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              Multiscale modelling is an essential part in chemical engineering field, recently 

with the developments in physical and computer sciences, computer modelling plays a 

more and more important role in quantitative predictions of chemical reactions and 

thermodynamic data, covering broad applications to problems of practical concern. 

Whereas classical simulations and quantum density functional theory methods have 

become routine tools for engineering applications, the power of classical density functional 

theory has not been widely recognized, which has already shown great success in many 

model systems. Considering its efficiency and accuracy, it’s necessary to establish a 

systematic way to utilize this method applied in realistic applications. During this PhD 

research, I mainly focus on developing classical density functional theory for large-scale 

screening of chemicals and materials, especially for organic compounds solvation free 

energy and gas storage and transport properties in nanoporous materials. 
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               For the hydration free energy calculation part, we try to build a reliable multiscale 

procedure to predict the water solvation free energies of organic compounds at ambient 

conditions, by combination of quantum mechanics, statistical mechanics and molecular 

mechanics force fields. Using the experimental data of hydration free energies as the 

benchmark, we show that the new method, taking the explicit solvent molecules into 

consideration, shows a comparable accuracy as full atomistic molecular simulations, but 

over one magnitude faster calculation speed. We also find that the theoretical results are 

sensitive to the input generation methods, i.e. selection of quantum-mechanical methods 

for determining atomic charges and solute configurations, the assignment of the van der 

Waals parameters and the solvent models. In generally speaking, HF/6-

31G/Vac/OPLS/ChelpG gives the best prediction, in particular those less hydrophilic ones, 

the overall average unsiged error is 1.35 kcal/mol compared to 700 common organic 

molecular hydration free energy database, close to the experimental measurement chemical 

accuracy limit 1 kcal/mol. 

                On the other hand, we have investigated the four representative versions of non-

local density functionals as efficient methods to predict gas adsorption in both simple slit 

pore model system and a large library of real metal-organic frameworks (MOFs) under a 

broad range of temperatures and pressures, compared with grand canonical Monte Carlo 

simulation data. Overall all the four methods are reasonably accurate in comparison with 

the simulation results, but our results show for each specific gas and interested condition, 

there is a best candidate: for DOE’s hydrogen storage target condition, it’s FMSA, while 

for ARPA-E’s methane storage target condition, it’s MFA. Besides, combing with entropy 
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scaling method, we can also predict the gas self-diffusion coefficient in the same one time 

calculation with an average calculating time 30 seconds, far beyond the classical molecular 

simulation ways.  

              From a computational perspective, the classical density functional theory is shown 

as a versatile and promising tool for large-scale screening of thousands of chemicals and 

nanostructured materials with a modern desktop computer.     
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Chapter 1. Introduction 

1.1 Background 

            In this work, we apply many of the modern computer modeling methods, from 

classical simulation methods to modern liquid state theory, most importantly classical 

density functional theory (CDFT). So in this chapter we first gives a brief introduction of 

modern computer modeling methods we covered, then the introduction to the background 

of hydration free energy and gas storage in nanoporous materials, finally the organization 

of this PhD thesis. The next chapter we will focus on the basic formulism of CDFT.  

1.1.1 Quantum Mechanics Methods 

            Back to the 1920s, after the establishment of quantum mechanics (QM), as Dirac 

indicates, “The underlying physical laws necessary for the mathematical theory of a large 

part of physics and the whole of chemistry are thus completely known, and the difficulty 

is only that the exact application of these laws leads to equations that are much too 

complicated to be soluble. It therefore becomes desirable that approximate practical 

methods of applying quantum mechanics should be developed, which can lead to 

explanation of the main features of complex atomic systems without too much 

computation.” Since then, lots of people devote themselves to QM methods developments 

and application in the past 90 years.  

I. Wavefunction Method 

             Before 1980s, most of the effort were spent on the wavefunction approaches, 

providing approximation solutions to the Schrödinger equation (eq (1)) that describes any 

given chemical system.   
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 ˆi H
t


  


  (1) 

All these methods originates from the work of Hartree and Fock in the 1920s,1 which 

assumes that the exact N-body wavefunction ( , )r R of the system can be approximated 

by a single slater determinant of N spin orbitals. By applying the variational principle, one 

can derive a set of N-coupled equations for the N spin orbitals. Solution of these equations 

yields the Hartree–Fock wavefunction and energy of the system, which are upper-bound 

approximations of the exact ones. The main disadvantage of the original HF method is that 

it assumes electrons moving independently of each other, without considering electron 

correlation. So its accuracy was limited. Thus, nowadays, we usually employ more 

advanced ‘‘post-HF’’ approaches to real chemical systems, from popular Møller–Plesset 

perturbation theory (MP)2 to more accurate coupled cluster (CC)3 or configuration 

interaction (CI)4 methods, which provide different ways of counting the correlation effects 

missing from HF and approximating the exact wavefunction of the system. Those “post-

HF” methods are recognized as the most reliable and accurate QM methods, especially 

when van der Waals interaction plays an important role in the system. However, the high 

computational cost of those methods are prohibitive for studying molecules containing over 

20 atoms, which is an obvious shortcoming when applied to engineering fields.  

II. Quantum Density Functional Theory 

               In 1964, the great work of Hohenberg and Kohn give the bedrock of modern 

quantum density functional theory (QDFT) methods by three theorems.5 The first theorem 

states that the ground-state electron density uniquely determines the electronic 
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wavefunction and hence all ground-state properties of an electronic system. The second 

one establishes that the energy of an electron distribution can be described as a functional 

of the electron density, while the third one indicates this functional is a minimum for the 

ground state density.  The problem of solving the many-body Schrödinger equation is 

converted to minimize a density functional. After it was born, QDFT shows its great 

advantages compared to the inaccuracy of HF and the high computational demanding of 

post-HF methods. Especially after 1998, when Walter Kohn won the Nobel Prize "for his 

development of the density-functional theory", more and more eminent works are done by 

QDFT.6 

                Although the Hohenberg–Kohn theorems prove that the density functional is a 

universal quantity; they do not specify its form. The common realization of modern QDFT 

method is through the Kohn–Sham (KS) approach.7 The KS method is on the basis of the 

construction of a noninteracting reference system yielding the same density as the original 

problem.  

 
0( ) ( ) ( ) ( )ext exE T v J E          (2) 

where on the right, the first term is the energy of reference system, the second term is 

energy due to the external field, the third term is the kinetic energy and the forth term is 

the exchange-correlation energy contribution. While the form of the first three energy 

functional parts are known exactly, the only unknown term is the exchange–correlation 

functional, which is not known except for the free electron gas. So the central theme for 

modern QDFT developments is to find proper approximations for ( )exE   that could permit 

the calculation of molecular properties at certain level of accuracy. 
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             The most fundamental and simplest approximation for the exchange–correlation 

functional is the local-density approximation (LDA), in which the energy only depends on 

the density at the point where the functional is evaluated,8 corresponding to that of a 

homogeneous electron gas at the same density (eq (3)).  

 ( )LDA UEG

XC XCE e     (3) 

While LDA achieves a great success in solid state physics, its strong tendency of over-

binding prediction fails a lot in the studying of chemical systems. To better describe the 

inhomogeneous nature of molecular systems, generalized gradient approximation (GGA) 

(eq (4)) was introduced by considering the energy depending on both the electron density 

and its gradient. GGA functionals such as BP86,9 PBE10 and BLYP9 are proved to be very 

efficient and yielding good results, particularly for molecular structures, but are often less 

accurate for other properties.  

 , ( , , , ) ( )GGA

XC XCE n n e n n n n n d
     

      r r   (4) 

In 1993, Becke introduces hybrid functionals (eq (5)) to QDFT community, which mix 

GGA functionals with part of exact Hartree–Fock exchange contribution,11 which are still 

the main stream QDFT methods for chemical systems nowadays. Among them, B3LYP 

functional9 is one of the most successfully and widely used QDFT methods for chemists in 

a wide variety of chemical systems and properties12.  

 (1 )HF LSDA GGA LSDA GGA

XC X X X C CE aE a E bE E cE        (5) 

Following Perdew’s Jacob’s Ladder,13 recent theoretical developments include the ‘‘meta-

GGA’’ functionals, which extend the GGA corrections to higher derivatives, like TPSS14 
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and M062X15; and the ‘‘double hybrid’’ functionals, such as B2PLYP16 and PWPB95,17 

which contain not only a fraction of exact HF exchange contribution but also a fraction of 

orbital-dependent non-local correlation energy contribution estimated at the level of 

second-order many-body perturbation theory (MP2). These new functionals yield better 

reaction energies and other basic properties compared to experimental data, even beyond 

more expensive MP2 method.18 Noncovalent interactions is often thought to be a major 

shortcoming of traditional QDFT methods due to the lack of accurate long-range 

correlation part of free energy functional. Besides double-hybrid functionals, range-

separated functionals are also considered to be promising solutions, like CAM-B3LYP19 

and ωB97X-D.20 Another more engineering way to solve this problem, we think is semi-

empirical London-dispersion correction method, which could be easily applied to current 

QDFT methods and shows significant improvement on describing van der Waals 

interactions in recent papers.18 21   

            Quantum density functional theory methods have already been proved as a valuable 

research tool both in independent theoretical studying and as a complement of experimental 

investigations in broad areas, for example, molecular structures, vibrational frequencies, 

spectroscopic properties and total energies. However, we need to realize that unlike the 

wavefunction-based methods, there is still no systematic way to give a universal choice for 

QDFT methods, in other words, the success of certain functional in one case does not 

guarantee its performance in other situations. Therefore, before applied certain QDFT 

method to our works, we must do reasonable validation and estimate the error range. 
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1.1.2. Classical Simulation Methods 

               As Titus Lucretius says, "The atoms are eternal and always moving. Everything 

comes into existence simply because of the random movement of atoms, which, given 

enough time, will form and reform, constantly experimenting with different configurations 

of matter from which will eventually emerge everything we know...". Given enough time, 

we could use quantum mechanics to solve any system we are interested, however, even 

today, it's impossible to use full QM methods to study complicated molecular system as 

indicated above. People develop lots of semi-empirical methods trying to solving this 

problem, like AM122 and PM323. With the most recent dispersion corrected ones, like PM6-

DH+24 and PM725, we can study much larger system, like solvated biomolecular systems 

and host-guest binding systems26 in an accepted time and accuracy, however, the accuracy 

beyond those training set molecules need to be carefully checked.  

I. Molecular Mechanic Force Field 

              A more convenient and efficient way to describe the potential energy surface of 

complex systems is molecular mechanic force fields. Given the potential 1( ,..., )NU r r , the 

force acting upon ith atom is determined by the gradient with respect to atomic 

displacements ( , , )i i i ix y zr ,  

 
1( ,..., ) ( , , )

ii N

i i i

U U U
U

x y z

  
   

  
rF r r   (6) 

Due to the adiabatic (Born–Oppenheimer) approximation, we know that because of the 

difference in mass between nuclei and electrons, the electron cloud equilibrates much faster 

than the configuration of the heavy nuclei, which means the electronic and nuclear 



 

7 

problems can be separated. The nuclei could be assumed to move in the field of the 

averaged electron densities. Then we could describe the potential energy surface by the 

dynamics of the nuclei without taking explicitly account of the electrons and describes 

physical systems as collections of atoms kept together by interatomic forces, with empirical 

analytical functions, instead of solving Schrödinger equations, which could be much more 

easily applied to study the dynamics of molecular systems following classical mechanics. 

This starts from the pioneering works in Allinger27, Lifson28 and Scheraga29 groups. After 

the born of MM2 and CFF30 force fields, more and more generic force fields are developed, 

applied to material and biological research.  

             The most commonly used classical force field models (Class I, e.g. AMBER31) 

incorporate a relatively simple potential energy function: 

 

 

 

2 2

12 6

( ) ( )

1 cos
2

1 cos
2

2

b o o

bond angle

o

dihedral

o

impr

o o

ij ij i j

ij

nonbond ij ij ij

E K b b K

K
n

K
n

R R q q

R R R







 

 

 



   

    

    

                       

 







  (7) 

The first four terms describe the covalent structure of the molecular system, by chemical 

bonds, angles and torsion angles (dihedral and improper dihedral angles), while the last 

two terms sum the nonbond pair interactions (van der Waals and Coulomb) between atoms. 

Physically, the first two terms describe energies of deformations of the bond lengths b and 

bond angles θ from their respective equilibrium values b0 and θ0. The common harmonic 
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form of these terms (with force constants Kb and Kθ) ensures the correct chemical structure, 

but are not able to describe chemical changes such as bond breaking. The third and fourth 

terms describe the rotations of connecting chemical bonds characterized by periodic energy 

terms (with periodicity determined by n and heights of rotational barriers defined by Kφ 

and Kχ). The fifth term describes the van der Waals interatomic forces in the form of the 

standard Lennard–Jones 12-6 potential (dispersion), and the Coulomb electrostatic 

potential.  

             The task of finding reasonable force field parameters that would adequately mimic 

the true energy surfaces is nontrivial. It must represent the key physical and chemical 

properties of the systems of interest correctly. There are many successful force fields 

already widely used, for example, DREIDING32 and UFF33, which essentially covers all 

the elements in the periodic table and achieve a good quality in material crystal structure 

predictions, also in gas adsorption applications.34-37 In biophysics field, AMBER31, 

CHARMM38 and OPLS39 are proved to have good accuracy in calculating structure related 

biosystem properties. To further improving the performance of force fields, cross-

correlation terms are introduced, like bond-angle correlation, angle-torsion correlation, 

which are usually called Class II force fields, for example, CFF9340 and COMPASS41, 

perform very well in condensed-phase applications for common organic molecules and 

polymers. 

              Thanks to the advancement of quantum mechanics, modern classic force fields 

could obtain rather accurate intramolecular structure information from first principle 

calculations, even nonbond interatomic interactions from high accurate QM methods, like 
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MP2/cc-PVTZ42,43, and large model systems by periodic QDFT44,45, less independent of 

traditional experimental data, and obtain the system thermodynamic properties with high 

accuracy, such as gas adsorption46,47 and diffusion48. However, most of the first principle 

force fields are still limited to simple cases, due to the limitation of computer power, which 

make experimental data is still a valuable reference.  

               The classic force fields have their own disadvantages: the simple potential 

functions can’t describe neither polarizable effect in condense phase nor chemical bonds 

breaking cases. So beyond fixed atomic charge models, polarizable force fields are 

introduced to consider the environmental effects, by fluctuating charge49,50, drude 

oscillator51,52 and induced dipole models42. Polarizable force fields often leads to more 

accurate results compared to traditional ones, however, due to the iteration procedure in 

the charge calculation part,  it is usually much slower than classic ones, also the highly 

environmental dependence often means the parameters could not be transferred to other 

cases easily. To describe the chemical reactions, people develop reactive force fields by 

introducing bond order terms, such as ReaxFF53 and REBO54, have been applied to many 

interesting systems, such as metal catalyzed reactions55. The problem here is before using 

reaction force fields to study certain systems, we must have some pre-knowledge of the 

reaction path ways, in order to derive proper force field parameter sets. To accelerate the 

studying of larger complex systems, like protein and polymer, coarse-grained force fields 

are developed, like MS-CG56 and MARTINI force field57. Since they ignore many atomic 

details, for structure sensitive problems, the accuracy should be carefully checked.  
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            The results of simulations will be realistic only if the potential energy functions 

mimic the ‘real’ forces experienced by the ‘real’ atoms. On the other hand force fields 

should have a functional form as simple as possible to speed up the evaluation of the forces. 

Ideally empirical potentials should also be transferable and applicable to many other 

interested systems under different conditions.  

II. Molecular Dynamics 

            After obtained the proper force fields, there are usually two ways to study the target 

system in classical simulation community. One is molecular dynamics (MD), which means 

the time evolution of a set of interacting particles in the system is following the solution of 

Newton’s equations of motion: 

 
2

2

( )i
i i

d t
m

dt


r
F   (8) 

 Where ( ) ( ( ), y ( ),z ( ))i i i it x t t tr is the position vector of ith particle and Fi is the force 

acting upon ith particle at time t and mi is the mass of the particle. Particles usually refer 

to atoms, but they can represent any species that can be described by certain interaction 

law, like chemical functional groups in coarse grain force fields. To integrate the above 

second-order differential equations, the instantaneous forces acting on the particles and 

their initial positions and velocities need to be specified. The MD trajectories are defined 

by both particle position and velocity vectors to describe the time evolution of the system 

in phase space. The positions and velocities are propagated with a finite time interval using 

numerical integrators, the most common one is the Velocity-Verlet algorithm58.  

 21
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2
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2
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The position of each particle in space is defined by r(t), whereas the velocities v(t) 

determines the kinetic energy and temperature in the system at certain time t. From the 

point of view of statistical mechanics, MD is merely a method of conformational sampling 

that yields average structural and thermodynamic properties from trajectories. Within 

infinite simulation time, such averages would converge to the true value of the ensemble 

averaged thermodynamic properties. However, in reality, the quality of sampling and the 

accuracy of the force fields used are always limited. The quality of sampling may be very 

poor, especially for processes with time scale larger than the MD simulations.  

III. Monte Carlo Method 

                Another important classical simulation methods is Monte Carlo (MC) method,59 

first proposed at 1940s,60 even before MD was invented. The main idea of the MC 

algorithm is a heuristic prescription for a plausible pattern of changes in the configurations 

assumed by the system. By carefully designed MC moves, we could generate points in 

configuration space with a relative probability proportional to desired ensemble 

distribution.58 In the standard Metropolis MC algorithm, a move is accepted 

unconditionally if the new configuration results in a lower potential energy. Otherwise it 

is accepted with a probability given by the Boltzmann factor, 

 
' exp( )

B

U
P

k T



 r r

  (11) 

where ΔU denotes the change in the potential energy associated with configuration change 

by a move 'r r and kB is the Boltzmann constant. Due to no kinetic concept included, 
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Monte Carlo method is more convenient than molecular dynamics to be applied to many 

cases only concerning equilibrium thermodynamic properties, such as gas adsorption, by 

giving reasonable probability descriptions. However, finding a proper move that would 

ensure efficient sampling is not a nontrivial problem, due to the generated improper 

configurations. To solve this problem, configuration-biased Monte Carlo (CBMC) 

method61 are introduced by an enhanced probability to ‘fit’ into the existing configuration 

to accept or reject moves. A recently developed more efficient MC method is Wang-

Landau sampling method.62 Instead of sampling the probability distribution at a fixed 

temperature, a random walk is performed in energy space to extract an estimate for the 

density of states. Then the probability can be computed at any temperature by weighting 

the density of states by the appropriate Boltzmann factor.  

             In 1949, Metropolis uses MC simulation to study nuclear physics,60  later, in 1957, 

Berni Alder first applies MD simulation to study the phase transition for a hard sphere 

system,63 then in 1970s, Levitt, Warshel and Karplus introduce MD to biological field 64,65. 

More and more people realize the importance of molecular simulation methods. Computer 

simulations bring new insights into mechanisms and processes that are not directly 

accessible through experiment, meanwhile it is faster and less expensive than synthesizing 

and characterizing the target in real experiments. One big corner stone is Levitt, Warshel 

and Karplus win the Noble Prize at 2013, as a worldwide recognition of the new era of 

molecular modelling.  

             Despite of the many advantages of classic simulation methods, till today the 

simulated time and space scale is still one of the most severe problems in the community, 



 

13 

for example the real protein folding process may take minutes while current MD 

simulations still have difficulty to reach microsecond level.66. Although MC method 

doesn’t have simulation time concern, but is still limited by the system size, due to the 

explicitly consideration of large amount of particle-particle interactions, even with more 

advanced large scale parallel computing, depending on CPU67 or GPU68. Different from 

classical simulations, classical density functional theory obtain the system equilibrium 

thermodynamic properties by solving series of math equations instead of brutal forces 

calculations over tens of thousands particles, which is much more efficient, more details 

will be given in the following chapters.  

1.1.3. Hydration Free Energy 

              Solvation free energy is one of the most important thermodynamic properties in 

chemical engineering field, since most of the chemical reactions and processes happen in 

the solvent environment, which are all related to it, for example why certain nanomaterials 

could only be synthesized in specific solvent and how to control its morphology by 

changing the solution conditions. Another direct example is aqueous solubility, which is a 

major concern in the pharmaceutical development process and in the identification and 

quantification of potential environmental contaminants, relating to a wide range of 

applications. The traditional way by doing experiments is very expensive and time 

consuming, considering over thousands of candidates, so accurate and efficient prediction 

of solvation free energy are desired in lots of industrial fields.  

              There have been enormous activities in this field recent years in understanding the 

microscopic details of solute-solvent interactions and the effects of the local solvent 
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structure on the chemical and biochemical affinities of dissolved species69-83. Generally 

speaking, current computational methods to investigate the solvent effects could be 

classified into three categories: continuous approaches84-89, molecular simulations90-94, and 

liquid-state theories95-101. A number of hybrid methods also exist by various combinations 

of these three basic procedures102-107.  

        A continuous approach is considering the solvent as a continues isotropic medium, 

and then the solvent-solute interactions could be described by a number of operators, such 

as the free energy of cavitation, electrostatic energy, dispersion energy, repulsion energy, 

thermal fluctuation contribution and so on108-111. Due to no explicit solvent is considered 

during the calculation, this kind of phenomenological approaches are very computationally 

efficient and widely applied in drug design field to screening promising candidates112-114, 

however since lots of semi-empirical parameters are needed to better capture the trend of 

the initial fitting training sets, it’s always doubtful of their reliability beyond the original 

thermodynamic conditions, that’s why usually they could be only applied to similar 

compounds prediction compared to the original ones115-117.  

         Molecular simulation with explicit solvent consideration has become a routine 

tool and is usually recognized as the most reliable and realistic model for studying the 

solvent effects over the past few decades118. However this kind of calculation intrinsically 

requires a large number of degrees of freedom, associating with high phase space 

dimensionality. It makes the free-energy calculation relies on alchemical methods to 

sample the microstates of the system along various thermodynamic pathways119,120, instead 

of one time simple calculation as for the molecular mechanics properties. Due to the high 
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computational demanding, simulation results compared to experimental data based on a 

large library of organic compounds have been rarely reported, even for small molecules. 

An early notable exception is the MC data for the solvation properties of over 200 organic 

solutes in aqueous and organic solutions reported by Duff and Jorgensen121. More recently, 

Mobley et al. 122 calculated the hydration free energies of over 500 small organic molecules 

using alchemical MD simulations, which is the largest simulation database currently, 

however compared to the real drug candidates databank containing millions of compounds, 

such kind of scale and computation cost are still not acceptable. 

Modern liquid state theory provides a compromise between conventional semi-

empirical methods and molecular simulations. Different from molecular simulations, it 

allows us to do one time calculation to obtain both thermodynamic properties and the 

equilibrium configuration without explicit enumeration of microstates. Among them, we 

think classical density functional theory (CDFT) could be a strong contender as a promising 

computationally viable hydration free energy prediction method. Since it is based on 

minimization of the grand potential instead of sampling millions of microstates by brute 

force calculations. In many cases, the theoretical performance is comparable to molecular 

simulations but with much less computational burden. More details will be given in the 

following chapter 3. 

II. Gas adsorption in nanoporous materials 

Due to the increasing air pollution and global warming, more importantly limited 

storage amount of fossil fuel, in the last three decades, more and more researches have 

focused on clean and renewable energy development, for example hydrogen and methane. 
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However, the energy density of such kind of uncompressed gases energy is too low for 

practical purpose compared to gasoline. People need to find better gas storage methods, 

besides traditionally gas tank technology, recent years, great effort has been contributed to 

the discovery of novel nanoporous materials, in particular metal-organic framework 

materials (MOFs) as high performance candidates123. Unlike conventional adsorbents such 

as activated carbons or zeolites, MOFs are organic-inorganic hybrid solids with infinite, 

uniform framework structures built from organic linkers and inorganic metal (or metal 

containing clusters) nodes that are able to be self-organized into periodic and porous 

frameworks124. The intrinsic nature of MOFs allows us to systematic modulating the pore 

dimensions, surface areas, topology structures for specific target, based on the vast 

combinations of available metal ions and organic linkers, unfortunately, in reality, the 

number of currently synthesized MOF materials is negligible comparing to the total 

number of possibilities. New efficient computational screening methods for the adsorption 

properties could be great helpful for experimental scientists.  

   Huge amount of classical simulation works have been done to studying gas 

adsorption in nanoporous materials.46,125-131 Recently many researchers turn to computer-

aided materials design, in order to find new promising materials, even ahead of 

experimental scientists. For example, Han et al. combined quantum mechanics the GCMC 

methods to design the new Li-doped MOFs with much higher hydrogen adsorption amount 

than undoped ones,132 indicating that doping with metal ions may be an effective way to 

enhance the adsorption capability. A more prominent work is done by Wilmer et al.  to 

find promising MOFs for methane storage purpose, they first design over 100,000 
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hypothetical MOFs based on available building blocks and then carry out  GCMC 

calculations screening for the best candidates, also synthesize them.133 The same simulation 

method was also used for screening of MOFs toward high-efficacy CO2 capture134. 

However, in those works, due to the computational demanding with molecular simulation 

methods, complete simulation calculations for the whole materials database are impossible, 

even with most advanced computer technology, such as parallel and stream processor 

computing, many compromises need to be made. 

One the other hand, the classical density functional theory (CDFT) has been long 

recognized as a valuable alternative to simulation methods for gas adsorption in porous 

materials.135,136 In fact, CDFT is now the standard method used in physisorption field for 

the materials characterization of porous materials, integrated in all the experimental 

measurement equipment.137,138 As indicated above, CDFT calculations are based on the 

minimization of the grand potential, making its computational efficiency far superior to 

molecular simulations. For gas adsorption prediction, common versions of the density 

functionals typically use the fundamental measure theory (FMT) to account for molecular 

excluded volume effects,139-142 and the attractive components are often represented by 

various forms of weighted density approximations (WDA),143,144 the van-der-Waals-like 

mean-field approximation (MFA),145,146 the density functional expansion method 140,147, 

and various modifications of these methods.47,48 But the shortcomings of CDFT 

calculations in this field have also been well recognized: the predictions are often sensitive 

to the approximations for the free-energy functionals. Even though all of those density 

functionals had been calibrated with simulation results for LJ fluids in simple geometries, 

file:///C:/My%20Work%20Documents/NAS/Thesis/Chapter%201_Jia_0319_NEnd.doc%23_ENREF_47
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they’re never tested in real nanoporous materials, except few cases in MOF-5. So for 

practical purpose, the performance of the free energy functionals must be validated with a 

large training set of realistic materials over a broad range of conditions pertinent to 

industrial required conditions, which I will talk about in chapter 4.  

1.2 Dissertation organization 

This dissertation is focused on the application of density functional theory for high-

throughput screening of chemicals and materials, especially at common organic molecular 

hydration free energy and gas properties in nanoporous materials. 

Chapter 2 covers the basic formulism of the classical density functional theory, 

mainly focus on the construction of excess Helmhotz energy functional, special attention 

is given to modified fundamental measure theory part.  

Chapter 3 focuses on applying classical density functional theory to predict the gas 

behavior in nanoporous materials. First, four version of common CDFT methods are 

chosen to examine their performance on hydrogen storage from simple geometry model 

systems to real nanoporous materials, validating whether it depends on the gas species and 

examination conditions. Second, based on the original excess entropy scaling relation by 

Rosenfeld, a new scaling equation for simple fluids in nanoporous materials is built, by 

taking the contribution from Knudsen diffusion region and free volume effect into 

consideration. Third, expand the four methods for methane storage purpose, trying to find 

the key property that could lead to large CH4 delivery amount to achieve the ARPA-E 

target. The fourth part is applying quantum density functional theory and Monter Carlo 

methods to design series of new nitrogen-doped porous aromatic framework (PAF) 
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materials, to see their performance on CO2 capture and CO2/N2 separation, also explore the 

storage controlling factors in different conditions.   

Chapter 4 focuses on applying molecular density functional theory (MDFT) for 

large-scale prediction of hydration free energy of organic compounds. First I discuss the 

results of applying the new developed theory to the 500 solvation database, to valid its 

accuracy and efficiency compared to experimental and full atomistic simulation data, with 

standard molecular structure and force field. Then testing the performance of several 

common generic force fields and molecular structure generation methods for the prediction 

of small organic molecular drugs hydration free energy in the Sampl4 blind test. Third, 

based on the extensive 700 organic compounds solvation database, various combination of 

input structure generation methods, force fields, charge sets and water models are 

examined to find the generally best choice to apply our MDFT for predicting the water 

solvation free energy of an unknown organic compound.  

Finally Chapter 5 summarizes key conclusions from this dissertation and 

perspectives for future work. 
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Chapter 2. Basic Concepts of Classical Density Functioal Theory 

    In this chapter we gives a brief introduction of classical density functional theory 

(CDFT). It is significantly more effective in quantifying the thermodynamic and 

microscopic structural properties of complex fluid system, relying on variational 

computation for the equilibrium density profiles and the corresponding thermodynamic 

properties. In essence, DFT provides quantitative relationships between thermodynamic 

properties and microscopic structure, with the mathematical procedure naturally applicable 

to complex molecular systems with intermolecular interactions spanning multiple time and 

length scales. However, CDFT requires various approximations for the free-energy 

functionals in terms of the one-body density profiles underlying the microscopic structure 

of molecular systems. 

2.1. Density Profile 

 Density functional theory expresses the properties of a multi-body system in terms 

of the density profiles, i.e., the ensemble-averaged spatial-temporal distributions of 

individual elements (particles). Intuitively, the molecular density profiles represent the 

average spatial distributions of molecules. To illustrate this mathematical concept, consider 

a monatomic system with N identical spherical particles. At a given configuration of the 

multi-body system, the instantaneous particle density at position  r  is a summation of the 

Dirac delta-functions:  

 
   

r̂ r( ) = d r - r
i( )

i=1

N

å , (12) 

where 
  
d(r) stands for the 3-dimensional Dirac delta function 
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d r - r '( ) =
0, r ¹ r '

¥, r = r '

ì

í
ï

îï

. (13) 

The Dirac function can be understood as a probability density to find the particle at position 

 r ; it satisfies the normalization condition 

 
   

drò d r - r '( ) = 1. (14) 

The density profile is defined as an ensemble average of the instantaneous local density 1 

 

   

r r( ) = r̂ r( ) = d r - r
i( )

i=1

N

å . (15) 

The density profile of a multi-body system is intimately related to its 

thermodynamic properties. For a one-component system with N identical spherical 

particles considered above, we may write the grand partition function X  as 

 

   

X =
1

N !L3N
dr

N exp -b G r
N( ) + Nm + j r

i( )
i=1

N

å
é

ë
ê

ù

û
ú

ì
í
ï

îï

ü
ý
ï

þï
ò

N

å  (16) 

where L  stands for the thermal wavelength;   r
N  is a short notation for , 

i.e., the configuration of all particles in the system; 
  
G rN( ) represents the total interaction 

potential among these particles; m  is the chemical potential; 
 
j r( ) is the one-body external 

potential, 
  
b = 1/ k

B
T( ), and 

 
k

B
 is the Boltzmann constant. The one-body profile

 
r r( )  is 

given by 

 

   

r r( ) =
1

X

1

N !L3N
dr

N d r
i
- r( )

i=1

N

å exp -b G r
N( ) + Nm + j r

i( )
i=1

N

å
é

ë
ê

ù

û
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í
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å . (17) 
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We can rewrite Eq. (17) in terms of a functional derivative of X  with respect to the one-

body external potential 

 

  

r r( ) = -
1

bX

dX

dj r( )
= -

d lnX

bdj r( )
. (18) 

Because the grand potential W  is defined as  

 
 
bW = - lnX. (19) 

Substituting Eq. (19) into Eq. (18) yields a simple relation between the one-body density 

profile and the grand potential 

 

 

r r( ) =
dW

dj r( )
.  (20) 

2. 2 Density Functional Theory 

The basic ideas of DFT can be traced back to van der Waals’ pioneering work 

published in the late 19th century that concerned with the surface tension of a vapor-liquid 

interface. Functional minimization of the free energy was utilized as a criterion of 

equilibrium for inhomogeneous systems2. Modern developments in classical DFT is, 

however, based on the Hohenberg-Kohn (HK) theorem3, which states that, in an 

equilibrium system at a given temperature and the chemical potentials of individual species, 

the one-body external potential for each species can be uniquely determined by the 

corresponding one-body density profile. The HK theorem enables the definition of intrinsic 

Helmholtz free energy, a thermodynamic quantity for inhomogeneous systems that is 

independent of the one-body external potentials4. For a one-component system, we can 

write the intrinsic Helmholtz energy  F  as   
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F º A- drj r( )ò r r( ) , (21) 

where  A  denotes the conventional Helmholtz energy. The conventional and intrinsic 

Helmholtz energies are related to the grand potential  

        A N F d N F d              r r r r r r . (22)  

Because the one-body external potential for each species can be uniquely 

determined by the corresponding one-body density profile, the intrinsic Helmholtz free 

energy and subsequently the grand potential are functionals of the one-body density 

profiles. According to the HK theorem, the equilibrium density profiles minimize the grand 

potential, i.e., for a one-component system, 

 

  

dW r r( )é
ë

ù
û

dr r( )
= 0. (23) 

Substituting Eq. (22) into Eq. (23) yields  

 

  

dF r r( )é
ë

ù
û

dr r( )
= m - j r( ). (24) 

Given an analytical expression for the intrinsic Helmholtz energy, the HK theorem thus 

provides a mathematical framework for solving the microscopic structure and 

corresponding thermodynamic properties, viz., from the functional derivative of the grand 

potential with respect to the one-body density profiles.  

2. 3 Intrinsic Helmholtz Energy Functional 

 For simple fluid model systems considered in this thesis, the intrinsic Helmholtz 

energy can be decomposed into two parts: the ideal-gas term  F
id  and the excess term  F

ex   
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      id exF F F            r r r . (25) 

The ideal-gas term can be obtained exactly:  

    ln 1idF d       r r r  . (26)    

The excess intrinsic Helmholtz energy accounts for the thermodynamic non-ideality due to 

inter- and intra-molecular interactions. Unlike its ideal counterpart, the exact representation 

for the excess free energy is unknown. Indeed, attaining an accurate formulation of the 

excess intrinsic Helmholtz energy is critical to all DFT calculations.  

2. 4 Euler-Lagrange Equation 

For a simple fluid system at equilibrium, the density profiles can be determined 

from minimization of the grand potential (Eq. (23))  

 
 

0



 r

 (27) 

The functional derivatives lead to an Euler-Lagrange equation: 

    
 

exp
exF 

     
  

r r
r

 (28) 

The functional derivative of the excess Helmholtz energy with respect to the density profile 

of the simple fluid gives the local excess chemical potential:  

  
 

ex
ex F

 


r
r

. (29)  
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2. 5 Excess Helmholtz Free Energy 

Now we move on to define the excess Helmholtz free energy  F
ex . Formulation of 

this quantity is the key in DFT calculations. For simple fluid considered in this dissertation, 

the excess Helmholtz free energy can be decomposed into two inter-related contributions:  

 
ex ex ex

hs attrF F F  . (30) 

In Eq.(30), the subscripts indicate contributions to the excess Helmholtz energy due to the 

hard-sphere repulsion (
 
F

hs

ex ) and the attraction energy part ( ex

attrF ). Each contribution to the 

thermodynamic potential can be formulated based on a combination of physical insights 

and mathematic analysis. In the following, we will only focus on the simple fluid system. 

While in chapter 4 we will focus on more complicated polyatomic system. The 

mathematical details for derivations of these equations can be found from the literature.    

 Considering simple LJ fluid system as in Chapter 3, according to the Barker-

Henderson (BH) theory of bulk fluids 5 

 LJ hs attr( ) ( ) ( )u r u r u r   (31) 

 
hs ( )

0

r d
u r

r d

 
 


 (32) 

 
12 6attr

0

( )
4

r

u r
r

r r



 
 




      
     

     

 (33) 

where d is the hard-sphere diameter6 

 

  

d = s
1+ 0.2977T *

1+ 0.33163T * + 0.0010477T *2

æ

èç

ö

ø÷
 (34) 
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where 
  
T * = k

B
T / e .  

For all DFT functionals considered for simple fluid system, the hard-sphere term, 

Fhs, is calculated from the modified fundamental measure theory (MFMT) 7,8  

 
   
F hs = k

B
T Fhs[n

a
(r)]drò  (35) 

where  

 

hs 1 2 V1 V2
0 3

3

2
33 3 3
2 2 V2 V22 2

3 3

ln(1 )
1

(1 ) ln(1 )
( 3 )

36 (1 )

n n
n n

n

n n n
n n

n n

 
    



  
  



n n

n n

 (36) 

 ( )( ) ( ') (| ' |)d ' {0,1,2,3,V1,V2}n w 

    r r r r r  (37) 

and w(α) are the weighting functions related to the hard-sphere geometry9  

 

(2) 2 (0) (1)

(3)

(V2) (V1) (2)

( ) ( ) 2 ( ) ( / 2 )

( ) ( / 2 )

( ) 2 ( ) ( )

w r d w r dw r d r

w r d r

d w r
r

  






    


 

  


r
w r w r

 (38) 

where δ(r) represents the Dirac delta function, and θ(r) is the Heaviside step function. In 

comparison with simulation results, MFMT is extremely accurate for describing the 

structural and thermodynamic properties of inhomogeneous hard-sphere systems10. 

For the attractive part of the Helmholtz energy functional, we consider the following four 

different approximations. These functionals have been commonly used in simple fluid 

systems. 
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2.5.1. Mean-field approximation (MFA)  

 The attractive component of the excess Helmholtz energy functional is given by 

 
   
F MFA[r(r)] =

1

2
r(r)r(r ')uattr (r - r ')drdr 'òò  (39) 

Like the van der Waals equation of state, MFA ignores correlated distribution of gas 

molecules inside the material. It has been used since the early application of DFT11 and 

remains relevant in recent DFT calculations, in particular for materials characterization. 

With an accurate equation of state for bulk fluids, the mean-field approximation performs 

surprisingly well under many circumstances. Because of its simplicity, MFA has been a 

preferred choice for theoretical investigations of surface phase transitions.12        

2.5.2. Weight-density approximations   

              In this version of DFT proposed by Yu13, here designated as WDA-Y, the 

attractive part of the excess Helmholtz energy includes a mean-field contribution and an 

additional term due to correlations: 

 
   F

attr[r(r)] = F MFA[r(r)]+ F cor[r(r)] (40) 

The mean-field contribution, F
MFA  , is the same as that given in Eq.(39), and Fcor is defined 

in terms of a local correlation free energy at an empirically defined weighted density: 

 cor cor

B [ ( )]dF k T   r r  (41) 

 where  

 
3

3
( ) ( ') ( | ' |)d '

4
d  


  r r r r r  (42) 
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In Eq.(41), Φcor is the free energy per volume for the bulk system due to the correlation 

effect. It can be obtained from 

 
LJ hs MFA

cor bulk bulk bulk( ) ( ) ( )
( )

F F F

V

  


 
   (43) 

where V is the system volume, 
  
F

bulk

LJ (r)
 
is the excess free energy for the bulk LJ fluid at 

system temperature T and density r , hs

bulk ( )F   is the excess free energy for bulk hard-

sphere fluid, and MFA

bulk ( )F   is the mean-field energy of the bulk system  

 
MFA

2 3bulk ( ) 16

9

F

V


    (44) 

Yu used the analytical results from the first-order-mean-spherical approximation (FMSA) 

13,14 for LJ

bulk ( )F  , and hs

bulk ( )F   is calculated from the Carnahan-Starling equation of state.15 

Considering that FMSA is not very accurate for a LJ fluid near the critical condition, in 

this work we use the modified Benedict-Webb-Rubin (MBWR) equation of state16 instead 

of FMSA to calculate LJ

bulk ( )F  .  

 Alternatively, we may apply WDA to the correlation part of the excess Helmholtz 

energy functional per molecule (rather than per volume)  

 ( ) [ ( )]cor cor

BF k T f d   r r r   (45) 

This version of free energy functional is designated as WDA-L.  

2.5.3. Density expansion method 

In this method, we still separate the excess free energy into two parts, Fhs and ex

attF . 

