UC Agriculture & Natural Resources

Farm

Title

Pesticide Selection to Reduce Impacts on Water Quality

Permalink

https://escholarship.org/uc/item/22n4f423

Authors

Ferruzzi, Giulio Gan, Jay

Publication Date 2004-09-01

DOI

10.3733/ucanr.8119

Peer reviewed

UNIVERSITY OF CALIFORNIA

Division of Agriculture and Natural Resources http://anrcatalog.ucdavis.edu

In partnership with

Natural Resources Conservation Service

http://www.nrcs.usda.gov

Farm Water Quality Planning A Water Ouality and

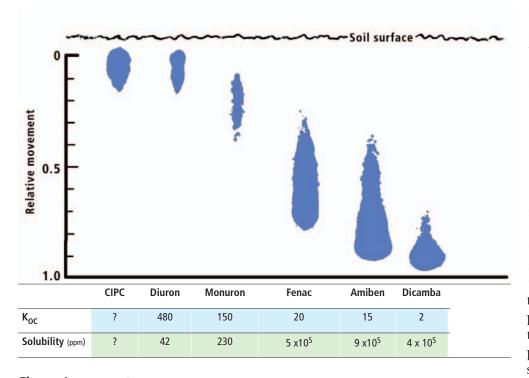
A water Quality and Technical Assistance Program for California Agriculture

This Reference Sheet is part of the Farm Water Quality Planning (FWQP) series, developed for a short course that provides training for growers of irrigated crops who are interested in implementing water quality protection practices. The short course teaches the basic concepts of watersheds, nonpoint source pollution (NPS), self-assessment techniques, and evaluation techniques. Management goals and practices are presented for a variety of cropping systems.

Reference:

Pesticide Selection to Reduce Impacts on Water Quality

GIULIO FERRUZZI is Agronomist, USDA–NRCS, San Luis Obispo County, and **JAY GAN** is Associate Professor and Water Quality Specialist, UC Riverside.


This publication's purpose is to help individual growers make their pesticide-use decisions with water quality in mind. There are several factors that influence a pesticide's potential to affect water quality, including soil properties (e.g., soil texture, organic matter content), pesticide properties (e.g., sorption to soil, half-life), climatic conditions (e.g., rainfall, temperature), and management practices or techniques (e.g., application method, irrigation). Table 1 summarizes how a number of these factors can affect water quality. Along with other site-specific factors, you should take the factors listed in Table 1 into consideration every time you choose a pesticide for application.

Despite all of these factors that can affect a pesticide's potential to impact water quality, though, it is the chemical properties of the pesticide that determine whether it is likely to impact surface water or ground water. In Tables 2, 3, and 4 we have ranked the potential of some common pesticides to impact surface water bodies and ground water according to three pesticide properties: K_{OC} , water solubility, and soil half-life.

 K_{OC} is the soil/organic carbon partitioning coefficient. It is highly dependent both on the pesticide's fat solubility and on the organic carbon content of a soil. The larger the K_{OC} , the more strongly the pesticide will sorb to the soil and the less likely it is to migrate to ground water. Water solubility is reported in ppm (parts per million), which is equivalent to milligrams of chemical (in this case, pesticide) that can be dissolved in a liter of water (1 ppm \approx 1 mg/L). The more soluble a pesticide is, the more likely it is to migrate to ground water or move offsite in surface runoff, although there are exceptions (e.g., glyphosate). A pesticide's soil half-life is the number of days it takes for half of the pesticide to degrade in the soil. The longer the half-life, the more persistent a pesticide is and thus the more probable it is that it will move into ground water or surface water.

Figure 1 gives examples of how K_{OC} and solubility affect the movement of pesticides in soils. Note that K_{OC} and solubility have a strong influence on pesticide leachability. The pesticides in Tables 2, 3, and 4 are reported as having a small, medium, or large potential to impact the surface or ground water. Precautionary actions should be taken above and beyond basic best management practices for pesticides that rank as medium or large potential.

