sm,k Indicates whether episode m is in the
“stopped” state at event k

Zm,k diagnosis category for episode m, event k

Tm,k date of service in {1, . . . , T} for episode m,
event k

28

This second step of the model is illustrated in Figure 5.1 for an episode that generates three
events before stopping.

i

j

Second step of generative model for episodes

2 1

Event 2 has diagnosis category and

takes place - days after event 1.

The episode does not stop at event 2.

j

t t

Description
Random

variables

,1

,1 1

,1 0

m

m

m

Z i

T t

S







,2

,2 2

,2 0

m

m

m

Z j

T t

S







k3 2

Event 3 has diagnosis category and

takes place - days after event 2.

The episode stops at event 3.

k

t t

,3

,3 3

,3 1

m

m

m

Z k

T t

S







Selected

probabilities

 ,1 ,10 1m m iP S Z i h   

 

 
2 1

,2 ,1

,2 ,1 2 1 ,1 ,

m m ij

m m m i t t

P Z j Z i g

P T T t t Z i q 

  

    

 ,1 ,31m m kP S Z k h  

1

Given starting matrix , the initial

diagnosis category for episode

is and the day is . The episode

does not stop at this initial event.

m

i t

X

Figure 5.1: For a selected patient, illustration of how the second step of our statistical model
could generate three diagnostic events within an episode of care

For the first event in the episode, that is when k = 1, Zm,1 and Tm,1 are as-
signed the starting diagnosis category and date of service given by the starting matrix X .
Then for all k ∈ {1, 2, . . .}, let hi = P (Sm,k = 1|Zm,k = i, Sm,k−1 6= 1) be the probability
that episode m stops at event k given that the episode is not already in the “stopped”
state. Also for k ∈ {1, 2, . . .}, P (Sm,k = 1|Sm,k−1 = 1) = 1, which means that once
an episode reaches the “stopped” state it remains in that state. For k ∈ {2, 3, . . .}, let
gij = P (Zm,k = j|Zm,k−1 = i) be the probability that event k of episode m has diagnosis
category j given the previous event had diagnosis category i. The collection of these diagno-
sis category transition probabilities forms a transition matrix G. Finally for k ∈ {2, 3, . . .}
and t ∈ {0, 1, . . .}, let qit = P (Tm,k − Tm,k−1 = t|Zm,k−1 = i) be the probability that the
number of days between event k − 1 and event k is t given that event k − 1 had diagnosis
category i. Combining these transition probabilities, we denote the transition probability
from one event with diagnosis category i to the next with diagnosis category j at a distance

29

Notation used in this chapter
D number of diagnosis categories
M number of dates of service in time window (M = 730 in our implementation)
K number of patients in data used to train EM algorithm
dν diagnosis category for event ν
tν date of service number for event ν
eν episode number for event ν
sν indicator for whether the episode containing event ν stopped with event ν
pj episode-generating probability for an episode that starts with diagnosis category j
hj probability that episode with latest diagnosis category j will stop at that event
gij transition probability from diagnosis category i to j
G matrix of transition probabilities gij
qik for an episode with latest diagnosis category i that will not stop at the latest event,

probability from Geometric distribution on {0, 1, . . .} (with a parameter that
depends on i) that the next event in the episode will be k days later

θ set of all parameters for this model
θ̂k in EM algorithm, estimate for θ at iteration k

X For a set of one or more patients, the observed information (diagnosis category,
date of service, patient identifiers)

Y For a set of one or more patients, the (unobserved) information about assignments
of events to episodes

t days later by fijt = qitgij .

5.3 Example of calculating probability of generating episodes

The following is an example of the calculation of the probability that three events
will be generated for one patient, in the specific configuration described below. Let t1, t2,
and t3 be days with 1 ≤ t1 < t2 < t3 ≤ M , where M is the number of days in the time
window. Suppose that the episode labels are e1 = e3 = 1 and e2 = 2. That is, the events
on days t1 and t3 are in the same episode, and the event on day t2 is starts a different
episode. We will label the diagnostic categories for these events d1, d2, and d3 respectively.
Suppose that episode 1 stops on day t3 but episode 2 continues past the last day M in our
observed time period. We denote this by letting s1 = 0, s2 = 0, and s3 = 1, where these si
are indicators for whether the corresponding episodes stopped on these days.

Then for this patient, the probability of producing this configuration,

P ((d1, t1, e1 = 1, s1 = 0) , (d2, t2, e2 = 2, s2 = 0) , (d3, t3, e3 = 1, s3 = 1))

is the product of the factors in Table 5.1.
In this table, G2,M−t2 is the cumulative distribution function (cdf) corresponding

to the Geometric probability function g for diagnosis category 2, which determines the

30

Factor Description

∏D
i=1 (1− pi)t1−1 probability that no new episodes begin dur-

ing days 1 through t1 − 1

p1
∏D
i=2 (1− pi) probability that an episode begins with diag-

nosis category 1 (and no other episodes be-
gin) on day t1

∏D
i=1 (1− pi)t2−t1−1 probability that no new episodes begin dur-

ing days t1 + 1 through t2 − 1

p2 (1− p1)
∏D
i=3 (1− pi) probability that an episode with diagnosis

category 2 (and no other episodes) begins on
day t2

∏D
i=1 (1− pi)M−t2 probability that no new episodes begin dur-

ing days t2 + 1 through day M

(1− h1) f1,2,t3−t1h3 probability that episode 1 generates a second
event on day t3 and then stops

(1− h2) (1−G2,M−t2) probability that episode 2 generates a second
event on some day after day M

Table 5.1: Calculating the probability of generating two episodes

31

number of days from an event with diagnosis category 2 to the next event in the same
episode, so that G2,M−t2 =

∑M−t2
k=0 g2,k.

5.4 EM algorithm used to estimate parameters

To estimate the parameters of this model, we used a Monte Carlo version of the
Expectation Maximization (EM) algorithm. EM algorithms often are used to estimate
parameters from models that are being fit to data in which the random variables are not all
observed. In our case, we observed variables for the patients’ diagnoses and dates of service
but not the random variables corresponding to the episode labels.

The EM algorithm is used as an approximation for estimating parameters through
the method of Maximum Likelihood. The following gives details regarding the EM algorithm
as applied to our generative model. Let X = (X1, X2, . . . , XN) be the vector of observed
random variables for a collection of N patients, and let Y = (Y1, Y2, . . . , YN) denote the
unobserved random variables. If we had observed both X and Y , we could estimate the
parameters by maximum likelihood: θ̂ ∈ supθ∈Θ logPθ (X,Y). However, since we do not
observe Y , the EM algorithm uses an iterative substitute. Let θ̂0 be some initial estimate
for θ. Then we update this parameter estimate by

θ̂k+1 ∈ sup
θ
Eθ̂k

logPθ (X,Y)

where the expectation uses the probability distribution of Y with respect to the parame-
ter estimate θ̂k from the previous iteration. In the version of the EM algorithm that we
implemented, the expectation in each EM iteration is approximated by a Monte Carlo sim-
ulation. We used a Monte Carlo simulation because of the computational complexity of
directly computing this expectation.

5.4.1 Each EM iteration, episodes assigned using posterior probabilities

As part of our Monte Carlo EM algorithm, we randomly assigned diagnostic events
to episodes based on posterior probability distributions. Specifically, for a specific patient,
suppose we have assigned the first k events in time-sequence to episodes (e1, . . . , ek). Then
we randomly assigned event k+1 to an episode based on the probability P (ek+1|e1, . . . , ek),
where here ek+1 is a random variable.

The following is a detailed example of how we calculated these posterior proba-
bilities. To show this calculation carefully, however, we will need to use a slightly more
complex alternative notation for the information that we can observe regarding diagnostic
events. We will only use this alternative notation for the calculation in this example.

Let X be a random variable representing a diagnostic event, where X contains the
following random elements:

seq(X) = time-sequence order (among all events for the same patient)
day(X) = date-of-service
diag(X) = diagnosis category
epi(X) = episode label

32

stop(X) = indicator whether the episode ended with this event

To condense this notation, we will let

I (X) = (seq (X) , day (X) , diag (X) , epi (X))

denote this set of information about X, and we will let

J (X) = (seq (X) , day (X) , diag (X) , epi (X))

be be the same information about X as I (X) but without the episode label. Because we will
only be using this notation temporarily, and we will switch back to the previous notation
partway through the example, we list below the correspondence between this temporary
notation and our usual notation about events.

If seq(X) = i, which means that for this patient, the diagnostic event is the ith in time-
sequence order, then:

day(X) = ti
diag(X) = di
epi(X) = ei

Now suppose that for our selected patient we have observed the sequence order, diagnosis
category, and dates of service for three diagnostic events X, Y , and Z, that
(seq (X) , seq (Y) , seq (Z)) = (1, 2, 3), and that in our current iteration of the Monte Carlo
EM algorithm, we have randomly assigned episode labels to X and Y . We then want to
compute P (epi (Z) = k|I (X) , I (Y) , J (Z)) for any possible episode label k. For example,
suppose (epi (X) , epi (Y)) = (1, 2). Then by Bayes’ rule:

P (epi (Z) = k|I (X) , I (Y) , J (Z)) =
P (J (Z) |I (X) , I (Y) , epi (Z) = k)∑3

m=1 P (J (Z) |I (X) , I (Y) , epi (Z) = m)

For m = 1, the conditional probability in the denominator is the product of the terms in
Table 5.2, which we can more clearly express in our original notation for events.

Once we have randomly assigned diagnostic events to episodes, we estimate pa-
rameters in preparation for the next EM iteration. If we were not using a Monte Carlo
version of the EM algorithm, our parameter estimates at iteration i+ 1 would be

θ̂i+1 = arg max
θ
Eθ̂i

logPθ (V,W)

where V denotes the observed random variables (diagnoses, dates of service, patient iden-
tifiers) and W denote the unobserved variables (episode labels, episode-stopping indica-
tors). However, calculating this expectation is computationally infeasible. The probability
Pθ (V,W) factors because of independence across patients, so that

Pθ (V,W) =
K∏
k=1

Pθ (Vk,Wk)

33

Factor Description

∏D
i=1 (1− pi)M−t2 probability that no new episodes begin dur-

ing days t2 + 1 through M

h2 + ((1− h2) (1−G2,M−t2))
h2 + ((1− h2) (1−G2,t3−t2)) probability that episode 2 (which contains

event Y) either stopped on day t2 or contin-
ues after day M , conditional on the observed
information that episode 2 either stopped on
day t2 or continued up to day t3

(1− h1) f1,3,t3−t1
h1 + ((1− h1) (1− g1,t2−t1−1)) probability that episode 1 (which contains

event X produces its next event with diagno-
sis category 3 on day t3, conditional on the
observed information that episode 1 had ei-
ther stopped on day t1 or continued up to day
t3

Table 5.2: Example of calculating posterior probabilities

34

Parameter Estimate

pi number of episodes beginning with diagnosis
category i divided by M ×K.

mean parameter for qi,. mean distance to next event in episode among
events with diagnosis category i

gij transition probabilities estimated using KL
positive-valued divergence terms

hi of events with diagnosis category i, propor-
tion that were the last event in the episode

Table 5.3: Parameter estimates during EM iterations

where K is the number of patients in the data we are using to estimate parameters using
the EM algorithm. However, for each patient, the assignment of events to episodes depends
on the previous assignments in time sequence.

Because of this computational complexity, we used a Monte Carlo simulation to
approximately calculate the parameter updates θ̂i+1. Specifically, at the i+ 1 iteration, we
randomly assigned the diagnostic events for patients in the training set to episodes using
parameters θ̂i from the previous iteration (as shown earlier in this subsection). We then
estimated parameters θ̂i+1 using statistics based on these randomly assigned episodes, as
shown in Table 5.3.

5.5 Final assignment of diagnostic events to episodes

Using the estimated parameters θ̂i that were produced by running the EM algo-
rithm for i iterations, we produced a final assignment of diagnostic events to episodes.1.
Ideally, we would have assigned events to episodes Ŵ as

ŴEM,i = arg max
W̃

logPθ̂i

(
V, W̃

)
where V denotes the observed information (diagnoses, dates of service, patient identifiers,
and W denotes the information about episode assignments). However, this is too compu-
tationally complex, so we approximated this optimum assignment by assigning events to

1For a comparison of our results across the EM iterations, see Figure 6.2

35

episodes one by one in time sequence for each patient, looking ahead some k ∈ {0, 1, . . .} to
evaluate the configuration with the maximum probability across the next k events, condi-
tional at each step on the episode assignments already made for the patient.

More formally, consider the diagnostic events for a single patient. We assign the
first event in the time sequence to episode 1, so that e1 = 1. Then for j > 1, we let τj be
the number of distinct episodes constructed for this patient so far, and then we assign ej
such that ej ∈ {1, 2, . . . , τj + 1} and

(ej , wj+1, . . . , wj+k) ∈ arg max
W̃[j,j+k]

Pθ̂i

((
V[j,j+k], W̃[j,j+k]|

(
V[1,j−1],W[1,j−1]

))
where W[α,β] = (wα, . . . , wβ).

36

Chapter 6

Comparison of episodes against
test set

To evaluate the performance of the two methods described in the previous chapters,
we compared the resulting clusters for a test set consisting of 50 patients, who were selected
using simple random sampling from the population of all patients in our identifiable file
who had at least one Carrier claim in each year of 2007 and 2008. For each patient in this
test set, the line items were manually clustered into episodes of care by each of three Nurse
Practitioners, who were working entirely independently of one another.

6.1 Protocol for Nurse Practitioner review

For each patient, reviewers were given a list of all line items for service dates in
2007-2008, with the following information:

• Patient age category (in 5-year increments)

• Patient gender

• From- and to-dates of service

• ICD-9 line item diagnosis code and description

• CPT/HCPCS procedure code and description

• Place of service

• Provider identifier and specialty

• Referring provider identifier

For inpatient claims with service dates in 2007-2008, reviewers also were given the
from- and to-dates of the inpatient stays. For each of these patients, reviewers clustered the
line items into episodes of care, which we defined as sequences of care that were coherent,

37

both in terms of the patient’s disease, injury, or reason for care and also in terms of the
process of resolving the care given to these patients by providers.

Regarding the coherence of the disease, injury, or reason for care, reviewers could
determine that a sequence of care for the same provider, even on the same date of service,
actually consisted of two or more distinct episodes, if reviewers determined that the provider
was providing care for two or more clinically distinct diseases, injuries, or reasons for care.
Regarding the coherence of the care given by providers, reviewers could determine that
a sequence of care for the same or similar diseases or injuries actually consisted of two
distinct episodes, if reviewers determined that the earlier of these sequences of care had
been completely resolved (even if the underlying condition might still be present, such as
for a chronic condition). For example, two annual flu vaccines would be contained in two
distinct episodes of care, while a series of kidney dialysis treatment visits would be clustered
into one episode.

A more difficult case involved screenings that might or might not be routine. For
example, a patient who received two glaucoma screenings as part of annual eye exams
would be considered to have two distinct episodes of care, while another patient with much
more frequent glaucoma screenings and other care related to glaucoma would have only one
episode of care for all of the care related to glaucoma.

6.2 Comparison of review results

To compare results among Nurse Practitioner reviews and our two algorithms, we
used three approaches: (1) recall of complete episodes, (2) one-to-one accuracy, and (3)
average pairwise agreement within a distance of k service dates.

We also considered whether a relatively naive model might achieve good results,
and so we included two additional models. The first model, which we will refer to as the
‘daily episode’ model, simply assigned all line items for a given patient to the same episode
if and only if they had the same date of service. The second naive model, which we will
call the ‘diagnosis category’ model, assigned all line items to the same episode if and only
if they belonged to the same AHRQ diagnosis category.