The functional expansion is applied only to the attractive part  
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(1)

(2)

[ ( )] [ ] ( ( ) )

1
( )( ( ) )( ( ) )

2

ex ex

att att b att b

att b b

F F d C

d d C

     

   

  

     



 

r r r

r r r r r r
                          (46) 

where the direct correlation functions (DCF) for the bulk systems are defined as 

   
C

att

(1) = -dbF
att

ex dr(r) |
b
                                                          (47) 

   
C

att

(2)( r - ¢r ) = -d 2bF
att

ex dr(r)dr( ¢r ) |
b
                                               (48) 

Tang proved that the Lennard-Jones potential can be accurately reproduced by a two-

Yukawa function,17 which leads to an analytical expression for 
  
C

att

(1)
 and 

  
C

att

(2)(r)  based on 

the first-order mean-spherical approximation (FMSA).18 For convenience, this version of 

DFT is referred as FMSA. The detail expressions for 
  
C

att

(1)
 and 

  
C

att

(2)(r)  are given 

elsewhere.19  
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Chapter 3. Computer-Aided Materials Design 

3.1 Density functional methods for fast screening of metal-organic frameworks for 

hydrogen storage 

Abstract 

Classical density functional theory (DFT) has been routinely used in 

characterization of pore size distributions and specific surface areas of porous materials by 

physisorption. However, its application to large-scale screening of materials for gas storage 

has been rather limited because it is commonly believed that the DFT calculations are 

highly sensitive to the approximations for the free-energy functionals. In this work, we 

have investigated four representative versions of non-local density functionals for 

predicting H2 adsorption in slit pore model and in a large library of metal-organic 

frameworks (MOFs) under a broad range of temperatures and pressures. The four versions 

of DFT share a common functional from the modified fundamental measure theory that 

accounts for the molecular excluded volume effects, while differ in their approximations 

to represent the intermolecular attractions, viz., mean-field approximation, two versions of 

weighted-density approximations (WDA), and the quadratic functional expansion method. 

We have tested these functionals with Monte Carlo simulation data for H2 adsorption at 

conditions of practical interest. Overall all four versions of DFT are reasonably accurate in 

comparison with the simulation results. While the density expansion method performs 

rather well at the DOE target condition for hydrogen storage, the WDA methods are found 

most accurate at the low-temperature condition typically used in materials characterization. 

In addition to adsorption isotherms, DFT is able to generate density profiles revealing 
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microscopic details such as favorable adsorption sites. From a computational perspective, 

the DFT calculation is at least one order of magnitude faster than conventional simulation 

methods, rendering it as a promising tool for large-scale screening of nanostructured 

materials for gas storage.    

3.1.1. Introduction 

Over the past decades, metal-organic frameworks (MOFs) have attracted much 

research attention for gas storage purpose.1-16 Compared to traditional nanoporous 

materials, MOF materials have well defined crystalline structures with extremely high 

specific surface areas and superior gas adsorption capabilities. Moreover, the MOF 

structures can be easily tuned and customized to target specific applications of practical 

concern. For example, NU-100 17 and MOF-210 18 have been identified as two promising 

MOF materials for H2 storage, by computational design with particular high surface areas. 

Because the vast combinations of available metal ions and organic linkers, the number of 

currently synthesized MOF materials is negligible (less than 1%) comparing to the total 

number of possibilities. Further experimental exploration of MOFs for gas storage will 

benefit tremendously from computational screening of the adsorption properties.  

At present theoretical modeling of gas adsorption in porous materials is mostly 

based on molecular simulations.5-7,13,14,16,19,20 For example, Snurr and coworkers used the 

grand canonical Monte Carlo (GCMC) simulation to predict hydrogen adsorption in a 

series of MOFs.21 It was found that the gas adsorption amount is strongly correlated with 

the heat of adsorption, the surface area, and the free volume of MOFs at low, intermediate 

and high pressures, respectively. Han et al. used the GCMC method, along with a quantum-
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mechanics derived force field, to predict the hydrogen adsorption behavior in Li-doped 

MOFs.22 They indicated that doping with metal ions provides an effective way to enhance 

the adsorption capability. A similar procedure was deployed by Yang et al. to study the 

effect of open metal sites on gas adsorption.23 Wilmer et al. carried large-scale GCMC 

calculations for over 100,000 MOFs for methane adsorption.24 The simulation method was 

also used for screening of MOFs toward high-efficacy CO2 storage25. Despite their wide 

usage, the molecular simulation methods are still time consuming, even with more 

advanced technology, such as modern parallel computing. 

The classical density functional theory (DFT) has been long recognized as a 

valuable alternative to simulation methods for gas adsorption in porous materials.26,27 On 

the one hand, DFT is now routinely used in physisorption for the characterization of pore 

size distributions and specifying surface areas of porous materials.28,29 On the other hand, 

DFT has been emerging as one of the most versatile theoretical tools in statistical 

mechanics for describing the interfacial behavior of a broad range of inhomogeneous fluids 

including gas, liquid and polymeric systems.30-32 Because DFT calculations are based on 

the minimization of the grand potential, its computational efficiency is far superior to 

molecular simulations, in particular for calculating thermodynamic properties such as free 

energy. Nevertheless, the shortcomings of DFT calculations have also been well 

recognized: the DFT predictions are often sensitive to the approximations for the free-

energy functionals. For gas adsorption, common versions of the density functionals 

typically use the fundamental measure theory (FMT) to account for molecular excluded 

volume effects,33-36 and the attractive components are often represented by various forms 
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of weighted density approximations (WDA),37,38 the van-der-Waals-like mean-field 

approximation (MFA),39,40 the density functional expansion method 34,41, and different 

modifications of these methods.47-48 Most notably, Neimark and coworkers have 

successfully used MFA to study gas adsorptions and phase transitions of confined fluids in 

various slit and cylindrical nanopores.15, 26, 28, 40, 42 They found that in many cases the DFT 

predictions were in good agreements with Monte Carlo simulation results.42 Tang et al. 

constructed a free-energy functional using the functional expansion method with the bulk 

direct correlation function obtained from the first-order mean-spherical approximation 

(FMSA).43 The non-mean-field theory was proved to be computationally as efficient as 

MFA but more accurate in comparison with simulation results for a variety of 

inhomogeneous Lennard-Jones fluids. While early DFT calculations were mostly 

concerned with model fluids confined in simple geometries,40,44-46 applications to more 

realistic systems have also been considered in recent years.47-52 For example, Siderius et al. 

successfully used a lattice version of MFA to study H2 adsorption in MOF-5 at room 

temperature.47 As indicated by Liu et al.,49 MFA is not accurate at low temperature, in 

particular for fluids in contact with a weakly attractive surface. The theoretical results can 

be much improved by using WDA for both the hard-sphere and attractive parts of the 

excess free energy functional. The generalized WDA by Liu et al. performs well for both 

low and high temperatures and has been extended to mixtures.51 Along similar lines, Yu 

proposed that the WDA methods can be used for both the hard-sphere and correlation parts 

of the excess free energy functional.53 To a certain degree, the generalized WDA 
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approximation introduced by Yu resembles the exchange-correlation functional in 

electronic DFT.  

The density functionals mentioned above had been calibrated with simulation 

results for either LJ fluids in simple geometries or adsorption of a specific gas in MOF-5. 

For materials screening, the numerical performance of the free energy functionals should 

be validated with a large training set of realistic materials over a broad range of conditions 

pertinent to industrial applications. In this work, we aim to create such a benchmark by 

carrying out extensive GCMC simulation for H2 adsorption in a large library of MOF 

materials and examine the theoretical performances for four typical versions of classical 

DFT. All these functionals are based on the modified fundamental measure theory to 

account for molecular excluded volume effects36,54 but differ in the attraction part of excess 

free-energy functional, viz. MFA, two forms of WDA, and the functional expansion 

method.  

3.1.2. Molecular Model and Methods 

Gas adsorption in MOF materials depends on, in addition to the bulk temperature 

and pressure, interactions between the adsorbed fluid and the host framework. In general, 

we need to consider both bonded and non-bonded interactions among the MOF atoms, 

MOF-gas, and gas-gas molecules. In this study, we conjecture that the MOF structures are 

rigid and unchanged upon gas adsorption. Where structure changes are not uncommon for 

MOF materials,55 it has been well recognized, the framework flexibility mainly affect gas 

transport and has relatively small effect on adsorption isotherms.  



 

45 

In our molecular model, gas molecules can depicted as spherical particles. Inside 

the MOF materials, each gas molecule is subject to an external field, Vext(r), arising from 

its interaction with all the fixed framework atoms 

 

   

V ext (r) = u
if

(r - r
i
)

iÎMOF

å  (49) 

where subscript i represents the ith atom of the MOF framework, uif(r) represents its 

interaction potential with the gas molecule,  r and ri stand for the positions of the gas 

molecule and the ith MOF atom. The Lennard-Jones (LJ) model is used to describe both 

the MOF-gas and gas-gas potentials:  
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where parameters εii and σii are obtained from standard semi-empirical force fields and the 

Lorentz-Berthelot (LB) mixing rule is employed for different atomic types.  

                The DFT calculations are based on the minimization of the grand potential 

functional  

 
   
W[r(r)] = F[r(r)]+ [V ext (r) - m]r(r)drò  (51) 

where μ denotes the gas chemical potential in the bulk, F[ρ(r)] is the Helmholtz energy 

functional, and ρ (r) is the density profile of gas molecules.  The gas chemical potential 

can be obtained from the equation of state for the corresponding bulk fluid 

 bulk ( , )P T   (52) 

where P and T represent pressure and temperature, respectively. For all DFT calculations 

reported in this work, the chemical potential of the bulk system are calculated from the 
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MBWR equation of state,56 while the Helmholtz energy functional are constructed 

following the method in Chapter 2.  

               We minimize the grand potential functional with respect to the 3-dimensional 

density profiles of gas molecules by using the conjugate-gradient method (CG Descent).57  

From 
  r(r) , we calculate the adsorption amount based on the number of gas molecules in 

the MOF material and system volume: 

 0

0

( )dBk T

PV
   r r  (53) 

where 
  
P

0
= 1atm  and 

  
T

0
= 25 oC stand for the standard state (STP). As usual, the 

adsorption amount is expressed as the volume of gas adsorbed at the standard-state 

condition in unit volume of material.  

To validate the DFT results, we have also calculated H2 adsorption in slit pores and 

in a large number of MOF materials using grand canonical Monte Carlo (GCMC) 

simulation method.58  In all our simulations, the LJ interactions were evaluated with a 

spherical cutoff of 12.9 Å. Each simulation run consists of 106 trial moves to reach the 

equilibrium state, and another 106 MC moves for calculating ensemble average. Three 

types of trial moves were attempted in the GCMC simulations: insertion, deletion and 

displacement of gas molecules. Chemical potentials applied in the simulation works were 

also calculated from the MBWR equation of state as discussed above. The simulation data 

for each trajectory were divided into 10 blocks in order to estimate the statistical 

uncertainties. Unless specifically mentioned, the statistical uncertainty was generally 
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smaller than the symbol sizes presented in the figures. All MC simulations were carried 

out with the Towhee 7.0.4 program.59 

In both DFT and GCMC predictions of H2 adsorption in MOFs, we used a 2x2x2 

supercell and rigid framework for the porous crystal. The LJ parameters for the MOF 

frameworks were taken from the UFF force field.60 The molecular model been proved 

before to be accurate for predicting gas adsorption in MOFs.24 H2 molecules are described 

with the widely used Buch model, which gives εH2/kB=36.7 K and σH2=2.96 Å.61 The Buch 

model successfully reproduces the gas properties in the bulk.   

3.1.3. Results and Discussion 

The four versions of DFT methods discussed above have been calibrated before 

with GCMC results for LJ fluids in simple pore geometries.42,43,62 However, the early 

comparisons are mostly focused on the DFT performance from a theoretical perspective, 

in particular on its applicability to describing the interfacial behavior of confined liquids. 

Toward that end, it has been well known that MFA is rather unsatisfactory for any liquid 

near the triple point and only those functional taking into account the correlation effects 

are able to attain quantitative results. The situation is quite different though for gas 

adsorption because the thermodynamic conditions of practical concern are rarely close to 

the triple point. In most cases, adsorption occurs way beyond the critical temperature such 

that the intermolecular attraction has little influence on the fluid structure. If the local 

density inside the pore is not significantly different from that in the bulk, the density profile 

is primarily determined by the external potential, little affected by the excess Helmholtz 
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energy. In other words, different DFT methods should yield similar results if the same bulk 

density and the external potential are used in the calculations.   

Figure 3-1 shows the absolute amount of H2 adsorption in three slit pores with 

slightly different widths. In DFT and MC calculations, the Steele’s 10-4-3 potential is used 

to represent the interaction between gas molecules and each slit wall:  
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 (54) 

where  z  is the perpendicular distance from the surface, w  ,  D = 0.7071s , and 

6.283w  . Because the local density of gas molecules inside the slit pore is not 

drastically different from the bulk density, the adsorption isotherms from different versions 

of DFT are virtually identical and all agree well with the GCMC data. In other words, the 

insensitivity of gas adsorption to thermodynamic non-ideality is mainly due to the 

cancellation of errors. Different DFT functionals differ only in the local excess chemical 

potential relative to that of the bulk value. Such difference diminishes if the local density 

becomes identical to the bulk density.  

Application of DFT to gas adsorption in realistic materials is more challenging than 

that for simple pores not only due to the computational problems affiliated with solving 3-

dimensional density profiles but also due to much more pronounced local density 

inhomogeneity.  Consider, as an example, H2 adsorption in MOF-5 at 77K. Figure 3-2 

presents the framework structure as well as the local density profiles of gas molecules 

predicted from DFT (WDA-L). At low pressure (P=1 bar, Figure 2b), the gas molecules in 

MOF-5 are mainly concentrated around the strong binding sites (i.e. metal clusters). The 
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local gas density, 
  r(r) , can be higher than the bulk density, 

 
r

b
, by over three orders of 

magnitude (shown as the yellow iso-surface in Figure 2b). As the bulk pressure increases, 

adsorption of gas molecules around the organic linkers becomes more significant (Figure 

2c). At sufficiently high pressure (~20 bar), all favorable binding sites are saturated by 

surface adsorption and a further increase in pressure results in more gas molecules filling 

in the pore. At this point, the free volume takes in charge of the gas adsorption and 

increasing the pressure reduces the local density inhomogeneity (Figure 2d). The strong 

inhomogeneity of local density profile predicted by DFT is consistent with previous 

simulation63 and experimental results64. From practical perspectives, the 3-dimensional 

density profile is useful not only for generating the adsorption isotherms but also for 

revealing the microscopic structure of adsorbed guest molecules in nanoporous materials. 

It contains essential information required for understanding specific binding, diffusion and 

chemical reactions.  

Figure 3-3 presents a comparison of typical adsorption isotherms predicted from 

GCMC simulation with those from four versions of DFT methods discussed above. All 

DFT methods show excellent agreement with simulations for hydrogen adsorption in 

MOF-5 at high (298 K) and intermediate (243 K) temperatures. The difference is noticeable 

only for the MFA version of DFT, which slightly underestimates the adsorption amount at 

high pressure (>300 bar). At low temperature (77K), however, the differences between 

GCMC and different DFT methods become more distinctive. As expected, MFA yields the 

poorest results in comparison with the simulation data: the deviation from GCMC 

simulation is more than 10 percent at high pressure (>20 bar). The poor performance of 
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MFA is consistent with earlier calibrations for LJ fluids near weakly attractive surfaces.43 

Because the correlation effect magnifies at low temperature and high density, it appears 

that MFA is not an ideal tool for predicting adsorption amount at high loadings. Most 

surprisingly, the functional expansion method performs poorly as well even at intermediate 

pressure, which is in stark contrast to earlier validations for simple pores.43 For this case, 

the error is probably introduced by the FMSA equation for representing fluid properties at 

supercritical temperatures and in the application of density expansion for highly 

inhomogeneous 3-D systems. Conversely, the two versions of WDA show superior 

performance over the entire ranges of temperatures and pressures examined in this work. 

We have also tested the two versions of WDA in conjunction with both FMSA and MBWR 

equations of state. We find that the accuracy of equation of state plays an important role in 

DFT predictions. For LJ systems, the MBWR equation, obtained by fitting extensive 

simulation data, is more accurate than FMSA in particular at supercritical conditions.  The 

WDA versions of DFT with FMSA equation, show a much higher RMSD compared to 

MBWR one with GCMC simulation results and clearly overestimation trend for MOF 

hydrogen adsorption capability as shown in Figure 4e. 

A major objective of this work is to test the numerical performance of DFT for gas 

adsorption in a large library of MOF materials. Toward that end, we adopt the 

Northwestern hypothetic MOF database.24 We picked up 1,200 MOF materials from the 

library based on the following four characteristic properties: 1) excess CH4 adsorption in 

weight (cm3 (STP)/g), 2) excess CH4 adsorption in volume (cm3 (STP)/cm3), 3) void 

fraction, and 4) surface area (m2/cm3). For each category, we use the top 300 MOFs as 



 

51 

examples (in descending order). We assume that these MOFs consist of a good training set 

for testing the performance of different DFT methods for large-scale screening of porous 

materials for H2 storage.  

For potential industrial applications, we consider the thermodynamic condition 

according to the new H2 storage target set by the U.S. Department of Energy (DOE) for 

2015,65 viz., 5.5 wt% and 40 g L−1 H2 (444 cm3 (STP)/cm3) at T = 243K and P = 100 bar. 

Figure 3-4 compares the results from GCMC simulation and various DFT methods for H2 

adsorption in 1,200 MOFs selected according to the criteria discussed above. Here 

materials selected accordingly different criteria are coded in different colors. Specifically, 

blue represents top 300 MOFs in the database based on the excess amount of CH4 

adsorption in weight, red for top 300 MOFs in terms of the volume, purple for top 300 

MOFs in void fraction, and teal for top 300 in surface area. It’s interesting to see the effects 

of void fraction and surface area to the H2 adsorption at this condition. Figure 3-4 shows 

that materials with highest void fractions give the lowest adsorption amounts for hydrogen 

storage. Materials in the highest surface areas and the largest excess amount of CH4 

adsorption in weight categories gives higher H2 adsorption amounts in volume than those 

with large void fractions, while the latter are better. MOFs with the largest volume 

adsorption capability for CH4 are also the best for H2. Regrettably, none of these materials 

meet the DOE 2015 volume adsorption target. The highest one among 1,200 MOFs 

considered in this work is below 250 cm3(STP)/cm3, still remote from the 440 

cm3(STP)/cm3. It appears that stronger guest-framework interactions are imperative to 

reach the DOE target. 
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Overall, all DFT predictions agree well with the simulation results for most 

materials. In particular, FMSA yields the best performance, with the root-mean-square 

deviation (RMSD) as low as 2.35 cm3 (STP)/cm3. This number is remarkable from both 

practical and theoretical perspectives considering the large target storage capacity (e.g., 

~400 cm3 (STP)/cm3) and approximations affiliated with the molecular model, e.g. force 

fields. Surprisingly, MFA performs almost equally as well as FMSA, with RMSD of 2.54 

cm3 (STP)/cm3, which is even better than those from WDA methods, 6.02 and 3.16 cm3 

(STP)/cm3 for WDA-Y and WDA-L, respectively.  The main reason that FMSA and MFA 

perform well is that, at this condition, the reduced temperature, 
  
T * = k

B
T / e = 6.60 , is 

much higher than the reduced critical temperature of the bulk LJ fluid  (T*=1.31), and the 

local density inside the pores are relatively uniform. As discussed before, the 

intermolecular attraction makes little contributions to correlation effects at high 

temperature and the density expansion method works well for weakly inhomogeneous 

systems.  

Table 3-1 presents the rankings of top 10 MOFs for H2 adsorption at the DOE target 

condition according to different computational procedures. All versions of DFT rank No.36 

as the best candidate and predict similar adsorption amount. While the predictions for the 

top material are in excellent agreement with the GCMC results, the specific ranking varies 

with the computational methods. For example, No.11 is ranked as 10th candidate and No. 

37 as 15th according to GCMC, but all DFT methods rank No.37 instead of No. 11 as a top 

10 candidate. Considering 3% statistical uncertainty in GCMC simulations and 1% 
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difference between No.37 and No.11 for the adsorption amount, we maintain that all DFT 

methods are sufficiently accurate for identifying best candidates for H2 storage. 

 Since experimental characterization of new materials is mainly based on gas 

adsorption at low temperature (77 K) and atmospheric pressure (1 bar), we have also tested 

the performances of the four versions of DFT at this condition. In this case, the excess 

Helmholtz energy functional plays a more important role in gas adsorption and, because of 

strong density inhomogeneity inside the pores, the correlation effects introduced by 

intermolecular attractions are non-negligible even at low bulk pressure. Figure 3-5 shows 

that the differences among the four versions of DFT are much larger in comparison to those 

at the DOE target condition (Figure 3-4). At low temperature, the two WDA methods are 

slightly better than FMSA or MFA in comparison with the simulation data. Overall WDA-

Y gives the best RMSD, 6.87 cm3 (STP)/cm3. While WDA-L and MFA result in slightly 

larger deviations, with RMSD=8.38 and 11.3 cm3(STP)/cm3, respectively. The worst 

performance by FMSA, with RMSD=27.00 cm3(STP)/cm3, was rather unexpected. 

Apparently, the density expansion method is not ideal for systems with strong density 

inhomogeneity. By comparing the results shown in Figures 3-4 and 3-5, we find that the 

adsorption at low temperature alter the materials ranking according, since more binding 

sites are occupied at this condition along with higher H2 loadings, besides those most 

favorite ones acting on high temperatures. 

Figure 3-6 shows a further comparison of DFT and GCMC calculations at 77K but 

higher pressure (50 bar). Similar to the low-pressure case (1 bar), the two WDA methods 

yield the best agreement with GCMC simulation, with WDA-L slightly better than WDA-



 

54 

Y. Clearly, both FMSA and MFA are unsatisfactory at low temperature, both significantly 

underestimating the simulation results. At low temperature and high pressure, materials 

with the best weight or volume CH4 adsorption have similar capability for H2 storage, 

implying that ranking according to the adsorption in weight provides a better criterion here.                       

For large-scale materials screening, it is important to have computational methods 

that are both reliable and fast. In general, different DFT methods do not show significant 

difference in computational speed, usually much faster than molecular simulations. To 

further reduce the computational cost, we have employed the Fast Fourier Transformation 

(FFT) techniques for evaluating the convolutions such as  

 1

1 2 1 2( ) ( ')d ' { [ ( )] [ ( )]}f f f f  r r r r r r  (55) 

where ℱ and ℱ -1 represent the forward and backward FFT, respectively. In this work, all 

FFT calculations were based on the FFTW package.66 Figure 3-7 shows the distribution of 

computational time for typical DFT calculations on a single desktop PC with one Intel E-

1230 CPU core.  For the DOE target condition at 243 K and 100 bar, the average time for 

each MOF material is less than 15 seconds. Such a speed is about two orders of magnitude 

faster than conventional simulation methods. Even at situation of extremely high gas 

loading (e.g. 77 K and 50 bar), the average DFT time is still less than 2 minutes per MOF 

material. 

3.1.4. Conclusions 

            We have calibrated four representative versions of classical density functional 

theory (DFT) that all use the fundamental measure theory but differ in the attractive part 

of the Helmholtz energy functional for their potential applications to large-scale screening 
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of nanostructured porous materials for hydrogen storage. These functionals have been 

tested before with simulation data for Lennard-Jones (LJ) fluids in simple confined 

geometries but often with an emphasis on their theoretical performance near liquid 

conditions. Because gas adsorption typically occurs at high temperature much above the 

critical point, the thermodynamic properties are less sensitive to the correlation effects due 

to intermolecular attractions. As a result, the different versions of DFT yield similar results 

in comparison with grand canonical Monte Carlo (GCMC) simulation for LJ fluids in slit 

pores. Nevertheless, significant differences are noticeable for their application to realistic 

pore materials because of the highly inhomogeneous distributions of gas molecules. By 

extensive comparison of DFT predictions and simulation data for H2 adsorption in 1,200 

MOF materials, we find that the density expansion method (FMSA) performs best under 

the DOE target condition for H2 storage. For the purpose of materials screening, it seems 

that other versions of DFT are also sufficiently accurate at the DOE condition.  At the 

condition typically used in experimental characterization of porous materials (77K and 1 

bar), however, both FMSA and mean-field approximations are unsatisfactory. Much more 

reliable predictions can be achieved with two versions of weighted density approximation 

(WDA). For all four versions of DFT considered in this work, the computation time is less 

than 2 minutes for each material, typically on the order of seconds. The computational 

efficiency makes DFT an ideal tool for large scale screening of promising nanostructured 

materials for gas storage purpose. 
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Figure 3-1. H2 adsorption in slit pores at 243K with reduced width   H /s  =2,3,4 from 

top to bottom calculated from GCMC and four different versions of DFT for the 

attraction part of the excess Helmholtz energy functional, i.e., WDA-Y53, WDA-L 51, 

FMSA, and MFA. Γ* and ρb* means H2 adsorption amount and bulk density in 

dimensionless unit. 
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Figure 3-2. Density profile of H2 molecules adsorbed in MOF-5 at 77K and various 

pressures according to WDA-L: (a) structure of MOF-5; (b) P=1 bar; (c) P=20 bar; (d) P= 

90 bar. Color code: (a) red: Zn, blue: O, purple: C, white: H; (b) purple: 
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Figure 3-3 Adsorption isotherms for H2 adsorption in MOF-5 calculated from GCMC 

and from four different versions of DFT for the attraction part of the excess Helmholtz 

energy functional. The system temperature is a) 298 K, b) 243 K, and c) 77 K.  
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Figure 3-4 Absolute H2 adsorption amounts in 1,200 MOFs calculated from various DFT 

methods in comparison with GCMC simulations. Here the temperature and pressure of 

hydrogen gas in the bulk are fixed at T=243K and P=100 bar, respectively. The DFT 

functionals are a) WDA-Y, b) WDA-L, c) FMSA, d) MFA and e) WDA-Y with FMSA 

EOS. Color code: Blue, top 300 from excess CH4 adsorption in weight category; Red, top 

300 from excess CH4 adsorption in volume category; Purple, top 300 from void fraction 

category; Teal, top 300 from surface area category. 
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Figure 3-5 The same as Figure 3 but at T=77K and P=1bar. The DFT functionals are a) 

WDA-Y, b) WDA-L, c) FMSA, and d) MFA.  
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Figure 3-6 The same as Figure 3 but at T=77K and P=50bar. The DFT functionals are a) 

WDA-Y, b) WDA-L, c) FMSA, and d) MFA.  
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Figure 3-7 The distribution of computational time (unit: second) in DFT calculations for 

hydrogen adsorption in 1,200 MOFs with WDA–Y at T=243K and P=100bar. The 

computational time is based on a desktop PC with one Intel E-1230 CPU core. 
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Table 3-1 Top 10 MOF candidates for H2 adsorption at T=243 K and P=100 bar 

according to GCMC and four versions of DFT. Here “No.” means the ranks of MOFs in 

the Northwestern hypothetic MOF database among the category of excess CH4 

adsorption in volume, Γ is H2 adsorption amount in units of cm3(STP)/cm3. 

Table 1 

GCMC WDA-Y WDA-L FMSA MFA 

No. Γ No. Γ No. Γ No. Γ No. Γ 

36 236.6 36 243.8 36 244.1 36 239.8 36 239.9 

153 233.8 71 241.7 71 242.7 71 237.7 71 239.5 

71 230.9 27 238.2 27 239.3 189 235.8 27 236.2 

27 229.9 189 235.7 189 236.5 27 234.5 189 233.5 

22 229.7 2 233.3 2 234.1 37 231.2 153 231.0 

131 228.9 22 233.1 153 234.0 153 229.6 37 230.3 

189 226.9 153 233.0 22 233.9 22 229.4 77 230.2 

285 226.6 37 232.6 37 233.6 77 229.0 2 229.5 

2 226.4 77 232.2 77 233.2 2 227.8 22 228.8 

11 223.3 131 228.5 131 229.4 131 224.9 131 226.5 
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3.2 An extension of Rosenfeld's excess-entropy scaling method for atomic diffusion 

in nanoporous materials 

Abstract 

We present an efficient computation procedure for the rapid calculation of the self-

diffusivity atomic fluids in nanoporous materials by a combination of the Knudsen model, 

Rosenfeld's excess entropy scaling method, and a classical density functional theory (DFT). 

The self-diffusivity conforms to the Knudsen model at low density, and the effects of 

intermolecular interactions at higher densities are accounted for by Rosenfeld's excess-

entropy scaling method. The classical DFT predicts the excess entropy used in the scaling 

analysis. The hybrid computational procedure has been calibrated with MD simulation for 

the adsorption of H2, He, Ne and Ar gases in several nanoporous materials over a broad 

range of pressure. It predicts adsorption isotherms and different types of diffusion behavior 

in excellent agreement with the simulation results. While simulation of gas diffusion in 

nanoporous materials is time consuming, the new procedure is computationally very 

efficient. The theoretical method is extendable to more complicated systems including 

diffusion of water and polymers in confined geometry.    
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3.2.1. Introduction 

Gas transport in porous materials is conventionally characterized by two types of 

diffusivities namely transport diffusivity and self-diffusivity67,68. The former is defined 

from a macroscopic perspective within the generic framework of transport phenomenon, 

and the latter in terms of molecular motions under equilibrium conditions. The transport 

diffusivity, here denoted as Dt, is introduced according to Fick’s law,  

 tD c  J  (56) 

where J is the diffusion flux, and c stands for the local gas concentration. In general, Dt 

depends on both the confining environment and the gas concentration and should be 

considered as a tensor instead of a scalar parameter. For convenience, however, Dt is often 

simply referred to as an average of the three diagonal elements of the diffusion tensor, i.e., 

t t,xx t,yy t,zz( ) / 3D D D D   . The self-diffusivity, designated as Ds, is defined in terms of 

the molecular trajectories according to Einstein’s equation, 

 21
lim | ( ) (0) |

2
s i i it

D t
Dt

 r r  (57) 

where D represents the spatial dimensionality, ri(t) is the position of molecule i at time t, 

and the angle brackets denote the ensemble average over the trajectories of all molecules. 

Although there is no apparent connection between the two diffusivities, a common 

approximation is given by 68 

 t s

ln

ln T

f
D D

c

 
  

 
  (58) 
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where f represents the gas fugacity, and T is the absolute temperature. In the limit of low 

gas concentration, 0c  , Eq. (58) indicates that the two diffusivities become identical,

t s(0) (0)D D . The approximate connection between the transport and self-diffusivities 

enables the broad applications of various statistical-mechanical methods to studying 

transport processes that often depart from equilibrium conditions.  

Theoretical predictions of self-diffusivities from a molecular perspective are mostly 

based on molecular dynamics (MD) simulations69,70. Within the framework of a semi-

empirical force field, the simulation method is in principle exact and yields ultimate 

microscopic details. However, diffusion under confinement often entails quasi-activation 

processes that make direct simulation extremely time consuming. While the numerical 

efficiency may not be a major concern from a scientific perspective, it becomes an issue 

for in silico screening of a big library of premeditated materials for gas storage and 

separation71-74. Towards rapid predictions of both thermodynamic and transport properties, 

the classical density functional theory (DFT) provides an excellent alternative to the 

simulation methods30. Whereas the usage of DFT for gas adsorption in porous materials 

has already been well documented35,47,49,53,75-77, its application to investigating the transport 

properties of inhomogeneous fluids is normally considered in terms of the time-dependent 

or dynamic DFT78. As recently suggested by Truskett et al.79,80, the thermodynamic 

properties predicted by the equilibrium DFT can be directly connected with transport 

coefficients by excess entropy scaling. Such a connection was discovered first by 

Rosenfeld many years ago81. Through the excess entropy scaling, the equilibrium DFT 
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alone can be used to predict both the thermodynamic properties and transport coefficients 

of confined fluids without explicit consideration of molecular motions.  

The purpose of the present work is to extend Rosenfeld’s excess entropy scaling 

method, which was originally proposed for correlating the thermodynamic and transport 

coefficients of bulk fluids, to predict gas diffusion under confined geometry. As detailed 

below, the new computational method combines the Knudsen model for gas diffusion at 

low density and the excess entropy scaling at high density inside the pores. While the 

extension of the excess entropy scaling method to inhomogeneous has been attempted 

before79,80, we are unaware of its combination with the Knudsen model and the application 

of classical DFT for predicting the excess entropy. 

3.2.2. Theoretical development 

I. Rosenfeld’s scaling relation between self-diffusivity and excess entropy 

The scaling relation between the self-diffusivity and the excess entropy of a bulk 

simple fluid was discovered first by Rosenfeld in 1977 based on earlier simulation results 

for the transport coefficients of a wide variety of one-component systems including those 

containing hard spheres, soft spheres, or plasma81,82. Rosenfeld demonstrated that, in 

dimensionless units, the self-diffusivity of a bulk fluid is well correlated with the excess 

entropy in terms of an exponential relation:    

 * exexp( )RD A Bs  (59) 

where 
*

RD  is the reduced self-diffusivity of the bulk fluid, defined by 

* 1/3 1/2

s B( / )RD D m k T ;  is the molecular number density, m is the molecular mass, kB is 
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the Boltzmann constant, and 
ex ex

B/ ( )s S Nk  is the reduced excess entropy per molecule. 

By correlation of extensive simulation results with Eq.(59), Rosenfeld conjectured that 

parameters A = 0.585 and B = 0.788 are quasi-universal constants, independent of the 

specific forms of the intermolecular potentials. The universality of these constants may be 

rationalized by the fact that the microscopic structure of a simple fluid can be well 

represented by the hard-sphere model and that diffusion of spherical molecules is 

dominated by intermolecular collisions. 

While a posteriori arguments had been given to justify for the excess-entropy 

scaling method, the validity of Rosenfeld’s relations was established by essentially 

empirical means. From a theoretical perspective, Dzugutov showed that the exponential 

dependence of the self-diffusivity on the excess entropy could be derived on the ground of 

a statistical-mechanical analysis83,84. According to the theoretical derivation, the 

exponential form holds when the reduced self-diffusivity is defined as 
* 1 2

s ERD D    , 

where 2

E B4 ( ) /g k T m      is the collision frequency, g(r) is the radial distribution 

function of the bulk fluid, and  is the molecular collision diameter. In terms of the 

dimensionless self-diffusivity introduced by Dzugutov, the universal constants in Eq. (59) 

should be modified as A = 0.049 and B = 1. Dzugutov indicated that B = 1 arises from the 

ergodic assumption, which is usually not satisfied in practical molecular simulations due 

to the finite time scale. The intrinsic error introduced in the simulation explains why B < 1 

in the original scaling relation proposed by Rosenfeld84. Several alternative expressions 

have also been proposed relating transport coefficients with the reduced excess 
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entropies79,85,86. These later developments were mostly based on semi-empirical 

modifications of the original scaling relations by Rosenfeld or Dzugutov rather than on 

rigorous theoretical derivations. Nevertheless, they provide significant improvements over 

the numerical accuracy and extend the applicability scope of the excess entropy scaling 

method.   

Neither the scaling relation proposed by Rosenfeld or by Dzugutov is strictly valid 

for diffusion in confined fluids. For example, He et al. 85 used Eq. (59) to predict the 

diffusion of methane in silica nanopores by treating parameter A as a function of the free 

volume. While satisfactory results were obtained for gas diffusion at the high-density limit, 

the scaling relation exhibits large errors at the low density. Unlike that in bulk systems, the 

self-diffusivity is not an intrinsic property of the confined fluid but depends also on the 

confining geometry as well as the surface energy. Besides, it has been shown that the 

configuration of a confined fluid is sensitive to the details of non-hard-sphere interactions87. 

In particular, Truskett and coworkers explored systematically possible correlations 

between the self-diffusion coefficients of various fluids under confinement with different 

thermodynamic measures79,80,87,88. While the scaling relations established for bulk systems 

were in general not applicable under confinement, excellent correlations were identified 

between the self-diffusivities of confined hard-sphere and Lennard-Jones fluids and the 

corresponding excess entropies over a broad range of thermodynamic conditions80,89.  
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II. Extension of the excess entropy scaling to confined fluids  

Gas diffusion in a nanoporous system is dominated by two types of collisions: gas-

gas collisions and gas-surface collisions. In the limit of high packing density, gas 

diffusivity is dominated by collisions among gas molecules rather than gas-surface 

collisions. In this case, we expect that the entropy-scaling rule should be applicable because 

the mechanism of gas-gas collisions in a confined geometry is similar to that in the bulk 

phase. In the low-density limit, however, collisions between gas molecules and the material 

surface is more important than the gas-gas collisions. As a result, Eq. (59), which works 

well for bulk systems, is qualitatively inaccurate. At the extremely low density, the 

collision frequency approaches a non-zero constant in a confined space but zero in the bulk 

system. In the former case, gas diffusion follows the Knudsen model instead of the excess 

entropy scaling.  

Traditionally, the modified free-volume theories (MFV) are often used for 

predicting the diffusivity of gas molecules in confined geometry90-92. While these methods 

are computationally efficient, their practical applications rely on a set of empirical 

parameters that must be obtained by fitting to the experimental data. For example, the 

Cohen-Turnbull (CT) theory 93, which is one of the most popular version of the MFV 

models, represents the self-diffusivity in terms of the free volume of a porous material:  

 * *

s fexp( / )D ka u v v   (60) 

where k represents a geometric factor, a* is a parameter related to the pore size, u stands 

for the mean speed of the gas molecules in the bulk,  is the free-volume overlap parameter, 
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v* is the critical volume facilitating the diffusion process, and vf is the molecular free 

volume.  

The CT theory suggests a linear relationship between lnDs and -1/vf [Eq.(60)]. The 

larger the molecular free volume, the larger the diffusion coefficient. Because the diffusion 

of gas molecules in a confined geometry reflects a competition between the gas-surface 

and the gas-gas interactions, we assume that the overall diffusivity may be determined by 

a linear combination of the Knudsen diffusion model in the limit of large molecular free 

volume and the excess-entropy scaling in the opposite limit: 

 s E

free free

ln 1 ln lnKD D D
v v

  
   
 

 (61) 

where freev is defined by the total accessible volume of the material divided by the number 

of confined gas molecules 85, and  is a preset factor weighting the different contributions 

of the gas-surface and gas-gas interactions to the overall diffusivity. In the Knudsen model, 

the self-diffusivity is independent of the gas density. In that case, we have  

 s (0)KD D  (62) 

where Ds(0) can be obtained by a single run of molecular dynamics simulation. For the 

contribution of gas-gas interactions, DE, we follow Rosenfeld’s excess entropy scaling rule: 

  exB
E 1/3

0.585
exp 0.788

k T
D s

m
  (63) 

where 
exs  is calculated from the classical density functional theory (CDFT). The detail 

procedure for calculation of 
exs  is given in the Supplementary Materials.  
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In Eq.(61), 
free/ v can be understood as the fraction of the free space inside the pore 

occupied by gas molecules.  To make it dimensionless, we assume that the volume of gas 

molecules is given by    

 3   (64) 

where  is the diameter of gas molecules, and  is a constant reflecting the molecular 

packing density. A similar approach has also been used by Mittal et al. for hard-sphere 

quenched-annealed (HS QA) models.94  In the limit of the closest packing for spherical 

particles as in a face-centered-cubic lattice, we have  

 2 / 2FCC  . (65) 

From a physics point of view, we expect that FCC  . For best fitting of the simulation 

or experimental data, however,  may also be used as an adjustable parameter. While this 

parameter may be slightly different for different systems, it should be independent of 

thermodynamic conditions such as temperature and pressure. 

3.2.3. Results and discussion 

To test the numerical performance of the extended excess entropy scaling method, 

we first consider the adsorption isotherms and self-diffusion coefficients of H2 gas in four 

types of nanoporous materials at room temperature: MOF5, MFI, CuBTC and ZIF8. The 

details of the molecular models and simulation methods are described in the Supplementary 

Materials. Figure 3-8 compares the adsorption isotherms predicted from the CDFT with 

those from Monte Carlo simulation. As expected, the CDFT predictions agree well with 

the simulation results for all four types of nanoporous materials. The good agreement is 



 

78 

somewhat expected because the CDFT has already been demonstrated to be an excellent 

computational method for predicting a wide variety of thermodynamic properties pertinent 

to gas adsorptions35,49,53,77. 

