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1. Introduction 

When one passes to the incompressible limit in the theory of 

elasticity~ a special formulation is required. A pressure-like variable 

is introduced as an unknown and, concomitantly, an additional equation, 

restricting the motion to be isochoric, must be satisfied. The pressure 

variable is interpreted as the force which maintains this constraint. 

In principle, the usual formulation of elasticity covers all other 

unconstrained cases. However, it has been discovered in the application 

of finite element methods that for nearly-incompressible cases numerical 

problems are encountered with the usual formulation of the theory. 

These problems have been dealt with in two ways. 

The first method {s to reformulate the equations for the compressible 

case in a way reminiscent of the incompressible case (see Herrmann and 

Toms [1], Herrmann [2], Taylor, Pister and Herrmann [3], Key [4],.and 

Hughes and Allik [5] for background and applications along these lines). 

What one does is to consider the stress a function of the strain and a 

pressure variable. The constitutive equation relating the dilatation 

to the pressure variable then must be satisfied independently. With a 

judicious choice of shape functions -for the displacements and pressure, 

an effective numerical scheme can be developed. This approach is equally 

valid for the compressible and incompressible cases. The variational 

formulation of this theory,due to Herrmann [2],may be viewed as a 

special case of Reissner's theorem, since only a part of the stress 

{i.e., the pressure) is considered to be iridependent. It should be 

emphasized here that this formulation, although capable of yielding 

successful numerical algorithms, is no panacea. This fact, although 

known for some time, does not seem to be widely appreciated. If one 

is naive in the use of this method it can lead to results equally bad 
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as those obtained by the standard formulation (see [5] for elaboration 

and numerical examples). However, this method has· been used successfully 

on a wide range of engineering problems (see [1]-[5] and references 

therein). 

Recently, Fried [6] has provided insight into what goes wrong with 

the usual formulation for the linear isotropic case. As a remedy he 

suggests underintegrating the troublesome portion of the strain energy. 

Computations performed by Naylor [7] yield results consistent with 

Fried •s theory. This approach is simpler to implement and more 

economical. than the method involving a pressure variable. However, its 

use has not yet become widespread in engineering, perhaps due to the 

fact that it has an ad hoc flavor. 

It is the purpose of the present note to show that a certain 

underintegrated element is in fact identical to an element based upon 

Herrmann•s formulation, which has been used .successfully in the past 

([5]}. The elements ·in question are a bilinear displacement model, 

which employs one-point Gaussian quadrature on a portion of the strain 

energy, and a constant pressure, bilinear displacement model based on 

Herrmann•s formulation. 

"In Section 2 we establish notations and review the ~quations of 

classical elasticity. In Section 3 the finite element equations are 

derived for the two formulations. The equivalence of the elements is 

demonstrated in Section 4 and a numerical example which supports the 

analysis is given in Section 5. A summary and conclusions are 

contained in Section 6. 
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2. Equations of Classical Elasticity 

Let n be. a bounded region in~ 2, with piecewise smooth boundary 

. an. Vectors defined on n are wri~ten in the standard indicial notation, 

e.g. u ,a= 1,2, are the cartesian components of the displacement vector. a 

A comma is used to denote partial differentiation and the summation 

convention is employed, e.g. au /ax = u = u1 1 + u2 2• A general a a a,a , , 

point in n is denoted by x. The equations of classical isotropic 

elasticity are 

0 = (A + ~} U0 0 + ~ U 00 + f 
~-''~-'a a,.,., a 

(2. 1} 

.# 

where A and ~ are the Lame constants, and f denotes the extrinsic a 

body force. The mixed boundary value problem for (2.1) consists of 

finding functions u (x) 
a 

satisfying (2.1) for all xE n and 

u (x) = g (x) 
a a x E an1 

. (2 .2) 

= h ( x) 
a 

where ga and ha are the given boundary data, ns is the unit 

outward normal vector to an, 0aS is the Kronecker delta, u(a,S) = 

l/2 .(u 
13 

+ us ), and an1 and an2 are subregions of an satisfying 
a, ,a 

an1 u an2 
= an and an1 n an2 = 0. 
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3. Finite Element Equations 

In this section we set up the finite element equations for classical 

elasticity corresponding to the displacement formulation and Herrmann's 

formulation. Let L2 = L2(n) denote the Hilbert space of Lebesgue square 

integrable functions defined on n. Let H1 = H1(n) denote the Sobolev 

space of functions which are in L2 

in L
2

• Important sub spaces of H 1 

and which have generalized d~rivatives 

are H 1 
= { ~ I ~ E H 1 and · 0 (l (l 

~N = 0 on an1} and H1 = {u I u E H1 and u = a } The finite ~~ g(l (l (l (l g(l on n1 . 

element equations emanate from the weak forms of the boundary value 

problem, given as follows: 

3.1 Displacement Formulation. Find u(lE H~ such that for all ~ClE H6 
(l 

(3.1.1) 

where dx1 dx2 is the area element for n and ds is the arc-length 

element for an. If u is sufficiently regular (3.1.1) implies {2.1) (l 

and (2.2) 2 hold. 

