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Abstract

Multiscale Thermal-Hydraulic Methods for Pebble Bed Reactors

by

April Novak

Doctor of Philosophy in Engineering — Nuclear Engineering

and the Designated Emphasis in

Computational Data Science and Engineering

University of California, Berkeley

Professor Rachel Slaybaugh, Chair

Pebble bed reactors (PBRs) are expected to display excellent heat removal characteristics

due to graphite’s capability for storing and transferring heat, the high failure temperatures

of particle fuel, and the low power densities involved. However, a major challenge associated

with the modeling of PBRs is the complex fuel-coolant structure in the core. Thermal-

hydraulic (T/H) modeling of PBRs requires consideration of thermal and flow effects over

five orders in spatial magnitude—from 5 × 109 fuel particles, each about 1 mm in size, to

5×105 pebbles, each about 5 cm in size, within a 10 m-size reactor core in the larger context

of a power generating system. This research develops and applies multiscale methods to the

thermal analysis of PBRs. By decomposing the complex PBR geometry into coupled models

for three characteristic length scales—the particle, pebble, and core—efficient predictions

of core T/H relevant to reactor design are achieved.

These multiscale models are implemented in a new finite element software application built on

the open source Multiphysics Object-Oriented Software Environment (MOOSE). By leverag-

ing state-of-the-art numerical methods, solvers, and meshing tools, this dissertation enables

rapid design and analysis for scoping studies, fast-turnaround design, and multiphysics cou-
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pling to a comprehensive reactor analysis framework.

Application of multiscale analysis to a wide variety of flows demonstrates the software tool’s

capabilities as a general flow solver and the applicability of these models to both porous

and open flows. Verification for open flows shows that the multiscale model reduces to the

Navier-Stokes equations in regions such as reactor plena, where prediction of mixing and

the ensuing thermal stresses are essential to the design of reactor internals. Application to

the SANA experiments, a gas-cooled scaled PBR facility, demonstrates that the multiscale

model predicts the passive conduction cool-down heat removal process with an average solid

temperature error of 22.6◦C. Statistical analysis as a function of position within the bed and

other experimental characteristics highlights limitations of model closures and simplifications

that are useful in guiding further macroscale analysis of gas-cooled PBRs.

Supported by the verification and validation for open flows and gas systems, full-core steady-

state T/H analysis is performed for the Mark-1 Pebble Bed Fluoride-Salt-Cooled High-

Temperature Reactor (PB-FHR). The unconventional reflector block design, uniquely thin

fuel-matrix annulus, and non-uniform flow boundary conditions (BCs) highlight the new ca-

pabilities enabled by this research for PBR industrial analysis. Two multiscale fuel models

are compared against full-resolved PB-FHR fuel pebbles for a wide range in thermal con-

ditions. While a homogeneous layer model is characterized by errors in excess of 200◦C,

a linear superposition method is shown to predict average and maximum temperatures to

within 10◦C.

Early models of PBRs have struggled to accurately characterize the core bypass fraction,

with significant implications on fuel temperature predictions. A porous media model is

constructed of the reflectors corresponding to the maximum-bypass end-of-life condition with

friction factor correlations generated using COMSOL Multiphysics. A tensor representation

of the friction factor shows that the momentum loss is significantly higher in the radial than

the axial direction. These drag models are combined with the multiscale fuel verification

for full-core analysis of the PB-FHR. A parametric study varying the reflector block gap

distribution and the inflow port design demonstrates that the inflow BC has a significant

effect on the core bypass fraction and that the bypass fraction is a strong function of the

reflector block gap distribution. The maximum bypass fraction is predicted to be within

the range of 11.9%–14.0% depending on the inflow BC and gap distribution. For a bottom-

heavy center reflector inlet, fuel and reflector temperature predictions are provided. The

primary effect of the core bypass is to uniformly raise core temperatures; for all reflector
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gap distributions, the maximum kernel temperature is approximately 93◦C higher than the

maximum fluid temperature, which remains far below the fuel failure limit.

This work demonstrates the utility of multiscale methods to thermal analysis of PBRs.

In conjunction with the larger scientific community, this research enables fast-turnaround

design and analysis of all single-phase PBRs to facilitate the contribution of advanced nuclear

reactors to a clean energy future.
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Chapter 1

Introduction

The societal and economic impacts of climate change are expected to be some of the greatest

stressors limiting a high quality of life in the coming century. Over 72% of Americans view

climate change as a moderate, serious, or imminent threat to the United States [1]. The

cost of limiting global temperature rise to 2◦C, and assembling defenses against adverse

consequences in the case that we fail, will be high.

This introduction is written several weeks into the Coronavirus Disease of 2019 (COVID-

19) pandemic quarantines that have so disrupted life in the United States and the world [2–4].

Already, many editorial columns of news outlets both international and local are comparing

the scale of the present disruption to future catastrophes related to climate change [5–7].

For instance, the shifting weather patterns induced by global warming are enabling new

disease propagation paths, a public health crisis that has recently become particularly rec-

ognizable. The extreme weather events, extended dry/rainy seasons, and shifting crop pest

populations linked to climate change will threaten the safety and livelihood of millions of

people [8, 9]. When adjusted to January 2019 dollars, the total cost of extreme weather

disasters in 2017 in the United States alone was $312.7 billion, which is larger than the pro-

jected sum of all individual taxpayer rebates associated with the Coronavirus Aid, Relief,

and Economic Security (CARES) Act [9, 10]. And in the absence of concrete climate change

action, the World Bank Group projects that over 140 million people in Sub-Saharan Africa,

South Asia, and Latin America will be displaced by changing water resources and crop pro-

ductivity in areas affected by storms and rising sea levels [11]. The ability to quarantine

for extended periods of time is highlighting racial and wealth inequalities that will likely be

reinforced and amplified by mass migration and other climate change stressors [12].

At the forefront of the comparison between COVID-19 and climate change is the realiza-
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tion that the human race lives within, and not apart from, a natural world that is at times

unpredictable and difficult to control. And just as human travel has allowed a single-origin

virus to affect every country on Earth [13], our shared atmosphere makes climate change a

global phenomenon that can only be addressed through a collaborative effort.

The purpose in making this comparison is not to prelude an otherwise impersonal and

objective scientific work with a “doom and gloom” vision of the future. Neither is the

purpose to imply that the technologies discussed in this dissertation are a silver bullet for

these complex challenges facing humanity. Rather, the intention is to show that humanity is

capable of making dramatic shifts in behavior of the kind needed to address climate change.

Entire industries and many aspects of our daily lives must transition to low-carbon energy

sources. Technological innovation in the energy space can be compatible with meeting our

environmental goals. In a close second to the transportation sector, electricity production

accounts for approximately 28% of the total greenhouse gas emissions in the United States

[14]. The vast majority of these emissions originate from the combustion of fossil fuels such

as coal and natural gas. Nuclear fission power, which composes approximately 20% of the

electricity consumed in the United States, has life cycle greenhouse gas emissions comparable

to wind and solar power [15] with a smaller land footprint [16], higher capacity factor [17],

and lower worker and civilian mortality rates [18]1.

Despite these favorable characteristics, public approval of nuclear power sits at 43% in

the United States—just slightly above coal at 41% and far below solar and wind power at

89% and 83%, respectively [21]. Nuclear fission power is a mature technology that provides

essential base load power that can complement daily and seasonal peaking of renewables;

many projections of energy portfolios in carbon-limited scenarios include fission power as

an important contributor to deep decarbonization of the electricity sector in tandem with

energy diversification objectives [22, 23]. However, deploying nuclear power on the scale

needed to evade the worst consequences of climate change requires addressing the societal,

political, and economic issues currently limiting the technology’s public approval.

In 2000, the United States Department of Energy (DOE) initiated the Generation IV

International Forum (GIF), a collective of countries committed to the joint development of

the next generation of fission reactors. After two years of deliberation, the Forum selected

six reactor technologies believed to most effectively meet the future missions of nuclear

energy with improved safety, economic feasibility, fuel cycle sustainability, and proliferation

resistance relative to current commercial concepts. These six concepts include a Very High

1Most fatalities associated with wind and solar power manifest during equipment transport and as falls
during maintenance activities [19, 20].
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Temperature Reactor (VHTR), a Molten Salt Reactor (MSR), a Supercritical Water Reactor

(SCWR), a Gas Fast Reactor (GFR), a Sodium Fast Reactor (SFR), and a Lead Fast Reactor

(LFR). The diversity in coolants, operating pressures and temperatures, and fuel cycles

imparts unique advantages to each concept that make each design best suited to particular

electricity markets, resource constraints, and energy missions.

This research develops and applies numerical models to Thermal-Hydraulic (T/H) anal-

ysis of Pebble Bed Reactors (PBRs), a form of VHTR. The VHTR concept combines a

gas or molten salt coolant with a graphite-moderated core to achieve very high tempera-

ture operation. Outlet temperatures are typically in the vicinity of 1000◦C, high enough for

process heat applications such as hydrogen production, coal gasification, and desalination.

The VHTR is expected to contribute significantly to deep decarbonization of the industrial

sector, which accounts for 22% of total greenhouse gas emissions in the United States [14].

Two different VHTR fuel designs have been typically proposed. The first is a prismatic,

fixed block-type fuel element such as that shown in Fig. 1.1a. Hundreds of these blocks are

stacked in the shape of a cylindrical bed to form the reactor core. The second is a spherical

fuel element, or “pebble,” such as those shown undergoing inspection in Fig. 1.1b. Hundreds

of thousands of these pebbles are heaped in an unordered manner within a cylindrical vessel

to form the reactor core. This latter design, which is the focus of this research, is more

specifically referred to as a PBR.

(a) Prismatic fuel element block (b) Pebble fuel under inspection

Figure 1.1: Photos of (a) a prismatic fuel element with a chair for scale [24] and (b) pebble fuel
elements under inspection [25].

Section 1.1 introduces the salient aspects of the PBR design that distinguish the concept

from both current commercial designs and the other concepts proposed by the GIF. The

combination of a robust fuel form, passive heat removal systems, and high thermal efficiency
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make the PBR a potentially significant contributor to meeting greenhouse gas emissions

targets with improved safety and economic feasibility relative to current commercial reactors.

A notable characteristic of all PBRs is a large separation of length scales between the

fissile regions in each pebble and the full core. Section 1.1.1 motivates the role of T/H

modeling in reactor analysis with emphasis on the constraints imposed by this large scale

separation. Multiscale analysis, a branch of numerical modeling based on decomposing

complex systems into separable models for each of the most important characteristic scales,

is introduced as one means for achieving fast, design-capable, predictions of PBR thermal

and flow physics.

After having highlighted important PBR T/H phenomena in Section 1.1.1, Section 1.1.2

sketches a history of the PBRs built and operated around the world. Attention is placed on

the operational experiences that exemplify the importance of having accurate T/H models

of PBRs with respect to the thermal and safety design criteria introduced in Section 1.1.1.

Finally, Section 1.2 motivates the methods development and applications performed in this

dissertation and provides an outline for the remainder of this work.

1.1 The Pebble Bed Reactor

The defining characteristic of PBRs is the use of spherical fuel elements, or “pebbles.”

Following an early exploratory phase in the 1960s [26, 27], the multitude of proposed fuel

designs have converged to the coated particle form shown in Fig. 1.2. A typical fuel pebble

is 6 cm in diameter, slightly smaller than a tennis ball. A central core contains tens of

thousands of Coated Fuel Particles (CFPs) mixed in graphite. This “fuel-matrix” region is

protected from erosion by a 0.5 cm thick graphite shell on the pebble surface. Each CFP is

approximately 1 mm in diameter and consists of a central kernel of fissile material, typically

uranium dioxide (UO2) or uranium oxycarbide (UCnOm, with n, m typically varying based

on design), surrounded by several layers of structural reinforcement materials [28, 29].

The first of these layers surrounding the kernel is a porous graphite “buffer” layer that

retains gaseous fission products and accommodates kernel swelling. The CFP shown in Fig.

1.2 is more specifically referred to as a TRistructural ISOtropic (TRISO) particle due to the

use of three additional layers around the buffer—a silicon carbide (SiC) layer sandwiched be-

tween two Pyrolitic Carbon (PyC) layers2. The SiC layer is the main pressure vessel for the

2Pyrolitic carbon has a structure similar to graphite, and is formed by depositing gaseous hydrocarbon
compounds onto a substrate.
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particle and a diffusion barrier for gaseous and metallic fission products, while the PyC layers

protect the kernel from damage during the SiC deposition process and the SiC from dam-

age during mixing of the particles with the graphite matrix. The robust high-temperature

performance of the TRISO particle allows long-term operation at fuel temperatures up to

1250◦C and short-term transient operation at fuel temperatures up to 1600◦C [28, 30].

Figure 1.2: Typical PBR fuel pebble shown from the outside and along a cut-through, with an
enlarged CFP consisting of five layers (adapted from [31]).

Alternative CFP designs exist with different layer structures from the TRISO design

show in Fig. 1.2, though the predominance of the TRISO particle design has led to the

generic term “CFP” being interchanged with the more specific “TRISO particle” term in

the literature. For generality, “CFP” is used throughout this dissertation when describing

methods that apply equally to other particle designs.

A typical PBR core consists of hundreds of thousands of pebbles arranged in a random

heap within a cylindrical enclosure formed by loosely-stacked graphite blocks. Fig. 1.3a

shows a plan view of the High Temperature Reactor - 10 MWth (HTR-10) core before

loading pebbles and Fig. 1.3b shows a photo of the Thorium High Temperature Reactor

(THTR) with control rods inserted directly into the pebble region. Most PBRs operate in

an online refueling mode, where pebbles are continuously added to the bed, cycled through

over the course of several months, and removed at the opposite end. Most reactors operate

in a multi-pass scheme where each pebble is re-inserted into the bed two to ten times until

the desired burnup has been achieved.

A coolant flows in the interstices between pebbles to remove fission heat. This energy

is transported to a power conversion system that generates electricity with a Rankine or
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Brayton cycle and/or process heat for industrial applications. Upon entering the reactor

core, the coolant typically first encounters an open plenum before flowing into the pebble

region. In gas-cooled systems, this plenum is present on the top of the bed; pebbles are

typically inserted into the core by a free-fall of several meters before hitting the upper

surface of the bed. Conversely, the buoyant pebbles used in salt-cooled designs locates the

plenum below the bed. In both gas- and salt-cooled designs, the coolant then exits the bed

through thousands of “suction holes” machined in the reflector blocks that connect the core

to the hot legs. The entrance to this outlet plenum geometry is visible in Fig. 1.3a as the

thousands of circular channels machined on the lower angled faces of the bed.

(a) Plan view of mostly empty HTR-10 core (b) Filled core region of the THTR

Figure 1.3: Photos of the (a) HTR-10 core before loading of pebbles [32] and (b) the THTR core
with control rods inserted directly into the pebble bed [33].

In addition to the flow paths through the pebble bed, a number of additional “bypass”

routes divert coolant from the fuel. As seen in Fig. 1.3a, the outer reflector typically consists

of flow channels that accommodate control rods, backup control systems in the form of loose

absorber pebbles, and reflector cooling channels. Coolant may also flow through mm-size

gaps that form between the reflector blocks due to temperature- and irradiation-induced

deformation. Within the bed, pebble ordering near walls also introduces an in-core bypass

due to a reduced flow resistance. Both the HTR-10 in Fig. 1.3a and the THTR in Fig. 1.3b

incorporate “subwoofer”-shaped dimples to disrupt this near-wall pebble alignment.

PBRs have a number of economic and safety advantages relative to other reactor con-

cepts. The robust and resilient coated particle fuel form allows long-term operation at high

temperature. With proper coolant and structural material selection, PBRs may operate at

significantly higher coolant temperatures than other reactors. For example, the coolant out-

let temperature of the THTR was 750◦C, about 325◦C higher than that of the Light Water

Reactors (LWRs) comprising approximately 96% of today’s commercial reactors [34]. High
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temperature operation improves the thermal efficiency of electricity production and expands

nuclear power to industrial process heat applications, which represent almost 10% of total

carbon emissions worldwide [35].

The use of an on-line refueling scheme enables operation with low excess reactivity, which

reduces requirements of burnable absorber and control systems and attendant burnup penal-

ties. Provided component accessibility and dose rates permit on-line maintenance, multi-

week service and refueling shutdowns may be significantly reduced, increasing reliability and

net kWh produced. For multi-pass schemes in particular, frequent opportunities to observe

pebble integrity may reduce the coolant source term and lower off-site dose rates. A more

fine-grained control of individual pebble burnup may also improve overall fuel utilization

relative to fixed-fuel reactors.

Most PBR designs use a gaseous coolant such as helium or a liquid coolant with high

melting and boiling points such as LiF-BeF2 (FLiBe) salt. For designs that also incorporate

Brayton power conversion cycles, the need to site power plants near large natural or engi-

neered bodies of water and support related environmental impact programs such as stocking

programs that replenish fish impinged by water intake pipes are eliminated [36]. The use of

single phase coolants also eliminates many of the operational difficulties associated with two

phase liquid-vapor flow such as density-wave oscillations.

The large quantities of high heat capacity graphite in PBR cores greatly extends the

time scale of thermal transients. Hours or even days may pass before peak temperatures are

reached following certain events such as a Loss of Coolant Accident (LOCA) [37, 38]. Slowly-

evolving transients that characterize some non-water reactor types mean accidents evolve

slowly and therefore provide additional time for human operator response and activities

such as equipment repair or substitution.

As with any system designed based on multiple constraints and trade-offs, there are a

number of complexities and disadvantages associated with the PBR concept. The fuel pebble

in Fig. 1.2 is approximately 98.2% graphite by volume, with the remaining 1.8% occupied

by the fissile kernel and SiC. While large quantities of graphite extend thermal transients,

PBRs are generally restricted to power densities two to three orders of magnitude lower

than other designs such as LWRs and SFRs. The relatively large reactor vessels of PBRs

complicate rail transport, contribute significantly to structural material costs, and increase

waste volumes.

However, many PBR designs refashion power density restrictions to their advantage by

employing passive decay heat removal mechanisms that would otherwise be incapable of

transporting orders of magnitude higher volumetric heat generation from the core. Power
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densities are typically low enough that radiation and conduction between touching pebbles,

in combination with an ex-vessel cooling system, is sufficient to remove decay heat in a

depressurized Loss of Forced Circulation (LOFC) event by natural convection cooling. How-

ever, the high surface areas required to achieve the needed heat removal rate by the ex-vessel

cooling system often impose a leakage penalty.

The constant abrasion and frictional wear as pebbles move through the bed may generate

significant quantities of graphite dust [27, 39]. In gas-cooled designs, solid fission products

tend to accumulate in this dust and transport about the primary system in an unpredictable

manner, complicating analysis of depressurization events and decommissioning activities due

to the mobile and inhalable source term. While lubrication in salt coolants may alleviate

many operational issues associated with dust generation, additional engineering systems are

required to manage this unique solid-solid erosion source term.

In some early fuel designs, the fuel-matrix region was formed as a loose mixture of graphite

“flour” with CFPs to simplify fuel recycling [26, 27]. However, reprocessing technologies for

today’s graphite-coated CFPs have not progressed beyond the laboratory scale, complicating

the ability to close the fuel cycle [40] but likely reducing the proliferation potential of the

PBR fuel cycle.

The high thermal efficiency, passive safety, and high-temperature resilient pebble fuel

form of PBRs offers great potential to decarbonize the electric and industrial heat sectors.

