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abstract

PURPOSE The sequencing of androgen-deprivation therapy (ADT) with radiotherapy (RT) may affect outcomes
for prostate cancer in an RT-field size-dependent manner. Herein, we investigate the impact of ADT sequencing
for men receiving ADT with prostate-only RT (PORT) or whole-pelvis RT (WPRT).

MATERIALS AND METHODS Individual patient data from 12 randomized trials that included patients receiving
neoadjuvant/concurrent or concurrent/adjuvant short-term ADT (4-6 months) with RT for localized disease were
obtained from the Meta-Analysis of Randomized trials in Cancer of the Prostate consortium. Inverse probability
of treatment weighting (IPTW) was performed with propensity scores derived from age, initial prostate-specific
antigen, Gleason score, T stage, RT dose, and mid-trial enrollment year. Metastasis-free survival (primary end
point) and overall survival (OS) were assessed by IPTW-adjusted Cox regression models, analyzed indepen-
dently for men receiving PORT versus WPRT. IPTW-adjusted Fine and Gray competing risk models were built to
evaluate distant metastasis (DM) and prostate cancer–specific mortality.

RESULTSOverall, 7,409 patients were included (6,325 neoadjuvant/concurrent and 1,084 concurrent/adjuvant) with
a median follow-up of 10.2 years (interquartile range, 7.2-14.9 years). A significant interaction between ADT se-
quencing and RT field size was observed for all end points (P interaction , .02 for all) except OS. With PORT
(n5 4,355), compared with neoadjuvant/concurrent ADT, concurrent/adjuvant ADT was associated with improved
metastasis-free survival (10-year benefit 8.0%, hazard ratio [HR], 0.65; 95% CI, 0.54 to 0.79; P , .0001), DM
(subdistribution HR, 0.52; 95%CI, 0.33 to 0.82; P5 .0046), prostate cancer–specificmortality (subdistribution HR,
0.30; 95% CI, 0.16 to 0.54; P, .0001), and OS (HR, 0.69; 95% CI, 0.57 to 0.83; P5 .0001). However, in patients
receiving WPRT (n5 3,049), no significant difference in any end point was observed in regard to ADT sequencing
except for worse DM (HR, 1.57; 95% CI, 1.20 to 2.05; P 5 .0009) with concurrent/adjuvant ADT.

CONCLUSION ADT sequencing exhibits a significant impact on clinical outcomes with a significant interaction
with field size. Concurrent/adjuvant ADT should be the standard of care where short-term ADT is indicated in
combination with PORT.

J Clin Oncol 41:881-892. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

The sequencing of systemic therapies with radiotherapy
(RT) has been associated with differential survival
benefits inmultiplemalignancies.1,2 Although androgen-
deprivation therapy (ADT) has consistently been shown
to improve survival when added to RT for localized
prostate cancer (unfavorable intermediate-risk or

higher),3 the optimal sequencing of ADT remains con-
troversial. Two recent studies support the notion that
concurrent/adjuvant ADT sequencing may be superior
to neoadjuvant/concurrent ADT sequencing. First, an
individual patient data (IPD) meta-analysis of the only
two randomized trials of ADT sequencing, Radiation
Therapy Oncology Group (RTOG) 94134,5 and Ottawa
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0101,6 found that progression-free survival (PFS), bio-
chemical recurrence (BCR), distant metastasis (DM), and
metastasis-free survival (MFS) were all significantly improved
in patients treated with adjuvant ADT.7 This analysis was
limited to men receiving prostate-only RT (PORT) because
the RTOG 9413 trial suggested a significant interaction
between field size and the impact of sequencing, and
combined men receiving purely adjuvant ADT with those
receiving concurrent/adjuvant ADT. Second, an IPD meta-
analysis of three trials of neoadjuvant ADT extension and four
trials of adjuvant ADT prolongation found no benefit in any
end point to the former, but MFS and overall survival (OS)
benefits for the latter.8 This study included both patients
receiving PORT and whole-pelvis RT (WPRT), but the trials
investigating neoadjuvant extension used shorter overall total
durations of ADT than the trials evaluating adjuvant ADT
prolongation. On the basis of these two studies, we hy-
pothesized that concurrent/adjuvant ADT sequencing would
offer improved MFS compared with neoadjuvant/concurrent
ADT sequencing in patients receiving short-term ADT
(STADT; 4-6 months) in a RT field-size–dependent manner.
To evaluate this hypothesis, we leveraged IPD from theMeta-
Analysis of Randomized trials in Cancer of the Prostate
(MARCAP) Consortium to perform a pooled analysis.