6.3 Recall of complete episodes

For a patient i ∈ {1, . . . , 50}, let Li = {1, 2, . . . , ni } be the set of all ni line items
for that patient. Then for j ∈ Li, let eTi,j and eCi,j be the episode numbers for the jth
line item for the ith patient, as reviewed by reviewers T and C respectively (which we will
consider the ‘truth’ and ‘comparison’ reviewers). Then we will determine, of the episodes
assigned by reviewer T to the line items among the 50 patients, what proportion of the
episodes assigned by T contained exactly the same line items (and no more) according to
reviewer C.

Formally, we calculate:

ST,C =
∑50
i=1

∑mT
i

j=1 g(i, j)∑50
i=1m

T
i

38

NP RF Seq. DiagCat Daily
0.413 0.466 0.398 0.455 0.303

Table 6.1: Recall of complete episodes

where mT
i is the number of episodes for patient i according to reviewer T , and g(i, j) is an

indicator function that takes the value 1 if and only if there exists an episode among the
episodes created by reviewer C that contains exactly the same line items as episode eTi,j .

To calculate average “recall of complete episodes” among the Nurse Practitioner
reviewers, we averaged the above result across the 6 possible assignments to T and C among
the 3 Nurse Practitioners, labeled NP1, NP2, and NP3 below.

Arecall
NP = SNP1,NP2+SNP2,NP1+SNP1,NP3+SNP3,NP1+SNP2,NP3+SNP3,NP2

6

Similarly, for each model M (where M is one of Random Forests model, sequence
model, daily episode model, or diagnosis category model), we calculated the average “recall
of complete episodes” by comparing the model to each of the three Nurse Practitioners,
assuming in turn that each Nurse Practitioner’s review constituted the ‘truth’.

Arecall
M

SNP1,M+SNP2,M+SNP3,M

3

As shown in the Table 6.1, the Random Forests (RF) model performed better than
the Nurse Practitioner (NP) annotations according to this measure, while the daily episode
model performed dismally. The AHRQ diagnosis categories performed nearly as well as the
Random Forests model on this measure.

6.4 One-to-one accuracy

We define this method as given in Elsner and Charniak (2010). For each patient i
and each pair of reviewers T and C, we pair episodes to maximize the number of line items
in the overlapping episodes. More formally, let PTi and PCi be partitions (that is, episode
annotations) of the line items Li from patient i according to reviewers T and C respectively.

Specifically, PTi =
{
P Ti,1, . . . , P

T
i,mT

i

}
, where each P Ti,j ⊆ Li is a subset of the line items for

patient i,
⋃mi
j=1 P

T
i,j = Li, and P Ti,j ∩ P Ti,k = ∅ for j 6= k. Similarly, PCi is a partition of line

items Li according to reviewer C. Let Fi =
{
f : PTi → PCi : f is one-to-one

}
be the set

of all one-to-one maps from the partition PTi to partition PCi . Note that the domain of f
need not be all of PTi (that is, f

(
P Ti,j

)
might not be defined for some j). Then to maximize

the number of line items in the overlapping subsets (episodes), we let

V T,C
i = max

f∈F

∑
S∈dom(f)

|S ∩ f (S)|

39

NP RF Seq. DiagCat Daily
0.781 0.760 0.705 0.708 0.325

Table 6.2: One-to-one accuracy

Line item number Date of svc. Date of svc. number
1 11 ri,1 = 1
2 26 ri,1 = 2
3 26 ri,1 = 2
4 63 ri,1 = 3

Table 6.3: Example of date of service numbers

where | · | is the cardinality of the set. Note that V T,C
i = V C,T

i because we can simply invert
the one to one maps in F , resulting in the same overlapping subsets of line items.

To complete the calculation using this method, we determine the proportion of all
line items in these overlapping subsets across all patients:

W T,C =
∑50
i=1 V

T,C
i∑50

i=1 ni

Then to compare among the Nurse Practitioner reviews, we average among the
three pairs (since W T,C = WC,T for any reviewers T and C).

Aaccuracy
NP = WNP1,NP2+WNP1,NP3+WNP2,NP3

3

and

Aaccuracy
M = WNP1,M+WNP2,M+WNP3,M

3

The results of this comparison are presented in Table 6.2.

6.5 Average pairwise agreement

In calculating this pairwise agreement, we averaged, for each patient, the pairwise
agreement of episode assignments across a moving window of width k of dates of service.
This is explained in detail below.

For a selected patient i and line item j, let Ri be the number of distinct dates of
service, to which we assign date-of-service numbers in date order as {ri,1, . . . , ri,Ri}. For
example, if a patient had four line items on the three dates of service shown in Table 6.3,
then Ri = 3 and the date-of-service numbers would be as in the far right column.

40

Next, we choose k ∈ {1, 2, . . .}, and we identify the set Bi,j,k of line items other
than j that are no more than k dates of service distant from the date-of-service of our
selected line item j. Bi,j,k can be partitioned into subsets Bi,j,−k . . . Bi,j,k such that for any
v ∈ {−k, . . . , k} , w ∈ Bi,j,v ⇒ (ri,w − ri,j) = v. That is, we have partitioned Bi,j,k into
subsets of line items with the same dates of service.

Next we average the agreement between a reviewer T and another reviewer C in
terms of pairwise episode assignments between the selected line item and all of the line
items on the date of service that is exactly v dates of service distant from the selected line
item.

βT,Ci,j,v =

∑
w:w∈Bi,j,v

I
(
I
(
eTi,j = eTi,w

)
= I

(
eCi,j = eCi,w

))
|Bi,j,v|

(6.1)

where I () is the indicator function.
This calculation of pairwise agreement is illustrated in Figure 6.1. In this figure,

we have selected line item j = 8 for patient i. If we let k = 2, then the corresponding set
Bi,8,2 consists of the line items on days 10, 14, 15, 19, and 21, except for the selected line
item j. The subset Bi,8,−2 consists of all line items on day 10 (that is, line items 2, 3, and
4). In calculating βT,Ci,8,−2, we will sum over w ∈ {2, 3, 4}. When w = 3, we have eTi,8 = 4
because reviewer T assigned line item 8 to episode 4. We also have eTi,3 = 2, so the indicator

function resolves to I
(
eTi,8 = eTi,3

)
= 0. Performing the same calculation for reviewer C leads

to I
(
eCi,8 = eCi,3

)
= 0, so we conclude that I

(
I
(
eTi,8 = eTi,3

)
= I

(
eCi,8 = eCi,3

))
= 1. When

we sum these results for w ∈ {2, 3, 4}, we conclude that βT,Ci,8,−2 = 2
3 . Similarly, βT,Ci,8,−1 = 1,

βT,Ci,8,0 = 1
2 , βT,Ci,8,1 = 1, and βT,Ci,8,2 = 1

2 .
Next we average this pairwise agreement across all dates of service that are within

k dates of service of the selected line item Xi,j

αT,Ci,j,k =
1

2k + 1

k∑
v=−k

βT,Ci,j,v (6.2)

Continuing the example from above, αT,Ci,8,2 = 1
5

(
2
3 + 1 + 1

2 + 1 + 1
2

)
= 11

15

We then average this pairwise agreement across all line items j for all patients i
in the sample.

τT,Ck =
1
50

50∑
i=1

1
ni

ni∑
j=1

αT,Ci,j,k (6.3)

Finally, to calculate these pairwise agreement among Nurse Practitioners, and also
between a selected model M and the Nurse Practitioners, we proceeded as we did for the
one-to-one episode accuracy.

Ak−pairs
NP = τNP1,NP2+τNP1,NP3+τNP2,NP3

3

and

41

k NP RF Seq. DiagCat Daily
1 0.900 0.882 0.852 0.834 0.665
2 0.900 0.882 0.852 0.834 0.663
3 0.899 0.882 0.851 0.834 0.663

Table 6.4: Average pairwise agreement within window k

Ak−pairs
M

τNP1,M+τNP2,M+τNP3,M

3

Using this pairwise agreement measurement for a range of values of k, we produced
Table 6.4.

6.6 Differences in results across EM iterations

The second method, the generative statistical model, used a Monte Carlo EM
algorithm to estimate parameters. As shown in Figure 6.2, the 50 patient annotations
using this method seem to perform best by about 5 or 6 EM iterations, although the initial
parameter estimates (at iteration 0) were almost as good. Although it is quite possible for
this EM algorithm to reach a sub-optimal local maximum, it also is possible that our initial
parameter estimates were quite good for this model, because they were based on transitions
within CCS diagnosis categories using our database of Medicare claims for 250,000 patients.

In this second method, once we estimated parameters using the EM algorithm,
we clustered line items into episodes for the 50 patients in our test set to approximately
maximize the probability of the episode configuration, as described in Section 5.5. We did
this separately for each patient, evaluating line items in time sequence and looking ahead
some k ∈ {0, 1, . . .} events to calculate the maximum configuration probability including
these k events. Although we expected the test results to improve for k larger, we actually
did not see much change (in fact a small decline) in the test results as we increased k from
0 to 3. This is shown in Figure 6.3.

Increasing values of k also corresponded to decreasing number of episodes created
using this method, as shown in Figure 6.4.

6.7 Differences in episodes among reviewers

The nurse practitioner reviewers differed somewhat in the number of episodes that
they created among the 50 patients in the test set, as shown in Table 6.5. In this table,
the episode entropy measures the dispersion of line items among episodes according to a
selected reviewer T : −

∑ET

j=1 q
T
j log qTj where qTj is the proportion of line items (for all 50

patients) that are contained in episode j as assigned by reviewer T , and ET is the number
of episodes created by reviewer T .

Based on the one-to-one accuracy metric, reviewers differed in their assignments
of line items to episodes primarily because of differences in how they dealt with patients

42

Reviewer Number of episodes Episode entropy
A 510 5.09
B 552 5.33
C 708 5.48

Table 6.5: Differences among reviewers in creating episodes

with more complex diagnosis combinations. As shown in Figure 6.5 and Figure 6.6, both
reviewer and the Random Forests sequence model were more accurate for patients with
lower entropy, where entropy was measured as the extent of dispersion of line items among
the CCS diagnosis categories: −

∑mi
j=1 pi,j log pi,j , where mi is the number of diagnosis

categories for patient i and pi,j is the proportion of line items from patient i that are in
CCS diagnosis category j.

The following are several examples of patients for whom the nurse practitioners
substantially differed in assigning line items to episodes.

Example 1

For this patient, approximately half of the line items were for diagnoses for lower
leg conditions, such as:

1. pain in joint, lower leg (ICD-9 = 71946)

2. osteoarthritis of lower leg (71516)

3. displacement of the big toe (Hallux Valgus, 7350)

4. effusion of joint, ankle and foot (71907)

The dates of service for these conditions were in general scattered throughout the two-year
period. All three reviewers grouped {1, 2} together, as well as 3,4, but only one of the
reviewers created a single episode {1, 2, 3, 4}, while the other two reviewers created two
episodes.

Example 2

For this patient, the reviewers diverged in assigning episodes for two conditions
that comprised a substantial percentage of the patient’s line items. First, the patient had
atherosclerosis and ischemic heart disease, which appeared in the data with line-item di-
agnoses such as “coronary atherosclerosis” (ICD-9 = 41401) and “intermediate coronary
syndrome” (4111), as well as (on electrocardiogram procedure line items) several symp-
tomatic ICD-9 codes “chest pain” (786), “malaise and fatigue” (78079), “shortness of
breath” (78605) and “hyperventilation” (78601). This heart condition resulted in multi-
ple inpatient hospitalizations over the two-year period, and one of the reviewers separated
the latest (and most intensive) hospitalization from the other hospitalizations, while the

43

other two reviewers combined all of the hospitalizations and outpatient services for this
heart condition into one episode.

For this patient, the reviewers also differed in how they created episodes from
a sequence of line items with a diagnosis of urinary tract infection (5990). For this di-
agnosis, there were several service dates consisting of urinalysis and similar services, but
they were clustered in time into two groups separated by approximately four months. Two
of the reviewers grouped all of these into one episode, reasoning that in the later events,
the medical providers might have been following up to make sure that the urinary tract in-
fection had cleared up, while the third reviewer separated these line items into two episodes.

Example 3

This patient had two metabolic conditions: diabetes (ICD-9 = 25000 and 25070)
and hyperlipidemia (2722). In addition, the patient had a cardiovascular condition (7852).
To further complicate the sequence, the diabetes diagnoses were on line items for several
different types of care: opthalmology, podiatry, and laboratory tests. From this collection
of line items, each of the reviewers developed a rather distinct episode of care configuration
for this patient.

Reviewer A

Episode 1: diabetes - all procedures, plus some with diagnosis of hyperlipidemia that seemed
(based on the procedure) most likely for diabetes
Episode 2: all other hyperlipidemia line items
Episode 3: cardiovascular

Reviewer B

Episode 1: diabetes - podiatry
Episode 2: diabetes - ophthalmology
Episode 3: diabetes - lab tests, cardiovascular, hyperlipidemia

Reviewer C

Episode 1: diabetes - all procedures
Episode 2: hyperlipidemia
Episode 3: cardiovascular

The episode configuration selected by reviewer A in this example illustrates a problem
that the reviewers often encountered for such services as laboratory tests, as well as other
types of services such as ambulance trips – the diagnosis sometimes did not appear to match
the condition for which the service was performed. For example, a patient might receive a
prostate-specific antigen (PSA) test with a line item diagnosis of hyperlipidemia.

44

Example 4

The Nurse Practitioner reviewers found it quite difficult to determine how to allo-
cate line items that were part of routine office visit dates of service (such as annual physical
exams) to episodes of care. On the one hand, perhaps these line items should be grouped
into a large “routine exam” episode of care, or on the other hand, perhaps they should
be broken into smaller components based on the distinct diseases being screened for. This
patient example highlights some of these difficulties.

This patient received two annual physical exams along with related services on the
same date of services, some of which were billed by different providers than the provider
who billed for the routine exam. The first of these annual exams consisted of the following
9 components:

1. general medical exam

2. evaluation and management (E/M) for “disorders of soft tissues” (ICD-9 = 7299)

3. influenza vaccine

4. pneumonia vaccine

5. PSA test

6. other lab tests (blood/urine)

7. chest x-ray

8. electrocardiogram (ECG)

9. computed tomography (CT) scan, thorax

The following displays the episodes created from this collection by each of the three review-
ers.

Reviewer A

Episode 1: exam, vaccines, PSA test, other lab tests, ECG
Episode 2: E/M service
Episode 3: chest x-ray, CT scan

Reviewer B

Episode 1: exam, PSA test, other lab tests, ECG, chest x-ray, CT scan
Episode 2: E/M service
Episode 3: vaccines

Reviewer C

45

Episode 1: exam, PSA test, other lab tests
Episode 2: E/M service
Episode 3: chest x-ray, CT scan
Episode 4: influenza vaccine
Episode 5: pneumonia vaccine
Episode 6: ECG

For this patient, our two episode clustering algorithms separated these services
into more episodes than any of the nurse practitioner annotators. Of the 9 procedures
listed earlier for this date of service, the Random Forests algorithm only clustered (1) the
pneumonia and influenza vaccines, and (2) the CT and chest x-ray. The sequence model
clustered these as well, plus that model clustered the PSA test, ECG, and lab tests into
one episode.

This example highlights the difficulty of determining whether to group elements
of services that take place on the date of a routine exam with services that occur on other
dates. This patient received another CT scan 7 months after the one in the example above,
for which reviewer B created a separate episode, but which reviewers A and C grouped with
the episode consisting of a chest x-ray and CT scan (labeled “Episode 3” above).

