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Abstract

Odontoblasts, cementoblasts, ameloblasts and osteoblasts all form mineralized tissues in the 

craniofacial complex, and all these cell types exhibit active Wnt signaling during postnatal life. 

We set out to understand the functions of this Wnt signaling, by evaluating the phenotypes of mice 

in which the essential Wnt chaperone protein, Wingless was eliminated. The deletion of Wls was 

restricted to cells expressing Osteocalcin, which in addition to osteoblasts includes odontoblasts, 

cementoblasts, and ameloblasts. Dentin, cementum, enamel, and bone all formed in OCN-

Cre;Wlsfl/fl mice but their homeostasis was dramatically affected. The most notable feature was a 

significant increase in dentin volume and density. We attribute this gain in dentin volume to a 

Wnt-mediated mis-regulation of Runx2. Normally, Wnt signaling stimulates Runx2, which in turn 
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inhibits DSP; this inhibition must be relieved for odontoblasts to differentiate. In OCN-Cre;Wlsfl/fl 

mice, Wnt pathway activation is reduced and Runx2 levels decline. The Runx2-mediated 

repression of DSP is relieved and odontoblast differentiation is accordingly enhanced. This study 

demonstrates the importance of Wnt signaling in the homeostasis of mineralized tissues of the 

craniofacial complex.
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Introduction

Wnt signals play decisive roles in the development and homeostasis of mineralized tissues, 

and a key strategy for demonstrating these functions has been to study how gain- and loss-

of-function mutations in components of the Wnt signal transduction pathway affect 

osteogenesis. For example, reductions in Wnt signaling, either by over-expression of Wnt 

antagonists, a deficiency of Wnt ligands, or mutations in genes encoding Wnt receptors 

cause bone loss in humans and in mice (1-3). Conversely, enhancement of Wnt signaling 

results in increased bone volume, abnormal bone density (i.e., hyperostosis), and 

pathological thickening of bone, a condition known as sclerosing bone dysplasia (4-7). Wnt 

signaling also influences the program of odontogenesis, but much less is understood about 

its role in this complex process. For example, Wnt signaling controls morphological aspects 

of tooth development including the number (8), the size (9), the position (10), and the shapes 

(11-15), of teeth (reviewed in (16)). Loss-of-function experiments suggest that Wnt signals 

regulate the maturation of dental mesenchyme into dentin-secreting odontoblasts (12) and 

bone-secreting cementoblasts (17) but conflicting reports also exist (18).

Much less are known about the postnatal functions of Wnt signaling in maintaining 

mineralized tissue homeostasis. Although Wnt signaling remains a critical regulator of bone 

homeostasis throughout life (19,20), the function of postnatal Wnt signaling in the 

maintenance of dental mineralized tissues is unclear. A standard knock-out approach to 

abrogate Wnt signaling is complicated by the fact that there are nineteen, closely related 

mammalian Wnt genes that are largely redundant (21-23). To overcome this difficulty we 

made use of a Cre-LoxP system to conditionally delete Wntless (Wls), a chaperone protein 

that escorts lipid-modified Wnt from the Golgi to the cell surface (24). When Wls is 

inactivated, the secretion of all mammalian Wnt proteins is blocked (24,25) and Wnt 

signaling is abrogated (26). To block Wnt signaling specifically in mineralized tissues, 

Wlsfl/fl mice were crossed with OCN-Cre mice to generate OCN-Cre;Wlsfl/fl offspring (27). 

Osteocalcin is a major non-collagenous protein synthesized by osteoblasts, odontoblasts, 

ameloblasts, and cementoblasts (28). Consequently, these mice allowed us to focus on how 

loss of Wnt protein secretion from cells affects mineralized tissues in the head, regardless of 

whether they originated from somatic mesoderm, paraxial cephalic mesoderm, or cranial 

neural crest (29,30).
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Materials and Methods

Generation of OCN-Cre;Wlsfl/fl mice

The generation of OCN-Cre;Wlsfl/fl mice were performed after review and approval by the 

Van Andel Research Institute IACUC (protocol #13-03-015). Both OCN-Cre and Wlsfl/fl 

mice are available at Jackson Laboratories (129S-Wlstm1.1Lan/J, 012888 for Wlsfl/fl and B6N 

PVB-Tg1Clem/J,019509 for OCN-Cre). Genomic DNA was prepared from tail biopsies 

using an AutoGenprep 960 automated DNA isolation system (AutoGen). PCR-based 

strategies were used to genotype the mice (details are available upon request). Thirty mice 

were analyzed; 10 were 1 month old and 20 were 3 months old.