MATERIALS AND METHODS

Study Cohorts

The MARCAP consortium has been described in detail
previously.8 Briefly, it contains IPD from randomized clin-
ical trials run through multiple collaborative groups in-
cluding the European Organisation for Research and
Treatment of Cancer (EORTC), Radiation Therapy Oncol-
ogy Group (now NRG Oncology; NRG/RTOG), Medical
Research Council, Institute of Cancer Research, Prostate
Cancer Study Group, the Grupo de Investigación Clı́nica en
Oncologı́a Radioterápica, and the Ottawa trial group.

Within the MARCAP consortium, randomized trials that en-
rolled patients uniformly receiving neoadjuvant/concurrent or
concurrent/adjuvant STADT (4-6 months) with RT on one of
the arms were identified for inclusion of patients. Only trial
arms that used STADT were included (eg, only the 6-month
arm of EORTC 22961). Neoadjuvant/concurrent ADT was
defined as ADT (luteinizing hormone-releasing hormone
agonist/antagonist with or without an androgen receptor
blocker) starting $ 2 months before the start of RT and
continued throughout the RT course. Concurrent/adjuvant
ADT was defined as ADT starting at the commencement of
RT and given adjuvantly for$ 2months after the completion of
RT. The entire cohort was dichotomized into these two groups
without overlap. Trial arms were excluded on the basis of the
following criteria: (1) purely adjuvant STADT (eg, adjuvant ADT
arms of RTOG 9413); (2) $ 80% STADT duration being
neoadjuvant with insufficient concurrent duration (eg, STADT
arms of ICROG 97-01,9 TROG 96.01,10 and TROG 03.04/
RADAR11); (3) unavailability of data to compute MFS; and (4)
use of nonsteroidal antiandrogen monotherapy (eg, PMH
990712). For the CHHiP trial,13 patients receiving nonsteroidal
androgen receptor blocker monotherapy were excluded, al-
though other patients receiving STADT as defined above were
included. All trials provided clear data on the receipt of WPRT
except for the EORTC 22991 trial,14 in which the protocol
recommended WPRT for patients with a 15% or higher risk of
pelvic lymph node involvement (cT1b-T2aN0M0, Gleason
score. 7, and/or prostate-specific antigen [PSA]. 15 ng/mL)
and WPRT use was imputed on the basis of this criterion. A
summary of trial-specific definition of DM and imaging as-
sessment of disease recurrence during follow-up is shown in
the Data Supplement (online only).

End Points

The primary end point of this analysis was MFS, defined as
the time since random assignment until metastasis or death
of any cause, as it is a validated surrogate of OS.15

CONTEXT

Key Objective
The optimal sequencing of short-term androgen-deprivation therapy (ADT) when delivered with radiotherapy for prostate

cancer remains controversial, with only two randomized trials attempting to investigate this. This study examined whether
neoadjuvant/concurrent or concurrent/adjuvant ADT affords better outcomes. It contains individual patient data from 12
randomized trials and, to our knowledge, is the largest such analysis to date.

Knowledge Generated
There is a significant interaction between radiation field size and the impact of ADT sequencing for multiple oncologic end

points. With prostate-only radiation, concurrent/adjuvant ADT was associated with significantly improved metastasis-free
survival, prostate cancer–specific mortality, and overall survival; the effect of ADT sequencing with whole-pelvic radiation
is less clear, with no consistent benefit with either.