Natural convection decay heat removal and a high thermal inertia contribute to slower tran-

sient progression even in the absence of human intervention. However, the low power density,

lack of a commercial-scale reprocessing technology, and engineering challenges such as dust

generation require consideration of these trade-offs in determining the particular markets

and missions best suited to commercial deployment. Continued Research and Development

(R&D) in the PBR space will improve the engineering design of these systems to further

enhance the viability of this technology.

1.1.1 Thermal-Hydraulic Modeling and Simulation

The objective of T/H Modeling and Simulation (M&S) of PBRs is to vet designs against

thermal, mechanical, and radiation limits bounding safe, reliable, and economical operating

spaces. Fast-turnaround analysis tools enable more rapid design iterations and scoping

studies at significantly lower cost than the long lead-time experimental programs typical

of nuclear engineering. As a non-nuclear example, Boeing transitioned from mockup-based

experimental programs to heavy reliance on M&S for the engineering design of the Boeing 777
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aircraft. The shift in emphasis from physical experiments to numerical experiments reduced

the number of engineering change requests by 90% and the cycle time for incorporation of a

design change by 50% [41].

For M&S to be a valuable design tool for reactor development, numerical models must

be able to characterize the proximity of the reactor state to the thermal, mechanical, and

radiation limits bounding the desired operating space. These limits are expressed in terms

of a number of physical metrics that correlate with component damage, worker and civilian

dose rates, and degraded economic performance. The ability to effectively cool the fuel is

often used as a secondary metric to indicate fuel/core damage and radiation release to the

coolant. For the T/H models that are the topic of this dissertation, M&S tools must be able

to accurately predict

• Maximum coolant outlet temperature, or the highest temperature of structural com-

ponents that must be maintained below material damage thresholds. The maximum

coolant temperature is also correlated to chemical reaction rates such as corrosion.

• Minimum coolant temperature and freezing-related geometry changes that may reduce

fuel cooling.

• Gradients in the coolant outlet temperature, which result in fluid mixing and cyclic

thermal fatigue to structural materials.

• Maximum fuel temperature, which is correlated to various fuel failure modes that may

result in damage and radiation release. Even in the absence of observable damage, the

maximum fuel temperature correlates with fission product diffusion coefficients and

the coolant source term.

• Core pressure drop, which is indicative of the pumping power required to cool the core

and the feasibility of natural convection decay heat removal in pump loss transients.

• Fluid-structure interaction and vibration-induced failure modes.

• Radiation damage and the resulting material dimensional changes and degradation.

• Radiation activation of the coolant and structural materials.

• Large-scale structure failure such as pipe breaks.



CHAPTER 1. INTRODUCTION 10

The physics correlated by these metrics consist of a mixture of core-level phenomena,

such as feasibility of natural circulation, and particle-level phenomena, such as fuel particle

layer integrity. Recall that a typical PBR core consists of a roughly 10 m tall cylindrical

vessel containing hundreds of thousands of cm-size fuel pebbles, each of which consists of

thousands of mm-size CFPs. The localization of the heat source to small fissile kernels, the

thermal resistance of the CFP layers surrounding the fissile kernels, and the core-wide fission

power distribution all contribute to significant variation in most T/H phenomena of design

interest to PBRs over five orders in spatial magnitude. Accurate prediction of the thermal

and flow metrics listed above requires model resolution of

• Heat conduction and material performance in 5× 109 fuel particles3;

• Intra-pebble heat conduction; inter-pebble conduction and radiation; and pebble-fluid

convection and frictional resistance for 5× 105 pebbles; and

• Large-scale interactions of the pebble-coolant system with spatially-dependent fission

power, Boundary Conditions (BCs), and material properties; reactor control systems;

and the Balance of Plant (BOP) for power generation.

PBR core analysis is further complicated by its stochastic geometry. Both the CFP

positions within each pebble and the pebble arrangement within the bed are stochastic.

On-line refueling results in a continuous distribution of thermal properties and burnup that

are also stochastic. Average packing distributions and granular flow properties are well-

quantified for beds of spherical pebbles, while CFP positions can usually be approximated

with non-overlapping Random Sequential Addition (RSA) methods [42]. However, ensemble

averaging is still required to characterize the effect of randomness on the T/H parameters of

interest.

T/H models that fully resolve all CFPs, pebbles, and the surrounding coolant require

about 1012 elements in the fluid phase to capture the complex fluid-solid interfaces and

boundary layers [43] and about 1015 elements in the solid phase to resolve the multiple thin

layers on the thousands of CFPs in the hundreds of thousands of pebbles [44]. Furthermore,

mesh generation near pebble contact points is often characterized by significant skew that

degrades numerical convergence; methods to systematically improve mesh quality in these

regions without distorting the porosity remain an open research question [45, 46].

3Assuming roughly 5× 105 pebbles and 1× 104 particles/pebble



CHAPTER 1. INTRODUCTION 11

Most PBR beds are surrounded by a graphite block-type reflector that contains flow

channels to accommodate control rods, absorber spheres, and coolant flow paths. Horizontal

and vertical gaps with widths on the order of 10−3 m form between the blocks as a function

of irradiation and temperature [47, 48]. The engineered flow channels, in combination with

these gaps, permit bypass flow paths that simultaneously cool the reflector and core externals

while diverting coolant from the fuel. These reflector bypass flows therefore have important

effects on thermal stresses, overall component lifetime, and uniformity of outlet temperatures,

and must be considered in core T/H analysis [47, 49]. However, coupling the reflector

bypass flows to a bed T/H model greatly increases the size of the simulation domain and

requires judicious mesh generation for a geometry consisting of a mix of very thin gaps and

comparatively large engineered channels.

“High-resolution” models that fully resolve all geometric scales in the pebble bed and

reflectors are intractable for the fast-turnaround calculations needed for routine reactor de-

sign and analysis. The “everyday” computing resources available to regulatory agencies

and the nuclear power industry are typically single-user, multi-core, workstations sized to

perform tens to hundreds of design iterations per day [50]. While high-resolution models

are invaluable for benchmarking lower-resolution tools, generating closures, and exploring

fine-scale phenomena, supercomputing resources currently limit these calculations to homo-

geneous pebble interiors in either a random heap of several hundred pebbles or a regular

lattice with symmetry conditions—far short of the hundreds of thousands of pebbles, and

their heterogeneous interiors, constituting a PBR core [51–56].

Multiscale analysis is a branch of applied mathematics that is based on decomposing

a complex system into a number of important temporal and/or spatial length scales, each

described by different models, that are then aggregated together to obtain a representative

physics solution over many orders of magnitude in time and/or space. Provided the models

for each characteristic scale are sufficiently simple, the computational cost of a multiscale

decomposition may be orders of magnitude lower than a fully-resolved model.

This dissertation develops and applies multiscale models to T/H analysis of single-phase

PBRs. These multidimensional models are of “intermediate” fidelity—they are lower in

resolution than the fully-resolved models described in the preceding paragraphs, but higher

in resolution than the one-dimensional (1D) flow network models used for loop analysis or the

pseudo three-dimensional (3D) subchannel methods used for primarily unidirectional flows.

Before outlining the work performed in this dissertation in Section 1.2, Section 1.1.2 provides

a brief history of PBR R&D around the world with emphasis on operating experiences that

highlight the importance of having accurate models of PBR T/H.
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1.1.2 A Brief History in the Context of Thermal Analysis

This section traces a brief history of the design, development, and operation of PBRs around

the world to demonstrate the relevance of the methods developed in this dissertation to

predicting complex and engineering-significant phenomena in PBRs. For brevity, emphasis

is placed on programs that resulted in construction and operation of a PBR or that are

currently engaged in doing so. The reader is referred to the literature for more comprehensive

chronologies [26, 57]. And rather than attempt a complete technical description of each

design, attention is placed on the operational experiences related to the thermal safety and

reliability criteria introduced in Section 1.1.1. This section concludes with an in-exhaustive

survey of several concepts under development in the United States and abroad to highlight

the wide variety of systems that multiscale models must consider.

In the late 1950s, a group of 15 utility and power supply companies united as Arbeitsge-

meinschaft Versuchs-Reaktor (AVR) GmbH with German government support to construct

the first PBR—a 15 MWe, helium-cooled, reactor in Jülich, Germany [27, 39, 58, 59]. The

purpose of this project was to explore the technical feasibility of the PBR for electricity and

process heat applications. This reactor, referred to as the AVR, achieved first criticality in

1966 and operated for over 20 years and demonstrated the feasibility of many aspects of the

PBR design such as fuel handling systems, BOP components, and gas purification processes.

Many key safety aspects of PBR designs were also verified; a series of progressively evolving

CFP fuel forms exhibited excellent fission product retention at high temperatures, while

LOFC experiments proved natural circulation to be capable of safely removing decay heat.

The AVR also set the world record for highest sustained outlet temperature of a nuclear

reactor of 990◦C.

One of the more well-known experiments conducted in the AVR involved the measure-

ment of bed temperatures during steady-state operation. Due to the difficulty of obtaining

temperature readings within a moving, random heap of pebbles, 120 non-fissile instrumented

pebbles were loaded into the bed, cycled through, and removed after a single pass. Fig. 1.4

shows a picture of one of these instrumented pebbles; a center plug contains a wire with

a known melting temperature. With 20 different wire materials and two load locations, a

very coarse temperature map was obtained. The majority of pebbles indicated temperatures

up to 200◦C higher than permitted in the reactor license [39, 60]. And, depending on loca-

tion, between 7 and 31% of the pebbles exceeded the maximum wire melting temperature

of 1280◦C; coarse estimates suggest these pebbles exceeded allowable temperatures by as

much as 240 to 340◦C. Decades later, improved computational models and an improved
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understanding of PBR T/H suggests that a large contributor to these high temperatures in

the AVR was neglecting bypass flow through control rod channels and gaps formed between

the carbon insulation and the reactor shroud [61], though it is likely that hot spot formation

also played an important role [39].

Figure 1.4: Non-fissile instrumented melt wire pebble for measuring temperatures in the AVR [60].

Soon after the AVR reached first criticality, design of the 300 MWe THTR commenced

in Germany with a mix of government and utility funding [27, 58, 62, 63]. The purpose of

this follow-on design was to further refine the PBR technology and provide a bridge from

the small AVR to subsequent commercial plants. The THTR design was largely based on

scaling up the AVR design, with modifications to enable a significantly larger core such as a

faster fuel handling system, addition of control rod insertion points directly in the bed, and

downward-flowing coolant to limit power density reductions due to levitating pebbles [26].

After an evolving regulatory system extended the construction period by a factor of three

and the cost by a factor of five, the THTR achieved first criticality in 1983 and began power

operation in 1985.

Like the AVR, the THTR was considered quite successful, though a number of opera-

tional challenges emerged. At high coolant flow rates, bypass flows through discharge tubes

prevented pebble defueling. Further, the graphite shells on about 1.5% of the pebbles were

damaged from frequent and deep insertion of control rods into the bed and high compressive

forces. Experiments in air failed to predict the order-of-magnitude-higher graphite friction

coefficient in high temperature and high pressure helium environments. Failure of insulation

attachment bolts in the hot gas ducts near the bed exit can likely be attributed to excessive

core outlet temperature gradients and the ensuring thermal stresses [39]. Like the AVR, the

THTR significantly underpredicted the bypass flow through reflectors; an initial estimate of

7% bypass was refined to 18% following plant measurements. While this larger bypass has
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been attributed to 10% higher fuel temperatures than initially predicted, the significantly

lower operating temperature of the THTR as compared to the AVR maintained temperatures

within the licensed space.

The engineering partners involved in the THTR project decided to shut down the reactor

after only three years of power operation due to financial risks related to an uncertain fuel

supply, an incomplete spent fuel disposal plan, and unknown future licensing criteria. At the

instigation of the German government, Siemens and the companies involved in the THTR

united as a new company named HTR GmbH which later developed a commercial 200 MWth,

helium-cooled, PBR design known as the HTR-Modul. Following the fall of the Berlin Wall

in 1989, the ongoing negotiations between HTR GmbH, the East German government, and

the Union of Soviet Socialist Republics (USSR) for purchase of several HTR-Modul plants

ceased. No further PBRs have been constructed in Germany.

In 1999, the South African power utility Eskom obtained a non-exclusive license from

HTR GmbH to further develop gas-cooled PBR technology. With significant support from

the South African government, Pebble Bed Modular Reactor (PBMR) Ltd. was formed and

a large engineering program focused on extending the HTR-Module design to a 400 MWth,

direct gas cycle, multi-module design referred to as the Pebble Bed Modular Reactor - 400

MWth (PBMR-400) [57, 64]. In 2010, the South African government withdrew financial

support due to an inability to attract customers and foreign investment to the project. En-

gineering challenges such as insufficient experience in helium-driven gas turbines contributed

to time overruns. While no demonstration plant was ever built, a significant share of the

fundamental and engineering research in PBR T/H was performed by PBMR Ltd.

Roughly contemporary with the German reactor operation and the South African efforts,

China commenced a PBR program to investigate applications in clean energy and hydrogen

fuel cell process heat. About a decade after the AVR and THTR were shut down, con-

struction was completed on a 10 MWth, helium-cooled, PBR by the Institute of Nuclear

Energy Technology (INET) at Tsinghua University; first criticality was achieved in 2000

[65–67]. This reactor, known as the HTR-10, is largely based on the German PBR designs.

A number of safety demonstration tests centered on Anticipated Transient Without Scram

(ATWS), LOFC, and Loss of Offsite Power (LOOP) events have continued to prove the

inherent safety features of gas-cooled PBRs first demonstrated in the German reactors.

Leveraging the success of the HTR-10, two Chinese utilities and INET established a

project to build a scaled-up demonstration plant in Shandong Province [37, 67, 68]. This

reactor, known as the High Temperature Reactor Power Module (HTR-PM), is a 250 MWth,

helium-cooled, design that will likely be the first Generation IV reactor in operation. The
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reactor vessel head was installed in late 2017, and construction continues through 2020

[69]. While the HTR-PM is largely based on scaling up the HTR-10 design, a significant

difference from the draft HTR-PM design is the omission of a central column of graphite

pebbles that constrained the power-generating region into an annulus. Early iterations of the

PBMR-400 design also included a central graphite pebble column [64]. For both reactors,

the unexpectedly high bypass flows through this column led to removal from subsequent

design revisions.

In 2011, the Chinese Academy of Sciences (CAS) initiated a research program focused on

salt-cooled PBR technology to explore industrial heat applications and incrementally develop

supporting technologies for liquid-fueled MSRs [70]. The first stages of the project involve

the construction of a 10 MWth, FLiBe-cooled, PBR referred to as the Thorium Molten Salt

Reactor Solid Fuel 1 (TMSR-SF1) that will be the first salt-cooled PBR in the world.

Today, a number of PBR concepts are being pursued by startup companies in the United

States and research institutions worldwide. X-Energy, based in Maryland, is developing a

200 MWth, helium-cooled, PBR design and the associated fuel fabrication capabilities with

a target market introduction in 2030 [71]. Kairos Power, based in California, is developing a

311 MWth, FLiBe-cooled, PBR design that leverages a long history of salt-cooled PBR R&D

at the University of California, Berkeley (UCB); the Massachusetts Institute of Technology

(MIT); the University of Wisconsin-Madison (UW); and a number of other Universities [72].

While most fluidized bed designs are based on molten salt coolants, a fluidized design

with water coolant has also been proposed. One particular design suspends a large “clump”

of approximately 1 cm diameter pebbles in upwards-flowing water, where the axial density

variation of the coolant ensures spatial stability of the bed [73, 74]. The pebbles may be solid

UO2 clad in zircaloy or miniaturized versions of High Temperature Gas Reactor (HTGR)

pebble fuels with the graphite shell replaced by SiC. This water-cooled fluidized bed concept

has recently been modified to a fixed bed structure with pebbles as small as 2 mm in diameter

by researchers at Xi’an Jiaotong University [75, 76].

There a number of important takeaways from this historical survey. First, accurate T/H

models are essential to ensuring safe and reliable operation and meeting the conditions set in

operating licenses. Deficiencies in early T/H models of PBRs failed to accurately characterize

bypass flow in the AVR and THTR, leading to excessively high fuel temperatures in the

AVR with significant implications on fuel integrity given the already high coolant operating

temperature. Unexpectedly large gradients in outlet temperature in the THTR may have

contributed to stresses and bolt failure.

Second, computational models are an indispensable tool for reactor design. Both the
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PBMR-400 and HTR-PM designs underwent significant modifications once numerical pre-

dictions showed excessively high bypass flows through a pebble-type center reflector. Reach-

ing the same conclusion through an experimental program would have consumed far greater

time and investment than the use of a computational model.

And finally, the viability of a reactor technology is equally dependent on the regulatory

framework and supply chain as on the design’s technical merits. This dissertation focuses

exclusively on models to assess the physical characteristics of a PBR design, and it is im-

portant to recognize that this work is just one portion of the larger nuclear development life

cycle—technical design, licensing, construction, operation, and decommissioning.

1.2 Objectives and Outline of this Dissertation

The objective of this research is to develop and apply multiscale models to the thermal and

flow analysis of PBRs to 1) expand the physics capabilities and resolution available to the

PBR industry, 2) provide recommendations on the use of multiscale analysis for PBRs, and

3) demonstrate the use of these models for engineering design and analysis by exploring the

T/H characteristics of a novel salt-cooled PBR concept.

The multiscale models developed in this dissertation are based on decomposing the PBR

geometry into three length scales—

1. The microscale, defined over a single CFP;

2. The mesoscale, defined over a single fuel pebble; and

3. The macroscale, defined over the entire reactor core, which encompasses the pebble

bed, reflectors, and structural materials.

In Chapter 2, the models for each of these length scales are derived. Spatial homoge-

nization of the Navier-Stokes equations with conjugate heat transfer, often referred to as

the “porous media” approach, is used to describe the macroscale. Two different methods

are considered for the meso and micro length scales—the first is a simple volume-preserving

homogenization that reduces a 3D heterogeneous solid to a 1D set of conducting layers. The

second is a linear superposition technique that adjusts a long-wavelength mesoscale model

with a microscale correction for each CFP.

The homogenization inherent in these scale models relies upon a number of closures to

account for local variations on mean properties. Sections 2.1.3 and 2.2.4 review the closures
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used in subsequent chapters. By including thermal dispersion and the combined effects of

inter-pebble conduction and radiation, these models consider additional physics typically

neglected in salt-cooled PBR analysis [77, 78] but that represent important heat transfer

processes, especially at high temperature.

Motivated by a need for tight in-memory multiphysics coupling, unstructured 3D meshes,

and open source software longevity, Chapter 3 describes the implementation of the phys-

ical models derived in Chapter 2 in a new software application. This application, named

Pronghorn, is a continuous Finite Element Method (FEM) tool built on the open source Mul-

tiphysics Object-Oriented Simulation Environment (MOOSE) that leverages state-of-the-art

numerical methods, nonlinear solvers, and meshing tools to achieve high-performance physics

simulations with high quality software engineering practices. The Finite Element (FE) spa-

tial discretization, software implementation, nonlinear solvers, and stabilization schemes are

described. By assuming that the fine length scales are periodic with respect to the coarser

length scales, scale coupling is achieved through a Picard iteration with in-memory feedback

through BCs and source terms.

The use of computational models to predict reactor response requires high quality soft-

ware and a strong Verification and Validation (V&V) base. Chapter 4 presents four veri-

fication tests of the multiscale models to support application to PBRs in Chapters 5 and

6. To demonstrate the applicability of Pronghorn’s models to open flows such as in PBR

plena, numerical benchmarks for thermally-driven, open natural convection flow and inviscid

cylinder flow are shown.