Prediction of the gas diffusivity inside the porous materials depends on parameter 

 in Eq.(64). Without any additional input, we may treat  as a universal constant that is 

the same as FCC. A more quantitative prediction can be achieved by using  as an adjust 

parameter for each material. Figure 3-9 shows the self-diffusivities of H2 molecules in 

CuBTC and MOF5. For CuBTC, the extended excess entropy scaling method reproduces 

the whole diffusion curve very well with  = FCC. For MOF5, however, it captures the 

diffusion curve semi-quantitatively with  = FCC.  The slight overestimation can be readily 

corrected by using  as an adjustable parameter ( = 0.89).  

Figure 3-10 shows the hydrogen self-diffusivities in MFI and ZIF8 also at room 

temperature. Similar to Figure 3-9,  = FCC yields semi-quantitative predictions and the 

theoretical results can be further improved by using  as an adjustable parameter for each 

material. The change of  value in these materials is small, approximately in the range 

between 0.7 and 0.9. The fluctuation of  for different materials may arise from the 

inhomogeneous density distribution of gas molecules. For materials such as MOF5, gases 

are nearly concentrated at the surface of the framework and collisions are essentially 

occurred near the surface instead of the whole free volume. In this case, a smaller free 

volume or equivalently, a larger  is required to bridge the Knudsen and bulk behavior. 

Comparing hydrogen diffusion in MOF5, MFI, CuBTC and ZIF8, we find that the effect 

of pressure on the self-diffusion coefficient goes in a diverse way: while the diffusivity of 
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hydrogen molecules in MOF5 and CuBTC attenuates linearly with the pressure; it declines 

with pressure in MFI in a nonlinear way. Interestingly, the diffusivity is almost independent 

of pressure in ZIF8. Qualitatively, the extended excess entropy scaling method captures all 

these trends even with the simple approximation    FCC. 

We consider also the diffusion of other gas molecules in nanoporous materials. 

Figure 3-11 shows the diffusivities of He and Ne in MFI. The structure of MFI and all the 

related force-field parameters are the same as those given in the literature95. It seems that 

the self-diffusion coefficients of both gases decline linearly with the pressure. As for 

hydrogen diffusion, the extended excess entropy scaling method yields a semi-quantitative 

prediction of the diffusion curve with  = FCC . While the theory overestimates the 

simulation results, its performance can be much improved for both cases by using a fitted 

value of , viz., He= 1.21 and  Ne= 0.93.  

Similar conclusions can be reached by considering diffusion of argon molecules in 

MOF5. As shown in Figure 3-12, the extended excess entropy scaling method 

underestimates the diffusivity with  = FCC but excellent results can be achieved by using 

 =0.57. Comparing the values of  for different cases, it seems that  depends on the size 

of the gas molecules (He = 2.28 Å, Ne = 2.789 Å and Ar = 3.42 Å), i.e.,  decreases with 

the increasing of the gas diameter. At the same molecular packing density, the larger 

molecular diameter implies a lower number density of gas molecules. As the gas-material 

collision becomes more important, or namely, the Knudsen diffusion gives more 

contributions, parameter , which is proportional to the entropy scaling contribution, 

should be reduced. 
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In comparison with molecular dynamic simulations, the extended excess entropy 

scaling method is computationally very efficient. Instead of hours of computation time in 

a supercomputer, the calculation of each curve for the self-diffusivity as a function of 

pressure can be finished within just one minute in a desktop computer. 

3.2.4. Conclusions 

We have proposed an efficient computational procedure for predicting the self-

diffusivity of gas molecules in confined geometry by the semi-empirical combination of 

the entropy-scaling method and the Knudsen model. The classical density functional theory 

(CDFT) is introduced to calculate the excess entropy, and the Knudsen diffusivity is 

calculated from regular molecular dynamics simulation. The theoretical predictions agree 

well with the simulation results for the diffusivities as well as the adsorption isotherms of 

several light gases in different types of nanoporours materials. In comparison with 

conventional simulation methods, a key advantage of the theoretical procedure proposed 

in this work is its computational efficiency. The time cost of one CDFT calculation is less 

than 1 minute in a single 3.0 GHz CPU, which is negligible comparing to molecular 

simulations.   

As demonstrated before, the CDFT predictions of gas adsorption isotherms accord 

well with the simulation results. By using a universal constant,  = FCC, the extended 

excess entropy scaling method yields semi-quantitative results for the self-diffusion 

coefficients of various gases in confined geometry, and the theoretical predictions can be 

further improved by treating  as an adjustable parameter for each gas/material. We find 
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that parameter  seems to depend on the size of the guest molecules: the larger diameter 

of gas molecules, the smaller value for .  

An important distinction of this work from the previous publications is that we 

provide an explicit expression to correlate the excess entropy with the diffusion coefficient. 

Such expression was not given before for inhomogeneous systems. While an adjustable 

parameter is used to incorporate the Knudsen model into the excess entropy scaling, this 

parameter can be reasonably estimated such that the hybrid method can be used as a useful 

predictive tool. It has been reported recently that similar correlations may exist between 

the excess entropies and transport coefficients for more complicated molecular systems 

including water, ionic fluids and polymeric fluids88,96-98. Because the reliable DFT 

formulations have been well established for such systems99, we expect that the 

computational procedure proposed in this work can be similarly applicable to predicting 

the thermodynamic properties and self-diffusivities of non-spherical molecules under 

confinement.   
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Figure 3-8 Comparison of absolute adsorption isotherms predicted by the DFT and 

Monte Carlo simulation for H2 adsorption in 4 types of nanoporous materials at 298K. 
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Figure 3-9 Self-diffusivities of H2 in CuBTC and MOF5 at 298K predicted by MD 

simulation and the extended excess entropy scaling method, respectively. Simulation 

results for MOF5 are from ref 69. 
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Figure 3-10 Self-diffusivities of H2 in MFI and ZIF8 at 298K, predicted by MD 

simulation and the extended excess entropy scaling method, respectively. 
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Figure 3-11 Self-diffusivities of He and Ne in MFI, predicted by MD simulation and the 

extended excess entropy scaling method, respectively. Simulation results are from ref 95. 
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Figure 3-12 Self-diffusivity of Ar adsorbed in MOF5 predicted by MD simulation and 

the extended excess entropy scaling method, respectively. Simulation results are from ref 

69. 
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Supporting Information 

This supplementary material details the Monte Carlo (MC) and molecular dynamics 

(MD) simulations employed in this work as well as the density functional theory (DFT) 

equations for calculation of the excess entropy. 

I. Molecular Models and Simulation Methods 

We used the united atom model for all gas molecules and the rigid molecular model 

for the nanoporous materials. The Lennard-Jones (LJ) potential is used to describe all 

atomic pair interaction energies:  

12 6

( ) 4
ij ij

ij iju
r r

 

    

     
     

r                                              (66) 

where the cross parameters are given by Lorentz-Berthelot combination rule 

2

i j

ij i j ij

 
   


       (67) 

Table S1 gives the LJ parameters for the gas molecules studied in this work. 

Gas σ(Å) ε(K) 

H2 2.958 36.7 

He 2.28 10.223 

Ne 2.789 35.7 

Ar 3.42 124.07 

 

Table S3-1. Lennard-Jones Potential Parameters for H2, He, Ne, Ar61,95 

The LJ parameters for MOF-5, Cu-BTC and ZIF-8 were from universal force field (UFF), 

while MFI was from Hirotani et al. The experimental determined crystal structures were 
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used in all theoretical calculations.100-103 In both simulation and DFT calculations, we did 

not consider the flexibility of the naonporous materials.  

Adsorption isotherms of gas molecules in different porous materials were predicted 

using the conventional GCMC simulation method, as illustrated in 3.1. To calculate the 

self-diffusivities of the gas molecules, we have used equilibrium molecular dynamics 

(EMD) simulations. The simulations were performed in the canonical ensemble (NVT) 

using the Nosé-Hoover thermostat. In anisotropic three-dimensional materials, the self-

diffusivity is calculated from the Einstein relation 

21
( ) lim ( ) (0)

6
s

t
D c t

t
 r r                                                    (68) 

where ( )tr  stands for the position of a tagged particle at time t, and the angular brackets 

indicate an ensemble average. At a given thermodynamic condition, we performed 5 

independent MD simulations for each loading, with a simulation length 4.0 ns after 1.0 ns 

EMD simulations to equilibrate the system. The standard deviation is about 5% ~ 20% 

times of Ds. The time step for the MD simulation is 1.0 fs. All MD simulations were carried 

out using LAMMPS simulation package.104 

II. Excess entropy 

The classical density functional theory (DFT) used in this work has been reported 

in 3.1. Once we have the density profile (r), the absolute adsorption amount is calculated 

from 

 ( )dN   r r  (69) 
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The excess entropy is obtained from temperature derivative of the excess free energy 

functional: 

 
ex

ex

( )

F
S

T


 
  

  r

 (70) 

  The DFT calculation is performed in a 3D cubic box with grid resolution of 0.2 Å. 

We have also tested higher resolutions such as 0.1 Å and 0.15 Å for a few cases and the 

results are very similar. The system is considered to converge when  

 ( ) ( 1) 5 ( )

av| ( ) ( ) | 10n n n    r r  (71) 

where 
( )

av

n  is the average density of step n, then the excess entropy is calculated from 

numerical derivation: 

 
ex ex

ex [ ( ), ] [ ( ), ]F T T F T
S

T

  
 



r r
 (72) 

where T = 0.001 K. 
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3.3 Classical Density Functional Theory for Methane Adsorption in Metal-Organic 

Framework Materials 

Abstract 

Natural gas is being considered as a promising alternative to petroleum as the next 

generation of primary transportation fuel owing to relatively smaller carbon footprint and 

lower SOx/NOx emissions and to fast shale-gas developments in recent years. Since the 

volumetric energy density of methane amounts to only about 1% of that of gasoline at 

ambient conditions, natural gas storage represents one of the key challenges for prevalent 

deployment of natural gas vehicles (NGVs). In this work, we present a molecular 

thermodynamic model that is potentially useful for high-throughput screening of 

nanoporous materials for natural gas storage. Specifically, we have investigated methane 

adsorption in a large library of metal-organic frameworks (MOFs) using four versions of 

classical density functional theory (DFT) and calibrated the theoretical predictions with 

extensive simulation data for both the total uptakes and the delivery capacities. In 

combination with an extended excess entropy scaling method, the DFT is also used to 

predict the self-diffusion coefficients of the confined gas in several top-ranked MOFs. The 

thermodynamic model has been used to identify promising MOF materials and possible 

alternations of operation parameters to meet the ARPA-E target set by the US Department 

of Energy for natural gas storage. 

3.3.1. Introduction 

Adsorption thermodynamics plays a pivotal role in traditional as well as modern 

chemical engineering ranging from separation processes and heterogeneous catalysis to 
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various tools of chemical analyses such as chromatography105,106. From a practical point of 

view, one of the most useful thermodynamic models for gas adsorption was established by 

Professor John Prausnitz and one of his PhD students, Alan Myers, published in the AIChE 

Journal about 50 years ago107. We are pleased to dedicate this article to the special issue 

honoring Professor John Prausnitz.  

According to conventional wisdom, adsorption is a surface phenomenon related to 

adhesion of molecules, atoms or ions at an interface. Whereas concepts such as surface 

area and binding energy are indispensable in classical thermodynamics to describe the 

interfacial phenomena, Myers and Prausnitz took a radically different approach by 

extending the ideal solution model for vapor-liquid equilibria (VLE) to adsorption of gas 

mixtures. The “solution model” is remarkably accurate for predicting the adsorption 

isotherm of a gas mixture from those corresponding pure components at moderate pressure, 

yet it is computationally convenient for practical applications. Because the number of pure 

species is rather limited in comparison to that for mixtures, the solution model has been 

invaluable for design and optimization of industrial adsorption processes and remains 

relevant today108.  

Driven by increasing concerns over global climate change and rapid developments 

in renewable energy, research in gas adsorption has experienced considerable growth in 

recent years. However, the main focus of current literatures has been shifted from 

adsorption equilibria per se to discovery of novel nanoporous materials, in particular open 

framework materials promising for large-scale hydrogen/methane storage or for selective 

adsorption of carbon dioxide from gas mixtures109. Unlike conventional adsorbents such as 
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activated carbons or silica gels, open framework materials are porous crystalline solids 

viable for solution synthesis by coordinate bonding of secondary building units (SBUs), 

i.e., libraries of organic linkers and organometallic/nonmetallic nodes that are able to be 

self-organized into periodic and porous frameworks110. Theoretical investigations are 

useful to acquire a better knowledge of adsorbate-adsorbent interactions and, perhaps more 

important, for discovery and rational design of nanoporous materials tailored to specific 

adsorbates. The modular nature of the building blocks makes the framework structures 

predictable on the basis of the topology and geometry of specific link-node coordination 

complexes, rendering unprecedented opportunities for computational discovery of 

crystalline porous materials to have a precise control over the porosity  and atomic 

composition (size, shape, and function). Molecular modeling is useful to identify specific 

open framework materials from virtually infinite numbers of SBU combinations to meet 

specific practical needs111-114.  

Whereas there have been impressive theoretical developments toward the discovery 

of better adsorbents for gas storage and separation73,74,115,116, computational materials 

design remains an enormous challenge from practical perspectives. To predict the material 

performance from the chemistry of its building blocks, we need efficient multiscale 

modeling methods that account for not only its intrinsic properties in vacuum but also its 

interactions with a working environment under diverse thermodynamic conditions. As 

illustrated schematically in Figure 3-13, computational materials design (or discovery) 

entails quantum mechanical (QM) calculations for determining electronic properties as 

well as molecular and crystal structures, and statistical mechanical (SM) calculations for 
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predicting the physiochemical properties of materials under macroscopic environments. A 

large number of computational methods are available for predicting electronic, molecular 

and thermodynamic properties117. Typically, these computational methods are established 

in the context of drastically different theoretical frameworks, and approximations are 

inevitable at each level. As a result, multiscale modeling requires a judicious selection of 

QM and SM methods, and an optimal choice reflects not necessarily only in terms of the 

theoretical rigor at individual scales but, perhaps more important, a reliable connection 

between different methods and the combined computational efficiency to attain pragmatic 

goals. 

Amid numerous computational tools in QM and SM, density functional theory 

(DFT) provides a unified mathematical framework to describe the properties of many-body 

systems using the one-body density profiles as the fundamental variables. Whereas the 

original concepts, as first introduced many years ago by Pierre Hohenberg and Walter 

Kohn118, were intended to provide an alternative to the Schrödinger equation for predicting 

ground-state electronic properties, the mathematical framework have been extended to 

electronic systems at finite temperature and to statistical-mechanical systems including 

those consisting of classical particles and polymers119. While nowadays DFT is best known 

for its applications to electronic systems at 0 K due to its extreme popularity in 

computational chemistry and materials science120, the practicality of classical DFT for 

studying adsorption and other interfacial phenomena has been well established30. For 

example, classical DFT programs are routinely used to analyze experimental data for 

characterization of porous materials by gas adsorption121.  Because DFT calculations avoid 
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explicit multi-body wave functions for quantum systems or microstates for thermodynamic 

systems containing classical particles, its computational efficiency is by far superior to 

wave-function-based QM methods and conventional molecular simulations in SM. The 

computational efficiency and flexibility in density functionals make DFT an ideal choice 

in multiscale modeling for both QM and SM calculations122. 

In a previous work123, we demonstrated that the classical DFT could be used for 

rapid screening a large library of metal-organic frameworks (MOFs) potentially useful for 

H2 storage. Using extensive Monte Carlo (MC) simulation data as the benchmark, we tested 

the theoretical performance of four versions of free-energy functionals that are commonly 

used in the literature to describe the thermodynamic properties of inhomogeneous simple 

fluids43,49,75,124. All these functionals incorporate the modified fundamental-measure theory 

(MFMT)35 to account for molecular excluded volume effects but they are different in 

representing the attraction part of the excess free energy. In stark contrast to previous 

calibrations with model systems containing the Lennard-Jones (LJ) fluids in idealized pores, 

we find that the theoretical predictions are sensitive to specific gas components (e.g., N2 

adsorption versus to hydrogen storage) and thermodynamic conditions. In this work, we 

test the performance of different classical DFT methods for predicting methane adsorption 

in model slit pores as well as in a large library of hypothetical nanostructured materials. In 

addition to the adsorption isotherms, we consider methane diffusivity in top-performed 

MOFs using an extended excess-entropy scaling scheme proposed in our earlier work125. 

After extensive calibrations with simulation results, also performed in this work, the DFT 

methods have been applied to identify promising MOF materials for methane storage and 
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possible alternations of the operation conditions to attain the adsorption target set by the U. 

S. Department of Energy (DOE) for in vehicle nature gas storage.   

3.3.2. Molecular Model and Theory 

The theoretical models for predicting adsorption isotherms and diffusivity have 

been reported in our previous publications123,125. For completeness, here we recapitulate 

only the basic ideas of classical DFT and the computational procedures. Supplementary 

Materials present the key equations from the four different versions of the excess free 

energy functional used in this work and additional results from the classical DFT 

predictions.  

I. Molecular model 

To describe gas adsorption in MOF materials, we need to define, in addition to 

temperature  T  and pressure  P  of the gas phase, both bonded and non-bonded interactions 

among the MOF atoms, and pair interactions between MOF-gas and gas-gas molecules. As 

in our previous works, we assume that all MOF materials considered in this work are 

sufficiently rigid so that their crystalline structures are unchanged by gas adsorption. The 

crystallographic information files (CIFs) of MOF materials are adopted from the 

hypothetical library constructed by Wilmer et al.73 

To calculate methane adsorption in a specific MOF framework, we use a 2×2×2 

supercell and consider its interaction with methane molecules with the periodic boundary 

conditions (PBC). As usual, methane molecules are represented by the Lennard-Jones (LJ) 

particles, with parameters, εCH4/kB=148.0 K and σCH4=3.73 Å, obtained from the TraPPE 
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force field126. For each gas molecule inside the MOF material, the potential energy at 

position r is approximated by pairwise-additive interactions with all solid atoms   
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where subscript i represents the ith atom from the MOF framework, and ri stands for the 

position of atom i. The pair potential between atom i and gas molecule f, uif(r), is also 

represented by the LJ potential 
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where parameters 
 
e

if
 and 

 
s

if
 are calculated from the Lorentz-Berthelot (LB) mixing rule. 

In both simulations and classical DFT calculations performed in this work, the LJ 

parameters for the MOF atoms are taken from the universal force field (UFF)60.  

II. Adsorption thermodynamics 

Classical DFT allows us to predict the local number density of gas molecules within 

the adsorbent phase, viz., inside each MOF material127  

 
   
r(r) = r

b
exp -bV ext (r) - bDmex (r)é

ë
ù
û  (75) 

where 
 
r

b
 stands for the number density of gas molecules in the bulk, 

  
b =1/ (k

B
T ), and 

 
k

B
 is the Boltzmann constant. The last term on the right side of Eq. (75) is defined as

   
Dmex (r) = mex (r) - m

b

ex
, which represents the deviation of local excess chemical potential 

  m
ex (r)  from that corresponding to the bulk phase, 

 
m

b

ex
. Thermodynamic properties of the 
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gas phase, including 
 
r

b
 and 

 
m

b

ex
 as functions of  T  and  P , are calculated from the 

modified Benedict-Webb-Rubin (MBWR) equation of state56. In general, the local 

chemical potential depends on local density profile 
  r(r)  and must be determined from 

Eq.(75) self-consistently by iterations. 

Intuitively, Eq.(75) may be understood as the Boltzmann law for the distribution of 

gas molecules in the presence of an external field except that, within the framework of 

classical DFT, this equation is formally exact. Approximations are introduced only in 

calculating the local excess chemical potential, which is derived from the functional 

derivative of excess Helmholtz energy 
   F

ex (r)  

  
   m

ex (r) = d F ex(r) /dr(r). (76) 

Like the excess properties of a uniform thermodynamic system, 
   F

ex (r) accounts for the 

thermodynamic non-ideality arising from intermolecular interactions.  The excess 

Helmholtz energy is an intrinsic property of the gas system independent of the external 

potential, i.e., its interaction with the adsorbent atoms. If the intermolecular interaction 

between gas molecules is negligible, the excess Helmholtz energy disappears; and Eq.(75) 

corresponds to the distribution of ideal-gas molecules inside the porous material.  

  Whereas accurate expressions have been developed for 
   F

ex (r) of inhomogeneous 

simple fluids below the vapor-liquid critical temperature43,128, little is known about their 

performance at high temperatures and pressures, i.e., conditions relevant to gas adsorption 

in typical industrial processes. In this work, we consider four versions of classical DFT that 

have been used before for predicting hydrogen adsorption in various MOF materials. All 
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these functionals are based on the modified fundamental measure theory (MFMT)35 to 

describe molecular excluded volume effects but differ in the contribution to account for 

intermolecular attractions. The attractive part of the excess Helmholtz energy functional is 

distinguished in terms of the mean-field approximation (MFA)75, the first-order mean-

spherical approximation (FMSA)43, and two slightly different forms of weighted density 

approximations (WDA-Y124 and WDA-L49). The equations for these functionals are 

explained in Supplementary Materials. 

The total amount of adsorption is conventionally expressed as the volume of 

adsorbed gas molecules per unit volume of the porous material at the standard state (STP). 

The adsorption amount can be calculated from the molecular density profile by integration 

over the supercell   

 

   

G =
k

B
T

0

P
0
V

r(r)drò  (77) 

where 
  
P

0
= 1atm , 

  
T

0
= 25 oC , and  V  is the supercell volume. For applications related to 

gas storage, we are more interested in the delivery amount, 
 
G

del
, which corresponds to the 

change in total gas uptake by the material at compression and release conditions. The total 

amount of gas adsorption or delivery amount should not be confused with the surface 

excess, defined as   

 

   

Gex =
k

B
T

0

P
0
V

[r(r) - r
b
]drò  (78) 

In general, the local number density of gas molecules inside a nanostructured material is 

highly inhomogeneous due to extreme confinement and attraction from adsorbent atoms. 
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Therefore, the difference between absolute and excess adsorption is negligible only when 

the pressure of the bulk gas is at very low.  

Given an expression for the excess Helmholtz energy functional, we can readily 

derive the excess entropy of gas molecules inside the porous material from 
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and the heat of adsorption from  
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In Eq.(80), DW  correspond to the change in the grand potential for the adsorption of gas 

at constant temperature and the chemical potential:  

 
   
DW = k

B
T drò r(r){ln[r(r) / r

b
]-1- bm

b

ex + Z + bV
ext

(r)}+ F ex[r(r)]  (81) 

where   Z = Z(T ,P)  stands for the compressibility factor of the bulk gas. While heat of 

adsorption is not studied in this work, we note in passing that gas pressure inside a porous 

material is a second-order tensor and various with the position. As a result, the adsorbed 

gas does not have an enthalpy as that typically defined in classical thermodynamics of bulk 

fluids. Confusion might be inevitable if one calculates the heat of adsorption from enthalpy 

changes.   

III. Excess entropy scaling for gas diffusivity 

As in our previous work125, we assume that self-diffusivity of gas molecules in a 

porous medium 
  
D

s
 may be determined from a linear combination of those from the 

Knudsen diffusion model and the excess-entropy scaling 
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where 
  
v

free
is the total accessible volume of the porous material divided by the number of 

confined gas molecules85,  is a constant reflecting the maximum molecular packing 

density, and s  is the LJ diameter of the gas molecules. In Eq.(82), 
  
as 3 / v

free
 may be 

understood as the fraction of the free space inside the pore occupied by gas molecules. In 

the limit of the closest packing, we may estimate  from that for spherical particles as in a 

face-centered-cubic lattice 

 
  
a

FCC
= 2 / 2 (83) 

Eq.(83) provides a first-order estimate for a  if no additional information is available. For 

best prediction of the simulation or experimental data, however,  should be used as an 

adjustable parameter. While this parameter may be slightly different for different systems 

depending on the crystal structures, it is independent of the thermodynamic conditions of 

the bulk gas including temperature and pressure. 

 The Knudsen model applies to gas diffusion at infinite dilution 

 
  
D

K
= lim

r
b
®0

D
s
 (84) 

where the limiting value can be obtained from MD simulation at low gas pressures. Excess 

entropy scaling accounts for contributions due to gas-gas interactions inside the pore, 

which can be described by Rosenfeld’s scaling rule81 
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where m represents the molecular mass, 
 
r

av
 is the average number density of gas 

molecules inside the porous material, and  N  represents the total number of adsorbed gas 

molecules. With the excess entropy calculated from the classical DFT, the hybrid method 

provides an efficient procedure to predict the self-diffusion coefficient of gas molecules in 

nanoporous materials as a function temperature and bulk pressure125.  

3.3.3. Results and Discussion 

I. Adsorption in slit pores 

The four classical DFT methods considered in this work have been calibrated in 

previous publications by extensive comparison with simulation data for inhomogeneous 

Lennard-Jones (LJ) fluids in model systems such as near a planar wall or in slit pores. At 

conditions near vapor-liquid equilibrium, it has been shown that the mean-field 

approximation (MFA) fails to reproduce the depletion of a LJ liquid near a hard or weakly 

attractive surface while the first-order means-spherical approximation (FMSA) performs 

rather well in comparison with simulation43,128. Surprisingly, all free-energy functionals 

including MFA are highly accurate for predicting the adsorption of LJ fluids in slit pores. 

Regrettably, previous publications were mostly focused on comparisons for model systems 

at low temperatures (<200 K) that have little relevance to methane storage.  

In this work, the classical DFT methods are first tested with simulation results for 

methane adsorption at room temperature (298 K) in slit pores of different widths and 

surface energies. Figure 3-14 shows various theoretical predictions for the total amount of 

adsorption and comparison with simulation data. We find that FMSA overestimates the 

total adsorption amount if the surface is only weakly attractive, while the opposite is true 
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for the MFA predictions. Conversely, both weight-density approximations (WDA-L and 

WDA-Y) agree excellent with the simulation data at all conditions (Figure 3-14a). For 

adsorption in more attractive slit pores (Figure 3-14b), the three versions of non-mean-field 

methods give virtually identical results, but MFA underestimates the total adsorption 

amount in comparison to the simulation data. The poor performance of MFA is somewhat 

anticipated because it neglects the correlation effects due to van der Waals attractions; 

inclusion of the correlation contribution would increase the total adsorption amount. 

II. Adsorption and delivery capacities  

The performance of different DFT methods for methane adsorption in porous 

materials may not be fully consistent with that for simple systems due to extreme 

confinements. To illustrate, we consider methane adsorption in two representative MOF 

materials, MOF-5129 and Cu-BTC130, again at room temperature. Figure 3-15 compares the 

total adsorption amount predicted from different classical DFT methods with GCMC 

simulation. Overall, the four versions of classical DFT methods show good agreement with 

the simulation data. Nevertheless, their accuracies are slightly different for different 

materials. In stark contrast to their performance in slit pores, MFA and FMSA are more 

accurate than WDA-L and WDA-Y for gas adsorption in MOF-5 at room temperature over 

the entire range of testing pressures. Both WDA methods overestimate the total adsorption 

amount especially at intermediate pressures. For methane adsorption in Cu-BTC, however, 

WDA-Y reproduces GCMC data very well. While WDA-L and FMSA slightly 

underestimate the storage capacity at moderate pressures, the total adsorption amount 

predicted by MFA is noticeably smaller than those form other DFT methods at high gas 
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loadings. As indicated in our previous study123, the performance of classical DFT methods 

for gas adsorption in nanoporous materials depends also on the testing conditions. 

For potential applications to materials discovery, the classical DFT methods should 

be calibrated in the context of multiscale modeling and benchmarked with a large set of 

experimental data. While novel computational methods for predicting the crystalline 

structures of framework materials and their interactions with gas molecules are fast 

emerging131, much work remains to be done for calibration of multiscale modeling methods. 

In this work, we confine our interest in comparing the theoretical predictions with GCMC 

data for methane adsorption in over 1,000 MOF materials at various thermodynamic 

conditions. The crystal structures of these materials are from the Northwestern hypothetic 

MOF database73, generated according to the topology of some common SBUs. These 

materials have been studied before for methane storage with GCMC simulations and thus 

provide a good training ground to test the performance of different classical DFT methods 

for materials screening.  

Figure 3-16 shows the theoretical results predicted by MFA in comparison with the 

GCMC data. Similar comparisons for other classical DFT methods are presented in 

Supplementary Materials. In addition to the total adsorption amount at 298 K and 35 bar, 

we consider also the methane delivery amount for each material when the pressure is 

reduced to 5 bar at the same temperature. The thermodynamic conditions for the bulk gas 

are in line with the ARPA-E target for methane storage. Table 3-2 summarizes the root-

mean-square deviations (RMSD) and theory-simulation correlation coefficients (the R 

values) for different classical DFT methods.  In general, all four classical DFT methods 
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show rather good agreements with the GCMC data for the total amount of methane 

adsorption at the ARPA-E target condition. Surprisingly, MFA gives the best results in 

comparison to the simulation data, with RMSD=7.90 cm3(STP)/cm3 and R2=0.99. Because 

this functional is mathematically simpler in comparison to FMSA and weighted-density 

approximations, it is numerically more stable and easier to converge in solving for the 

molecular density profiles. Although other methods show slightly larger deviations, the 

RMSD values are still within about 6% of the total adsorption amount.  

The original target set by ARPA-E for CH4 storage states that, at 298 K and 35 bar, 

the volumetric storage capacity should exceed 180 v/v for qualified nanoporous materials. 

Under such condition, the adsorbed natural gas (ANG) will have an energy density 

comparable to that of the compressed natural gas (CNG) at the same temperature and 250 

bar73. While that target can be easily reached by many MOF candidates, none of the 

existing materials meet the new ARPA-E target for methane storage in transportation 

vehicles132. The ARPA-E target specifies not only the total uptake amount but also the 

methane delivery amount by nanoporous materials between 35 bar and 5 bar at room 

temperature. In Figure 3-16b, we compare the methane delivery amount predicted by MFA 

and GCMC methods. Generally speaking, the MFA predictions agree very well with the 

simulation data, especially for medium and high loading MOF materials. However, 

deviation becomes more noticeable for materials with high total amount of adsorption but 

low delivery amount. Considering the accuracy of MFA prediction for the total methane 

storage capacity at 298 K and 5 bar (Figure 3-16a), the large discrepancy may be attributed 

to numerical issues in our classical DFT calculations. Because those MOFs have large 
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adsorption capabilities at both 35 and 5 bar, the delivery amount is small and sensitive to 

numerical details.   

III. Diffusivity 

Classical DFT gives the density profile of gas molecules in a porous material that 

reflects the microscopic details of adsorbent-adsorbate interactions. Not only is the density 

profile related to the adsorption isotherm, it can also be used to predict other 

thermodynamic properties including heat of adsorption and excess entropy. While the heat 

of adsorption is of tremendous importance for practical applications in its own right, the 

excess entropy provides a convenient starting point for the quantitative prediction of 

transport coefficients over a broad range of thermodynamic conditions.  

In a previous work125, we have demonstrated that Rosenfeld’s excess-entropy 

scaling method can be combined with the Knudsen model to predict the self-diffusivity of 

gas molecules in various nanoporous materials. Because the excess entropy is readily 

available from adsorption calculations and the Knudsen model applies to gas diffusion at 

infinite dilution, the new computational procedure is much faster than traditional MD 

simulation methods for calculating the gas self-diffusivity over a broad range of 

thermodynamic conditions.  

In Figure 3-17, we present the self-diffusion coefficients of CH4 in two MOF 

materials, MOF-5 and Cu-BTC, at 298 K. The theoretical results are calculated according 

to Eq.(82). With α treated as an adjustable parameter ( a = 0.42 ), the extended excess 

entropy scaling method is able to reproduce the simulation data near quantitatively. Semi-

quantitative results are attainable with approximation 
 
a »a

FCC
.  
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Figure 3-18 shows the self-diffusivities of CH4 in top five MOFs that show the 

highest volumetric delivery amount as identified below (see Table 3-4). Here temperature 

is fixed at 298 K, and α is treated as an adjustable parameter for each material. Again, the 

extended excess entropy scaling method reproduces the simulation data very well over the 

entire range of pressures, and approximation 
 
a »a

FCC
 leads to a semi-quantitative 

agreement between theory and MD simulation predictions.  Interestingly, the MOF 

materials with top delivery amounts show similar gas diffusivity at both low and high 

loadings, but their relative ranks are slightly different.   

IV. Characteristics of “good” adsorbents 

Conventional thermodynamic models for gas adsorption such as Langmuir and 

BET isotherms presume that, at a given thermodynamic condition, the total gas uptake is 

linearly proportional to the surface area (or accessible surface area) of the adsorbent. 

Whereas ambiguity might arise in its definition (and measurement) for a particular porous 

material, the surface area has been routinely used as an important measure for the 

identification of promising MOFs with high adsorption capability. The significance of 

surface area is rarely challenged even with the widespread applications of simulation 

methods.  

To find possible correlations between gas adsorption capability and materials 

surface area, we plot the methane adsorption amounts versus the accessible surface 

areas133,134 of 1,200 MOFs materials at 298 K and 35 bar. While Figure 3-19a shows some 

positive correlation for the total adsorption amount, no trend could be observed from Figure 

3-19b between the accessible surface areas and the delivery amounts. More importantly, if 
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we focus on the top MOF candidates for methane storage as shown in Figure 3-20, neither 

the simulation results nor the classical DFT predictions exhibit any convincing relationship 

between those two properties. The decoupling of the delivery amount from the (accessible) 

surface area is somewhat anticipated. Although the geometric accessible surface areas are 

calculated based on the locus of the surface potential minimum, it accounts for only one 

gas molecule a time. The surface area does not take into consideration the correlation 

between adsorbed gas molecules, which is important especially for candidates with high 

loading capacities. The BET surface area is correlated with the adsorption amount because 

it is obtained from fitting to the gas adsorption data. In other words, the good correlation 

between BET surface area and adsorption capability should not be considered surprising.     

According to Figure 3-16 and S3-1, a material with high methane adsorption 

capacity does not necessarily lead to a large delivery amount at the ARPA-E conditions. 

While the adsorption capacity appears in good correlation with the void fraction, such 

correlation does not exist for the top candidates. Conversely, Figure 3-16b shows that 

MOFs with high CH4 weight adsorption amount coincide with those with high delivery 

amount, suggesting that it may serve as a good indicator to identify promising materials.  

V. ARPA-E MOVE target 

The methane delivery amounts for all MOF materials considered in this work are 

below 160 cm3/cm3, far from the ARPA-E target 315 cm3/cm3.  To achieve the volumetric 

delivery amount, we could either increase the gas uptake at the compressed stage or reduce 

the remnant amount upon release. Table 3-3 summarizes the performance of the top 10 

MOFs if we set the initial pressure to 250 bar, the same as that in a compressed natural gas 
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tank (CNG). According to this table, the top materials identified from GCMC are in good 

agreement with those from various classical DFT methods. As far as the top candidates are 

of concern, the list generated from FMSA agrees the best with that from the simulation, 

with 9 out of 10 promising MOFs identical.  

If the initial compression pressure is set to 250 bar, many MOFs meet the target for 

the weight delivery amount of 0.5 g/g, and the best material is able to achieve up to 95% 

of the volumetric target value. If we raise the release temperature to 358 K, the ARPA-E 

volumetric target may also be reached (see Table S3-2). Alternatively, the ARPA-E target 

can also be reached by reducing the initial storage temperature to 233 K, the lowest 

operation temperature according to the DOE instruction. In that case, many MOFs could 

also reach the ARPA-E target by compression at 75 bar and release at 298 K and 5 bar (see 

Table S3-3). At higher release temperature, all the top 10 MOFs achieve the ARPA-E 

methane storage target in terms of both gravimetric and volumetric measures (see Table 3-

3).  

Unlike the results shown in Table 3-2, the DFT and GCMC methods predict rather 

different top 10 candidates to meet the ARPA-E target (see Table 3-3). Nevertheless, all 

these materials exhibit similar adsorption capabilities. Besides, the GCMC candidates are 

among the top 50 materials identified by the classical DFT methods. In both Tables 3-2 

and 3-3, there are about 3% numerical discrepancies between DFT and GCMC data. 

Considering usually 5% statistical error in GCMC simulations, we believe the classical 

DFT methods should be sufficiently accurate to identify promising MOF materials for 

further experimental investigations.  
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3.3.4. Conclusions 

We have calibrated four versions of classical density functional theory (DFT) for 

potential applications to the discovery of novel metal-organic frameworks (MOFs) for 

methane storage. Overall the classical DFT methods show good agreement with the 

simulation results for methane adsorption in slit pores as well as in MOF-5 and Cu-BTC. 

Nevertheless, their relative theoretical performance is sensitive to thermodynamic 

conditions and depends on a specific material under consideration. Using the ARPA-E 

methane delivery capabilities of over 1,200 MOFs as the benchmark, we find that, 

surprisingly, the results from the mean-field approximation (MFA) agree best with the 

simulations data, with a root-mean-square deviation (RMSD) of only 7.90 cm3(STP)/cm3. 

Considering its theoretical simplicity, we conclude that MFA is probably the best choice 

for screening nanostructured materials for CH4 storage.  

Whereas the BET surface area is conventionally used as a benchmark to identify 

the total adsorption capacity of a specific material, we find that, in general, there is no 

convincing correlation between the surface area and the net delivery amount at conditions 

relevant to methane storage. While none of the existing materials satisfies the ARPA-E 

target, many MOFs can have a weight delivery amount exceeding 0.5 g/g if the initial 

compression pressure is modified to 250 bar, the same as that in a compressed natural gas 

tank. The volumetric target may be reached if the release temperature is raised to 358 K. 

Alternatively, the ARPA-E target can be fulfilled by reducing the initial storage 

temperature to 233 K, the lowest operation temperature according to the DOE instruction.   
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In comparison to conventional molecular simulations, a key advantage of the 

classical DFT methods is that they are extremely efficient for calculating a large library of 

materials over a broad parameter space. Figure 9 shows the statistics of computational time 

for implementing the classical DFT calculations on a single desktop computer (i.e., one 3.0 

GHz Sandy Bridge CPU core). The average computational time is within 2 minutes for 

each sample, which is faster than that of conventional GCMC simulation by more than one 

order of magnitude. More importantly, DFT provides quantitative information on the 

excess entropy that can be used for predicting gas self-diffusivities, while simulations of 

the transport properties of confined gases are extremely time-consuming with the 

conventional methods. The good theoretical performance and computational efficiency 

make classical DFT methods an ideal choice for high-throughput calculations.  
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Figure 3-13. Computational materials design involves quantum mechanical (QM) 

calculations for understanding the chemistry of the building blocks and microscopic 

structure and statistical-mechanical (SM) calculations to predict their performance under 

diverse thermodynamic conditions. Because multiple approaches are available for both 

QM and SM calculations, multiscale modeling should be calibrated with extensive 

experimental data in terms of both theoretical accuracy and computational efficiency.   
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Figure 3-14. a) Methane adsorption in slit pores of reduced width   H / s  =2, 3, 4 from top 

to bottom at 298K. The interaction between the gas molecule and each wall is described 

with Steele’s 10-4-3 potential, where 
 
s

w
= s , 

  
e

w
= 3.142e  and  D = 0.7071s; b) The same 

as a) except 
  
e

w
= 6.283e . 
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Figure 3-15. Methane adsorption isotherms at 298K for a) MOF-5 and b) Cu-BTC 

framework materials calculated from GCMC simulation and from different classical DFT 

methods. 
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Figure 3-16. Comparison of methane adsorption at 298 K in 1,200 MOFs calculated from 

GCMC and from MFA methods. a) Total adsorption amount at 5 bar; b) Delivery amount 

between 35 bar and 5 bar.  Color code: Navy blue, top 300 from excess CH4 adsorption in 

weight category; Red, top 300 from excess CH4 adsorption in volume category; Purple, top 

300 from void fraction category; Sky blue, top 300 from surface area (m2/cm3) category 

from the Northwestern Hypothetical MOF Database. 
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Figure 3-17. Self-diffusivities of CH4 molecules in MOF-5 and Cu-BTC at 298 K 

predicted by MD simulation and by the extended excess-entropy scaling method, 

respectively. Filled dots are results from MD simulations, while the lines are obtained 

from the extended excess-entropy scaling method. 
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Figure 3-18. Self-diffusivities of CH4 in top 5 MOFs with the highest volumetric delivery 

amount for compression at 233 K and 75 bar and release at 358 K and 5 bar predicted by 

FMSA method. The symbols are self-diffusion coefficients predicted by MD simulation, 

and the lines are from the extended excess-entropy scaling method.  
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Figure 3-19. The adsorption amounts of methane in 1,200 MOFs at 298 K and 35 bar as a 

function of the accessible surface area calculated according to the MFA and GCMC 

methods. a) Total adsorption amount; b) Delivery amount. Green dots: DFT data; Red dots: 

GCMC data. 
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Figure 3-20. Top 10 MOF candidates with the highest adsorption amounts of methane at 

298 K and 35 bar as a function of the accessible surface area. Cycles: predicted by GCMC; 

Diamonds: predicted by MFA, while filled ones stand for total adsorption amounts and 

blank ones for delivery amounts between 298 K, 35 bar and 298 K, 5 bar  
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Figure 3-21. The distribution of computational time for predicting methane adsorption in 

1,200 MOFs with MFA.  
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Table 3-2 Root-mean-square deviation (RMSD) and correlation coefficients (R-value) 

for various classical DFT methods in comparison with GCMC simulation data for 

methane adsorption in 1,200 MOFs at 298 K and 35 bar. 