Generation of Axin2LacZ/+ mice; detection of beta galactosidase activity

The generation of Axin2LacZ/+ mice (Jackson Laboratories 129P2-Axin2tm1Wbm/J) was 

performed in accordance with animal welfare based on an approved IACUC protocol 

#13146 from Stanford University. Ten mice at age of 2 months old were used in this study. 

Cells responsive to Wnt signaling express the LacZ gene product, beta-galactosidase. Beta 

galactosidase is then detected by X-gal staining (31). To perform X-gal staining, tissues 

were fixed in 0.4% paraformaldehyde overnight before being decalcified with 19% EDTA 

and infused with 30% sucrose for 24hr. Samples were embedded in optimum cutting 

temperature (OCT) medium and cryosectioned at a thickness of 8 microns. Tissues were 

then fixed in 0.2% gluteraldehyde for 15min and stained with X-gal overnight at 37°C.

Micro-CT analyses

Micro-CT was performed on 10 mice at the age of 3 months (5 wild-type, 5 OCN-

Cre;Wlsfl/fl littermates) using Imtek/Siemens MicroCAT II/SPECT system (Siemens, 

Knoxville, TN) with at 80kV and 400 micro-amperes and the resolution of 40 microns. 

Scans of the skulls were acquired using a 6400μm3 isotropic voxel size, with 650 CT slices 

evaluated per skull. To determine the mineralized bone fraction, the threshold was 

standardized with the bone/water/air phantom for each sample. Individual CT slices were 

reconstructed with COBRA reconstruction software, and data were analyzed with GE 

Microview (GE Healthcare, Waukesha, WI). The frontal, parietal and occipital bones were 

selected automatically with the threshold within the region of interest including each of the 

area.

Micro-CT analyses of the teeth in 10 mice at the age of 3 months (5 wild-type, 5 OCN-

Cre;Wlsfl/fl littermates) were taken using MicroXCT-200 (SkyScan, Belgium) with at 60kV 

and 7.98 Watt and the resolution of 2 microns. Scans were acquired using 8μm3 isotropic 

voxel size, with 800 CT slices evaluated in incisor area. For analyses, individual CT slices 

were reconstructed with MicroXCT7.0 reconstruction software (SkyScan, Belgium), and 

data were analyzed with Inveon Research Workplace (IRW) (Erlangen, Germany).

Sample preparation, processing and histology

Maxillae from 1-month-old mice (5 wild-type, 5 OCN-Cre;Wlsfl/fl littermates) and 3-month 

old mice (6 wild-type, 6 OCN-Cre;Wlsfl/fl littermates) were harvested and fixed in 4% 

paraformaldehyde overnight at 4°C. Samples were decalcified in a heat-controlled 
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microwave in 19% EDTA for two weeks. After demineralization, specimens were 

dehydrated through an ascending ethanol series prior to paraffin embedding. Eight-micron-

thick longitudinal sections were cut and collected on Superfrost-plus slides for histology.

In situ hybridization

Tissue sections were deparaffinized following standard procedures. Relevant digoxigenin-

labeled mRNA antisense probes were prepared from complementary DNA templates for 

Osteocalcin, Axin2 and Osterix. Sections were dewaxed, treated with proteinase K, and 

incubated in hybridization buffer containing the relevant RNA probe. Probe was added at an 

approximate concentration of 1 μg/ml. Stringency washes of saline sodium citrate solution 

were done at 65°C and further washed in maleic acid buffer with 1% Tween 20. Slides were 

treated with an antibody to Anti-digoxigenin-AP (Roche). For color detection, slides were 

incubated in nitro blue tetrazolium chloride (Roche) and 5-bromo-4-chloro-3-indolyl 

phosphate (Roche). After developing, the slides were coverslipped with permount mounting 

medium.