46

Calculation of pairwise agreement

Date of

service

Line

item

Reviewer /

episode number

T C

6 1 1 1

10

2 1 1

3 2 1

4 4 1

14
5 3 2

6 3 3

15

7 4 3

8 4 4

9 4 4

19 10 2 5

21
11 2 5

12 4 6

23
13 6 6

14 6 3

Selected line

item 8

Line items 8 and

12 are in the same

episode according to T

but not C

Line items 3 and

8 are in different

episodes according to

both T and C

Figure 6.1: Example of how we calculated pairwise agreement for a selected line item

47

● ● ● ● ● ● ● ● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test set results across EM iterations

EM iteration (0 = initial parameters)

P
ro

po
rt

io
n

● complete episodes
1 to 1 accuracy
avg. pairwise

Figure 6.2: Test set results across EM iterations

48

●
● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test set results, episode clustering look−ahead

Number of line items to look ahead

P
ro

po
rt

io
n

● complete episodes
1 to 1 accuracy
avg. pairwise

Figure 6.3: Test set results, EM clustering look-ahead

49

0 1 2 3

76
0

78
0

80
0

82
0

84
0

Test set results, look−ahead, number of episodes

Number of line items to look ahead

N
um

be
r

of
 e

pi
so

de
s

cr
ea

te
d

Figure 6.4: Test set results, look-ahead, number of episodes

50

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

NP one−to−one accuracy compared to entropy

Diagnosis category entropy

O
ne

−
to

−
on

e
ac

cu
ra

cy

Figure 6.5: NP one-to-one accuracy compared to entropy

51

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

RF one−to−one accuracy compared to entropy

Diagnosis category entropy

O
ne

−
to

−
on

e
ac

cu
ra

cy

Figure 6.6: RF one-to-one accuracy compared to entropy

52

Chapter 7

Conclusion

In this research, we implemented two statistical methods for clustering Medicare
claims into episodes of care. Both of these methods were improvements on simpler models,
such as the one using only the AHRQ diagnosis categories to construct episodes, and one
model – the one using Random Forests and the UMLS Metathesaurus – achieved results
that were quite close to the nurse practitioner annotations.

All of the annotations in this research were less accurate for patients with more
complex conditions, which reflected the difficulty of constructing episodes when the pa-
tients’ multiple conditions were related clinically. Because the annotation process (both for
the nurse practitioners and for the statistical methods) was limited to information in the
Medicare claims data, there were many instances in which the annotation involved a close
decision between two or more apparently reasonable episode configurations. For the reviews
by the nurse practitioners, the decision process could have been greatly enhanced if medical
records for these patients had been available, such as using a two-stage annotation process
in which the second stage would have updated the annotation based on additional detail
available from the medical records.

These statistical methods could have been substantially improved if we had access
to additional claims data. Because of the cost of acquiring Medicare claims data for research,
we were limited to a 5 percent sample of patients, and for the more detailed data that
included dates of service (which revealed the sequence of care), we only had data for 250,000
patients with dates of service over only two years. Although this might seem like a relatively
large set of data, we were using it to estimate statistical relationships among more than
14,000 diagnosis codes, and also between diagnosis codes and procedure codes. Because of
the limited amount of data in the sample of 250,000 patients, we relied more heavily on the
5 percent sample, which contained claims data for approximately 1.9 million patients, but
which did not allow us to determine the sequence of care within each calendar quarter.

These two statistical methods might also have been improved if we had been able to
include claims data from all of the Medicare claims types. As it was, we only acquired Part
B “Carrier” and Part A inpatient claims, but the other Medicare claims types, particularly
outpatient hospital and Part D medications, could have clarified the sequence of care so
that better annotations might have been possible, both by the nurse practitioners and by
our statistical methods.

53

Our research made progress in developing methods for quantifying the strength
of relationships among diagnosis codes and to a lesser extent between diagnosis codes and
procedure codes, but much more could be done. We relied on two existing sources of
information about these relationships, (1) the AHRQ diagnosis categories, and (2) the
UMLS Metathesaurus, particularly the clinical relationships in SNOMED data. However,
there are many other sources of data concerning these clinical relationships that could
greatly improve these statistical methods for clustering claims into episodes.

Future research also might develop methods for resolving some of the difficult
decisions that arose during the annotation process. For example, should each routine exam
(such as an annual physical exam) be a single episode or should the services that accompany
these exams (such as specific blood tests) be clustered with care on different dates of service
for similar medical conditions? For chronic conditions with periodic crises (such as inpatient
hospitalizations), should the entire sequence of care be clustered into one episode, or should
it be divided into phases, perhaps even labeled according to the severity of illness or intensity
of intervention? What would be the best representation of conditions that branch off (such
as following inpatient hospitalizations) or in which the care apparently converges after being
treated separately by different practitioners? Possibly a hierarchical clustering approach
would be superior to the single-cluster approach that we took in this research, particularly
for more complex patients.

These approaches – using a wider range of clinical information and allowing more
flexible clustering – could greatly enhance the methods that we have presented and that
have previously been implemented by other researchers.

54

Bibliography

[1] Unified Medical Language System (UMLS). https://uts.nlm.nih.gov/home.html, 2010.

[2] American Medical Association. Current Procedural Terminology 2007, 2006.

[3] M.C.J. Biermans, D.H. de Bakker, R.A. Verheij, J.V. Gravestein, M.W. van der Linden,
and P.F. de Vries Robbé. Development of a case-based system for grouping diagnoses
in general practice. International Journal of Medical Informatics, 77(7):431–439, 2008.

[4] M.C.J. Biermans, G.H. Elbers, R.A. Verheij, W. Jan van der Veen, G.A. Zielhuis,
and P.F. de Vries Robbé. External validation of EPICON: a grouping system for
estimating morbidity rates using electronic medical records. Journal of the American
Medical Informatics Association, 15(6):770, 2008.

[5] D.J. Brailer and E.A. Kroch. Member risk adjustment for ambulatory episodes of care.
Health Care Management Science, 2(3):125–136, 1999.

[6] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth, 1984.

[8] C. Buck. 2007 HCPCS Level II, 2007.

[9] D.G. Cave. Profiling physician practice patterns using diagnostic episode clusters.
Medical care, 33(5):463, 1995.

[10] W.W. Chapman, L.M. Christensen, M.M. Wagner, P.J. Haug, O. Ivanov, J.N. Dowling,
and R.T. Olszewski. Classifying free-text triage chief complaints into syndromic cate-
gories with natural language processing. Artificial Intelligence in Medicine, 33(1):31–
40, 2005.

[11] C.L. Damberg, M.E. Sorbero, P.S. Hussey, S. Lovejoy, L. Hang-
sheng, and A. Mehrotra. Exploring Episode-based Approaches for
Medicare Performance Measurement, Accountability and Payment.
http://aspe.hhs.gov/health/reports/09/mcperform/report.pdf, 2009.

[12] K. Davis. Paying for care episodes and care coordination. New England Journal of
Medicine, 356(11):1166, 2007.

55

[13] S. Doddi, A. Marathe, S.S. Ravi, and D.C. Torney. Discovery of association rules in
medical data. Informatics for Health and Social Care, 26(1):25–33, 2001.

[14] A. Elixhauser, C. Steiner, and L. Palmer. Clinical Classifications Software (CCS).
http://www.hcup-us-ahrq.gov/toolssoftware/ccs/ccs.jsp, 2010.

[15] M. Elsner and E. Charniak. You talking to me? a corpus and algorithm for conversation
disentanglement. Proceedings of ACL-08: HLT, pages 834–842, 2008.

[16] M. Elsner and E. Charniak. Disentangling chat. Computational Linguistics, 36(3):389–
409, 2010.

[17] D. Feng, E. Shaw, J. Kim, and E. Hovy. Learning to detect conversation focus of
threaded discussions. In Proceedings of the main conference on Human Language Tech-
nology Conference of the North American Chapter of the Association of Computational
Linguistics, pages 208–215. Association for Computational Linguistics, 2006.

[18] Centers for Medicare and Medicaid Services. Medicare Enrollment: National Trends
1966-2008. http://www.cms.gov/MedicareEnRpts/Downloads/HISMI08.pdf.

[19] G. Grimmett and D. Stirzaker. Probability and Random Processes, Third Edition.
Oxford University Press, 2001.

[20] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness by
random forests. 2004.

[21] A. Hart and B. Ford. ICD-9-CM Professional for Physicians Volumes 1 2, 2007.

[22] R.L. Houchens, S. McCracken, W. Marder, and R. Kelley. The use of an
episode grouper for physician profiling in Medicare: A preliminary investigation.
http://www.medpac.gov/documents/Jun09 episodegrouperstability.contractor jp.pdf,
2009.

[23] D. Jurafsky, J.H. Martin, and A. Kehler. Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech recognition.
Prentice Hall, 2009.

[24] T. MaCurdy, J. Kerwin, J. Gibbs, E. Lin, C. Cotterman, M. O’Brien-
Strain, and N. Theobald. Evaluating the functionality of the Symmetry ETG
and Medstat MEG software in forming episodes of care using Medicare data.
http://www.cms.hhs.gov/Reports/downloads/MaCurdy.pdf, 2009.

[25] C.D. Manning, H. Schütze, and MITCogNet. Foundations of statistical natural lan-
guage processing, volume 59. MIT Press, 1999.

[26] G.J. McLachlan and T. Krishnan. The EM algorithm and extensions. John Wiley
Sons, 2008.

56

[27] Medicare Payment Advisory Commission (MedPAC). Payment basics: Physician ser-
vices payment system. http://www.medpac.gov/documents
/MedPAC Payment Basics 10 Physician.pdf, 2010.

[28] H. Pang, A. Lin, M. Holford, B.E. Enerson, B. Lu, M.P. Lawton, E. Floyd, and H. Zhao.
Pathway analysis using random forests classification and regression. Bioinformatics,
22(16):2028, 2006.

[29] H.H. Pham, D. Schrag, A.S. O’Malley, B. Wu, and P.B. Bach. Care patterns in Medi-
care and their implications for pay for performance. New England Journal of Medicine,
356(11):1130, 2007.

[30] J.A. Solon, J.J. Feeney, S.H. Jones, R.D. Rigg, and C.G. Sheps. Delineating episodes
of medical care. American Journal of Public Health, 57(3):401, 1967.

[31] R.Y. Son, R.K. Taira, H. Kangarloo, and A.F. Cárdenas. Context-sensitive correlation
of implicitly related data: an episode creation methodology. Information Technology
in Biomedicine, IEEE Transactions on, 12(5):549–560, 2008.

[32] R.K. Taira, V. Bashyam, and H. Kangarloo. A field theoretical approach to medical
natural language processing. Information Technology in Biomedicine, IEEE Transac-
tions on, 11(4):364–375, 2007.

[33] G.D. Venolia and C. Neustaedter. Understanding sequence and reply relationships
within email conversations: a mixed-model visualization. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 361–368. ACM, 2003.

[34] L. Wang and D.W. Oard. Context-based message expansion for disentanglement of
interleaved text conversations. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 200–208. Association for Computational Linguistics, 2009.

[35] Y.C. Wang, M. Joshi, W. Cohen, and C. Rosé. Recovering implicit thread structure
in newsgroup style conversations. In Proceedings of the 2nd International Conference
on Weblogs and Social Media (ICWSM II), 2008.

[36] P. Xu and F. Jelinek. Random forests in language modeling. In Proc. EMNLP, 2004.

57

Appendix A

SAS and R programs for first
clustering method

To implement our two statistical methods, we used SAS software for Windows
version 9.2 and R version 2.12.0. The following are the most important of the SAS and R
programs that we used.

A.1 SAS code for extracting line item pairs for same patient
and provider

From our 5 percent sample of Medicare claims with service dates in calendar years
2006 and 2007, we used the following SAS code to extract all pairs of line items for the
same patient and provider, limited to physician, nurse practitioner, and physician assistant
claims. We had previously partitioned the 5 percent sample data into 1,000 parts in such a
way that all claims from a given patient were in the same part. In the SAS code below, we
loop through these 1,000 parts to perform the analysis more efficiently.

%macro specmac;
and spec in(
’01’,’02’,’03’,’04’,’05’,’06’,’07’,’08’,’09’,’10’,
’11’,’12’,’13’,’14’,’16’,’18’,’20’,
’22’,’24’,’25’,’26’,’28’,’29’,’30’,
’33’,’34’,’36’,’37’,’38’,’39’,’40’,
’44’,’46’,’48’,’50’,’66’,
’72’,’76’,’77’,’78’,’79’,
’81’,’82’,’83’,’84’,’85’,’86’,’90’,
’91’,’92’,’93’,’94’,’97’,’98’,’99’
)

%mend specmac;

%macro sameprov_ldiag_mac(dlev);

58

options nonotes nosource;
%do thous_num=0 %to &max_thous;

%put Running SAMEPROV_LDIAG_MAC iteration &thous_num of &max_thous,
DLEV = &dlev;

data temp1(keep=desy_sort_key upin provid claim_no qtr diag&dlev sex);
set g_out.line0607_partition_&thous_num(

keep=spec ldiag clm_thru_dt desy_sort_key provid upin claim_no
bene_sex_ident_cd
rename=(bene_sex_ident_cd=sex));

where desy_sort_key^=’ ’ and (provid^=’ ’ or upin^=’ ’) and sex in(’1’,’2’)
%if &specopt=1 %then %do;

%specmac
%end;
;

attrib qtr length=3;
if substr(left(clm_thru_dt),1,4)=’2006’ then do;
qtr=put(substr(left(clm_thru_dt),5,1),1.);

end;
else qtr=4 + put(substr(left(clm_thru_dt),5,1),1.);
attrib diag&dlev length=$&dlev;
diag&dlev=substr(ldiag,1,&dlev);
run;

proc sql;
create table temp2 as

select desy_sort_key, upin, provid, count(*) as num_diag&dlev
from temp1
group by desy_sort_key, upin, provid

having calculated num_diag&dlev>1;
quit;

proc sql;
create table temp3 as

select a.*, b.num_diag&dlev
from temp1 as a, temp2 as b
where a.desy_sort_key=b.desy_sort_key and a.provid=b.provid
and a.upin=b.upin;

quit;

proc sql;
create table temp4 as

select a.sex, a.diag&dlev as from_diag&dlev,
b.diag&dlev as to_diag&dlev,
(1/a.num_diag&dlev) as wt

59

from temp3 as a, temp3 as b
where a.desy_sort_key=b.desy_sort_key

and a.provid=b.provid and a.upin=b.upin
and (a.qtr^=b.qtr or a.claim_no^=b.claim_no
or a.diag&dlev^=b.diag&dlev);

quit;

proc sql;
create table sameprovtrans_&thous_num as
select from_diag&dlev, to_diag&dlev, sum(wt) as thous_wtsum,

count(*) as thous_numtrans,
sum(wt*(sex=’1’)) as thous_male_wtsum,
sum(sex=’1’) as thous_male_numtrans,
sum(wt*(sex=’2’)) as thous_female_wtsum,
sum(sex=’2’) as thous_female_numtrans

from temp4
group by from_diag&dlev, to_diag&dlev;

quit;

proc datasets library=work nolist;
delete temp1 temp2 temp3 temp4;
quit;

%end;

options notes source;

data temp_sameprovtrans;
set
%do thous_num=0 %to &max_thous;

sameprovtrans_&thous_num
%end;
;
run;

proc sql;
create table cjunk.ldiag&dlev._sameprovtrans as

select from_diag&dlev, to_diag&dlev, sum(thous_wtsum) as wtsum,
sum(thous_numtrans) as numtrans,
sum(thous_male_wtsum) as male_wtsum,
sum(thous_male_numtrans) as male_numtrans,
sum(thous_female_wtsum) as female_wtsum,
sum(thous_female_numtrans) as female_numtrans

from temp_sameprovtrans

60

group by from_diag&dlev, to_diag&dlev;
quit;

proc datasets library=work nolist;
delete temp_sameprovtrans
%do thous_num=0 %to &max_thous;
sameprovtrans_&thous_num

%end;
;
quit;

%mend sameprov_ldiag_mac;

%let max_thous=999;
%let specopt=1;
%sameprov_ldiag_mac(5)

A.2 SAS code for improving estimated transition probabili-
ties by multiplying transition matrix

Starting with a transition matrix developed from the line item pairs produced
above (same patient, same provider), we used the following SAS code to repeatedly multiply
this transition matrix by itself, which improved the transition probabilities as described in
Section 4.6.