Relevance
When short-term ADT is used with prostate-only radiation, concurrent/adjuvant ADT should be the standard of care. It

informs clinical practice and allows rational design of ADT and radiotherapy combination in future trials.
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Secondary end points included OS, and the cumulative
incidence of BCR, DM, prostate cancer–specific mortality
(PCSM), and other-causemortality (OCM). All time-to-event
outcome variables were measured from the date of random
assignment to the reported occurrence of the event of
interest. Patients who were event-free were censored on the
last date of follow-up. All analyses were conducted on an
intention-to-treat basis.

Statistical Analysis

Descriptive statistics were used to characterize baseline patient
and treatment characteristics, and Mann-Whitney U tests and
chi-square tests were used for comparisons between the two
treatment groups. Unadjusted rates of end points were esti-
mated using the Kaplan-Meier method and the cumulative
incidence function. Unadjusted subdistribution hazard ratios
(HRs) for BCR, DM, PCSM, and OCM were calculated using
univariable Fine-Gray competing risk models. Weighted Cox
regression was used to estimate univariable average HRs for
MFS and OS in the case of nonproportional hazards.16 We
used inverse probability of treatment weighting (IPTW) ana-
lyses to examine the effects of ADT sequencing on clinical
outcomes. The weights were calculated as the inverse of
propensity scores, defined as the predicted probability of
treatment conditional on age, initial PSA (iPSA), Gleason score,
T stage, RT dose (, 74 Gy v $ 74 Gy in 2 Gy equivalent
doses), and mid-trial enrollment year, using a nonparametric
covariate balancing propensity scoremethod.17 The balance of
covariates at baseline between the two treatment groups was
assessed by using the absolute standardizedmean difference.
MFS and OS were assessed by using IPTW Cox proportional
hazardsmodel. IPTW Fine and Gray competing risk regression
models were used to evaluate BCR, DM, and PCSM,
where deaths due to nonprostate cancer causes were com-
peting events for PCSM, prostate cancer deaths were com-
peting events for OCM, and deaths of any cause were
competing events for DM and BCR. The above regression
models included ADT sequencing, WPRT, and their interac-
tion to account for effect modification. An a priori plan was
made that should the interaction between field size and the
clinical impact of ADT sequencing on MFS be statistically
significant, all analyses would be repeated within cohorts re-
ceiving PORT and those receiving WPRT. The propensity
scores were recalculated separately within PORT and WPRT
cohorts, and same covariates were included in the models.
IPTW-adjusted Kaplan-Meier analysis and cumulative inci-
dence estimation were performed within PORT and WPRT
cohorts separately, and the corresponding 10-year risk dif-
ferences were calculated. As an alternative measure of the
treatment effect, restricted mean time lost (RMTL, for com-
peting risk data) was estimated using IPTW adjustment for
PORT andWPRT cohorts. A sensitivity analysis was performed
excluding EORTC 22991, given its imputed WPRT status. We
also prespecified an analysis for an interaction between Na-
tional Comprehensive Cancer Network (NCCN) risk group and
impact of ADT sequencing on MFS, as well as a direct

comparison of the four subgroups defined by ADT sequencing
andWPRT use. All analyses were performed by using R 4.1.1.

RESULTS

A total of 7,409 patients from 12 randomized trials were in-
cluded with 6,325 treated with neoadjuvant/concurrent ADT
and 1,084 treated with concurrent/adjuvant ADT (Data
Supplement). Overall median follow-up was 10.2 years
(interquartile range [IQR], 7.2-14.9 years). Median follow-up
timewas 10.3 years (IQR, 7.3-16.0 years) for the neoadjuvant/
concurrent ADT group, and 9.9 years (IQR, 6.5-13.1 years) for
the concurrent/adjuvant ADT group. Baseline characteristics
are shown in Table 1 and the Data Supplement. In the overall
cohort, themedian age was 70 years (IQR, 65-74 years); 77%
had cT1/T2 disease, 86% had Gleason # 7 disease, and
median iPSA was 11 ng/mL (IQR, 7.4-18 ng/mL). Compared
with men in the neoadjuvant/concurrent ADT group, those in
the concurrent/adjuvant ADT group had higher rates of
cT3/T4 disease (34% v 20%), higher iPSA (median 13 v 11,
P , .001), higher rates of NCCN high-risk disease (49% v
36%, P , .001), and higher rates of receiving high-dose RT
(47% v 38%, P , .001) or WPRT (57% v 38%, P , .001).