It is important to note that, while the impact of pesticides on groundwater quality is mainly a human health concern (because of its effect on the potability of well water), the effect on surface water quality is often a concern for aquatic organisms or wildlife. This is especially important for pesticides that can run off from fields into streams and lakes, where the pesticides may harm aquatic invertebrates and fish or cause long-term harm to wildlife that feeds on those fish and invertebrates. Tables 2, 3, and 4, list the toxicity of some common pesticides to fish, birds, and other wildlife. By taking appropriate measures (e.g., modifying application methods, application

rates, timing, sediment/erosion control structures, tailwater recovery systems, vegetative buffers, etc.), you can reduce the potential impact to these species.

An additional concern is the potential effect of pesticides on the natural enemies of the target pests. If pesticide applications significantly reduce natural enemy populations, you may have to make more-frequent applications to suppress the resurgent pest populations. More applications, in turn, increase the potential to affect water quality. One of your goals is to protect water quality, so you should select a pesticide that

Figure 1. Comparative leaching of several herbicides in soils. USDA photo by C.S. Helling; previously published in Brady 1984.

has minimal effect on natural enemies, among other desirable characteristics. You can find more information on some common pesticides' toxicity toward certain natural enemies in the Natural Enemies Handbook (Flint and Dreistadt 1998) (UC ANR Publication 3386).

In summary, your choice of pesticides should be based on several factors. For example, when you are applying pesticides to a location where leaching is a major concern, you should choose a pesticide with a short half-life, high K_{OC} , low solubility, and low toxicity toward aquatic organisms, wildlife, beneficial insects, and other nontarget species. In contrast, when you are applying pesticides to a location where runoff is a major concern, pesticide properties (half-life, K_{OC} , solubility) become less important and management and pesticide toxicity become more important. You should still choose a pesticide with a small half-life, high K_{OC} , low solubility, and low toxicity to aquatic organisms, wildlife, beneficial insects, and other nontarget species, but you also need to pay close attention to field management practices. Erosion should be controlled, for instance, to keep pesticides that are associated with field sediment from making their way into streams and waterways. Pesticides should be incorporated during application if possible and any sediment generated from the field during rainfall or irrigation events should be retained, for instance, in a sediment pond or vegetated filter strip.

In selecting pesticides that are appropriate for a specific crop and pest issue, refer to the University of California IPM Pest Management Guidelines (http://www.ipm.ucdavis.edu), UC Cooperative Extension IPM Advisors, or a certi-fied Pest Control Advisor (PCA). You can use Tables 1 through 4 along with other site-specific information to make an educated decision about which pesticide would be most appropriate in terms of water quality and fish or wildlife toxicity. If the pesticide you are interested in is not in Tables 2 through 4, consult the USDA–NRCS Windows Pesticide Screening Tool (http://www.wcc.nrcs.usda.gov/pestmgt/winpst.html) or the University of California's Pesticide Wise Web site (http://www.pw.ucr.edu), which contains a more comprehensive listing of pesticides and their properties.

	Pesticide Properties					Soil Properties								Rainfall/ Irrigation Events		Management Practices	
	High water solubility	Low water solubility	Large K _{OC} (strongly sorbed to soil)	Small K _{OC} (weakly sorbed to soil)	Persistent	Coarse- textured soil	Fine- textured soil	High in organic matter	Low in organic matter	Many large connected soil pores	Few small disconti- nuous soil pores	Shallow water table	Deep water table	Small vol- umes not extending below root zone	Large volumes exceed- ing evapo- trans- piration	Broad- casting	Incor- porating
Risk of ground- water impact	Н	L	L	Н	Η	Η	L	L	Η	Η	L	Н	L	L	H*	Lţ	‡
Risk of surface-water impact	L#	Η	Η	L#	Η	L	Η	Η	L	L	Н	_#	_#	L#	Η	Η	L

Table 1. Water quality impact potential as influenced by water, pesticides, and soil properties (H = High and L = Low).