In Chapter 5, the multiscale models are applied to the SANA facility, a scaled experiment

built and operated in Germany in the mid 1990s that models depressurized conduction cool-

down of gas-cooled PBRs. By simulating 52 different experiments with a variety of pebble

designs, coolants, and heater arrangements, a wealth of validation data demonstrates a mean

error of 22.6◦C and a standard deviation of 54.6◦C in multiscale predictions of solid temper-

ature. A code-to-code comparison demonstrates that Pronghorn predicts slightly lower error

and standard deviation than two other existing PBR simulation tools, with the additional

benefit of unstructured meshing capabilities and flexible in-memory data communication

with other MOOSE applications.

By investigating the error as a function of position within the bed, it is found that the

standard deviation decreases with distance from both radial and axial walls, while the error

only decreases with distance from radial walls. These observations highlight the need for

anisotropic drag and heat transfer closures for near-wall regions, which are all but absent

from the porous media literature. The primarily radial temperature gradient also suggests



CHAPTER 1. INTRODUCTION 18

that more accurate thermal predictions can be achieved via improved heat flux BCs. Model

closures are then individually varied relative to a baseline set to show the importance of clo-

sure selection in gas-cooled PBR analysis. The solid temperature is sensitive to the porosity

and near-wall treatment of the solid effective thermal conductivity. Future experimental pro-

grams may choose to emphasize closure development in the areas of heat flux BCs, near-wall

effective solid conductivity, and axial porosity distributions to improve multiscale models of

gas-cooled PBRs.

Chapter 6 then applies the multiscale models to thermal and flow analysis of the Mark-

1 Pebble Bed Fluoride-Salt Cooled High-Temperature Reactor (PB-FHR), a FLiBe-cooled

reactor developed by the Nuclear Engineering department at UCB and a number of other

Universities. The objective of this concluding chapter is to demonstrate the use of the

models developed, verified, and validated in previous chapters to full-core reactor design and

analysis. This particular reactor concept is selected due to an unconventional reflector block

design, a unique “thermally-thin” pebble fuel-matrix region, and non-uniform flow BCs that

highlight the new capabilities enabled by this work for PBR industrial analysis.

The two fuel models developed in Chapter 2 are compared against reference, fully-

resolved, Mark-1 PB-FHR fuel pebbles in Section 6.3 for a wide range in thermal condi-

tions. The especially thin fuel-matrix annulus is poorly represented by the homogeneous

layer multiscale model used in a previous dissertation on this subject [77], while the linear

superposition technique predicts temperatures remarkably well. While average and maxi-

mum temperatures are predicted to within about 10◦C for the linear superposition technique

over the entire range in thermal conditions considered, the homogeneous layers approach is

at times characterized by errors in excess of 200◦C.

In Section 6.4, resolved COMSOL Computational Fluid Dynamics (CFD) simulations of

the PB-FHR reflector blocks are used to correlate anisotropic friction factor models as a

function of Reynolds number. By considering several different block geometries, the strong

effect of reflector drag on irradiation- and temperature-induced deformation, as well as flow

direction, is demonstrated.

Section 6.5 then combines the macroscale model V&V in Chapters 4 and 5 with the pebble

model verification in Section 6.3 and reflector block drag closure generation in Section 6.4

for full-core analysis of the Mark-1 PB-FHR. A parametric study varying the reflector block

gap distribution and the inflow BC demonstrates that 1) the inflow BC has a significant

effect on the core bypass fraction and outlet fluid temperature distribution, 2) the bypass

fraction must be considered in conjunction with the inflow BC when assessing proximity of

the reactor design to fluid temperature design limits, and 3) the bypass fraction is a strong
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function of the reflector block gap distribution. A modified block design at the entrance and

exit of the bed is identified as a possible future development area to further reduce the core

bypass.

Based on balancing a number of core thermal design criteria, Section 6.5.2 predicts fuel

and reflector temperatures for a fixed inflow BC. The primary effect of the core bypass

is to uniformly raise core temperatures; when normalized to a common maximum fluid

temperature, solid temperatures are nearly identical among the various reflector block gap

distributions considered. The maximum kernel temperature is approximately 93◦C higher

than the maximum fluid temperature, which remains far below the fuel failure limits of

TRISO particles. Additional thermal design activities may be performed in the future to

further increase the margin between the average fluid outlet temperature and the 730◦C limit

typically imposed for Hastelloy N [79].

Finally, Chapter 7 summarizes the major findings of the analyses in Chapters 4–6 and

provides guidance on the future application of multiscale modeling to PBRs. This disserta-

tion focuses exclusively on T/H modeling, which is just one component of a comprehensive

reactor analysis framework considering neutron transport, materials performance, structural

mechanics, and many other physics domains. By developing high-quality predictive models

capable of rapid T/H design and analysis, this work plugs into the larger community devel-

oping computational tools to enable the contribution of Generation-IV reactors to a clean

energy economy.
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Chapter 2

Multiscale Models for Pebble Bed

Reactors

Many systems exhibit wide ranges in temporal and/or spatial scales such that the use of

models applicable to the “smallest common denominator” scale for all length scales are com-

putationally impractical. Examples of such systems include Earth’s climate, drugs targeting

cancer cell growth, fluid flow, and PBRs. Multiscale analysis is based on decomposing a

complex system into a number of important temporal and spatial length scales, each de-

scribed by different models, that are aggregated together in an intelligent manner to obtain

a representative solution for the relevant physical phenomena on all length scales. The un-

derlying motivation is to enable comprehensive physics predictions at significantly reduced

computational cost relative to fine-scale modeling of all scales.

PBRs are naturally described in terms of three length scales—1) the macroscale, defined

over the entire reactor core, which encompasses the pebble bed, reflectors, and structural

materials; 2) the mesoscale, defined over a single pebble; and 3) the microscale, defined over

a single fuel particle. Fig. 2.1 depicts these three length scales for the pebble bed region. For

a typical PBR, the characteristic macro, meso, and micro length scales are approximately

5×100 m, 5×10−2 m, and 1×10−3 m, respectively, such that the mesoscale is approximately

100 times smaller than the macroscale and the microscale is approximately 50 times smaller

than the mesoscale.

By assuming fine length scales are periodic with respect to coarse length scales, BCs from

the coarser-length solution are applied to finer-scale models to obtain representative thermal

and flow predictions for all length scales. This section describes the multiscale modeling

approach developed in this dissertation in terms of the three length scales shown in Fig. 2.1.
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Section 2.1 discusses the macroscale model, while Section 2.2 discusses the meso and micro

scale models. Finally, Section 2.3 elaborates on the most important limitations, assumptions,

and knowledge gaps in this multiscale application to PBRs. The interested reader will

find detailed derivations and additional discussion in the theory manual accompanying the

software implementation of these concepts [80].

Figure 2.1: Decomposition of a PBR into three length scales (adapted from [81–85]).

2.1 Macroscale Model

The macro length scale characterizes the two-phase mixture of fluid coolant with solid pebbles

and reflector blocks. On a spatial scale on the order of the pore size between pebbles or the

gap size between reflector blocks, the flow characteristics are highly irregular. For example,

turbulent intensities along pipe centerlines are commonly on the order of 5%, but experiments

in pebble lattices show turbulent intensities as high as 50% in void centers [86].

However, on a scale encompassing small groups of pebbles or blocks, averaged flow proper-

ties are regular and predictable. Fluid flow and heat transfer through a two-phase mixture of

fluid and solid phases is governed by the Navier-Stokes equations with conjugate heat trans-
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fer1. Spatial homogenization of these governing equations over a length scale larger than

the characteristic pore size captures physical phenomena that vary on the macroscale at the

expense of averaging fine-scale physics through model closures. Spatial homogenization over

multiple phases is often referred to as the “porous media” method due to its connections to

Henry Darcy’s study of water flow through sand in Dijon, France [87].

A porous media in general refers to a solid matrix with interconnected voids filled with gas

and/or liquid. A diverse set of systems have been modeled as porous media, ranging from

the flow of water through permeable subterranean rock to conductive heat flow through

composite materials [88]. Within the nuclear engineering field, porous media models are

commonly applied to flow and heat transfer in tube-in-shell heat exchangers [89], quenched

corium heaps [90, 91], tritium breeder blankets in fusion reactors [52, 92, 93], and pin-fueled

fission reactors [94]. For application to PBRs, the solid matrix is interpreted as the stacked

reflector blocks and randomly heaped pebbles, while the interconnected voids correspond to

the fluid interstices between the solids and the machined flow channels within blocks. The

solid phase in a porous media is often referred to as “particles;” to avoid confusion with the

particles within PBR fuels, “pebbles” is used to refer to the solid phase on the macroscale,

while “particles” is used to refer to the CFPs.

This section presents the derivation of the spatially homogenized Navier-Stokes equations

with conjugate heat transfer. While “Navier-Stokes” strictly refers to the momentum con-

servation equations for a Newtonian fluid, this work follows a looser convention of referring

to the set of coupled mass, momentum, and energy equations together as the Navier-Stokes

equations. This is performed to differentiate from a different set of coupled equations referred

to as the “friction-dominated” equations derived later that differ from the Navier-Stokes

equation set in the mass, momentum, and energy equations.

A nondimensional analysis in Section 2.1.1 justifies omission of certain terms for reactor

applications, while Sections 2.1.2 and 2.1.3 present the accompanying BCs and model clo-

sures, respectively. Spatial averaging eliminates the need to explicitly resolve the individual

solid and fluid phases, resulting in orders of magnitude reduction in mesh complexity and

element count. Further, the macroscale effects of turbulence are considered in the closures

presented in Section 2.1.3 rather than through Reynolds Averaged Navier Stokes (RANS)

models. Together, these simplifications result in many orders of magnitude reduction in

computational cost required to predict locally-averaged flow and heat transfer in PBRs.

A detailed derivation of the spatially homogenized Navier-Stokes equations is presented

1“Conjugate” heat transfer refers to heat transfer between fluids and solids.
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in order to provide background for how application of porous media theory to nuclear systems

differs from the more ubiquitous applications found in the chemical and geological engineering

fields, as well as to highlight the most important assumptions used in the method that are

rarely addressed.

Conservation of mass, momentum, and energy for a compressible Newtonian continuum

in the absence of chemical reaction is written as,

∂ρ

∂t
+∇ · (ρ~V ) = 0 , (2.1)

∂(ρ~V )

∂t
+∇ · (ρ~V ~V ) = ρ~g −∇P +∇ · τ , (2.2)

∂(ρE)

∂t
+∇ · (ρH~V ) = ρ~g · ~V +∇ · (~V τ) +∇ · (k∇T ) + q̇ . (2.3)

In Eqs. (2.1)–(2.3), ρ is the density; ~V is the velocity; ~g is the gravitational acceleration

vector; P is the thermodynamic pressure; τ is the deviatoric stress tensor, defined as

τ ≡ µ
[
∇~V + (∇~V )T

]
− 2µ

3
∇ · ~V I , (2.4)

where µ is the dynamic viscosity and I is the identity tensor; E is the total energy, defined

as

E ≡ e+
1

2
~V · ~V , (2.5)

where e is the internal energy; H is the total enthalpy, defined as

H ≡ E +
P

ρ
; (2.6)

k is the thermal conductivity; T is the temperature; and q̇ is the volumetric heat source. In

Eqs. (2.1)–(2.3), it has been assumed that the only body force is gravity, the heat flux consists

only of conductive contributions that are represented by Fourier’s law, and volumetric energy

dissipative effects are negligible [95].

Eq. (2.3) represents conservation of total energy, which from Eq. (2.5) is the sum of kinetic

and thermal energy. For low-speed flows, several terms can be neglected in Eq. (2.3) while

simultaneously simplifying the application of BCs. Rather than present this simplified energy

conservation equation without explanation, a brief description of the derivation process is
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provided to correct a common misunderstanding and to clearly outline the strong form of

the neglected terms.

First, subtract the conservation of mechanical energy equation from Eq. (2.3) to obtain

a statement of internal energy conservation. Then, relate the internal energy for a simple

pure system to heat and pressure-volume work by the first law of thermodynamics, giving a

statement of internal energy conservation as

ρCp
dT

dt
− βT dP

dt
= τ : ∇~V +∇ · (k∇T ) + q̇ , (2.7)

where β is the thermal expansion coefficient, defined as

β ≡ −1

ρ

(
∂ρ

∂T

)
P

; (2.8)

and Cp is the isobaric specific heat capacity, defined as

Cp ≡
(
∂h

∂T

)
P

, (2.9)

where h is the enthalpy, defined as

h ≡ e+
P

ρ
; (2.10)

and d/dt is the material derivative. In deriving Eq. (2.7), the entropy differential in the Tds

substitution for the heat path integral in the first law was expressed as a chain rule in terms

of temperature and pressure with (∂s/∂P )T obtained from the Maxwell relation for Gibbs

free energy and (∂s/∂T )P obtained from manipulation of Eq. (2.9).

Eqs. (2.3) and (2.7) both represent conservation of energy; Eq. (2.7) is equivalent to

Eq. (2.3) minus a statement of mechanical energy conservation. Many heat transfer texts

implicitly assume that Cp is constant such that the first term on the left-hand-side (LHS) of

Eq. (2.7) can be written as ∂(ρCpT )/∂t +∇ · (ρCpT ~V ) by inserting the mass conservation

equation in Eq. (2.1). However, the most general statement of internal energy conservation is

given in Eq. (2.7). In the spatial homogenization that follows, both Eq. (2.3) and Eq. (2.7)

are considered in order to illustrate two different forms of the porous media conservation

of energy equation—total energy conservation will be applied to high-speed flows, while

internal energy conservation will be applied to low-speed flows.

All conservation equations presented in this Section apply to a compressible continuum.

A compressible macroscale model is important for predicting fluid flow and heat transfer in
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PBRs, since the hundreds of degrees temperature rise over the core makes the 1
ρ
dρ/dt ≈ 0

incompressibility assumption and linear Boussinesq-type approximations invalid [96].

The porous media equations are obtained by averaging Eqs. (2.1), (2.2), (2.3), and (2.7)

over a Representative Elementary Volume (REV) consisting of a mixture of fluid and solid

phases. Fig. 2.2 shows a schematic of a REV in a generic two-phase domain. The REV

characteristic dimension is L, while the pore scale characteristic dimension is l.

Figure 2.2: Schematic of a REV in a multiphase domain. The REV has characteristic dimension
L, while the pore scale has characteristic dimension l. The blue regions represent the solid phase,

while all other regions represent the fluid phase.

Several important notational definitions are needed. Consider a generic field Φ in a multi-

phase domain. In an approach very similar to the temporal averaging of the Navier-Stokes

equations to obtain the RANS equations, represent Φ as the sum of its average 〈Φ〉 and a

fluctuating component Φ̂ with zero average,

Φ = 〈Φ〉+ Φ̂ , (2.11)

where 〈Φ〉 is defined as

〈Φ〉 ≡ 1

V–

∫
V–

Φd V– , (2.12)

where V– indicates a volume. Eq. (2.12) represents the average over all phases. An average

over the k phase is defined as
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〈Φ〉k ≡ 1

V– k

∫
V– k

Φd V– , (2.13)

where V– k is the volume occupied by the k phase. In order to characterize the distribution

of phases in the REV, a phase function fk is defined as

fk =

{
1 in phase k

0 not in phase k
. (2.14)

Φk represents the value of Φ in the k phase,

Φk ≡ Φfk , (2.15)

while 〈Φk〉 indicates an average of Φk over all phases,

〈Φk〉 ≡
1

V–

∫
V–

Φfkd V– , (2.16)

and 〈Φk〉k indicates an average of Φk over the k phase,

〈Φk〉k ≡
1

V– k

∫
V– k

Φfkd V– . (2.17)

〈Φk〉 is referred to as the “extrinsic,” or “superficial” average over phase k, while 〈Φk〉k is

referred to as the “intrinsic,” or “interstitial” average over phase k. For fluid flowing in a

packed bed, the fluid velocity averaged over the fluid phase represents an intrinsic average.

The fluid velocity averaged over both phases, as if the fluid were flowing at the same mass flow

rate in an empty bed, represents an extrinsic average. This difference between extrinsic and

intrinsic averages plays an important role in the derivation of the porous media equations.

The porosity ε for phase k is the fraction of the total volume occupied by phase k,

εk ≡
V– k

V–
. (2.18)

This work considers two-phase fluid-solid domains; an f subscript refers to the fluid phase

and an s subscript refers to the solid phase. The notational convention used throughout is

that εf ≡ ε represents the porosity of the fluid and εs ≡ 1− ε represents the porosity of the

solid. Models for porosity are described in Section 2.1.3.1.

Combining Eqs. (2.16)–(2.18) provides the relationship between intrinsic and extrinsic

averages,
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〈Φk〉 = εk〈Φk〉k . (2.19)

Applying Eq. (2.19) to the extrinsic and intrinsic velocities discussed in the preceding para-

graphs,

~v = ε~V , (2.20)

where ~v is the extrinsic fluid velocity, also referred to as the superficial velocity. ~V is the

intrinsic fluid velocity, also referred to as the interstitial velocity.

Appendix A provides mathematical identities relating the spatial averages of gradients

to the gradients of spatial averages and the spatial averages of time derivatives to the time

derivatives of spatial averages. For example, Eq. (A.17) relates the spatial average of a time

derivative to the time derivative of a spatial average plus an integral over the phase interface.

The key requirement for the use of these identities is that a spatial average be independent

of the size of the volume over which it is averaged. Similar restrictions abound in other forms

of statistical analysis, such as in requirements of large numbers of coin tosses to accurately

estimate the probability of landing tails-up. With the length scales defined in Fig. 2.2, this

requirement can be expressed as

l� L . (2.21)

For packed beds of spherical pebbles, l is usually taken as either the pebble diameter dp or

the hydraulic diameter D, which is proportional to dp. The REV scale L is larger than l but

smaller than the largest bed dimension. The extrinsic and intrinsic averages are functions of

space; the average at a location ~x is interpreted as an average over a REV with characteristic

dimension L centered about ~x. A Taylor series analysis performed in Appendix A shows that

the assumption that averages are independent of the size of the REV is accurate to O(l/L)2.

The spatially homogenized conservation equations are now derived using the identities in

Appendix A; any notation not explicitly defined here is defined in Appendix A. It is assumed

throughout that thermal and pressure gradients are small relative to velocity gradients such

that fluctuations in density, thermal conductivity, and isobaric specific heat capacity are

much smaller than fluctuations in velocity and can hence be assumed zero [97]. It is also

assumed that the solid-fluid interface is stationary such that ~V = ~w on the interface and ~w =
~0, where ~w is the interface velocity. For conciseness, these assumptions are made implicitly

while progressing through the derivation, though explicit tracking of these additional terms
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may be found elsewhere [80]. The use of each particular identity from Appendix A should

be clear from the nature of each kernel, though subtle details will be noted as appropriate.

Spatial averaging of the mass conservation equation in Eq. (2.1) gives

∂
(
ε〈ρf〉f

)
∂t

+∇ ·
(
ε〈ρf〉f〈~Vf〉f

)
= 0 , (2.22)

where Eq. (2.19) was used. For notational simplicity, Eq. (2.22) is rewritten as

∂(ερf )

∂t
+∇ · (ερf ~V ) = 0 , (2.23)

where ρf represents the intrinsic average of fluid density and ~V represents the intrinsic

average of fluid velocity.