 

  FMSA MFA WDA-Y WDA-L 

RMSD cm3(STP)/cm3 16.45 7.90 15.76 16.58 

R2 0.94 0.99 0.98 0.97 
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Table 3-3 Top 10 MOF candidates identified by GCMC and by various classical DFT 

methods according to the volumetric delivery amount. The methane delivery amount is 

calculated between compression at T=298 K, P=250 bar and release at T=298 K, P=5 bar. 

 

  FMSA MFA WDA-Y1 GCMC 

Rank No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M 

1 1101 300.5 0.63 1033 272.1 0.45 1213 307.4 0.66 1031 290.1 0.57 

2 1089 299.1 0.62 1101 271.8 0.57 1101 306.7 0.64 1089 290.1 0.60 

3 1213 298.7 0.64 1031 271.6 0.53 1089 305.2 0.64 1101 290.0 0.61 

4 1031 297.5 0.58 1213 271.1 0.58 1031 304.1 0.59 1213 289.8 0.62 

5 1111 295.7 0.58 1089 270.9 0.56 1111 303.2 0.59 1111 287.1 0.56 

6 1052 295.6 0.60 1026 269.7 0.42 1025 301.9 0.58 1034 287.0 0.56 

7 1145 295.2 0.60 1111 269.5 0.53 1145 301.8 0.61 1086 286.8 0.58 

8 1025 294.5 0.57 1064 268.7 0.50 1052 300.6 0.61 1030 286.5 0.55 

9 1086 294.2 0.59 1025 268.7 0.52 1233 300.4 0.73 1145 286.5 0.58 

10 1034 294.1 0.57 1052 268.6 0.54 1086 299.9 0.60 1052 286.2 0.58 

 

*: The No. represents the serial number in the Northwestern Hypothetical MOF Database, 

while the 1st digit means the category (1 for excess CH4 adsorption in weight category; 2 

for excess CH4 adsorption in volume category; 3 for void fraction category; 4 for surface 

area (m2/cm3) category), the last 3 digits means the rank in the category. Γdel means delivery 

amount, where V stands for adsorption amount in units of cm3(STP)/cm3 and M stands for 

adsorption amount in units of g/g. 

1: Since the two WDA methods give nearly the same results, we only give WDA-Y data 

here. 
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Table 3-4 Top 10 MOF candidates identified by GCMC and by various classical DFT 

methods according to the volumetric delivery amount between compression at T=233 K, 

P=75 bar and release at T=358 K, P=5 bar. 

                          

  FMSA MFA WDA-Y GCMC 

Rank No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M 

1 1031 321.4 0.63 1033 315.5 0.53 1111 353.9 0.69 1162 336.1 0.66 

2 1037 318.7 0.59 1011 315.2 0.49 1025 352.1 0.68 1026 335.8 0.53 

3 1111 318.4 0.62 1022 314.4 0.50 1064 349.2 0.65 1011 335.5 0.52 

4 1002 318.2 0.55 1026 313.9 0.49 1034 348.9 0.68 1007 335.3 0.59 

5 1007 318.2 0.56 1013 312.7 0.50 1041 348.2 0.68 1145 335.3 0.68 

6 1055 318.1 0.57 1046 312.2 0.45 1030 347.9 0.67 1031 334.7 0.65 

7 1025 317.7 0.61 1098 311.7 0.47 1055 346.0 0.62 1019 334.6 0.51 

8 1033 317.6 0.53 1044 311.7 0.46 1071 345.9 0.60 1001 334.2 0.58 

9 1010 317.5 0.55 1019 311.0 0.47 1086 345.8 0.70 1071 334.1 0.58 

10 1011 317.3 0.49 1197 310.5 0.48 1033 345.1 0.57 1087 333.9 0.59 

 
            

 

 

 

 

 

 

 

 

 

 



 

125 

Support Information 

I. Methane Adsorption in MOFs 

Figure S3-1 Comparison of CH4 absolute adsorption amount at 298 K and 35 bar in 1,200 

MOFs calculated from GCMC and from different classical DFT methods: a) WDA-Y b) 

WDA-L c) FMSA. Color code: Navy blue, top 300 from excess CH4 adsorption in weight 

category; Red, top 300 from excess CH4 adsorption in volume category; Purple, top 300 

from void fraction category; Sky blue, top 300 from surface area (m2/cm3) category from 

the Northwestern Hypothetical MOF Database. 
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Table S3-2 Top 10 MOF candidates identified by GCMC and by various classical DFT 

methods according to the CH4 volumetric delivery amount between compression at T=298 

K, P=250 bar and release at T=358 K, P=5 bar.  

                          

  FMSA MFA WDA-Y GCMC 

Rank No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M 

1 1101 314.8 0.66 1026 293.7 0.46 1101 322.3 0.68 1031 309.0 0.60 

2 1089 313.6 0.65 1033 292.9 0.49 1213 322.1 0.69 1111 307.0 0.60 

3 1031 313.6 0.61 1013 292.6 0.46 1111 322.0 0.63 1089 307.0 0.64 

4 1033 312.4 0.52 1011 292.5 0.46 1031 321.7 0.63 1030 306.8 0.59 

5 1111 312.2 0.61 1022 292.4 0.47 1089 321.1 0.67 1032 306.7 0.52 

6 1213 311.7 0.67 1019 291.3 0.44 1025 321.0 0.62 1101 306.7 0.64 

7 1025 311.2 0.60 1197 290.7 0.45 1064 319.9 0.60 1011 306.4 0.48 

8 1026 311.2 0.49 1028 289.7 0.44 1145 318.6 0.65 1034 306.2 0.60 

9 1064 310.9 0.58 1046 289.4 0.42 1053 317.9 0.60 1086 305.5 0.62 

10 1011 310.8 0.48 1098 289.2 0.44 1011 317.6 0.49 1213 305.2 0.66 

 
            

 

*: The No. stands for the serial number in the Northwestern Hypothetical MOF Database, 

while the 1st digit means the category (1 for excess CH4 adsorption in weight category; 2 

for excess CH4 adsorption in volume category; 3 for void fraction category; 4 for surface 

area (m2/cm3) category), the last 3 digits means the rank in the category. Γdel means delivery 

amount, where V stands for adsorption amount in units of cm3(STP)/cm3 and M stands for 

adsorption amount in units of g/g 
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Table S3-3 Top 10 MOF candidates predicted by GCMC and various DFT methods 

according to CH4 volumetric delivery amount between compression at T=233 K, P=75 bar 

and release at T=298 K, P=5 bar. 

                          

  FMSA MFA WDA-Y GCMC 

Rank No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M No. Γdel,V Γdel,M 

1 1031 305.3 0.60 1033 294.7 0.49 1111 335.2 0.66 1145 317.1 0.64 

2 1101 302.0 0.63 1031 292.3 0.57 1025 333.0 0.64 1089 317.0 0.66 

3 1111 301.8 0.59 1055 290.5 0.52 1034 331.1 0.65 1162 317.0 0.62 

4 1025 301.0 0.58 1022 290.2 0.46 1041 330.8 0.65 1213 316.8 0.68 

5 1089 300.9 0.63 1111 289.9 0.57 1064 329.0 0.62 1101 316.3 0.66 

6 1213 300.5 0.65 1026 289.9 0.45 1030 328.9 0.63 1031 315.7 0.62 

7 1037 300.1 0.55 1011 289.8 0.45 1086 328.3 0.66 1297 312.4 0.53 

8 1052 299.7 0.60 1098 287.6 0.44 1055 324.6 0.58 1064 312.1 0.59 

9 1055 299.5 0.54 1064 286.8 0.54 1188 324.4 0.67 1111 311.7 0.61 

10 1034 299.3 0.58 1071 286.8 0.50 1297 323.7 0.55 1055 311.6 0.56 
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3.4 Seeking Metal-Organic Frameworks (MOFs) for Methane Storage in Natural Gas 

Vehicles 

Concerns over the national energy security and global climate change are calling 

for the development of alternative fuels that have minimal carbon footprint yet reliable 

supplies. The low cost and huge reserve of natural gas (NG) make it an attractive choice as 

a midtermsolution. NG is mainly composed of methane, which has a high research octane 

number (RON=107) and contributes no SOx and NOx emissions.135 One of the key 

challenges for its broader applications to natural gas vehicles (NGV) lies in its storage and 

delivery at ambient conditions. Conventional methods, including Liquefied Natural Gas 

(LNG) and Compressed Natural Gas (CNG)136, involve either cryogenic cooling (112 K) 

or high pressure (>200 bar) operations with heavy-duty tanks that are expensive and 

hazardous. Recent years have witnessed tremendous developments in Adsorbed Natural 

Gas (ANG) method based on activated carbons and nanostructured porous materials such 

as metal-organic frameworks (MOFs). In particular, ANG method is most promising for 

NGV applications owing to its excellent performance at moderate operating conditions. 

130,136-146  

Unlike amorphous porous materials such as activated carbons, MOFs have 

crystalline structures that are predicable on the basis of the modular building blocks. 129,147-

149 Besides, these materials can be synthesized at the industrial scale. 150 A wide variety of 

MOFs have been reported potentially useful for CH4 storage. Prominent examples include 

NU-111, 151 NU-125, 152 UTSA-20, 153 PCN-14, 154 NiMOF-74. 155 Recently, Yaghi’s 

group demonstrated that MOF-519156 provides an impressive methane delivery amount of 
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230 cm3/cm3 when it is operating between 80 bar and 5 bar at 298 K. While that capacity 

is higher than all MOFs presently known, it does not yet meet the ARPA-E target,132 which 

requires volumetric delivery amount of  315 cm3(STP)/cm3 (corresponding to energy 

density 12.5 MJ/L, the same as CNG does at 250 bar 298K)  and weight delivery amount 

of 0.5 g/g, considering 25% packing loss.  

The number of MOFs that have been tested for methane storage is trivially small in 

comparison to the huge variety of the nanostructures that could be synthesized by changing 

the metal-organic building blocks. A key question of practical concern is whether it is 

possible to identify potential nanoporous materials to meet the DOE target. Because 

experimental synthesis and test for a large number of materials is tedious and time 

consuming, computational methods such as the classical molecular simulation is a 

welcome choice in the materials community.63,138,157-161 For example, Wilmer et al.24,162 

used grand canonical Monte Carlo (GCMC) simulation to predict methane adsorption in 

about 100,000 hypothetical MOFs and identified a group of promising MOF materials for 

tailored synthesis. By studying the structure-property relationships, Wilmer et al. also 

explored the limits of these nanoporous materials for methane storage and delivery. 

Regrettably, it appears that none of the possible MOFs meets the ARPA-E target, at least 

for gas storage at ambient temperature (298 K) and moderate pressure (< 65 bar). In this 

work, we use GCMC to explore possible alternatives to reach the ARPA-E target by 

changing the operational temperatures and  pressures. Our goal is to identify important 

indicators from the perspective of methane delivery and optimal MOFs for practical NGV 

applications.  
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We consider over 1,000 MOF candidates from the Northwestern Hypothetical 

MOF Database that were previously identified as promising for methane storage.24 These 

MOF materials have been categorized according to their rankings with different criteria. 

As in a previous work,163 we start with GCMC calculations for methane adsorption at 298 

K and 35 bar specified in the ARPA-E target. The computational details are given in 

Support Information (SI). Figure 3-22 presents both the total and delivery adsorption 

capacity (between compression at 298 K and 35 bar and release at 298K and 5bar). In the 

volumetric adsorption categories (see Figure 3-22a and 3-22c), our GCMC results indicate 

that none of those MOF materials meet the ARPA-E target of 260 cm3(STP)/cm3 (9.2 MJ/L, 

corresponding to CNG at 250 bar without considering the 25% packing loss) even in terms 

of the total storage capacity. Ironically, MOFs with high total volumetric adsorption often 

have small deliverable amount, typically less than 20% of the total uptake at 35 bar. Due 

to the strong attraction of these materials with CH4 molecules, the large adsorption amount 

persists at both high and low pressures. By contrast, MOF materials with moderate 

interaction strength with methane molecules are most likely to have high delivery amount. 

The simulation results show no clear correlation between the weight adsorption capacity 

and total volumetric storage (see also Tables S3-4~S3-13 in SI).  

We find that MOFs with the highest volumetric delivery amount (Figure 3-22c) 

mostly coincide with those having the largest weight adsorption capacity (Figure 3-22b), 

even though the total adsorption amount may not necessarily be at the top. In terms of the 

gravimetric adsorption amount (Figure 3-22b and 3-22d), the total and delivery capacities 

follow similar trends. In particular, the MOF with the highest total gas uptake coincides 
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that with the best delivery capacity. However, the top candidates in the weight category 

rank poorly in terms of the volumetric adsorption, less than 40% in comparison to the top-

ranked MOFs shown in Figure 3-22a and 3-22c. Surprisingly, those top candidates have 

very close total and delivery amounts in the volumetric category. It appears that the top-

ranked materials in the weight category do not have many favorable binding sites, acting 

as if gas molecules were in a usual compressed tank. Considering all possible measures, 

we conclude that the volumetric deliverable amount is the most important indicator for 

materials selection for NGV applications. A similar conclusion was reached from recent 

experimental observations, from the perspective of driving range.146 In the following 

discussions, we thus focus on the materials performance in terms of the volumetric 

deliverable amount. 

The volumetric delivery amount can be raised either by increasing the gas uptake 

at the compression stage or reducing the remnant amount upon release. Figure 3-23 shows 

the performance of some top ranked MOFs in the volumetric category if we set the initial 

pressure higher than 35 bar. More extensive results are given in Tables S3-14~S3-23. 

Figure 3-23a shows that if we double the initial pressure (i.e., from 35 bar to 70 bar), both 

the volumetric and weight deliverable amounts increase by nearly 30%. However, the 

delivery capacity is only about 60% of the ARPA-E target, even for the top ranked MOF 

materials. The volumetric target (i.e., 260 cm3(STP)/cm3) could be reached only if the 

pressure is further increased to 170 bar. While the volumetric target appears unattainable, 

the weight deliverable amount has already exceeded the 0.5 g/g target, suggesting that 170 

bar could be taken as the upper limit for studying the adsorbed methane storage capacity. 
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At this pressure, most MOFs approach the saturation platform of their CH4 storage capacity, 

i.e., further increasing the pressure does not have much effect on the volumetric delivery 

amount.  

Figure 3-23c shows that when the pressure is increased to 250 bar, the same as the 

common CNG gas tank, the total adsorption amount is 50% higher than that in Figure 3-

23b. However, the volumetric delivery amount is increased less than 5%. Snurr et al. 

suggested that the MOF materials could reach the ARPA-E target only if the attractive 

energy between the gas and substrate is quadrupled and if the release temperature is 

increased to 398 K.24 Considering that the tolerated temperate range for CH4 operation is 

between -40-85 ̊C in the ARPA-E project, we have investigated also the effect of two 

temperature boundaries on methane adsorption. In one case, we increase the adsorption 

amount by lowering the temperature at the compression stage to 233 K. In another case, 

we raise the delivery temperature to 358 K so that the remnant gas adsorption could be 

minimized. Figure 3-23d shows the top 10 MOF candidates with the new temperature (233 

K) and pressure (75 bar) at the compression stage. Over half of these materials achieve the 

ARPA-E target in both volumetric and weight delivery categories. The reduction in 

compression temperature greatly improves the methane volumetric adsorption 

performance, much better than that at 298 K and 250 bar.  

Table 3-5 gives a list of MOF candidates that yield the maximum deliverable 

amount at various operational conditions (more data details could be found in Tables S3-

14~S3-33). We may attain the weight delivery target by either increasing the pressure or 

decreasing the temperature at the compression stage. However, the volumetric target 
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cannot be reached solely by increasing the delivery temperature. The volumetric delivery 

amount is sensitive to the delivery temperature at moderate pressure (<100 bar). Although 

none of the MOF materials we studied could meet the ARPA-E requirement, over 90% of 

the demand could be satisfied at 298 K and 170 bar if we increase the delivery temperature 

to 358 K. We can further increase the volumetric delivery capacity by decreasing the 

compression temperature. For example, many MOF materials could achieve the ARPA-E 

target at a relatively low pressure (<50 bar) if the compression and delivery temperatures 

are set at 233 K and 358 K, respectively.   

In summary, we have investigated a large number of promising MOF materials and 

operational conditions that may meet the ambitious DOE ARPA-E target for methane 

storage. We propose that new materials development should be focused on improving the 

volumetric delivery amount rather than the weight delivery or other criteria that often 

quoted in the literature. While none of MOF materials known today meets the DOE 

standards, the ARPA-E target could be reached by modifying the operational condition for 

gas compression and delivery. If methane is compressed at 298 K and 170 bar and released 

at 358 K and 5 bar, the top ranked MOF is able to deliver over 90% of the required methane 

amount. A large number of MOF materials may achieve the ARPA-E target at higher 

delivery and lower compression temperatures.  
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Figure 3-22 Top 10 MOF materials accordingly to their performance at 298K and 35bar 

in terms of a) Total volumetric adsorption amount; b) Total weight adsorption amount; c) 

Volumetric delivery amount (released at the same temperature and 5bar); d) Weight 

delivery amount. In each panel, the horizontal axis gives the serial numbers in the 

Northwestern Hypothetical MOF Database24; the 1st digit represents the category of 

ranking, i.e., 1 for excess CH4 adsorption in the weight category; 2 for excess CH4 

adsorption in the volume category; and 5 for the void fraction category. The last 3 digits of 

each serial number denote the ranking within the individual category. Here black and red 

column bars stand for the total and delivery volumetric adsorption amounts, blue and pink 

lines correspond to the total and delivery weight adsorption amounts, respectively. 
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Figure 3-23 Top 10 MOF materials in terms of the volumetric delivery amount at 298K 

and 5 bar. The compressed pressures are a) 70bar; b) 170bar; c) 250bar; d) 75bar (233K). 

Dash lines correspond to the ARPA-E target, the golden line stands for the volumetric 

delivery target 315 cm3(STP)/cm3, while green line stands for the weight delivery target 

0.5 g/g. 
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Table 3-5 MOF materials with the maximum adsorption capacity in different categories. 

Pa) 

298K 358K 

ID ΓDel,V
b) ID ΓDel,M

c) ID ΓDel,V
d) ID ΓDel,M

e) 

35 1029 157 5003 0.29 1226 206 5003 0.32 

70 1026 212 5001 0.59 1062 246 5001 0.61  

100 1033 234 5001 0.79 1046 264 5001 0.81  

150 1089 260 5077 1.08 1026 286 5077 1.09  

170 1089 268 5077 1.19 1197 290 5077 1.21  

200 1031 277 5124 1.34 1011 297 5124 1.35  

250 1031 290 5124 1.52 1031 309 5124 1.53  

          

35f) 1033 280 5003 0.64 1028 311 5003 0.67  

45f) 1026 291 5002 0.71 1028 321 5001 0.81  

75f) 1145 317 5007 1.16 1162 336 5007 1.18  

 

a) Pressure, in the units of bar; b) Γdel,V, the delivery amount between this condition and 

298K and 5bar, in the units of cm3/cm3; c) Γdel,M, in the units of g/g; d) Γdel,V, delivery 

amount between this condition and 358K and 5bar, in the units of cm3/cm3; e) Γdel,M, in the 

units of g/g; f) the testing temperature is 233K.  
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Support Information 

Table S3-4 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 35bar. 

Rank ID ΓTot
2(cm3/cm3) ΓDel

3(cm3/cm3) ΓTot
2(g/g) ΓDel

3(g/g) 

1 20031 263.20 89.27 0.12 0.04 

2 2002 259.83 46.55 0.20 0.04 

3 2028 256.14 87.82 0.12 0.04 

4 2015 256.08 94.92 0.13 0.05 

5 2030 255.60 116.23 0.16 0.07 

6 2011 253.25 80.22 0.11 0.04 

7 2001 253.01 101.56 0.28 0.11 

8 2037 250.91 45.37 0.16 0.03 

9 2071 250.02 37.17 0.15 0.02 

10 2027 249.01 37.19 0.15 0.02 

 

1: The No. means the serial number in the Northwestern Hypothetical MOF Database, 

while the 1st number means the category (1 for excess CH4 adsorption in weight category; 

2 for excess CH4 adsorption in volume category; 3 for void fraction category; 4 for surface 

area (m2/cm3) category), the last 3 digits means the rank in the category.  

2:  Γtot means total adsorption amount at this condition 

3:Γdel means delivery amount between this condition and 298K and 5bar, so as the 

following tables. 

 

 



 

140 

 

Table S3-5 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 70bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 2003 292.26 118.33 0.14 0.06 

2 2030 287.21 147.84 0.18 0.10 

3 2015 286.54 125.38 0.15 0.07 

4 2011 285.96 112.92 0.13 0.05 

5 1226 281.71 171.31 0.33 0.20 

6 2010 281.71 171.31 0.33 0.20 

7 2001 281.52 130.06 0.31 0.14 

8 2006 280.78 164.10 0.32 0.19 

9 2028 280.23 111.92 0.13 0.05 

10 1116 280.04 174.51 0.35 0.22 

 

 

Table S3-6 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 100bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 2003 301.20 127.28 0.14 0.06 

2 2015 300.34 139.17 0.16 0.07 

3 2030 296.55 157.18 0.19 0.10 

4 2006 295.77 179.10 0.34 0.20 

5 1116 294.27 188.73 0.36 0.23 

6 2013 294.27 188.73 0.36 0.23 

7 2001 293.56 142.11 0.32 0.16 

8 1226 293.22 182.82 0.35 0.22 

9 2010 293.22 182.82 0.35 0.22 

10 1156 290.66 186.24 0.35 0.23 
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Table S3-7 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 150bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 2003 311.99 138.06 0.15 0.06 

2 2015 310.74 149.58 0.16 0.08 

3 1023 308.40 234.08 0.43 0.33 

4 2157 308.40 234.08 0.43 0.33 

5 2030 307.51 168.14 0.20 0.11 

6 1226 307.49 197.09 0.36 0.23 

7 2010 307.49 197.09 0.36 0.23 

8 1116 307.33 201.79 0.38 0.25 

9 2013 307.33 201.79 0.38 0.25 

10 1011 307.17 253.40 0.48 0.39 

 

 

Table S3-8 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 170bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 2003 318.31 144.38 0.15 0.07 

2 1048 315.04 250.58 0.44 0.35 

3 1023 313.73 239.42 0.44 0.34 

4 2157 313.73 239.42 0.44 0.34 

5 1226 312.62 202.22 0.37 0.24 

6 2010 312.62 202.22 0.37 0.24 

7 1116 312.30 206.77 0.38 0.25 

8 2013 312.30 206.77 0.38 0.25 

9 2030 311.76 172.39 0.20 0.11 

10 1108 311.54 241.60 0.43 0.33 
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Table S3-9 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 200bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1023 319.97 245.66 0.45 0.35 

2 2157 319.97 245.66 0.45 0.35 

3 1017 319.80 253.95 0.47 0.37 

4 1011 319.00 265.22 0.50 0.41 

5 2003 318.66 144.73 0.15 0.07 

6 1020 316.85 261.65 0.48 0.40 

7 1019 316.73 260.41 0.48 0.40 

8 1108 316.46 246.51 0.43 0.34 

9 1029 316.42 256.42 0.47 0.38 

10 1036 316.18 255.45 0.46 0.37 

 

 

Table S3-10 Top 10 MOF materials with highest total volumetric adsorption amount at 

298K and 250bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1023 330.46 256.14 0.46 0.36 

2 2157 330.46 256.14 0.46 0.36 

3 1011 328.23 274.45 0.51 0.43 

4 1019 327.31 270.99 0.50 0.41 

5 1020 326.32 271.11 0.50 0.41 

6 2215 326.02 250.07 0.41 0.32 

7 1048 326.01 261.55 0.46 0.37 

8 1032 325.69 281.31 0.56 0.48 

9 1004 325.69 260.69 0.52 0.41 

10 1026 325.46 274.58 0.51 0.43 
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Table S3-11 Top 10 MOF materials with highest total volumetric adsorption amount at 

233K and 35bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 2003 336.80 162.88 0.16 0.08 

2 2015 335.10 173.94 0.18 0.09 

3 2011 334.55 161.51 0.15 0.07 

4 1023 334.38 260.06 0.47 0.37 

5 2157 334.38 260.06 0.47 0.37 

6 1028 333.78 278.31 0.51 0.42 

7 1043 333.69 261.14 0.46 0.36 

8 2229 333.69 261.14 0.46 0.36 

9 1144 332.52 238.01 0.43 0.30 

10 2088 332.52 238.01 0.43 0.30 

 

 

Table S3-12 Top 10 MOF materials with highest total volumetric adsorption amount at 

233K and 45bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1028 343.96 288.48 0.53 0.43 

2 2225 342.62 272.64 0.42 0.33 

3 1023 342.56 268.24 0.48 0.37 

4 2157 342.56 268.24 0.48 0.37 

5 1017 342.42 276.56 0.50 0.40 

6 1026 342.07 291.18 0.54 0.44 

7 1048 341.13 276.67 0.48 0.38 

8 2003 340.95 167.02 0.16 0.08 

9 1116 340.56 235.02 0.42 0.28 

10 2013 340.56 235.02 0.42 0.28 
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Table S3-13 Top 10 MOF materials with highest total volumetric adsorption amount at 

233K and 75bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1019 357.54 301.21 0.55 0.46 

2 1011 357.40 303.62 0.56 0.47 

3 1026 356.78 305.90 0.56 0.48 

4 1029 356.46 296.46 0.53 0.44 

5 1048 356.20 291.74 0.50 0.41 

6 1023 355.95 281.63 0.50 0.40 

7 2157 355.95 281.63 0.50 0.40 

8 1001 355.91 304.86 0.62 0.53 

9 2226 355.84 255.95 0.41 0.29 

10 1021 355.51 275.44 0.49 0.38 

 

Table S3-14 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 35bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1029 217.07 157.07 0.32 0.23 

2 1028 211.75 156.27 0.32 0.24 

3 1019 211.75 155.43 0.32 0.24 

4 1251 218.05 155.23 0.30 0.21 

5 1047 201.11 152.65 0.32 0.24 

6 1108 220.97 151.02 0.30 0.21 

7 1095 201.43 150.88 0.31 0.23 

8 1214 209.60 150.71 0.30 0.21 

9 2225 220.14 150.16 0.27 0.19 

10 1013 200.71 150.03 0.32 0.24 
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Table S3-15 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 70bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1026 263.27 212.38 0.41 0.33 

2 1013 261.96 211.28 0.42 0.33 

3 1022 259.22 211.21 0.41 0.34 

4 1061 264.08 211.06 0.39 0.31 

5 1011 264.42 210.64 0.41 0.33 

6 1044 263.86 210.41 0.39 0.31 

7 1070 261.05 209.87 0.39 0.31 

8 1062 270.37 209.30 0.38 0.30 

9 1033 252.08 209.22 0.42 0.35 

10 1047 257.66 209.21 0.41 0.33 

 

 

Table S3-16 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 100bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1033 277.54 234.68 0.46 0.39 

2 1026 284.87 233.99 0.45 0.37 

3 1013 284.62 233.94 0.45 0.37 

4 1197 281.07 232.80 0.44 0.36 

5 1025 268.97 232.70 0.52 0.45 

6 1031 266.69 232.12 0.52 0.45 

7 1011 285.65 231.87 0.44 0.36 

8 1047 280.14 231.68 0.44 0.37 

9 1007 277.47 231.47 0.49 0.41 

10 1061 284.22 231.20 0.42 0.34 
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Table S3-17 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 150bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1089 291.76 260.31 0.61 0.54 

2 1031 294.21 259.64 0.57 0.51 

3 1101 290.33 259.29 0.61 0.54 

4 1111 294.96 258.91 0.58 0.51 

5 1025 294.13 257.87 0.56 0.50 

6 1052 288.80 257.03 0.58 0.52 

7 1034 291.78 256.78 0.57 0.50 

8 1086 290.75 256.62 0.59 0.52 

9 1030 292.80 256.03 0.56 0.49 

10 1026 306.80 255.92 0.48 0.40 

 

 

Table S3-18 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 170bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1089 300.11 268.65 0.62 0.56 

2 1031 302.22 267.65 0.59 0.52 

3 1101 297.40 266.36 0.62 0.56 

4 1111 302.01 265.96 0.59 0.52 

5 1052 297.40 265.64 0.60 0.54 

6 1037 304.33 264.84 0.56 0.49 

7 1213 293.51 264.50 0.63 0.57 

8 1030 301.08 264.32 0.58 0.51 

9 1086 298.17 264.05 0.60 0.53 

10 1145 296.75 263.94 0.60 0.54 
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Table S3-19 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 200bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1031 312.35 277.78 0.61 0.54 

2 1101 308.35 277.31 0.65 0.58 

3 1213 305.84 276.83 0.66 0.60 

4 1052 307.99 276.23 0.62 0.56 

5 1089 306.75 275.29 0.64 0.57 

6 1111 311.19 275.14 0.61 0.54 

7 1041 309.61 275.08 0.61 0.54 

8 1025 310.70 274.43 0.60 0.53 

9 1145 306.82 274.01 0.62 0.56 

10 1034 308.47 273.47 0.60 0.53 

 

 

Table S3-20 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 298K, 250bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1031 324.64 290.08 0.63 0.57 

2 1089 321.52 290.06 0.67 0.60 

3 1101 321.07 290.03 0.67 0.61 

4 1213 318.79 289.78 0.69 0.62 

5 1111 323.16 287.11 0.63 0.56 

6 1034 322.00 287.00 0.63 0.56 

7 1086 320.95 286.83 0.65 0.58 

8 1030 323.31 286.54 0.62 0.55 

9 1145 319.26 286.45 0.65 0.58 

10 1052 317.94 286.18 0.64 0.58 
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Table S3-21 Top 10 MOF materials with highest delivery volumetric adsorption amount 

between 233K, 35bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1033 322.62 279.75 0.54 0.47 

2 1028 333.78 278.31 0.51 0.42 

3 1093 318.78 276.58 0.52 0.45 

4 1022 324.47 276.47 0.52 0.44 

5 1011 330.22 276.44 0.51 0.43 

6 1111 312.41 276.37 0.61 0.54 

7 1047 324.10 275.65 0.51 0.44 

8 1013 325.92 275.24 0.52 0.44 

9 1280 316.85 275.21 0.55 0.47 

10 1197 323.34 275.08 0.50 0.43 

 

 

Table S3-22 Top 10 MOF materials with highest delivery volumetric adsorption between 

233K, 45bar and 298K, 5bar.  

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1026 342.07 291.18 0.52 0.44 

2 1197 339.13 290.87 0.51 0.44 

3 1031 325.40 290.83 0.62 0.55 

4 1111 325.98 289.93 0.62 0.55 

5 1025 325.33 289.06 0.61 0.54 

6 1028 343.96 288.48 0.51 0.43 

7 1037 327.77 288.29 0.60 0.52 

8 1055 328.16 288.10 0.57 0.50 

9 1007 333.60 287.61 0.57 0.48 

10 1280 329.06 287.43 0.55 0.48 
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Table S3-23 Top 10 MOF materials with highest delivery volumetric adsorption between 

233K, 75bar and 298K, 5bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1145 349.93 317.12 0.71 0.64 

2 1089 348.47 317.02 0.73 0.66 

3 1162 351.32 316.95 0.69 0.62 

4 1213 345.82 316.80 0.74 0.68 

5 1101 347.31 316.27 0.73 0.66 

6 1031 350.31 315.74 0.68 0.62 

7 1297 349.10 312.37 0.60 0.53 

8 1064 350.68 312.14 0.66 0.59 

9 1111 347.75 311.70 0.68 0.61 

10 1055 351.69 311.62 0.63 0.56 

 

Table S3-24 Top 10 MOF materials with highest volumetric delivery amount at 298K and 

35bar. 

Rank ID ΓTot(cm3/cm3) ΓDel
*(cm3/cm3) ΓTot(g/g) ΓDel

*(g/g) 

1 1226 248.54 205.71 0.29 0.24 

2 2030 255.60 204.80 0.16 0.13 

3 2006 244.94 203.55 0.28 0.23 

4 2010 245.07 202.24 0.29 0.24 

5 2004 247.30 201.24 0.26 0.21 

6 1116 240.07 200.88 0.30 0.25 

7 2013 240.07 200.88 0.30 0.25 

8 1156 239.85 200.69 0.29 0.24 

9 2017 239.85 200.69 0.29 0.24 

10 1152 234.74 198.94 0.29 0.25 

 

*:Γdel means delivery amount between this condition and 358K and 5bar, so as the 

following tables. 
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Table S3-25 Top 10 MOF materials with highest volumetric delivery amonut at 298K and 

70bar 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1062 270.37 246.24 0.38 0.35 

2 1050 274.03 245.23 0.37 0.33 

3 2119 274.03 245.23 0.37 0.33 

4 2225 271.27 245.08 0.33 0.30 

5 1023 274.00 244.77 0.39 0.34 

6 2157 274.00 244.77 0.39 0.34 

7 1048 270.22 244.75 0.38 0.35 

8 1036 268.40 244.35 0.39 0.35 

9 1108 271.09 243.89 0.37 0.33 

10 1072 269.32 243.39 0.37 0.34 

 

 

Table S3-26 Top 10 MOF materials with highest volumetric delivery amount at 298K and 

100bar.  

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1046 287.00 264.24 0.42 0.38 

2 1026 284.87 263.91 0.45 0.41 

3 1011 285.65 263.78 0.44 0.41 

4 1013 284.62 263.71 0.45 0.42 

5 1017 289.22 263.16 0.42 0.38 

6 1029 287.08 263.04 0.43 0.39 

7 1020 285.50 262.89 0.43 0.40 

8 1036 286.88 262.83 0.41 0.38 

9 1072 288.46 262.53 0.40 0.36 

10 1061 284.22 262.50 0.42 0.39 
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Table S3-27 Top 10 MOF materials with highest volumetric delivery amonut at 298K and 

150bar 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1026 306.80 285.84 0.48 0.45 

2 1011 307.17 285.30 0.48 0.44 

3 1028 306.69 283.90 0.47 0.43 

4 1020 306.07 283.46 0.47 0.43 

5 1013 303.68 282.77 0.48 0.45 

6 1019 305.35 282.44 0.47 0.43 

7 1046 304.16 281.41 0.44 0.41 

8 2225 307.15 280.97 0.38 0.35 

9 1045 302.26 280.71 0.45 0.42 

10 1033 298.57 280.33 0.50 0.47 

 

 

Table S3-28 Top 10 MOF materials with highest volumetric delivery amonut at 298K and 

170bar.   

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1197 310.00 289.66 0.48 0.45 

2 1048 315.04 289.58 0.44 0.41 

3 1011 310.58 288.70 0.48 0.45 

4 1028 311.20 288.41 0.48 0.44 

5 1019 311.00 288.09 0.47 0.44 

6 1026 308.58 287.61 0.48 0.45 

7 1013 308.27 287.36 0.49 0.46 

8 1037 304.33 287.06 0.56 0.53 

9 1031 302.22 286.56 0.59 0.56 

10 1003 304.17 286.46 0.56 0.53 
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Table S3-29 Top 10 MOF materials with highest volumetric delivery amount at 298K and 

200bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1011 319.00 297.12 0.50 0.46 

2 1032 316.08 297.12 0.54 0.51 

3 1031 312.35 296.69 0.61 0.58 

4 1197 315.71 295.38 0.49 0.46 

5 1111 311.19 295.05 0.61 0.58 

6 1007 314.32 294.65 0.55 0.52 

7 1025 310.70 294.64 0.60 0.57 

8 1064 311.57 294.58 0.58 0.55 

9 1020 316.85 294.24 0.48 0.45 

10 1041 309.61 294.01 0.61 0.58 

 

 

Table S3-30 Top 10 MOF materials with highest volumetric delivery amount at 298K and 

250bar.  

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1031 324.64 308.98 0.63 0.60 

2 1111 323.16 307.02 0.63 0.60 

3 1089 321.52 306.96 0.67 0.64 

4 1030 323.31 306.78 0.62 0.59 

5 1032 325.69 306.73 0.56 0.52 

6 1101 321.07 306.67 0.67 0.64 

7 1011 328.23 306.36 0.51 0.48 

8 1034 322.00 306.18 0.63 0.60 

9 1086 320.95 305.46 0.65 0.62 

10 1213 318.79 305.21 0.69 0.66 
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Table S3-31 Top 10 MOF materials with highest volumetric delivery amount at 233K and 

35bar. 

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1028 333.78 310.98 0.51 0.47 

2 1011 330.22 308.34 0.51 0.48 

3 1019 329.79 306.88 0.50 0.47 

4 1046 329.38 306.62 0.48 0.45 

5 1017 332.23 306.17 0.49 0.45 

6 1048 331.16 305.69 0.47 0.43 

7 1029 329.70 305.66 0.49 0.46 

8 2225 331.69 305.50 0.41 0.38 

9 1045 327.02 305.47 0.49 0.45 

10 1043 333.69 305.31 0.46 0.42 

 

 

Table S3-32 Top 10 MOF materials with highest volumetric delivery amount at 233K and 

45bar.  

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1028 343.96 321.16 0.53 0.49 

2 1026 342.07 321.10 0.54 0.50 

3 1197 339.13 318.80 0.53 0.50 

4 1011 340.06 318.19 0.53 0.50 

5 1061 338.77 317.05 0.50 0.47 

6 2225 342.62 316.44 0.42 0.39 

7 1046 339.18 316.43 0.49 0.46 

8 1017 342.42 316.36 0.50 0.46 

9 1019 338.66 315.76 0.52 0.48 

10 1048 341.13 315.66 0.48 0.44 
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Table S3-33 Top 10 MOF materials with highest volumetric delivery amount at 233K and 

75bar.  

Rank ID ΓTot(cm3/cm3) ΓDel(cm3/cm3) ΓTot(g/g) ΓDel(g/g) 

1 1162 351.32 336.14 0.69 0.66 

2 1026 356.78 335.82 0.56 0.53 

3 1011 357.40 335.52 0.56 0.52 

4 1007 354.96 335.29 0.62 0.59 

5 1145 349.93 335.26 0.71 0.68 

6 1031 350.31 334.65 0.68 0.65 

7 1019 357.54 334.63 0.55 0.51 

8 1001 355.91 334.21 0.62 0.58 

9 1071 352.18 334.07 0.61 0.58 

10 1087 352.23 333.95 0.62 0.59 
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3.5 Nitrogen-Doped Porous Aromatic Frameworks for  Enhanced CO2 Adsorption 

Abastract 

Recently synthesized porous aromatic frameworks (PAFs) exhibit extremely high 

surface areas and exceptional thermal and hydrothermal stabilities. Using computer-aided 

design, we propose new PAFs, designated as NPAFs, by introducing nitrogen-containing 

groups to the biphenyl unit and predict their CO2 adsorption capacities with grand 

canonical Monte Carlo (GCMC) simulations. Among various NPAFs considered, one with 

imidazole groups shows the highest adsorption capacity for CO2 (11.5 wt% at 1 bar and 

298 K), in comparison with 5 wt% for the parent PAF (PAF-1) at the same condition. At 

higher pressures (around 10 bar), however, another NPAF with pyridinic N groups 

performs much better than the rest. This study suggests that adding N functionality to the 

organic linkers is a promising way to increase CO2 adsorption capacity of PAFs at ambient 

condition.  