 $^{\star}~$ can be L if pesticide solubility is low or $\rm K_{\rm OC}$ is large and organic matter is high

 $^{\dagger}\,$ can be H if pesticide has high solubility, low $\rm K_{\rm oc}$ and excessive rainfall/irrigation exists

[‡] dependent on pesticide properties, soil properties, and rainfall/irrigation events

[#] can be H if excessive runoff exists

Table 2. Water quality impact potential and toxicity information of some common herbicides.

Herbicide Common Name	Herbicide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential*	Solution Runoff Potential [†]	Adsorbed Runoff Potential [‡]	Toxicity to Fish [#]	Toxicity to Birds and Other Wildlife [§]	References
				Phenoxy	v and Benzo	ic Acids				
2,4-D dimethylamine	2,4-D amine	20	890	10	Medium	Medium	Small	Moderate to slight	High to Slight	1, 2
DCPA	Dacthal	5,000	0.5	100	Small	Medium	Large	Slight to practically nontoxic	Moderate to practically nontoxic	1, 2
Dicamba	Banvel	2	4x10 ⁵	14	Large	Medium	Small	Practically nontoxic	Practically nontoxic	1, 2
					Triazines					
Atrazine	Aatrex	100	33	60	Large	Large	Medium	Slight	Practically nontoxic	1, 2
Cyanazine	Bladex	190	170	14	Medium	Medium	Small	Slight to moderate	Slight to moderate	1, 2
Hexazinone	Velpar	54	33,000	90	Large	Large	Medium	Slight	Slight to practically nontoxic	1, 2
Metribuzin	Sencor	60	1,220	40	Large	Large	Small	Slight	Moderate to slight	1, 2
Prometon	Pramitol	150	720	500	Large	Large	Medium	Practically nontoxic	Slight	1, 3
Prometryn	Promet	400	33	60	Medium	Large	Medium	Moderate	Practically nontoxic	1, 2
Simazine	Simazine	130	6.2	60	Large	Large	Medium	Slight to practically nontoxic	Practically nontoxic	1, 2
				Sub	stituted Ure	eas				
Chlorsulfuron	Glean	40	7,000	160	Large	Large	Medium	Practically nontoxic	Practically nontoxic	1, 4
Diuron	Karmex	480	42	90	Medium	Large	Medium	Moderate	Slight	1, 3
Linuron	Lorox	400	75	60	Medium	Large	Medium	Slight	Slight	1, 2
Sulfometuron-methyl	Oust	78	70	20	Medium	Large	Small	Slight	Practically nontoxic	1, 2
Tebuthiuron	Spike	80	2,500	360	Large	Large	Medium	Slight to practically nontoxic	Practically nontoxic	1, 2
				Th	iocarbamate	es				
Butylate	Sutan	400	44	13	Small	Large	Small	Moderate	Practically nontoxic	1, 2
Cycloate	Ro-Neet	430	95	30	Medium	Large	Small	Moderate	Practically nontoxic	1, 4

* The potential for the pesticide to be lost via leaching.

[†] The potential for the pesticide to be lost by being transported away in surface runoff in the solution phase.

[‡] The potential for the pesticide to be lost by being transported away in surface runoff while adsorbed to soil particles.

[#] The toxicity categories are defined in Table 5. Most toxicities are reported for fish, although some include aquatic invertebrates also. § The toxicity categories are defined in Table 5. Most toxicities are reported for birds, although some include rabbits and other wildlife also.

ANR Publication 8119

Table 2. Water quality impact potential and toxicity information of some common herbicides (con't).