Histology

Movat’s pentachrome staining was performed (32). Nuclei stain blue to black, cytoplasm 

stains red, collagen stains yellow to greenish yellow, and fibrous tissue stains an intense red. 

Tissues were also stained with the acidic dye, Picrosirius red (33), to discriminate tightly 

packed and aligned collagen molecules. Under polarized light, well-aligned fibrillary 

collagen molecules present polarization colors of longer wavelengths (red) as compared to 

less organized collagen fibrils that show colors of shorter wavelengths (green-yellow).

Immunohistochemistry

Tissue sections were deparaffinized following standard procedures. Endogenous peroxidase 

activity was quenched by 3% hydrogen peroxide for 5 min, and then washed in PBS. Slides 

were blocked with 5% goat serum (Vector S-1000) for 1 hour at room temperature. The 

appropriate primary antibody was added and incubated overnight at 4°C, then washed in 

PBS. Samples were incubated with appropriate biotinylated secondary antibodies (Vector 

BA-x) for 30 minutes, and washed in PBS. An advidin/biotinylated enzyme complex (Kit 

ABC Peroxidase Standard Vectastain PK-4000) was added and incubated for 30 minutes 

and a DAB substrate kit (Kit Vector Peroxidase subtrate DAB SK-4100) was used to 

develop the color reaction. Antibodies used include Ki67 (Thermo Scientific, dilution 1: 

100), Runx2 (Origene, dilution 1: 200), Osteopontin (NIH LF 175, dilution 1: 4000), dentin 

sialoprotein (DSP, Millipore, dilution 1: 2000), dentin phosphoprotein (DPP, which was 

generated by the Department of Dental Science for Health Promotion, Division of Cervico 

Gnathostomatology, Hiroshima University, dilution 1: 2000). Counterstain was performed 

with hematoxylin after development with a DAB substrate in order to count cells.

Quantitative real time-PCR

Dental pulp tissues were carefully removed from formalin-fixed paraffin-embedded (FFPE) 

tissue and transferred into the processing plate. RNA isolation was carried out using FFPE 

RNA Isolation kit (Ambion, Austin, USA). Digestion buffer, protease and RNA digestion 
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additives were added into the processing plate and incubated 60°C for 45 min and 80°C for 

30 min. Nucleic acid binding beads were added to the samples, then placed on a titer shaker 

for 3 min; afterwards, the supernatant was removed. Beads were washed again and the 

supernant was again removed. Samples were treated with Dnase at 37°C for 20 min; beads 

were washed, and the supernatant was removed. RNA was quantified using a Nanodrop 

spectrophotometer (Thermo Fischer scientific, Delaware USA). cDNA was synthesized 

using Superscript first-strand synthesis supermix following the manufacturers instructions 

(Life technologies, Austin, USA). Quantitative RT-PCR was performed as described (34). 

Expression levels were calculated using the 2ˆ-(ddCt) method, normalized to GAPDH (35) 

and converted to fold-expression. The following primer sets were used: GAPDH, forward 

primer (ACCCAGAAGACTGTGGATGG) and reverse primer 

(GGATGCAGGGATGATGTTCT). Runx2, forward primer 

(ATCGCCTCAGTGATTTAGGG) and reverse primer (TGCCTGGGATCTGTAATCTG). 

DSP, forward primer (TGGCTGTGCCTCTTCTAACA) and reverse primer 

(GCTGTTGCTAGTGGTGCTGT).

Statistical analyses

Results are presented as the mean ± SD. Student’s t-test was used to quantify differences 

described in this article. One asterisk (*) denotes a p value of less than .05, and two asterisks 

(**) denotes a p value of less than .01.