%let selrel=prov;
%let selgend=;
%let minprobmac=0.0001;

proc sql;
create table cjunk.&selrel._&selgend.trans0 as
select from_diag5, to_diag5, sum(&selgend.numtrans) as from_coun,
&selgend.numtrans/sum(&selgend.numtrans) as probtrans

from cjunk.ldiag5_same&selrel.trans
where &selgend.numtrans>0
group by from_diag5;

quit;

%macro beliefmac;

options nonotes nosource;
%put Running BELIEFMAC iter &seliter,

61

breaking input database into 1,000 parts;
%let iterminus=%eval(&seliter-1);

data
%do thous_num=0 %to 999;

trans&iterminus._&thous_num(keep=from_diag5
to_diag5 probtrans diag123)

%end;
;
set cjunk.&selrel._&selgend.trans&iterminus;
attrib diag3 length=$3;
diag3=substr(from_diag5,1,3);
if anydigit(substr(diag3,1,1))=0 then do;

if substr(diag3,1,1)=’E’ then substr(diag3,1,1)=’0’;
else if substr(diag3,1,1)=’V’ then substr(diag3,1,1)=’1’;
else substr(diag3,1,1)=’2’;

end;
if anydigit(substr(diag3,2,1))=0 then substr(diag3,2,1)=’0’;
if anydigit(substr(diag3,3,1))=0 then substr(diag3,3,1)=’0’;
attrib diag123 length=3;
diag123=diag3;
if diag123=1 then output trans&iterminus._1;
%do thous_num=2 %to 999;

else if diag123=&thous_num
then output trans&iterminus._&thous_num;

%end;
else output trans&iterminus._0;

run;

%do thous_num=0 %to 999;
%put Running BELIEFMAC iter &seliter on part &thous_num of 999;

proc sql;
create table temp1 as

select a.from_diag5, b.to_diag5,
sum(a.probtrans*b.probtrans) as temp_probtrans

from trans&iterminus._&thous_num as a,
cjunk.&selrel._&selgend.trans&iterminus as b
where a.to_diag5=b.from_diag5
group by a.from_diag5, b.to_diag5
having calculated temp_probtrans>=&minprobmac;

quit;

62

proc sql;
create table trans&seliter._&thous_num as

select from_diag5, to_diag5,
temp_probtrans/sum(temp_probtrans) as probtrans
from temp1
group by from_diag5;

quit;

proc datasets library=work nolist;
delete temp1;
quit;

%end;

options notes source;

data cjunk.&selrel._&selgend.trans&seliter;
set
%do thous_num=0 %to 999;

trans&seliter._&thous_num
%end;
;
run;

proc datasets library=work nolist;
delete
%do thous_num=0 %to 999;

trans&iterminus._&thous_num
%end;
;
quit;

%mend beliefmac;

%let seliter=1; *Select iteration number;
%beliefmac

%let seliter=2;
%beliefmac

%let seliter=3;
%beliefmac

%let seliter=4;

63

%beliefmac

A.3 SAS code for calculating SNOMED distances

Using the UMLS Metathesaurus as well as ICD-9 and CPT/HCPCS code data,
we used the following SAS code to calculate “SNOMED distance” values as described in
Section 4.4.

%macro cui_removmac;

%*Delete CUIs that will create inappropriate links, such
as Moved elsewhere;

if substr(str,1,5)=’Moved’
or substr(str,1,11)=’Non-current’
or substr(str,1,9)=’Duplicate’
or str in(
’Self perception, self concept pattern’,
’Linkage concept’,
’Bracken test of basic concept scale’,
’Extinct cross type concept’,
’Inactive concept’,
’Ambiguous concept’,
’Outdated concept’,
’Erroneous concept’,
’Reason not stated concept’,
’Navigational concept’,
’Special concept’,
’Namespace concept’

)
then delete;

%mend cui_removmac;

data temp_snomed_uniq(keep=cui str qual_str);
set gradstat.snomed(keep=cui str ts lat);
where lat=’ENG’;
if ts=’P’ then qual_str=1;
else qual_str=2;
run;

proc sort data=temp_snomed_uniq;

64

by cui qual_str;
run;

data snomed_uniq;
set temp_snomed_uniq;
by cui qual_str;
if first.cui;

%cui_removmac

run;

data diag_linecoun2;
set cjunk.diag_linecoun;
attrib ldiag3 length=$3 ldiag4 length=$4;
ldiag3=substr(ldiag,1,3);
ldiag4=substr(ldiag,1,4);
claims_ldiag_len=length(trim(ldiag));
run;

proc sql;
create table icd9_2 as
select distinct code, cui
from gradstat.icd9;

quit;

data icd9_3;
set icd9_2;
where index(code,’-’)=0;
attrib ldiag length=$5 ldiag4 length=$4 ldiag3 length=$3;
ldiag=compress(code,’.’);
ldiag4=substr(ldiag,1,4);
ldiag3=substr(ldiag,1,3);
meta_ldiag_len=length(trim(ldiag));
run;

proc sql;
create table diag_linecoun3 as
select a.*, b.cui, b.meta_ldiag_len,
b.ldiag as meta_ldiag, b.ldiag4 as meta_ldiag4,

b.ldiag3 as meta_ldiag3,
(a.ldiag=b.ldiag) as ldiag_matc,

(a.ldiag4=b.ldiag4) as ldiag4_matc,
(a.ldiag3=b.ldiag3) as ldiag3_matc

65

from diag_linecoun2 as a, icd9_3 as b
where a.ldiag=b.ldiag or a.ldiag4=b.ldiag4 or a.ldiag3=b.ldiag3;

quit;

data diag_linecoun4;
set diag_linecoun3;
if ldiag_matc=1 then qual_matc=1;
else if claims_ldiag_len-meta_ldiag_len=1 and
((claims_ldiag_len=5 and ldiag4_matc=1)
or (claims_ldiag_len=4 and ldiag3_matc=1)) then qual_matc=2;

else qual_matc=3;

run;

proc sort data=diag_linecoun4;
by ldiag cui qual_matc;
run;

data diag_linecoun5;
set diag_linecoun4;
by ldiag cui qual_matc;
if first.cui;
run;

proc sort data=diag_linecoun5;
by ldiag qual_matc;
run;

data pretemp_diag_linecoun6(keep=ldiag qual_matc meta_ldiag cui);
set diag_linecoun5;
by ldiag qual_matc;
if first.ldiag then obscoun=0;
if qual_matc in(1,2) then do;
obscoun+1;
output;

end;
if qual_matc=3 and obscoun=0 then output;
run;

proc freq data=pretemp_diag_linecoun6;
tables qual_matc;
run;

*Only keep QUAL_MATC=1 or 2;

66

data temp_diag_linecoun6;
set pretemp_diag_linecoun6;
where qual_matc in(1,2);
run;

*For each LDIAG, only output CUIs from the best QUAL_MATC value
(although there may be more than one CUI);

proc sort data=temp_diag_linecoun6;
by ldiag qual_matc;
run;

data temp2_diag_linecoun6(drop=otflag);
set temp_diag_linecoun6;
by ldiag qual_matc;
if first.ldiag then otflag=1;
if otflag=1 then output;
if last.qual_matc then otflag=0;

retain otflag;
run;

*Extract CPT/HCPCS codes and corresponding CUIs;

data cpthcpcs;
set gradstat.cpt gradstat.hcpcs;
where length(trim(code))=5;
run;

proc sql;
create table cpthcpcs2 as
select distinct code, cui
from cpthcpcs;

quit;

proc sql;
create table cpthcpcs3 as
select a.hcpcs, b.cui
from cjunk.hcpcs_linecoun as a, cpthcpcs2 as b
where a.hcpcs=b.code;

quit;

*Combine the diagnosis and CPT/HCPCS databases;

67

data diag_linecoun6;
set temp2_diag_linecoun6(in=ss1)
cpthcpcs3(rename=(hcpcs=ldiag));

is_diag=ss1;
run;

*From the database of SNOMED relationships,
extract relationships
likely to be meaningful in linking ICD-9 codes;

data mrrel_snomed_sub;
set gradstat.mrrel_snomed(keep=cui1 cui2 rela);
where rela in(
’associated_finding_of’,
’associated_morphology_of’,
’associated_procedure_of’,
’associated_with’,
’causative_agent_of’,
’cause_of’,
’definitional_manifestation_of’,
’direct_morphology_of’,
’due_to’,
’finding_site_of’,
’focus_of’,
’has_associated_finding’,
’has_associated_morphology’,
’has_associated_procedure’,
’has_causative_agent’,
’has_definitional_manifestation’,
’has_direct_morphology’,
’has_direct_procedure_site’,
’has_finding_site’,
’has_focus’,
’has_indirect_morphology’,
’has_indirect_procedure_site’,
’has_part’,
’has_procedure_morphology’,
’indirect_morphology_of’,
’inverse_isa’,
’inverse_may_be_a’,
’isa’,
’is_alternative_use’,
’may_be_a’,

68

’occurs_after’,
’part_of’,
’same_as’

);
run;

proc sql;
create table mrrel_snomed_sub2 as
select a.*
from mrrel_snomed_sub as a, snomed_uniq as b
where a.cui1=b.cui;

quit;

proc sql;
create table mrrel_snomed_sub3 as
select a.*
from mrrel_snomed_sub2 as a, snomed_uniq as b
where a.cui2=b.cui;

quit;

*Extract the distinct CUIs that appear in the ICD-9 section of the
Metathesaurus, and find relationships with other CUIs
as they are defined in the SNOMED portion
of the metathesaurus;

proc sql;
create table icd9_cui as
select distinct cui as ldiag_cui
from diag_linecoun6;

quit;

*STEP: Prepare for evaluating degrees of separation between
pairs of diagnosis codes, by splintering databases;

%macro thouscuimac;

data
%do thous_num=0 %to 999;

&otname._&thous_num
%end;
;
set &inpname;
attrib cuipart length=3;
cuipart=substr(&cuivar,6,3);

69

if cuipart=0 then output &otname._0;
%do thous_num=1 %to 999;

else if cuipart=&thous_num then output &otname._&thous_num;
%end;
else output &otname._0;
run;

%mend thouscuimac;

%let inpname=diag_linecoun6;
%let otname=diag_linecoun6;
%let cuivar=cui;
%thouscuimac

%let inpname=mrrel_snomed_sub3;
%let otname=mrrel_snomed_cui1;
%let cuivar=cui1;
%thouscuimac

%let inpname=mrrel_snomed_sub3;
%let otname=mrrel_snomed_cui2;
%let cuivar=cui2;
%thouscuimac

%let inpname=icd9_cui;
%let otname=icd9_cui;
%let cuivar=ldiag_cui;
%thouscuimac

*Add a SNOMED relationship link to the specified database,
and output with the specified name;

%macro prelinkmac;

%do thous_num=0 %to 999;

proc sql;
create table temp1 as
select a.ldiag_cui, b.cui2 as rel_cui
from &inpdat._&thous_num as a,
mrrel_snomed_cui1_&thous_num as b
where a.&cuivar=b.cui1 and a.ldiag_cui^=cui2;

quit;

70

proc sql;
create table temp2 as
select a.ldiag_cui, b.cui1 as rel_cui
from &inpdat._&thous_num as a,
mrrel_snomed_cui2_&thous_num as b
where a.&cuivar=b.cui2 and a.ldiag_cui^=cui1;

quit;

data prelink_&thous_num;
set temp1 temp2;
run;

proc datasets library=work nolist;
delete temp1 temp2;
quit;

%end;

data prelink;
set
%do thous_num=0 %to 999;

prelink_&thous_num
%end;
;
run;

proc sql;
create table &otdat as

select distinct ldiag_cui, rel_cui
from prelink;
quit;

proc datasets library=work nolist;
delete prelink
%do thous_num=0 %to 999;
prelink_&thous_num

%end;
;
quit;

%*Partition the resulting database into 1,000 parts;

%let inpname=&otdat;
%let otname=&otdat;

71

%let cuivar=rel_cui;
%thouscuimac

proc datasets library=work nolist;
delete &otdat;
quit;

%*Match the resulting database with the CUIs that
are associated with diagnosis codes;

%do thous_num=0 %to 999;
proc sql;
create table &otdat._reldiagcui_&thous_num as

select a.ldiag_cui as ldiag_cui1, b.ldiag_cui as ldiag_cui2
from &otdat._&thous_num as a, icd9_cui_&thous_num as b
where a.rel_cui=b.ldiag_cui;

quit;
%end;

%mend prelinkmac;

*For a selected number of distance levels,
build relationship chains;

%macro chainmac;

options nonotes nosource;

%put Running CHAINMAC macro, linking diagnoses with same CUI;

%do thous_num=0 %to 999;

proc sql;
create table diagrela_&thous_num as
select a.ldiag as ldiag1, a.is_diag as is_diag1,

b.ldiag as ldiag2, b.is_diag as is_diag2, 0 as dist
from diag_linecoun6_&thous_num as a,
diag_linecoun6_&thous_num as b
where a.cui=b.cui and a.ldiag^=b.ldiag;

quit;

%end;

data diagrela;

72

set
%do thous_num=0 %to 999;

diagrela_&thous_num
%end;
;
run;

%do linknum=1 %to &maxlink;

%put Running CHAINMAC iteration &linknum of &maxlink;

%if &linknum=1 %then %do;

%let inpdat=icd9_cui;
%let otdat=icd9path1;
%let cuivar=ldiag_cui;
%prelinkmac

%end;

%else %do;

%let linkminus=%eval(&linknum-1);

%let inpdat=icd9path&linkminus;
%let otdat=icd9path&linknum;
%let cuivar=rel_cui;
%prelinkmac

proc datasets library=work nolist;
delete

%do thous_num=0 %to 999;
icd9path&linkminus._&thous_num

%end;
;
quit;

%end;

%end; %*End of LINKNUM loop;

%*For each diagnosis CUI link level, find the smallest
distance;

73

%put For pairs of diagnosis CUIs,
finding smallest distances among link levels;

%do thous_num=0 %to 999;
data temp_comblink;

set
%do linknum=1 %to &maxlink;

icd9path&linknum._reldiagcui_&thous_num(in=ss&linknum)
%end;
;

if ss1 then dist=1;
%if &maxlink>1 %then %do;
%do linknum=2 %to &maxlink;
else if ss&linknum then dist=&linknum;

%end;
%end;
run;

proc sql;
create table temp2_comblink as

select ldiag_cui1, ldiag_cui2, min(dist) as dist
from temp_comblink
group by ldiag_cui1, ldiag_cui2;

quit;

proc sql;
create table comblink&thous_num as

select a.ldiag_cui1, a.dist, b.ldiag as ldiag2,
b.is_diag as is_diag2
from temp2_comblink as a, diag_linecoun6_&thous_num as b

where a.ldiag_cui2=b.cui;
quit;

proc datasets library=work nolist;
delete temp_comblink temp2_comblink;
quit;

%end;

%put Assembling databases;

data comblink;
set

74

%do thous_num=0 %to 999;
comblink&thous_num

%end;
;
run;

proc datasets library=work nolist;
delete
%do thous_num=0 %to 999;

comblink&thous_num
%end;
;
quit;

%let inpname=comblink;
%let otname=seccomblink;
%let cuivar=ldiag_cui1;
%thouscuimac

%do thous_num=0 %to 999;

proc sql;
create table sec2comblink_&thous_num as

select a.ldiag2, a.is_diag2, a.dist, b.ldiag as ldiag1,
b.is_diag as is_diag1
from seccomblink_&thous_num as a, diag_linecoun6_&thous_num as b

where a.ldiag_cui1=b.cui;
quit;

%end;

options notes source;

data sec2comblink;
set
%do thous_num=0 %to 999;

sec2comblink_&thous_num
%end;
;
run;

data gradstat.diaglinks_maxlink&maxlink;
set sec2comblink diagrela;
run;

75

proc sort data=gradstat.diaglinks_maxlink&maxlink;
by ldiag1 dist ldiag2;
run;

%mend chainmac;

%let maxlink=3;
%chainmac

A.4 SAS code for creating the independent and dependent
variables on line item pairs

For pairs of line items, we used the following SAS code to create the 8 independent
variables and the dependent variable (same CCS diagnosis category), in preparation for
using the Random Forests algorithm in R.