Herbicide Common Name	Herbicide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential*	Solution Runoff Potential†	Adsorbed Runoff Potential [‡]	Toxicity to Fish [#]	Toxicity to Birds and Other Wildlife [§]	References
EPTC	Eradicane	200	344	6	Small	Medium	Small	Slight	Slight to practically nontoxic	1, 2
Molinate	Molinate	190	970	21	Medium	Medium	Small	High to slight	Practically nontoxic	1, 2
Pebulate	Tillam	430	100	14	Small	Medium	Small	Moderate	Practically nontoxic	1, 4
Triallate	Far-Go	2,400	4	82	Small	Large	Large	High	Practically nontoxic	1, 2
					Bipyridylia	ums				
Diquat dibromide	Diquat	1x10 ⁶	7.2x10 ⁵	1,000	Very small	Small	Large	Moderate to practically nontoxic	Slight to moderate	1, 2
Paraquat	Gramoxone	1x10 ⁶	6.2x10 ⁵	1,000	Very small	Small	Large	Moderate to slight	Moderate	1, 2
				(Chloroaceta	mides				
Alachlor	Lasso	170	240	15	Medium	Medium	Small	Moderate	Practically nontoxic	1, 2
Metolachlor	Dual	200	530	90	High	High	Medium	Moderate	Slight to practically nontoxic	1, 2
					Dinitroanil	lines				
Oryzalin	Surflan	600	2.5	20	Small	Medium	Small	High	Slight to practically nontoxic	1, 2
Pendimethalin	Prowl	5,000	0.28	90	Small	Medium	Large	High	Slight	1, 2
Trifluralin	Treflan	8,000	0.3	60	Small	Medium	Large	Very high	Practically nontoxic	1, 2
					Nitriles	5				
Bromoxynil	Buctril	192	0.8	8	Small	Small	Medium	Very high to moderate	High to moderate	1, 2
Dichlobenil	Casoron	400	21.2	60	Medium	Large	Medium	Moderate to slight	Slight to practically nontoxic	1, 4

* The potential for the pesticide to be lost via leaching.

[†] The potential for the pesticide to be lost by being transported away in surface runoff in the solution phase.

⁺ The potential for the pesticide to be lost by being transported away in surface runoff while adsorbed to soil particles.

[#] The toxicity categories are defined in Table 5. Most toxicities are reported for fish, although some include aquatic invertebrates also.

[§] The toxicity categories are defined in Table 5. Most toxicities are reported for birds, although some include rabbits and other wildlife also.

Table 2. Water quality impact potential and toxicity information of some common herbicides (con't).

Herbicide Common Name	Herbicide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential*	Solution Runoff Potential [†]	Adsorbed Runoff Potential [‡]	Toxicity to Fish [#]	Toxicity to Birds and Other Wildlife [§]	References
				Ot	ther Herbici	des				
Acrolein	Magnacide-H	1	2.1x10 ⁵	14	Large	Medium	Small	High to slight	Very high to high	1, 4
Bensulide	Prefar	1,000	5.6	120	Medium	Large	Large	Moderate to high	Slight	1, 2
Bentazon	Basagran	35	2.3x10 ⁶	20	Large	Large	Small	Practically nontoxic	Slight	5, 1, 2
Bromacil	Hyvar	32	700	60	Large	Large	Medium	Slight to practically nontoxic	Practically nontoxic	1, 2
Clopyralid	Stinger	6	1,000	30	Large	Medium	Small	Practically nontoxic	Slight to practically nontoxic	1, 5
Diethayl-ethyl	Antor	1,400	105	21	Small	Medium	Medium	Moderate	N/A	1, 6
Ethofumesate	Norton	340	50	30	Medium	Large	Small	Slight to practically nontoxic	Practically nontoxic	1, 4
Glyphosate	Roundup	24,000	12,000	47	Very small	Large	Large	Practically non- Toxic	Slight	1, 2
Imazethapyr	Pursuit	10	2x10 ⁵	90	Large	Large	Medium	Practically nontoxic	Practically nontoxic	1, 4
Isoxaben	Snapshot TG	1,400	1	100	Small	Large	Large	High to moderate	Practically nontoxic	1, 4
Napropamide	Devrinol	400	74	70	Medium	Large	Medium	Moderate to slight	Practically nontoxic	1, 2
Norflurazon	Evital	600	28	90	Medium	Large	Medium	Moderate	Slight to practically nontoxic	1, 4
Oxyfluorfen	Goal	1x10 ⁵	0.1	35	Very small	Large	Medium	High	Practically nontoxic	1, 2
Propyzamide	Kerb	200	15	60	Large	Large	Medium	Slight to practically nontoxic	Practically nontoxic	1, 4
Pyrazon	Pyramin	120	400	21	Large	Large	Medium	Slight	Slight	1, 3
Rimsulfuron	Matrix	47	7,300	10	Medium	Medium	Small	Practically nontoxic	Slight to moderate	1, 3

* The potential for the pesticide to be lost via leaching.