Results

Skeletal tissues have a universal requirement for Wnt signaling

In a first study we demonstrated that Cre-mediated recombination in OCN-Cre mice 

occurred in bone (36). Here, examination of the craniofacial skeleton of OCN-Cre;Wlsfl/fl 

mice revealed that similar to the appendicular and axial skeleton, deletion of Wls caused a 

dramatic reduction in bone volume and bone mineral density of both cranial neural crest-

derived skeletal elements (bone volume: p <0.01; bone density: p <0.05; Fig. 1A,B) and 

mesoderm-derived skeletal elements (bone volume and bone density: p <0.01; Fig. 1C,D; 

quantified in E). Deletion of Wls, however, did not affect the size of the skeletal elements 

(Supplemental Fig. 1).

Unlike the dramatic skeletal phenotype, the dentition of OCN-Cre;Wlsfl/fl mice was largely 

intact. For example, the overall size, shape, and position of the teeth was equivalent between 

wild-type and OCN-Cre;Wlsfl/fl mice (Fig. 1F,G and Supplemental Fig. 2A,B). The gross 

morphology of the molars (Fig. 1H,I) and incisors (Fig. 1J,K) was similar in wild-type and 

mutant mice. We confirmed that in addition to its expression in osteoblasts, Osteocalcin is 

also expressed by ameloblasts that form enamel (Fig. 2B and (37)), by cementoblasts that 

line the root surface (Fig. 2C and (38,39)), by odontoblasts that produce dentin (40-42), and 

by pulp cells that maintain the stroma of the pulp cavity (Fig. 2D and (43)). In addition, the 

expression of Osteocalcin in the inner enamel epithelium was first clearly observed at E18.5.
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Postnatal ameloblasts, odontoblasts, and pulp cells are Wnt-responsive

Given the Osteocalcin expression patterns and the fact that Wnt signaling is implicated in 

the development of each of these dental tissues, we more closely examined the dentition in 

OCN-Cre;Wlsfl/fl mice for anomalies resulting from a disruption of Wnt signaling. We 

focused on the incisors of OCN-Cre;Wlsfl/fl mice and in a separate, ongoing study we 

evaluated the molar phenotypes.

Using a 2μm-resolution micro-CT, reconstructions of the incisors revealed that removal of 

Wls in Osteocalcin-expressing ameloblasts resulted in increased enamel production (arrows, 

Fig. 2E, F) without disrupting the overall size or shape of the incisor (Supplemental Fig. 2). 

Normally, enamel covers about 75% of the buccal incisor surface; in OCN-Cre;Wlsfl/fl mice 

enamel covered about 90% of the surface. Transverse micro-CT sections near the incisor 

apex (dotted lines, Fig. 2E, F) illustrated this point: mineralized enamel is normally detected 

~1.43 μm from the root apex; regions closer to the apex therefore lack enamel in wild-type 

(Fig. 2G). In OCN-Cre;Wlsfl/fl mice, however, more apical sections showed a well-

mineralized enamel matrix (arrow, Fig. 2H). This gain in enamel mineralization stood in 

sharp contrast to the thin alveolar bone surrounding the OCN-Cre;Wlsfl/fl incisor (asterisks, 

Fig. 2G,H).

Removal of Wls from odontoblasts also resulted in a significant gain in mineralized tissue 

formation. The total volume of the tooth remained constant between wild-type and OCN-

Cre;Wlsfl/fl specimens (p = .08 at root apex and p = .06 at incisive edge; Fig. 2I,J; quantified 

in K; see also Supplemental Fig. 2C,D) but serial sections through the incisor clearly 

showed that in OCN-Cre;Wlsfl/fl mice, the percentage of tooth structure occupied by dentin 

was significantly increased (p < .01; Fig. 2L,M; quantified in K). This increase in dentin 

volume was compensated by a reduction in pulp volume in OCN-Cre;Wlsfl/fl mice, most 

obviously at the incisive edge (dotted circle, p < .01; Fig. 2L,M; quantified in K; see also 

Supplemental Fig. 2B). The molecular mechanisms underlying this gain in dentin volume 

became the focus of our next experiments.