*Select the subset of AHRQ single classes for training;

%let ahrq_trainmac=255<=ldiagkat1<=259 or ldiagkat1>=2616
or 255<=ldiagkat2<=259 or ldiagkat2>=2616;

*The EMAC macro is a utility macro that will create
format labels, dealing with the case where the number
is in scientific notation;

%macro emac(selvar);
attrib labelnum length=$11;
attrib label length=$11;
eloc=index(left(&selvar),’E’);
if eloc>0 then do;
label_length=length(left(&selvar));

const_exp=.;
const_exp=substr(left(&selvar),eloc+2,label_length-(eloc+1));
numzero=const_exp-1;
is_neg=(substr(left(&selvar),1,1)=’-’);
labelnum=compress(substr(left(&selvar),(1+is_neg),eloc-1),’.’);
label=’0.’;
if numzero>0 then do;
do z=1 to numzero;
label=trim(label)||’0’;

end;

76

end;
label=trim(label)||labelnum;
if is_neg=1 then label=’-’||trim(label);
end;
else do;
label=substr(left(&selvar),1,11);

end;
%mend emac;

*STEP: Create a SAS format that assigns a SNOMED distance
to diagnosis and procedure code pairs;

data
links_diag(keep=ldiag1 ldiag2 dist)
links_hcpcs(keep=ldiag1 ldiag2 dist)
links_mixed(keep=ldiag1 ldiag2 dist)

;
set gradstat.diaglinks_maxlink&maxlink;
if is_diag1=is_diag2 then do;
if ldiag1<ldiag2 then do;

if is_diag1=1 then output links_diag;
else output links_hcpcs;
end;

end;
else if is_diag1=1 then output links_mixed;
run;

%macro linkfmtmac;

proc sort data=links_&seltype nodupkey;
by ldiag1 ldiag2;
run;

data temp1;
set links_&seltype end=last;
attrib codepair length=$11;
codepair=
trim(input(left(ldiag1),$5.))||","||trim(input(left(ldiag2),$5.));
fmtname="sno&seltype.fmt";
type=’c’;
attrib label length=$11;
start=codepair;
end=codepair;
attrib label length=$11;

77

label=left(dist);
output;
if last then do;

start=’ ’;
end=’ ’;
hlo=’O’;
label=left(&maxlink+1);
output;

end;
run;

proc format library=work cntlin=temp1;
run;

proc datasets library=work nolist;
delete temp1;
quit;

%Mend linkfmtmac;

%let seltype=diag;
%linkfmtmac

%let seltype=hcpcs;
%linkfmtmac

%let seltype=mixed;
%linkfmtmac

%macro diagpairmac(selrel,selprobvar,seliter);

proc sql;
create table temp_pairwise0a as
select from_diag5, sum(numtrans) as from_coun
from cjunk.ldiag5_same&selrel.trans
where numtrans>0
group by from_diag5;

quit;

proc sql;
create table pairwise0a as
select a.from_diag5, a.to_diag5,
a.probtrans as p1, max(b.from_coun,0) as from_coun
from cjunk.prov_trans&seliter as a left join

78

temp_pairwise0a as b
on a.from_diag5=b.from_diag5;

quit;

proc sql;
create table pairwise0_marginal as
select to_diag5, sum(numtrans) as num_to_diag5
from cjunk.ldiag5_same&selrel.trans
where numtrans>0
group by to_diag5;

quit;

proc sql;
create table pairwise0_marginal2 as
select *, num_to_diag5/sum(num_to_diag5) as p
from pairwise0_marginal;

quit;

proc sql;
create table pairwise1_&selrel as
select a.*, a.from_diag5 as diagkat1, a.to_diag5 as diagkat2,
b.p, b.num_to_diag5, a.p1/b.p as temp_avgprob,
2*a.p1*log(a.p1/b.p) as temp_kldivterm

from pairwise0a as a, pairwise0_marginal2 as b
where a.to_diag5=b.to_diag5;

quit;

%*Use the average of the KL divergence terms;

data temp_pairwise2_&selrel;
set pairwise1_&selrel;
if diagkat1<=diagkat2 then output;
else do;

diagkat1=to_diag5;
diagkat2=from_diag5;
output;
end;
run;

proc sql;
create table temp2_pairwise2_&selrel as

select diagkat1, diagkat2, count(*) as pair_numobs,
mean(temp_&selprobvar) as pair_avg_&selprobvar

from temp_pairwise2_&selrel

79

group by diagkat1, diagkat2;
quit;

data temp3_pairwise2_&selrel;
set temp2_pairwise2_&selrel;
if pair_numobs=1 and diagkat1^=diagkat2
then &selprobvar=pair_avg_&selprobvar/2;
else &selprobvar=pair_avg_&selprobvar;
run;

proc sort data=temp3_pairwise2_&selrel;
by diagkat1 diagkat2;
run;

data pairwise2_&selrel;
set temp3_pairwise2_&selrel end=last;
attrib diagpair length=$11;
diagpair=
trim(input(left(diagkat1),$5.))||","||trim(input(left(diagkat2),$5.));
fmtname="diag_&selrel._pairfmt";
type=’c’;
attrib label length=$11;
start=diagpair;
end=diagpair;
%emac(&selprobvar)
output;
if last then do;

start=’ ’;
end=’ ’;
hlo=’O’;
label=’0’;
output;

end;
run;

proc format library=work cntlin=pairwise2_&selrel;
run;

%mend diagpairmac;

%diagpairmac(prov,kldivterm,2)

%macro forestvarmac;

80

tdtdiff=abs(tdt1-tdt2);
sameprov=(provider_id1=provider_id2);
refprov=(
(provider_id1^=’ ’ and provider_id1=rfr_provider_id2)
or (provider_id2^=’ ’ and provider_id2=rfr_provider_id1)

);
attrib diagpair length=$11;
if ldiag1<=ldiag2 then do;
diagpair=
trim(input(left(ldiag1),$5.))||","||trim(input(left(ldiag2),$5.));

end;
else do;

diagpair=
trim(input(left(ldiag2),$5.))||","||trim(input(left(ldiag1),$5.));

end;
ldiag_link=input(put(diagpair,$diag_prov_pairfmt.),8.3);
if ldiag1=ldiag2 then ldiag_dist=0;
else ldiag_dist=input(put(diagpair,$snodiagfmt.),3.0);

%*ANYOFFICE attempts to capture several procedures that can be associated
with a wide range of diagnoses;

anyoffice=("36400"<=hcpcs1<="36425" or "36400"<=hcpcs2<="36425"
or "99201"<=hcpcs1<="99499" or "99201"<=hcpcs2<="99499");

attrib hcpcspair length=$11;
if hcpcs1<hcpcs2 then hcpcspair=
trim(input(left(hcpcs1),$5.))||","||trim(input(left(hcpcs2),$5.));

else hcpcspair=
trim(input(left(hcpcs2),$5.))||","||trim(input(left(hcpcs1),$5.));
if hcpcs1^=hcpcs2
then hcpcs_dist=input(put(hcpcspair,$snohcpcsfmt.),3.0);

else hcpcs_dist=0;
attrib mixedpair1 mixedpair2 length=$11;
mixedpair1=

trim(input(left(ldiag1),$5.))||","||trim(input(left(hcpcs2),$5.));
mixedpair2=

trim(input(left(ldiag2),$5.))||","||trim(input(left(hcpcs1),$5.));
mixed_dist=min(
input(put(mixedpair1,$snomixedfmt.),3.0),
input(put(mixedpair2,$snomixedfmt.),3.0)
);

%mend forestvarmac;

81

%macro forest_expmac;

data _null_;
set &inpnamemac;
file "c:\junk\&otnamemac..txt";
put @1 samediagkat
@5 sameprov
@10 refprov
@15 ldiag_link
@25 ldiag_dist
@30 hcpcs_dist
@35 mixed_dist

@40 tdtdiff
@50 anyoffice
;
run;

%mend forest_expmac;

*The FORESTMAC macro will produce one of two sets
(depending on the value of argument ISTRAIN). If ISTRAIN=1,
then the set does not include diagnoses that match the
more heterogeneous AHRQ categories, such as for E- and V-codes);

%macro forestmac(istrain,selpart,wholebenemac);

data temp1;
set
%if &istrain=1 %then %do;

ccw.partition_carrier_randpairs_&selpart;
if &ahrq_trainmac then delete;

%end;
%else %do;

ccw.partition_carrier_pairs_&selpart;
%end;
run;

proc sql noprint;
select count(*) into :dkatmac0 - :dkatmac1

from temp1
group by samediagkat;

quit;

data forest(keep=bene_id ldiag1 ldiag2 ldiagkat1 ldiagkat2

82

lineid1 lineid2 hcpcs1 hcpcs2
sameprov refprov ldiag_link ldiag_dist
hcpcs_dist mixed_dist samediagkat
tdtdiff anyoffice);

set temp1;
if samediagkat=0 then do;

targprob=&targsamp/(2*&dkatmac0);
end;
else targprob=&targsamp/(2*&dkatmac1);
%if &wholebenemac=0 %then %do;

if ranuni(0)<=targprob;
%end;

%forestvarmac

run;

%let inpnamemac=forest;

%if &istrain=1 %then %do;
%let otnamemac=forest_&selpart;

data cjunk.forest_&selpart;
set forest;
forestorder=_n_;
run;
%end;
%else %do;

%let otnamemac=testforest_&selpart;
data cjunk.testforest_&selpart;
set forest;
forestorder=_n_;
run;
%end;
%forest_expmac

proc datasets library=work nolist;
delete temp1;
quit;

%mend forestmac;

%macro all_trainforestmac(minpartmac,maxpartmac);

options nonotes nosource;

83

%do i=&minpartmac %to &maxpartmac;
%put Running ALL_TRAINFORESTMAC

iteration &i of &minpartmac to &maxpartmac;
%forestmac(1,&i,0)

%end;

options notes source;

%mend all_trainforestmac;

%all_trainforestmac(1,1000)

*For a selected test set created by running FORESTMAC on a specified
partition of the data, we can select a range of PARTITION_RANDORDER
(patient identifiers) to create a subset;

%macro forest_testsubmac(selpart,min_partition_randorder,
max_partition_randorder);

proc sql;
create table temp1 as

select a.*, b.partition_randorder
from cjunk.testforest_&selpart as a left join
ccw.rand_partition as b
on a.bene_id=b.bene_id;
quit;

data temp2(drop=forestorder);
set temp1;
where &min_partition_randorder<=partition_randorder
<=&max_partition_randorder;
run;

data
cjunk.testforest_&selpart._&min_partition_randorder._&max_partition_randorder;
set temp2;
forestorder=_n_;
run;

proc sort data=
cjunk.testforest_&selpart._&min_partition_randorder._&max_partition_randorder;
by forestorder;
run;

84

%let inpnamemac
=cjunk.testforest_&selpart._&min_partition_randorder._&max_partition_randorder;
%let otnamemac
=testforest_&selpart._&min_partition_randorder._&max_partition_randorder;
%forest_expmac

%mend forest_testsubmac;

%forest_testsubmac(1,1,55)

A.5 R code for fitting Random Forests model to line item
pair data

Using the Random Forests algorithm in R, we produced 1,000 fitted models based
on randomly selected line item pairs, as described in Section 4.2.1. We used these fitted
models to evaluate the test set of 50 randomly selected patients, as shown in the R code
below.

testforest <- read.table("c:\\junk\\testforest_1_1_55.txt")

for (i in 1:1000){
forest <- read.table(paste("c:\\junk\\forest_",
as.character(i),".txt",sep=’’))
thisforest <- randomForest(as.factor(V1) ~ . ,
data=forest,mtry=3,ntree=5)
thispred <- predict(thisforest,testforest,type="prob")[,2]
write(thispred,file=paste("c:\\junk\\testforestpred_",
as.character(i),".txt",sep=’’),ncolumns=1)

}

A.6 SAS code for clustering line items into episodes of care

Using the results from the Random Forests algorithm, we used the following SAS
code to cluster line items into episodes of care for the 50 test set patients, using agglomer-
ative clustering as described in Section 4.1.