Spatial averaging of the momentum conservation equation in Eq. (2.2) gives

∂(ε〈ρf〉f〈~Vf〉f )
∂t

+∇ ·
(
ε〈ρf〉f〈~Vf〉f〈~Vf〉f + 〈ρf〉f〈~̂Vf ~̂Vf〉

)
= −ε∇〈Pf〉f+

∇ · 〈τf〉+
1

V–

∫
Si

τf n̂fdS −
1

V–

∫
Si

(
P̂f − 〈ρf〉f φ̂g,f

)
n̂fdS − ε〈ρf〉f∇〈φg,f〉f .

(2.24)

The source term −ρf∇φg,f is related to the gravitational potential φg,f as

∇φg,f ≡ −g~ez , (2.25)

Terms containing the fluctuation of ~g are set to zero because the gravitational acceleration

vector is constant.

The advective and deviatoric stress terms were averaged using Eq. (A.16a), but the

normal stress term was averaged using Eq. (A.16b). The different form used for the normal

stress is required to correctly enforce that porosity gradients in stagnant fluid systems do

not spontaneously induce flows [98]. For a Newtonian fluid, ∇ · 〈τf〉 becomes

∇ · 〈τf〉 = ∇ ·
{
〈µf〉

[
∇〈~Vf〉+ (∇〈~Vf〉)T −

2

3
∇ · 〈~Vf〉I

]}
, (2.26)

where the surface integral terms arising from Eq. (A.16) are zero due to the no-slip condition

at phase interfaces. The τf n̂f integral in Eq. (2.24) represents the average viscous drag. This

term can be expressed in terms of the difference in intrinsic phase velocity difference since

the viscous stress is zero if neither phase is moving. Assuming a second-order expansion, the

drag term is written as
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1

V–

∫
Si

τf · n̂fdS = 〈µf〉εA
(
〈~Vs〉s − 〈~Vf〉f

)
+

〈µf〉εB :
(
〈~Vs〉s − 〈~Vf〉f

)
·
(
〈~Vs〉s − 〈~Vf〉f

)
,

(2.27)

where A is a second-order tensor and B a third-order tensor. The 〈~̂Vf ~̂Vf〉 term in Eq. (2.24)

will only be zero if the fluid moves at the same velocity as the fluid-solid interface. This

requirement can also be expressed as a two-term expansion,

〈~̂Vf ~̂Vf〉 = εC ·
(
〈~Vs〉s − 〈~Vf〉f

)
+ εL :

(
〈~Vs〉s − 〈~Vf〉f

)(
〈~Vs〉s − 〈~Vf〉f

)
, (2.28)

where C is a third-order tensor and L is a fourth-order tensor. Because 〈~̂Vf ~̂Vf〉 is symmetric,

both of these tensors must be symmetric in their first two indices, and L also in the last

two indices.

One more constitutive relationship is required to close the momentum equation. The

fluctuating pressure and gravitational field are nonzero perturbations that can still satisfy

∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f = 0, such as when the fluid is hydrostatic. Therefore, expressing

this term as a second order expansion gives

1

V–

∫
Si

(
P̂f + 〈ρf〉f φ̂g,f

)
n̂fdS = εE ·

(
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

)
+

εM :
(
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

) (
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

)
,

(2.29)

where E is a second-order tensor and M is a third-order tensor that is symmetric in its

second and third indices. Inserting Eqs. (2.26)–(2.29) into Eq. (2.24) gives the porous media

momentum equation for a Newtonian fluid,

∂(ε〈ρf〉f〈~Vf〉f )
∂t

+∇ ·
[
ε〈ρf〉f〈~Vf〉f〈~Vf〉f + ε〈ρf〉fC ·

(
〈~Vs〉s − 〈~Vf〉f

)]
+

∇ ·
[
ε〈ρf〉fL :

(
〈~Vs〉s − 〈~Vf〉f

)(
〈~Vs〉s − 〈~Vf〉f

)]
=

∇ ·
{
〈µf〉

[
∇〈~Vf〉+ (∇〈~Vf〉)T −

2

3
∇ · 〈~Vf〉I

]}
+

〈µf〉εA
(
〈~Vs〉s − 〈~Vf〉f

)
+ 〈µf〉εB :

(
〈~Vs〉s − 〈~Vf〉f

)
·
(
〈~Vs〉s − 〈~Vf〉f

)
−

ε (I + E ) ·
(
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

)
−

εM :
(
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

) (
∇〈Pf〉f + 〈ρf〉f∇〈φg,f〉f

)
.

(2.30)
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Models for all of the tensors that appear in Eq. (2.30) do not exist. To obtain a tractable

momentum equation, mechanical effects of the solid on the fluid are neglected such that

C = 0 and L = 0. Second-order effects of the pressure and gravitational forces are also

neglected such that M = 0. Both of these approximations are valid for relatively slow flows

[97]. Eq. (2.30) then becomes

∂(ε〈ρf〉f〈~Vf〉f )
∂t

+∇ ·
(
ε〈ρf〉f〈~Vf〉f〈~Vf〉f

)
= −W 〈ρf〉f〈~Vf〉f+

ε∇〈Pf〉f +∇ ·
(
µ̃∇〈~Vf〉f

)
+ ε〈ρf〉f∇〈φg,f〉f ,

(2.31)

where the viscous term in Eq. (2.30) has been replaced by a distributed loss friction term

that captures the ε〈µf〉A (I+E )−1 and ε〈µf〉B(I+E )−1 terms. The sum of these two terms

(with A divided by 〈ρf〉f to obtain the proper units) is denoted as W , a combined Darcy

and Forchheimer friction factor. A distributed loss friction model is usually sufficient to

capture the interphase drag because the length over which the deviatoric stress acts is on

the order of several pore diameters [98]. Models for W are described in Section 2.1.3.2.

Some porous media models also include a Brinkman viscous stress term to allow no-slip

BCs to be applied on boundaries. Brinkman’s model expresses the viscous stress term in

Eq. (2.26) as the sum the Darcy and Forchheimer drag discussed previously plus a velocity

laplacian with effective viscosity µ̃; such a term is shown in Eq. (2.31) [99–101]. Brinkman’s

model does not have the same validation basis as either Darcy’s or Forchheimer’s drag terms,

and is generally thought to only be applicable for ε > 0.8. At lower porosities, the solid matrix

impedes direct transfer of momentum due to viscous forces and the majority of stresses are

communicated via pressure [99]. For completeness, a Brinkman model is included, though

the term is usually negligibly small for high Reynolds number reactor applications. Models

for µ̃ are described in Section 2.1.3.3.

For notational simplicity, Eq. (2.31) is written as

∂(ερf ~V )

∂t
+∇ · (ερf ~V ~V ) = −Wρf ~V + ε∇P +∇ · (µ̃∇~V ) + ερf~g , (2.32)

where ρf and ~V have the same interpretation as in Eq. (2.23) and P represents the intrinsic

average of pressure.

Only the energy equations remain to be spatially homogenized. Scaling analysis in Section

2.1.1 justifies the omission of the viscous heating terms—the ∇ · (~V τ) term in Eq. (2.3)

and the τ : ∇~V term in Eq. (2.7). Section 2.1.1 also justifies neglecting the compression

work term proportional to dP/dt. Rather than carry these terms through the derivation
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for completeness, notational simplicity motivates their omission at the beginning of this

derivation.

Spatial homogenization of the total energy conservation equation in Eq. (2.3) gives

∂(ε〈ρf〉f〈Ef〉f )
∂t

+∇ ·
(
ε〈ρf〉f〈Hf〉f〈~Vf〉f + 〈ρf〉f〈Ĥf

~̂Vf〉
)

= ∇ ·
(
〈kf〉fε∇〈Tf〉f

)
+

∇ ·
(
〈kf〉f

V–

∫
Si

T̂ n̂fdS

)
+

1

V–

∫
Si

kf∇Tf · n̂fdS + ε〈ρf〉f〈~Vf〉f · 〈~g〉f + 〈q̇f〉 .
(2.33)

The surface integral with integrand T̂f n̂f represents the “tortuosity heat flux.” The tortuosity

heat flux is often very small because convection dominates conduction, and hence is neglected

[102]. The surface integral with integrand kf∇Tf · n̂f represents the average heat flux at the

phase boundary, which is modeled with a convective flux closure as

1

V–

∫
Si

kf∇Tf n̂fdS = α
(
〈Ts〉s − 〈Tf〉f

)
, (2.34)

where α is the convective heat transfer coefficient and 〈Ts〉s is the intrinsic phase-averaged

solid surface temperature. To obtain the correct units, α represents the heat transfer coeffi-

cient hc multiplied by aw,

α ≡ awhc , (2.35)

where aw is the wetted area per unit length,

aw = lim
δ → 0

wetted area in domain of length δ

volume of domain of length δ
. (2.36)

Models for α are described in Section 2.1.3.4. Neglecting the tortuosity heat flux and inserting

Eq. (2.34) into Eq. (2.33), the total energy conservation equation becomes

∂(ε〈ρf〉f〈Ef〉f )
∂t

+∇ ·
(
ε〈ρf〉f〈Hf〉f〈~Vf〉f + 〈ρf〉f〈Ĥf

~̂Vf〉
)

=

∇ ·
(
〈kf〉fε∇〈Tf〉f

)
+ ε〈ρf〉f〈~Vf〉f · 〈~g〉f + α

(
〈Ts〉s − 〈Tf〉f

)
+ 〈q̇f〉 .

(2.37)

Before introducing the final closure for the ∇ · (〈ρf〉f〈Ĥf
~̂Vf〉) term, which will be shared

by the spatially homogenized internal energy equation, first homogenize the internal energy

equation in Eq. (2.7), giving
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ε〈ρf〉f〈Cp,f〉f
∂〈Tf〉f

∂t
+ ε〈ρf〉f〈Cp,f〉f〈~Vf〉f · ∇〈Tf〉f + 〈ρf〉f〈Cp,f〉f〈~̂Vf · ∇̂Tf〉 =

∇ ·
(
〈kf〉fε∇〈Tf〉f

)
+ α

(
〈Ts〉s − 〈Tf〉f

)
+ 〈q̇f〉 ,

(2.38)

where the spatial homogenization performed for terms shared by the total energy and internal

energy equations have been inserted. The tortuosity heat flux term has also been neglected.

Eqs. (2.37) and (2.38) still leave one term that requires closure—the ∇ · (〈ρf〉f〈Ĥf
~̂Vf〉)

term in Eq. (2.37) and the 〈ρf〉f〈Cp,f〉f〈~̂Vf · ∇̂Tf〉 term in Eq. (2.38). These two terms repre-

sent enhancements in advective energy transport due to the porous structure, a phenomenon

referred to as “thermal dispersion.” Thermal dispersion accounts for the effects of changes

in flow direction caused by solid obstructions, recirculation flows within the pores, and eddy

diffusion in turbulence. Thermal dispersion is represented with a gradient diffusion model,

〈ρf〉f〈Cp,f〉f〈~̂Vf · ∇̂Tf〉 = −∇ · (κ̃f∇〈Tf〉f ) , (2.39)

where κ̃f is the thermal dispersion conductivity, which is in general a second-order tensor

[102]. While Eq. (2.39) is shown in terms of the dispersion kernel in Eq. (2.38), a similar

interpretation exists for the dispersion kernel in Eq. (2.37).

The effective fluid thermal conductivity κf then represents the sum of molecular and

dispersion conductivity,

κf ≡ εkf + κ̃f , (2.40)

where the molecular contribution arises from the spatial homogenization of the ∇ · (k∇T )

kernel. Models for κf are described in Section 2.1.3.5. Inserting Eqs. (2.39) and (2.40) into

Eqs. (2.37) and (2.38) gives

∂(ε〈ρf〉f〈Ef〉f )
∂t

+∇ ·
(
ε〈ρf〉f〈Hf〉f〈~Vf〉f

)
=

∇ ·
(
κf∇〈Tf〉f

)
+ ε〈ρf〉f〈~Vf〉f · 〈~g〉f + α

(
〈Ts〉s − 〈Tf〉f

)
+ 〈q̇f〉 ,

(2.41)

and

ε〈ρf〉f〈Cp,f〉f
∂〈Tf〉f

∂t
+ ε〈ρf〉f〈Cp,f〉f〈~Vf〉f · ∇〈Tf〉f =

∇ ·
(
κf∇〈Tf〉f

)
+ α

(
〈Ts〉s − 〈Tf〉f

)
+ 〈q̇f〉 .

(2.42)

For notational simplicity, Eqs. (2.41) and (2.42) are rewritten as
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∂(ερfEf )

∂t
+∇ · (εHfρf ~V ) = ∇ · (κf∇Tf ) + ερf~g · ~V + α(Ts − Tf ) + q̇f , (2.43)

and

ερfCp,f
∂Tf
∂t

+ ερfCp,f ~V · ∇Tf = ∇ · (κf∇Tf ) + α(Ts − Tf ) + q̇f , (2.44)

where ρf and ~V have the same interpretation as in Eq. (2.23), Ef represents the intrinsic

average of total energy, Hf represents the intrinsic average of total enthalpy, Tf represents

the intrinsic average of fluid temperature, Ts represents the intrinsic average of the solid

surface temperature, q̇f represents the extrinsic average of the fluid volumetric heat source,

and Cp,f represents the intrinsic average of the fluid isobaric specific heat capacity.

The conservation of solid energy equation can be derived by spatially homogenizing the

heat equation using the identities in Appendix A. A simpler, but equivalent, approach instead

sets ~V to zero in Eq. (2.44), replaces all f subscripts with s subscripts, and substitutes 1− ε
for ε, giving

(1− ε)ρsCp,s
∂Ts
∂t
−∇ · (κs∇Ts) + α(Ts − Tf )− q̇s = 0 , (2.45)

where κs represents the effective solid thermal conductivity, ρs represents the intrinsic average

of the solid density, Cp,s represents the intrinsic average of the solid isobaric specific heat

capacity, and q̇s represents the extrinsic average of the solid volumetric heat source. κs

captures the combined dispersion effects of solid-to-solid radiation κradiation, solid-fluid-solid

conduction κconduction, and solid-to-solid conduction κcontact,

κs ≡ κradiation + κconduction + κcontact . (2.46)

Thermal equilibrium is often assumed for geophysical applications, and is even the default in

FLUENT’s porous media model [103]. The inclusion of unique energy conservation equations

is essential for modeling of reactor systems due to the volumetric heat sources and the

different material properties of the phases [104, 105].

In summary, the mass, momentum, and energy conservation equations were spatially

homogenized by averaging over a REV consisting of a mixture of fluid and solid. Several

different models are considered for the macroscale, motivated by the wide range in T/H

conditions in PBRs and the improved nonlinear convergence behavior that can be obtained by

neglecting certain physics kernels. For instance, the inviscid Navier-Stokes model represented
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by Eqs. (2.23), (2.32) with µ̃ = 0, and (2.43) has two solutions as the Mach number tends

to zero—an incompressible limit and an acoustic limit. For nearly incompressible fluids

such as molten salts, solution of a compressible model may be an inaccurate representation

of the incompressible solution because the incompressible limit is a singular limit of the

compressible flow equations [106]. A model that neglects the compression work term may

provide a better representation of the incompressible solution and enable vastly improved

numerical convergence.

Two different models are used depending on the flow conditions and desired level of

accuracy—a Navier-Stokes model and a friction-dominated model. The spatially homoge-

nized Navier-Stokes equations on the macroscale are

ε
∂ρf
∂t

+∇ · (ερf ~V ) = 0 , (2.47a)

ε
∂(ρf ~V )

∂t
+∇ · (ερf ~V ~V ) + ε∇P − ερf~g +Wρf ~V −∇ · (µ̃∇~V ) = 0 , (2.47b)

ε
∂(ρfEf )

∂t
+∇ · (εHfρf ~V )−∇ · (κf∇Tf )− ερf~g · ~V + α(Tf − Ts)− q̇f = 0 , (2.47c)

(1− ε)ρsCp,s
∂Ts
∂t
−∇ · (κs∇Ts) + α(Ts − Tf )− q̇s = 0 . (2.47d)

Eq. (2.47) is referred to here as the “Navier-Stokes model.” All terms in Eqs. (2.47a)–

(2.47c) have the same form as the local compressible Navier-Stokes equations except the

Brinkman stress term, which has the same local form as the incompressible Navier-Stokes

viscous stress in order to match literature closures for µ̃. An inviscid flow model can be

obtained as a simplification of Eq. (2.47) with µ̃ = 0.

For slowly-evolving, low Reynolds number flows, several additional approximations can

be made to simplify Eq. (2.47). Momentum conservation is assumed dominated by friction

effects such that changes in pressure are instantaneously reflected as changes in momen-

tum. The total derivative of momentum in Eq. (2.47b) is set to zero, giving a pseudo-steady

momentum equation. The Brinkman viscosity is also set to zero. Substituting this pseudo-

steady momentum equation into the mass conservation in Eq. (2.47a) then gives a pressure

Poisson equation. Further, compression work is assumed negligible such that energy conser-

vation is well approximated by Eq. (2.44). Together, these assumptions give,

ε
∂ρf
∂t

+∇ ·
[
ε2

W
(ρf~g −∇P )

]
= 0 , (2.48a)

ε∇P − ερf~g +Wρf ~V = 0 , (2.48b)

ερfCp,f
∂Tf
∂t

+ ερfCp,f ~V · ∇Tf −∇ · (κf∇Tf ) + α(Tf − Ts)− q̇f = 0 , (2.48c)
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(1− ε)ρsCp,s
∂Ts
∂t
−∇ · (κs∇Ts) + α(Ts − Tf )− q̇s = 0 . (2.48d)

Eq. (2.48) is referred to here as the “friction-dominated model.” This friction-dominated

model has been widely used for the analysis of PBRs [101, 107, 108].

Pebbles move continuously through the bed in online refueling operation. Depending

on the design, pebbles cycle between 2 and 10 times over a period of several years. The

velocity of these motions is orders of magnitude smaller than the fluid velocity. The kinetic

energies of pebbles in fluidized beds such as liquid salt systems are also negligibly small [109].

Therefore, porosity is assumed independent of time such that it is moved outside the time

derivatives in Eqs. (2.47) and (2.48).

As will be discussed at greater length in Chapter 3, Eqs. (2.47) and (2.48) may be solved

for a number of different solution variables to enable general simulation of compressible

and incompressible flows, flexible application of the BCs described in Section 2.1.2, and

better numerical convergence in the presence of certain material discontinuities [110]. These

solution variables are the primitive interstitial set P , ~V , and Tf ; the primitive superficial set

P , ~v, and Tf ; the mixed interstitial set P , ρf ~V , and Tf ; the mixed superficial set P , ρf~v,

and Tf ; and the conservative interstitial set ρf , ρf ~V , and ρfEf .

2.1.1 Non-Dimensional Analysis

This section presents a brief scaling analysis of the momentum and energy conservation

equations to justify omission of the viscous heating term from Eqs. (2.47) and (2.48) and the

compression work term from Eq. (2.48). For notational simplicity, this scaling analysis is

performed starting from the local conservation equations because small terms were neglected

at the outset of the spatial homogenization procedure, rather than carried through to be

neglected at the conclusion.

Scaling analysis begins with the 1D form of momentum conservation in Eq. (2.2). Define

the following nondimensional quantities,

t+ =
t

L/Vo
, V + =

V

Vo
, P+ =

P

ρoV 2
o

, x+ =
x

L
, g+ =

g

go
, (2.49)

where a + superscript indicates a nondimensional quantity. Inserting Eq. (2.49) into the

1D form of Eq. (2.2) with constant viscosity and dividing through by the coefficient on the

advective term gives

dV +

dx+
=
Lgo
V 2
o

g+ − ∂P+

∂x+
+

1

Re

∂

∂x+
(�) , (2.50)
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where the viscous term is represented symbolically as � and Re is the Reynolds number.