Unadjusted Kaplan-Meier and cumulative incidence
curves comparing concurrent/adjuvant with neoadjuvant/
concurrent sequencing for BCR, DM, PCSM, OCM, MFS,
and OS are shown in Figure 1A-F. In the overall cohort,
concurrent/adjuvant ADT sequencing was associated with
improved MFS compared with the neoadjuvant/concurrent
ADT (10-year estimates: 64.9% v 61.4%; HR, 0.83; 95%
CI, 0.74 to 0.93; P 5 .0015). Significant associations were
also seen between concurrent/adjuvant ADT and im-
proved BCR (27.5% v 33.7%; HR, 0.77; 95% CI, 0.68 to
0.87; P, .0001), PCSM (6.5% v 7.7%; HR, 0.76; 95% CI,
0.59 to 0.99; P5 .04), and OS (68.8% v 64.7%; HR, 0.79;
95% CI, 0.70 to 0.89; P 5 .0001). No significant differ-
ences in DM were seen (12.0% v 10.2%; HR, 1.15; 95%
CI, 0.95 to 1.39; P 5 .14).

Notably, a significant interaction between ADT sequencing
and RT field size for all the above end points except OS was
observed after IPTW adjustment (P interaction , .02 for all
except P5 .2 for OS; Data Supplement). IPTW was effective
in balancing the covariate distributions (Data Supplement).
Therefore, for subsequent analyses, we dichotomized the
population into cohorts receiving PORT or WPRT, and
performed independent analyses in each cohort. Forest plots
of multivariate analyses evaluating the impact of ADT se-
quencing on oncologic end points in the PORT and WPRT
cohorts are presented in Figure 2. IPTW-adjusted Kaplan-
Meier and cumulative incidence curves for BCR, DM, PCSM,
OCM, MFS, and OS in the PORT cohort are shown in
Figure 3A-F. Among patients receiving PORT, MFS was
significantly improved in the concurrent/adjuvant group
compared with the neoadjuvant/concurrent group. Up to a
10-year truncation point, RMTL for MFS was improved by
4.0 months (95% CI, 1.2 to 6.7), corresponding to a 10-year

Journal of Clinical Oncology 883
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risk benefit of 8.0% (95% CI, 3.5 to 12.5) and a HR for the
concurrent/adjuvant group of 0.65 (95% CI, 0.54 to 0.79;
P, .0001). Similarly, the cumulative incidences of BCR (10-
year RMTL benefit 10.8 months, risk benefit 14.4%, HR,
0.46; 95% CI, 0.35 to 0.59; P , .0001) and DM (10-year
RMTL benefit 2.3 months, risk benefit 3.6%, HR, 0.52; 95%
CI, 0.33 to 0.82; P 5 .0046) were also improved in the
concurrent/adjuvant group. Concurrent/adjuvant ADT se-
quencing was also associated with benefits in PCSM (10-year
RMTL benefit 1.6 months, risk benefit 4.5%, HR, 0.3; 95%
CI, 0.16 to 0.54; P , .0001) and OS (10-year RMTL benefit
2.5 months, risk benefit 6.2%, HR, 0.69; 95% CI, 0.57 to
0.83; P 5 .0001). No differences in OCM between the two
ADT sequencing groups were observed (HR, 0.86; 95% CI,
0.7 to 1.05; P 5 .14).