*Having run the above database (the one created by FOREST_TESTSUBMAC)
through RANDFOREST.R, we can merge it back in to TESTDAT;

85

*Input arguments to the ALL_TESTFORESTMAC macro:

TESTDATMAC = input database (the SAS database that
created input to Random Forests)
MINPARTMAC = minimum and maximum iterations from R
MAXPARTMAC
FAKEWRDMAC = the word FAKE if Random Forests run on data
from RANDFOREST_TESTSET, otherwise blank

;

%macro all_testforestmac(testdatmac,minpartmac,maxpartmac,fakewrdmac);

options nonotes nosource;

%do i=&minpartmac %to &maxpartmac;
%put Running ALL_TESTFORESTMAC iteration &i of &minpartmac to &maxpartmac;

data testforestpred_&i;
infile "c:\junk\&fakewrdmac.testforestpred_&i..txt";
input prob_&i;
forestorder=_n_;
run;

proc sort data=testforestpred_&i;
by forestorder;
run;

%end;

options notes source;

data testforestpred;
merge &testdatmac
%do i=&minpartmac %to &maxpartmac;

testforestpred_&i
%end;
;
by forestorder;
prob=mean(of prob_&minpartmac-prob_&maxpartmac);
probvote=(prob>0.5);
correctdiagkat=(probvote=samediagkat);

run;

86

data testforestpred2;
set testforestpred(drop=prob_&minpartmac-prob_&maxpartmac);
run;

proc sort data=testforestpred2;
by samediagkat;
run;

proc freq data=testforestpred2;
tables correctdiagkat;
by samediagkat;
title "Trained on patient parts &minpartmac through
&maxpartmac, tested on &testdatmac";
run;

title;
run;

%if &testdatmac=cjunk.testforest_1_1_55 %then %do;
data ccw.testforestpred_part1;
set testforestpred2;
run;

%end;

%mend all_testforestmac;

*For the test set, run ALL_TESTFORESTMAC for patients 1 through 55
(this contains the randomly selected 50 test set patients,
plus 5 more that did not have claims in both years 2007 and
2008);

%all_testforestmac(cjunk.testforest_1_1_55,1,1000,)

*STEP: For an input database of a set of patients (all claims
for each patient), with edge weights for pairs,
we can cluster these patients using agglomerative clustering.;

%macro forestclustmac(inpforest,selpart,delmac,tdtthreshmac,tdtlinkmac);

options nonotes nosource;

proc sql;
create table desylist as

87

select bene_id, count(*) as katcount, min(lineid1) as min_lineid,
max(lineid2) as max_lineid,
(calculated max_lineid-calculated min_lineid)+1 as totlines
from &inpforest
group by bene_id

order by bene_id;
quit;

data _null_;
set desylist end=last;
if last then call symput("clustbene_mac",left(_n_));
run;

%do thisbene=1 %to &clustbene_mac;

%put Running FORESTCLUSTMAC on patient &thisbene of &clustbene_mac;

data _null_;
set desylist;
by bene_id;
if _n_=&thisbene then do;

call symput("desynamemac",left(bene_id));
call symput("min_lineid_mac",left(min_lineid));
call symput("maxkat_mac",left(totlines));
stop;
end;
run;

data thisdesypairs;
set &inpforest;
where bene_id="&desynamemac";
ccs_noclass1=(&ahrq_trainmac);
if samediagkat=1 and ccs_noclass1=0
and tdtdiff<=&tdtlinkmac then final_link=1;
else if ldiag1=ldiag2 and tdtdiff<=&tdtlinkmac then final_link=1;
else final_link=prob;
rev_lineid1=(lineid1-&min_lineid_mac)+1;
rev_lineid2=(lineid2-&min_lineid_mac)+1;
randnum=ranuni(0);
run;

data thisdesypairs2;
set thisdesypairs;
fmtname=’forestpairfmt’;

88

type=’i’;
attrib label length=$11;
%emac(final_link)
pairkat=((rev_lineid1-1)*&maxkat_mac)+rev_lineid2;
start=pairkat;
end=pairkat;

output;
pairkat=((rev_lineid2-1)*&maxkat_mac)+rev_lineid1;

start=pairkat;
end=pairkat;
output;

run;

proc format cntlin=thisdesypairs2;
run;

data thisdesypairs3;
set thisdesypairs;
fmtname=’tdtpairfmt’;
type=’i’;
attrib label length=$11;
label=substr(left(tdtdiff),1,11);
pairkat=((rev_lineid1-1)*&maxkat_mac)+rev_lineid2;
start=pairkat;
end=pairkat;

output;
pairkat=((rev_lineid2-1)*&maxkat_mac)+rev_lineid1;

start=pairkat;
end=pairkat;
output;

run;

proc format cntlin=thisdesypairs3;
run;

proc sort data=thisdesypairs;
by descending final_link samediagkat ldiagkat1 tdtdiff randnum;
run;

data tempclust1(keep=bene_id clustcoun carr1-carr&maxkat_mac);
set thisdesypairs end=last;

%*New arrays:

89

CARR keeps track of the cluster number
for each line item (the index corresponds
to the LINEID variable)

ONEPREVARR and TWOPREVARR use two different
indices to keep track of line item IDs
corresponding to existing clusters (if any) ;

array carr{&maxkat_mac} carr1-carr&maxkat_mac;
array oneprevarr{&maxkat_mac} oneprev1-oneprev&maxkat_mac;
array twoprevarr{&maxkat_mac} twoprev1-twoprev&maxkat_mac;

if _n_=1 then do;
carr{rev_lineid1}=1;

carr{rev_lineid2}=1;
clustcoun=1;

end;
else do;

%*Determine whether either of these line items
already is in a cluster;

clustkat1=carr{rev_lineid1};
clustkat2=carr{rev_lineid2};

%*If not, and the link value for this pair is at
least the specified threshold, then start new cluster;

if clustkat1=. and clustkat2=. then do;
if final_link>=&final_threshmac then do;

clustcoun=clustcoun+1;
carr{rev_lineid1}=clustcoun;
carr{rev_lineid2}=clustcoun;

end;
end;

%*If so, and these line items are not already in the same cluster,
then evaluate the possibility of linking these two line items;

else if carr{rev_lineid1}^=carr{rev_lineid2} then do;

oneprevcoun=0;
if clustkat1^=. then do;

do i=1 to &maxkat_mac;

90

if carr{i}=clustkat1 then do;
oneprevcoun=oneprevcoun+1;

oneprevarr{oneprevcoun}=i;
end;

end;
end;
else do;

oneprevcoun=1;
oneprevarr{1}=rev_lineid1;
end;

twoprevcoun=0;
if clustkat2^=. then do;

do i=1 to &maxkat_mac;
if carr{i}=clustkat2 then do;

twoprevcoun=twoprevcoun+1;
twoprevarr{twoprevcoun}=i;
end;

end;
end;

else do;
twoprevcoun=1;

twoprevarr{1}=rev_lineid2;
end;

prevpaircoun=0;
prevpair_finlinksum=0;

do i=1 to oneprevcoun;
do j=1 to twoprevcoun;

pairkat=((oneprevarr{i}-1)*&maxkat_mac)+twoprevarr{j};
if input(pairkat,tdtpairfmt.)<=&tdtthreshmac

or (oneprevarr{i}=rev_lineid1
and twoprevarr{j}=rev_lineid2) then do;

prevpaircoun=prevpaircoun+1;
prevpair_finlinksum=
prevpair_finlinksum+input(pairkat,forestpairfmt.);

end;
end;

end;

prevavg=prevpair_finlinksum/prevpaircoun;

if prevavg>=&final_threshmac then do;

91

thisclust=min(carr{rev_lineid1},carr{rev_lineid2});
do i=1 to &maxkat_mac;

if i=rev_lineid1 or i=rev_lineid2 then carr{i}=thisclust;
if clustkat1^=. then do;

if carr{i}=clustkat1 then carr{i}=thisclust;
end;

if clustkat2^=. then do;
if carr{i}=clustkat2 then carr{i}=thisclust;

end;
end;
end;

end; %*End of ELSE do (to clustkat1=. and clustkat2=.);
end; %*End of ELSE DO (to if _n_=1);

if last then output;
retain clustcoun carr1-carr&maxkat_mac;

run;

%*From this cluster-array database, for this patient, create
a database with each feature set and the corresponding cluster number;

data tempclust2(keep=bene_id rev_lineid lineid tempclustid);
set tempclust1;
attrib bene_id length=$15;
bene_id="&desynamemac";
array carr{&maxkat_mac} carr1-carr&maxkat_mac;
noclustid=clustcoun;

do i=1 to &maxkat_mac;
rev_lineid=i;

lineid=(rev_lineid-1)+&min_lineid_mac;
if carr{i}^=. then tempclustid=carr{i};
else do;

noclustid=noclustid+1;
tempclustid=noclustid;
end;
output;

end;
run;

proc sort data=tempclust2;
by tempclustid;
run;

92

data patclust_&thisbene(drop=tempclustid);
set tempclust2;
by tempclustid;
if _n_=1 then clustid=0;
if first.tempclustid then clustid=clustid+1;
retain clustid;
run;

%if &delmac=1 %then %do;

proc datasets library=work nolist;
delete thisdesypairs thisdesypairs2
thisdesypairs3 tempclust1 tempclust2;
quit;

%end;

%end; %*End of THISBENE loop;

options notes source;

data patclust_all;
set
%do thisdesy=1 %to &clustbene_mac;

patclust_&thisdesy
%end;
;
run;

proc sort data=patclust_all;
by bene_id lineid;
run;

proc sort data=ccw.partition_carrier_&selpart;
by bene_id lineid;
run;

data forestpred_cluster;
merge patclust_all(in=ss1) ccw.partition_carrier_&selpart;
by bene_id lineid;
if ss1;
run;

%mend forestclustmac;

93

*For a range of patient IDs (MIN_PATIENTMAC and MAX_PATIENTMAC)
and a given part (SELPART) and a probability threshold (FINAL_THRESHMAC),
and a difference in dates threshold to limit clustering penalties for
chronic conditions (TDTTHRESHMAC), and a difference in dates threshold
(TDTLINKMAC) beyond which to remove the assumption of a perfect link
for same diagnosis category (or same diagnosis for vague diagnosis
categories), cluster using random forests results based on multiple
Random Forests models (averaged) in groups of 50,000 pairs;

%macro mult_forestclustmac(min_patientmac,max_patientmac,
selpart,final_threshmac,tdtthreshmac,tdtlinkmac);

data this_randorder(keep=bene_id);
set ccw.rand_partition;
where &min_patientmac<=partition_randorder<=&max_patientmac;
run;

proc sql;
create table sel_testforestpred as
select a.*
from ccw.testforestpred_part&selpart as a, this_randorder as b
where a.bene_id=b.bene_id;

quit;

%forestclustmac(sel_testforestpred,&selpart,1,&tdtthreshmac,&tdtlinkmac)

%mend mult_forestclustmac;

%mult_forestclustmac(1,55,1,0.8,-1,300)

94

Appendix B

SAS programs for second
clustering method

B.1 SAS code for producing initial parameter estimates and
updating with EM algorithm

We used the following SAS code to produce initial parameter estimates and up-
date them using a Monte Carlo version of the EM algorithm. This corresponds to the
methodology described in Section 5.4.

*Macro variable settings:

DGMAC = number of diagnosis categories (based on format
created below)

MINPROBEXP = exp(-minprobexp)=minimum probability for
any quantity (starting, stopping, transition)

;

%let dgmac=319;
%let minprobexp=20;

*STEP: Create format assigning, for each diagnosis code,
an integer-valued diagnosis category (requires having
first run the preliminary step below);

*Produce formats for CCS categories;
%include ’c:\ccs\ccsimp.sas’;

data final_diagfreq2;
set ccw.final_diagfreq;

95

ldiagkat=input(ldiag,$sng2dccs.);
if ldiagkat=. or 255<=ldiagkat<=259 or ldiagkat>=2616 then do;
revldiagkat=0;
if substr(ldiag,1,4) in(’V586’,’V761’,’V723’)
or ldiag in(’V7283’,’V7284’)
then do;
isnot_fin_ldiagkat=2;
if substr(ldiag,1,4) in(’V586’) then sec_ldiagkat=1;
else if substr(ldiag,1,4) in(’V761’) then sec_ldiagkat=2;
else if substr(ldiag,1,4) in(’V723’) then sec_ldiagkat=3;
else if ldiag in(’V7283’,’V7284’) then sec_ldiagkat=4;

end;
else if ldiag_numpatients>=1000 then isnot_fin_ldiagkat=3;
else isnot_fin_ldiagkat=4;

end;
else do;
revldiagkat=ldiagkat;
isnot_fin_ldiagkat=1;

end;

run;

proc sort data=final_diagfreq2;
by isnot_fin_ldiagkat revldiagkat sec_ldiagkat ldiag;
run;

data ccw.final_diagfreq3;
set final_diagfreq2;
by isnot_fin_ldiagkat revldiagkat sec_ldiagkat ldiag;
if _n_=1 then findiagkat=0;
if isnot_fin_ldiagkat=1 then do;
if first.revldiagkat then findiagkat+1;

end;
else if isnot_fin_ldiagkat=2 then do;
if first.sec_ldiagkat then findiagkat+1;

end;
else if isnot_fin_ldiagkat=3 then do;
findiagkat+1;

end;
else if first.isnot_fin_ldiagkat then findiagkat+1;
run;

data final_diagfreq4;
set ccw.final_diagfreq3;

96

fmtname=’findiagkatfmt’;
type=’i’;
attrib label length=$11;
attrib start stop length=$5;
start=ldiag;
stop=ldiag;
label=substr(left(findiagkat),1,11);
run;

proc format cntlin=final_diagfreq4;
run;

*PRELIMINARY STEP: From the combination of training and test
data, determine all of the diagnostic codes that
we will need to account for;

proc sql;
create table ccw.final_diagfreq as
select ldiag, count(*) as ldiag_freq, count(distinct(bene_id))
as ldiag_numpatients
from ccw.bcarrier)
group by ldiag;

quit;

*PRELIMINARY STEP: Using the training data, produce geometric
distance transition parameters and parameters
for starting and stopping probabilities;

%macro distancemac;

options nonotes nosource;

%do i=113 %to &max_thous;
%put Running macro DISTANCEMAC
iteration &i of 113 to &max_thous;

proc sql;
create table temp1 as

select distinct fdt, partition_randorder, ldiag
from ccw.partition_carrier_&i;

quit;

data temp2;
set temp1;

97

finldiagkat=input(ldiag,findiagkatfmt.);
randnum=ranuni(0);
run;

proc sort data=temp2;
by partition_randorder fdt randnum;
run;

data temp3_trans(keep=prevldiagkat finldiagkat);
prevldiagkat=finldiagkat;
set temp2;
by partition_randorder fdt randnum;
if first.partition_randorder=0 then output;
run;

proc sql;
create table transdiagkat_&i as

select finldiagkat, prevldiagkat, count(*) as thous_numtrans
from temp3_trans
group by finldiagkat, prevldiagkat;

quit;

proc sort data=temp2;
by partition_randorder finldiagkat fdt;
run;

data temp3(keep=finldiagkat partition_randorder
fdt prevfdt strtobs stpobs tdtdiff ldiagkat_id
epilength);

prevfdt=fdt;
set temp2;
by partition_randorder finldiagkat fdt;
if first.finldiagkat then do;

ldiagkat_id=0;
end;
strt_fdt=fdt;
ldiagkat_id+1;
format prevfdt strt_fdt date9.;

strtobs=first.finldiagkat;
stpobs=last.finldiagkat;

if first.finldiagkat then prevfdt=.;
else tdtdiff=fdt-prevfdt;

epilength=(fdt-strt_fdt)+1;
retain strt_fdt;

98

run;

proc sql;
create table strtdiagkat_&i as

select finldiagkat, count(*) as thous_numstrt
from temp3
where strtobs=1
group by finldiagkat;

quit;

proc sql;
create table stpdiagkat_&i as

select finldiagkat, sum(ldiagkat_id) as thous_numtrans,
sum(epilength) as thous_sum_epilength

from temp3
where stpobs=1
group by finldiagkat;

quit;

proc sql;
create table geomdiagkat_&i as

select finldiagkat, sum(tdtdiff) as thous_sum_tdtdiff,
count(*) as thous_numtrans
from temp3
where strtobs^=1
group by finldiagkat;

quit;

proc datasets library=work nolist;
delete temp1 temp2 temp3 temp3_trans;
quit;

%end;

options notes source;

data temp_strtdiagkat;
set
%do i=113 %to &max_thous;

strtdiagkat_&i
%end;
;
run;

99

proc sql;
create table ccw.strtdiagkat as

select finldiagkat, sum(thous_numstrt) as numstrt
from temp_strtdiagkat
group by finldiagkat;
quit;

data temp_stpdiagkat;
set
%do i=113 %to &max_thous;

stpdiagkat_&i
%end;
;
run;

proc sql;
create table ccw.stpdiagkat as

select finldiagkat, sum(thous_numtrans) as numtrans,
sum(thous_sum_epilength) as sum_epilength,
count(*) as numstp,

calculated numstp/calculated numtrans as dayprobstp
from temp_stpdiagkat
group by finldiagkat;
quit;

data temp_geomdiagkat;
set
%do i=113 %to &max_thous;

geomdiagkat_&i
%end;
;
run;

proc sql;
create table ccw.geomdiagkat as

select finldiagkat, sum(thous_sum_tdtdiff) as sum_tdtdiff,
sum(thous_numtrans) as numtrans,

calculated numtrans/calculated sum_tdtdiff as geomparam
from temp_geomdiagkat
group by finldiagkat;
quit;

data temp_transdiagkat;
set

100

%do i=113 %to &max_thous;
transdiagkat_&i

%end;
;
run;

proc sql;
create table temp2_transdiagkat as

select finldiagkat, prevldiagkat,
sum(thous_numtrans) as numtrans
from temp_transdiagkat
group by finldiagkat, prevldiagkat;

quit;

proc sql;
create table ccw.transdiagkat as

select *, sum(numtrans) as numprev, count(*) as numtranskat
from temp2_transdiagkat
group by prevldiagkat;
quit;