[†] The potential for the pesticide to be lost by being transported away in surface runoff in the solution phase.

[‡] The potential for the pesticide to be lost by being transported away in surface runoff while adsorbed to soil particles.

[#] The toxicity categories are defined in Table 5. Most toxicities are reported for fish, although some include aquatic invertebrates also.

[§] The toxicity categories are defined in Table 5. Most toxicities are reported for birds, although some include rabbits and other wildlife also.

 Table 3. Water quality impact potential of common insecticides, nematicides, and other pesticides.

Pesticide Common Name	Pesticide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential	Solution Runoff Potential	Adsorbed Runoff Potential	Toxicity to Fish	Toxicity to Birds and Other Wildlife	References
				Pyreth	roids and L	Botanicals				
Esfenvalerate	Asana	5,300	0.002	35	Small	Medium	Medium	Very high	Slight	1, 2
Fenvalerate	Pydrin	5,300	0.002	35	Small	Medium	Medium	High to moderate	Practically nontoxic	1, 4
Fluvalinate	Mavrik	1x10 ⁶	0.005	30	Very small	Small	Medium	Very high	Slight	1, 2
Permethrin	Ambush	1x10 ⁵	0.006	30	Very small	Small	Medium	Very high	Practically nontoxic	1, 2
Resmethrin	Crossfire	1x10 ⁵	0.01	30	Very small	Small	Medium	Very high	Practically nontoxic	1, 2
					Carbamat	es				
Aldicarb	Temik	30	6,000	30	Large	Medium	Small	Moderate	Very high	1, 2
Carbaryl	Sevin	300	120	10	Small	Medium	Small	Moderate	Practically nontoxic	1, 2
Carbofuran	Furadan	22	351	50	Large	Large	Medium	High	High	1, 2
Formetanate	Carzol	1x10 ⁶	5x10 ⁵	100	Very small	Small	Large	Moderate to slight	High	1, 4
Methiocarb	Mesurol	300	24	30	Medium	Large	Small	Moderate to high	Very high to high	1, 4
Methomyl	Lannate	72	58,000	30	Large	Medium	Small	High to moderate	High	1, 2
Oxamyl	Vydate-L	2.8x10 ⁵	25	4	Small	Medium	Small	Moderate to slight	Very high	1, 2
Thiodicarb	Larvin	350	19.1	7	Small	Large	Small	High to moderate	Practically nontoxic	1, 4
				Or	ganophosp	hates				
Acephate	Orthene	2	818,000	3	Small	Medium	Small	Slight to practically nontoxic	Moderate to slight	1, 4
Azinphos-methyl	Guthion	1,000	29	10	Small	Medium	Medium	Very high to moderate	Slight to moderate	1, 2
Chlorpyrifos	Lorsban	6,070	0.4	30	Small	Small	Medium	Very high	Very high to moderate	1, 2
Chlorpyrifos- methyl	Dursban methyl	3,000	4	7	Small	Medium	Medium	Moderate to practically nontoxic	Slight	1, 4
Diazinon	D.Z.N.	1,000	60	40	Small	High	High	High to slight	Very high to high	1, 2
Dimethoate	Cygon	20	39,800	7	Medium	Medium	Small	Moderate	Very high to moderate	1, 2
Disulfoton	Di-Syston	600	25	30	Medium	Large	Small	High	Moderate	1, 2
Fenamiphos	Nemacur	100	400	50	Large	Large	Medium	High to moderate	Very high	1, 2

ANR Publication 8119

Table 3. Water quality impact potential of common insecticides, nematicides and other pesticides (con't).