3.5.1. Introduction 

CO2 capture and sequestration (CCS) is pitovally important in addressing the issue 

of global warming164,165. The U.S. Department of Energy (DOE) launched a carbon 

sequestration program in 2009 aiming to achieve 90% CO2 capture at an increase in the 

cost of electricity of no more than 35% for the post-combustion process by 2020. One 

promising way to meet the DOE target is by finding proper porous materials that offer easy 

release of CO2 compared to the conventional reactive sorbents such as aqueous ammonia 

and amine functionalized solids. Porous materials with a wide variety of topologies, pore 

sizes, and functionalities have been explored for CO2 capture, including porous carbons, 
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zeolites, metal-organic frameworks, and zeolitic-imidazolate frameworks142,164,166,167. For 

example, Yaghi et al. reported ultra-high porosity MOF-210 which has a BET surface area 

(6240 m2/g), one of the highest among all reported MOF materials, and exhibits  a CO2 

uptake of 2396 mg/g at 50 bar and 298K168. Long et al. reported Mg-MOF-74, which shows 

high CO2/CH4/H2 selectivity, even surpassing zeolite 13X – a commonly available and 

used microporous material for pressure swing adsorption169.  

 One of the major drawbacks of existing nanoporous MOFs is their limited 

physicochemical stability. Recently, Ben et al. developed a new class of stable porous 

materials, porous aromatic frameworks (PAFs), with diamond-like structures held together 

by strong C-C covalent bonds170. Unlike most MOFs, PAF-1 shows exceptional thermal 

and hydrothermal stabilities. More interestingly, the PAF-1 framework provides a perfect 

platform for introducing functionalities on its biphenyl units. Zhou et al. synthesized a 

series of porous polymer networks (PPNs) 171-173, and among them, sulfonate-

functionalized PPN-6, which is the same as PAF-1, shows high CO2 uptake (~13 wt% at 

298 K and 1 bar) 174. Babarao et al. investigated PAFs functionalized with polar organic 

groups for CO2 adsorption and separation, and found that the tetrahydrofuran- and ether-

functionalized PAF-1 structures have high adsorption capacity for CO2 at ambient 

conditions175. Their simulation also suggested that imine-linked interpenetrated 

frameworks with dimaondoid strucutres would have high CO2 uptake176. Cao et al. 

investigated the CO2 storage and separation performance of new PAFs with longer phenyl 

ring chains, and found the selectivity property is closely related to the difference of isosteric 

heats of the gas components but independent with the molar fraction at zero pressure177.   
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The rich N-containing groups, however, have not been systematically investigated 

as potential functional groups in PAF frameworks for enhancing CO2 adsorption, even 

though N-doped carbons have shown great potential for CO2 capture178-181. For instance, 

newly synthesized microporous N-doped carbon materials exhibit a high CO2 uptake 

capacity up to 6.9 mmol/g at 273 K/1 bar and 4.4 mmol/g at 298 K/1 bar182 and  a CO2/N2 

selectivity of 16 at 298 K and 1 bar183. How N-functionalized PAFs will perform against 

these reported N-doped carbons would be very interesitng to find out. To that end, in this 

work we use PAF-1 as a template to examine systematically the effect of the N-containing 

functional groups on CO2 adsorption capabilities of this class of materials.  

3.5.2. Molecular models and simulation methods 

To construct new NPAFs, we propose a large number of organic linkers as shown 

in Figure 3-24. All these organic linkers contain a biphenyl framework with different 

nitrogen functional groups. The NPAF structures were constructed by inserting those target 

linkers between the C−C covalent bonds in diamond structure as shown in Figure 3-25. 

The moelcular framework is then structurally pre-optimized by applying the UFF force 

field60. The final structures were obtained by geometry optimization with VASP184.  

Moelcular simulations of gas adsorption in various NPAFs were based on a 

combination of the pairwise site-site Lennard-Jones (LJ) 12-6 terms and Coulombic 

potentials for the interactions between gas-adsorbent and gas-gas molecules: 

                            (86) 
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The Lorentz-Berthelot combination rule was used for constructing parameters for different 

atom pairs. 

            In simulations of CO2 adsorption in NPAF frameworks, we used a 2x2x2 supercell 

and a rigid model for the solid crystal atoms. Since the flexibility of the molecular 

framework has only a marginal effect on the adsorption of small gas molecules. The 

Lennard-Jones potential parametes of NPAF frameworks were from the DREIDING force 

field185, which has been proved before to be accurate for predicting gas adsorption in MOFs 

and PAFs9, 18. Recently, periodic DFT calculation based parial charge derivation methods 

are also introduced, for example, REPEAT186, but haven’t shown superior performance 

compared to common cluster fragment models in porous materials cases, like IRMOF-1. 

So here because of the large number of atoms in a NPAF unit cell, we still calculated the 

atomic partial charges from the fragmental models cleaved from the NPAF crystal structure 

as shown in Figure S3-2 in Supporting Information. The dangling bonds were saturated by 

hydrogen atoms. The fragment structure optimization was based on quantum-mechnical 

calculations using Gaussian 09 with the PW91 functional and the 6-31G(d,p) basis set187. 

Meanwhile the atomic charges were derived by fitting to the electrostatic potential using 

the ChelpG scheme188, which has been sucessfully used in the previous simulation work19. 

Table S3-34 in Supporting Information shows all atomic charges of the proposed NPAF 

frameworks. To describe the interactions between the gases and adsorbents, we used the 

well-established potentials in previous work175. For both CO2 and N2 molecules, 3-site 

models were used. The C-O bond length in CO2 is 1.18 Å and the bond angle O-C-O is 

180º. The charges on C and O atoms were +0.576e and -0.288e, respectively, while 

file:///C:/My%20Work%20Documents/NAS/Thesis/Chapter%203_Jia_0320_NEnd.doc%23_ENREF_14
file:///C:/My%20Work%20Documents/NAS/Thesis/Chapter%203_Jia_0320_NEnd.doc%23_ENREF_27
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εC/kB=29.66 K, σC=2.789 Å and  εO/kB=82.96 K, σC=3.011 Å. The model reproduced the 

isosteric heat and isotherm of CO2 adsorption in silicate. N-N bond length in N2 is 1.10 Å, 

and a -0.482e charge on each N atom while +0.964e charge on the center-of-mass, which 

were fitted to the experimental bulk properties of N2.  Lennard-Jones parameter is only 

valid on N atoms, εN/kB=39.89 K, σN=3.385 Å.  

The gas adsorption in various NPAFs was simulated by the grand canonical Monte 

Carlo (GCMC) method58. The non-bonded interactions were evaluated with a spherical 

cutoff of 12.9 Å (or half of the simulation box if rcut is less than 12.9 Å), and the Coulombic 

interactions were calculated using the Ewald method189. 3x106 trial moves were used to 

reach the equilibrium state in a typical GCMC simulation, and subsequent 3x106 moves 

were collected for doing ensemble averages. Three types of trial moves were attempted in 

the GCMC simulations: insertion/deletion, displacement and rotation of gas molecules in 

the simulation box. Chemical potentials applied in the simulation works were calculated 

by Widom insertion method, carried under isothermal-isobaric (NPT) ensemble. The data 

of each simulation trajectory was divided into 10 blocks in order to estimate statistical 

uncertainties. Unless specifically mentioned, the statistical uncertainty was generally 

smaller than the symbol sizes presented in the figures. All MC simulations were carried 

out by the Towhee 7.0.4 program59.  

3.5.3. Results and discussion 

We first validated the above simulation procedure by comparing the predicted and 

experimental CO2 adsorption data for PAF-1 at 298 K below 10 bar170. Figure 3-26 shows 

that the simulation data from our charge model reproduce the experimental results almost 
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quantitatively, especially at low pressures (below 4 bar).  At high pressures, our model 

tends to slightly overestimate the amount of CO2 adsorption. Because a precise 

measurement of the adsorption isotherm is experimentally challenging and CO2 capture is 

usually performed at ambient conditions, our method should be sufficiently accurate to 

predict the relative performance of different porous materials.  

         Figure 3-27 and 3-28 shows the GCMC results for CO2 adsorption isotherms in 

various NPAFs at 298K. At low pressure, the total amount of gas adsorption is mainly 

determined by the guest-framework interaction energy. As a result, N-containing 

functional groups with more polarizable electron density distributions are expected to 

provide stronger interaction with CO2. This is why all NPAFs show better CO2 adsorption 

capacity than the parent PAF (PAF-1). It should be noticed that according to recently 

quantum mechanics study by Zhang et al.190, among all the nitrogen doped 6-atom 

heterocyclic rings, considering one CO2 molecular, pyridine has the strongest interaction 

with CO2; when the number of CO2 molecules increases, due to the CO2-CO2 interaction, 

pyrimidine shows the larger binding energy, while the rings with three nitrogen atoms are 

the least preferred.  This suggests heterocyclic rings with two N atoms may be an optimal 

choices for CO2 capture purpose, which could be seen in our results.    

              To explain this trend, in Table 3-6 we explore the correlation between NPAFs 

structure properties and CO2 adsorption amount. NPAF-11 displays the best adsorption 

capacity under 1 bar (11.5 wt% compared to 5.1 wt% of PAF-1), since it has the largest 

heat of adsorption (22.1 kJ/mol) and second smallest free volume (66.2%) amount all the 

NPAFs. At ambient condition, it is a clearly interaction strength controlling process, the 
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CO2 storage capacity is increasing with heat of adsorption, while decreasing with void 

fraction, since larger free volume means less binding sites per unit space. In the similar 

way, along with void fraction, the adsorption amount increases with both decreasing pore 

limiting diameter (PLD) and maximum pore diameter (MPD), but decreases with 

decreasing density, which also means less amount of favorite binding sites. One can see 

that NPAF-5, 11, 12 take the largest amount of CO2, suggesting that the imidazole and 

tetrazole groups are the most efficient with respect to enhancing the CO2 adsorption 

capacity. This conclusion is also supported by previous quantum mechanical calculations 

for the interaction between CO2 and N-containing heterocycles191. It is also known that 

adding tetrazole groups helps increase CO2 adsorption capacity of polymers with intrinsic 

micropores192. Moreover, recently Zhu et al. synthesized a nitrogen-doped porous material 

called triazole-functionalized triazine framework and obtained an experimental CO2 

adsorption capacity of 6.0 wt% at 298 K and 1 bar179. This triazine framework looks similar 

to our NPAF-2.  

When the pressure increases, the total amount of gas adsorption depends on both 

the guest-framework interaction energy and the free volume. The latter becomes a 

dominant factor at high pressure. As shown in Figure 3-28, NPAF-11 provides the highest 

absolute adsorption amount up to 6 bar due to strong guest-framework interactions. But as 

the pressure further increases, most of the favorable binding sites are saturated and the free 

volume takes over as the dominant factor, which could be seen from Table 3-6. We could 

see that different from low pressure (1bar), at high pressure (10bar), the CO2 adsorption 

amount is decreasing with heat of adsorption and density but increasing with void fraction, 
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PLD and MPD. That’s why NPAF-2 shows the best performance at higher pressures (126 

wt% at 10 bar), because it has one of the largest void fraction (86.1%) and the N polar 

functional groups provide it a much larger heat of adsorption (21.7 kJ/mol) compared to 

PAF-1 (15.9 kJ/mol) and NPAF-1 (19.4 kJ/mol), which increases the interaction strength 

with CO2.   

             Since the ambient conditions (298 K and 1 bar) are most relevant to post-

combustion carbon capture, our simulation suggests that the best NPAFs can offer CO2 

adsorption capacities of about 10-11 wt% at such conditions. How does this performance 

of NPAFs compare with recently reported N-doped porous materials for carbon capture? 

Sevilla et al. prepared N-doped polypyrrole-based porous carbons and found that the 

600oC-activated sample has a N content of 10 wt% and CO2 uptake of 15 wt% at 298 K 

and 1 bar193. Zhu et al. synthesized N-doped porous carbonaceous membranes (N-PCM) 

from trimerization reactions of acetyl compounds and found that their 550oC-activated 

material has a N content of 3.4 at% and a CO2 uptake of 7.5 wt% at 298 K and 1 bar179. El-

Kaderi and coworkers have synthesized porous benzimidazole-linked polymers 

(BILP)194,195. Their BILP-4 material is also based on a tetrahedral model structure for 3D 

linking, similar to the NPAFs in this study. BILP-4 displays an impressive CO2 uptake of 

16 wt% at 1 bar and 298 K194. We found that our predicted CO2 capacities for NPAFs are 

in line with these experimental CO2 uptakes of various N-containing porous materials, 

confirming the role of N in enhancing CO2 uptake.  

           For post-combustion CO2 capture purpose, we also studied the gas mixture CO2/N2 

adsorption selectivity S(i/j) at 298K shown in Figure 3-29. Here, according to previous 
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work, we defined i
ij

j

x
S

x
  , where xi is the gas compound mole density in adsorption phase, 

where the mole ratio of CO2:N2 is 15:85. All the materials had nearly constant selectivity 

ration under 1 bar. Since the new organic linkers provided stronger interaction with CO2 

which lead to higher selectivity than original PAF-1. In general, they have the same relative 

order as in pure CO2 storage prediction under 1 bar, since this is still in the interaction 

strength controlling area, those having larger heat of adsorption of carbon dioxide would 

have better selectivity. Another reason is those with stronger interaction with CO2 also 

have larger difference between PLD and MPD, for example, the PLD of NPAF-11 is only 

5.9Å while the PLD of NPAF-2 is 10.7Å, even much larger than the MPD of NPAF-11 

(9.6Å), which means there is nearly no geometric barrier for N2 and CO2 diffuse in the pore 

channels. NPAF-11 is still the best one, beside one of the largest heat of adsorption in this 

condition, it also has the smallest PLD (5.9 Å) and second largest difference between PLD 

and MPD (3.5 Å). 

3.5.4. Conclusion  

           We proposed a series of new porous aromatic frameworks (NPAFs) with N-doped 

heterocyclic functional groups for enhancing CO2 adsorption at ambient conditions. A 

reasonably good agreement was obtained between the simulation and experimental data 

for CO2 adsorption in crystalline PAF-1. Among those new hypothetic functional NPAFs, 

NPAF-11 with imidazolic groups shows the highest adsorption capacity for CO2 (11.6 wt%) 

at 1 bar and 298 K, a 130% increase upon that of the parent PAF-1. This study reveals that 
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adding N-doped heterocyclic groups to a porous framework such as PAF-1 greatly 

enhances its CO2 uptake.  
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Figure 3-24. N-containing organic linkers used to construct NPAFs (Figure 3-25). 
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Figure 3-25. Schematic of the NPAF-generation strategy: Every C-C bond in the 

diamond structure (left) is replaced by a N-containing biphenyl-like linker (middle) to 

arrive at the desired NPAF structure (right).  
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Figure 3-26. Comparison of experimental and simulation data (this work) for CO2 

adsorption isotherms at 298K under 10 bar170 
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Figure 3-27. Comparison of NPAFs CO2 adsorption isotherms at 298K under 1 bar; the 

results for PAF-1 and NPAF-1 almost exactly overlap each other.  
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Figure 3-28. Comparison of NPAFs CO2 adsorption isotherms at 298K and up to 10 bar. 
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Figure 3-29. Comparison of NPAFs gas mixture adsorption selectivity S(i/j) at 298K, the 

mole ratio between CO2 and N2 is 15:85.  

*:The curves of PAF-1 and NPAF-1 overlap with each other. 
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Table 3-6. Correlation between NPAFs structure properties and CO2 adsorption 

performance at 298K and different pressures. a) Crystal density in g/cm3; b) Void fraction 

in percentage; c) Pore limiting diameter in Å; d) Maximum pore diameter in Å; e) Heat of 

adsorption in kJ/mol; f) Adsorption amount in wt%. b,c and d used helium as probe.134 

Name Densitya Voidb PLDc MPDd Qst1bar
e Γ1bar

f Qst10bar
e Γ10bar

f 

PAF-1 0.312 0.866 10.1 12.9 14.04 5.08 15.88 76.68 

NPAF-1 0.332 0.864 10.1 12.8 13.94 5.12 19.42 81.29 

NPAF-2 0.354 0.861 10.7 12.5 14.60 6.01 21.70 125.77 

NPAF-3 0.354 0.856 10.2 12.3 14.32 5.34 20.05 92.12 

NPAF-4 0.454 0.789 7.9 10.5 19.15 7.07 24.38 89.83 

NPAF-5 0.447 0.800 8.2 10.9 21.46 10.25 23.98 94.09 

NPAF-6 0.450 0.812 9.1 11.8 17.55 7.67 23.56 104.67 

NPAF-7 0.589 0.695 7.2 9.2 20.80 7.01 25.92 63.53 

NPAF-8 0.596 0.708 7.5 9.3 20.95 7.70 24.32 66.24 

NPAF-9 0.589 0.742 8.6 10.4 19.16 8.77 24.82 86.99 

NPAF-10 0.568 0.653 5.9 9.4 21.81 8.88 29.21 64.35 

NPAF-11 0.572 0.662 5.9 9.6 22.12 11.54 29.87 78.59 

NPAF-12 0.580 0.684 6.7 10.2 20.80 10.43 27.44 77.79 
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Support Information 

Figure S3-2. Charge models for NPAFs in GCMC adsorption, a) PAF-1; b) NPAF-1; c) 

NPAF-2; d) NPAF-3; e) NPAF-4; f) NPAF-5; g) NPAF-6; h) NPAF-7; i) NPAF-8; j) 

NPAF-9; k)NPAF-10; l) NPAF-11; m) NPAF-12 
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Table S3-34. Atomic charge parameters for GCMC simulation, obtained with PW91/6-

31G* and ChelpG method in Gaussian09 

PAF-1 NPAF-1 NPAF-2 NPAF-3 

Type 

Charge 

( e ) Type Charge ( e ) Type Charge ( e ) Type Charge ( e ) 

C -0.11 C 0.02 C 0.37 C -0.67 

C1 0.16 C1 -0.04 C1 -0.39 C1 0.45 

C2 -0.12 C2  -0.02 C2  0.47 C2  0.15 

H2 0.06 H2  0.06 H2  0.00 H2  0.05 

C3 -0.13 C3 0.27 N -0.63 N1 -0.39 

H3 0.10 H3  0.01 C3 0.61 C3 0.03 

C4 0.04 C4 -0.16     H3 0.08 

    H4  0.10     N2 -0.42 

    N -0.50     C4 0.23 

    C5 0.28       
 

NPAF-4 NPAF-5 NPAF-6 

Type Charge ( e ) Type Charge ( e ) Type Charge ( e ) 

C 0.62 C 1.18 C13 0.78 

C1 -0.20 C1 -0.40 C1 -0.41 

C2 0.20 C4 -0.12 C4 -0.01 

C3 0.03 H4 0.12 H4 0.06 

C4 -0.09 C5 -0.15 C5 -0.13 

H4 0.05 H5 0.14 H5 0.10 

C5 -0.15 C2 0.44 C2 0.37 

H5 0.09 C3 0.05 C3 -0.08 

C7 -0.26 N1 -0.56 N1 -0.16 

H7 0.09 C13 0.34 N2 -0.26 

C8 -0.05 H13 0.11 N3 0.09 

H8 0.13 N2 -0.41 H1 0.20 

N1 -0.28 H1 0.31 C6 0.15 

H1 0.28 C6 0.15 C7 -0.20 

C6 0.01 C7 -0.10 C12 -0.26 

    C12 -0.80   
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NPAF-7 NPAF-8 NPAF-9 

Type Charge ( e ) Type Charge ( e ) Type Charge ( e ) 

C 1.17 C 1.64 C9 2.44 

C1 -0.38 C1 -0.59 C1 -1.27 

C2 0.24 C2 0.23 C2 0.73 

C3 -0.12 C3 0.05 C3 -0.20 

C4 0.00 N1 -0.46 C4 0.12 

C5 0.14 C7 0.17 C5 -0.18 

C7 -0.24 H7 0.09 C6 0.25 

H7 0.09 N2 -0.20 C7 -0.07 

C8 -0.07 H1 0.20 C8 -0.34 

H8 0.13 C6 -0.01 C10 1.05 

N1 -0.24     N1 -0.19 

H1 0.22     N2 -0.27 

C6 0.03     N3 0.14 

     H1 0.16 

NPAF-10 NPAF-11 NPAF-12 

Type Charge ( e ) Type Charge ( e ) Type Charge ( e ) 

C 0.08 C -0.03 C 0.04 

C1 0.00 C1 0.11 C1 -0.05 

C4 0.00 C4 -0.08 C4 0.03 

H4 0.05 H4 0.07 H4 0.04 

C5 -0.23 C5 -0.14 C5 -0.19 

H5 0.10 H5 0.09 H5 0.10 

C2 -0.10 C2 -0.17 C2 0.16 

H2 0.04 H2 0.03 H2 0.01 

C3 -0.04 C3 0.02 C3 -0.33 

C7 0.09 C7 0.03 C7 0.49 

C8 -0.17 C8 0.12 N1 -0.25 

H8 0.12 H8 0.09 N2 -0.15 

C9 -0.18 N1 -0.51 N3 -0.13 

H9 0.12 C9 0.27 N4 -0.01 

C10 -0.01 H9 0.07 H1 0.13 

H10 0.09 N2 -0.32 C6 0.13 

N1 -0.28 H1 0.28   

H1 0.29 C6 0.06   

C6 0.11     
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Chapter 4. Fast Screening Method for Predicting Hydration Free Energy 

4.1 High-throughput prediction of the hydration free energies of small molecules from 

a classical density functional theory 

ABSTRACT 

The classical density functional theory (DFT) is proposed as an efficient computational 

tool for accurate prediction of the solvation free energies of small molecules in liquid water 

at the ambient condition. With the solute molecules represented by the AMBER force field 

and the TIP3P model for the solvent, the new theoretical method predicts the hydration free 

energies of 500 neutral molecules with average unsigned errors of 0.96 kcal/mol and 1.04 

kcal/mol in comparison with the experimental and simulation data, respectively. The DFT 

predictions are orders of magnitude faster than conventional molecular dynamics 

simulations and the numerical performance can be further improved by taking into account 

the molecular flexibility of large solutes. 
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             Solvation free energy plays a key role in solution chemistry and its theoretical 

prediction often represents a bottleneck in understanding important chemical and 

biological processes in water including protein-ligand bindings1,2. The solvent-solute 

interactions entail complex microscopic details that make a reliable prediction of solvation 

properties a serious computational challenge. The conventional methods for solvation free 

energy calculations are based on either the solvent-implicit models or the solvent-explicit 

models. The former are usually constructed from knowledge-based macroscopic 

considerations, while the latter often start with a semi-empirical force field to represent the 

solvent-solvent and solvent-solute interactions3. The continuous and solvent-explicit 

methods are complementary and their choices for practical applications often reflect a 

compromise of the computational cost and the precision in microscopic details.  

With the solvent molecules depicted as a dielectric continuum, an implicit-solvent 

model describes the solvation free energy in terms of the geometric measures of the solute-

solvent boundary, such as the solvent-accessible surface (SAS), and various energetic 

contributions due to the solute-solvent electrostatic and van der Waals interactions4. A 

recent example for the implicit-solvent approach was provided by Boyer and Bryan.5 who 

correlated the hydration free energy with the SAS and the partial charges of the solute 

molecules. Impressive fitting of experimental results was achieved with a mean absolute 

error of 0.513 kcal/mol for the hydration free energies of diverse chemical species. While 

application of a continuous model drastically oversimplifies solvent-solute interactions and 

thus reduces the computational cost for predicting the solvation free energy and solvent-

mediated interactions, it neglects the local solvent inhomogeneity and the steric effects 
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affiliated with individual solvent molecules. Recently, Nakamura et al.6 introduced an 

elegant procedure to account for the local dielectric inhomogeneity near the solute using 

field-theoretic techniques. The new theoretical method predicts ionic solvation free 

energies in both single-component liquids and binary liquid mixtures in excellent 

agreement with the experimental data. The general applicability of this method to more 

complicated chemical systems is yet to be established.  

The explicit-solvent models, which have been widely used in molecular simulation 

and theoretical investigation of solvation, provide a more realistic representation of the 

solute-solvent interactions on the length scale pertinent to the solvent-solute interactions. 

Recent years have witnessed rapid progresses in development of novel theoretical and 

simulation methods for efficient predictions of solvation free energies with explicit 

solvents. Analytical predictions of solvation free energies are mostly based on the integral-

equation theories 7,8 or the classical density functional methods9-15. In particular, the 

molecular density functional theory (MDFT) of solvation recently proposed by Borgis and 

coworkers offers an excellent platform to study solvation and solvent-mediated 

interactions16-18. However, the MDFT as well as molecular Ornstein-Zernike (MOZ) theory 

in the integral-equation theories requires multi-dimensional density profiles of the solvent 

molecules which is computationally demanding. And there have been several reports on 

large-scale simulation of the solvation free energies. One of the early examples was given 

by Duff and Jorgensen19 who calculated the solvation properties of over 200 organic solutes 

in aqueous and organic solutions using Monte Carlo (MC) simulation. The simulation 

results were used to establish empirical correlations between the solvation properties and 
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a few “descriptors” similar to those used in a continuous model. More recently, Mobley et 

al. 20 calculated the hydration free energies for 504 small organic molecules from molecular 

dynamics (MD) simulations. The simulation results yield a mean absolute error of 1.24 

kcal/mol in comparison with the experimental data. Different from the popular continuous 

model proposed by Chothia21, the simulation studies indicate that the hydration free 

energies of a nonpolar solute is not simply proportional to the surface area or the solvent-

excluded volume. While simulation of hydration free energies with an explicit solvent is 

in general extremely time consuming, advanced simulation techniques have been 

developed to reduce the computational cost. For example, Okur et al. 22 proposed a hybrid 

procedure to implement the replica exchange molecular dynamics (REMD). The modified 

parallel tempering method is able to reproduce the explicit-solvent results but with much 

reduced simulation time.  

In comparison with the simulation methods, a major advantage of liquid-state 

theories is that it is able to predict thermodynamic properties including solvation free 

energy with little computational cost. While previous publications are often focused on 

calibration of theoretical developments, yet to be established is their capability for high 

throughput computations where the numerical efficiency becomes utmost importance. In 

this work, we demonstrate such capability by predicting the solvation free energies for 500 

small molecules in water using a recently developed classical density functional theory 

(DFT)14. We show that the theoretical method is able to reproduce the simulation data with 

the accuracy comparable to that inherited by the molecular models.   
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To predict hydration free energies at an ambient condition, we consider a large set 

of solute molecules that were studied before by Mobley et al. with both continuous and 

solvent-explicit models20,23. As in the solvent-explicit MD simulation, the DFT 

calculations are based on the AMBER force field24 for the solute molecules and the solvent 

is represented by the TIP3P water25. We use the conventional Coulomb and the Lennard-

Jones (LJ) potentials with the Lorentz-Berthelot mixing rule to describe the non-bonded 

interactions.  All solute molecules are assumed to have a rigid conformation with the 

atomic coordinates obtained from the MD simulation20. The DFT calculations were 

performed in a (30 Å)3 ~ (40 Å)3 cubic box with the atomic density profiles of the solvent 

molecules discretized onto a 1283 lattice. (we have also test a few cases by using larger 

number of discretization points and the results are similar).The computational domain 

varies slightly for different solutes in accordance with their size. The supporting material 

provides the details of the theoretical and numerical methods. 

Figure 4-1(a) compares the DFT predictions with the experimental results for the 

hydration free energies of 500 small molecules. The numerical data are listed in Table S4-

1 of Supporting Information. Overall the theoretical predictions agree well with the 

experimental data, in particular for hydrophobic solutes, i.e., those molecules with a 

positive or small hydration free energy. For all systems considered, the average unsigned 

error () is 0.96 kcal/mol and the root mean square (RMS) deviation is 1.29 kcal/mol. The 

numbers are very close to those from the MD simulations, = 1.03 kcal/mol and RMS = 

1.26 kcal/mol, respectively20.   
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The good performance of the theoretical method is in part due to the cancelation of 

errors introduced by in the AMBER force field and approximations for formulation of the 

DFT functional. The latter can be examined by a direct comparison of the DFT and MD 

simulation results. As shown in Figure 4-1(b), the DFT accords with the simulation20 to an 

extent similar to that with the experimental data. The average unsigned error is 1.04 

kcal/mol (RMS = 1.47 kcal/mol), indicating that the numerical error introduced by the DFT 

is statistically unsubstantial in comparison to that intrinsically affiliated with the solvent-

explicit molecular force field.  

A closer examination of Figures 4-1(a) and 4-1(b) suggests that the theoretical 

performance deteriorates slightly as the solvation free energy becomes more negative. We 

suspect that the increased discrepancy for the hydrophilic solutes is related to the 

approximations used in the DFT calculations. All procedures in DFT are exact except the 

bridge functional, which may be the key reason that generated the deviations.  In 

formulation of the free-energy density functional, we utilize a hard-sphere model to 

represent the bridge functional for water wherein the hard-sphere diameter of the reference 

system was calibrated with the solvation free energy for methane14. Because the local 

structure of water molecules is sensitive to the solute hydrophobicity, the parameter 

obtained from a hydrophobic solute could become less reliable for hydrophilic solutes. As 

the bridge functional usually contributes as a negative correction of the solvation free 

energy,14 a smaller hard-sphere diameter for hydrophilic solutes would result in a higher 

solvation free energies. As the effective hard-sphere diameter for a hydrophilic solute is 

smaller than that for a hydrophobic solute due to the enhanced solute-solvent attraction, 
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the approximate bridge functional from the hard-sphere reference system explains at least 

in part why the DFT underestimates the solvation free energies of most hydrophilic solutes 

in comparison with the simulation data.  

We should indicate that the theoretical performance of the DFT is not entirely 

related to the polarity or hydrophobicity of solute molecules. To examine the effect of the 

solute polarity, we present in Figure 4-2 the distributions of the numerical errors affiliated 

with the DFT predictions relative to the experiment and MD simulation. Neither case 

shows a significant correlation between the DFT performance and the dipole moments of 

the solute molecules. Apparently, some solutes have a large dipole moment but a positive 

hydration free energy. In other words, the dipole moment is not a good indication of the 

hydrophobicity of a solute molecule.  

In addition to the hydrophobicity of solute molecules, we have inspected possible 

correlations between the numerical errors and the solute flexibility. The hydration free 

energy of a flexible molecule, sF , depends on its bond flexibility both in the solution and 

in vacuum:  

 
0

ln exp[ ( )]sF F X      (87) 

where B1/ ( )k T  , Bk stands for the Boltzmann constant, T is the absolute temperature, 

( )F X  is the solvation free energy of a solute conformation X  , and 0    denotes the 

ensemble average of the solute conformations in vacuum.  As mentioned above, the DFT 

calculations are based on rigid conformations of the solute molecules generated by the MD 

simulation in water. To examine the effect of the molecular flexibility on the solvation free 
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energy, we picked 33 solutes corresponding to the worst DFT predictions in comparison 

with the experimental data and recalculated their solvation free energies using Eq.87. The 

ensemble average was estimated from 12 random conformations for each solute sampled 

from MD simulation in vacuum. Although 12 random conformations may be not enough 

to get the conformational averaged solvation free energy precisely, it at least gives us the 

insight of dependence between solvation free energy and flexibility.  Figure 4-3 shows the 

DFT results for 33 outlying solutes in comparison with the experiment and the MD 

simulation.  The numerical values for the solvation free energies are listed in Table S4-2 

of the supporting information. We see that the DFT results can be significantly improved 

by sampling the solute flexibility even with a relatively small number of equilibrium 

conformations in vacuum. The improvement is around 0 ~ 4 kcal/mol in most cases but for 

some special ones such as “2_ethoxyethanol”, it can be as large as 6 kcal/mol. For a large 

hydrophilic solute, such as “2_ethoxyethanol”, “2_methoxy_111_trimethoxyethane” and 

“hydrazine”, the DFT predictions indicate that the solvation free energy is highly sensitive 

to the molecular conformation, with a variation in the range of 8 ~ 9 kcal/mol. By contrast, 

the variation is much smaller for weakly hydrophilic solutes such as “acetonitrile” and 

“propyne”, within the range of 1 kcal/mol. If a single conformation must be used for each 

solute, the theoretical results based on the conformations in vacuum are slightly better than 

those from the solvated conformations. Additionally, other undetermined elements such as 

polarizabilities may also lead to the inaccuracy of the theory. And to implement these 

elements will be our future focus.  
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In comparison with MD simulations, one key advantage of DFT is its numerical 

efficiency for high throughput calculations. For the systems considered in this work, each 

DFT calculation can be readily processed in a desktop computer with a single CPU 

(Nehalem 2.67GHz). The time cost varies from 15 to 120 minutes, depending on the solute 

type. For the 500 solutes shown in Figure 4-1, the average time cost is 42 minutes. The 

computational cost can be further reduced by optimization of the DFT programs. Up to 

now, any molecular simulation (usually required hundreds of CPU hours 26) cannot match 

such a speed for calculations of hydration free energies with an explicit solvent model. 

In conclusion, we have demonstrated that the density functional theory (DFT) 

provides a powerful alternative to conventional simulation methods for high throughput 

predictions of the hydration free energies of small molecules.  Testing over 500 neutral 

solutes indicates that the DFT predictions yield an average unsigned error of 0.96 kcal/mol 

in comparison to the experiment. The mean deviation is slightly lower than that predicted 

by the MD simulation (1.03 kcal/mol). The theoretical results are most accurate for solutes 

with slightly positive hydration free energies but become less precise for large hydrophilic 

solutes. By inspecting possible causes of error for 33 worst performed solutes, we found 

that the theoretical performance of the DFT can be further improved by considering the 

solute flexibility.  If a rigid model is used for the solutes, the DFT yields better results 

based on the equilibrium conformations in vacuum. In comparison to solvent-explicit 

simulations, the DFT calculations are extremely fast. The average time cost is only 42 

minutes in just a single CPU. Such computational efficiency is highly desirable for high 

throughput solvation free energy calculations.  
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Figure 4-1 Hydration free energies for 500 solutes (a) comparison of DFT and experiment; 

(b) comparison of DFT and MD simulation. 
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Figure 4-2 Distributions of the numerical errors versus the solute dipole moments relative 

to experiment (a) and to MD simulation (b).  
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Figure 4-3 Comparisons of the hydration free energies predicted from the DFT for 33 

“worst” solutes with experiment (a) and MD simulation (b). Spheres: initial conformation 

generated from AMBER; triangles: average of 12 random conformations generated from 

simulation in vacuum; stars: equilibrium conformation in vacuum. 
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Support Information 

1. Numerical data for solvation free energy 

Table S4-1: Comparing solvation free energy of 500 molecules (kcal/mol) 

 

Name DFT Experiment MD 

1_bromo_2_chloroethane -0.36 0.02 -1.95 

1_bromo_2_methylpropane 0.74 1.24 -0.03 

1_bromobutane 0.96 1.68 -0.4 

1_bromoheptane 2.36 1.66 0.34 

1_bromohexane 2.27 1.78 0.18 

1_bromooctane 2.78 1.92 0.52 

1_bromopentane 2.08 1.48 -0.1 

1_bromopropane 0.66 1.29 -0.56 

1_chloro_222_trifluoroethane -0.86 0.16 0.06 

1_chlorobutane 0.56 0.99 -0.16 

1_chloroheptane 1.95 1.53 0.29 

1_chlorohexane 1.75 1.23 0 

1_chloropentane 0.82 1.18 -0.07 

1_chloropropane 0.36 0.92 -0.33 

1_ethylnaphthalene -1.84 -3 -2.4 

1_iodobutane -0.06 0.58 -0.25 

1_iodoheptane 1.36 1.19 0.27 

1_iodohexane 1.26 0.66 0.08 

1_iodopentane 1.01 0.66 -0.14 

1_iodopropane -0.38 0 -0.53 

1_methyl_imidazole -6.99 -6.33 -8.41 

1_methyl_pyrrole -3.63 -2.59 -2.89 

1_methylcyclohexene 1.23 1.33 0.67 

1_methylnaphthalene -3.4 -3.24 -2.44 

1_naphthylamine -7.31 -7.76 -7.28 

1_nitrobutane -1.87 -1.51 -3.09 

1_nitropentane -1.63 -1.29 -2.82 

1_nitropropane -2.11 -1.38 -3.34 

11_diacetoxyethane -9.54 -7.9 -4.97 

11_dichloroethane -0.59 0.17 -0.84 

11_dichloroethene 0.47 1.24 0.25 

11_diethoxyethane -4.26 -2.18 -3.28 

11_difluoroethane -0.6 0.19 -0.11 
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111_trichloroethane 0.12 0.75 -0.19 

111_trifluoro_222_trimethoxyethane -2.84 -2.26 -0.8 

111_trifluoropropan_2_ol -7.13 -3.56 -4.16 

111_trimethoxyethane -5.45 -3.89 -4.42 

1112_tetrachloroethane -0.44 0.11 -1.28 

112_trichloro_122_trifluoroethane 1.75 1.53 1.77 

112_trichloroethane -2.29 -0.5 -1.99 

1122_tetrachloroethane -1.52 -0.41 -2.47 

12_diacetoxyethane -12.5 -8.32 -6.34 

12_dibromoethane -0.12 0.19 -2.33 

12_dichlorobenzene -1.27 -0.64 -1.36 

12_dichloroethane -1.83 -0.52 -1.79 

12_dichloropropane -1.33 -0.2 -1.27 

12_diethoxyethane -5.33 -3.08 -3.54 

12_dimethoxyethane -5.06 -3.36 -4.84 

12_ethanediol -9.36 -7.62 -9.3 

123_trichlorobenzene -0.93 -0.38 -1.24 

123_trimethylbenzene -1.33 -0.65 -1.21 

1234_tetrachlorobenzene -0.51 -0.32 -1.34 

1235_tetrachlorobenzene -0.13 -0.02 -1.62 

124_trichlorobenzene -0.69 -0.18 -1.12 

124_trimethylbenzene -1.16 -0.36 -0.86 

1245_tetrachlorobenzene -0.22 0.25 -1.34 

13_dichlorobenzene -0.95 0.01 -0.98 

13_dichloropropane -1.09 -0.38 -1.89 

13_dimethylnaphthalene -1.86 -2.79 -2.47 

135_trichlorobenzene -0.19 0.45 -0.78 

135_trimethylbenzene -0.84 0.04 -0.9 

14_dichlorobenzene -1.16 -0.1 -1.01 

14_dichlorobutane -1.26 -0.27 -2.32 

14_dimethyl_piperazine -6.7 -7.4 -7.58 

14_dimethylnaphthalene -3.09 -3.29 -2.82 

14_dioxane -5.2 -4.35 -5.06 

2_bromo_2_methylpropane 0.84 0.89 0.84 

2_bromopropane 0.58 0.97 -0.48 

2_butoxyethanol -4.31 -4.07 -6.25 

2_chloro_111_trimethoxyethane -7.67 -3.3 -4.59 

2_chloro_2_methylpropane 0.58 0.82 1.09 

2_chloroaniline -5.63 -4.96 -4.91 
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2_chlorobutane 0.43 1.21 0 