Adult odontoblasts and pulp cells maintain their dependency on endogenous Wnt 
signaling

The gain in dentin volume we observed in OCN-Cre;Wlsfl/fl mice is predicated on 

odontoblasts maintaining a dependency on Wnt signaling into adulthood. Previous reports, 

however, suggest that after postnatal day 15, molar odontoblasts and odontoblasts at the 

incisor tip lose their Wnt responsiveness (44). We revisited this issue of adult odontoblast 

dependency on a Wnt signal using the same strain of Wnt reporter (e.g., Axin2LacZ/+) mice 

and cryo-sectioned tissues from 2-months old mice. We found that both incisor tip 

odontoblasts and pulp fibroblasts were X-gal positive (Fig. 3A,B). We examined the other 

mineralizing dental tissues and confirmed the Wnt-responsive status of cementoblasts (Fig. 

3C,D), ameloblasts (Fig. 3E,F), and osteoblasts (Fig. 3G,H) in skeletally mature Axin2LacZ/+ 

mice. Thus, all mineralizing tissues in the craniofacial complex maintain their Wnt-

responsive status into adulthood.
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Differential regulation of Runx2 mediates OCN-Cre;Wlsfl/fl bone loss and dentin gain

We sought to reconcile two apparently disparate findings, that reduced Wnt signaling in 

OCN-Cre;Wlsfl/fl mice simultaneously produces a loss in bone volume (Fig. 1) and a gain in 

dentin volume (Fig. 2). We first verified that Wnt signaling was reduced in the pulp of 

OCN-Cre;Wlsfl/fl mice, using expression of the Wnt target gene Axin2 as a readout of 

pathway activity (45,46). Compared to its expression in wild-type osteoblasts, Axin2 

expression was reduced to nearly undetectable levels in OCN-Cre;Wlsfl/fl osteoblasts (Fig. 

4A,B). A similar reduction in Axin2 expression was observed in OCN-Cre;Wlsfl/fl 

odontoblasts (compare wild-type, Fig. 4C with D).

Despite the significantly increased dentin volume, the organization of the dentin matrix in 

OCN-Cre;Wlsfl/fl mice appeared to be the same as in wild-type mice (Fig. 5A, B), although 

the density of the dentin was significantly increased in OCN-Cre;Wlsfl/fl mice (Fig. 5C). 

Ki67 immunostaining was non-existent in the pulp cavities of both wild-type and mutant 

mice (Fig. 5D, E), so it was unlikely that the increased dentin volume was attributable to 

differences in proliferation of OCN-Cre;Wlsfl/fl odontoblasts. We also examined the protein 

expression of DPP, DSP, Osteopontin, Osterix, and Runx2 (Supplemental Fig. 3) and of 

these dentin markers, we only noticed a difference in Runx2 expression levels.

Compared to wild-type odontoblasts, the protein was noticeably reduced in OCN-Cre;Wlsfl/fl 

odontoblasts (Fig. 5F,J). Using immunostaining and cell nuclei counting, we observed 

significantly higher level of Runx2 expression in wild-type mice compared to OCN-

Cre;Wlsfl/fl mice (Fig. 5 H), although we observed statistically insignificant change in qRT-

PCR. Concomitant with Runx2 down regulation, DSP expression was markedly increased in 

OCN-Cre;Wlsfl/fl odontoblasts (Fig. 5I,J). Using qRT-PCR, we showed a statistically 

significant, 1.7 fold increase in DSP expression in the OCN-Cre;Wlsfl/fl mice(Fig. 5K). This 

is in keeping with reports demonstrating that Runx2 negatively regulates the differentiation 

of cells into odontoblasts (47) via inhibition of dentin sialoprotein (DSP; (47)). Taken 

together, the loss in bone volume and the gain in dentin volume caused by the reduction of 

Wnt signaling in OCN-Cre;Wlsfl/fl mice can be jointly explained by reduced Runx2 

expression. In osteoblasts, a reduction in Runx2 results in an arrest in differentiation; 

conversely, reduced Runx2 expression in odontoblasts results in an acceleration in 

differentiation.