In the WPRT cohort, ADT sequencing was not associated
with differences inMFS (HR, 0.94; 95%CI, 0.79 to 1.12; P5
.48), as shown in Figure 4A. However, concurrent/adjuvant
ADT was associated with a significant increase in the cu-
mulative incidence of DM (10-year RMTL decrement of
5.5 months, risk decrement of 7.9%, HR, 1.57; 95% CI, 1.2
to 2.05; P 5 .0009). There was no statistically significant
difference in BCR (HR, 0.86; 95%CI, 0.73 to 1.03; P5 .1) or
PCSM (HR, 1.09; 95% CI, 0.77 to 1.55; P5 .62). There was
a significant difference in OCM (HR, 0.59; 95% CI, 0.47 to
0.73; P, .0001), and a marginal, but statistically significant,
difference in OS (HR, 0.82; 95% CI, 0.68 to 0.99; P 5 .04),
both favoring concurrent/adjuvant ADT (Figure 4B-F).

Several prespecified analyses were performed. First, we
assessed whether the effect of ADT sequencing is modified

TABLE 1. Baseline Characteristics
Characteristic Neoadj/conc ADT (n 5 6,325) Conc/adj ADT (n 5 1,084) P Overall (N 5 7,409)

Age, years

Median (IQR) 70 (65-74) 70 (65-74) .690 70 (65-74)

Missing, No. (%) 1 (0.0) 0 (0.0) 1 (0.0)

RT dose,a No. (%)

Low dose 3,942 (62.0) 558 (51.0) , .001 4,500 (61.0)

High dose 2,374 (38.0) 514 (47.0) 2,888 (39.0)

Missing 9 (0.1) 12 (1.1) 21 (0.3)

Pelvic nodal RT, No. (%)

No 3,886 (61.0) 469 (43.0) , .001 4,355 (59.0)

Yes 2,434 (38.0) 615 (57.0) 3,049 (41.0)

Missing 5 (0.1) 0 (0.0) 5 (0.1)

T stage, No. (%)

T1/T2 5,009 (79.0) 715 (66.0) , .001 5,724 (77.0)

T3/T4 1,245 (20.0) 369 (34.0) 1,614 (22.0)

Missing 71 (1.1) 0 (0.0) 71 (1.0)

Gleason score, No. (%)

6 2,498 (39.0) 472 (44.0) .130 2,970 (40.0)

7 2,921 (46.0) 469 (43.0) 3,390 (46.0)

8 503 (8.0) 87 (8.0) 590 (8.0)

$ 9 256 (4.0) 40 (4.0) 296 (4.0)

Missing 147 (2.3) 16 (1.5) 163 (2.2)

iPSA

Median (IQR) 11 (7.3-17) 13 (7.9-21) , .001 11 (7.4-18)

Missing, No. (%) 257 (4.1) 0 (0.0) 257 (3.5)

NCCN risk group, No. (%)

Low 701 (11.0) 61 (6.0) , .001 762 (10.0)

Intermediate 3,310 (52.0) 491 (45.0) 3,801 (51.0)

High 2,252 (36.0) 532 (49.0) 2,784 (38.0)

Missing 62 (1.0) 0 (0.0) 62 (0.8)

Abbreviations: ADT, androgen-deprivation therapy; Conc/adj, concurrent/adjuvant; iPSA, initial prostate-specific antigen; IQR, interquartile range; NCCN,
National Comprehensive Cancer Network; Neoadj/conc, neoadjuvant/concurrent; RT, radiation therapy.