2_chlorophenol -3.86 -3.23 -4.55 

2_chloropropane 0.28 0.82 -0.25 

2_chloropyridine -4.99 -3.36 -4.39 

2_chlorotoluene -1.19 -0.51 -1.14 

2_ethoxyethanol -11.48 -4.77 -6.69 

2_ethylpyrazine -6.83 -5.68 -5.45 

2_ethylpyridine -4.27 -3.21 -4.33 

2_ethyltoluene -1.29 -0.66 -1.04 

2_fluorophenol -3.83 -3.24 -5.29 

2_iodophenol -2.94 -2.91 -6.2 

2_iodopropane -0.37 0.29 -0.46 

2_isobutylpyrazine -4.99 -5.1 -5.04 

2_methoxy_111_trimethoxyethane -11.98 -5.97 -5.73 

2_methoxyaniline -6.96 -6.53 -6.12 

2_methoxyethanamine -6.69 -5.62 -6.55 

2_methoxyethanol -8.01 -5.37 -6.76 

2_methoxyphenol -5.56 -4.74 -5.57 

2_methyl_but_2_ene 1.65 2.38 1.31 

2_methylbut_2_ene 1.65 2.28 1.31 

2_methylbuta_13_diene 1.03 1.81 0.68 

2_methylbutan_1_ol -2.76 -2.78 -4.42 

2_methylbutan_2_ol -1.84 -2.96 -4.43 

2_methylbutane 2.22 2.52 2.38 

2_methylhexane 3.59 3 2.93 

2_methylpent_1_ene 2.31 2.75 1.47 

2_methylpentan_2_ol -2.49 -2.79 -3.92 

2_methylpentan_3_ol -1.44 -2.19 -3.88 

2_methylpentane 2.59 2.78 2.51 

2_methylpropan_1_ol -2.74 -2.96 -4.5 

2_methylpropan_2_ol -3.35 -3.09 -4.47 

2_methylpropane 2.24 2.74 2.32 

2_methylpropene 1.77 2.34 1.16 

2_methylpyrazine -7.86 -6.1 -5.51 

2_methylpyridine -4.63 -3.41 -4.63 

2_methyltetrahydrofuran -1.92 -1.95 -3.3 

2_methylthiophene -0.77 -0.22 -1.38 

2_naphthol -7.38 -7.88 -8.11 

2_naphthylamine -6.46 -7.87 -7.47 
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2_nitroaniline -7.68 -7.96 -7.37 

2_nitrophenol -10.8 -5.34 -4.58 

2_nitropropane -2.05 -1.61 -3.13 

2_nitrotoluene -3.91 -3.14 -3.58 

2_phenylethanol -6.62 -5.33 -6.79 

2_propoxyethanol -8.19 -4.21 -6.4 

22_dimethylbutane 2.47 2.53 2.51 

22_dimethylpentane 2.96 2.9 2.88 

22_dimethylpropane 2.52 2.6 2.51 

222_trifluoroethanol -5.87 -3.95 -4.31 

224_trimethylpentane 2.81 2.93 2.89 

225_trimethylhexane 3.46 2.86 2.93 

23_dimethylbuta_13_diene 1.16 1.69 0.4 

23_dimethylbutane 2.59 2.69 2.34 

23_dimethylnaphthalene -1.91 -2.59 -2.78 

23_dimethylpentane 2.76 2.66 2.52 

23_dimethylphenol -6.35 -4.67 -6.16 

23_dimethylpyridine -4.47 -3.27 -4.82 

234_trimethylpentane 3.05 2.86 2.56 

24_dimethylpentan_3_one -1.8 -2.47 -2.74 

24_dimethylpentane 2.42 2.89 2.83 

24_dimethylphenol -6.11 -4.55 -6.01 

24_dimethylpyridine -4.4 -3.18 -4.86 

25_dimethylphenol -4.43 -4.39 -5.91 

25_dimethylpyridine -3.6 -2.83 -4.72 

25_dimethyltetrahydrofuran -1.37 -1.89 -2.92 

26_dimethylaniline -5.32 -4.87 -5.21 

26_dimethylnaphthalene -1.75 -2.65 -2.63 

26_dimethylphenol -4.93 -4.09 -5.26 

26_dimethylpyridine -4.01 -3.36 -4.59 

3_acetylpyridine -8.46 -7.1 -8.26 

3_chloroaniline -5.31 -5.37 -5.82 

3_chlorophenol -5.94 -5.28 -6.62 

3_chloroprop_1_ene -0.17 0.88 -0.57 

3_chloropyridine -3.92 -2.5 -4.01 

3_cyanophenol -7.79 -7.04 -9.65 

3_cyanopyridine -6.22 -4.66 -6.75 

3_ethylphenol -5.61 -5.02 -6.25 

3_ethylpyridine -3.69 -2.96 -4.59 
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3_formylpyridine -8.82 -7.64 -7.1 

3_hydroxybenzaldehyde -10.46 -9.24 -9.5 

3_methoxyaniline -8.12 -7.45 -7.29 

3_methoxyphenol -8.91 -7.03 -7.66 

3_methyl_1h_indole -6.8 -6.55 -5.88 

3_methyl_but_1_ene 2.24 2.8 1.83 

3_methylbut_1_ene 2.24 2.67 1.82 

3_methylbutan_1_ol -3.57 -2.92 -4.42 

3_methylbutan_2_one -3.4 -2.93 -3.24 

3_methylbutanoic_acid -6.85 -5.51 -6.09 

3_methylheptane 3.87 3.29 2.97 

3_methylhexane 2.89 2.76 2.71 

3_methylpentane 2.62 2.72 2.51 

3_methylpyridine -4.1 -3.19 -4.77 

3_nitroaniline -8.17 -8.24 -8.84 

3_nitrophenol -8.32 -7.66 -9.62 

3_nitrotoluene -3.7 -3.16 -3.45 

3_phenylpropanol -6.06 -5.5 -6.92 

33_dimethylbutan_2_one -3.75 -2.91 -3.11 

33_dimethylpentane 2.76 2.53 2.56 

333_trimethoxypropionitrile -10.63 -4.93 -6.4 

34_dimethylphenol -5.94 -5.33 -6.5 

34_dimethylpyridine -3.99 -3.18 -5.22 

35_dimethylphenol -6.07 -5.12 -6.27 

35_dimethylpyridine -3.48 -2.94 -4.84 

4_acetylpyridine -9.07 -7.63 -7.62 

4_bromophenol -6.24 -5.47 -7.13 

4_bromotoluene -1.12 0.04 -1.39 

4_chloro_3_methylphenol -5.64 -4.9 -6.79 

4_chloroaniline -5.99 -5.28 -5.9 

4_chlorophenol -6.31 -5.36 -7.03 

4_cyanophenol -8.89 -7.61 -10.17 

4_cyanopyridine -6.71 -4.97 -6.02 

4_ethylphenol -6.08 -5.08 -6.13 

4_ethylpyridine -4.08 -2.87 -4.73 

4_ethyltoluene -0.5 -0.05 -0.95 

4_fluorophenol -6.07 -4.99 -6.19 

4_formylpyridine -9.22 -7.31 -7 

4_hydroxybenzaldehyde -11.63 -10 -8.83 
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4_isopropyltoluene 0.43 0.2 -0.68 

4_methoxyacetophenone -8.56 -6.29 -4.4 

4_methoxyaniline -8.39 -6.92 -7.48 

4_methyl_1h_imidazole -8.86 -7.99 -10.27 

4_methylacetophenone -5.75 -4.82 -4.7 

4_methylbenzaldehyde -6.09 -4.9 -4.27 

4_methylpentan_2_ol -1.14 -2.75 -3.73 

4_methylpentan_2_one -3 -2.96 -3.05 

4_methylpyridine -4.64 -3.41 -4.93 

4_n_propylphenol -5.78 -5.5 -5.9 

4_nitroaniline -9.72 -9.23 -10.27 

4_nitrophenol -9.34 -8.22 -10.64 

4_tert_butylphenol -4.72 -5.54 -5.91 

acenaphthene -3.86 -3.51 -3.15 

acetaldehyde -4.11 -3.39 -3.5 

acetic_acid -8.17 -5.95 -6.69 

acetonitrile -3.86 -1.67 -3.88 

acetophenone -6.33 -5.07 -4.58 

alpha_methylstyrene -2.14 -1.26 -1.24 

ammonia -4.55 -4.04 -4.29 

aniline -6.76 -5.92 -5.49 

anisole -4.03 -2.3 -2.45 

anthracene -4.31 -5.39 -3.95 

azetidine -4.99 -3.41 -5.56 

benzaldehyde -6.39 -4.99 -4.02 

benzamide -12.31 -10.19 -11 

benzene -1.94 -0.7 -0.86 

benzonitrile -3.71 -2.74 -4.21 

benzotrifluoride -1.46 -0.55 -0.25 

benzyl_alcohol -5.47 -5.41 -6.62 

benzyl_bromide -2.23 -1.14 -2.38 

benzyl_chloride -2.77 -1.56 -1.93 

biphenyl -2.93 -3.39 -2.66 

bromobenzene -1.44 -0.37 -1.46 

bromoethane 0.31 0.93 -0.74 

bromomethane 0.36 1.09 -0.82 

bromotrifluoromethane 1.71 2.03 1.79 

but_1_ene 1.92 2.48 1.38 

but_1_yne -0.38 1.93 -0.16 
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buta_13_diene 1.02 1.93 0.61 

butan_1_ol -4.04 -3.14 -4.72 

butan_2_ol -4.26 -3.12 -4.62 

butanenitrile -3.03 -1.41 -3.64 

butanoic_acid -6.69 -5.46 -6.35 

butanone -4.01 -2.97 -3.71 

butyraldehyde -4.01 -3.01 -3.18 

chlorobenzene -1.49 -0.6 -1.12 

chlorodifluoromethane -1.15 -0.04 -0.5 

chloroethane -0.04 0.78 -0.63 

chloroethylene 0.3 1.22 -0.59 

chlorofluoromethane -1.18 -0.22 -0.77 

chloromethane 0.09 0.81 -0.55 

cis_12_dimethylcyclohexane 2.05 2.05 1.58 

cyanobenzene -3.71 -2.38 -4.1 

cyclohepta_135_triene -1.29 0.15 -0.99 

cycloheptanol -4.54 -4.15 -5.48 

cyclohexane 1.63 1.67 1.23 

cyclohexanol -4.52 -4.26 -5.46 

cyclohexanone -4.75 -3.84 -4.91 

cyclohexene 1.03 1.56 0.37 

cyclohexylamine -2.17 -3.94 -4.59 

cyclopentane 1.45 1.53 1.2 

cyclopentanol -5.59 -4.15 -5.49 

cyclopentanone -5.13 -3.71 -4.7 

cyclopentene 0.74 1.38 0.56 

cyclopropane 2.09 2.64 0.75 

decan_1_ol -2.33 -2.49 -3.64 

decan_2_one -3.53 -1.98 -2.34 

di_isopropyl_sulfide -0.11 0.1 -1.21 

di_n_butyl_ether -0.49 0.59 -0.83 

di_n_butylamine -4.69 -1.63 -3.24 

di_n_propyl_ether 0.57 0.21 -1.16 

di_n_propyl_sulfide 1.23 0.49 -1.28 

di_n_propylamine -2.39 -2.26 -3.65 

dibromomethane -0.14 0.87 -1.96 

dichloromethane -0.77 0.23 -1.31 

diethoxymethoxybenzene -5.73 -4.44 -5.23 

diethyl_disulfide -0.54 -0.07 -1.64 
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diethyl_ether -1.79 -0.7 -1.59 

diethyl_malonate -11.08 -6.45 -6 

diethyl_succinate -11.13 -8.47 -5.71 

diethyl_sulfide -0.31 0.21 -1.46 

diethylamine -2.43 -2.72 -4.07 

diiodomethane -2.08 -0.74 -2.49 

diisopropyl_ether 0.14 -0.11 -0.53 

diisopropylamine -3.05 -1.97 -3.22 

dimethoxymethane -3.46 -2.69 -2.93 

dimethyl_disulfide 0.73 1.48 -1.83 

dimethyl_ether -1.78 -0.85 -1.91 

dimethyl_sulfate -8.53 -7.85 -5.1 

dimethyl_sulfide -0.55 0.26 -1.61 

dimethyl_sulfone -12.44 -10.36 -10.08 

dimethyl_sulfoxide -9.35 -8.32 -8.71 

dimethylamine -4.4 -3.11 -4.29 

E_12_dichloroethene 0.14 1.2 -0.78 

E_but_2_enal -4.78 -3.66 -4.22 

E_hept_2_ene 3.34 2.83 1.68 

E_hex_2_enal -3.34 -3.22 -3.68 

E_oct_2_enal -3.69 -2.47 -3.43 

ethanamide -12.79 -8.62 -9.71 

ethane 2.08 2.58 1.83 

ethanethiol -1.35 -0.4 -1.14 

ethanol -4.43 -3.45 -5 

ethene 1.75 2.36 1.28 

ethyl_acetate -4.13 -3.23 -2.94 

ethyl_benzoate -6.58 -4.68 -3.64 

ethyl_butanoate -3.42 -3.04 -2.49 

ethyl_formate -4.01 -2.99 -2.56 

ethyl_hexanoate -4.92 -2.8 -2.23 

ethyl_pentanoate -3.37 -3.09 -2.49 

ethyl_phenyl_ether -3.37 -2.01 -2.22 

ethyl_propanoate -4.83 -3.39 -2.68 

ethylamine -3 -3.14 -4.5 

ethylbenzene -1.21 -0.59 -0.79 

fluorene -3.45 -4.29 -3.35 

fluorobenzene -1.12 -0.07 -0.8 

fluoromethane 0.11 0.79 -0.22 
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formaldehyde -4.25 -3.22 -2.75 

halothane 0.04 0.7 -0.11 

hept_1_ene 3.44 2.97 1.66 

hept_1_yne 0.94 2.28 0.6 

heptan_1_ol -2.2 -2.72 -4.21 

heptan_2_one -3.07 -2.8 -3.04 

heptan_4_one -3.74 -2.68 -2.92 

heptanal -2.88 -2.63 -2.67 

hex_1_ene 3.14 2.59 1.58 

hex_1_yne 1.77 2.1 0.29 

hexa_15_diene 2.07 2.44 1.01 

hexafluoropropene 1.94 2.29 -3.76 

hexan_1_ol -2.16 -3.03 -4.4 

hexan_2_one -3.18 -2.77 -3.28 

hexan_3_ol -2.67 -2.63 -4.06 

hexanal -3.3 -2.96 -2.81 

hexanoic_acid -7.33 -5.08 -6.21 

hydrazine -12.23 -7.1 -9.3 

hydrogen_sulfide -2.29 -1.17 -0.7 

imidazole -9.2 -7.85 -9.63 

indane -1.71 -1.7 -1.46 

iodobenzene -1.38 -0.34 -1.74 

iodoethane -0.79 -0.1 -0.74 

iodomethane -0.92 0.03 -0.89 

isoamyl_acetate -4.08 -3.05 -2.21 

isoamyl_formate -4.23 -3.39 -2.13 

isobutyl_acetate -3.12 -2.8 -2.36 

isobutyl_formate -3.87 -3.21 -2.22 

isobutyl_isobutanoate -2.41 -2.55 -1.69 

isobutylbenzene 0.55 0 0.16 

isobutyraldehyde -3.83 -2.93 -2.86 

isoflurane -3.3 -1.38 0.1 

isopropyl_acetate -3.78 -2.92 -2.64 

isopropyl_formate -3.93 -2.64 -2.02 

isopropylbenzene -0.64 -0.31 -0.3 

m_bis_trifluoromethyl?_benzene -2.48 -1.58 1.07 

m_cresol -6.05 -5.28 -5.49 

m_xylene -1.28 -0.17 -0.83 

methane 2.07 2.54 1.99 
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methanesulfonyl_chloride -8.03 -6.33 -4.87 

methanethiol -1.1 -0.26 -1.24 

methanol -3.98 -3.48 -5.1 

methoxyflurane -1.24 -0.71 -1.12 

methyl_acetate -5.17 -3.73 -3.13 

methyl_benzoate -7 -5.06 -3.92 

methyl_butanoate -3.97 -3.32 -2.83 

methyl_chloroacetate -5.48 -3.92 -4 

methyl_cyanoacetate -8.48 -5.51 -6.72 

methyl_cyclohexanecarboxylate -3.93 -4.29 -3.3 

methyl_cyclohexyl_ketone -3.68 -3.9 -3.9 

methyl_cyclopropanecarboxylate -4.09 -4.49 -4.1 

methyl_cyclopropyl_ketone -3.46 -3.74 -4.61 

methyl_ethyl_ether -1.47 -0.82 -2.1 

methyl_ethyl_sulfide -0.37 0.34 -1.5 

methyl_formate -4.79 -3.17 -2.78 

methyl_hexanoate -4.91 -3.02 -2.49 

methyl_isopropyl_ether -1.02 -0.75 -2.01 

methyl_methanesulfonate -9.81 -8.29 -4.87 

methyl_octanoate -4.54 -2.94 -2.04 

methyl_p_methoxybenzoate -10.42 -6.32 -5.33 

methyl_p_nitrobenzoate -8.65 -6.39 -6.88 

methyl_pentanoate -3.23 -3.51 -2.56 

methyl_propanoate -5.12 -3.83 -2.93 

methyl_propyl_ether -0.85 -0.41 -1.66 

methyl_t_butyl_ether -1.52 -0.6 -2.21 

methyl_tert_butyl_ether -1.53 -0.68 -2.21 

methyl_trifluoroacetate -2.22 -1.39 -1.1 

methyl_trimethylacetate -3.02 -2.99 -2.4 

methylamine -3.58 -3.44 -4.55 

methylcyclohexane 1.85 1.82 1.7 

methylcyclopentane 1.74 2.12 1.59 

morpholine -7.02 -6.28 -7.17 

N_acetylpyrrolidine -9.67 -7.97 -9.8 

n_butane 2.22 2.54 2.07 

n_butanethiol -0.69 -0.12 -0.99 

n_butyl_acetate -3.89 -3.17 -2.64 

n_butylacetamide -10.19 -8.14 -9.31 

n_butylamine -2.87 -2.82 -4.24 
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n_butylbenzene 0.4 -0.3 -0.4 

n_decane 4.41 3.43 3.16 

n_heptane 3.87 3.2 2.67 

n_heptylamine -2.34 -2.72 -3.79 

n_hexane 3.54 3.05 2.48 

n_hexyl_acetate -4.49 -2.97 -2.26 

n_hexylamine -1.81 -2.54 -3.95 

n_hexylbenzene 0.3 0.24 -0.04 

N_methylacetamide -9.36 -8.39 -10 

N_methylaniline -6.42 -5.74 -4.69 

N_methylmorpholine -6.17 -5.87 -6.32 

N_methylpiperazine -8.96 -8.3 -7.77 

N_methylpiperidine -2.31 -3.21 -3.88 

n_nonane 3.95 3.32 3.13 

n_octane 3.8 3.13 2.88 

n_octylamine -2.24 -2.38 -3.65 

n_pentane 2.46 2.67 2.32 

n_pentyl_acetate -4.61 -2.83 -2.51 

n_pentyl_propanoate -3.79 -3.36 -2.11 

n_pentylamine -2.78 -2.99 -4.09 

n_pentylbenzene 0.37 0.05 -0.23 

n_pentylcyclopentane 3.35 2.39 2.55 

n_propanethiol -0.96 -0.31 -1.06 

n_propyl_acetate -3.82 -3.33 -2.79 

n_propyl_butyrate -4.11 -2.88 -2.28 

n_propyl_formate -4.43 -3.5 -2.48 

n_propyl_propanoate -3.55 -2.95 -2.44 

n_propylamine -4.07 -3.05 -4.39 

n_propylbenzene -0.44 0.01 -0.53 

n_propylcyclopentane 3.05 2.15 2.13 

naphthalene -3.6 -3.34 -2.4 

nitrobenzene -4.3 -3.4 -4.12 

nitroethane -2.59 -1.73 -3.71 

nitromethane -2.76 -2.03 -4.02 

NN_dimethyl_p_methoxybenzamide -14.84 -9.29 -11.01 

NN_dimethyl_p_methylbenzamide -11.01 -7.51 -9.76 

NN_dimethyl_p_nitrobenzamide -12.34 -9.92 -11.95 

NN_dimethylaniline -5.75 -4.7 -3.45 

NN_dimethylbenzamide -10.16 -7.98 -9.29 
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NN_dimethylformamide -7.45 -6.86 -7.81 

non_1_ene 3.74 2.91 2.06 

nonan_1_ol -1.84 -2.54 -3.88 

nonan_2_one -3.72 -2.51 -2.49 

nonan_5_one -2.96 -2.34 -2.64 

nonanal -2.57 -2.51 -2.07 

o_cresol -6.37 -5.09 -5.87 

o_toluidine -6.07 -5.37 -5.53 

o_xylene -1.51 -0.52 -0.9 

oct_1_ene 3.43 2.77 1.92 

oct_1_yne 1.17 2.46 0.71 

octan_1_ol -3.83 -2.65 -4.09 

octan_2_one -3.5 -2.3 -2.88 

octanal -4.3 -2.57 -2.29 

p_cresol -6.58 -5.36 -6.13 

p_dibromobenzene -0.98 -0.01 -2.3 

p_toluidine -6.3 -5.56 -5.57 

p_xylene -1.4 -0.67 -0.8 

pent_1_ene 2.15 2.44 1.68 

pent_1_yne 0.75 1.93 0.01 

penta_14_diene 1.66 2.18 0.93 

pentachloroethane 0.04 0.31 -1.39 

pentan_1_ol -2.8 -3.14 -4.57 

pentan_2_ol -3.13 -2.87 -4.39 

pentan_2_one -3.51 -3.29 -3.52 

pentan_3_ol -2.66 -2.95 -4.35 

pentan_3_one -3.5 -2.94 -3.41 

pentanal -3.37 -2.96 -3.03 

pentanenitrile -2.73 -1.24 -3.52 

pentanoic_acid -6.74 -5.37 -6.16 

phenanthrene -4.83 -5.15 -3.88 

phenol -6.98 -5.67 -6.61 

phenyl_formate -6.8 -4.83 -3.82 

phenyl_methyl_sulfide -2.38 -1.21 -2.73 

phenyl_trifluoroethyl_ether -5.12 -2.93 -1.29 

piperazine -8.01 -8.34 -7.4 

piperidine -3.42 -3.46 -5.11 

prop_2_en_1_ol -3.41 -3.23 -5.03 

propan_1_ol -3.53 -3.12 -4.85 
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propan_2_ol -3.17 -3.28 -4.74 

propane 2.04 2.56 1.96 

propanenitrile -3.25 -1.27 -3.84 

propanoic_acid -8.14 -6.41 -6.46 

propanone -4.37 -3.36 -3.8 

propene 1.6 2.44 1.32 

propionaldehyde -4.07 -3.08 -3.43 

propyne -0.75 1.79 -0.48 

pyrene -7.43 -6.62 -4.52 

pyridine -4.77 -3.45 -4.69 

pyrrole -5.62 -3.87 -4.78 

pyrrolidine -4.61 -3.91 -5.48 

quinoline -6.38 -4.87 -5.72 

sec_butylbenzene 0.85 0.04 -0.45 

styrene -1.49 -1.32 -1.24 

teflurane -0.36 0.46 0.5 

tert_butylbenzene 0.5 -0.42 -0.44 

tetrachloroethene 1.14 1.41 0.1 

tetrachloromethane 0.94 1.41 0.08 

tetrafluoromethane 2.23 2.42 3.12 

tetrahydrofuran -2.71 -2.07 -3.47 

tetrahydropyran -2.05 -1.78 -3.12 

thiophene -1.18 -0.34 -1.42 

thiophenol -3.02 -1.43 -2.55 

toluene -1.65 -0.71 -0.89 

trans_14_dimethylcyclohexane 2.17 2.05 2.11 

triacetyl_glycerol -12.29 -13.31 -8.84 

trichloroethene 0.18 0.99 -0.44 

trichloromethane -0.54 0.32 -1.08 

triethyl_phosphate -12.81 -10.06 -7.54 

triethylamine -2.48 -1.83 -3.22 

trimethoxy_methane -4.91 -4.06 -4.42 

trimethoxymethylbenzene -4.38 -5.83 -4.04 

trimethyl_phosphate -13.13 -10.59 -8.7 

trimethylamine -3.39 -2.32 -3.2 

undecan_2_one -4.91 -2.12 -2.15 

Z_12_dichloroethene -0.87 0.31 -1.17 

Z_pent_2_ene 1.88 2.55 1.31 
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Table S4-2: Comparison of solvation free energy calculated from different 

conformations (kcal/mol) 

Name DFTa DFTb DFT

c 

DFT

d 

EXP MD 

111_trifluoropropan_2_ol -7.13 -7.13 ~ - 2.4 -

6.34 

-

4.29 

-3.56 -4.16 

12_diacetoxyethane -12.5 -12.5 ~ -9 -

12.3

1 

-

11.0

3 

-8.32 -6.34 

12_diethoxyethane -5.33 -7.47 ~ -0.86 -

4.35 

-

4.26 

-3.54 -3.08 

2_chloro_111_trimethoxyethane -7.67 -7.8 ~ -2.93 -

8.57 

-5 -3.3 -4.59 

2_ethoxyethanol -

11.48 

-11.63 ~ -

3.96 

-

3.81 

-6.9 -4.77 -6.69 

2_methoxy_111_trimethoxyetha

ne 

-

11.98 

-12.24 ~ -

3.86 

-

9.24 

-7.2 -5.97 -5.73 

2_methoxyethanol -8.01 -10.43 ~ -

4.98 

-

7.55 

-

7.14 

-5.37 -6.76 

2_nitrophenol -10.8 -10.8 ~ -4.58 -

10.3

7 

-

7.92 

-5.34 -4.58 

2_propoxyethanol -8.19 -8.32 ~ -3.04 -

6.66 

-

5.46 

-4.21 -6.4 

333_trimethoxypropionitrile -

10.63 

-10.63 ~ -

5.47 

-

10.1

5 

-7.3 -4.93 -6.4 

3_hydroxybenzaldehyde -

10.46 

-9.92 ~ -

11.82 

-

8.08 

-

10.5

1 

-9.24 -9.5 

4_hydroxybenzaldehyde -

11.63 

-12.03 ~ -

10.88 

-

11.4

0 

-

11.3

7 

-10 -8.83 

4_methoxyacetophenone -8.56 -8.56 ~ -7.41 -

7.91 

-

8.02 

-6.29 -4.4 

acetic_acid -8.17 -8.67 ~ -6.32 -

6.54 

-

7.12 

-5.95 -6.69 

acetonitrile -3.86 -3.9 ~ -3.72 -

3.79 

-3.8 -1.67 -3.88 

benzamide -

12.31 

-14.49 ~ -

10.65 

-

11.4

6 

-

11.9 

-

10.19 

-11 

di_n_butylamine -4.69 -4.95 ~ 0.55 -

4.30 

-

2.31 

-1.63 -3.24 

diethyl_malonate -

11.08 

-11.08 ~ -

7.67 

-

10.8

2 

-

9.31 

-6.45 -6 

diethyl_succinate -

11.13 

-17.72 ~ -

10.97 

-

11.1

2 

-

13.4

5 

-8.47 -5.71 

dimethyl_sulfone -

12.44 

-14.64 ~ -

11.32 

-

11.8

3 

-

12.4

1 

-

10.36 

-

10.08 
ethanamide -

12.79 

-12.91 ~-

10.24 

-

12.1

3 

-

11.5

7 

-8.62 -9.71 

hexanoic_acid -7.33 -7.33 ~ -5.29 -

5.46 

-

6.16 

-5.08 -6.21 

hydrazine -

12.23 

-12.23 ~ -6.4 -

8.81 

-

8.83 

-7.1 -9.3 

methyl_cyanoacetate -8.48 -8.79 ~ -7.06 -

8.32 

-

7.99 

-5.51 -6.72 

methyl_p_methoxybenzoate -

10.42 

-10.42 ~ -

8.17 

-

9.96 

-9.4 -6.32 -5.33 

n_butylacetamide -

10.19 

-11.86 ~ -

8.43 

-

9.63 

-

9.97 

-8.14 -9.31 

NN_dimethyl_p_methoxybenza

mide 

-

14.84 

-14.96 ~ -

10.64 

-

15.4

8 

-

12.7

3 

-9.29 -

11.01 
NN_dimethyl_p_methylbenzami

de 

-

11.01 

-12.76 ~ -

8.28 

-

9.82 

-

9.99 

-7.51 -9.76 

NN_dimethylbenzamide -

10.16 

-10.71 ~ -

7.92 

-

7.79 

-

9.26 

-7.98 -9.29 

phenyl_trifluoroethyl_ether -5.12 -5.57 ~ -1.53 -

4.47 

-

4.01 

-2.93 -1.29 

propyne -0.75 -0.77 ~ -0.64 -

0.76 

-

0.71 

1.79 -0.48 

trimethyl_phosphate -

13.13 

-13.13 ~ -

10.4  

-

11.9

9 

-

11.7 

-

10.59 

-8.7 

undecan_2_one -4.91 -6.82 ~ -2.84  -

4.49 

-4.9 -2.12 -2.15 

 

a. Calculated from the initial conformation. 

b. Calculated from 13 different conformations including the initial one and 12 random ones. 

c. Calculated from the equilibrium conformation in vacuum. 

d. Average of the 13 different conformations. 
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4.2 Fast prediction of hydration free energies for SAMPL4 from a classical density 

functional theory 

ABSTRACT 

We report the performance of a classical density functional theory (DFT) in the competition 

for solvation free-energy category of the SAMPL4 blind prediction event. The influence 

of molecular force fields on the DFT predictions is analyzed by carrying out calculations 

with both Amber and OPLS force fields. In comparison with the experimental data, the 

DFT method shows the numerical accuracy similar to that with explicit-solvent MD 

simulations. However, it reduces the computational cost by almost 3 orders of magnitude. 

The SAMPL4 blind test indicates that the DFT method is promising for large-scale 

screening applications such as small molecular drug design.
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4.2.1. Introduction 

Hydration free energy plays a key role in solution chemistry and its theoretical 

prediction often represents a bottleneck in understanding important chemical and 

biological processes1,2. In particular, solvent-solute interactions in an aqueous environment 

entail complex microscopic details that make a reliable prediction of solvation properties 

a serious computational challenge.  

The conventional methods for solvation free energy calculations are typically based 

on either implicit or explicit solvent models. Implicit-solvent methods are usually 

constructed from knowledge-based macroscopic considerations, augmented with the 

Poisson-Boltzmann equation27 or semi-empirical models such as AMSOL28. Conversely, 

most explicit-solvent models employ a semi-empirical force field to represent the solvent-

solvent and solvent-solute interactions3. The implicit models have been popular in the past 

few years, since they are faster than explicit-solvent models by orders of magnitude. 

However, implicit models usually ignore the hydrogen-bonding network among water 

molecules and other solvent structures29 that are essential for understanding hydration 

properties from a microscopic perspective. Besides, the accuracy of explicit models is 

normally higher than that of implicit models. From a practical point of view, the continuous 

and solvent-explicit methods are complementary and their choices for particular 

applications often reflect a compromise of the computational cost and the accuracy in 

microscopic details.  

Classical density functional theory (DFT) provides a compromise between 

conventional semi-empirical methods and molecular simulations. . From a mathematical 
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perspective, classical DFT closely resembles electronic DFT except that in the former case, 

the density functional applies to the structure of atoms or coarse-grained elements of a 

polymeric molecule, whereas the latter applies to electrons. Motivated by the need for high-

performance computational methods, we recently developed a three-dimensional classical 

density functional theory (DFT) method based on the site-site intermolecular interactions14. 

Different from molecular simulations, DFT allows us to do one time calculation to obtain 

both thermodynamic properties, including the hydration free energy, and the equilibrium 

configuration without explicit enumeration of microstates. In other words, DFT calculation 

is based on minimization of the grand potential instead of sampling millions of microstates 

by brute force calculations. A key advantage of DFT is that it generates thermodynamic 

properties such as entropy and free energy without evoking multiple state thermodynamic 

integral or potential perturbation calculations. The accuracy of DFT has been well 

examined in the past decades for both simple and complex fluids30. In many cases, the 

theoretical performance is comparable to molecular simulations but with much less 

computational cost. Another theoretical method we should mention here is the integral-

equation theories within the framework of the Reference Interaction Site Model 

(RISM)31,32. Similar to DFT, the RISM calculation is based on the numerical solution of a 

set of integral-differential equations in order to obtain thermodynamic properties. Different 

from DFT, RISM solve the direct correlation function self-consistently but the closure used 

in RISM is not rigorous. Although RISM calculations are also much faster than 

conventional molecular simulations, the more complicated multidimensional integral still 

leads to higher computation burden than the DFT method. 
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In this paper, we report a test of the DFT method through participation in the 

solvation-free-energy category of the SAMPL4 blind prediction challenge33. The sample 

includes hydration free energies for 47small organic molecules prepared by Guthrie34. It 

provides a good benchmark for validating the quantitative performance of our method. As 

a hallmark of SAMPL4 competition, we did not have or use any a priori information about 

the experimental data of those compounds in all the calculations. Because the experimental 

data are not included in the training sets of those two force fields we apply, the theoretical 

predictions reflect a truly blind test of the molecular model and the DFT calculations. 

4.2.2. Model and Theory  

We consider a rigid solute model composed of M atoms dissolved in an aqueous 

solution at 298K and 1 atm. The solute-solvent interactions are represented by the Lennard-

Jones 12-6 plus Columbic potential: 
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where 
ij ii jj   , ( ) / 2ij ii jj    , ii and ii are the energy well depth and the diameter 

of the ith atom, Zi is the (fractional) valence of atom i, e is the elementary charge, and 0 is 

the vacuum permittivity. 

Near a rigid solute molecule with its center of mass fixed at the origin, the external 

potential on each solvent site i can be calculated from: 
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i ij j

j

V u
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 r r r  (89) 



 

223 

where rj is the coordinate of the jth atom of the solute molecule. The grand potential of 

the solvent molecules can be expressed as: 

 
id ex extF F F N      (90) 

where Fid, Fex and Fext represent the ideal (kinetic energy contribution), excess (solvent-

solvent interaction contribution) and external (solute-solvent interaction contribution) free 

energy functional, respectively; is the chemical potential, and N denotes the number of 

solvent molecules.  

The ideal-gas term Fid can be formally expressed as a functional of the molecule 

density profile (R): 

 id

B intra( )[ln ( ) 1 ( )]dF k T V    R R R R  (91) 

where kB is the Boltzmann constant, T is the temperature, Vintra(R) is the intramolecular 

potential of the solvent molecule, { }iR r  is a multidimensional coordinate with ri being 

the three-dimensional coordinate of the ith atom in the solvent molecule. In this work, 

three-site rigid water model is used. In that case, R can be expressed as a six-dimensional 

vector, and Vintra(R) is represented by 3 Dirac delta functions due to the fixed molecular 

conformation.  

By minimizing the grand potential 

 0
( )








R
 (92) 

we have the Euler-Lagrange equation 
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where  = 1/(kBT). Given explicit expressions for   F
ex  and   F

ext , equation (6) can be solved 

self-consistently. However, direct calculation of the configurational density is 

computationally intensive because R is a multidimensional variable. The computational 

cost can be drastically reduced by using the site density profiles:  

 ( ) ( ) ( )di i   r r r R R  (94) 

where (r-ri) is the Dirac function, and i represent the ith atom of the solvent molecule. By 

inserting equation 94 into 93, we have: 

 

ex ext
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For rigid 3-site water models (SPC, SPC/E and TIP3P), Eq. 95 can be simplified to: 
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r r r r r r
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 (96) 

 where  represents an average over the angular vector 
 w = (q,f,f ') . As shown in 

Figure 4-4, (, ) are the Euler angles of the dipole direction, and ’ is the rotation angle 

of two H atoms around the dipole direction; Or , 
  
r

H1
, 

  
r

H2
are the corresponding atomic 

coordinates of water molecules.  

In Eq.96, the effective one-body potential is represented by: 
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where i is the nominal chemical potential of site i, which satisfies i

i

  . For a given 

solute with a fixed position and orientation, the external potential Fext can be calculated 

exactly:  

 
ext ext ( ) ( )di i

i

F V  r r r  (98) 

The excess free energy Fex, however, in general unknown. In this work, we approximate 

Fex with the ansatz of the universality functional35 
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where 
ex

bulkF  is the excess free energy of the bulk system,
bulk( ) ( )i i i    r r  and  

bulk

i  is 

the bulk density of atom i; 
ex id

i i i     is the nominal excess chemical potential, 
id

i  is 

the nominal ideal chemical potential which satisfies 
id id bulk

B lni O

i

k T    ; 
(2) ( )ijc r  is 

the second order direct correlation function between site i and j of the bulk system, which 

is obtained from MD simulation;36 and FB is the bridge functional which accounts for 

higher-order contributions in the functional Taylor expansion.  

Following Rosenfeld,35 we approximate the bridge functional by a reference hard-

sphere (HS) system:  
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where  
ex

HS O[ ( )]F  r  is the HS excess free energy functional, 
ex

HS-b and 
(2)

HS ( )c r  are the 

excess chemical potential and direct correlation function of the bulk HS system, 

respectively. In this work, we use the modified fundamental measure theory to calculate 

ex

HS O[ ( )]F  r , 
ex

HS-b and 
(2)

HS ( )c r . 14,37 

By inserting Eqs.98, 99 and 100 into 96, we have: 

 
id ext (2)( ) ( ) ( ') (| ' |)d ' ( )i i i j ij i

j

V c B        r r r r r r r  (101) 

where Bi(r) is the bridge function of atom i defined as: 
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Eqs.101 and 96 allow us to solve the site density profiles i(r) by numerical iterations. 

Subsequently, we can calculate the solvation free energy5,14 
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All DFT calculations in this work were carried out in a (30 Å)3 ~ (40 Å)3 cubic box 

depending on the size of solute. The density profiles are discretized into 1283 lattice grids. 

In comparison to solvent-explicit simulations, the DFT calculations are extremely fast. The 

average time cost is less than 30 minutes on a single CPU core. More detailed numerical 

procedures are listed in our previous publications.5,14 

As in MD simulations, the classical DFT calculations hinge on molecular models 

and force field parameters. In this work, the water molecules are described by the TIP3P 



 

227 

model38, while all van der Waals parameters for solute molecules are from GAFF39 and 

OPLS-AA40 force fields. We have tested two atomic charge sets, one is AM1-BCC 

charge41, as the common choice for GAFF, another is ChelpG charge42, which is often used 

by CHARMM43 and OPLS force fields. Special attention is given to the effects of force 

field parameters and solute configurations on the DFT predictions. All the initial structures 

of those solute compounds are optimized using HF/B3LYP/MP2 methods and 6-31+G* 

basis set (QM structures).Then based on the initial molecular structures, the AM1-BCC 

charge sets are obtained from Antechamber-1.2744 while ChelpG charge sets are obtained 

with the same QM calculations. All the quantum mechanics calculations are carried by 

Gaussian 0945. With different combinations of the charge sets and force field van der Waals 

parameters, we also apply molecular mechanics to optimize the solute structures (MM 

structures) in vacuum environment using the conjugated-gradient method available from 

GROMACS 4.6.246.  

4.2.3. Results and Discussion 

Figure 4-5 compares the DFT predictions with the experimental results for the 

hydration free energies of 47 compounds posted at the SAMPL4 website. We should 

mention that different from simulations, DFT solves a set of equations instead of sampling, 

which means there is no uncertainty (error bar) of DFT calculation.  Here the two force 

field van der Waals parameter sets and the two charge sets are employed to describe solute-

solvent interactions. All the numerical values are listed in Supporting Information. For the 

SAMPL4 challenge, we submitted the results based on the OPLS-AA van der Waals 

parameters and ChelpG charge set, while the solute structures were obtained from MM 
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optimization in vacuum (Figure 4-5a). The submitted results (submission ID 548) yield an 

average unsigned error (AUE) of 2.38 kcal/mol and root mean square (RMS) of 2.99 

kcal/mol, which ranks in the middle among 49 submissions from 19 groups. After 

comparing to the released experimental data, we find that the theoretical results can be 

drastically improved by several other combinations of the charge sets and van der Waals 

parameters. In Figure 4-5, for the charge part, we tested OPLS-AA with two common 

electrostatic potential fitting (ESP) charge sets, ChelpG (Figure 4-5a) and AM1-BCC 

(Figure 4-5b). Besides, we used both B3LYP/6-31+G*, the most widely used QM method, 

and molecular mechanics to determine solute structures by energy minimization in 

vacuum.  

To see our method performance in details, we show the RMS data of our first stage 

calculation by Table 4-1.  It indicates that different structure optimization methods 

contributes to around 10% RMS deviation on the solvation free energy. One possible 

reason is that we use relatively cheap QM methods, considering our large-scale screening 

target. More expensive QM calculations, like MP2/6-311G(d,p) would increase the 

computational time by more than two order of magnitude.  Besides, more accurate vacuum 

calculation may be unnecessary because we consider only a single conformation for each 

solute. More important factor to the DFT predictions is the selection of the charge sets, in 

general, AM1-BCC yields better results than ChelpG charge set, which makes the 

difference of RMS more than 20% in our validation. One possible reason is while ChelpG 

charge set is highly affected by the molecular structures, AM1-BCC charge set is made to 
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make less configuration dependable, importing some flexible structure effect, more proper 

for our explicit considering water model condition here. 

