
UC Irvine
UC Irvine Previously Published Works

Title
Slow turnover and production of fungal hyphae during a Californian dry season

Permalink
https://escholarship.org/uc/item/22g6w1rg

Journal
Soil Biology and Biochemistry, 42(9)

ISSN
0038-0717

Authors
Treseder, Kathleen K
Schimel, Joshua P
Garcia, Maria O
et al.

Publication Date
2010-09-01

DOI
10.1016/j.soilbio.2010.06.005

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22g6w1rg
https://escholarship.org/uc/item/22g6w1rg#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


lable at ScienceDirect

Soil Biology & Biochemistry 42 (2010) 1657e1660
Contents lists avai
Soil Biology & Biochemistry

journal homepage: www.elsevier .com/locate/soi lb io
Short Communication

Slow turnover and production of fungal hyphae during a Californian dry season

Kathleen K. Treseder a,*, Joshua P. Schimel b, Maria O. Garcia a, Matthew D. Whiteside a

aDepartment of Ecology and Evolutionary Biology, University of California, 361 Steinhaus Hall, Irvine CA 92697, USA
bDepartment of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
a r t i c l e i n f o

Article history:
Received 11 March 2010
Received in revised form
7 June 2010
Accepted 8 June 2010
Available online 22 June 2010

Keywords:
Decomposition
Dormancy
Dry season
Fungal hyphae
Hyphal production
Minirhizotron
Nutrient immobilization
Residence times
* Corresponding author. Tel.: þ1 949 824 7634; fax
E-mail address: treseder@uci.edu (K.K. Treseder).

0038-0717/$ e see front matter � 2010 Elsevier Ltd.
doi:10.1016/j.soilbio.2010.06.005
a b s t r a c t

We used minirhizotrons to examine the production and turnover of fungal hyphae in situ during the dry
season in a Californian grassland. Hyphae were produced relatively slowly throughout the season at rates
that did not vary significantly over time, indicating that a portion of the fungal community was active
even when soils were very dry. In addition, fungi displayed relatively long residence times, with half of
the hyphae remaining in the soil for at least 145 days. Together, these results suggest that a contingent of
active fungi may be capable of performing nutrient transformations when plants are otherwise dormant,
while relatively long-lasting hyphae may immobilize nutrients for several months before turning over.

� 2010 Elsevier Ltd. All rights reserved.
Microbes can serve as mechanisms of nutrient retention within
ecosystems during the “non-growing seasons” of plants, especially
if microbial turnover is low during these periods (Singh et al., 1989;
Vitousek and Matson, 1984). In Mediterranean climates, for
example, summers are dry, and many plants die or are drought-
deciduous. Even so, microbial biomass can increase or remain
relatively stable during this time (Vourlitis et al., 2009). In addition,
microbial processes such as heterotrophic respiration and denitri-
fication can respond very quickly (within hours) to moisture pulses
during dry seasons in Mediterranean systems (Xu and Baldocchi,
2004) and elsewhere (Davidson et al., 1993), indicating that pop-
ulations of viable microbes are maintained during this period.
Nevertheless, studies of microbial dynamics tend to focus on the
growing seasons of plants (Wardle, 1998).

Moreover, as microbes die and decompose, their component
nutrients can be acquired by other organisms, released into the
atmosphere as trace gases, or leached from soils (Chapin et al.,
2002). Thus, turnover rates of microbes (including fungal hyphae)
can influence the loss and retention of C and N in soils (Schmidt
et al., 2007; Singh et al., 1989; Vitousek and Matson, 1984).
Population dynamics can also control shifts in microbial commu-
nity composition in response to environmental change
: þ1 949 824 2181.
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(Allison and Martiny, 2008; Schmidt et al., 2007; Wardle, 1998; Zak
et al., 1995). A significant portion of the microbial community is
composed of fungi (Fierer et al., 2009). Previous studies have
reported that single fungal hyphae turnover rapidlydon the order
of two weeks or less (Atkinson andWatson, 2000; Bago et al., 1998;
de Vries et al., 2009; Friese and Allen, 1991; Staddon et al., 2003a).
However, field-based studies are rare, with the exception of a soil
biotron study in a mixed-hardwood forest in Michigan (Atkinson
and Watson, 2000).