Discussion

We used a conditional loss-of-function strategy to test the requirement for Wnt signaling in 

mineralized tissue homeostasis. In examining the skeleton of OCN-Cre;Wlsfl/fl mice we 

found that regardless of embryonic origin, function, or role in weight bearing, all bones 

appeared to be equally affected by the loss of Wls (Fig. 1 and see (36). Thus, there appears 

to be a universal requirement for Wnt signaling for the maintenance of bone mineral density 

and bone volume, a conclusion strongly supporting by the existing literature (48). There is 

not, however, a corresponding, well-defined role for Wnt signaling in odontogenesis. This 

became the subject of our investigation.
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A reduction in Wnt signaling is associated with a gain in dentin formation

Wnt signaling controls tooth shape, size, position and number; consequently, we anticipated 

that OCN-Cre;Wlsfl/fl mice would exhibit a tooth-related phenotype. We were surprised to 

discover that there was no overt disruption in odontogenesis (Figs. 1, 2; Supplemental Fig. 

2). Micro-CT reconstructions revealed that instead of a loss, there was actually a gain in 

dentin volume (Fig. 2). How could a reduction in Wnt signaling simultaneously lead to bone 

loss, and dentin accumulation?

We initially suspected that the negative impact of Wls removal did not extend to 

odontoblasts and pulp cells because of the conditional nature of the deletion. We verified, 

however, that adult odontoblasts and pulp cells, as well as ameloblasts and osteoblasts 

expressed Osteocalcin (Fig. 2 and see (43)). Therefore, these cell types would be subjected 

to Wls deletion in OCN-Cre;Wlsfl/fl mice.

We then wondered if dental tissues escaped the negative effects of Wls removal, because 

Wnt responsiveness is thought to be a feature of fetal and early post-natal odontoblasts but 

not of adult cells (44). We used the same Axin2LacZ/+ reporter mice as Lohi and colleagues 

but instead of paraffin embedding, used cryo-embedding. In these adult tissues X-gal 

staining clearly revealed odontoblasts, pulp fibroblasts, ameloblasts, and cementoblasts, 

along with periodontal ligament cells all maintained their Wnt responsive status into 

adulthood (Fig. 3). Therefore, odontoblasts and pulp cells require Wnt signaling and in 

OCN-Cre;Wlsfl/fl mice, the requisite Wnt signal would not be secreted and both cell types 

would be devoid of this stimulus.

Wls-deficient cells maintain their ability to respond to a Wnt stimulus (A.Z and B.O.W., 

unpublished observations); therefore, it is formally possible that OCN-Cre;Wlsfl/fl 

odontoblasts and pulp cells still receive- and respond- to a Wnt signal and thus the increased 

mineral density is not related to decreased Wnt signaling. The reduced Axin2 expression in 

the mutant pulp cavity, however, argues against this possibility (Fig. 4). Thus, we conclude 

that whatever its source, Wnt signaling is abrogated in the pulp cavity of OCN-Cre;Wlsfl/fl 

mice, and this reduction in Wnt signaling is directly responsible for a gain in dentin 

formation.

Wnt regulates Runx2 in osteoblasts and odontoblasts

The function of Runx2 in the differentiation of odontoblasts and osteoblasts is still a point of 

much debate (reviewed in (49)). Initially, Runx2/Cbfa1 was thought to specifically regulate 

osteoblast maturation (50) but this was eventually disproven. Investigators have since 

demonstrated key roles for Runx2 in chondrocyte maturation (51) as well as many other cell 

types (52). Thesleff and colleagues were the first to identify a function for Runx2 in 

odontoblasts, where its action appeared to inhibit the maturation process (53). New insights 

into the function of Runx2 came with the discovery that Wnt signaling promotes 

osteogenesis by stimulating Runx2 activity (54) but whether it also serves as positive 

stimulus in odontoblasts has not been resolved. We showed that Wnt-deficient OCN-