For a generic porous medium characterized by two different velocity scales v and V and two

different length scales dp and D, there are many manners in which the Reynolds number can

be defined. The two most common definitions are

Re =
ρ‖~v‖dp
µ

, (2.51a)

Reh =
ρ‖~V ‖D
µ

. (2.51b)

Both Eqs. (2.51a) and (2.51b) are used throughout this work depending on whether the

domain in question is porous or open, respectively.

Non-dimensionalization of the energy conservation equation is performed beginning from

the 1D form of Eq. (2.7) with the volumetric heat source omitted for simplicity. In addition

to Eq. (2.49), define

T+ =
T

∆T
. (2.52)

Inserting Eqs. (2.49) and (2.52) into the 1D form of Eq. (2.7) with constant thermal conduc-

tivity and dividing through by the coefficient on the advective term gives

dT+

dt+
− βEc T+dP

+

dt+
=
Br

Pe
(�)− 1

Pe

∂

∂x+

∂T+

∂x+
, (2.53)

where the viscous power term is represented symbolically as �. Pe is the Peclet number,

defined as

Pe ≡ ρCp‖~V ‖L
k

; (2.54)

Ec is the Eckert number, defined as

Ec =
‖~V ‖2

Cp∆T
; (2.55)

and Br is the Brinkman number, defined as

Br =
µ‖~V ‖2

k∆T
. (2.56)

Viscous heating is negligible if Br/Pe � 1 and compression work is negligible if βEc � 1.

Table 2.1 provides estimates of these dimensionless numbers for five representative reactor

designs—the sodium-cooled Prototype Fast Breeder Reactor (PFBR), the helium-cooled



CHAPTER 2. MULTISCALE MODELS FOR PEBBLE BED REACTORS 37

THTR, the FLiBe-cooled PB-FHR, the water-cooled Advanced Pressurized Water Reactor

- 1000 MWe (AP-1000), and the CO2-cooled Advanced Gas Reactor (AGR).

Table 2.1: Approximate operating conditions and nondimensional numbers for representative
nuclear reactor designs [62, 111–116]. Temperatures are listed as “inlet/outlet.”

Parameter PFBR THTR PB-FHR AP-1000 AGR

Coolant sodium helium FLiBe water CO2

Power (MWth) 1250 750 236 3400 1623

Fuel geometry assembly pebble pebble assembly assembly

Pressure (MPa) 0.1 4.0 0.1 15.5 4.1

Temperature (◦C) 400/550 250/750 600/700 280/325 340/640

Flowrate (kg s−1) 6390 298 976 13700 4060

Velocity (m s−1) 4.8 12.0 0.4 4.8 1.6

D (mm) 5.0 26.0 13.0 11.7 38.0

ρ (kg m−3) 840 2.5 2000 720 28

µ (10−5 Pa·s) 25 3.9 680 8.7 3.4

k (W m−1 K−1) 139 0.30 1.10 0.56 0.05

Cp (J kg−1 K−1) 1268 5195 2416 5534 1157

Pr 0.002 0.67 15.0 0.86 0.79

Br 2.7× 10−7 3.7× 10−5 9.9× 10−6 7.8× 10−5 5.8× 10−6

Re 8.2× 10+4 2.0× 10+4 1.5× 10+3 4.6× 10+5 5.0× 10+4

Pe 1.8× 10+2 1.3× 10+4 2.3× 10+4 4.0× 10+5 4.0× 10+4

Ec 1.2× 10−4 5.5× 10−5 6.6× 10−7 9.0× 10−5 7.4× 10−6

Br/Pe 1.5× 10−9 2.8× 10−9 4.3× 10−10 2.0× 10−10 1.5× 10−10

∆T/T 2.2× 10−1 9.6× 10−1 1.1× 10−1 8.3× 10−2 4.9× 10−1

For all five designs, both viscous heating and compression work are orders of magnitude

less significant than energy advection and can therefore be neglected from the macroscale

model. But while Re � 1 for most applications, the Brinkman viscous stress is retained in

the macroscale model for completeness and application of no-slip BCs. Likewise, Pe� 1 for

all systems considered, but thermal energy conduction is retained in the macroscale model

because the gradient diffusion model for thermal dispersion always requires a diffusive kernel.
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2.1.2 Boundary and Initial Conditions

This section describes the BCs and Initial Conditions (ICs) for the macroscale conservation

equations. Because of the presence of advective and diffusive terms, the fluid conservation

equations are a mixed hyperbolic-parabolic system. Lacking advective terms, the solid energy

conservation equation is a parabolic equation. For systems of equations that permit real wave

propagation, which include hyperbolic and parabolic equations, a well-posed set of BCs and

ICs requires consideration of the direction of information propagation. Conditions may

only be imposed on boundaries where the eigenvalues of the homogeneous portion of the

equations are positive relative to the unit normal of the boundary—in other words, where

characteristics enter the domain [117]. For both the fluid and solid conservation equations,

ICs are required for all variables throughout the entire domain at t = 0. The remainder of

this section describes the BCs for the conservation equations.

2.1.2.1 The Fluid Conservation Equations

Despite the mixed hyperbolic-parabolic character of the fluid conservation equations, advec-

tion dominates diffusion at reactor conditions such that well-posed BCs can be based on

well-posed conditions for purely hyperbolic systems. The hyperbolic versions of the fluid

conservation equations are obtained by omitting all diffusive kernels from Eqs. (2.47) and

(2.48). Such a hyperbolic equation in nsd spatial dimensions has eigenvalues −~V · n̂ − c,

−~V · n̂ + c, and −~V · n̂, where c is the speed of sound, n̂ is the boundary unit outward

normal, and the ~V · n̂ eigenvalue occurs once for each spatial dimension [118].

All flows are assumed subsonic such that ‖~V ‖ < c. On inlet and no-penetration bound-

aries, nsd+1 eigenvalues are positive and one eigenvalue is negative, which requires imposition

of nsd+1 conditions. On outlet boundaries, one eigenvalue is positive and nsd+1 eigenvalues

are negative, which requires imposition of one condition.

The FE discretization described in Section 3.1 converts the strong forms in Eqs. (2.47) and

(2.48) to weak forms that contain both volume and surface integrals. The surface integrals

represent flux BCs that must be specified regardless of the type of boundary—inflow, outflow,

or no-penetration—unless a Dirichlet BC already strongly enforces a condition on that

boundary. For example, the Navier-Stokes mass conservation equation weak form in Eq.

(3.12a) contains the following surface integral,∫
Γ

ερf ~V · n̂dΓ , (2.57)
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where Γ is the boundary with unit outward normal n̂. On boundaries where an interstitial

mass flowrate ṁ is specified, the above integral is evaluated as∫
Γ

εṁdΓ . (2.58)

On boundaries where a mass flowrate is not specified and no Dirichlet condition is applied,

the weak form still contains the surface integral in Eq. (2.57), which must be evaluated using

the implicit solution values for ρf and ~V . This is referred to here as an “implicit” BC.

This distinction between imposed and implicit BCs is important for understanding the BC

requirements for the macroscale model. On each boundary, a Dirichlet or Neumann condition

must be applied to each conservation equation simply due to the nature of the boundary

integrals in the FE weak form2. In nsd spatial dimensions, this results in nsd + 2 conditions

on each boundary. The eigenvalue analysis then provides information on what subset of

these conditions must be imposed by the modeler, rather than implicit. The eigenvalue

analysis for inlet and no-penetration boundaries shows the nsd + 1 conditions corresponding

to positive eigenvalues must be of Dirichlet or specified Neumann type, while the remaining

condition corresponding to the negative eigenvalue must be of implicit Neumann type. On

outlet boundaries, one condition must be of Dirichlet or specified Neumann type, while the

remaining nsd + 1 conditions must be of implicit Neumann type.

The remainder of this section describes Dirichlet and Neumann BCs for the fluid conserva-

tion equations subject to these constraints. Neumann BCs are additive within the numerical

implementation, so are discussed individually. On inlet boundaries, temperature and either

velocity or momentum are specified. Velocity and momentum may be specified in either an

interstitial or superficial basis. On outlet boundaries, pressure is specified. On solid walls

and r-z symmetry boundaries, mass conservation requires the no-penetration condition. On

solid walls, the tangential velocity component may optionally be set to zero with what is

referred to as a “no-slip” condition. On solid boundaries, the solid temperature or heat flux

may be specified.

The boundary is the union of the inlet Γin, outlet Γout, wall Γwall, and r-z symmetry axis

Γr-z symmetry,

Γ ≡ Γin ∪ Γout ∪ Γwall ∪ Γr-z symmetry , (2.59)

2While “Neumann” conditions strictly refer to BCs where the derivative is enforced, here the looser
convention of referring to all integrated BCs as “Neumann” is followed.
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where the intersection of the j-th term on the right-hand-side (RHS) of Eq. (2.59) with

the k-th term on the RHS of Eq. (2.59) is the empty set for j 6= k. The inlet boundary

is the union of boundaries on which the interstitial velocity, superficial velocity, interstitial

momentum, and superficial momentum are specified,

Γin ≡ Γin, interstitial velocity ∪ Γin, superficial velocity ∪
Γin, interstitial momentum ∪ Γin, superficial momentum ,

(2.60)

where the intersection of the j-th term on the RHS of Eq. (2.69) with the k-th term on the

RHS of Eq. (2.69) is the empty set for j 6= k. The wall boundary is the union of the slip and

no-slip boundaries,

Γwall ≡ Γwall, slip ∪ Γwall, no-slip , (2.61)

where Γwall, slip ∩ Γwall, no-slip = ∅. The wall boundary is also the union of the specified

temperature and heat flux boundaries,

Γwall ≡ Γwall, temperature ∪ Γwall, heat flux , (2.62)

where Γwall, temperature ∩ Γwall, heat flux = ∅. The heat flux boundary is understood to consist

of a variety of different representations of heat flux, such as conduction, convection, and

radiation, which may have a nonzero intersection with one another.

Finally, an i subscript refers to an “imposed,” or specified, value, while any term lacking

a subscript refers to the implicit solution value. Functional notation, such as ρf (P, Tf ),

indicates the use of the Equation of State (EOS) to obtain ρf from P and Tf .

For the mass conservation equation in Eqs. (2.47a) and (2.48a), the outlet condition for

pressure as the nonlinear variable is

P = Pi for Γ ∈ Γout , (2.63)

while the outlet condition for density as the nonlinear variable is a fully-implicit condition

with pressure weakly imposed in the momentum BCs,

ερf ~V · n̂ = ερf ~V · n̂ for Γ ∈ Γout . (2.64)

The Neumann-type BCs for the advective flux integral for the remaining boundaries are
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ερf ~V · n̂ =



0 Γ ∈ Γwall

0 Γ ∈ Γr-z symmetry

ερf ~Vi · n̂ Γ ∈ Γin, interstitial velocity

ρf~vi · n̂ Γ ∈ Γin, superficial velocity

ε(ρf ~V )i · n̂ Γ ∈ Γin, interstitial momentum

(ρf~v)i · n̂ Γ ∈ Γin, superficial momentum

. (2.65)

For the momentum conservation equation in Eqs. (2.47b) and (2.48b), a Dirichlet value

of velocity or momentum is specified on the inlet. If the nonlinear variable is interstitial

velocity, the inlet BC is

~V =



~Vi Γ ∈ Γin, interstitial velocity

~vi/ε Γ ∈ Γin, superficial velocity

(ρf ~V )i/ρf (P, Tf,i) Γ ∈ Γin, interstitial momentum

(ρf~v)i/ [ερf (P, Tf,i)] Γ ∈ Γin, superficial momentum

. (2.66)

If the nonlinear variable is superficial velocity, the inlet BC is

~v =


ε~Vi Γ ∈ Γin, interstitial velocity

~vi Γ ∈ Γin, superficial velocity

ε(ρf ~V )i/ρf (P, Tf,i) Γ ∈ Γin, interstitial momentum

(ρf~v)i/ρf (P, Tf,i) Γ ∈ Γin, superficial momentum

. (2.67)

If the nonlinear variable is interstitial momentum, the inlet BC is

ρf ~V =


ρf (P, Tf,i)~Vi Γ ∈ Γin, interstitial velocity

ρf (P, Tf,i)~vi/ε Γ ∈ Γin, superficial velocity

(ρf ~V )i Γ ∈ Γin, interstitial momentum

(ρf~v)i/ε Γ ∈ Γin, superficial momentum

. (2.68)

If the nonlinear variable is superficial momentum, the inlet BC is
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ρf~v =


ερf (P, Tf,i)~Vi Γ ∈ Γin, interstitial velocity

ρf (P, Tf,i)~vi Γ ∈ Γin, superficial velocity

ε(ρf ~V )i Γ ∈ Γin, interstitial momentum

(ρf~v)i Γ ∈ Γin, superficial momentum

. (2.69)

For no-slip solid walls, additional Dirichlet-type BCs are one of

~V = ~0 for Γ ∈ Γwall, no-slip , (2.70a)

~v = ~0 for Γ ∈ Γwall, no-slip , (2.70b)

ρf ~V = ~0 for Γ ∈ Γwall, no-slip , (2.70c)

ρf~v = ~0 for Γ ∈ Γwall, no-slip , (2.70d)

depending on the nonlinear solution variable. The Neumann-type BCs for the advective flux

integral in the j-th momentum equation for the remaining boundaries are

ερfVj ~V · n̂ =


0 Γ ∈ Γwall, slip

0 Γ ∈ Γr-z symmetry

ερfVj ~V · n̂ Γ ∈ Γout

. (2.71)

The Neumann-type BCs for the pressure integral in the j-th momentum equation for the

remaining boundaries are

εPnj =


εPnj Γ ∈ Γwall, slip

εPnj Γ ∈ Γr-z symmetry

εPinj Γ ∈ Γout

. (2.72)

The Neumann-type BCs for the diffusive flux integral in the j-th momentum equation for

the remaining boundaries are

− µ̃∇Vj · n̂ =


−µ̃∇Vj · n̂ Γ ∈ Γwall, slip

0 Γ ∈ Γr-z symmetry

−µ̃∇Vj · n̂ Γ ∈ Γout

. (2.73)

For the energy conservation equation in Eqs. (2.47c) and (2.48c), a Dirichlet value of temper-

ature is specified on the inlet and on walls where temperature is specified. If the nonlinear

variable is temperature, this BC is
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Tf = Tf,i for Γ ∈ Γin ∪ Γwall, temperature , (2.74)

while if the nonlinear variable is total fluid energy, this BC is

ρfEf = ρf (P, Tf,i)

[
ef (P, Tf,i) +

1

2
~V · ~V

]
for Γ ∈ Γin ∪ Γwall, temperature . (2.75)

For brevity, Eq. (2.75) is written in terms of the implicit values of velocity at the inlet rather

than the many combinations of specified velocity and momentum as represented by Eqs.

(2.66)–(2.69). Because Dirichlet BCs are strongly imposed within the FE discretization, no

approximation is made in this notational simplification.

No advective flux integral appears in the weak form of Eq. (2.48c). The Neumann-type

BCs for the advective flux integral in Eq. (2.47c) for the remaining boundaries are

ερfHf
~V · n̂ =


0 Γ ∈ Γwall

0 Γ ∈ Γr-z symmetry

ε

{
ρf

[
ef (Pi, Tf ) +

1

2
~V · ~V

]
+ Pi

}
~V · n̂ Γ ∈ Γout

. (2.76)

The Neumann-type BCs for the diffusive flux integral for the remaining boundaries are

− κf∇Tf · n̂ =



q̃ Γ ∈ Γwall, heat flux (generic)

−k∞∇T∞ · n̂ Γ ∈ Γwall, heat flux (conduction)

hc(Tf − T∞) Γ ∈ Γwall, heat flux (convection)

εσ(T 4
f − T 4

∞) Γ ∈ Γwall, heat flux (radiation)

0 Γ ∈ Γr-z symmetry

−κf∇Tf · n̂ Γ ∈ Γout

, (2.77)

where q̃ represents a generic heat flux, the ∞ subscripts refer to the domain adjacent to the

boundary, hc is the convective heat transfer coefficient, ε is the surface emissivity, and σ is

the Boltzmann constant.

2.1.2.2 The Solid Energy Conservation Equation

The parabolic character of the solid energy conservation equation permits BCs to be applied

on any boundary of the domain; these boundaries are either temperature, heat flux, or r-z
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symmetry boundaries, irrespective of whether the boundary represents a fluid inlet, outlet,

or wall,

Γ ≡ Γtemperature ∪ Γheat flux ∪ Γr-z symmetry , (2.78)

where the intersection of the j-th term on the RHS of Eq. (2.78) with the k-th term on the

RHS of Eq. (2.78) is the empty set for j 6= k. A Dirichlet temperature is specified as

Ts = Ts,i for Γ ∈ Γtemperature . (2.79)

The Neumann-type BCs for the diffusive flux integral for the remaining boundaries are

− κs∇Ts · n̂ =



q̃ Γ ∈ Γheat flux (generic)

−k∞∇T∞ · n̂ Γ ∈ Γheat flux (conduction)

hc(Ts − T∞) Γ ∈ Γheat flux (convection)

εσ(T 4
s − T 4

∞) Γ ∈ Γheat flux (radiation)

0 Γ ∈ Γr-z symmetry

. (2.80)

2.1.3 Closures

This section describes models used for the macroscale closures—the porosity, ε; the inter-

phase friction factor, W ; the Brinkman viscosity, µ̃; the interphase convective heat transfer

coefficient, α; the effective fluid thermal conductivity, κf ; and the effective solid thermal con-

ductivity, κs. Each discussion coincides with a description of the salient physical phenomena

represented by that closure to provide context and background necessary to understand

modeling choices made in later chapters. In addition, the intrinsic phase-averaged fluid

properties ρf , Cp,f , kf , and µf are described in Section 2.1.3.7. A description of the intrinsic

phase-averaged solid properties ρs, Cp,s, and ks is deferred until Section 2.2.4.2 to collocate

the discussion with property models used for the meso length scales.

The macroscale porous media model derived in Section 2.1 is applicable to a wide range

of physical systems. However, unless otherwise noted, all closures described Sections 2.1.3.1–

2.1.3.6 apply to random packed beds comprised of uniform diameter spherical pebbles.

2.1.3.1 Porosity

The porosity represents the fluid volume fraction in each REV and has an important im-

pact on flow and heat transfer—all other closures described in Sections 2.1.3.2–2.1.3.6 are
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generally dependent on porosity. Porosity also impacts the local flow area and appears in

most kernels in the macroscale conservation equations. Lower porosities result in more tor-

tuous fluid paths, and consequentially frictional momentum losses and greater convective

heat transfer. Depending on the relative thermal conductivities of the phases, the conduc-

tion components of the effective solid thermal conductivity may increase or decrease with

porosity, while the larger void spaces associated with higher porosities increase the effective

radiation heat transfer component [119].

The random packing of beds is often numerically modeled with the Discrete Element

Method (DEM), where Newton’s laws of motion are solved for a collection of granular pebbles

considering friction, contact plasticity, gravity, and a variety of potentials [52, 100, 120–125].

Alternatively, experimentalists may fill a container with spheres, pour in a wax or resin that

is allowed to solidify, and then chop the container into pieces for weighing after melting of the

wax or resin [126–128]. Other techniques such as image analysis, photography, radiography,

and centripetal acceleration have been used [129–131]. A mesh is then superimposed on this

data, and the porosity in each cell of the mesh evaluated as a volume average over that cell

plus a number of that cell’s neighboring cells. This spatial dependence may then be directly

used in a physics application or correlated with a functional fit.