Pesticide Common Name	Pesticide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential	Solution Runoff Potential	Adsorbed Runoff Potential	Toxicity to Fish	Toxicity to Birds and Other Wildlife	References
Fonofos	Dyfonate	870	16.9	40	Small	Large	Small	High	Extremely high	1, 2
Malathion	Cythion	1,800	130	1	Small	Small	Small	Very high to slight	Moderate	1, 2
Methyl parathion	Penncap-M	5,100	60	5	Small	Medium	Medium	Very high to high	Extreme	1, 2
Naled	Dibrom	180	2,000	1	Small	Medium	Small	High to moderate	High to moderate	1, 2
Parathion	Phoskil	5,000	24	14	Small	Medium	Medium	Very high to moderate	Very high to high	1, 4
Phorate	Thimet	1,000	22	60	Small	Large	Large	Very high	Very high to high	1, 2
Terbufos	Counter	500	5	5	Small	Medium	Small	High	Very high	1, 2
Trichlorfon	Dylox	10	1.2x10 ⁵	10	Large	Medium	Small	Very high	High to moderate	1, 2
			Orga	anochlorid	les (Chlorin	ated hydroc	arbons)			
Dicofol	Kelthane	1.8x10⁵	1	60	Very small	Small	Large	High	Slight	1, 2
Dienochlor	Pentac	1,000	25	300	Medium	Large	Large	Very high to high	Practically nontoxic	1, 2
Endosulfan	Thiodan	12,400	0.32	50	Very small	Medium	Large	Very high	High to moderate	1, 2
Lindane	lsotox	1,100	7	400	Medium	Large	Large	Very high to high	Moderate to practically nontoxic	1, 2
					Other					
Abamectin	Avid	5,000	5	28	Small	Medium	Medium	Very high	Practically nontoxic	1, 2
Bacillus thuringensis	Dipel	N/A	N/A	120	Very small (estimated)	N/A	N/A	Practically nontoxic	Practically nontoxic	2
Bifenthrin	Talstar	2.4x10 ⁵	0.1	26	Very small	Small	Medium	Very high	Slight to practically nontoxic	1, 4
Cryolite	Kryocide	10,000	420	3,000	Small	Large	Large	Slight to practically nontoxic	Practically nontoxic	1, 4
Diflubenzuron	Dimilin	10,000	0.08	10	Small	Small	Medium	Practically nontoxic	Practically nontoxic	1, 2
Ethoprop	Мосар	70	750	25	Large	Medium	Small	Very high to slight	Very high to slight	1, 4
Imidacloprid	Admire	440	580	127	Large	Large	Medium	Slight to practically nontoxic	High to slight	1, 4
Metaldehyde	Metaldehyde	240	230	10	Small	Medium	Small	Moderate to practically nontoxic	Moderate to slight	1, 4
Oxydemeton-methyl	Metasystox-R	10	1x10 ⁶	10	Large	Medium	Small	High to slight	High to slight	1, 4

 Table 4. Water quality impact potential of common fungicides.