Cre;Wlsfl/fl osteoblasts have reduced Runx2 expression (Supplemental Fig. 3 G, H) and that 

reduced Runx2 expression is accompanied by reduced Osteocalcin expression and dramatic 
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bone loss (Fig. 1 and see Supplemental Fig. 3 I, J). Wnt-deficient OCN-Cre;Wlsfl/fl 

odontoblasts also exhibit reduced Runx2 expression (Fig. 5), but then the differentiation 

process diverges: Reduced Runx2 expression in OCN-Cre;Wlsfl/fl odontoblasts is 

accompanied by an increase in DSP expression (Fig. 5) with no significant change in 

Osteocalcin expression (Supplemental Fig. 3 K, L). When these data are considered 

together, they support a model whereby Wnt signaling acts a positive stimulus for Runx2 

expression in both odontoblasts and osteoblasts, but its transcriptional activity in these two 

cell types differs: In osteoblasts, Runx2 drives maturation, whereas in odontoblasts Runx2 

appears to inhibit differentiation. This interpretation is in keeping with other reports 

examining the function of Runx2 in mineralizing tissues (53).

Does Wnt signaling regulate odontoblast differentiation?

OCN-Cre;Wlsfl/fl mice exhibit stronger DSP expression and they have denser dentin (Fig. 5); 

presently the mechanisms behind this increase in dentin density are unknown. There are two 

plausible explanations: first, each odontoblast in OCN-Cre;Wlsfl/fl mice could secrete more 

dentin than a wild-type odontoblast. Alternatively, pulp cells in OCN-Cre;Wlsfl/fl mice might 

differentiate into odontoblasts more readily than wild-type pulp cells. The latter hypothesis 

is particularly intriguing because it provides a means by which to explain an increase in 

dentin volume without a commensurate increase in cell proliferation. If true, then pulp cells 

located in the subodontoblastic layer (55) of OCN-Cre;Wlsfl/fl mice may be responsible for 

generating more dentin, even without an injury stimulus (56). A simple histologic 

examination of the subodontoblastic layer in wild-type and OCN-Cre;Wlsfl/fl mice, however, 

did not reveal any notable alterations so this hypothesis remains a speculation at the current 

time. Nonetheless, a role for Wnt signaling in the activation of progenitor cells that 

contribute to the repair of a mineralized tissue has indirect support from data on bone 

healing (57), and may well be involved in odontogenic repair as well.

Wnt signaling and cellular aging of the dental pulp

Throughout life odontoblasts continue to secrete an extracellular matrix that becomes 

mineralized (58-60) and as a consequence the pulp chamber narrows with age (61). The 

molecular regulation of this process is unknown. We observe an exaggerated version of this 

same process in OCN-Cre;Wlsfl/fl mice: the pulp chamber reduces while the dentin gradually 

thickens (Fig. 2). Simultaneous with this gain in mineralized dentin we observe a profound 

loss in bone mass in OCN-Cre;Wlsfl/fl mice (62), which is also a hallmark of human aging 

(63,64). In other work, we demonstrated that aging is associated with a decline in Wnt 

signaling, specifically in the bone marrow cavity (65). Coupled with new data demonstrating 

that Wnt signaling regulates telomerase activity (66,67), which is tightly correlated with a 

decline in osteogenesis and the onset of cellular senescence (68,69). It is tempting to 

speculate that some of the changes we observe in the OCN-Cre;Wlsfl/fl dentition are an 

exaggerated version of an aging phenotype brought about by a gradual loss of Wnt signaling 

(70). If this hypothesis holds true, some age-related effects on mineralized tissues of the 

body may be treatable via a Wnt-based approach.
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Fig.1. Down regulation of Wnt signaling results in reduced bone density in skeleton but intact 
dentition of OCN-Cre;Wlsfl/fl mice
(A, B) The deletion of Wls causes significant reduction in bone volume and bone density of 