%mend distancemac;

%let max_thous=1117;
%distancemac

*STEP: Create formats for starting, stopping,
and transition probabilities;

*Produce parameters for the
daily probability of generating an episode
with a particular diagnosis category
and produce the corresponding format;

%macro genparam_mac(inpdat);

data genparams;
set &inpdat end=last;
fmtname=’epigenfmt’;
type=’i’;
numpatients=(223136-22314)+1;
numdays=730*numpatients;
genp=numstrt/numdays;
attrib label length=$11;

101

%emac(genp)
start=finldiagkat;
end=finldiagkat;
output;
if last then do;

hlo=’O’;
start=.;
end=.;
genp=exp(-&minprobexp);
%emac(genp)
output;

end;
run;

proc format cntlin=genparams;
run;

%mend genparam_mac;

*Produce stopping parameters;

%macro stpparams_mac(inpdat);

data stpparams;
set &inpdat end=last;
fmtname=’epistopfmt’;
type=’i’;
attrib label length=$11;
%emac(dayprobstp)
start=finldiagkat;
end=finldiagkat;
output;
if last then do;

hlo=’O’;
start=.;
end=.;
dayprobstp=exp(-&minprobexp);
%emac(dayprobstp)
output;

end;
run;

proc format cntlin=stpparams;
run;

102

%mend stpparams_mac;

*Produce geometric time transition parameters;

%macro gendist_mac(inpdat);

data gendist;
set &inpdat end=last;
fmtname=’distfmt’;

type=’i’;
attrib label length=$11;
%emac(geomparam)
start=finldiagkat;
end=finldiagkat;
output;
if last then do;
hlo=’O’;
start=.;
end=.;
geomparam=exp(-&minprobexp);
%emac(geomparam)
output;

end;
run;

proc format cntlin=gendist;
run;

%mend gendist_mac;

*Produce transition matrix format based on KL divergence
statistics;

%macro transdiagkat_mac(inpdat);

proc sql;
create table transdiagkat_marg as
select finldiagkat, sum(numtrans) as to_numtrans
from &inpdat
group by finldiagkat;

quit;

103

proc sql;
create table transdiagkat_marg2 as
select *, to_numtrans/sum(to_numtrans) as marg_probtrans
from transdiagkat_marg;

quit;

proc sql;
create table transdiagkat2 as
select a.*, b.marg_probtrans, b.to_numtrans,
a.numtrans/a.numprev as condit_probtrans,

calculated condit_probtrans*log(calculated condit_probtrans/
b.marg_probtrans) as kldivterm

from &inpdat as a, transdiagkat_marg2 as b
where a.finldiagkat=b.finldiagkat;

quit;

proc sql;
create table transdiagkat3 as
select *, count(*) as kldiv_numtranskat,
kldivterm/sum(kldivterm) as kldiv_probtrans
from transdiagkat2
where kldivterm>0
group by prevldiagkat;

quit;

data transdiagkat4;
set transdiagkat3 end=last;
fmtname=’diagtransfmt’;
type=’i’;
transprob=kldiv_probtrans*(1-((&dgmac-kldiv_numtranskat)*
(exp(-&minprobexp))));
attrib label length=$11;
%emac(transprob)
pairkat=((prevldiagkat-1)*&dgmac)+finldiagkat;
start=pairkat;
end=pairkat;
output;
if last then do;

hlo=’O’;
start=.;
end=.;
transprob=exp(-&minprobexp);
%emac(transprob)
output;

104

end;
run;

proc format cntlin=transdiagkat4;
run;

%mend transdiagkat_mac;

*STEP: Initialize parameters;

%genparam_mac(ccw.strtdiagkat)
%stpparams_mac(ccw.stpdiagkat)
%gendist_mac(ccw.geomdiagkat)
%transdiagkat_mac(ccw.transdiagkat)

*STEP: Update parameter estimates based on EM algorithm;

*Given an input database with episode labels, the MLEMAC macro will
produce approximate maximum likelihood estimates of all parameters;

%macro mlemac(inpdat);

%*New variables (sum across all patients):

NUMSTRT = for the given diagnosis category, number of days on
which new episode started with that diagnosis at start

;

proc sql;
create table mle_genstats1 as

select finldiagkat, count(*) as numstrt
from &inpdat
where newepi=1
group by finldiagkat;
quit;

%*Next we estimate the episode-stopping parameters;

%*New variables:

TOT_EVENTS = for each episode category, number of events in data
TOT_STOPEVENTS = of TOT_EVENTS, number that stopped an episode
DAYPROBSTP = estimated stopping probability for

105

each episode category

;

proc sql;
create table mle_stopstats2 as

select finldiagkat, count(*) as tot_events, sum(stopthis)
as tot_stopevents,
calculated tot_stopevents
/calculated tot_events as dayprobstp
from &inpdat
group by finldiagkat

having calculated tot_stopevents>0;
quit;

%*Next, we estimate the diagnosis
group-to-diagnosis transition parameters;

proc sql;
create table mle_epistats1 as

select prevdiagkat as prevldiagkat,
finldiagkat, count(*) as numtrans
from &inpdat
where newepi=0
group by prevdiagkat, finldiagkat;
quit;

proc sql;
create table mle_epistats2 as

select *, sum(numtrans) as numprev
from mle_epistats1
group by prevldiagkat;
quit;

%*Next we estimate the distance-to-next event parameters;

proc sql;
create table mle_diststats2 as

select prevdiagkat as finldiagkat,
count(*) as numgaps, sum(gap+1) as sumgap,
calculated numgaps/calculated sumgap as geomparam
from &inpdat
where newepi=0
group by prevdiagkat;

106

quit;

%mend mlemac;

*The EMMAC macro will perform one iteration of the EM algorithm;

%macro emmac(thous_num);

proc sql;
create table temp_randepisodes as

select distinct partition_randorder, fdt, ldiag
from ccw.partition_carrier_&thous_num;
quit;

data randepisodes(drop=ldiag);
set temp_randepisodes;
randorder=ranuni(0);
finldiagkat=input(ldiag,findiagkatfmt.);
run;

proc sort data=randepisodes;
by partition_randorder fdt randorder;
run;

data em1(keep=partition_randorder finldiagkat episode_id fdt newepi
epistop gap randorder);
prevday=fdt;
set randepisodes;
by partition_randorder;
format prevday date9.;

%*Selected variable definitions:

PREVDAY = Day from previous observation
(used when previous day for same patient)

EPICOUN = keeps track of how many
episodes are active for this patient

EPISODE_ID = identifier for each episode

MAX_EPI_ID = current maximum of this episode identifier

;

107

%*Temporary array definitions:

DEX = index of the array locations
(diagnosis categories) of the currently
active episodes. That is, if the Ith element of DEX
equals K, then we look for the Kth element (for vectors)
and the Kth row (the first element for two-dimensional arrays)
to find the corresponding episode information in the arrays
defined below.

REVDEX = for any given diagnosis, gives the DEX location of the
episode (if any) with the selected
diagnosis as its latest diagnosis

IDARR = for each active episode, the identifier associated with it
(will be output as EPISODE_ID)

DATEARR = array of corresponding dates
on which the episode started

PREVDATEARR = array of the latest
event date for this episode

CURREPIPROBS = for an existing episode, probability that the episode
continued to the current day with the current diagnosis,
given that it had continued up to PREVDAY
(the previous day on which there was any event for
this patient) The last element of CURREPIPROBS will
contain the probability of generating a new episode
rather than continuing existing ones

;

array dex{&dgmac} _temporary_;
array revdex{&dgmac} _temporary_;
array idarr{&dgmac} _temporary_;
array datearr{&dgmac} _temporary_;
array prevdatearr{&dgmac} _temporary_;

if first.partition_randorder then do;

epicoun=0;
max_epi_id=0;

108

%*For all episodes, blank out the information;

do i=1 to &dgmac;
dex{i}=.;
revdex{i}=.;

idarr{i}=.;
datearr{i}=.;
prevdatearr{i}=.;

end;

end; %*End of first.partition_randorder sub-routine;

retain _all_;

array currepiprobs{&dgplusmac};

%*For each existing episode(if any),
compute the CURREPIPROBS probabilities;

if epicoun>0 then do;
do dexi=1 to epicoun;
i=dex{dexi};
currepiprobs{i}=(

(1-input(i,epistopfmt.))
*pdf(’GEOMETRIC’,fdt-prevdatearr{i},input(i,distfmt.))

input(((i-1)&dgmac)+finldiagkat,diagtransfmt.)
)

/(
input(i,epistopfmt.)+((1-(input(i,epistopfmt.)))

*(1-cdf(’GEOMETRIC’,(prevday-prevdatearr{i}),
input(i,distfmt.))))

);
end; %*End of DEXI loop;
end; %*End of EPICOUN>0 sub-routine;

%*The last element of the CURREPIPROBS array
contains the probability of generating a new
episode with the current event diagnosis;

currepiprobs{&dgplusmac}=
input(finldiagkat,epigenfmt.)/(1-input(finldiagkat,epigenfmt.));

%*Next we select an episode to assign the

109

current event to, based on the posterior probability
of episode given current event;

postnorm=sum(of currepiprobs{*});
randpost=ranuni(0);
cumpost=0;
postdone=0;
seldexi=epicoun+1;
do dexi=1 to epicoun;

i=dex{dexi};
if postdone=0 then do;

cumpost=cumpost+(currepiprobs{i}/postnorm);
if randpost<=cumpost then do;

seldexi=dexi;
postdone=1;
end;

end;
end;

%*The NEWEPI variable is output with this observation, and it
indicates whether this event started a new episode;

if seldexi=epicoun+1 then do;
newepi=1;

if datearr{finldiagkat}=. then do;
epicoun=epicoun+1;
dex{epicoun}=finldiagkat;

revdex{finldiagkat}=epicoun;
end;
max_epi_id=max_epi_id+1;

idarr{finldiagkat}=max_epi_id;
datearr{finldiagkat}=fdt;
prevdatearr{finldiagkat}=fdt;
end;

else do;
newepi=0;

%*The SELI variable contains the selected episode
index (the index of the episode ID, date, probabilities, etc.);

seli=dex{seldexi};

%*If this event is not the start of a new episode,

110

then the GAP variable will show how many days
since the previous event in this same episode;

gap=fdt-prevdatearr{seli};

%*Now for this continued episode, we update the arrays;

if seli^=finldiagkat then do;
prevdatearr{seli}=.;

datearr{finldiagkat}=datearr{seli};
datearr{seli}=.;
idarr{finldiagkat}=idarr{seli};
idarr{seli}=.;
revdex{finldiagkat}=revdex{seli};
revdex{seli}=.;
dex{seldexi}=finldiagkat;

end;
prevdatearr{finldiagkat}=fdt;

end; %*End of ELSE DO corresponding to IF SELDEXI=0;

%*It is possible that we have had an existing episode
that ended with the current diagnosis, but the current
diagnosis either is starting a new episode or continued
a different episode. In this case, we need to remove
the DEX entry and compress the DEX array;

do dexi=1 to epicoun;
if dexi^=revdex{finldiagkat} and dex{dexi}=finldiagkat then do;
if dexi<epicoun then do;

do i=dexi to (epicoun-1);
dex{i}=dex{i+1};

end;
end;
dex{epicoun}=.;
epicoun=epicoun-1;

end;
end;

%*If it turns out that this episode has a last event at this
point, we would like to determine randomly whether it stopped;

randstop=ranuni(0);

111

contpast=1-cdf(’GEOMETRIC’,&daymac-fdt,
input(finldiagkat,distfmt.));
probstop=input(finldiagkat,epistopfmt.)

/(((1-input(finldiagkat,epistopfmt.))*contpast)
+input(finldiagkat,epistopfmt.));

if randstop<=probstop then epistop=1;
else epistop=0;

%*Finally, we create variables that will be
output with this event;

episode_id=idarr{finldiagkat};

run;

proc sort data=em1;
by partition_randorder episode_id descending fdt
descending randorder;
run;

data em2(drop=epistop epi_lastday);
set em1;
by partition_randorder episode_id;
if first.episode_id then do;

stopthis=epistop;
epi_finevent=1;
if epistop=1 then epi_lastday=fdt;
else epi_lastday=&daymac;
end;
else do;

stopthis=0;
epi_finevent=0;
end;
output em2;
retain epi_lastday;
run;

proc sort data=em2;
by partition_randorder episode_id fdt randorder;
run;

data em3_&thous_num;
prevdiagkat=finldiagkat;
set em2;

112

if newepi=1 then prevdiagkat=.;
run;

proc datasets library=work nolist;
delete em1 em2 temp_randepisodes randepisodes;
quit;

%mend emmac;

%macro all_emmac(prinitermac);

%do i=113 %to &max_thous;

%if &prinitermac=1 %then %do;
%put EM iteration on part &i of 113 to &max_thous;

%end;

%emmac(&i)

%end;

data em3;
set
%do i=113 %to &max_thous;

em3_&i
%end;
;
run;

proc datasets library=work nolist;
delete
%do i=113 %to &max_thous;

em3_&i
%end;
;
quit;

%mlemac(em3)

%genparam_mac(mle_genstats1)
%stpparams_mac(mle_stopstats2)
%gendist_mac(mle_diststats2)
%transdiagkat_mac(mle_epistats2)

113

%mend all_emmac;

%macro em_finmle_mac(selfinvar);

data ccw.fin_&selfinvar;
set ccw.&selfinvar._&num_emiter;
run;

%mend em_finmle_mac;

%macro em_itermle_mac(selfinvar);

data ccw.&selfinvar._&emiter;
set &selfinvar;
run;

%mend em_itermle_mac;

%macro em_itermac(num_emiter);
options nonotes nosource;
%do emiter=1 %to &num_emiter;
%put Running EM_ITERMAC iteration &emiter of &num_emiter;
%if &num_emiter=1 %then %do;
%all_emmac(1)

%end;
%else %do;

%all_emmac(0)
%end;

%em_itermle_mac(mle_genstats1)
%em_itermle_mac(mle_stopstats2)
%em_itermle_mac(mle_diststats2)
%em_itermle_mac(mle_epistats2)

proc datasets library=work nolist;
delete
mle_genstats1
mle_stopstats2
mle_diststats2

mle_epistats2
;
quit;

%end;
options notes source;

114

%em_finmle_mac(mle_genstats1)
%em_finmle_mac(mle_stopstats2)
%em_finmle_mac(mle_diststats2)
%em_finmle_mac(mle_epistats2)

%Mend em_itermac;

%let dgplusmac=%eval(&dgmac+1);
%let daymac=730;
%let max_thous=1117;
%em_itermac(30)

B.2 SAS code for clustering line items into episodes of care
using estimated parameters from EM algorithm

Using the estimated parameters produced by the EM algorithm, we used the fol-
lowing SAS code to cluster line items into episodes of care, as described in Section 5.5.