Fungicide Common Name	Fungicide Trade Name	Soil Sorption Index (K _{OC})	Water Solubility (ppm)	Soil Half-Life (days)	Leaching Potential	Solution Runoff Potential	Adsorbed Runoff Potential	Toxicity to Fish	Toxicity to Birds and Other Wildlife	Reference	
	Dithiocarbamates										
Mancozeb	Dithane	2,000	6	70	Small	Large	Large	High to moderate	Slight	1, 2	
Maneb	Maneb	2,000	6	70	Small	Large	Large	High	Practically nontoxic	1, 2	
	Dicarboximides										
Iprodione	Rovral	700	13.9	14	Small	Large	Small	Moderate	Slight	1, 2	
Vinclozolin	Ronilan	100	1,000	20	Medium	Medium	Small	Moderate to slight	Practically nontoxic	1, 2	
			Οι	rganochlo	rides (Chloi	rinated hyd	rocarbons)				
Chlorothalonil	Bravo	1,380	0.6	30	Small	Medium	Medium	High	Practically nontoxic	1, 2	
PCNB (Quintozene)	Terraclor	5,000	0.44	21	Small	Small	Medium	High	Practically nontoxic	1, 2	
Dichloropropene	Telone II	32	2,250	10	Medium	Medium	Small	Moderate	Moderate to practically nontoxic	1, 4	
	Other Fungicides										
Bacillus subtilis	Serenade	N/A	N/A	N/A	Very small (estimated)	Small	Small	Practically nontoxic	Practically nontoxic	3, 7	
Benomyl	Benlate	1,900	2	67	Very small	Small	Small	Very high to high	Moderate to practically nontoxic	1, 2	
Captan	Captan	200	5.1	3	Small	Medium	Small	Very high	Practically nontoxic	1, 2	
Carboxin	Vitavax	260	195	7	Small	Medium	Small	High to slight	Slight to practically nontoxic	1, 4	
Chloropicrin	Chlor-O-Pic	62	2,270	1	Small	Medium	Small	Very high to high	N/A	1, 4	
Dicloran	Botran	1,000	7	10	Small	Medium	Medium	High to slight	Slight to practically nontoxic	1, 4	
Fosetyl-Al technical	Aliette	20	1.2x10 ⁵	1	Very small	Medium	Small	Practically nontoxic	Practically nontoxic	1, 4	
Metalaxyl	Ridomil	70	8,400	50	Large	Large	Medium	Practically nontoxic	Practically nontoxic	1, 2	
Triadimefon	Bayleton	300	71.5	26	Medium	Large	Small	Slight to practically nontoxic	Practically nontoxic	1, 2	
Triflumizole	Procure	40	12,500	14	Medium	Medium	Small	High to moderate	Practically nontoxic	1, 4	

Toxicity Rating	Bird Acute Oral LD ₅₀ (mg/kg)	Fish water LC ₅₀ (mg/L)		
Very high	<10	<0.1		
High	10–50	0.1–1		
Moderate	>50–500	>1-10		
Slight	>500–2000	>10-100		
Practically nontoxic	>2000	>100		

 Table 5. Definition of toxicity categories used in Tables 2, 3, and 4.

SOURCE: Modified from Kamrin, 1997, Lewis Publishers (an imprint of CRC Press).

REFERENCES FOR TABLES 2 THROUGH 4

Note: These references are numbered, and they are referenced by number in Tables 2 through 4.

- Plotkin, Steven. 2004. USDA–NRCS Windows pesticide screening tool (WIN–PST) pesticide properties database. Amherst, MA: USDA–NRCS National Water and Climate Center. Available at http://www.wcc.nrcs.usda.gov/pestmgt/winpst.html
- 2. Kamrin, Michael A. 1997. Pesticide profiles: Toxicity, environmental impact, and fate. Boca Raton: CRC Press LLC. 676 pp.
- 3. Material Safety Data Sheets for specific chemicals.
- 4. Office of Pesticide Programs. 2001. Environmental effects database (EEDB). Environmental Fate and Effects Division. Washington, DC: US Environmental Protection Agency.
- Waskom, Reagan M. 1995. Best management practices for agricultural pesticide use. Fort Collins, CO: Colorado State University Cooperative Extension, Bulletin #XCM-177.
- Hunn, J. B., E. P. Multer, and M. S. DeFelice. 1993. Fish and agricultural chemicals: Safeguarding your ponds. Columbia, MO: University of Missouri Cooperative Extension, publication G1912.
- 7. Marrone, Pamela. 2004. Personal communication.

ADDITIONAL INFORMATION ON MANAGING PESTICIDES IN AGRICULTURE

- Brady, N. C. 1984. The nature and properties of soils. 9th edition. New York: Macmillan.
- Brady, N. C., and R. R. Weil. 2002. The nature and properties of soils. 13th edition. Upper Saddle River, NJ: Prentice Hall.
- Dreistadt, Steve H. 2001. Integrated pest management for floriculture and nurseries. Oakland: University of California Division of Agriculture and Natural

Resources, Publication 3402.