aRT doses of 74 Gy or higher are considered high dose (presuming an a/b of 3.0 Gy).
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by NCCN risk groups by performing an IPTW-based inter-
action test and found significant interaction between the two

in terms of MFS (P interaction 5 .0003). Additional signif-
icant interactions were found for BCR (P interaction5 .034)
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FIG 1. Unadjusted Kaplan-Meier and cumulative incidence curves evaluating the associations between concurrent/adjuvant versus neoadjuvant/
concurrent ADT sequencing and oncologic outcomes in the overall cohort. Oncological outcomes included (A)metastasis-free survival, (B) biochemical
recurrence, (C) distant metastasis, (D) prostate cancer-specific mortality, (E) other-cause mortality, and (F) overall survival. The neoadjuvant/con-
current ADT group was used as the reference when calculating HRs. ADT, androgen-deprivation therapy; BCR, biochemical recurrence; concurrent
adj, concurrent/adjuvant; DM, distant metastasis; HR, hazard ratio; MFS, metastasis-free survival; neo concurrent, neoadjuvant/concurrent; OCM,
other-cause mortality; OS, overall survival; PCSM, prostate cancer–specific mortality.
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and OS (P interaction 5 .0099). No significant interaction
was observed for DM (P interaction 5 .13), PCSM (P
interaction 5 .065), or OCM (P interaction 5 .37). The
presence of the statistically significant interaction led us to
stratify the population into patients with NCCN intermediate-
risk and NCCN high-risk disease, with IPTW-adjusted Cox
and Fine-Gray regression model performed in each sepa-
rately. However, after dividing the population into these
substrata defined by risk, there was not enough statistical
power to ascertain the effect of ADT sequencing in each risk
group. Therefore, the direction of these interactions could
not be ascertained. Second, when comparing the four
subgroups on the basis of ADT sequencing and use of
WPRT, after IPTW, concurrent/adjuvant ADT with PORT
(reference) had superior MFS compared with neoadjuvant/
concurrent 1 PORT (HR, 1.60; 95% CI, 1.33 to 1.92;
P , .0001), neoadjuvant/concurrent ADT 1 WPRT (HR,
1.96; 95% CI, 1.60 to 2.40; P , .0001), and concurrent/
adjuvant ADT 1 WPRT (HR, 1.95; 95% CI, 1.51 to 2.51;
P, .0001; Data Supplement). Finally, given that the WPRT
status of patients in EORTC 22991 was imputed on the basis
of the recommendations in the trial protocol, we performed a
sensitivity analysis after excluding EORTC 22991 (n 5 410)
in its entirety. As shown in the Data Supplement, the out-
comes are consistent with primary analyses, with concurrent/
adjuvant ADT associated with superior outcomes for all end

points except OS when PORT was delivered. Neoadjuvant/
concurrent ADT was significantly associated with an im-
proved DM benefit when used with WPRT.