*STEP: For a selected patient, use these final parameters to
cluster the patient events into episodes;

*The LABELMAC macro will assign episode labels to
the input database based on an approximate maximum likelihood
configuration, using the following arguments:

LDAT = selected input database

LOOKMAC = lookahead number of events, including
the current event

;

%macro look_calcmac;

%*Calculate continuation/stopping probabilities
for the existing episodes, for those that still
are the latest of their respective episodes;

do i=1 to epicoun;
if lstarr{dex{i}}=1 then contprobarr{i}=log(
input(dex{i},epistopfmt.)+((1-(input(dex{i},epistopfmt.)))
*(1-cdf(’GEOMETRIC’,(fdt-prevdatearr{dex{i}}),

115

input(dex{i},distfmt.))))
);

else contprobarr{i}=.;
end;

%*Calculate generative, transition, and
continuation/stopping probabilities (as applicable)
for the look-ahead events;

do i=1 to &lookmac;
if i<=numlook then do;
if nxtprevdiagarr{i}=. then do;

nxtprobarr{i}=log(input(nxtdiagarr{i},epigenfmt.)/
(1-input(nxtdiagarr{i},epigenfmt.)));

if i=1 then nxtprob1_nocont=nxtprobarr{i};
end;

else if input(((nxtprevdiagarr{i}-1)*&dgmac)
+nxtdiagarr{i},diagtransfmt.)>0 then do;

thisgeom=pdf(’GEOMETRIC’,nxtdayarr{i}
-nxtprevdatearr{i},input(nxtprevdiagarr{i},distfmt.));

if thisgeom>0 then do;
nxtprobarr{i}=
log(pdf(’GEOMETRIC’,nxtdayarr{i}
-nxtprevdatearr{i},input(nxtprevdiagarr{i},distfmt.)))
+log(input(((nxtprevdiagarr{i}-1)
*&dgmac)+nxtdiagarr{i},diagtransfmt.));

if i=1 then nxtprob1_nocont=nxtprobarr{i};
end;
else nxtprobarr{i}=(-9999999999999999999);

%*For those lookahead events that are the
latest in their episodes, add the log of the
continuation/stopping probabilities;

if nxtlstarr{i}=1 then nxtprobarr{i}=nxtprobarr{i}+log(
input(nxtdiagarr{i},epistopfmt.)
+((1-(input(nxtdiagarr{i},epistopfmt.)))

*(1-cdf(’GEOMETRIC’,(fdt-nxtprevdatearr{i})
,input(nxtdiagarr{i},distfmt.))))

);

end;
%*Otherwise, the transition probability

116

is zero, so we set the log probability to
an extremely small number;
else nxtprobarr{i}=(-9999999999999999999);

end;
else nxtprobarr{i}=.;
end;

logprob=prevlogprob+sum(of nxtprobarr{*},of contprobarr{*});

if best_logprob=. or logprob>best_logprob then do;
best_logprob=logprob;
best_prevlogprob=prevlogprob+nxtprob1_nocont;

do i=1 to numlook;
best_nxtdexarr{i}=nxtdexarr{i};

end;
end;

%mend look_calcmac;

%macro labelmac(ldat,lookmac);

%*Prepare and then label the data;

data label_randepisodes(drop=ldiag);
set &ldat(keep=partition_randorder fdt ldiag);
randorder=ranuni(0);
finldiagkat=input(ldiag,findiagkatfmt.);
run;

proc sort data=label_randepisodes nodupkey;
by partition_randorder fdt finldiagkat;
run;

proc sort data=label_randepisodes;
by partition_randorder descending fdt descending randorder;
run;

%*For each event, produce an array of the next LOOKMAC events,
including the current event;

data label_randepisodes2(drop=i);
set label_randepisodes;
by partition_randorder;

117

%*The NUMLOOK variable contains the actual number of
items in the future lookup queue;

array nxtdayarr{&lookmac} nxtday1-nxtday&lookmac;
array nxtdiagarr{&lookmac} nxtdiag1-nxtdiag&lookmac;

if first.partition_randorder then do;
do i=1 to &lookmac;
nxtdayarr{i}=.;

nxtdiagarr{i}=.;
numlook=0;

end;
end;
if &lookmac>1 then do;

do i=&lookmac-1 to 1 by -1;
nxtdayarr{i+1}=nxtdayarr{i};

nxtdiagarr{i+1}=nxtdiagarr{i};
end;

end;

if numlook+1<=&lookmac then numlook=numlook+1;

nxtdayarr{1}=fdt;
nxtdiagarr{1}=finldiagkat;

retain numlook nxtday1-nxtday&lookmac nxtdiag1-nxtdiag&lookmac;

run;

proc sort data=label_randepisodes2;
by partition_randorder fdt randorder;
run;

data label_randepisodes3(keep=partition_randorder
finldiagkat episode_id fdt);
set label_randepisodes2;
by partition_randorder;

%*Selected variable definitions:

LOGPROB = log probability of configuration
through this event plus look-ahead events
for the selected configuration of the
current plus lookahead events

118

PREVLOGPROB = log probability of configuration before this event

BEST_LOGPROB = among configurations of the current
plus lookahead events, best value of LOGPROG

EPICOUN = keeps track of how many episodes
are active for this patient

EPISODE_ID = identifier for each episode

MAX_EPI_ID = current maximum of this episode identifier

;

%*Temporary array definitions:

DEX = index of the array locations (diagnosis categories)
of the currently active episodes. That is,
if the Ith element of DEX equals K, then we
look for the Kth element (for vectors) and the
Kth row (the first element for two-dimensional arrays)
to find the corresponding episode information
in the arrays defined below.

REVDEX = for any given diagnosis, gives the DEX location of the
episode (if any) with the selected
diagnosis as its latest diagnosis

IDARR = for each active episode, the identifier associated with it
(will be output as EPISODE_ID)

PREVDATEARR = array of the latest event date for this episode

LSTARR = including the current assignment of look-ahead events,
is this the last event of this particular episode

1 = yes
0 = no
blank = this diagnosis category is not part of a current episode

CONTPROBARR = log probabilities associated with continuing
(up to the current date) or stopping the existing events;

119

;

if _n_=1 then patientcoun=0;

array dex{&dgmac} _temporary_;
array revdex{&dgmac} _temporary_;
array idarr{&dgmac} _temporary_;
array prevdatearr{&dgmac} _temporary_;

if first.partition_randorder then do;

patientcoun+1;
put "Partitioning patient " patientcoun " ,
LOOKMAC = &lookmac, EM iteration &this_emiter";

%*For all episodes, blank out the information;

do i=1 to &dgmac;
dex{i}=.;
revdex{i}=.;

idarr{i}=.;
prevdatearr{i}=.;

end;

%*The first event will be assigned to episode 1;

dex{1}=finldiagkat;
revdex{finldiagkat}=1;
idarr{finldiagkat}=1;
prevdatearr{finldiagkat}=fdt;
max_epi_id=1;
episode_id=1;
epicoun=1;
prevlogprob=log(input(finldiagkat,epigenfmt.)
/(1-input(finldiagkat,epigenfmt.)));

end; %*End of first.patientid sub-routine;

retain _all_;

array lstarr{&dgmac} lst1-lst&dgmac;
array contprobarr{&dgmac} contprob1-contprob&dgmac;

%*Initialize the above array to indicate that the events in all current

120

episodes are the latest for their respective episodes;

do i=1 to epicoun;
lstarr{dex{i}}=1;

end;

%*The NXTLSTARR array indicates, for the look-ahead events,
the same as the LSTARR:

1 = this event is the latest for the episode
0 = not the latest

;

array nxtlstarr{&lookmac} nxtlst1-nxtlst&lookmac;

%*These arrays also were defined in the previous data step;

array nxtdayarr{&lookmac} nxtday1-nxtday&lookmac;
array nxtdiagarr{&lookmac} nxtdiag1-nxtdiag&lookmac;

%*The NXTDEXARR array keeps track of the index values of
episode assignments for the look-ahead variables, and the
BEST_NXTDEXARR array keeps track of these assignments for
the best (maximum likelihood) episode assignment.
The TEMP_NXTDEXARR array is used for making a copy
of the NXTDEXARR array but blanking out a selected element
(to then compute a maximum);

array nxtdexarr{&lookmac} nxtdex1-nxtdex&lookmac;
array temp_nxtdexarr{&lookmac} temp_nxtdex1-temp_nxtdex&lookmac;
array best_nxtdexarr{&lookmac} best_nxtdex1-best_nxtdex&lookmac;

array nxtprevdiagarr{&lookmac} nxtprevdiag1-nxtprevdiag&lookmac;
array nxtprevdatearr{&lookmac} nxtprevdate1-nxtprevdate&lookmac;

%*The NXTPROBARR array keeps track of the log probability associated
with generative or transition/distance probabilities
for each look-ahead event;

array nxtprobarr{&lookmac} nxtprob1-nxtprob&lookmac;

%*Now we loop through all possible look-ahead configurations,
using the LOOK_CALCMAC macro to compute the log probability of each.

121

We start this loop with all look-ahead events set to the first
existing episode (or to 1 if there are not any existing episodes),
and we finish with each look-ahead event starting a new episode;

if first.partition_randorder=0 then do;

do i=1 to numlook;
nxtdexarr{i}=1;

best_nxtdexarr{i}=1;
if i<numlook then nxtlstarr{i}=0;
else nxtlstarr{i}=1;
if i>1 then do;

nxtprevdiagarr{i}=nxtdiagarr{i-1};
nxtprevdatearr{i}=nxtdayarr{i-1};
end;
else do;

nxtprevdiagarr{i}=dex{1};
nxtprevdatearr{i}=prevdatearr{dex{1}};
end;

end;

lstarr{dex{1}}=0;
%look_calcmac

do until (nxtdexarr{numlook}=epicoun+numlook);

%*Reset the LSTARR array to indicate that all of the events
carried over from previous observations are the latest
in their respective episodes;

do i=1 to epicoun;
lstarr{dex{i}}=1;

end;

%*Advance the last look-ahead event one position,
starting with continuations of existing episodes, then
generating a new episode. If the last look-ahead event
already generates a new episode, then advance other
look-ahead events that are not already generating new episodes;

lookiterdone=0;
do i=numlook to 1 by -1;

if lookiterdone=0 then do;
do j=1 to numlook;

122

if i^=j then temp_nxtdexarr{j}=nxtdexarr{j};
else temp_nxtdexarr{j}=.;
end;

if nxtdexarr{i}<min(epicoun+i,
max(epicoun,of temp_nxtdexarr{*})+1)
then do;
lookiterdone=1;

nxtdexarr{i}=nxtdexarr{i}+1;
end;
else nxtdexarr{i}=1;

end;
end;

%*Next, determine the previous diagnoses and dates for episodes that
are continued;

do i=1 to numlook;
nxtprevdiagarr{i}=.;

nxtprevdatearr{i}=.;
nxtlstarr{i}=1;

if nxtdexarr{i}<=epicoun then do;
nxtprevdiagarr{i}=dex{nxtdexarr{i}};

nxtprevdatearr{i}=prevdatearr{dex{nxtdexarr{i}}};
lstarr{dex{nxtdexarr{i}}}=0;

end;
if i>1 then do;

do j=1 to (i-1);
if nxtdexarr{i}=nxtdexarr{j} then do;

nxtprevdiagarr{i}=nxtdiagarr{j};
nxtprevdatearr{i}=nxtdayarr{j};
nxtlstarr{j}=0;

end;
end;

end;
end;

%look_calcmac

end; %*End of NXTEPISODE_ID do until loop;

%*Finally, we output the approximate
maximum likelihood label for this event;

%*Assign the episode ID, and also increase EPICOUN and MAX_EPI_ID

123

if a new episode was generated;

if best_nxtdex1<=epicoun then do;
episode_id=idarr{dex{best_nxtdex1}};
revdex{dex{best_nxtdex1}}=.;
prevdatearr{dex{best_nxtdex1}}=.;
idarr{dex{best_nxtdex1}}=.;

end;
else do;

max_epi_id=max_epi_id+1;
episode_id=max_epi_id;

epicoun=best_nxtdex1;
end;

dex{best_nxtdex1}=finldiagkat;

%*It is possible that this event continues or begins one episode,
but there already is another episode with latest event the same
diagnosis as this event. In this case, we need to subtract one
from EPICOUN and compress the DEX array (that is, we terminate
the existing episode with the same diagnosis);

if revdex{finldiagkat}^=. then do;
if revdex{finldiagkat}<epicoun then do;

do i=revdex{finldiagkat} to (epicoun-1);
dex{i}=dex{i+1};

revdex{dex{i}}=revdex{dex{i}}-1;
end;
end;
dex{epicoun}=.;

epicoun=epicoun-1;
end;

%*Create new values for this episode;

revdex{finldiagkat}=best_nxtdex1;
prevdatearr{finldiagkat}=fdt;
idarr{finldiagkat}=episode_id;

%*Add the log probability of generating/transitioning to the
current event based on this episode label to the log
probability of events up to this one;

prevlogprob=best_prevlogprob;

124

end; %*End of FIRST.PATIENTID=0 sub-routine;

run;

%mend labelmac;

*The EM_SVMAC macro: From the database
that results from this EM algorithm clustering,
save permanent databases separately for each in a range of patient
ID numbers, with a specified EM iteration number (for the parameters
used) appended to the output name;

%macro em_svmac(minpatient_mac, maxpatient_mac, emitermac);

%do thispt=&minpatient_mac %to &maxpatient_mac;

data ccw.emclust_p&thispt._&emitermac._&lookmac;
set label_randepisodes3;

where partition_randorder=&thispt;
run;

%end;

%mend em_svmac;

*For the final test cases, label episodes using the EM parameters from
each of a range of iterations;

%macro emfintest_mac(min_emiter_mac,max_emiter_mac,
min_partition_randorder,max_partition_randorder,lookmac);

data emfintest;
set ccw.partition_carrier_1;
where &min_partition_randorder
<=partition_randorder<=&max_partition_randorder;
run;

options nonotes nosource;

%if &min_emiter_mac=0 %then %do;

%put Running EMFINTEST_MAC iteration 0 (using before-EM parameters);

125

%genparam_mac(ccw.strtdiagkat)
%stpparams_mac(ccw.stpdiagkat)
%gendist_mac(ccw.geomdiagkat)
%transdiagkat_mac(ccw.transdiagkat)

%let this_emiter=0;

%labelmac(emfintest,&lookmac)
%em_svmac(&min_partition_randorder,&max_partition_randorder,0)

%end;

%if &min_emiter_mac=0 %then %let beg_emiter_mac=1;
%else %let beg_emiter_mac=&min_emiter_mac;

%do this_emiter=&beg_emiter_mac %to &max_emiter_mac;

%put Running EMFINTEST_MAC iteration
&this_emiter of &min_emiter_mac to &max_emiter_mac;

%genparam_mac(ccw.mle_genstats1_&this_emiter)
%stpparams_mac(ccw.mle_stopstats2_&this_emiter)
%gendist_mac(ccw.mle_diststats2_&this_emiter)
%transdiagkat_mac(ccw.mle_epistats2_&this_emiter)

%labelmac(emfintest,&lookmac)
%em_svmac(&min_partition_randorder,
&max_partition_randorder,&this_emiter)

%end;

options notes source;

%mend emfintest_mac;

*Arguments required for EMFINTEST_MAC macro:

MIN_EMITER_MAC = min and max of the EM iterations
MAX_EMITER_MAC (parameter update iterations) to use for clustering

MIN_PARTITION_RANDORDER = range of patient IDs
MAX_PARTITION_RANDORDER to include in clustering database

LOOKMAC = see earlier definition

126

;

%emfintest_mac(0,10,1,55,2)

%emfintest_mac(5,5,1,55,1)
%emfintest_mac(5,5,1,55,3)
%emfintest_mac(5,5,1,55,4)

