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1. Introduction

When one passes to the incompreésib1e limit in the theory of_.
e1asfi¢ity; a speciaT‘forﬁu]ation-is fequired. A pressure-1ike variable -
ié introduéed as an unknown and, concomitantly, an additional equation,
restr{Cting the motidn-to be isocHoric, must be satisfied. The pressure
variable is interpreted as the force which maintains this coﬁstraint;"

In principle, the usual formulation of elasticity covers all 6ther'
‘unconstrained cases. However, it has been discovered in the applicétion
 of finite element methods that for near]y—incombkéssib]e cases numerical
prob]ems are ehcouhtered with the.ﬁsual formulation of the theory.'.
These problems have been déa]t with in two ways. ’

The first method'ié to reformulate the equatiohs for the compré#sib1e
case in a way reminiscent of the incompreséib]e case‘(See Herrmanh and
- Toms [1], Herrmann [2], Taylor, Pister and Herrmann [3], Key [4],. and
~ Hughes and Allik [5] for background and app]icatibnS‘along these lines). -
What one does is to éonSider the stress a function of the strain and a
'bréssure variable. The constitutive equation relating the dilatation
to the pressure variable then must be satisfied independentiy. 'with a
judicious chofce of shape functions for the displacements and préssure,‘j
an éffectfve numerical schehé can be deve]oped._ This approach is equél]y
va]id.for the compressible and incompressible éases. The variational
formulation of this theory,dge to Herrmann [2],may bé viéwed as a
-spebia] case of Reissner's tﬁeoreﬁ, since only a part of the stress
(i.e., the pressure) is considered to be ihdependént.. It should be
- emphasized here that this forhu]ation, although cégab1e of yielding
suééessfu] numerical algorithms, is no panacea. This fact, although
~ known for some time, does not seem to be widely appreciated. If pné

. is naive in the use of this method it can lead to results equally bad
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-as those obtained by the standard formulatioh (see [5] for elaboration
Andvnumerical examples). However, this method has beenvused successfully
on a‘widé range of engineering problems (see [1]-[5] and references
therein). '

Recently, Fried [6] has provided insight into what goes wrong with

the‘QSUal formulation for the linear isotropic case. As airemedy'he '

. éuggests underintegrating the troublesome portion of the strain energy.

Computations performed by Naylor [7] yield results consistent Wifh >
Fried's theory. This approach is simp1er.to.imp1emeht and-more.
economica1‘than the method involving a pressure va.riable.i waéver,nits
usé has nbt'yét become w%despread in engineering, perhaps duevto’fhe
fact that it has an ad hoc flavor. |

It is the purpose of.the present note tb show tﬁat a certain
~ underintegrated element is in fact identical to an element based upon
Herrmann's'formulation, which has beén used,successfg]]y in the past
- ([5]). The elements in question are a bilinear displacement‘model,_
Whiéh émp]dys one-pdint Gaussian quédrature on a portion of the strain
ehergy,:and a constant bfessure, bilinear displacement model based on:
Herrmann's formulation. . |

"In Section 2 we establish notations and review the equations of
classical elasticity. In Section 3 the finite element equations are
derived.for the two formulations. The equfva]ence of the e]ementé is
demonstrated in Séction 4 and a numerical example which supports the
analysis is. given in Section 5. A summary and conc]uéions are’ |

‘contained in Section 6.
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2. Equations of Classical Elasticity

Let @ be. a bounded region in R 2, with piecewise smooth boundary
. 9t. Vectors defined on @ are written in the standard indicial notation,

e.g. U ,a = 1,2, are the cartesian components of the displacement vector.

A comma is used to denote partial differentiation and the summation
convention is employed, e.q. aua/axa = ua,a = u]’] + Up o A general
point in @ is denoted by x. The equations of classical isotropic

elasticity are

0= (x+y)u f (2.1)

+ _ +
8sBa H ua,BQ a ?

where A and u are the Lame constants, and f ~ denotes the extrinsic
body force. The mixed boundary value problem for (2.1) consists of

finding functions ua(x) satisfying (2.1) for all x€q and

u(x) =g (x) , x€s0; ,
| - (2.2)
: nB(X) {A uY’Y(X) I 24 u(-a,B)(X)} = ha(*) » X€E 392,

where 9, ‘and h, are the given boundary data, ng is the unit

outward normal vector to 3, § is the Kronecker delta, u =
af _ (a,B)

1/2.(um’B + uB,a), and 3, and 232, are subregions of 30 satlsfy1ng

3y U 30, = 30 and 30, N W, = a.