DISCUSSION

In this IPD pooled analysis of 12 randomized trials, a
significant interaction between RT field size and STADT
sequencing was found, with concurrent/adjuvant ADT
sequencing being associated with improvements in mul-
tiple oncologic end points (including both MFS and OS) in
men receiving PORT. In men who received WPRT,
neoadjuvant/concurrent ADT sequencing was associated
with improved DM, but not MFS. However, neoadjuvant/
concurrent sequencing with WPRT was also associated
with worse OS, driven by worse OCM than concurrent/
adjuvant sequencing and most likely an artifact of the
fact that trials including WPRT and concurrent/adjuvant
ADT tended to be more contemporary than trials using
WPRT combined with neoadjuvant/concurrent ADT. Thus,
overall, the results suggest that when PORT is delivered
with STADT, concurrent/adjuvant ADT sequencing should
be the standard of care. If WPRT is delivered with STADT,
neoadjuvant/concurrent ADT may offer an oncologically
relevant benefit, albeit less consistent than the benefit
provided by concurrent/adjuvant ADT with PORT.
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FIG 3. Inverse probability of treatment weighting–adjusted Kaplan-Meier and cumulative incidence curves evaluating the associations between
concurrent/adjuvant versus neoadjuvant/concurrent ADT sequencing and oncologic outcomes in patients receiving prostate-only radiotherapy.
Oncological outcomes included (A) metastasis-free survival, (B) biochemical recurrence, (C) distant metastasis, (D) prostate cancer-specific
mortality, (E) other-cause mortality, and (F) overall survival. Neoadjuvant/concurrent ADT group was used as the reference when calculating the
HR. ADT, androgen-deprivation therapy; BCR, biochemical recurrence; concurrent adj, concurrent/adjuvant; DM, distant metastasis; HR, hazard
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cancer–specific mortality.
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FIG 4. Inverse probability of treatment weighting–adjusted Kaplan-Meier and cumulative incidence curves evaluating the associations between
concurrent/adjuvant versus neoadjuvant/concurrent ADT sequencing and oncologic outcomes in patients receiving whole-pelvis radiotherapy.
Oncological outcomes included (A) metastasis-free survival, (B) biochemical recurrence, (C) distant metastasis, (D) prostate cancer-specific
mortality, (E) other-cause mortality, and (F) overall survival. Neoadjuvant/concurrent ADT group was used as the reference when calculating HRs.
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Notably, to our knowledge, this is the first time a significant
association with concurrent/adjuvant ADT sequencing and
OS has been demonstrated. Our results are consistent with
the finding of the only two randomized trials that tested the
sequencing of STADT without altering the total duration,
both of which were underpowered for OS. RTOG 9413
similarly found a significant interaction between RT field
size and ADT sequencing with a more favorable 10-year
PFS with neoadjuvant/concurrent ADT compared with ad-
juvant ADT when WPRT was used; the reverse was true
when PORT only was delivered.4 Ottawa 0101 only delivered
PORT and found a numerically higher 10-year biochemical
relapse-free survival rate (87.4% v 80.5%) with concurrent/
adjuvant ADT, although it did not reach statistical signifi-
cance (P5 .1), likely secondary to a lack of statistical power,
given the lower-than-expected event rate.6 An IPD meta-
analysis of patients receiving PORT on both of these trials
showed significantly improved long-term PFS and MFS with
an adjuvant ADT approach.7 The current pooled analysis with
a much larger patient population (approximately seven-fold
larger) consolidates the findings of these studies by showing
robust evidence of an interaction between RT field size and
the impact of ADT sequencing on multiple end points, in-
cluding an OS benefit with concurrent/adjuvant sequencing
in the setting of PORT.

The inferiority of neoadjuvant/concurrent sequencing is also
consistent with several other lines of evidence. Three neo-
adjuvant ADT extension trials and a large meta-analysis of
neoadjuvant extension trials did not identify an improvement
in multiple key clinical outcomes, including biochemical
failure-free survival.8,9,18,19 Although TROG 96.01 (2 v
5 months neoadjuvant) did demonstrate significantly im-
proved event-free survival, PCSM, and OS with neoadjuvant
RT prolongation, this trial compared a shorter-than-standard
duration (3 months) against a standard duration (6 months)
and 85% of patients had high-risk disease.10

The underlying mechanisms behind superior outcomes
with concurrent/adjuvant compared with neoadjuvant/
concurrent ADT coupled with PORT, but not with WPRT,
remain to be elucidated. The adjuvant component of ADT
may be beneficial regardless of radiation field size. The
benefit of adjuvant ADT could be related to protracted RT-
induced tumor cell death20; so, continued blockade of
androgen receptor–regulated DNA repair genes21 and RT-
induced neoangiogenesis22 may be needed to optimize
outcomes. Given that testosterone levels may be sup-
pressed for several months after cessation of ADT, an
adjuvant component of castration will exist even if
neoadjuvant/concurrent ADT is given, and would simply be
longer in duration with concurrent/adjuvant ADT. In terms
of potential mechanisms for field size interaction, the im-
munologic effects of ADT may be important. ADT has been
shown to increase interferon-g production,23 decrease
regulatory T-cell activation,24 and increase naive T-cell
infiltration into the prostate.25,26 WPRT may eliminate