3.2 Herrmann Formulation. 

a 11 . ~u E H6 and q E L2 

Find u E H 1 and p E L2 such that for (l g(l 

- f ~ h ds. an (l (l 
2 

Satisfaction of (3.2.1) also implies (2. 1) and (2.2) 2 hold. 

*The variable p, differs by a constant factor from the variable H 
used in HerrnHnn's original pap~r [2], i.e. p = -~AH/(A + ~). 

(3.2.1}* 

J 
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3. 3 Displacement Formulatfon Finite Element Equations. Consider a four­

node isoparametric quadrilateral element (see Fig. 1). Let uaa denote 

the value of the finite element solution at node a for direction a, and 

let faa and haa be the values of fa and ha at node a, respectively. 

Let Na, a E {1,2,3,4}, denote the shape function associated with node a 

of the eth element. Repeated subscripts a,b,c,d are to be summed over 

the nodes of the eth element, i.e. over 1,2,3,4. The element equation 

for node a and direction a corresponding to (3.1.1) is 

(3.3.1) 

where. 
0 

4(Na,a Nb,a J}l(~.n} 5ab ! NaNb ds k aaba = (0,0} = = 
ag2 

kaaba = J N N dx1 dx2 mab = J NaNb dx1 dx2 Q a,a b,a Q 
(3.3.2} 

= J Na Nb dx1 dx2 Q ,a .a 

and J is the jacobian determinant of the isoparametric mapping. Observe 

that the stiffness contribution k0 aaba is determined by one-point 

Gaussian quadrature. 

3.4 Herrmann Formulation Finite Element Equations. As in the previous 

case, the displacements of the finite element equations are given in 

terms of the shape functions Na, a E {1,2,3,4}. However, the pressure 

variable p is assumed to be constant over each element. As a result 

p can be solved for in terms of the corresponding element nodal dis-

placements, viz. 

p = >. k U ·- Ae aa aa ' (3.4.1) 
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where Ae is the area of the eth element and 

(3~4.2) 

The equilibrium equation for node a and direction a corresponding to 

(3.2.1) is 

(3.4.3) 

Substitution of (3.4.1) into (3~4.3} results in 

Comparison of this result with (3.3.1) indicates that the two formulations 

are the same if and only if k0aabB and kaa kb 8/Ae are identical. 

1 

./ 
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4. Equivalence of the Elements 

To explicitly compute the element stiffness coefficients it is 

necessary to obtain some preliminary relations. We sunmarize the 

pertinent results as fellows: 

a 

1 

2 

3 

4 

~a 

1 

-1 

-1 

1 

na 

1 

1 

-1 

-1 

N = l ~ (1 + nan) a,f; 4 a 

::J = 

(no sum) 

(no sum) 

' 
(no sum) 

X l - 1, n 

xl ,. 
.~ 

Na,~ 'Nb,n - Na,n Nb,f; = ~6 {~anb(l + nan.+ f;bf;) 

- ~b na(l + E;af; + nbn)} (no sum) 

7 



(no sum on a) 

In the preceding relations, x1 ,~ = ax1 /a~, etc. and xaa is the xa 

coordinate of node a. 

4. l Theorem. 

Proof. The proof involves straightforward computations which employ the 

above relations: 

(no sum.on a} 

(no sum on a and ~) 

8 
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5. Numerical Example 

To corroborate the analysis a numerical example was run using both 

the elements described above. The configuration is illustrated in Fig. 2. 

The beam is fixed at the left end and subjected to a uniform shear applied 

along the right end. The model consists of 32·plane strain rectangles, 

E denotes Young's modulus and v denotes Poisson's ratio.· For the 

rectangular configuration, 2 x 2 Gaussian quadrature is exact. As is 

clearly seen, the underintegrated displacement model and the element 

based on Herrmann's formulation give identical results.* Note the 

·stiffening in the exactly integrated displacement model as Poisson's 

ratio is increased. 

* H. Allik and P. Cacciatore provided the results for the constant 
pressure-bilinear displacement model. 



6. Summary and Conclusions 

The bilinear displacement model, employing one-point Gaussian 

quadrature on the A-term, and the constant pressure variable, bilinear 

displacement element based upon Herrmann•s formulation, have been shown 

to lead to identical results. A numerical,example in support of the 

analysis has been present~d. 

This result has considerable practical significance since the 

underintegr?ted displacement model can be implemented more simply and 

economically. In particular, programming the element is simpler and 

.the number. of equations in practical problems is reduced by approximately 

1/3. 

10 
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VERTICAL DISPLACEMENT AT POINT A 

ELEMENT QUADRATURE 11 = 0. 3 11 = 0. 499 
BILINEAR DISPLACEMENT EXACT 217.8 26.8 
MODEL (80)* 

BILINEAR DISPLACEMENT I X I A TERM 
224.9 183.3 

MODEL (80) 2x2 fL TERM 

CONSTANT PRESSURE-
BILINEAR DISPLACEMENT EXACT 224.9 183.3 
MODEL (112) 

-- --

·•NUMBERS IN PARENTHESES REFER TO THE NUMBER OF EQUATIONS. 

- ---- - -

FIG. 2 COMPARISON OF FINITE ELEMENTS FOR BEAM SUBJECTED TO END SHEAR 
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