3. Finite Element Equations

In this section we set Up the finite element equations for classical
elasticity corresponding to the displacement formulation and Herrmann's

formulation. Let L, = LZ(Q) denote the Hilbert space of Lebesgue square

1

integrable functions defined on @. Let H =_H](Q) denote the Sobblev

space of functions which are in L2 and which have generalized derivatives
1 1 1

in L2.. Important subspaces of H' are Hj = {6, | 9, € H and’ |
-0 1 1 )
- ¢, =0 on agy} and Hga = {u | u&H and u =g on 3 }. The finite

element equations emanate from the weak forms of the boundary value

'problem, given as follows:

3.1 vDi§Q]acement Formulation. Find ua€ H; such that for all ¢a€'Hg

a

0 = g.{x ¢B,B ua’a+ 2u ¢a,8 u(a’B)— ¢afa} dx] dx2 - aé by ha ds, (3.1.1)
. 2

Where dx] dx2 is the area element for. @ and ds is the arc-length
element for sn. If u, is sufficiently regular (3.1.1) implies (2.1)

and (2.2)2 hold.

3.2 Herrménn Formulation. Find u € H; and p€ L2’ such' that for
1 * |

all ‘%E H0 and q€ L2

0=f{q(];p+ua ) *+ 9
' Q

[1e oy B

(-p'ﬁmB + 2u u(a,B)) - by fa},dx1 d%Z

- [ ¢ h_ ds. . (3.2.1)*
302“"‘_- 4

Satisfaction of (3.2.1) also implies (2.1) and (2.2)2 hold.

* The variable p, diffeks by a constant factor from the variable H
used in Herrmann's original paper [2], i.e. p = -uxH/(x + u).
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3.3 Displacement Formulation Finite Element Equations. Consider a four-

node isoparametric quadrilateral element (see Fig. 1). Let Uag denote

the value of the finite element solution at node a for direction «, and
let f, and h be the values of f and h_ at node a, respectively.
aa aa a a

Let Na; a € {1,2,3,4}, denote the shape function associated with node a

th

of the e~ element. Repeated subscripts a,b,c,d are to be summed over

th

the nodes of the e” element, i.e. over 1,2,3,4. 'The element equation

for node a and direction « corrésponding-to'(3.1.l) is

0 . _ '
O kb * ¥ Xbaag) Ybe ¥ ¥ Kab Ube T Sab Mba * Mab The » (3-3:1)
where ,
0 - . ‘ _
K aabg ° 4(Na,a Ny .8 J)|(€.n) = (0,0) >ab aé Na'p 4
kab ='é Na,a Nb.a dx] dx2

and J 1is the jacobian determinant of the isoparametric mapping. Observe

that the stiffness contribution koaab is determined by one-point

B
Gaussian quadrature.

3.4 ‘Herrmann Formulation Finite Element Equations. As in the previous
caée, the disp]acements of the finite element equations are giyen in

- terms of thé shape functions Na’ a€ {1,2,3,4}). ‘However, the hressure
" variable p 1is assumed to be constant over each element. As a result

p can be soTved for in terms of the corresponding element nodal dis-.

placements, viz.

A
p=-2 k (3.4.1)
Ao :

aa uaa ’



th

where Ae is the area»of the e~ element and

=g Ny L dxpdx, L _ | (3;4.2)
The equilibrium equation for node a and direction o corresponding to
(3.2.1) is
P Kyt (Kpaag Ung * Kap Upg) = Sab Mpg * Map oy - (3-8:3)

Substitution of (3.4.1) into (3.4.3) results in

A - | e |
(Fé kaa kbe tu kbuas) ubB *u kab Yba Sab hba + Mab fba - (3.4.4)