proinflammatory lymphocytes in the pelvic nodal system
and periphery,27 such that these presumptive oncologic
benefits of ADT would only occur if the ADT were given
neoadjuvantly. Alternatively, the doses used forWPRT are low,
and hypoxia induced by neoadjuvant ADTmay be required to
potentiate cytocidal effects against occult cancer cells in the
lymphatic system.28 Notably, this analysis does not rule out
any utility to neoadjuvant ADT; a neoadjuvant/concurrent/
adjuvant approach may be more efficacious than concurrent/
adjuvant sequencing, which will need prospective validation.
Similarly, the analysis was not designed to evaluate the on-
cologic benefit of WPRT. The interim analysis of NRG/RTOG
0924 (ClinicalTrials.gov identifier: NCT01368588), a phase III
randomized trial of PORT versus WPRT in patients receiving
neoadjuvant/concurrent ADT, is expected to be performed in
October 2023 (Roach personal communication). The PIV-
OTALboost trial (ISRCTN80146950) will also evaluate WPRT
in this context.

Toxicity data were not available. It is theoretically possible that
the prostate downsizing offered by neoadjuvant/concurrent
ADT might lead to less toxicity than a concurrent/adjuvant
approach. However, in the context of PORT, no differences in
GI, genitourinary, or sexual toxicity between the two se-
quencing approaches that would support this hypothesis have
been shown in either RTOG 94134 or Ottawa 0101.29 There
was also no difference in time to full testosterone recovery30

and rates of early ADT termination.4 Toxicity differences have
not been rigorously studied in the setting of WPRT.

The current study has several limitations. First, given the
nonrandomized nature of this study, there was consid-
erable heterogeneity in baseline characteristics between
groups. Despite the use of IPTW, residual confounding
factors in clinical practice such as follow-up pattern,
imaging, and salvage treatment still exist, and could not
be accounted for. For instance, if certain trials and/or
certain enrollment centers within trials more frequently
evaluated patients for recurrences with more frequent
PSA checks or lower thresholds for triggering systemic
imaging, this might have led to higher rates of BCR or DM
detection in a fashion independent of ADT sequencing.
Second, heterogeneities exist across trials regarding how
DM was ascertained. Advanced imaging, such as
prostate-specific membrane antigen positron emission
tomography, was neither required nor recommended in
the trials included; and how routine inclusion of such
imaging modalities may alter the conclusion is uncertain.
Third, neoadjuvant/concurrent ADT provides a period of
adjuvant androgen suppression, and its duration will be
influenced by the duration of the neoadjuvant compo-
nent (and so the total duration) of ADT. Similarly, con-
current ADT may take up to 1 month into the RT course to
suppress testosterone to castration level.31 Thus, these
results may not pertain to the use of novel ADT agents
that have altered kinetics of testosterone reduction and
recovery.32 Furthermore, GnRH agonists and depot
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doses may not be equivalent in terms of their kinetics and
proportions of patients achieving castration level33-35;
however, the difference is likely small. Fourth, this
analysis was restricted to patients receiving STADT (# 6
months). An interaction between sequencing and risk
group was seen, but stratification by both risk group and
RT field size resulted in sample sizes that were too small
to detect meaningful differences on the basis of ADT
sequencing. Although the presented results thus cor-
respond to patients with intermediate-risk and high-risk
disease, the findings should not be extrapolated to pa-
tients receiving longer durations of ADT, as would be
standard for patients with high-risk disease.

In conclusion,ADT sequencing exhibits a significant in-
teraction with RT field size, such that concurrent/adjuvant

STADT sequencing is associated with optimal oncologic
outcomes with PORT. The effects are not as clear for
patients receivingWPRT, although neoadjuvant/concurrent
STADT sequencing may be preferred, given its DM benefit.
These data strongly suggest that when PORT is being
delivered with STADT—as is recommended for men with
intermediate-risk disease—concurrent/adjuvant ADT se-
quencing should be the standard of care. The findings also
support, albeit to a lesser degree, the recommendation
that if WPRT were to be used, neoadjuvant/concurrent
sequencing should be the standard of care. Future trials,
such as RTOG 0924 and PIVOTALboost, will provide level I
evidence evaluating the benefit of WPRT with neoadjuvant/
concurrent ADT sequencing in selected patients with
intermediate-risk and high-risk disease.
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