- Flint, Mary Louise, and Steve H. Dreistadt. 1998. Natural enemies handbook. Oakland: University of California Division of Agriculture and Natural Resources, Publication 3386.
- Forster, R., J. Trumbo, and T. Yargeau. 1997. California wildlife and pesticides: A guide to using pesticides in and near fish and wildlife habitat. Sacramento: California Department of Fish and Game. PAPA.
- Gan, Jay, and Peter Pang. no date. Pesticide wise online database. Riverside: University of California. Available at http://www.pw.ucr.edu
- IPM Manual Group. 1992. Integrated pest management for cole crops and lettuce. Oakland: University of California Division of Agriculture and Natural Resources, Publication 3307.
- IPM Manual Group. 1994. Integrated pest management for strawberries. Oakland: University of California Division of Agriculture and Natural Resources, Publication 3351.
- IPM Manual Group. 1999. Integrated pest management for stone fruits. Oakland: University of California Division of Agriculture and Natural Resources, Publication 3389.
- Kamrin, Michael A. 1997. Pesticide profiles: Toxicity, environmental impact, and fate. Boca Raton: CRC Press LLC.
- Mahler, Robert L., Hugh W. Homan, and Gene P. Carpenter. 1998. Pesticides and their movement in soil and water. Moscow, ID: University of Idaho Cooperative Extension, 5M 5–95, Current Information Series No. 865.
- UC IPM Program. various dates. University of California integrated pest management guidelines. Oakland: University of California Division of Agriculture and Natural Resources. Available at

http://www.ipm.ucdavis.edu/PMG/crops-agriculture.html

- USDA. 2000. USDA–NRCS Pest Management Standard 595. Available from http://www.ca.nrcs.usda.gov/rts/secr.htm
- USDA. 2004. USDA–NRCS Windows pesticide screening tool (WIN–PST), version 2.0062b. Amherst, MA: USDA–NRCS National Water and Climate Center. http://www.wcc.nrcs.usda.gov/pestmgt/winpst.html

Figure 1 in this publication was adapted from *The Nature and Properties of Soils* (Brady 1984), courtesy of C. S. Helling, USDA. The information in this publication was drawn from the above listed sources, the sources referenced in the tables, and discussions with qualified professionals. Contact your local NRCS office or visit http://www.nrcs.usda.gov for further information.

FOR MORE INFORMATION

You'll find detailed information on many aspects of resource conservation in these titles and in other publications, slide sets, CD-ROMs, and videos from UC ANR:

Developing a Nonpoint Source Pollution Evaluation Program, publication 8087 Nonpoint Sources of Pollution in Irrigated Agriculture, publication 8055 The Farm Water Quality Plan, publication 9002

To order these products, visit our online catalog at http://anrcatalog.ucdavis.edu. You can also place orders by mail, phone, or FAX, or request a printed catalog of publications, slide sets, CD-ROMs, and videos from

University of California Agriculture and Natural Resources Communication Services 6701 San Pablo Avenue, 2nd Floor Oakland, California 94608-1239

Telephone: (800) 994-8849 or (510) 642-2431, FAX: (510) 643-5470 e-mail inquiries: danrcs@ucdavis.edu

An electronic version of this publication is available on the ANR Communication Services Web site at http://anrcatalog.ucdavis.edu.

Publication 8119

© 2004 by the Regents of the University of California, Division of Agriculture and Natural Resources. All rights reserved.

The University of California prohibits discrimination or harassment of any person on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (including childbirth, and medical conditions related to pregnancy or childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or status as a covered veteran (covered veterans are special disabled veterans, recently separated veterans, Vietnam era veterans, or any other veterans who served on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized) in any of its programs or activities.

University policy is intended to be consistent with the provisions of applicable State and Federal laws.

Inquiries regarding the University's nondiscrimination policies may be directed to the Affirmative Action/Staff Personnel Services Director, University of California, Agriculture and Natural Resources, 300 Lakeside Drive, 6th Floor, Oakland, CA 94612-3550, (510) 987-0096. For information about obtaining this publication, call (800) 994-8849. For downloading information, call (530) 754-5112.

pr-9/04-WJC/VJG

This publication has been anonymously peer reviewed for technical accuracy by University of California scientists and other qualified professionals. The review process was managed by the ANR Associate Editor for Natural Resources.