Comparison of this reéu]t with (3.3,1) indicates that the two fdfmu]ations

are the same if and only if k°a b

obg and kaa kbe/Ae are 1dent1ca1.
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4. Equivalence of the Elements

To explicitly compute the element stiffness coefficients it is

S

necessary to obtain some preliminary relations. We summarize the

pertinent results as follows:

N, T+ 81+ nn) (no sum)
a Ea N,
1 1 1
2 -1 1
3 -1 -1
4 1 -1
= ]
Na,g =7 & (1 + nyn) (no sum)
Na,n = %’“a (1 + ;ag) (no sum)
: | . | X <Xy
0 52 an: T.n 2,n 1,n
- = 1 |
X x J
n’] ns 2,& 2,n ~x2,E x],C
J = x]:E Xz’n B .x]!n x29£
. _ 1 . ‘
Naye Moin = Mayn M,e = 16 (Eamp(1 * ngn + £46)

- & g1 * &8 + npn)} - (no sum).

) | 1 |
gn) 20,0 T TE %1 %2 (52 p - & )

Ae/4



- a o | | f
vNa.c j (-1) yba(Na,n Nb,E Na.E Nb,n)/d (no‘sum on é)
b1 = *p2

RN

In the preceding re]atipns, X €v= axT/ag, etc. and X1 is the X,

coordinate of node a.

aabs aa bB

4.1 Theorem. KO = k) Kk /Ae

Proof. The proof involves straightforward computations which employ the

above relations:

“aabg = A Ma,aM,67 (g,n) = (0,0)

aa é Né,a dx] d*z

. - o | S B |
“f%l—jybd(ibnag- Egnp) | S | (no sum,onva) E

ba/Re ]6 e (1518 Ye ydB(s Ny - Eane) (Egnp - Eng)

(no sum on a and 8)

a
Dy N N ey (e ) (1) yds(N bun'd,E b, d»n)/J}l(O 0)

1'J7T_ (-1)%-1) yCuydB(Ecna-Eanc)(Ednb-ibnd) (no sum on « and-B)




5. Numerical Example
To corrqbbrafe the éna]ysis a numerical examp]é was funvusing'both

the elements described above. The configuration is i]]ﬁstrated in Fig. 2;
The beam is fixed at the left end and subjected to a uniform shear applied
'along_the right gnd. The model consists of 32-plane strain rectang]es,
E denotes Young's modulus and v denotes Poisson's ratio. For the
rectangular configuration, 2 x 2 Gauséian quadrature is exact. As is
clearly seen, the underintegrated displacement model and the e]emént
Ibased on Herrmann's formu]ation give identical results.* NoteAthe:

“*stiffening in the exactly integrated displacement model as PoisSon's-

ratio is increased.

¥ H. A17ik_and P. Cacciatore provided the fésults_for the constant
pressure-bilinear displacement model. :
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6. Summéry and Conclusions

The bilinear displacement model, employing one-point Gauséian :
quadrature on the a-term, and the constant pressure variable, bi]inear.
. displacement element based upon Herrmann's'formu1ation, have beeh shown
to lead to identica1 results. A nuherical;examp]e in support of the

ana1jsis Has been presented. | |

This result has considerable practical significance since thé ‘
underintegrated'dfsp]acement model can be imp]emented more Simpiy;and
economically. In particd]ar, programming the element ié simp]er and'_
the number of equatiqns‘in practical prob]ems is reduced by apbrbximate]y

1/3. .
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VERTICAL DISPLACEMENT AT POINT A
ELEMENT QUADRATURE v=0.3 v=0.499
BILINEAR D!SPLACEMENT ' ' ' _
MODEL (80 | | EXACT 217.8 : 26.8
BiL INEAR DISPLACEMENT Ix1 AN TERM -
'MCDEL (80) 2x2 p TERM 224.3 o 1883
CONSTANT PRESSURE - : ‘
BILINEAR DlSF’LACEMENT EXACT : 224.9 183.3
MODEL (112) : . :

'*NUMBERS 1N PARENTHESES REFE_R TO THE NUMBER OF EQUATIONS,

FIG. 2 COMPARISON OF FINITE ELEMENTS FOR BEAM SUBJECTED TO END SHEAR
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