In Figure 4-5c, we show the DFT results with General Amber Force Field van der 

Waals parameters and AM1-BCC charge set. Again, we see only negligible influence of 

the solute structure differences. It should be noticed that hydrophilic compounds (Fs < -10 

kcal/mol) show large errors in comparison to the experimental values. One possible reason 

is that our DFT calculation ignores the contribution of flexible solute structures. For 

example, molecule 001 has six hydroxyl groups, leading to complicated hydrogen bonding 

network in water, which cannot be captured by a single conformation. The DFT results can 

be significantly improved by sampling the solute flexibility with a relatively small number 

of equilibrium conformations in vacuum and doing the ensemble average. The 

improvement is around 0 ~ 4 kcal/mol47. Instead of choosing those solute configurations 

randomly, in this work, we try to give reasonable prediction by single input solute 

configurations for fast prediction purpose through comparing various QM optimization 

solute structures and charge sets, which will be discussed in Table 4-2. Another possible 

reason lies in the force field parameters. As suggested by Mobley et al.33, the AUE value 

could be reduced to 1 kcal/mol (submission ID 005) by introducing new hydroxyl group 

parameters, which give the best MD simulation results in the challenge.  

Table 4-1 shows that overall the theoretical predictions agree well with the 

experimental data, in particular for those molecules with a positive or small hydration free 

energy ( >-5 kcal/mol). With AM1-BCC charge set, the RMS is less than 1.50 kcal/mol, 

even in the top tier of hydration free energy challenge players. But when solutes turn more 



 

230 

hydrophilic, the situation becomes worse, as we discussed above. Another possible reason 

for the increased discrepancy may be attributed to the approximations used in the DFT 

calculations. In comparison with MD simulation, the error of DFT calculations is mainly 

introduced in the approximations for the bridge functional.  In formulation of the free-

energy density functional, we utilize a hard-sphere model to represent the bridge functional 

for water wherein the hard-sphere diameter of the reference system was calibrated with the 

solvation free energy for methane14. Because the local structure of water molecules is 

sensitive to the solute hydrophobicity, the parameter obtained from a hydrophobic solute 

may become less reliable for hydrophilic solutes. Since the effective hard-sphere diameter 

for a hydrophilic solute is smaller than that for a hydrophobic solute due to the enhanced 

solute-solvent attraction.  

We have also explored the way of improving our DFT calculations by optimizing 

the input solute structures with IEFPCM48 implicit solvent model under B3LYP/HF/MP2 

methods with 6-31+G* basis set. The final results are shown in Table 4-2. Due to the 

consideration of solvent effect, the gap between AM1-BCC and ChelpG charge sets 

becomes more apparent, even over 200% in RMS. AM1-BCC remains the better choice. 

With this charge set, solute structures obtained from various QM methods do not show 

significant differences, similar to the above vacuum configuration ones. Again, we did not 

use higher-level QM methods, like M06X or MP2 with Aug-cc-PVTZ basis set49,50, 

because of the high computation cost and rigid solute models used in those DFT 

calculations. However, as discussed in the previous work47, there is no significant 

correlation between the DFT performance and the dipole moments of the solute molecules. 
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From the data of Table 4-2, we find the best combination choice for our current purpose, 

(OPLS-AA van der Waals parameters/AM1-BCC charge set/HF/IEFPCM optimization 

method) to reduce the AUE and RMS to 1.54 kcal/mol and 2.08 kcal/mol separately, 

compared to experimental data, which is very similar to the MD simulation by Yang’s 

group (submission ID 575, AUE=1.59 kcal/mol, RMS= 2.10 kcal/mol) and by Gilson’s 

group (submission ID 542, AUE= 1.30 kcal/mol, RMS=1.89 kcal/mol). 

4.2.4. Conclusions  

We have demonstrated that the density functional theory (DFT) provides a powerful 

alternative to conventional simulation methods for fast prediction of small molecular 

hydration free energy. We find that with proper input parameters combination (OPLS-

AA/AM1-BCC/HF/IEFPCM), we could reduce the AUE and RMS to 1.54 kcal/mol and 

2.08 kcal/mol separately, compared to our original submission result 2.38 kcal/mol and 

2.99 kcal/mol, on a par with classical MD simulations. The theoretical results are most 

accurate for solutes with slightly positive hydration free energies but become less precise 

for large hydrophilic solutes. 

In comparison with MD simulations, one key advantage of DFT is its numerical 

efficiency. For the systems considered in this work, each DFT calculation can be readily 

processed with a single CPU core (Nehalem Xeon 2.67GHz), within one hour. The 

computational cost could be further reduced by optimization of the DFT programs. In 

SAMPL4 challenge, there are also other fast and accurate hydration free energy calculation 

methods, like SEA51 considering explicit solvent effect and QM with implicit solvent 

model52, our method provides another way by modern liquid theory. After the input of 
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direct correlation function from explicit bulk water simulation, it is ready to give water 

structure information and other important thermodynamic beside solvation free energy in 

one time calculation. 
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Figure 4-4. The molecular frame used in the DFT calculations for the solvation of a tagged 

molecule (solute) placed at the origin.  The y-axis is perpendicular to the paper inward; the 

location of a neighboring water molecule (solvent) is described by the oxygen atom 

position 
   r = (x, y,z)  and three Euler angles 

 (q ,f,f ')  .   
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Figure 4-5 Comparison of hydration free energies from DFT calculations with 

experimental data, a) OPLS-AA force field van der Waals parameters with AM1-BCC 

charge set; b) OPLS-AA force field van der Waals parameters with ChelpG charge set; c) 

GAFF van der Waals parameters with AM1-BCC charge set. Filled symbols are calculated 

on the basis of solute structures obtained by B3LYP/6-31+G* optimization, while blank 

symbols are from solute structures obtained by molecular mechanic optimization, all in 

vacuum. 
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Table 4-1 The Root Mean Square (RMS) of the DFT calculations in comparison to the 

experimental data. Here QM means solute structures obtained by B3LYP/6-31+G* 

optimization, while MM means by molecular mechanic optimization, all in vacuum. 

  

             

RMS 

(kcal/mol) 

OPLS-AA GAFF 

QM MM QM MM 

AM1-BCC ChelpG AM1-BCC ChelpG AM1-BCC ChelpG 

ALL 2.36 2.79 2.46 2.99 2.20 2.40 

Fs >-5 1.30 2.17 1.38 2.29 1.27 1.47 

-10 < Fs < -5  2.23 3.28 2.24 3.55 2.32 2.52 

Fs < -10   5.55 3.22 5.91 3.50 4.53 4.85 
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Table 4-2 Comparison of DFT prediction results and experimental data, with various QM 

optimization solute structures using IEFPCM implicit solvent model, combining with 

different force field van der Waals parameters and charge sets. 

        

RMS(kcal/mol) 

B3LYP 

GAFF OPLS-AA 

AM1-BCC ChelpG AM1-BCC ChelpG 

ALL 2.36 5.51 2.24 5.37 

Fs >-5 1.15 3.81 1.18 3.48 

-10 < Fs < -5  2.59 4.87 2.47 4.90 

Fs < -10   4.80 12.14 4.38 11.92 

     

        

RMS(kcal/mol) 

HF 

GAFF OPLS-AA 

AM1-BCC ChelpG AM1-BCC ChelpG 

ALL 2.15 3.37 2.08 3.09 

Fs >-5 1.27 2.51 1.30 2.17 

-10 < Fs < -5  2.32 3.15 2.23 3.28 

Fs < -10   4.26 6.91 4.03 5.61 

     

          

RMS(kcal/mol) 

MP2 

GAFF OPLS-AA 

AM1-BCC ChelpG AM1-BCC ChelpG 

ALL 2.38 7.93 2.24 7.73 

Fs >-5 1.10 5.63 1.11 5.33 

-10 < Fs < -5  2.34 6.44 2.29 6.45 

Fs < -10   5.28 17.38 4.68 16.90 
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Support Information 

Table S4-3: Comparing solvation free energy of SAMPL4 47 compounds with OPLS-aa 

force field and optimization solute structures in vacuum environment 

ID EXP(kcal/mol) Err OPLS(QM_bcc) OPLS(MM_bcc) OPLS(QM_ChelpG) OPLS(MM_ChelpG) 

1 -23.62 0.32 -15.99 -14.69 -19.48 -19.18 

2 -2.49 0.85 -3.87 -3.63 -2.42 -2.28 

3 -4.78 0.25 -1.59 -1.37 -1.88 -1.80 

4 -4.45 0.24 -4.77 -4.04 -4.79 -4.73 

5 -5.33 0.1 -5.78 -5.39 -3.39 -2.93 

6 -5.26 0.18 -6.99 -2.36 -5.61 -3.56 

9 -8.24 0.76 -9.67 -6.91 -8.05 -5.77 

10 -6.24 0.38 -4.55 -2.76 -2.76 -1.23 

11 -7.78 0.77 -8.69 -6.64 -7.49 -6.33 

12 -3.75 0.21 -3.05 -2.78 -3.00 -2.83 

13 -4.44 0.43 -2.76 -2.36 -2.02 -1.80 

14 -4.09 0.17 -4.52 -4.33 -3.84 -3.65 

15 -4.51 0.1 -3.65 -3.47 -3.68 -3.41 

16 -3.2 0.27 -0.70 -0.51 -1.82 -1.94 

17 -2.53 0.25 -2.67 -2.32 -2.28 -2.06 

19 -3.78 0.1 -3.38 -2.98 0.33 0.66 

20 -2.78 0.1 -2.36 -2.77 1.38 1.19 

21 -7.63 0.12 -7.93 -7.96 -5.66 -4.95 

22 -6.78 0.1 -8.72 -7.78 -6.28 -5.13 

23 -9.34 0.62 -8.03 -8.23 0.12 -0.35 

24 -7.43 0.6 -8.90 -9.83 0.43 -0.04 

25 -5.73 0.15 -9.64 -9.64 -8.34 -1.25 

26 -5.31 0.1 -9.38 -9.93 -7.60 -7.91 

27 -4.8 0.39 -4.67 -4.49 -7.69 -7.88 

28 -4.29 0.39 -4.02 -3.87 -6.67 -6.82 

29 -1.66 0.1 -0.26 -0.24 -2.03 -2.20 

30 -2.29 0.12 -4.82 -5.03 -4.76 -4.76 

32 -7.29 0.1 -5.31 -5.09 -5.11 -5.00 

33 -6.96 0.1 -9.39 -8.55 -5.64 -5.05 

34 -5.8 0.1 -9.59 -2.69 -7.28 -2.98 

35 -4.68 0.1 -5.52 -5.54 -4.40 -4.40 

36 -5.66 0.1 -4.73 -4.24 -2.70 -3.28 

37 -5.94 0.1 -9.87 -3.70 -7.54 -3.65 
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38 -3.93 0.1 -5.83 -5.65 -4.49 -4.30 

39 -0.85 0.1 -0.67 -0.50 1.07 1.25 

41 -5.05 0.1 -3.25 -3.20 -2.02 -2.06 

42 -3.13 0.1 -1.79 -1.73 -1.80 -1.72 

43 0.14 0.1 0.98 1.07 1.20 1.30 

44 -5.08 0.1 -4.56 -4.60 -4.16 -4.23 

45 -11.53 0.29 -15.92 -14.86 -13.01 -12.21 

46 -9.44 0.74 -11.56 -11.18 -9.55 -9.05 

47 -14.21 1.1 -20.91 -21.18 -18.90 -19.39 

48 -11.85 0.35 -12.76 -12.46 -11.30 -10.46 

49 -3.16 0.1 -3.85 -3.63 -1.17 -0.92 

50 -4.14 0.1 -4.44 -4.24 0.02 0.27 

51 -9.53 0.28 -10.96 -10.66 -10.75 -10.25 

52 -2.87 0.69 -2.89 -3.06 0.01 0.33 
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Table S4-4: Comparing solvation free energy of SAMPL4 47 compounds with GAFF 

force field and optimization solute structures in vacuum environment 

ID EXP(kcal/mol) Err AMBER(QM) AMBER(MM) 

1 -23.62 0.32 -19.54 -20.47 

2 -2.49 0.85 -3.09 -3.32 

3 -4.78 0.25 -1.57 -0.83 

4 -4.45 0.24 -4.78 -0.95 

5 -5.33 0.1 -5.38 -6.17 

6 -5.26 0.18 -7.42 -10.43 

9 -8.24 0.76 -10.33 -9.94 

10 -6.24 0.38 -4.87 -6.77 

11 -7.78 0.77 -9.25 -8.51 

12 -3.75 0.21 -2.81 -2.80 

13 -4.44 0.43 -2.99 -3.95 

14 -4.09 0.17 -4.22 -3.44 

15 -4.51 0.1 -3.32 -2.90 

16 -3.2 0.27 -1.22 -1.93 

17 -2.53 0.25 -2.68 -1.89 

19 -3.78 0.1 -3.43 -3.45 

20 -2.78 0.1 -1.98 -2.63 

21 -7.63 0.12 -8.11 -8.24 

22 -6.78 0.1 -8.27 -6.98 

23 -9.34 0.62 -9.41 -8.08 

24 -7.43 0.6 -9.82 -11.68 

25 -5.73 0.15 -9.75 -6.84 

26 -5.31 0.1 -9.06 -9.16 

27 -4.8 0.39 -6.33 -5.95 

28 -4.29 0.39 -5.53 -4.72 

29 -1.66 0.1 -1.09 -1.13 

30 -2.29 0.12 -4.91 -4.81 

32 -7.29 0.1 -5.25 -5.47 

33 -6.96 0.1 -9.91 -9.49 

34 -5.8 0.1 -9.92 -9.69 

35 -4.68 0.1 -5.56 -5.75 

36 -5.66 0.1 -4.93 -5.39 

37 -5.94 0.1 -10.21 -9.57 

38 -3.93 0.1 -5.57 -5.68 
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39 -0.85 0.1 -0.58 -1.08 

41 -5.05 0.1 -3.98 -2.74 

42 -3.13 0.1 -2.01 -2.67 

43 0.14 0.1 1.05 0.85 

44 -5.08 0.1 -5.02 -5.17 

45 -11.53 0.29 -15.51 -16.04 

46 -9.44 0.74 -11.35 -12.89 

47 -14.21 1.1 -21.10 -21.52 

48 -11.85 0.35 -13.29 -15.09 

49 -3.16 0.1 -3.64 -4.05 

50 -4.14 0.1 -4.39 -5.05 

51 -9.53 0.28 -11.27 -11.56 

52 -2.87 0.69 -2.67 -3.12 
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Table S4-5: Comparing solvation free energy of SAMPL4 compounds with various force 

field combinations and QM optimization solute structures under  

B3LYP/6-31+G*/IEFPCM 

ID EXP(kcal/mol) Error GAFF_BCC GAFF_ChelpG OPLS_BCC OPLS_ChelpG 

1 -23.62 0.32 -27.89 -39.14 -25.14 -36.00 

2 -2.49 0.85 -3.20 -5.26 -3.97 -5.98 

3 -4.78 0.25 -1.66 -4.53 -1.67 -4.50 

4 -4.45 0.24 N/A N/A N/A N/A 

5 -5.33 0.1 -6.02 -6.08 -5.81 -6.10 

6 -5.26 0.18 -7.46 -10.04 -7.03 -9.64 

9 -8.24 0.76 -10.62 -15.09 -10.17 -14.75 

10 -6.24 0.38 -5.16 -5.88 -4.83 -5.63 

11 -7.78 0.77 -9.78 -13.12 -9.23 -12.63 

12 -3.75 0.21 -2.88 -6.74 -3.13 -6.92 

13 -4.44 0.43 -3.00 -4.57 -2.87 -4.39 

14 -4.09 0.17 -4.34 -9.17 -4.65 -9.33 

15 -4.51 0.1 -3.41 -9.02 -3.76 -9.29 

16 -3.2 0.27 -1.31 -4.63 -0.78 -4.06 

17 -2.53 0.25 -2.77 -6.17 -2.76 -6.12 

19 -3.78 0.1 -3.43 -0.39 -3.38 -0.53 

20 -2.78 0.1 -1.99 1.47 -2.37 0.84 

21 -7.63 0.12 -10.05 -13.40 -9.77 -13.17 

22 -6.78 0.1 -8.43 -7.94 -8.88 -8.57 

23 -9.34 0.62 -10.27 -3.75 -8.94 -3.19 

24 -7.43 0.6 -10.01 -1.94 -9.07 -1.59 

25 -5.73 0.15 -10.68 -14.38 -10.60 -14.46 

26 -5.31 0.1 -9.37 -12.63 -9.72 -13.04 

27 -4.8 0.39 -6.41 -13.91 -4.74 -12.33 

28 -4.29 0.39 -5.61 -12.54 -4.10 -11.12 

29 -1.66 0.1 -1.33 -5.02 -0.48 -4.23 

30 -2.29 0.12 -3.94 -7.34 -3.97 -7.22 

32 -7.29 0.1 -5.29 -6.95 -5.34 -7.04 

33 -6.96 0.1 -9.97 -10.36 -9.45 -9.79 

34 -5.8 0.1 -9.95 -11.91 -9.62 -11.51 

35 -4.68 0.1 -5.60 -7.05 -5.56 -6.97 

36 -5.66 0.1 -4.98 -4.27 -4.78 -4.14 

37 -5.94 0.1 -10.25 -11.84 -9.91 -11.53 
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38 -3.93 0.1 -5.19 -6.66 -5.48 -6.98 

39 -0.85 0.1 -0.57 0.85 -0.66 0.65 

41 -5.05 0.1 -3.45 -3.74 -2.85 -3.12 

42 -3.13 0.1 -2.04 -3.48 -1.82 -3.50 

43 0.14 0.1 1.05 1.17 0.98 1.10 

44 -5.08 0.1 -5.04 -6.57 -4.58 -6.30 

45 -11.53 0.29 -15.55 -19.75 -15.99 -20.91 

46 -9.44 0.74 -12.12 -15.07 -12.44 -15.95 

47 -14.21 1.1 -21.63 -29.43 -21.48 -30.65 

48 -11.85 0.35 -13.52 -18.87 -13.04 -19.37 

49 -3.16 0.1 -3.64 -1.74 -3.86 -1.88 

50 -4.14 0.1 -4.37 -0.47 -4.43 -0.76 

51 -9.53 0.28 -10.79 -14.88 -10.38 -15.13 

52 -2.87 0.69 -2.67 -0.60 -2.89 -1.08 

*: N/A means direct QM optimization fails in short time (<5min) 
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Table S4-6: Comparing solvation free energy of SAMPL4 compounds with various force 

field combinations and QM optimization solute structures under HF/6-31+G*/IEFPCM 

ID EXP(kcal/mol) Error GAFF_BCC GAFF_ChelpG OPLS_BCC OPLS_ChelpG 

1 -23.62 0.32 -26.31 -36.72 -23.61 -33.70 

2 -2.49 0.85 -3.09 -1.64 -3.87 -2.42 

3 -4.78 0.25 -1.57 -1.84 -1.59 -1.88 

4 -4.45 0.24 -4.78 -4.77 -4.77 -4.79 

5 -5.33 0.1 -6.00 -3.53 -5.78 -3.39 

6 -5.26 0.18 -7.42 -6.02 -6.99 -5.61 

9 -8.24 0.76 -10.12 -8.43 -9.67 -8.05 

10 -6.24 0.38 -4.87 -3.09 -4.55 -2.76 

11 -7.78 0.77 -9.25 -8.02 -8.69 -7.49 

12 -3.75 0.21 -2.81 -2.78 -3.05 -3.00 

13 -4.44 0.43 -2.89 -2.14 -2.76 -2.02 

14 -4.09 0.17 -4.21 -3.50 -4.52 -3.84 

15 -4.51 0.1 -3.30 -3.33 -3.65 -3.68 

16 -3.2 0.27 -1.22 -2.36 -0.70 -1.82 

17 -2.53 0.25 -2.68 -2.28 -2.67 -2.28 

19 -3.78 0.1 -3.43 0.51 -3.38 0.33 

20 -2.78 0.1 -1.98 2.04 -2.36 1.38 

21 -7.63 0.12 -8.16 -5.72 -7.93 -5.66 

22 -6.78 0.1 -8.27 -5.66 -8.72 -6.28 

23 -9.34 0.62 -9.41 -0.42 -8.03 0.12 

24 -7.43 0.6 -9.82 0.26 -8.90 0.43 

25 -5.73 0.15 -9.75 -8.52 -9.64 -8.34 

26 -5.31 0.1 -9.06 -7.35 -9.38 -7.60 

27 -4.8 0.39 -6.33 -9.24 -4.67 -7.69 

28 -4.29 0.39 -5.53 -8.11 -4.02 -6.67 

29 -1.66 0.1 -1.09 -2.81 -0.26 -2.03 

30 -2.29 0.12 -4.89 -4.81 -4.82 -4.76 

32 -7.29 0.1 -5.25 -5.03 -5.31 -5.11 

33 -6.96 0.1 -9.91 -6.29 -9.39 -5.64 

34 -5.8 0.1 -9.92 -7.71 -9.59 -7.28 

35 -4.68 0.1 -5.56 -4.39 -5.52 -4.40 

36 -5.66 0.1 -4.93 -2.79 -4.73 -2.70 

37 -5.94 0.1 -10.21 -7.93 -9.87 -7.54 
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38 -3.93 0.1 -5.57 -4.17 -5.83 -4.49 

39 -0.85 0.1 -0.58 1.30 -0.67 1.07 

41 -5.05 0.1 -3.98 -2.69 -3.25 -2.02 

42 -3.13 0.1 -2.01 -1.96 -1.79 -1.80 

43 0.14 0.1 1.05 1.29 0.98 1.20 

44 -5.08 0.1 -5.02 -4.65 -4.56 -4.16 

45 -11.53 0.29 -15.51 -12.55 -15.92 -13.01 

46 -9.44 0.74 -11.35 -9.28 -11.56 -9.55 

47 -14.21 1.1 -21.10 -18.47 -20.91 -18.90 

48 -11.85 0.35 -13.29 -11.49 -12.76 -11.30 

49 -3.16 0.1 -3.64 -1.07 -3.85 -1.17 

50 -4.14 0.1 -4.39 0.35 -4.44 0.02 

51 -9.53 0.28 -11.27 -10.86 -10.96 -10.75 

52 -2.87 0.69 -2.67 0.45 -2.89 0.01 
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Table S4-7: Comparing solvation free energy of SAMPL4 compounds with various force 

field combinations and QM optimization solute structures under MP2/6-31+G*/IEFPCM 

ID EXP(kcal/mol) Error GAFF_BCC GAFF_ChelpG OPLS_BCC OPLS_ChelpG 

1 -23.62 0.32 -28.11 -45.17 -25.37 -41.83 

2 -2.49 0.85 -3.03 -8.15 -3.80 -8.71 

3 -4.78 0.25 -3.40 -11.54 -3.35 -11.34 

4 -4.45 0.24 0.00 N/A N/A N/A 

5 -5.33 0.1 -6.12 -8.48 -5.91 -8.64 

6 -5.26 0.18 -7.67 -13.33 -7.25 -12.91 

9 -8.24 0.76 -10.70 -17.96 -10.35 -17.64 

10 -6.24 0.38 -5.32 -7.20 -5.02 -7.00 

11 -7.78 0.77 -9.85 -16.08 -9.33 -15.57 

12 -3.75 0.21 -3.05 -9.83 -3.32 -10.04 

13 -4.44 0.43 -3.10 -5.86 -2.96 -5.61 

14 -4.09 0.17 -3.63 -10.30 -3.96 -10.49 

15 -4.51 0.1 -3.62 -12.30 -3.97 -12.52 

16 -3.2 0.27 -1.56 -6.04 -1.03 -5.45 

17 -2.53 0.25 -3.06 -9.28 -3.04 -9.18 

19 -3.78 0.1 -3.64 -1.69 -3.55 -1.76 

20 -2.78 0.1 -1.86 0.46 -2.24 -0.11 

21 -7.63 0.12 -10.27 -16.80 -9.97 -16.36 

22 -6.78 0.1 -7.87 -9.39 -8.26 -9.81 

23 -9.34 0.62 0.00 N/A N/A N/A 

24 -7.43 0.6 -5.25 -1.67 -4.88 -1.54 

25 -5.73 0.15 0.00 N/A N/A N/A 

26 -5.31 0.1 -9.55 -16.59 -9.88 -17.00 

27 -4.8 0.39 -6.38 -16.25 -4.72 -14.66 

28 -4.29 0.39 -5.57 -14.63 -4.07 -13.23 

29 -1.66 0.1 -1.37 -6.08 -0.52 -5.30 

30 -2.29 0.12 -5.14 -12.38 -5.06 -11.96 

32 -7.29 0.1 -5.38 -7.87 -5.44 -7.95 

33 -6.96 0.1 -10.09 -13.37 -9.59 -12.86 

34 -5.8 0.1 -7.75 -11.82 -7.31 -11.65 

35 -4.68 0.1 -5.56 -9.84 -5.55 -9.74 

36 -5.66 0.1 -5.01 -5.47 -4.81 -5.30 

37 -5.94 0.1 -10.41 -14.97 -10.08 -14.74 



 

247 

38 -3.93 0.1 -5.70 -10.90 -5.96 -10.93 

39 -0.85 0.1 -0.59 0.13 -0.68 -0.02 

41 -5.05 0.1 -4.40 -5.17 -3.65 -4.34 

42 -3.13 0.1 -2.13 -4.51 -1.91 -4.65 

43 0.14 0.1 1.02 0.96 0.94 0.90 

44 -5.08 0.1 -5.08 -8.30 -4.62 -8.23 

45 -11.53 0.29 -16.35 -23.30 -16.77 -24.67 

46 -9.44 0.74 -13.23 -18.26 -13.58 -19.26 

47 -14.21 1.1 -20.93 -35.70 -20.27 -36.41 

48 -11.85 0.35 -16.64 -23.82 -16.36 -23.90 

49 -3.16 0.1 -3.61 -2.92 -3.84 -3.11 

50 -4.14 0.1 -4.39 -1.85 -4.45 -2.08 

51 -9.53 0.28 -12.49 -19.06 -12.20 -19.61 

52 -2.87 0.69 -2.58 -2.18 -2.83 -2.74 

*: N/A means direct QM optimization fails in short time (<10min) 
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4.3 Molecular density functional theory for multiscale modeling of hydration free 

energy 

ABSTRACT 

Recent developments in physical and computer sciences enable quantitative 

predictions of chemical reactions and thermodynamic data from first principles by 

multiscale modeling. The hierarchical approach integrates different theoretical frameworks 

ranging from those describing phenomena at the electronic length and time scales to those 

pertinent to complex biomolecular systems and macroscopic phase transitions, promising 

broad applications to problems of practical concern. Whereas multiscale modeling has been 

emerging as a popular computational tool for engineering applications, the connection 

between calculations at different scales is far from being coherent, and the multiple choices 

of quantum/classical methods at each scale renders numerous combinations that have been 

rarely calibrated against extensive experimental data. In this work, we have examined a 

multiscale procedure for predicting the solvation free energies of a large set of small 

molecules in liquid water at ambient conditions. Using the experimental data for the 

hydration free energies as the benchmark, we find that the theoretical results are sensitive 

to the selection of quantum-mechanical methods for determining atomic charges and solute 

configurations, the assignment of the force-field parameters in particular the atomic partial 

charges, and approximations in the statistical-mechanical calculations. Because of 

significant uncertainties in quantum-mechanical calculations and the semi-empirical nature 

of force-field models, computational efficiency makes the classical density functional 



 

249 

theory a valuable alternative to molecular simulations for future development and 

application of multiscale modeling methods.       

4.3.1. Introduction   

Chemical processes of practical concern mostly take place at multiple spatiotemporal 

scales. While chemical reactions and intermolecular interactions are determined by 

electronic activities at atomic levels, such interactions lead to collective thermodynamic 

behavior such as structure formation and phase transitions at macroscopic scales. As shown 

schematically in Figure 4-6, conventional multiscale methods to describe multiscale 

phenomena hinge on different theoretical frameworks including quantum-mechanical 

(QM) calculations of electronic properties, molecular dynamics (MD) or Monte Carlo 

(MC) simulations for dynamic and equilibrium properties determined by small length-scale 

correlations, coarse-grained models and continuum-level phenomenological equations for 

describing macroscopic phenomena and high-throughput computations53. Whereas recent 

theoretical developments make it possible for a quantitative connection of different 

quantum and classical approaches via hierarchical multiscale modeling, the integration 

between different models at various length and time scales is far from being perfect. 

Because of the uncertainties in the computational methods at each scale, a judicious 

combination of different methods is critically important for practical applications of 

multiscale modeling methods. In this work, we exam how the theoretical performance of 

multiscale modeling depends on different combinations of quantum and classical methods 

for predicting the solvation free energies of a large number of chemicals in liquid water at 

ambient conditions.  
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Solvent effects play a central role in solution thermodynamics. Despite a long history 

of studies, theoretical prediction of solvation free energy remains a bottleneck in 

understanding important chemical and biological processes in liquid surroundings. There 

have been enormous activities in this field, and the literature is vast. Recent interest has 

been mostly devoted to understanding the microscopic details of solute-solvent interactions 

and the effects of the local solvent structure on the chemical and biochemical affinities of 

dissolved species1,54-67. Such information is indispensible for studying molecular events in 

organic or aqueous systems including chemical reactions and relaxation dynamics68, 

stability of biomacromolecules69, and host-guest interactions for rational drug design 70-74.  

Approximately, existing computational methods to investigate the solvent effects may 

be classified into three categories: continuous approaches3,75-79, molecular simulations80-84, 

and liquid-state theories2,85-90. A number of hybrid methods also exist by various 

combinations of these three basic procedures22,91-95. While continuous approaches are 

usually constructed from the knowledge-based, macroscopic properties of the solvent, 

molecular simulations and liquid-state theories rely on semi-empirical force fields to 

account for the solvent-solvent and the solute-solvent interactions. In principle, the 

solvation free energy can be directly predicted from a combination of quantum 

mechanical/molecular mechanical (QM/MM) calculations 96, but the first principles 

methods are computationally prohibitive for large-scale calculations97-101. To a certain 

degree, the “top-down” and “bottom-up” approaches are complementary, and a practical 

choice often reflects a compromise of the computational cost and the precision in the 

microscopic details. Because of the complexity of solute-solvent interactions at the atomic 
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scale, development of computational methods for fast yet reliable predictions of solvent 

effects remains a daunting theoretical challenge. 

With solvent molecules depicted as a dielectric continuum, a continuous approach is 

able to describe the solvation free energy in terms of the geometric measures of the solute-

solvent boundary, such as the solute size, solvent-accessible surface area, surface curvature 

and various energetic contributions due to the solute-solvent electrostatic and van der 

Waals interactions4,102-104. Neglecting the microscopic details of the solvent molecules 

makes the phenomenological approach computationally extremely efficient and thus 

convenient for practical applications105-107. The so-called primitive model of electrolyte 

solutions provides a prime example: with ions represented by spherical particles and the 

solvent as a dielectric continuum, it is able to reproduce both the solvation free energies 

and the thermodynamic properties of many simple electrolytes with remarkable 

accuracy108-111. The continuous approach is also applicable to a wide class of chemical 

systems containing neutral inorganic atoms, large and possibly polar organic molecules, 

and polyatomic ions112,113. Despite the great success, a major issue with the continuous 

methods is that they typically deploy semi-empirical parameters that are valid for a narrow 

range of thermodynamic conditions5,49,114. Besides, a continuous model neglects the local 

solvent inhomogeneity and the steric effects affiliated with individual solvent molecules. 

Recently, Nakamura et al. proposed an elegant procedure to account for the variation of 

the dielectric inhomogeneity near the solute using field-theoretic techniques6. The new 

theoretical method predicts ionic solvation free energies in both single-component liquids 

and binary liquid mixtures in excellent agreement with the experimental data. Other recent 
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developments include the solvent polarizable pseudo-particle approach17 and the use of the 

frequency dependent multipolar polarizability to account for the dispersion contributions 

115. The applicability of these interesting developments to complicated chemical systems is 

yet to be tested.  

Molecular simulation has been a popular choice to study solvent effects over the past 

few decades116. Excellent reviews are available focused on molecular simulations for 

computation of solvation free energy in liquid water117,118. Unlike those properties directly 

related to molecular mechanics and configurations, the free-energy calculation relies on 

alchemical methods to sample the microstates of the system along various thermodynamic 

pathways119,120. Although advanced simulation techniques have been developed to reduce 

the computational cost, the accelerated methods are not always robust 121-130. Besides, 

simulation results have been rarely reported for the solvation free energies of a large library 

of chemical systems 117. A notable exception is the MC data for the solvation properties of 

over 200 organic solutes in aqueous and organic solutions reported by Duff and 

Jorgensen19. More recently, Mobley et al. 20 calculated the hydration free energies of over 

500 small organic molecules using MD simulations. These large-scale simulation studies 

provide fresh insights into the microscopic details of the solvent structure ignored in 

continuous models and, perhaps more importantly, invaluable benchmark data for 

calibrations of new theoretical developments. 

Historically, most liquid-state methods were established in the context of simple fluids 

and coarse-grained models of molecular systems131. Over the past decade there have been 

tremendous developments in both integral-equation and density functional theories for an 
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atomistic description of molecular systems15,16,18,47,132-140. To a certain degree, liquid-state 

theories represent a good compromise between continuous approaches and molecular 

simulations. On the one hand, liquid-state theories retain the microscopic details of the 

solvent molecules that are accounted for in molecular simulations. Instead of sampling the 

microstates, the theoretical methods provide analytical expressions for correlation 

functions and thermodynamic properties including the solvation free energy and thus are 

computationally much more efficient than molecular simulations. On the other hand, 

liquid-state theories use continuous functions to describe the local structure of solvent 

molecules in an extended chemical environment. Like that for continuous approaches, the 

system size is much less an issue in numerical implementation of liquid-state theories. In a 

recent work14, we proposed a molecular density functional theory (MDFT) based on the 

universality hypothesis of the bridge functional originally proposed by Rosenfeld141. With 

the bridge functional represented by the modified fundamental measure theory141,142, 

MDFT allows us to predict the solvation structure and the solvation free energy in excellent 

agreement with molecular simulations14,47,140.  

The main purpose of this work is to investigate how the theoretical predictions of the 

hydration free energy are influenced by different first principles calculations for the solute 

configurations and by the selections of different solvent models and the solute parameters 

in the molecular force fields. Because MDFT is much faster than molecular simulations 

and yet provides fully atomistic descriptions of molecular systems, it renders an excellent 

avenue to investigating the connections between different theoretical procedures 

commonly used in multiscale modeling. While the theoretical methods within their specific 
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scales have been routinely examined, the existence of multiple choices in each scale leads 

to a large number of combinations.  Calibration of different multiscale modeling methods 

has been rarely reported in the literature, in particular by comparison with extensive 

experimental data of practical concern.  

This rest of this article is organized as follows: In the next section, we introduce the 

basic statistical-mechanical equations for calculating the solvation free energy. The force-

field models used in this work are reviewed briefly in Section III.  Section IV recapitulates 

the MDFT equations for predicting hydration free energy. Section V presents the numerical 

results and discussions. Finally, Section VI summarizes the main conclusions with 

prospects for future developments. 

4.3.2. Statistical thermodynamics of solvation  

We consider dissolution of a single solute molecule in liquid water at fixed temperature 

and pressure. The configuration of M atoms in the solute molecule can be defined by its 

atomic positions, . Given an atomic configuration of the solute, its 

interaction with a solvent molecule of atomic configuration 
  
x º (r

H1
,r

O
,r

H2
)  can be 

calculated from the pairwise additive Lennard-Jones (LJ) and Coulomb potentials:  
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where subscripts k and i denote atoms from the solute and solvent molecules, respectively, 

 
r

ik
 represents the center-to-center distance between i and k atoms,  Z  stands for (fractional) 

valence, e is the elementary charge, and 
 
e

0
is the vacuum permittivity. For the water 
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models considered in this work, the LJ potential applies only to the interaction of the 

oxygen atom with the solute molecule. As in typical molecular simulations, we use the 

Lorentz-Berthelot combining rules for the LJ parameters, 
 
e

ij
= e

ii
e

jj
, 
  
s

ij
= (s

ii
+s

jj
) / 2

, where 
 
e

ii
and 

 
s

ii
 are the energy and size parameters for atom i. For each configuration 

of the solvent molecules, the total solute-solvent energy is given by a summation of all 

solute-solvent interactions 
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The solvation free energy is defined by the reversible work to transfer the solute 

molecule from a vacuum into pure solvent  

 
   
F

s
º -k

B
T ln < exp[-bG(X)] >

0+X
 (106) 

where 
 
k

B
 represents the Boltzmann constant, 

  
b = 1/ (k

B
T ) , and  stands for the 

ensemble average over the microstates of the solute and solvent molecules, with subscripts 

0 and  Xdenoting the atomic configurations of the pure solvent and the solute, respectively. 

In experiment and most molecular simulations, the solvation free energy is evaluated at 

fixed temperature, pressure, and total volume. In other words, the reversible work 

corresponds to change in the Gibbs energy,  DG.  

Molecular simulation of the solvation free energy is commonly carried out in an 

isobaric-isothermal ensemble using the free-energy perturbation, thermodynamic 

integration or Bennett acceptance ratio methods117. However, theoretical predictions of the 

solvation free energy are mostly based on the grand canonical ensemble, i.e., systems with 
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fixed solvent chemical potential m  and volume  V  instead of the number of solvent 

molecules  N  and pressure  P . As illustrated schematically in Figure 4-7, the solvation free 

energy can be related to the change in the grand potential for the solvent as an open system, 

DW , and a reversible work due to the volume change  DV 139  

 
   
F

s
(X) = DW - PDV  (107) 

Eq.107 is valid only when the solute has a rigid configuration. In general, the solvation free 

energy must be calculated by considering all possible solute configurations  

 
   
bF

s
= - ln exp[-bF

s
(X)]

X
  (108) 

where   denotes an ensemble average over all solute configurations in the vacuum. 

In this work, we are interested in the solvation free energies of small molecules so that the 

ensemble average may be estimated from a single or few solute configurations. At fixed T 

and P, the volume change due to the dissolution of a solute molecule can be identified as 

the solute partial molar volume at infinite dilution, i.e., 
 
DV = v

s

¥
. At ambient conditions, 

the partial molar volume of a small molecule in liquid water is typically on the order of 

100 ml/mol143,144, which gives    Pv
s

¥ ∼0.1 kJ/mol at P =  1 atm. The volumetric term is 

negligible in comparison to the typical values of the hydration free energy (~ kcal/mol) and 

is thus not considered in this work. 

4.3.3. Force fields  

Predicting the solvation free energy from atomistic models requires a force field to 

specify the inter- and intra- molecular interactions. The force-field approach was 

introduced originally for predicting the molecular structures of organic and biological 
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systems145-147. As described in the pioneering work by Lifson et al.148, a conventional force 

field uses relatively simple mathematical functions to describe bond potentials and non-

bonded inter-atomic interactions: 
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In Eq.109, the first two terms on the right describe energies related to the deformations of 

bond length b and bond angle θ from their equilibrium values, b0 and θ0, respectively. The 

harmonic forms (with force constants Kb and Kθ) are used to ensure the correct topological 

structure for each molecule. The bond potentials are not intended to represent chemical 

changes such as bond breaking. The third and fourth terms (dihedral and improper angles) 

are affiliated with the rotations of the neighboring bonds. These terms are characterized by 

periodic variation energies of the torsion angles (with periodicity determined by n and 

heights of rotational barriers defined by Kφ and Kχ, respectively). The last two terms arise 

from pair interactions between non-bonded atoms, typically represented by the Lennard-

Jones and the Coulomb potentials. Both the van der Waals and Coulomb potentials depend 

only on the atomic center-to-center distance 
   
r

ij
=| r

i
- r

j
|.  

Semi-empirical force fields provide a convenient starting point for theoretical 

prediction of the energetic properties of molecular systems. However, a systematic 
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evaluation of the model parameters is rather challenging because they must reflect both the 

properties of individual molecules in the vacuum and experimental data for macroscopic 

systems. From the fundamental point of view, the force-field approach represents only an 

approximation of the QM descriptions of electrons and nuclei that constitute all molecular 

systems. Although the essential ingredients of an atom are invariant with the changes in 

thermo-physical properties including chemical reactions and phase transitions, these 

particles interact with each other without differentiating bonded and non-bonded 

interactions. In other words, it is the same electron cloud that determines chemical 

reactions, hydrogen bonding, and van der Waals forces.  