The present analysis only considers existing literature models for cylindrical beds, which

tend to closely resemble many PBR core geometries. These models assume smooth walls and

beds without alignment structures such as control rods or guiding plates [122, 132] and that

porosity is flow- and time-independent [125, 133]. The spherical pebbles are also assumed to

be larger than 0.1 mm in diameter such that Van der Waals forces, or the distance-dependent

forces between atoms, are insignificant [134].

The porosity is a function of the distance from walls and free surfaces. In the radial

direction, the porosity is a damped, oscillatory function of the distance from the bounding

walls, reaching a nearly constant value four to five pebble diameters from the wall [120, 121,

126–128, 130, 131, 135, 136]. The porosity at the wall is unity due to sphere alignment

and attains a global minimum at about dp/2 distance normal from the wall. The high

porosity near the walls results in lower drag and a flow-channeling effect, with a peak in the

velocity near the wall that is usually 1.5 to 10 times larger than the bulk velocity [52, 125,

131, 135, 137–142]. This bypass flow results in less effective bulk bed cooling, higher bed

temperatures [100, 104], more nonuniform outlet temperatures [143], and enhanced mass

transfer near walls [52]. However, bypass flows result in greater convective cooling of wall

structures, which may help extend component lifetimes. If the bed to pebble diameter ratio

is smaller than approximately 10 to 30, the overall pressure drop may also be substantially
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lower than that predicted using a constant porosity [100, 135].

Experiments built with half and quarter spheres near boundaries to obtain uniform poros-

ity still observe some flow channeling near walls, which likely occurs due to flow alignment

and less mixing of opposing streamlines behind pebbles [86]. Therefore, the bypass effect is

not entirely related to the magnitude of porosity, though porosities near unity are represen-

tative of the near-wall regions.

In the axial direction, the porosity is a damped, oscillatory function of the distance from

bounding walls with smooth transitions to unity near free surfaces that depend on the weight

of the pebbles [120, 121, 123, 125, 144]. However, most simulations of PBRs neglect the axial

dependence of porosity, likely due to the lack of models for the axial distribution [101, 104,

108, 145–149]. An approximate method for extending radial porosity distributions to include

axial dependence is developed later in this section.

Most porosity models require specification of the infinite-bed porosity ε∞, or the porosity

in the absence of wall effects. The infinite-bed porosity is very dependent on the filling

procedure, and may range from 0.35 for vibration shakedowns to 0.44 for slowly draining

fluid from a fluidized bed [136]. Without knowledge of the packing procedure or experimental

measurements, ε∞ is often set to 0.40.

The macroscale conservation equations generally become stiff and difficult to converge

in the near-wall regions where the porosity is unity [137]. All models used in the present

analysis are expressed in terms of the porosity at the wall, εwall. Modeling the wall porosity

as less than unity can improve numerical convergence and ensure the porosity is everywhere

within the recommended range of other closures. A modification to the wall porosity may

also be physically motivated by the apparent decrease in porosity “seen” by the fluid at the

walls due to stagnation points [131, 145, 150].

The simplest porosity distribution considered is a uniform profile

ε = ε∞ . (2.81)

Table 2.2 provides the core dimensions and bed to pebble diameter ratio for a number of

PBRs and experimental facilities. For annular beds, the bed diameter dbed is taken as the

difference between the outer diameter Do and inner diameter Di. For all systems except the

SANA facility, dbed/dp is larger than the 10 to 30 range required for wall effects to constitute

a small portion of the overall flow. For these large beds, the assumption of a constant

porosity is often a reasonable model for prediction of bulk effects such as pressure drop and

average temperature rise.
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Table 2.2: Approximate core dimensions for several packed beds [37, 62, 65, 113, 151, 152].

System Bed Type Height (m) Di (m) Do (m) dp (m) dbed/dp

HTR-10 cylindrical 2.0 — 1.8 0.06 30.0

HTR-PM cylindrical 11.0 — 3.0 0.06 50.0

PB-FHR annular 4.5 0.70 2.5 0.03 30.0

PBMR-400 annular 11.0 2.00 3.7 0.03 28.3

SANA annular 1.0 0.14 1.5 0.06 11.3

THTR cylindrical 6.0 — 5.6 0.06 93.3

For systems where spatial dependence is important, such as the SANA facility, a method

is developed for constructing a two-dimensional (2D) r-z distribution in terms of two 1D

functions for the radial and axial profiles. The radial distribution ε(r) is in general a function

of ε∞, εwall, dp, and the minimum distance dr to a radial wall. This dependence may be

expressed as

ε(r) = f (dp, dr, εwall, ε∞) , (2.82)

where f indicates a radial functional dependence. A 2D distribution is obtained by replacing

the constant ε∞ in Eq. (2.82) with a 1D axial profile, which is itself a function of ε∞, εwall,

dp, and the minimum distance dz to an axial wall,

ε(r, z) = f (dp, dr, εwall, ε∞(z))

= f (dp, dr, εwall, g (dp, dz, εwall, ε∞)) ,
(2.83)

where g indicates an axial functional dependence. In other words, the infinite-medium

porosity used in the radial dependence is computed based on the assumed axial dependence.

The use of minimum distances to bounding walls assumes that the porosity is independent

of the curvature of the walls, which is supported by experimental observations [120, 127].

Eq. (2.83) is written in general terms such that any functional expressions for the radial

and axial profiles can be combined to obtain a 2D distribution. For analyses performed in

this dissertation not using the constant distribution in Eq. (2.81), both the radial and axial

profiles are given by exponential functions,

ε(r) = ε∞(z) + [εwall − ε∞(z)] e−6 dr/dp , (2.84)
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where ε∞(z) is given as

ε∞(z) = ε∞ + (εwall − ε∞) e−6 dz/dp . (2.85)

While experimental data shows that porosity is a damped oscillatory function of the distance

to walls, an exponential dependence can be obtained by averaging measurements over larger

REVs [120, 137, 153]. The use of an exponential profile, rather than an oscillatory profile,

is motivated by the ability to use coarser meshes near walls because of the smaller distance

over which large gradients in porosity are found.

2.1.3.2 Interphase Friction Factor

The interphase friction factor W represents the sum of viscous and inertial drag on the

fluid. Although W is referred to here as a friction factor, its interpretation differs slightly

from conventional definitions of friction factors. After first deriving the friction factor for a

spherical pebble bed, the relationship between W and the friction factor is provided.

If a nondimensional pressure is defined as P+ = P/(µVo/D), the scaling analysis per-

formed in Section 2.1.1 shows that at low flowrates, the pressure drop is linearly proportional

to velocity,

∇P ∝ µV

D2
, (2.86)

a viscous effect. If the nondimensional pressure is instead defined as in Eq. (2.49), the

scaling analysis performed in Section 2.1.1 shows that at high flowrates, the pressure drop

is quadratically proportional to velocity,

∇P ∝ ρV 2

D
, (2.87)

an inertial effect. The total frictional pressure drop is the sum of the viscous and kinetic

losses,

−∇P = A
µV

D2
+B

ρV 2

D
, (2.88)

where A and B are constants of proportionality [154]. The friction factor is the total frictional

pressure drop normalized by the dynamic pressure, or

−∇P D

ρV 2
= A

1

Reh
+B . (2.89)
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Friction factor models for porous media are obtained by introducing the appropriate length

and velocity scales into Eq. (2.89) [155]. The hydraulic diameter is a characteristic length

scale defined as

D ≡ 4V– f

aw`
, (2.90)

where V– f is the fluid flow volume, aw is the wetted area per unit length defined in Eq. (2.36),

and ` is the length of the volume. For beds of spheres and in the absence of wall effects, aw

is given as [156]

aw =
6(1− ε)
dp

. (2.91)

Based on the averaging properties derived in Appendix A, area and volume averages are

equivalent to O(l/L2); using this property and inserting Eq. (2.91) into Eq. (2.90), the

hydraulic diameter for a bed of spheres is

D =
ε

1− ε
dp , (2.92)

where the factor of 4/6 has been neglected. Replacing V by v/ε according to Eq. (2.20) and

D by Eq. (2.92), Eq. (2.89) becomes

−∇P ε3

1− ε
dp
ρv2

= A
1− ε
Re

+B . (2.93)

The LHS of Eq. (2.89) represents the friction factor for non-porous flows, while the LHS

of Eq. (2.93) represents the friction factor for sphere-packed porous flows. The spatial ho-

mogenization of the momentum conservation equation in Section 2.1 related the frictional

pressure drop to a distributed loss in terms of W as

ε∇P = −Wρf ~V . (2.94)

Combining Eqs. (2.93) and (2.94) provides the relationship between the friction factor and

W for a spherical pebble porous media,

W ≡
[
A

1− ε
Re

+B

]
(1− ε)‖~V ‖

dp
, (2.95)

where the term in square brackets is the porous media friction factor defined in Eq. (2.93).

Models for W can therefore be specified in terms of the coefficients A and B.
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The pebble bed is assumed isotropic such that W is a scalar. While the near-wall regions

of pebble beds are far from isotropic, a lack of experimental and numerical data for these

regions requires the use of isotropic models within the bed. Many models have been developed

for isotropic drag in random packings of spheres. The Ergun model, perhaps the most widely-

used packed bed drag correlation, sets A and B as [155]

A = 150 , (2.96a)

B = 1.75 . (2.96b)

Eq. (2.96) is valid for 1 < Re < 104 [99, 155, 157, 158]. A model developed by Kerntech-

nischer Ausschuss (KTA) from experimental data more closely matching gas-cooled PBR

conditions sets A and B as [159]

A = 160 , (2.97a)

B = 3

(
Re

1− ε

)−0.1

. (2.97b)

Eq. (2.97) is valid for 1 < Reh < 105 and 0.36 < ε < 0.42. Both Eqs. (2.96) and (2.97)

have been widely used for PBR analysis [65, 75, 78, 98, 100, 104, 124, 125, 145, 149, 158].

Eq. (2.97) differs qualitatively from Eq. (2.96) in that pressure drop predictions are more in

line with drag reduction effects seen in the fully turbulent regime [98, 159–162] that may be

partially attributable to more efficient streamlining and/or limits on the growth of separated

boundary layers due to the sphere packing.

For anisotropic media such as reflector blocks and tube banks, Eq. (2.94) is modified to

ε
∂P

∂xi
= −WijρfVj , (2.98)

where W is a diagonal tensor with W11, W22, and W33 each described in terms of different

A and B coefficients. Combining Eqs. (2.88) with (2.98) provides the relationship between

the friction factor and W for generic porous media without the use of the spherical pebble

hydraulic diameter in Eq. (2.92),

Wij =
ε‖~V ‖
D

(
Aij
Reh

+Bij

)
. (2.99)

A discussion of the generation of anisotropic W closures based on CFD simulations is pro-

vided in Section 6.
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2.1.3.3 Brinkman Viscosity

The Brinkman stress term with effective viscosity µ̃ augments the distributed loss friction

model described in Section 2.1.3.2. There is substantial disagreement on appropriate models

for the Brinkman viscosity, which only tends to affect reactor flows in a very thin region near

walls [100, 101, 131, 163]. Generally, µ̃ increases with Reynolds number because of enhanced

mixing, though this may be dependent on the solid shape [131].

Due to a lack of more refined models applicable to PBR conditions, the Brinkman vis-

cosity is given as

µ̃ = εΥµ , (2.100)

where Υ is a constant. Auwerda et. al select Υ = 100 somewhat arbitrarily for helium-cooled

PBRs, but because the Brinkman stress term has little experimental basis, Υ is set to zero

in this work unless otherwise noted [100].

2.1.3.4 Interphase Convective Heat Transfer Coefficient

The interphase convective heat transfer coefficient α represents convective heat transfer

between the fluid and solid phases. The pebble bed is assumed isotropic such that α is a

scalar. Models for α are correlated in terms of the Nusselt number, defined as

Nu ≡ hcdp
kf

, (2.101)

where hc is related to α through Eq. (2.35). For beds of spheres and in the absence of wall

effects, aw is given by Eq. (2.91), which combined with Eq. (2.35) gives

α =
6(1− ε)
dp

Nukf
dp

. (2.102)

Gnielinski introduced modified length and velocity scales to recast a correlation originally

developed for convective heat transfer from a flat plate to a correlation applicable to packed

beds of spheres, giving

Nu = [1 + 1.5(1− ε)]
(

2 +
√
Nu2

lam +Nu2
turb

)
, (2.103)

where the laminar and turbulent Nusselt numbers, Nulam and Nuturb, respectively, are de-

fined as
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Nulam ≡ 0.664

(
Re

ε

)0.5

Pr1/3 , (2.104)

Nuturb ≡
0.037

(
Re
ε

)0.8
Pr

1 + 2.443
(
Re
ε

)−0.1
(Pr2/3 − 1)

, (2.105)

where Pr is the Prandtl number, defined as

Pr ≡ µCp
k

. (2.106)

Eq. (2.103) is valid for Re/ε ≤ 7.7× 105, 0.7 ≤ Pr ≤ 104, and 0.26 ≤ ε ≤ 0.935 [156].

A different model developed by KTA from experimental data more closely matching

gas-cooled PBR conditions gives [164]

Nu = 1.27
Pr1/3Re0.36

ε1.18
+ 0.033

Pr0.5Re0.86

ε1.07
. (2.107)

Eq. (2.107) is valid for 100 ≤ Re ≤ 105, 0.36 < ε < 0.42, Pr = 0.7. If flow into the bed is

unobstructed, Eq. (2.107) is halved in the first layer of pebbles.

Finally, a model developed by Wakao based on heat and mass transfer data gives [165]

Nu = 2 + 1.1Pr1/3Re0.6 . (2.108)

Eq. (2.108) is valid for 15 ≤ Re ≤ 8500 and ε = 0.4. Eqs. (2.103), (2.107), and (2.108) are

commonly used for analysis of PBRs [65, 75, 77, 78, 100, 104, 124, 125, 145, 158].

2.1.3.5 Effective Fluid Thermal Conductivity

The effective fluid thermal conductivity κf represents thermal dispersion in the fluid phase.

At high Reynolds numbers, thermal dispersion is negligible compared to convective heat

transfer [166, 167]. Therefore, most models of PBRs neglect thermal dispersion [124, 125],

in which case κ̃f = 0 and Eq. (2.40) becomes

κf = εkf . (2.109)

A model based on a linear combination of diffusive and convective dispersion limits instead

represents κf as

κf = εkf + C0Pekf , (2.110)
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where C0 is a scalar [138, 168–173]. While C0 is generally five times larger in the direction

aligned with the main flow than in orthogonal directions in cylindrical beds, a constant

value of 0.11 is used based on a large set of experimental measurements and applications

to PBRs [100, 168, 170–173]. With C0 = 0.11, Eq. (2.110) is valid for 20 < Re < 800 and

13.8 < dbed/dp < 47.6.

2.1.3.6 Effective Solid Thermal Conductivity

The effective solid thermal conductivity κs represents three effective heat transfer mecha-

nisms in the solid phase—1) conduction in a pebble and radiation between pebbles across a

transparent fluid, which is represented by κradiation; 2) conduction in a pebble and conduc-

tion in the fluid between pebbles, which is represented by κconduction; and 3) conduction in

a pebble and conduction between pebbles at contact areas, which is represented by κcontact.

These three heat transfer mechanisms are measured by assuming the fluid is stagnant to

avoid “double-counting” the convection effects represented by the convection kernels in Eqs.

(2.47c) and (2.48c). In LOCAs or other conditions where convective cooling capabilities are

severely degraded, κs represents the primary heat transfer removal mechanisms.

Models for the three components of κs are typically derived analytically from a unit cell

consisting of two half-spheres in contact surrounded by a cylindrical annulus of fluid [174].

Parallel and series heat transfer processes occur in the various regions of the unit cell, and

differences in BCs result in a multitude of κs models. Based on this unit cell, Breitbach and

Barthels develop a model for κradiation as

κradiation =

(1−√1− ε
)
ε+

√
1− ε

2/ε− 1

B + 1

B

1

1 + 4σT̄ 3dp
(2/ε−1)ks

 4σdpT̄
3 , (2.111)

where B is given as

B = 1.25

(
1− ε
ε

)10/9

, (2.112)

and T̄ is the bed average temperature, assumed to be the local solid temperature [100, 174].

Zehner, Bauer, and Schlünder (ZBS) develop a model for κconduction as [175]

κconduction =
(
1−
√

1− ε
)
kf +

√
1− ε KSFkf , (2.113)

where KSF is given3 as

3A typo is unfortunately present in Eq. (2.114) in the author’s 2019 journal article [105].
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KSF =
2

1−Bλ

[
B(1− λ)

(1−Bλ)2
ln

(
1

Bλ

)
− B − 1

1−Bλ
− B + 1

2

]
, (2.114)

and λ is the fluid-to-solid thermal conductivity ratio, defined as

λ =
kf
ks

. (2.115)

Finally, Chan and Tien develop a model for κcontact as [176]

κcontact =
1

2 · 0.53

NA

NL

(
dc
dp

)
dpks , (2.116)

where NA and NL are the number of spheres per unit area and length, respectively, in the

unit cell; and dc is the diameter of the contact area between touching spheres. The contact

diameter is estimated from Hertzian elastic deformation theory as [119]

dc
dp

=

(
3

4

1− ν2
p

E

4F

d2
p

)1/3

, (2.117)

where νp is the Poisson ratio of the solid, E is the elastic modulus of the solid, and F is the

collinear force between pebbles,

F = SF
P

NA

, (2.118)

where SF is a factor that relates the total force to the vertical component, assumed to be

the pressure P due to pebble weight. The pressure is approximated as

P = (1− ε∞)ρs∆z|g| , (2.119)

where ∆z is the distance below the top of the bed. Interpolation is performed between

ordered lattice NA, NL, and SF values given in Table 2.3.

Table 2.3: Parameters in the Chan and Tien model for various ordered packings [176].

Parameter Simple Cubic Body-Centered Cubic Face-Centered Cubic

NA 1/d2
p 3/4/d2

p

√
4/3/d2

p

NL 1/dp
√

3/dp
√

3/2/dp

SF 1
√

3/4 1/
√

6

ε 0.48 0.32 0.26
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Most models for κs are only applicable within the bulk region of the bed. Within a half

pebble diameter of the walls, better agreement with experimental data is obtained by either

using a different set of correlations altogether [100] or through application of a multiplicative

constant [101]. Two approaches are considered—applying a multiplier of 0.5 to κs or using

the Tsotsas model for κradiation [177],

κradiation =
(
1−
√

1− ε
) 4σT̄ 3dp
kf (2ε− 1)

+
√

1− ε
[
kf (2ε− 1)

4σT̄ 3dp
+ λ

]−1

. (2.120)

To obtain continuity with the bulk value of κradiation, the minimum of Eqs. (2.111) and (2.120)

is used in the near-wall region.

For general porous media not composed of randomly-heaped spheres, a volume average

of the phase thermal conductivities is typically used,

κs = εkf + (1− ε)ks . (2.121)

2.1.3.7 Fluid Properties

The intrinsic phase-averaged fluid properties ρf , Cp,f , µf , and kf are obtained from literature

correlations in terms of the intrinsic phase average temperature Tf . Models for specific fluids

and well as generic EOS are described at greater length in Appendix B.