We usedminirhizotrons in an annual grassland in the University
of California Sedgwick Reserve in central California to determine in
situ rates of turnover, production, and disappearance of individual
fungal hyphae during the dry season (Fig. 1). This ecosystem
experiences a Mediterranean climate with hot, dry summers and
cool, moist winters (Fig. 2a). Hyphal production was estimated by
noting the first appearance of individual structures; and decom-
position, by disappearance. In addition, standing hyphal counts
were determined for each minirhizotron tube. Altogether, 149
hyphae were each visible on at least two dates during the sampling
period; we were able to calculate lower-bound estimates of resi-
dence times for each of these hyphae. Some, but not all, of these
hyphae were attached to plant roots and displayed angular
branching typical of arbuscular mycorrhizal (AM) fungi. The AM
hyphae, especially, may be either dead or dormant, since most host
plants were not active during the sampling period.
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Fig. 1. Sequential frames recorded in a minirhizotron installed in the Sedgwick Reserve, California USA (34� 420300 0N, 120� 20300 0W). To determine fungal turnover, we examined
sequences of hyphal images such as these. Numbers designate sampling date. We georeferenced prominent structures (e.g., aggregates and roots) in the images to align sequential
recordings. A given hypha was only categorized as absent if its expected location (based on images from other dates) was recorded and the hypha was not visible. In this sequence,
the asterisk (*) indicates a root section used as a georeference point for dates 4/1/08 to 10/20/08; the dagger (y), a georeference point between dates 10/20/08 and 10/21/08. The
hypha H1 could be confirmed as present for dates 4/1/08 through 10/21/08, with a calculated residence time of at least 202 days. The hypha H2 could be confirmed as present on
dates 7/25/08 through 10/21/08, for a residence time of at least 88 days. The hypha marked “AM” is putatively an arbuscular mycorrhizal hypha, given its connection with a fine root.
In this particular frame, no hypha was categorized as growing or as disappearing over the sampling period. Most hyphae (>95%) were hyaline. Hyphal diameter ranged from 0.4 to
5.2 mm. In this site, the invasive grasses Bromus diandrus, Bromus hordaceous, and Avena fatua were dominant. These genera are AM hosts (Rillig et al., 1998). In April 2007, we
installed 16 clear plastic 1-m long, 5-cm diameter minirhizotron tubes at 45� angles to the soil surface in three blocks of the grassland spanning 1 ha. Observations were made along
the entire length of each tube (0e0.7 m soil depth). The soil area represented in each image was 0.27 � 0.20 cm2, and an average of 13 images were collected along each tube at each
date. We used a minirhizotron camera (BTC-100X, Bartz Technology, Santa Barbara, CA) to record images of mycorrhizal structures visible from the tubes on 4/13/08, 4/30/08, 5/29/
08, 6/30/08, 7/25/08, 10/15/08, 10/16/08, 10/17/08, 10/18/08, 10/19/08, 10/20/08, and 10/21/08. This model of minirhizotron camera is equipped with 100� magnification, and single
hyphae are visible at these magnification levels. The intensive sampling period during October was used to capture any high-resolution hyphal dynamics under particularly dry
conditions.
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Fig. 2. Average daily soil temperature and soil moisture at 15 cm depth in Sedgwick
Reserve during 2008 (data courtesy http://www.geog.ucsb.edu/ideas/) (A), rates of
disappearance and production of hyphae (B), and standing hyphal length (C). Annual
rainfall averaged 380 mm y�1 at Sedgwick Reserve, mostly between October and
March. Mean annual temperature was 16.8 �C. Soils were loams and were classified as
typic argixerolls. The production (F ¼ 1.958, P ¼ 0.112) and disappearance (F ¼ 1.333,
P ¼ 0.268) of hyphae did not vary strongly or significantly over this time (B). Hyphae
were produced consistently from May onward, including the particularly dry period in
October. Even so, the standing abundance of hyphae varied significantly as the dry
season progressed, with highest counts in April 20 (C; F ¼ 3.384, P ¼ 0.015). For
statistical analyses, we performed repeated measures analyses of variance on ranked
data, with production rate, disappearance rate, or standing hyphae as dependent
variables and sampling date as the independent variable. The unit of replication was
the minirhizotron tube (n ¼ 16). We used hyphal counts instead of hyphal length, as
our questions addressed presence/absence of fungi rather than biomass.

Fig. 3. Lower bounds of residence times of individual hyphae in 2008. For example,
50% of hyphae were visible for at least 145 days; 79% were visible for at least 5 days.
The upper bound (191 days) was determined by the extent of the sampling period. One
percent of hyphae were present throughout the entire period. A lower-bound estimate
of the residence time of each hypha was determined by calculating the time period
between the first (noted on figure) and last (October 15e21) sampling dates in which
the hypha was visible. In every case, we could at best pinpoint the date of production
or the date of disappearance, but not both. To determine exact residence times, both
dates would be required. Instead, we could ascertain that a given hypha had resided in
the soil for at least a certain amount of time (e.g., four days), and possibly longer. We
constrained our estimates of residence times to hyphae that were present on at least
one day during the high-resolution sampling period in October.
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We found that hyphae were produceddalbeit at low rates of
0.5e1.5 hyphae cm�2dthroughout the dry season, even when soil
moisture dropped below 5% volume (Fig. 2). A number of mecha-
nisms could have allowed fungi to remain viable even when soils
were very dry (Schimel et al., 2007). For example, osmolytes (e.g.,
glycerol, erythritol, and mannitol) allow fungi to reduce internal
water potential and deter dehydration (Witteveen and Visser,
1995). Thus, at least a portion of the fungal community was
active, even though plants can be strongly affected in grasslands in
this region (Xu and Baldocchi, 2004).