OCN-Cre;Wlsfl/fl frontal bone. (C, D) Substantially reduced bone volume and bone density 

are observed in OCN-Cre;Wlsfl/fl parietal and occipital bones. (E) Quantification reveals a 

statistically significant reduction in bone volume and bone density in OCN-Cre;Wlsfl/fl 

craniofacial skeleton. (F, G) Overall volume of the teeth is equivalent between the wild-type 

and OCN-Cre;Wlsfl/fl mice. (H, I) Gross morphology and appearance of molars are 

equivalent between the wild-type and OCN-Cre;Wlsfl/fl mice. (J, K) Wild-type and OCN-

Cre;Wlsfl/fl incisors appear to have equivalent size and appearance. * p < .05 and ** p < .01.
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Fig.2. A disruption of Wnt signaling causes anomalies in the OCN-Cre;Wlsfl/fl mineralized 
dental tissues
(A) Osteoblasts, (B) ameloblasts, (C) cementoblast and (D) odontoblast and pulp cells of 3 

months old wild-type mice show osteocalcin expression (purple color). The brown color is 

produced by red blood cells due to abundant iron porphyrin complexes. (E, F) In 3 months 

old OCN-Cre;Wlsfl/fl mice, enamel covers more root surface including near the incisor apex 

than wild-type mice. (G, H) Wild-type mice lack enamel in region closer to the apex, while 

OCN-Cre;Wlsfl/fl mice has a well-mineralized enamel but thin alveolar bone surrounding the 

incisor. (I, J) The total volume of the tooth remains constant between wild-type and OCN-

Cre;Wlsfl/fl mice. (L, M) The dentin volume is significantly increased in OCN-Cre;Wlsfl/fl 

mice near the incisive edge. (K) Quantification reveals equivalent tooth volume but a 

statistically significant increase in dentin volume in OCN-Cre;Wlsfl/fl mice. Scale bar: (A-D) 

50μm, (I-M) 50μm.
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Fig.3. Wnt responsiveness is maintained until adulthood
(A, B) Odontoblasts and pulp fibroblasts in 2-month old Axin2LacZ/+ incisors are X-gal 

staining positive. (C, D) Cementoblasts, (E, F) ameloblasts and (G, H) osteoblasts are Wnt-

responsive in 2-month old Axin2LacZ/+ mice. Scale bar: (A-D) 50μm.
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Fig.4. Down regulation of Wnt signaling results in reduction of Axin2 expression
(A, B) Expression of Axin2 is reduced in OCN-Cre;Wlsfl/fl osteoblasts compared to wild-

type osteoblasts. (C, D) Odontoblasts in OCN-Cre;Wlsfl/fl mice shows reduction of Axin2 

expression compared to wild-type mice. Scale bar: (A, B) 50μm, (C, D) 50μm.
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Fig.5. Bone loss and dentin gain in OCN-Cre;Wlsfl/fl mice result from Runx2 alteration
(A, B) Picrosirius red staining shows similar dentin matrix organization between wild-type 

and OCN-Cre;Wlsfl/fl mice. (C) OCN-Cre;Wlsfl/fl mice has significantly denser dentin 

compared to wild-type mice. (D, E) Ki67 expression shows no difference in cell 

proliferation of odontoblasts and pulp between wild-type and OCN-Cre;Wlsfl/fl mice. The 

small figure in (D) shows Ki67 expression in rugae area. (F, G) Significantly reduced Runx2 

expression is observed in OCN-Cre;Wlsfl/fl odontoblasts and pulp. (H) Using 

immunostaining and cell nuclei counting, significantly higher level of Runx2 was observed 

in wild-type mice compared to OCN-Cre;Wlsfl/fl mice (unit, fold difference relative to WT). 
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(I, J) DSP expression is considerably increased in odontoblasts and pulp of OCN-Cre;Wlsfl/fl 

mice. (K) Using qRT-PCR, DSP expression in OCN-Cre;Wlsfl/fl mice is significantly higher 

than wild-type mice (unit, fold difference relative to WT). ** p < .01. Scale bar: (A, B, D, E, 

I, J) 50μm, (F, G) 50μm.
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