2.2 Meso and Micro Scale Models

The porous media solid energy conservation equation derived in Section 2.1 describes the

evolution of the REV-averaged solid surface temperature Ts. The meso length scale char-

acterizes “representative” solid pebbles with surface temperature Ts within the macroscale

domain. Fig. 2.3 illustrates this concept; Fig. 2.3a shows a solid surface temperature distri-

bution obtained by solution of the macroscale model. Boundaries of solid pebbles are shown

as dotted black lines, but due to the REV averaging procedure, this mesoscale structure is

spatially homogenized on the macroscale4. If the mesoscale is assumed periodic with respect

to the coarser length scale, the solid surface temperature from the macroscale may be used

as a uniform surface temperature BC on a number of representative solid pebbles throughout

the macroscale domain. Fig. 2.3b shows the same pebbles from Fig. 2.3a, now with solid

4To avoid confusion with the CFPs within the fuel pebbles, the phrase “pebble” is used in reference to
Fig. 2.3, despite the solid phase not having spherical shape.
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boundaries whose colors represent the magnitude of the temperature BC on each pebble.

The color of each pebble’s boundary is obtained using the “eyedropper” feature in Microsoft

PowerPoint to obtain the color at the centroid of each pebble’s volume in Fig. 2.3a. Con-

ceptually, this process is quite similar to the process used to obtain the mesoscale surface

BC on pebbles.

(a) Macroscale Ts distribution (b) Mesoscale surface BCs

Figure 2.3: Schematic of the (a) macroscale REV-averaged solid surface temperature distribution
and (b) the uniform surface temperature BC on each mesoscale domain.

The spatial distribution of pebbles within the macroscale domain is usually unknown, so

the use of the identical pebble representation in Figs. 2.3a and 2.3b is purely pedagogical.

Given the assumption of mesoscale periodicity, the solid surface temperature at each position

~x in the macroscale domain represents a uniform surface temperature on a representative

solid pebble centered at ~x.

In solid-fluid mixtures consisting of a homogeneous or multi-layer homogeneous solid

phase, the heat equation may readily be applied to estimate the internal solid temperature

distribution,

ρSCp,S
∂TS
∂t
−∇ · (kS∇TS)− q̇S = 0 , (2.122)

where ρS is the solid density, Cp,S is the solid isobaric specific heat capacity, kS is the

solid thermal conductivity, TS is the internal solid temperature, and q̇S is the volumetric

heat source. The S subscript indicates that the thermal properties, volumetric heat source,

and temperature correspond to the interior of the solid phase, and is distinct from the
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s subscript used to denote the intrinsic phase-averaged quantities in the macroscale solid

energy conservation equations in Eqs. (2.47d) and (2.48d).

To reinforce the conceptual difference between s and S subscripts, consider a hypothetical

pebble design consisting of three concentric layers of UO2, helium, and zircaloy. Then, kS

might be specified as

kS(r, TS) =


kUO2(TS) r ≤ r1

khelium(TS) r1 < r ≤ r2

kzircaloy(TS) r2 ≤ r < dp/2 ,

(2.123)

where kUO2 , khelium, and kzircaloy are temperature-dependent thermal conductivity correla-

tions for each layer. The spatial dependence is listed in terms of the radial coordinate due

to the uniform surface temperature BC and interpretation of each representative pebble as

a sphere with radius dp/2. r1 indicates the boundary between the UO2 and helium regions

and r2 indicates the boundary between the helium and zircaloy regions. Similar piecewise

expressions would be used for the heat source and the other properties of the solid. Con-

versely, properties with an s subscript differ are homogenized over the entire solid phase,

which would be computed as some average of kUO2 , khelium, and kzircaloy.

Systems to which this multi-layer homogeneous solid modeling approach is readily appli-

cable include homogeneous graphite pebbles commonly used near outer reflectors in PBRs

and conventional multi-layer pincell fuels in LWRs. PBR fuels, on the other hand, are ex-

tremely heterogeneous. Fig. 2.4 shows a pictorial rendering of the fuel pebble design for

the PBMR, which is representative of many other PBR fuels [178]. The pebble consists of

two main regions—1) a central fuel-matrix region containing approximately 15,000 CFPs

randomly distributed in a graphite matrix and 2) a homogeneous graphite shell. The micro

length scale characterizes “representative” heterogeneous structures within the mesoscale do-

main; for application to the fuel-matrix region of PBR fuels, these heterogeneous structures

are the CFPs.

Many other solid fuel forms encountered in nuclear applications share this heterogeneous

character. Fully Ceramic Microencapsulated (FCM) fuels consist of conventional CFPs dis-

persed in a SiC matrix and fabricated into cylindrical pellets that are intended to replace

UO2 pellets in LWRs HTGRs [179, 180]. For the conversion of research reactors from high-

to low-enriched uranium, either the fuel loading or fissile atom density must be increased

to retain the same reactor performance. As the size of the reactors are typically fixed, high

fissile density dispersion fuels consisting of U3Si2 or UMo particles in an aluminum matrix



CHAPTER 2. MULTISCALE MODELS FOR PEBBLE BED REACTORS 58

have been used [181, 182]. A fast reactor fuel design consisting of metallic-coated fissile

kernels surrounded by a fuel powder matrix has also been proposed [123].

Figure 2.4: Schematic of the PBMR fuel pebble design with colors indicating material
composition.

The different material properties of the CFP layers, combined with the localization of

the fission heat source to the central CFP kernel, makes Eq. (2.122) incapable to capturing

the heat transfer in such a heterogeneous geometry. Rudimentary models based on volume-

averaging the fuel-matrix properties and heat source as inputs to Eq. (2.122) may significantly

underpredict fissile kernel temperatures [44, 183, 184].

Multiscale analysis of heterogeneous solids is a large research field, especially in the

analysis of conduction through composite materials; as such, a wide variety of methods have

been proposed and used. A brief discussion of this research area provides larger context to

this work.

One obvious multiscale model is based on extending the REV homogenization of a two-

phase fluid-solid domain performed in Section 2.1 to a two-phase soild-solid domain. By

interpreting the continuous fluid phase as the solid matrix and the discrete solid pebble phase

as the CFPs, the spatially homogenized conservation equations in Eq. (2.47) also apply to

the fuel-matrix region of PBR fuels. For solid-solid domains, the velocity ~V is zero such
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that closure requires specification of the volume fraction of the matrix phase, the effective

matrix conductivity, the effective particle conductivity, and the interphase convective heat

transfer coefficient. The latter three of these closures can be obtained as extensions of the

models described in Sections 2.1.3.5, 2.1.3.6, and 2.1.3.4, respectively. The models for κf are

evaluated with zero thermal dispersion; the models for κs are evaluated with the assumption

of a transparent solid matrix and no contact conduction component; and the models for α

are evaluated with zero Reynolds number. Other definitions for these closures from Monte

Carlo simulations [185] or mixed diffusion kernels [186] have been proposed.

A second method, referred to as “multiscale expansion,” expresses the temperature as

a Taylor series expansion of successive corrections of order 1, ς, ς2, · · ·, where ς is a small

parameter. This ansatz is then plugged into the heat conduction equation and like terms

collected to yield a separate differential equation for each correction [187].

While the spatial homogenization is a natural companion to the macroscale porous media

method, its implementation and use is considered as a future research activity. The multiscale

expansion method, while mathematically rigorous, results in many unique physics kernels

with low reuse potential in a modular computing framework. This method is therefore also

not pursued further. The remainder of this section describes the two models investigated

in this dissertation—the Homogeneous Layers (HL) method and the Heat Source Decom-

position (HSD) method. Justification for their use over the macroscale homogenization and

multiscale expansion methods is provided alongside a technical description.

2.2.1 The Homogeneous Layers Method

The HL method blends aspects of a multilayer homogeneous solid that can be described

by Eq. (2.122) with consideration of the CFP layers thermal resistance and heat source

localization. The HL method is based on symmetrically smearing heterogeneities into a 1D

multilayer solid while preserving volume fractions. Fig. 2.5 shows one possible representation

of the PBMR pebble in Fig. 2.4 with the HL method. The total mass of each material is

conserved and the geometric structure of the CFPs is approximated as a multilayer spherical

shell; 15,000 randomly-distributed particles have been simplified to a single pseudo-particle

at the expense of a distortion in the thermal resistance seen by the kernel and the separation

of a continuous matrix into isolated regions.

However, conserving volume fractions of the materials in the fuel-matrix region does not

provide a sufficient number of constraints to determine 1) the number of pseudo-particles,

2) the location of the pseudo-particles, and 3) the relative thicknesses of the “inner” and
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“outer” layers of non-kernel materials in the pseudo-particles. An infinite number of HL

representations of the pebble in Fig. 2.4 can be conceived, so several additional requirements

are arbitrarily imposed.

Figure 2.5: Schematic of the PBMR fuel pebble design as represented by the HL method; colors
indicate different material compositions.

The number of pseudo-particles Np is the only free parameter. First, the fuel-matrix

region is divided into Np equal-volume spherical shells. Consider a shell spanning ri ≤ r ≤ ro

with total volume V– given as

V– =
4

3
π
(
r3
o − r3

i

)
. (2.124)

For a CFP Packing Fraction (PF) in the fuel-matrix region of εcfp, 1−εcfp of the shell volume

is matrix material. The thickness of the matrix layer along the inner surface, or δi, is chosen

such that half of the matrix material is present in a layer along the inner surface. Likewise,

the thickness of the matrix layer along the outer surface, or δo, is chosen such that half of

the matrix material is present in a layer along the outer surface. In other words, the inner

matrix layer thickness is calculated as

4

3
π
[
(ri + δi)

3 − r3
i

]
=

1

2
(1− εcfp)V– , (2.125)
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while the outer matrix layer thickness is calculated as

4

3
π
[
r3
o − (ro − δo)3] =

1

2
(1− εcfp)V– . (2.126)

A similar process is then performed for the materials in the CFP, where the PF of each

material in the CFP is used to determine the relative volume occupied in the segment.

The HL method has no direct correlation to the actual geometry, and temperature solu-

tions should only be used to predict integral metrics such as maximum and average material-

wise temperatures. However, the HL method is considered here for two reasons —1) the

method is simple to implement and representative of the limitations in single-Partial Differ-

ential Equation (PDE) fuel models used in many legacy T/H tools; and 2) the HL method

has recently been used in preliminary steady-state modeling of FCM fuels [183] and transient

analysis of the Mark-1 PB-FHR [77] that is the subject of the modeling in Chapter 6.

2.2.2 The Heat Source Decomposition Method

The second multiscale model considered is the HSD method, which is based on the concept of

superposition solutions to linear differential equations [188]. If the heat equation is linear, it

may be split into different models for the meso and micro length scales that are superimposed

to obtain an approximate temperature solution. A description of the HSD method begins

by splitting the heterogeneous heat source q̇ into an average 〈q̇〉 and a fluctuation ˆ̇q,

q̇ = 〈q̇〉+ ˆ̇q , (2.127)

where the average of the fluctuation is zero. Each heat source on the RHS of Eq. (2.127) is

used in a separate conduction equation. The conduction equation based on the average heat

source is referred to as the “mesoscale” model,

ρmesoCp,meso
∂Tmeso

∂t
−∇ · (kmeso∇Tmeso)− 〈q̇〉 = 0 , (2.128)

ρmeso, Cp,meso, and kmeso represent the thermal properties of the heterogeneous domain ho-

mogenized in space according to various mixing approaches described in Section 2.2.4. The

mesoscale temperature Tmeso represents the long-wavelength thermal solution due to the

average heat source and average properties. Note that Eq. (2.128) is very similar to the

multi-layer homogeneous solid model in Eq. (2.122), except that all thermal properties are

spatially homogenized and the heat source is averaged over the domain.
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The conduction equation based on the fluctuating heat source is referred to as the

“microscale” model,

ρmicroCp,micro
∂Tmicro

∂t
−∇ · (kmicro∇Tmicro)− ˆ̇q = 0 , (2.129)

ρmicro, Cp,micro, and kmicro represent the thermal properties resolved on the fine scale; an S

subscript instead of the “micro” subscript would also have been appropriate. The microscale

temperature Tmicro represents the small-scale correction to the mesoscale solution.

The approximate temperature solution in the interior solid domain is the superposition

of the two solutions,

TS(~x) = Tmeso(~x) +

np∑
i=1

Tmicro,i(~xi) , (2.130)

where the summation over the number of CFPs np indicates that the microscale solution

Tmicro,i for the i-th particle is translated to the location ~xi corresponding to the center of

that particle. If pebble self-shielding effects are neglected such that the heat source in

each particle is identical, a microscale model may be constructed for a single particle and

translated to each of the np locations. This simplification is assumed throughout, though it

is not an inherent limitation of the method.

In summary, application of the HSD method to the PBMR pebble in Fig. 2.4 involves

the following calculation steps—

1. Decompose the heat source into an average and a fluctuation according to Eq. (2.127).

2. Solve the mesoscale model in Eq. (2.128) over the entire fuel-matrix region and subject

to the BCs described in Section 2.2.3.

3. Solve the microscale model in Eq. (2.129) over a single average CFP and subject to

the BCs described in Section 2.2.3.

4. Translate the microscale solution to the locations of the 15,000 CFPs and add to the

mesoscale solution according to Eq. (2.130).

An example in Section 4.4 provides a more intuitive grasp of the method. The HSD

method is considered here due to successful application to cylindrical CFP compacts that

share many similarities to PBR fuels [188].

In practice, the location of each CFP is unknown, preventing prediction of the temper-

ature at a specific location. However, often of greater practical interest is the estimation
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of integral metrics such as maximum and material-wise averaged temperatures. Even if the

locations of the heterogeneities are unknown, provided the CFPs are randomly dispersed

through the domain, the maximum and minimum temperatures in material i can be approx-

imated as

max (Ti) = max (Tmeso) + max (Tmicro,i) , (2.131)

min (Ti) = min (Tmeso) + min (Tmicro,i) . (2.132)

In other words, maximum and minimum temperatures are evaluated assuming a microscale

domain is situated precisely at the location of the maximum and minimum mesoscale tem-

peratures, respectively. This provides the bounding maximum and minimum temperatures

for material i, and hence the actual maximum and minimum temperatures will be within this

range given the limitations of the mixing methods used for mesoscale material properties.

In addition, if the mesoscale temperature solution varies over a longer length scale than

the size of the CFPs, the average temperature in material i can be approximated as

〈Ti〉 = 〈Tmeso〉+ 〈Tmicro,i〉 . (2.133)

Note that while Eq. (2.135) requires the average of the microscale solution over the entire

microscale domain to be zero, the i subscript in Eq. (2.133) represents the average over

only the i-th material layer in the microscale domain. The approximation in Eq. (2.133) is

frequently applicable to PBR fuels because the micro length scale is approximately 50 times

smaller than the meso length scale, and extremely different particle-to-particle powers or

non-uniform matrix-shell BCs are uncommon.

The most important assumption made in the HSD method is that the heat equation is

linear, and thus amenable to superposition techniques. Linearity implies that the thermal

properties are independent of temperature. In this research, the meso and micro scale models

are applied to steady-state analysis of the Mark-1 PB-FHR. The PB-FHR core temperature

rise of 100◦C, the close proximity of the CFPs to the pebble surface, and the distribution

of the pebble power among a relatively high number of CFPs per pebble result in pebble

temperature distributions that vary relatively little throughout the bed as compared to other

nuclear fuels such as UO2 pellet fuels.

Based on the solid properties provided in Appendix B, a ±100◦C change in temperature

relative to 800◦C results in approximately a ∓5%, ∓10%, and ∓10% change in the matrix

graphite, UO2, and SiC thermal conductivities, respectively. To the author’s knowledge,
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temperature-dependent models are unavailable for porous and pyrolitic graphite. These

relatively small variations with temperature justify the use of thermal properties evaluated

at the bed-averaged temperature.

Transient modeling, especially in scenarios with large power changes such as Reactivity

Insertion Accidents (RIAs), must consider temperature dependence. There are a number of

ways in which some property temperature dependence can be retained. The HSD method can

be applied iteratively in a number of discrete heterogeneous regions, each with unique thermal

properties evaluated at the average temperature of the region. Or, unique thermal properties

may be used for each pebble according to its location in the macroscale solid temperature

field. Future work will incorporate temperature dependence in the HSD method.

In most PBRs, of equal or greater concern is the dependence of thermal properties on

burnup. This dependence can be easily accommodated provided the burnup over a pebble

is assumed uniform by using constant thermal properties evaluated at a particular burnup

level.

2.2.3 Boundary and Initial Conditions

Most PBR fuels contain a surface layer of homogeneous graphite to protect the fuel-matrix

region from erosion. The surface temperature of a representative pebble in each computa-

tional element is taken as the average macroscale solid surface temperature over the element,

or Ts,avg. The HL method is applied over both the heterogeneous fuel-matrix region and the

homogeneous graphite shell, so a temperature BC on the pebble surface Γp is specified as

TS|Γp = Ts,avg . (2.134)

The HSD method involves coupled solutions on two length scales and summing those solu-

tions together as in Eq. (2.130). Unlike the HL method, the HSD method is only applied in

heterogeneous regions. In the homogeneous graphite shell, the temperature distribution is

obtained by solution of Eq. (2.122) with surface BC given by Eq. (2.134). At the interface

between the homogeneous shell and the fuel-matrix region, continuity of temperature and

heat flux with the homogeneous shell is required.

In addition, the microscale solution must have a zero average over the microscale domain

in order to represent a zero-average fluctuation on the long-wavelength mesoscale solution.

This is enforced by applying a Dirichlet BC on the boundary Γmicro of the microscale domain

such that the average of the microscale solution over the microscale volume V– micro is zero,
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Tmicro|Γm = − 1

V– micro

∫
V– micro

Tmicrod V– . (2.135)

2.2.4 Closures

This section describes models used for the meso and micro scale closures. Section 2.2.4.1

describes models for the locally resolved properties ρmicro, Cp,micro, and kmicro, while Section

2.2.4.2 describes models for the spatially homogenized mesoscale properties ρmeso, Cp,meso,

and kmeso.

2.2.4.1 Microscale Solid Properties

Both the HL and HSD methods require the internal solid properties ρS, Cp,S, and kS for clo-

sure; in the context of the HSD method, these properties have been represented equivalently

with the notation ρmicro, Cp,micro, and kmicro. Correlations for density, isobaric specific heat,

and thermal conductivity of pure, un-mixed, solid materials as a function of internal solid

temperature is provided in Appendix B.

2.2.4.2 Mesoscale Solid Properties

The spatially homogenized properties ρmeso, Cp,meso, and kmeso represent effective properties

of a heterogeneous solid. The homogenization models described in this section assume that

these effective properties are a combination of the properties of its constituents.

Consider a mixture of materials i for i = 1 ... Nm each with a phase fraction εi and generic

property χi. These phase fractions sum to unity. The simplest method for determining

average properties is the use of series combination,

χ =
Nm∑
i = 1

εiχi , (2.136)

which is equivalent to a volume average. Alternatively, a parallel combination may be used,

1

χ
=

Nm∑
i = 1

εi
χi

. (2.137)

Specifically for binary systems such as the particle-matrix system, many theoretical models

based on the notion of transport have been developed. Chiew and Glandt extended Maxwell’s
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potential theory for randomly-distributed, non-interacting, spheres [189] to higher order,

giving

χ = χc
1 + 2βnεd + (2β3

n − 0.1βn) ε2d + 0.05ε3d exp (4.5βn)

1− βnεd
, (2.138)

where βn is defined as

βn ≡
χd − χc
χd + 2χc

, (2.139)

and c subscripts indicate the continuous phase and d subscripts indicate the dispersed phase

[184, 190–192]. Lewis and Nielsen developed a similar extension to Maxwell’s theory as [189,

193]

χ = χc
1 + 1.5βmεd

1− βmεd
(
1 + 1−0.637

0.6372
εd
) , (2.140)

where βm is defined as

βm ≡
χd − χc
χd + 1.5χc

. (2.141)

For solids with multiple layers of heterogeneity, such as most PBR fuels, properties are first

homogenized beginning on the fine scales and then on increasingly coarse scales. In this

work, either Eq. (2.138) or Eq. (2.140) is used for averaging the fuel matrix with the CFPs,

while either Eq. (2.136) or Eq. (2.137) are used for all other averages.