In addition, hyphae remained in the soil for a relatively long
time. Specifically, half the hyphae were visible for at least 145 days
(Fig. 3). We could not distinguish among active, dormant, or dead
fungi for most of the standing hyphae, since these states were not
visually distinctive in the minirhizotron images. It is possible that
many of these hyphae were dead. Even so, they did not detectably
decompose over this time. Slow turnover rates in our site could
result from dry conditions, leading to slower metabolism rates of
fungi and other decomposers (Schimel et al., 2007), lower activity
rates of extracellular enzymes that would otherwise break down
dead tissue, smaller predator populations (Gorres et al., 1999;
Holmstrup et al., 2001; McSorley, 2003), and reduction of C
supply to the AM members of the community (Miller et al., 1995).

These observations extend by several months the range of
measured residence times of single hyphae. Measurements of
dynamics of single hyphae in soils are rare, with previously-
observed mean residence times of four to fourteen days (Atkinson
andWatson, 2000; Bago et al., 1998; de Vries et al., 2009; Friese and
Allen, 1991; Staddon et al., 2003a). Most of the preceding studies
were conducted in the laboratory or greenhouse, but a field study in
Michigan recorded short residence times of seven days or less
(Atkinson and Watson, 2000). However, the Michigan study was
conducted in early June, during the plant growing season for this
ecosystem (Atkinson and Watson, 2000).

Altogether, we found little evidence that fungal dynamics were
sensitive to increasing aridity in this ecosystem. Disappearance rates,
production rates, and standing stocks of soil hyphae did not vary
greatly as the dry season progressed (Fig. 2). The sole exception was
a significantly greater hyphal standing stock early in the season,
when relatively moist conditions may have been more amenable to
hyphal activity. In most studies that have included dry seasons,
standing hyphal lengths in the soil have declined with drought
(Miller et al., 1995; Staddon et al., 2003b), with exceptions in
awesternMontana grassland (Lutgen et al., 2003) and a Chihuahuan
desert grassland (Bell et al., 2009). In contrast, in a dry savanna, pools
of microbial C, N, and P are highest in the dry season (Singh et al.,
1989). Likewise, in coastal sage scrub and chaparral in Southern
California, microbial N can be highest in the dry summer season
(Vourlitis et al., 2009). In a global synthesis of published data,Wardle
(1998) found that microbial biomass did not vary strongly among
seasons in grasslandswithmild climates.Microbes, including fungi in
Sedgwick, may be relatively resilient to drought conditions.

In this grassland, fungal hyphae may have contributed to soil
nutrient storage during the non-growing season. Nitrogen, P, and C
could have been immobilized within fungal biomass for several
months before being released via tissue turnover. In addition,
hyphae appeared to form a relatively stable microbial network in
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the soil, a portion of which was active as indicated by the
production of new hyphae. The presence of active fungi during the
dry season is consistent with others’ observations that microbial
processes can respond very quickly to moisture pulses (Xu and
Baldocchi, 2004). In addition, seasonal variation in ecosystem
respiration is relatively low in Mediterranean systems compared to
other biomes (Falge et al., 2002). A long-lived, comparatively stable
population of fungal hyphae during the dry season may be one
mechanism underlying this pattern.

Acknowledgements

We thank D. S. LeBauer, C. Doan, and A. Nguyen for field and
technical assistance, and the UC Sedgwick Reserve for access to
field sites and facilities. This work was funded by NSF Ecosystems
(DEB-0640666).

References

Allison, S.D., Martiny, J.B.H., 2008. Resistance, resilience, and redundancy in
microbial communities. Proceedings of the National Academy of Sciences of the
United States of America. doi:10.1073/pnas.0801925105.

Atkinson, D., Watson, C.A., 2000. The beneficial rhizosphere: a dynamic entity.
Applied Soil Ecology 15, 99e104.

Bago, B., Azcon-Aguilar, C., Goulet, A., Piche, Y., 1998. Branched absorbing structures
(BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycor-
rhizal fungi. New Phytologist 139, 375e388.

Bell, C.W., Acosta-Martinez, V., McIntyre, N.E., Cox, S., Tissue, D.T., Zak, J.C., 2009.
Linking microbial community structure and function to seasonal differences in
soil moisture and temperature in a Chihuahuan desert grassland. Microbial
Ecology 58, 827e842.

Chapin, F.S., Matson, P.A., Mooney, H.A., 2002. Principles of Terrestrial Ecosystem
Ecology. Springer, New York.