Parameters related to the bond lengths, bond angles, torsional angles and atomic 

charges are typically determined from the QM calculations. Toward that end, first 

principles calculations are often based on the electronic DFT, which is computationally 

efficient but entails many choices to approximate the exchange-correlation functional. 

Because conventional DFT methods involve various local/semi-local density 

approximations that are not sufficiently accurate for long-range electrostatic correlations, 

the DFT methods are rarely used to fix the van der Waals parameters. Besides, the results 

from QM calculations are not strictly consistent with the pairwise additivity assumption 

for van der Waals interactions. As a result, the LJ parameters are usually obtained by fitting 

with experimental data such as liquid density and heat of evaporation. The connection of 

the macroscopic properties with the molecular parameters inevitably requires statistical-

mechanical calculations. While such connection is conventionally established through MD 
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and MC simulations, the accuracy of a force field depends also on the quality of QM 

calculations, reliability of experimental data, and the scope of calibrations.  

Many successful force fields have already been widely in use for multiscale modeling. 

For example, DREIDING149 and UFF150 cover essentially all elements in the periodic table 

and are able to achieve good quality for predicting the crystalline structure of nanoporous 

materials and gas adsorptions.151-154 For applications to chemical and biophysical systems 

including solvation, common force fields include AMBER155, CHARMM156 and OPLS40. 

The TraPPE force field is a popular choice for phase-equilibrium calculations and for 

predictions of the thermophysical properties of gases and liquids157,158. To further improve 

the performance, a force field may include correlation terms like bond-angle correlation 

and angle-torsion correlation. The so-called Class II force fields, such as CFF93159 and 

COMPASS160, perform well for condensed phases containing organic molecules and 

polymers. 

4.3.4. Molecular density functional theory (MDFT)  

Theoretical details for the MDFT and the numerical procedure for its implementation 

can be found in our previous publications 14,47,140. Here we recapitulate only the key 

equations and justifications for approximations used in formulation of the free energy 

functional.  

In MDFT calculations, the solvation free energy is defined as the reversible work to 

transfer a solute molecule from the vacuum into a pure solvent at fixed temperature and 

the solvent chemical potential. The free energy can be evaluated using an open system 

consisting of solvent molecules in the presence of an external potential that arises from the 
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solute-solvent interactions. For a given configuration of the solute molecule, the solvation 

free energy corresponds to the difference between the grand potential of the pure solvent 

and that of the solute-solvent system  

 
   
F

s
[r(x);m,V ,T] = W[r(x);m,V ,T ]- W

0
[m,V ,T ] (110) 

where 
 
W

0
 represents the grand potential of the pure solvent. As discussed earlier, the 

solvation free energy calculated from Eq.110 is virtually identical to the change in Gibbs 

energy derived from experiment or molecular simulations. 

For a one-component system at given temperature T , volume  V  and chemical 

potential m , the grand potential is defined as a functional of the molecular density profile, 

  r(x) : 
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where  x  is a composite vector specifying the atomic positions of a solvent molecule. For 

the water models considered in this work, 
  
x º (r

H1
,r

O
,r

H2
)  defined the positions of 

hydrogen and oxygen atoms. In Eq.111, the first term on the right side defines the intrinsic 

Helmholtz energy of an ideal-gas system, i.e., a system with the same molecular density 

profile but without intermolecular interactions; L  stands for an effective thermal 

wavelength, which is immaterial in solvation free-energy calculations; and Vintra(x) 

represents the intramolecular potential. As defined in Eq. (1),   Y(x)  represents the solute-

solvent potential. For simplicity, here the solute configuration is not explicitly shown. The 
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last term, [ ( )]exF  x , denotes the excess intrinsic Helmholtz energy, i.e., deviation from 

that of the ideal-gas system due to intermolecular interactions.  

The density profile of the solvent molecules is calculated by minimizing the grand 

potential 

 0
( )








x
  (112) 

Substituting Eq.111 for the grand potential into Eq.112 leads to the Euler-Lagrange 

equation 

 
   
r(x) ~ exp[bm - bY(x) - bV

intra
(x) -dbF ex / dr(x)]  (113) 

where 
  
b =1/ (k

B
T ) , and the proportionality constant can be fixed by the bulk solvent 

density161. In numerical implementations of MDFT, we use the atomic density 

profiles138,162   
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where 
  
r

i

0
 is the number density of atom  i  in the bulk,    < >

x '
 represents an average over 

all molecular conformations with the position for atom  i  fixed at  r . The reduced one-body 

potential, 
   
l

i
(r) , is related to the external field for atom  i  , 

   
j

i

ext (r) , the atomic excess 

chemical potential 
  
m

i

ex
, and the deviation of the local excess chemical potential for each 

atom form the bulk value163    
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The atomic density as well as the atomic excess chemical potentials can be fixed by the 

normalization conditions. In writing Eq.115, we have assumed that the external potential 

for each molecule can be decomposed into contributions from individual atoms 

  

   

Y(x) = j
i
(r

i
)

i

å   (116) 

The decomposition of the solute-solvent potential is fully consistent with the van der Waals 

and Coulomb potentials used in conventional force fields.   

The physical meaning of Eq.114 is intuitively appealing: it resembles the Boltzmann 

equation for inhomogeneous atomic distributions. The effective one-body potential reflects 

the interaction of each atom with the surroundings, i.e., other atoms from the same 

molecule and all other molecules, and the external field. With an analytical expression for 

the excess intrinsic Helmholtz energy and specific descriptions of the external and 

intramolecular potentials as detailed below, we can readily calculate the atomic density 

profiles, and subsequently the solvation free energy.    

The intrinsic Helmholtz energy is an intrinsic property solely determined by the 

microscopic details of the solvent molecules. Without loss of generality, the excess 

intrinsic Helmholtz energy can be expressed relative to that of a bulk system with the same 

temperature, volume and chemical potential:  
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In Eq.117, 
   
Dr

i
(r) = r

i
(r) - r

i

0
 is the deviation of the local atomic density from the bulk 

value, and 
  
c

ij

(2)(r)
 
denotes the site-site direct correlation function (DCF) of the bulk system 
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The last term on the right size of Eq.117, [ ( )]B iF  r , defines the bridge functional, which 

accounts for all contributions to the excess Helmholtz free energy beyond the quadratic 

expansion, i.e., all high-order terms in the functional Taylor expansion of the excess 

intrinsic Helmholtz energy.  

Eq.117 is formally exact and immaterial to the additivity of the intermolecular 

potentials. In a previous work36,164, we have shown that the site-site DCFs for water can be 

obtained from molecular simulation for the bulk system. Whereas we have no a priori 

knowledge for the bridge functional, it has been well documented in the liquid-state 

literature that the high-order terms are dominated by short-range interactions, insensitive 

to the mathematical details of the long-range intermolecular forces131. The insensitivity of 

the bridge functional to the precise form of the intermolecular potential is known as the 

bridge universality, proposed first by Rosenfeld about 20 years ago165-167. The universality 

ansatz was supported by the fact that the quadratic approximation (i.e., without the bridge 

functional) conforms to the exact results at both the “ideal gas” and “ideal liquid” limits 

for the long-range components of the intermolecular potentials168. Using the fundamental 

measure theory (FMT) as an input, Rosenfeld also demonstrated that the universality 

hypothesis performs well for a wide variety of liquid systems, including charged Yukawa 

fluids and plasma mixtures (see ref167 for an overview).  
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The universality ansatz allows us to approximate the bridge functional with that of a 

reference hard-sphere (HS) system:  
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where [ ( )]ex

HS iF  r  represents the excess Helmholtz energy functional of the reference 

system,  ,

ex

i HS  and 
  
F

HS

ex (r
i

0 ) are, respectively, the excess chemical potential and the excess 

Helmholtz energy of the reference system at bulk density
   
r

i

0
; and 

   
c

ij

HS (|r
1
- r

2
|)  is the 

corresponding direct correlation functions. Accurate expressions are available for the 

excess Helmholtz energy functional and correlation functions of inhomogeneous hard-

sphere systems142,169,170. For water models considered in this work, oxygen atoms dominate 

short-range interactions or the excluded volume effects. In that case, we may assume that 

the bridge functional depends only on the density profiles of oxygen atoms. This 

assumption is justified by the small size of hydrogen atoms in comparison to oxygen. 

Whereas in principle the hard-sphere diameter could be determined self-consistently, we 

estimate this parameter by simply reproducing the solvation free energy for a single solute 

(e.g., methane). The approximation yields good results for a large number of small organic 

solutes but with much improved computational efficiency.  

With the atomic density profiles solved from Eq.113, we can readily calculate the 

solvation free energy from an analytical equation  
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where
  
M

s
= 3 for all water models used in this work, and 

 
   
B

i
(r) º d F

B
/ dr

i
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We have demonstrated in a previous work that the MDFT is able to reproduce the 

simulation data for the hydration free energies of hundreds of chemicals 47. The numerical 

accuracy is comparable to that inherited from the molecular models for water and for the 

solute molecules. For the hydration free energies of about 500 small molecules studied by 

simulation, the MDFT yields an average unsigned error of 1.04 kcal/mol, which is close to 

the averaged absolute difference between MD simulation and experiment data, 1.03 

kcal/mol. 

4.3.5. Results and discussion 

The multiscale procedure for predicting hydration free energy connects first principles 

calculations for determining the atomic charge set of each solute molecule, selection of 

force-field parameters for describing intramolecular and van der Waals interactions, 

optimization of the solute configuration, and the MDFT calculations for the molecular 

density profiles and grand potential. To calibrate its performance with experimental data, 

we consider a number of different combinations of the multiscale methods and compare 

the theoretical results with the hydration free energies of a large library of chemical 

compounds. The experimental data for these chemicals (~700) were originally complied 
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by the groups of Mobley20 and Truhlar 171. These compounds cover many functional groups 

and fragments commonly used in general chemical products and rational drug design. 

Because conventional force fields were rarely calibrated with a large set of solubility data, 

this test provides a good benchmark for validating the quantitative performance of 

multiscale modeling methods. As a hallmark of first principles calculations, we do not use 

any a priori information about the experimental data for these chemicals. 

Three common water models were used in our MDFT calculations: TIP3P38, SPC172, 

and SPC/E173. For each solute molecule, the van der Waals parameters were obtained from 

either GAFF39 or OPLS-AA40 force fields; the atomic partial charges and the solute 

configuration were calculated from different QM methods. To predict the atomic 

configuration of each solute molecule, we have tested a number of optimization methods, 

including energy minimization in the vacuum or in the solvent with a semi-empirical force 

field, or by direct QM calculations. In the latter case, the solute structures were determined 

by using different level of QM methods (HF/HF-3c/BLYP) with two kinds of basis sets 

(SVP/TZVP). We employed the geometry correction method  (gCP) and the D3-BJ 

correction function, respectively, to correct errors due to intramolecular basis set 

superposition and dispersion effects improperly handled in the electronic DFT calculations 

174. According to the GMTKN30 benchmark for common DFT calculations based on GGAs 

and meta-GGAs 175, the dispersion corrected BLYP-D3 functional is among the most 

reliable methods for predicting noncovalent interactions. The accuracy is comparable to 

MP2 but with much less computational cost. In our previous work for a small set of solutes 

(SAMPL4 blind test)140, we found that the input solute structures from the QM calculations 
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in the solvent (HF/6-31+G*/IEFPCM) yields the best agreement between MDFT 

predictions and experimental data. Here additional solute configurations have been 

generated from alternative QM methods, either with or without using the COSMO 

solvation model to account for the solvent effect176.  

The atomic partial charges for each solute molecule can be assigned according to the 

AM1-BCC charge set41 or the ChelpG charge set42. The former is a common choice for the 

GAFF force field, and the latter is often used in CHARMM43 and OPLS40 models. With 

the QM optimized molecular structures as the input, the AM1-BCC charge sets were 

obtained from Antechamber-1.27 package44, while the ChelpG charge sets were obtained 

directly from the QM structure optimization. To accelerate the computational speed, we 

used the RIJCOSX acceleration method for Hartree-Fock (HF) calculations and the RIJ 

method for BLYP calculations. All the quantum mechanics calculations are carried with 

the ORCA 3.0.1 software package 177.  

Tables 4-3~4-5 summarize the overall performance of various combinations of the 

multiscale methods for predicting the solvation free energies of 700 chemicals in liquid 

water 25 oC and 1 atm. The structures of these compounds were obtained from different 

QM methods as specified in the 2nd and 3rd columns. As shown in Eq.(1), the solute-solvent 

interaction depends explicitly on the solute structure and such interaction dictates the 

inhomogeneous distribution of solvent molecules.  For easy comparison, Figure 4-8 shows 

the average unsigned error (AUE) values from the different multiscale procedures. While 

all combinations perform reasonably well in comparison with the experimental data, 

noticeable differences can be identified that are of chemical significance (~1 kcal/mol on 
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average). The best combination is provided by calculations based on the TIP3P water 

model, the solute configurations generated from HF/SVP optimization, OPLS LJ 

parameters, and ChelpG partial charges (the cheapest QM combination among our testing 

sets). For this particular combination, the MDFT predictions give 1.35 kcal/mol for AUE 

and 2.13 kcal/mol for RMSD (see the row with fold fonts in Table 3). These values are 

comparable to best hydration free energy predictions using MD simulation (AUE is 0.68 

kcal/mol and RMSD is 1.26 kcal/mol), and they are close to the discrepancies between 

results from MD simulation and MDFT calculations47. One possible reason for the good 

performance of this particular combination is that HF is a simple QM method that generates 

less environmentally dependent charges. While high-level DFT methods give more 

accurate charge distribution for a specific molecular configuration, the results are sensitive 

to the changes in solute configurations and to the solute-solvent interactions. Because 

MDFT calculations involve only a rigid configuration for each solute molecule, it appears 

that the simple QM method yields a better-averaged charge distribution and, a certain 

degree, takes into account an effective solute flexibility. In stark contrast to our previous 

work for calibration of MDFT with MD simulations 140, QM methods that account for the 

solvent effect on the solute charge and atomic configuration lead to poor MDFT predictions 

in comparison with the experimental data. Given the same structure generation method and 

the solute charge set, however, the MDFT predictions are rather incentives to different sets 

of van der Waals parameters.  

Figure 4-9 shows a comparison of the best theoretical predictions with the experimental 

data for about 700 small molecules. Overall the good correlation between theory and 
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experimental data demonstrates the robustness of the multiscale modeling methods used in 

this work. Unlike simulation or experiment, there are no error bars for the MDFT 

predictions; the results are obtained by solving a set of equations instead of sampling of 

different microstates. Figure 4 shows that the multiscale procedure performs better for 

hydrophobic solutes and less accurate for hydrophilic compounds (Fs < -5 kcal/mol). One 

possible reason is that the MDFT calculation ignores the flexibility of solute structures and 

assumes that the solute structure is invariant with the environment. The structure effect is 

especially important for large hydrophilic molecules that form hydrogen bonds with water 

molecules.  The structures of such molecules are drastically different in the vacuum and in 

water and cannot be captured by a single conformation. In a previous work47, we 

demonstrated that the flexibility effect could be successfully taken into account by 

sampling the solute flexibility with a relatively small number of equilibrium conformations 

in the vacuum (the improvement is around 0 ~ 4 kcal/mol47). Another possible reason for 

the deviation between theory and experiment lies in the selection of force-field parameters. 

Considering most of the compounds here were not considered in the original force fields 

training set, we expect that better results are attainable by optimizing parameters targeted 

for hydration free-energy calculations, in particular those related to hydrophilic functional 

groups like –OH and –O-NO2. The increased discrepancy may also be attributed to the 

approximations used in the MDFT calculations. In comparison with MD simulations, the 

errors introduced in the MDFT calculations are mainly due to the approximations for the 

bridge functional.  In formulation of the free-energy density functional, we have utilized a 

hard-sphere model to represent the bridge functional for water wherein the hard-sphere 
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diameter of the reference system was calibrated with the solvation free energy for 

methane14. Because the local structure of water molecules is sensitive to the solute 

hydrophobicity, the parameter obtained from a small hydrophobic solute may become less 

reliable for hydrophilic solutes. Since the effective hard-sphere diameter for a single 

hydrophilic solute is smaller than that for a hydrophobic solute due to the enhanced solute-

solvent attraction.  

       As expected, the multiscale procedure is sensitive to different combinations of first-

principle methods to assign the atomic charges and the solute structure. For example, the 

best combination discussed above may turn into worse predictions if the AM1-BCC charge 

set is used instead (AUE=1.83, RMSD=2.72 kcal/mol, see Table 4-5). Because these 

numbers are averaged over 700 chemicals, the difference is more dramatic if one considers 

specific solutes, as shown by the open circles in Figure 4-9. The hydration free energies of 

many solutes are overestimated by the AM1-BCC charge set, leading to the much larger 

AUE. 

       In our MDFT calculations, structure optimization methods could contribute to more 

than 100% RMS deviation for the solvation free energy calculations. Besides, the 

theoretical performance is sensitive to the solvent model. Among three common water 

models considered in this work, we found that MDFT performs the best with the TIP3P 

model. Therefore, we consider the effects of solute structure primarily on the base of this 

solvent model with different QM optimization methods for the solute configurations. As 

indicated above, among all combinations of solvent models and structure optimization 

methods tested, the best result was achieved with the solute structures obtained from 
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HF/SVP calculations in the vacuum, along with OPLS van der Waals parameters, the 

ChelpG charge set, and the TIP3P solvent model. Ironically, we see no improvement in the 

MDFT predictions when the BLYP functional is used in electronic DFT calculations, even 

with the correction for dispersion (D3-BJ) and basis set superposition errors (BSSE). 

Because the atomic charges and the configuration of a solute molecule is sensitive to the 

changes in the local solvent environment, more sophisticated QM methods do not warrant 

better input for the atomistic structure used in our MDFT calculations. A similar conclusion 

holds for the COSMO solvent model. Interestingly, the HF-3c method 178, which supposes 

to be used as an efficient method to handle large systems, gives even worse results than the 

original HF method, indicating that it may not be a good choice for generating the atomic 

structures of solute molecules.  

       For systems considered in this work, the MDFT calculation can be readily 

processed in a modern desktop computer. As shown in Figure 4-10, the computational cost 

varies from few minutes to about an hour, depending on the solute type. By contrast, 

explicit-solvent simulation methods require at least hundreds of CPU hours per solute26. 

For predicting the hydration free energies of 700 solutes shown in Figure 4-9, the average 

computation time is 23 minutes. The computational speed can be further improved by 

optimizing the MDFT programs. For large-scale calculations, the MDFT calculations can 

be easily implemented in parallel computers or with modern GPUs.  

4.3.6. Conclusions and perspectives  

In this work, we have tested various combinations of multiscale methods for predicting 

the hydration free energies of 700 small molecules at the ambient condition. Although the 
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systems considered are relatively simple, the computational procedure entails all essential 

components of multiscale modeling, i.e., predictions of atomic charges and solute 

configurations from first principles, the selection of force-field parameters, and statistical-

mechanical calculations of thermodynamic variables. The application of molecular density 

functional theory (MDFT) empowers the calibration of different multiscale procedures 

with experimental data for a large library of systems. Among all solute structures 

determined from QM calculations in combination with various force-field methods, we 

find that the best combination is provided by calculations based on the TIP3P model for 

liquid water, with the solute configurations generated from HF/SVP optimization, the 

OPLS LJ parameters, and the ChelpG partial charges. For this particular combination, 

MDFT predict the hydration free energies of 700 small molecules with AUE = 1.35 

kcal/mol and RMSD = 2.13 kcal/mol in comparison with experimental data. Considering 

the computational efficiency of both QM and classical DFT calculations, we expect that 

this combination will be useful for practical applications, in particular for large-scale 

screening of the solubility of small molecules.  

As in molecular simulations, our MDFT calculations are based on the pairwise additive 

potentials that do not account for the polarization effects. However, the importance of non-

additive interactions in liquid systems has been well recognized 179,180. Inclusion of the 

polarization effects may drastically increase the computational costs of traditional 

simulation methods, typically by one order magnitude in comparison to that with non-

polarizable models181-183. From a practical point of view, there is yet no convincing 

procedure to properly account for the effects of polarization on solvation free energy 
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calculations184. The computational efficiency of MDFT makes it an outstanding candidate 

for development and applications of polarizable force fields.     

Whereas conventional multiscale modeling methods use QM calculations for 

predicting the electronic properties and classical statistical-mechanical methods for 

integrating the atomic degrees of freedom, a large class of chemical systems consists of 

light elements with strongly coupled electron-nuclei correlations that are not amenable to 

cascade calculations185-191. The nuclear quantum effects are significant even at ambient 

conditions for heterogeneous materials containing metallic elements and liquid water or 

hydrogen gas. From a practical perspective, such systems are particularly important 

because they are commonplace in electrochemical systems for energy conversion and 

storage. Besides, it has been well recognized that hydrogen gas exhibits quantum effects at 

relatively high temperature, and many unique properties of liquid water are intrinsically 

related to the inseparability of the electronic and nuclei degrees of freedom192,193. 

Understanding the nuclear quantum effects is thus important in theoretical investigations 

of many chemical reactions in liquid water and in computational design of novel materials 

for hydrogen storage194. Because of the broad implication of water and hydrogen gas in 

technological applications, theoretical developments beyond the Born-Oppenheim 

approximation are urgently needed195.   

From a theoretical perspective, both electronic and classical DFT use one-body density 

profiles as fundamental variables to describe the properties of many-body systems196-207. 

While the original DFT concepts, introduced first by Pierre Hohenberg and Walter Kohn, 

were intended to provide an alternative to the Schrödinger equation for predicting the 
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ground-state properties of electronic systems208, the mathematical framework is applicable 

to electronic systems at finite temperature209, to thermodynamic systems of classical 

particles210,211, to coarse-grained models of polymeric systems163, and to multicomponent 

mixtures of quantum particles212-215. Regrettably, none of the generalized versions has 

received as much attention as the Kohn-Sham (KS) implementation of DFT for 

inhomogeneous electronic systems at 0 K 216-218. Because of its extreme popularity in 

computational chemistry and materials science for predicting the ground-state electronic 

properties and various static response functions of atoms, molecules, and solids, today DFT 

becomes almost synonymous to KS-DFT, even though the applicability of DFT for a wide 

variety of thermodynamic systems has also been well documented219. Because the 

mathematic procedure is similarly applicable to problems at different scales, we expect that 

DFT will be useful for future developments of multiscale modeling methods without 

empirical separation and re-combination of quantum and classical calculations.  
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Figure 4-6 Multiscale modeling aims to predict thermodynamic properties from a cascade 

of theoretical methods. Because of multiple choices at each scale and inevitable 

approximations, multiscale modeling may lead to various combinations of a large number 

of theoretical methods. 
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Figure 4-7 In experiment or conventional MD simulations, the solvation free energy is 

defined in terms of the change in the Gibbs energy,  DG  , at constant temperature  T  , 

pressure  P   and the number of solvent molecules  N  (top path). The MDFT calculation 

gives the change in the grand potential, DW , at constant temperature, volume  V  and the 

solvent chemical potential μ (top path). The difference between  DG   and DW  can be 

found by a thermodynamic path that I) defining an open system with the volume and the 

solvent chemical potential the same as those corresponding to the closed system; II) 

inserting a solute molecule at constant volume and the solvent chemical potential;  DN  

solvent molecules are removed due to the solute insertion; III) expanding the system 

volume at constant solvent chemical potential. In the thermodynamic limit, the solvent 

properties in the bulk remain unchanged due to the solvation of a single solute. For small 

molecules, the reversible work of expansion,  -PDV , is typically much smaller than other 

contributions to the solvation free energy.   
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Figure 4-8 Comparison of experimental data with MDFT predictions based on 3 common 

water models a) SPC, b) SPC/E, and c) TIP3P. The codes at the bottom denote different 

combination of the solvent model, force field parameters and charge sets for the solute, and 

optimization methods for the solute structure as defined in Tables 1-3, the number ids 

correspond to the list order. For all solutes considered in this work, the average AUE is 

2.18 kcal/mol and RMSD is 3.58 kcal/mol. 
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Figure 4-9 Comparison of the MDFT calculations with experimental data for hydration 

free energies of 700 small solutes in liquid water. Filled cycles are calculated from the 

ChelpG charge set, and open cycles are from the AM1-BCC charge set. In both cases, 

OPLS van der Waals parameters were used for the solutes, and TIP3P model was used for 

water. 
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Figure 4-10 The distribution of computational time used in MDFT calculations for 

predicting the solvation free energies of 700 compounds. Here the numbers are based on 

HF/SVP optimization solute structures in the vacuum, OPLS-aa van der Waals parameters, 

the ChelpG charge set, and the TIP3P water model. The average computational time is 23 

min, based on MDFT calculation on a desktop PC with single Intel E-1230 CPU core. 
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Table 4-3 Average unsigned errors (AUE) and root mean-square deviations (RMSD), 

both in units of kcal/mol, for different multiscale predictions of the hydration free 

energies of 700 small molecules in SPC water.  

Water 

Model 

QM 

Method 

Basis 

Set D3 gCP COSMO 

LJ 

Parameter Charge AUE MSD 

SPC  OMEGA*1 N/A N/A N/A N/A GAFF BCC 1.80 3.35 

SPC  OMEGA N/A N/A N/A N/A OPLS BCC 1.79 3.32 

SPC  OMEGA N/A N/A N/A N/A GAFF ChelpG 1.90 2.53 

SPC  OMEGA N/A N/A N/A N/A OPLS ChelpG 1.85 2.52 

SPC  BLYP TZVP Yes Yes No GAFF BCC 2.37 4.05 

SPC  BLYP TZVP Yes Yes No OPLS BCC 2.40 4.12 

SPC  BLYP TZVP Yes Yes No GAFF ChelpG 2.01 2.62 

SPC  BLYP TZVP Yes Yes No OPLS ChelpG 1.96 2.61 

SPC  BLYP TZVP Yes Yes Yes GAFF BCC 2.49 4.47 

SPC  BLYP TZVP Yes Yes Yes OPLS BCC 2.52 4.53 

SPC  BLYP TZVP Yes Yes Yes GAFF ChelpG 3.10 5.67 

SPC  BLYP TZVP Yes Yes Yes OPLS ChelpG 3.01 5.57 

SPC  BLYP TZVP Yes No No GAFF BCC 2.36 4.04 

SPC  BLYP TZVP Yes No No OPLS BCC 2.39 4.11 

SPC  BLYP TZVP Yes No No GAFF ChelpG 2.00 2.61 

SPC  BLYP TZVP Yes No No OPLS ChelpG 1.95 2.61 

SPC  BLYP SVP Yes Yes No GAFF BCC 2.47 4.18 

SPC  BLYP SVP Yes Yes No OPLS BCC 2.49 4.25 

SPC  BLYP SVP Yes Yes No GAFF ChelpG 2.66 3.12 

SPC  BLYP SVP Yes Yes No OPLS ChelpG 2.60 3.10 
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SPC  HF SVP No No No GAFF BCC 2.11 2.80 

SPC  HF SVP No No No OPLS BCC 2.11 2.87 

SPC  HF SVP No No No GAFF ChelpG 1.47 2.08 

SPC  HF SVP No No No OPLS ChelpG 1.43 2.08 

SPC  HF SVP No No Yes GAFF BCC 2.20 3.25 

SPC  HF SVP No No Yes OPLS BCC 2.18 3.28 

SPC  HF SVP No No Yes GAFF ChelpG 3.50 5.75 

SPC  HF SVP No No Yes OPLS ChelpG 3.41 5.65 

SPC  HF-3c*2 MINI Yes N/A No GAFF BCC 2.22 3.51 

SPC  HF-3c MINI Yes  N/A No OPLS BCC 2.24 3.60 

SPC  HF-3c MINI Yes N/A No GAFF ChelpG 1.97 2.78 

SPC  HF-3c MINI Yes  N/A No OPLS ChelpG 1.89 2.74 

Overall               2.28 3.56 

 

*1: The solute structures were generated using the OMEGA-TK software for 504 

molecules provided by Mobley et al20 and using M062X/MG3S quantum mechanics 

method optimized in vacuum environment for 196 molecules provided by Truhlar et al.76 

*2: HF-3c proposed by Grimme et al. corrects effect due to dispersion and basis set 

superposition errors.178 
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Table 4-4 Average unsigned errors (AUE) and root mean-square deviations (RMSD), 

both in units of kcal/mol, for different multiscale predictions of the hydration free 

energies of 700 small molecules in SPC/E water. 

Water 

Model 

QM 

Method 

Basis 

Set D3 gCP COSMO 

LJ 

Parameter Charge AUE MSD 

SPC/E OMEGA N/A N/A N/A N/A GAFF BCC 1.84 3.83 

SPC/E OMEGA N/A N/A N/A N/A OPLS BCC 1.85 3.80 

SPC/E OMEGA N/A N/A N/A N/A GAFF ChelpG 1.55 2.37 

SPC/E OMEGA N/A N/A N/A N/A OPLS ChelpG 1.51 2.36 

SPC/E BLYP TZVP Yes Yes No GAFF BCC 2.27 4.31 

SPC/E BLYP TZVP Yes Yes No OPLS BCC 2.32 4.41 

SPC/E BLYP TZVP Yes Yes No GAFF ChelpG 1.57 2.37 

SPC/E BLYP TZVP Yes Yes No OPLS ChelpG 1.53 2.39 

SPC/E BLYP TZVP Yes Yes Yes GAFF BCC 2.53 4.88 

SPC/E BLYP TZVP Yes Yes Yes OPLS BCC 2.57 4.96 

SPC/E BLYP TZVP Yes Yes Yes GAFF ChelpG 3.83 6.94 

SPC/E BLYP TZVP Yes Yes Yes OPLS ChelpG 3.74 6.80 

SPC/E BLYP TZVP Yes No No GAFF BCC 2.27 4.30 

SPC/E BLYP TZVP Yes No No OPLS BCC 2.32 4.39 

SPC/E BLYP TZVP Yes No No GAFF ChelpG 1.57 2.37 

SPC/E BLYP TZVP Yes No No OPLS ChelpG 1.53 2.39 

SPC/E BLYP SVP Yes Yes No GAFF BCC 2.30 4.41 

SPC/E BLYP SVP Yes Yes No OPLS BCC 2.36 4.51 

SPC/E BLYP SVP Yes Yes No GAFF ChelpG 2.01 2.65 

SPC/E BLYP SVP Yes Yes No OPLS ChelpG 1.96 2.66 
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SPC/E HF SVP No No No GAFF BCC 1.78 2.64 

SPC/E HF SVP No No No OPLS BCC 1.81 2.74 

SPC/E HF SVP No No No GAFF ChelpG 1.54 2.35 

SPC/E HF SVP No No No OPLS ChelpG 1.53 2.31 

SPC/E HF SVP No No Yes GAFF BCC 1.99 3.22 

SPC/E HF SVP No No Yes OPLS BCC 2.02 3.32 

SPC/E HF SVP No No Yes GAFF ChelpG 4.42 6.94 

SPC/E HF SVP No No Yes OPLS ChelpG 4.31 6.80 

SPC/E HF-3c MINI Yes N/A No GAFF BCC 2.00 3.62 

SPC/E HF-3c MINI Yes  N/A No OPLS BCC 2.05 3.72 

SPC/E HF-3c MINI Yes N/A No GAFF ChelpG 1.61 2.70 

SPC/E HF-3c MINI Yes  N/A No OPLS ChelpG 1.56 2.67 

Overall               2.19 3.75 
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Table 4-5 Average unsigned errors (AUE) and root mean-square deviations (RMSD), 

both in units of kcal/mol, for different multiscale predictions of the hydration free 

energies of 700 small molecules in TIP3P water. 

Water 

Model 

QM 

Method 

Basis 

Set D3 gCP COSMO 

LJ 

Parameter Charge AUE MSD 

TIP3P OMEGA N/A N/A N/A N/A GAFF BCC 1.68 3.32 

TIP3P OMEGA N/A N/A N/A N/A OPLS BCC 1.68 3.25 

TIP3P OMEGA N/A N/A N/A N/A GAFF ChelpG 1.62 2.43 

TIP3P OMEGA N/A N/A N/A N/A OPLS ChelpG 1.58 2.43 

TIP3P BLYP TZVP Yes Yes No GAFF BCC 2.14 3.86 

TIP3P BLYP TZVP Yes Yes No OPLS BCC 2.18 3.95 

TIP3P BLYP TZVP Yes Yes No GAFF ChelpG 1.69 2.50 

TIP3P BLYP TZVP Yes Yes No OPLS ChelpG 1.66 2.51 

TIP3P BLYP TZVP Yes Yes Yes GAFF BCC 2.27 4.17 

TIP3P BLYP TZVP Yes Yes Yes OPLS BCC 2.31 4.25 

TIP3P BLYP TZVP Yes Yes Yes GAFF ChelpG 3.13 5.45 

TIP3P BLYP TZVP Yes Yes Yes OPLS ChelpG 3.05 5.34 

TIP3P BLYP TZVP Yes No No GAFF BCC 2.13 3.85 

TIP3P BLYP TZVP Yes No No OPLS BCC 2.17 3.93 

TIP3P BLYP TZVP Yes No No GAFF ChelpG 1.69 2.49 

TIP3P BLYP TZVP Yes No No OPLS ChelpG 1.65 2.51 

TIP3P BLYP SVP Yes Yes No GAFF BCC 2.21 3.95 

TIP3P BLYP SVP Yes Yes No OPLS BCC 2.26 4.04 

TIP3P BLYP SVP Yes Yes No GAFF ChelpG 2.24 2.90 

TIP3P BLYP SVP Yes Yes No OPLS ChelpG 2.21 2.90 
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TIP3P HF SVP No No No GAFF BCC 1.82 2.63 

TIP3P HF SVP No No No OPLS BCC 1.83 2.72 

TIP3P HF SVP No No No GAFF ChelpG 1.37 2.15 

TIP3P HF SVP No No No OPLS ChelpG 1.35 2.13 

TIP3P HF SVP No No Yes GAFF BCC 1.91 3.00 

TIP3P HF SVP No No Yes OPLS BCC 1.93 3.09 

TIP3P HF SVP No No Yes GAFF ChelpG 3.71 5.70 

TIP3P HF SVP No No Yes OPLS ChelpG 3.63 5.58 

TIP3P HF-3c MINI Yes N/A No GAFF BCC 1.98 3.40 

TIP3P HF-3c MINI Yes  N/A No OPLS BCC 2.02 3.49 

TIP3P HF-3c MINI Yes N/A No GAFF ChelpG 1.72 2.71 

TIP3P HF-3c MINI Yes  N/A No OPLS ChelpG 1.66 2.68 

Overall               2.08 3.42 
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Chapter 5. Conclusions 

   In this dissertation, I have developed systematic theoretical approaches to do 

large-scale screening of chemicals and materials, i.e. hydration free energy of organic 

compounds and gas storage capabilities in nanoporous materials. The classical density 

functional theory provides one of the most versatile and powerful modelling tools for 

material design purpose.  

   For the computer-aided materials design aspect, I have calibrated four 

representative versions of classical density functional theory (CDFT) for large-scale 

screening of the gas storage capabilities in nanoporous materials. Significant differences 

are observed for their application to realistic pore materials because of the highly 

inhomogeneous nature of gas molecules distribution. By extensive comparison of CDFT 

predictions and simulation data in 1,200 MOF materials, we find that the performance of 

those methods vary with specific gas compounds and testing conditions. For H2 adsorption 

studying, the density expansion method (FMSA) performs best under the DOE target 

condition (243 K and 100 bar), while at low temperature (77 K) reliable predictions only 

could be achieved with the two versions of weighted density approximation (WDA) 

methods. For methane storage studying under ARPA-E targeted condition (298 K and 35 

bar), mean-field approximation (MFA) is the best candidate for screening purpose. We also 

demonstrate that, while none of the testing materials satisfies the ARPA-E MOVE target, 

it could be achieved by changing the initial storage and final release thermodynamic 

conditions, for example raising the release temperature is raised to 358 K and reducing the 

initial storage temperature to 233 K, with relative mild pressure requirements.  
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Unlike common thought that the surface area is a good measurement of the potential 

gas storage capabilities of nanoporous materials, we found this descriptor is not useful in 

the delivery amount studying, no clearly correlation could be found. For the natural gas 

vehicle research, it is found in our studying, the total weight adsorption amount may be a 

good indicator to find promising materials. Besides the equilibrium thermodynamic 

properties, by utilizing the new proposed excess entropy scaling method developed in our 

group, we could also predict the gas transport properties in nanoporous materials by the 

same one-time calculations, instead of trajectory average method from molecular dynamic 

simulations, by only one MD data, we could quantitate capture the simulation results . All 

those make us could easily evaluate the materials real gas storage performance for specific 

targets. 

In my work, I already show the efficiency and accuracy of CDFT for gas storage 

studying, however here it’s still limited to pure simple LJ fluids, while in real chemical 

engineering field, what we are more interested are polyatomic molecules, like n-alkanes 

and charged species, like carbon dioxide, or even more complicated mixture system. It’s 

nearly impossible to study such kinds of system in a large scale by classical simulation 

methods, due to the explicitly consideration of huge amount of particles in the system. 

While in CDFT aspect, we only need to solve series of mathematical equations. Because 

the reliable CDFT formulations have been well established for many cases mentioned 

above, I expect that the computational procedure developed in this work can be similarly 

applicable.   
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For the hydration free energy prediction part, I have demonstrated that CDFT 

provides a powerful alternative to conventional simulation methods for high throughput 

predictions of the water solvation free energies of small organic molecules. I have tested 

various combinations of multiscale methods for predicting the hydration free energies of 

700 small molecules at the ambient condition, i.e., obtaining atomic charges and solute 

configurations from first principle calculations and then choosing van der Waals 

parameters from various organic force-fields. Among all those combinations, I find that 

the best combination is provided by calculations based on the TIP3P model for liquid water, 

with the solute configurations generated from HF/SVP optimization, the OPLS LJ 

parameters, and the ChelpG partial charges. For this particular combination, MDFT predict 

the hydration free energies of 700 small molecules with AUE = 1.35 kcal/mol and RMSD 

= 2.13 kcal/mol in comparison with experimental data. The theoretical results are most 

accurate for solutes with slightly positive hydration free energies but become less precise 

for large hydrophilic solutes, where the configurations change a lot from vacuum to water 

environment. This could be further improved by doing ensemble average based on several 

solute configurations. For small organic compounds, this is usually not a big issue, which 

makes our methods could be a useful tool in developing more accurate force fields. 

Compared to traditional classical simulation methods, our method also considers water 

solvent explicitly, but with a much faster calculation speed, over one magnitude, i.e. tens 

of minutes compared to hundreds of hours. 

 The new MDFT methods could be a value tools to pharmaceutical industry where 

solubility is one of the key problems in drug design, considering its efficiency and accuracy 
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compared to common quantitative structure activity relationships (QSPR) or general 

solubility equations (GSE) methods, which highly depend on the training sets quality. This 

also give us a hint that people in simulation community often come from chemistry or 

biology field, who haven’t realized many important thermodynamic properties could be 

derived from modern equation of state, which could obtained parameters using solvation 

free energy data. Combing the classical density functional theory, molecular mechanics 

and macroscopic thermodynamics together will provide our chemical engineers an 

invaluable tool. 

  Currently our MDFT calculations are based on the classical pairwise additive 

potentials that do not account for the polarization effects, which plays a very important role 

in many solvent-mediated phenomena. Even though the importance of non-additive 

interactions in liquid systems has been well recognized, including this effect in classical 

simulations is not trivial, due to the drastically increasing computational costs. The 

computational efficiency of MDFT could make it as an outstanding candidate for 

development and applications of polarizable force fields. A much further step is combine 

the CDFT and QDFT together, since from a theoretical perspective, both of them use one-

body density profiles as fundamental variables to describe the properties of many-body 

systems within the same mathematical framework. One day, I think the two DFT brothers 

could finally joint together, making us could study the system under one unified 

framework, without worrying about the boundary issue between classical and quantum 

regions, also no empirical parameters bothers.  

 