Davidson, E.A., Matson, P.A., Vitousek, P.M., Riley, R., Dunkin, K., Garcia-Mendez, G.,
Maass, J.M., 1993. Process regulation of soil emissions of NO and N2O in
a seasonally dry tropical forest. Ecology 74, 130e139.

Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P.,
Bernhofer, C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H.,
Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A.S., Katul, G.,
Law, B.E., Malhi, Y., Meyers, T., Monson, R.K., Munger, J.W., Oechel, W., Paw, K.T.,
Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Valentini, R., Wilson, K.,
Wofsy, S., 2002. Seasonality of ecosystem respiration and gross primary
production as derived from FLUXNET measurements. Agricultural and Forest
Meteorology 113, 53e74.

Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., 2009. Global
patterns in belowground communities. Ecology Letters 12, 1238e1249.
Friese, C.F., Allen, M.F., 1991. The spread of VA mycorrhizal fungal hyphae in the soil:
inoculum types and external hyphal architecture. Mycologia 83, 409e418.

Gorres, J.H., Savin, M.C., Neher, D.A., Weicht, T.R., Amador, J.A., 1999. Grazing in
a porous environment: 1. The effect of soil pore structure on C and N miner-
alization. Plant and Soil 212, 75e83.

Holmstrup, M., Sjursen, H., Ravn, H., Bayley, M., 2001. Dehydration tolerance and
water vapour absorption in two species of soil-dwelling Collembola by accu-
mulation of sugars and polyols. Functional Ecology 15, 647e653.

Lutgen, E.R., Muir-Clairmont, D., Graham, J., Rillig, M.C., 2003. Seasonality of
arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland.
Plant and Soil 257, 71e83.

McSorley, R., 2003. Adaptations of nematodes to environmental extremes. Florida
Entomologist 86, 138e142.

Miller, R.M., Reinhardt, D.R., Jastrow, J.D., 1995. External hyphal production of
vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie
communities. Oecologia 103, 17e23.

Rillig, M.C., Allen, M.F., Klironomos, J.N., Chiariello, N.R., Field, C.B., 1998. Plant
species-specific changes in root-inhabiting fungi in a California annual
grassland: responses to elevated CO2 and nutrients. Oecologia 113,
252e259.

Schimel, J., Balser, T.C., Wallenstein, M., 2007. Microbial stress-response physiology
and its implications for ecosystem function. Ecology 88, 1386e1394.

Schmidt, S.K., Costello, E.K., Nemergut, D.R., Cleveland, C.C., Reed, S.C.,
Weintraub, M.N., Meyer, A.F., Martin, A.M., 2007. Biogeochemical consequences
of rapid microbial turnover and seasonal succession in soil. Ecology 88,
1379e1385.

Singh, J.S., Raghubanshi, A.S., Singh, R.S., Srivastava, S.C., 1989. Microbial biomass
acts as a source of plant nutrients in dry tropical forest and savanna. Nature
338, 499e500.

Staddon, P.L., Ramsey, C.B., Ostle, N., Ineson, P., Fitter, A.H., 2003a. Rapid turnover of
hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science
300, 1138e1140.

Staddon, P.L., Thompson, K., Jakobsen, I., Grime, J.P., Askew, A.P., Fitter, A.H., 2003b.
Mycorrhizal fungal abundance is affected by long-term climatic manipulations
in the field. Global Change Biology 9, 186e194.

Vitousek, P.M., Matson, P.A., 1984. Mechanisms of nitrogen retention in forest
ecosystems: a field experiment. Science 225, 51e52.

Vourlitis, G.L., Pasquini, S.C., Mustard, R., 2009. Effects of dry-season N input on the
productivity and N storage of Mediterranean-type shrublands. Ecosystems 12,
473e488.

de Vries, F.T., Baath, E., Kuyper, T.W., Bloem, J., 2009. High turnover of fungal hyphae
in incubation experiments. Fems Microbiology Ecology 67, 389e396.

Wardle, D.A., 1998. Controls of temporal variability of the soil microbial biomass:
a global-scale synthesis. Soil Biology & Biochemistry 30, 1627e1637.

Witteveen, C.F.B., Visser, J., 1995. Polyol pools in Aspergillus niger. Fems Microbiology
Letters 134, 57e62.

Xu, L.K., Baldocchi, D.D., 2004. Seasonal variation in carbon dioxide exchange over
a Mediterranean annual grassland in California. Agricultural and Forest Mete-
orology 123, 79e96.

Zak, J.C., Sinsabaugh, R., Mackay, W.P., 1995. Windows of opportunity in desert
ecosystems e their implications to fungal community development. Canadian
Journal of Botany 73, S1407eS1414.


	Slow turnover and production of fungal hyphae during a Californian dry season
	Acknowledgements
	References