Take the PBMR pebble in Fig. 2.4 as an example, with Eq. (2.136) used for all averages

except the CFPs with the matrix. The intrinsic phase average of a property χ over the

pebble is calculated as

χs = εfmχfm + (1− εfm)χgs , (2.142)

where εfm is the volume fraction of the pebble that is the fuel-matrix region, χfm is the

average of χ over the fuel-matrix region, and χgs is the property of the graphite shell. χfm is

calculated as

χfm = εcfpχcfp + (1− εcfp)χmat , (2.143)

where εcfp is the volume fraction of the fuel-matrix region that is CFPs; χcfp is the average of

χ over a CFP using the series average in Eq. (2.136); and χmat is the property of the matrix.
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For PBR applications, the mesoscale properties indicated generically by ρmeso, Cp,meso

and kmeso are equivalent to ρfm, Cp,fm and kfm. The intrinsic solid phase-averaged properties

ρs, Cp,s, and ks required in the macroscale model are computed using these homogenization

models over the entire pebble.

2.3 Limitations, Assumptions, and Knowledge Gaps

Many assumptions were made explicitly or implicitly in the derivation of the macroscale

spatially homogenized conservation equations in Section 2.1 and in the models selected for

the meso and micro length scales in Section 2.2. Assumptions have been made in 1) the

form of the local conservation equations in Eqs. (2.1)–(2.3) and (2.7), 2) in the spatial

homogenization procedure used to obtain the macroscale model in Eqs. (2.47) and (2.48),

and 3) in the implementation details of the HL and HSD methods. Existing closure models

applicable to PBRs also exhibit many limitations and knowledge gaps at all three length

scales. A brief summary is now provided of the limitations, assumptions, and knowledge

gaps that have the largest impact on the general applicability of this multiscale method to

modeling of PBRs.

Both the local mass conservation in Eq. (2.1) and the two-phase homogenization assume

a single phase fluid and no mass transfer between the fluid and solid phases. The macroscale

model therefore cannot model multi-phase fluid flow, such as water ingress events important

to safety analysis of HTGRs. The assumption of a pure, simple, fluid in the conservation of

energy equations excludes analysis of reacting flows. The macroscale BCs assume the flow

is subsonic.

There are several inherent limitations of the macroscale modeling approach with regards

to predicting key safety metrics such as maximum fuel temperature. Because porous me-

dia models are based on spatial averaging, all local flow and heat transfer effects are only

retained in an average sense. The distribution of temperature on an individual pebble sur-

face or reflector block is unknown. Resolved CFD simulations of pebbles show that surface

temperatures are tens to hundreds of degrees higher, depending on the flow conditions, at

stagnation points and near the low-flow recirculation regions behind pebbles than near thin,

main-flow aligned, gaps [43, 132, 149, 194–196]. This surface temperature distribution af-

fects the maximum fuel temperature, but the macroscale model is restricted to predicting

the meso and micro scale temperatures based on a surface-uniform solid temperature, and

hence will underpredict the true maximum fuel temperature. CFD simulations of fluid flow
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around pebbles with the CFPs resolved within each pebble are required to estimate the ex-

tent to which a uniform pebble surface temperature underpredicts the true maximum fuel

temperature. The large temperature margins to CFP failure often permit the use of safety

factors to conservatively account for this effect. However, reactors with higher power den-

sities and operating temperatures may have smaller margins to failure and require more

refined analysis.

Chemical reactions are frequently strong functions of temperature. In addition to under-

predicting the true maximum fuel temperature, the homogenization of the pebble surface

temperature will underpredict the variation in chemical reaction rates over the surface of a

pebble. For example, Fig. 2.6 shows a graphite pebble, originally spherical in shape, with

significant and nonuniform oxidation that may have been caused by nonuniform surface

temperature distributions. Similar stagnation-related chemical reactions have resulted in

coolant polymerization in organic-cooled reactors [197]. Extensive dimensional changes may

result in further amplification of surface temperature non-uniformity and complicate pebble

handling systems.

Spatial homogenization may also fail to correctly capture mass transfer processes such as

tritium uptake in the pebbles of lithium-bearing salt-cooled systems. Further investigation

is needed to better understand the effect of spatial homogenization on prediction of integral

chemical reaction and mass transfer rates.

Figure 2.6: Corroded graphite pebble, originally spherical in shape, with nonuniform oxidation
damage from the KFA Veluna experiment [198].

In addition to the assumptions and limitations inherent in the macroscale model, the

existing literature on macroscale closures is characterized by many knowledge gaps that affect
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the applicability of this form of multiscale analysis to PBRs. The remainder of this section

highlights several of these gaps in order to motivate future experimental programs aimed

at closure refinement. Most of the emphasis is placed on the interphase friction factor W ,

interphase convective heat transfer coefficient α, and effective solid thermal conductivity κs,

rather than on the porosity ε, Brinkman viscosity µ̃, and effective fluid thermal conductivity

κf . This emphasis is justified because the field of DEM modeling is well-established and

equipped with methods for predicting porosity in complex domains, provided accurate data

is available for pebble material properties such as roughness and elastic modulus [199–202].

However, the assumption of a time-independent porosity precludes analysis of large-motion

events such as earthquakes, and future work may incorporate DEM modeling to obtain more

accurate predictions of porosity. Further, the Brinkman viscosity and effective fluid thermal

conductivity are seldom used in modeling of PBRs, and flow and temperature predictions

are relatively insensitive to their selection [100, 101].

Generally speaking, models for W , α, and κs are based on experimental data measured

at the inlet and outlet of a bed. For example, a model for W would be developed by

fitting pressure drop data obtained as differences between the inlet and outlet pressure

along the centerline of a pipe containing a packed bed. The most significant knowledge

gap for macroscale closures is the lack of a spatial dependence that explicitly considers the

very different T/H effects in the near-wall versus bulk regions of the bed. The porosity

that appears in these closure models represents the bed-averaged porosity. A common, but

crude, approximation attempts to extend bulk bed correlations to the near-wall regions by

interpreting the porosity as the local porosity [131, 137, 163, 203]. However, many of the

macroscale closures predict unphysical behavior as porosity tends to unity. For example, the

hydraulic diameter in Eq. (2.92) and κradiation in Eq. (2.111) both tend to infinity.

As discussed in greater detail in Chapter 5, the lack of models correlated for the near-

wall region may contribute to significantly higher errors in temperature predictions in these

regions [44]. Experimental and numerical investigations are required to develop macroscale

closures applicable to the near-wall region, as well as supporting parameters such as the

hydraulic diameter. The Nuclear Energy Advanced Modeling and Simulation (NEAMS)

funding call in 2019 titled “Near-Wall Gas-Flow Correlations in Pebble Bed Reactors” points

to the importance of addressing this knowledge gap for PBR thermal analysis [204].

Even in the bulk region, a number of important assumptions have been made. The

model for κradiation in Eq. (2.111) applies to a transparent fluid. While many pure salts are

broadly transparent, absorption coefficients may be five times higher upon the addition of

impurities such as chromium [205]. In addition, few macroscale closure models consider any



CHAPTER 2. MULTISCALE MODELS FOR PEBBLE BED REACTORS 70

entrance length effects, and inconsistencies are commonly observed in proposed modifications

for entrance regions. For example, the Nusselt number is generally larger in the first few

sphere layers because of thinner boundary layers [194, 196]. However, others have observed

the opposite [164] or no effect [196], which may be attributable to differences in packing

structure and the counteracting effect of absent turbulent wakes from upstream pebbles

[156].

At the meso and micro length scales, the heterogeneous pebble geometry has been dra-

matically simplified through either the HL or HSD method. In this dissertation, the effect

of self-shielding on CFP power distribution has been neglected, and thermal properties in

the HSD are assumed independent of temperature.

Finally, all three length scales are affected by uncertainties in fundamental fluid and solid

properties, as well as in their effective mixed state. The strong dose dependence on graphite

properties is neglected [206], and the dependence of CFP layer properties on manufacturing

conditions is not considered. In the mixing of component properties to estimate effective

properties, it is assumed that the properties of an individual component in a mixture are

the same as the properties of the corresponding pure material. This simplification neglects

differences in microstructure between the pure components and the mixture, which can be

significant in graphite and FCM fuels [192, 207].
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Chapter 3

Pronghorn: Software for Multiscale

Analysis

The tightly-coupled multiscale and multiphysics nature of PBRs, the importance of 3D

unstructured meshing capabilities, and the restrictive emphasis of earlier modeling tools on

gas coolants motivates the development of a new modeling tool in this research to enable

application of the models described in Chapter 2 to multiscale analysis of single-phase PBRs.

This new application, Pronghorn, is a multi-dimensional, coarse-mesh, reactor analysis tool

intended to accelerate the design and analysis cycle for PBRs with computing requirements

within reach of industry and regulatory stakeholders.

Multiscale analysis at its core is a form of multiphysics analysis—a set of models are

coupled together to account for physics feedback effects between various length scales. The

key functional requirements in the development of new PBR multiscale simulation capabili-

ties are 1) tightly-coupled solution and data transfer schemes between multiple physics and

length scales relevant to nuclear reactors, 2) efficient simulation on unstructured meshes, and

3) flexible source code modification to include closures for non-gas coolants. Additionally,

new capabilities should be developed with the goal of enhancing modeling tools available to

the nuclear engineering community and designed with reuse and longevity in mind.

Many commercial CFD applications such as COMSOL and FLUENT include porous

media models for fluid flow on unstructured meshes with capacity for user-defined closures

and native multiphysics coupling with other physics domains [103, 208]. However, neutron

transport physics, perhaps the most important feedback effect on T/H physics, are often

not available in these commercial applications due to export control regulations. While

most commercial CFD tools include a model builder for implementation of user-defined
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PDEs, individual efforts in this area are difficult to reuse across multiple research groups and

institutions and often require custom-built testing systems to ensure high software quality.

For example, a number of research groups have separately implemented deterministic neutron

transport models into local COMSOL license checkouts, duplicating many person-hours of

effort that could have been avoided through the use of existing neutron transport solvers

[209–213]. The heavy use of empirical models for fission gas buildup and irradiation-induced

microstructural changes in nuclear materials modeling makes implementation of this second

important physics domain in commercial CFD tools an additional challenge to comprehensive

multiphysics analysis for PBRs. Difficulty parallelizing user-defined functions has in some

cases restricted these types of software development to serial implementations [104].

Commercial applications are also usually closed source, complicating or precluding the

adjustment of the numerical solution procedure or physics model. For instance, implementa-

tion of acceleration methods to achieve robust numerical performance for neutron transport

simulations of a wide range of nuclear systems [214] may be challenging. The closed source

nature of commercial tools is likely a primary motivation for the previously-cited researchers

resorting to implementation of deterministic transport models in COMSOL as opposed to

coupling an existing tool to COMSOL. The combination of license costs in the thousands

to tens of thousands of dollars range, closed source code, and difficulty distributing new

physics capabilities within the nuclear engineering community prompt alternative strategies

for numerical implementation of the models in Chapter 2.

Within the nuclear engineering field, several non-commercial tools exist for modeling

PBR T/H. Examples of these tools include the German Forschungszentrum Jülich Research

Centre THERMIX application, widely used in the design and analysis of PBRs in Germany

and South Africa [65, 101, 215, 216]; the University of Michigan and Nuclear Regulatory

Commission (NRC) Advanced Gas REactor Evaluator (AGREE) application frequently ap-

plied to prismatic gas reactor analysis [206]; the Korean Atomic Energy Research Institute

(KAERI) GAMMA application [147]; the Rensselaer Polytechnic Institute PEBble Fluid Dy-

namics (PEBFD) application [125]; and the Iranian Sharif University of Technology Thermo

Hydraulic Porous Program (THPP) application [108].

A significant limitation of many of these tools is the use of structured meshes that are

frequently also restricted to 2D r-z geometries. Unstructured meshes are necessary for

representing the diverging and converging cones common to many PBR beds, while 3D

geometries are needed to capture asymmetric power profiles, BCs, and transients such as

control rod ejection. THERMIX and THPP only include a friction-dominated model, and

may not be capable of accurately simulating plena or high-Reynolds number flows. Several
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applications are also restricted to the ideal gas EOS for fluid properties, preventing simulation

of salt-cooled systems.

While modifying one or more of these tools to solve the multiscale models in Chapter

2 on a 3D unstructured mesh is certainly an option, the age of many of the applications

may make source code changes and maintenance challenging. Further, modification of one

of these tools does not directly address the objective of tightly-coupled solution and data

transfer with other physics domains relevant to PBRs. For these reasons, development of a

new application, Pronghorn, on an existing and modern multi-application computing frame-

work is the best approach to meet the key design objectives of tightly-coupled multiphysics,

unstructured meshing, and source flexibility. For reasons to follow, the MOOSE framework

is selected as the base computing platform for the present work.

MOOSE is an open source, distributed- and shared-memory parallel, C++ FE framework

developed by Idaho National Laboratory (INL) that enables tightly-coupled implicit solution

of nonlinear equations [217, 218]. MOOSE enables practitioners familiar with the applied

math aspects of their application areas to translate those concepts into portable, extensible,

and high performance software in a method similar to other general purpose toolkits such

as deal.II [219] and OpenFOAM [200]. The MOOSE framework combines the LibMesh FE

library [220] with the nonlinear solution and preconditioning capabilities of the Portable,

Extensible Toolkit for Scientific Computation (PETSc) together in a modular structure to

allow rapid production of new simulation tools.

The use of a FE spatial discretization permits the use of unstructured meshes based on a

wide variety of element types, and the Parallel Graph Partitioning and Fill-reducing Matrix

Ordering (ParMETIS) library provides Message Passing Interface (MPI)-based mesh parti-

tioning, while LibMesh provides Adaptive Mesh Refinement (AMR). MOOSE simulations

have demonstrated scalability to over 30,000 cores [221]. Nonlinear solution is based on the

Jacobian-Free Newton Krylov (JFNK) method with Jacobians that can optionally be cal-

culated by Automatic Differentiation (AD) to greatly reduce application development time

and improve numerical convergence.

A simulation tool built on the MOOSE framework is referred to as an “application.” The

hierarchical design and common class inheritance permit in-memory multiphysics coupling of

these applications to enable prediction of complex interacting phenomena. Fig. 3.1 shows a

hierarchical depiction of all of the applications tracked by MOOSE’s Continuous Integration

(CI) system and their relationships to one another [222]. Text within rectangular boxes are

the names of MOOSE applications, while an arrow pointing from box A to box B indicates

that application A depends upon, or “consumes” application B. The applications shown in
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the boxes are a mix of physics modules and fluid property implementations. All applications

depend upon the MOOSE framework, which consists of the framework and open source

physics modules listed at the bottom of the MOOSE-labeled rectangle.

Figure 3.1: Hierarchical summary of all applications tracked by MOOSE’s CI system and their
relationships to one another [222].

Examples of applications in the nuclear engineering space include Rattlesnake neutron

transport [223]; BISON nuclear fuels performance [224]; Reactor Excursion and Leak Anal-

ysis Program (RELAP-7) and Safety Analysis Module (SAM) systems-level T/H [225, 226];

and MARMOT phase field [227]. The flexible multi-application data transfer and com-

munication design also permits wrapping of external applications by selectively overriding

LibMesh FE routines to call external libraries. Examples of external wrappings include

OpenMC Monte Carlo particle transport and Nek5000 spectral element CFD with an ap-

plication named Okapi [228–230]. The MOOSE framework also contains a number of open

source modules available to all applications, such as a common set of fluid properties and

functional expansion data transfer capabilities [231].

The open source nature of the framework, large user and developer community in areas

relevant to PBR analysis, native capability for in-memory multiphysics simulations with both

peer MOOSE applications and external wrapped tools, modular software design, and use of

state-of-the-art 3D unstructured mesh FE and solver libraries all contribute to MOOSE being
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the ideal framework upon which to build the next-generation PBR T/H solver. As part of

this research, the Pronghorn application was developed from scratch to capitalize on the

latest advancements in the MOOSE framework and its supporting libraries. The remainder

of this chapter describes the numerical methods employed for discretization and solution of

the models described in Chapter 2. Section 3.1 describes the FE spatial discretization and

Method of Lines (MOL) time discretization. Section 3.2 discusses the Picard iteration of

multiple applications and nonlinear solution with Newton-Krylov methods. Section 3.3 then

concludes with a brief discussion of the software engineering design.

Throughout this discussion, several brief examples of C++ source code are shown to

highlight the modular nature and ease-of-development to encourage other applied math

practitioners to consider the MOOSE framework for their applications.

3.1 Finite Element Discretization

This section discusses the discretization of the multiscale models described in Chapter 2 with

the continuous FEM. A comprehensive description of the FEM is beyond the present scope,

and many other texts provide excellent coverage of the method [232–234].

The objective of this section is to introduce the salient aspects of the method with regards

to work performed in this dissertation—that is, implementation of the multiscale models in

Chapter 2 within a FE framework. Following a high-level discussion of the FEM, Section

3.1.1 presents the weak forms of the governing equations, Section 3.1.2 describes the selection

of basis and weight functions, and Section 3.1.3 describes the time discretization.

The FEM is characterized by an elegant software implementation and computational

efficiency that make it the method of choice for many physics applications, especially for

systems with symmetric operators that take advantage of the FEM’s best approximation

properties for self-adjoint differential equations [232, 233, 235]. Unfortunately, the FEM

is conditionally unstable for advection-diffusion equations such as those in Eqs. (2.47) and

(2.48). Section 3.1.4 therefore concludes this section with a description of a stabilization

method implemented to address this shortcoming.

The FEM is an element-wise application of a Galerkin weighted residual method; weighted

residual methods seek an approximate solution to a differential equation with the assumed

form
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u =
N∑

j = 1

Cjφj , (3.1)

where u is the approximate solution, Cj are scalar coefficients, φj are shape functions, and

N is the number of terms in the summation. The discussion in this section is presented in

terms of a generic differential equation

K(u∗) = f , (3.2)

where K is a nonlinear operator that acts on the true solution u∗ and f is a function that

does not contain u∗. In general, the approximate solution in Eq. (3.1) will not equal the true

solution u∗ such that the residual R is nonzero,

R(u) ≡ K(u)− f . (3.3)

Weighted residual methods seek the coefficients Cj in Eq. (3.1) that minimize the residual

with respect to a particular norm. All weighted residual methods can be written in the form∫
Ω

R∗ψ dΩ = 0 , (3.4)

where a ∗ superscript indicates the Hermitian complex conjugate, Ω is the phase space, and

ψ is a weight function, also referred to as a “test” function. The choice of norm in which to

minimize the residual determines the particular form of ψ. The Galerkin weighted residual

method chooses ψ in an attempt to minimize the error e, defined as

e ≡ u∗ − u . (3.5)

The error is minimized when e is orthogonal to u, or∫
Ω

e∗u dΩ = 0 . (3.6)

The error is in general unknown because the true solution is in general unknown. However,

a good approximation of the error is the residual, since the residual is zero when the error

is zero. Substituting the residual for the error in Eq. (3.6), the Galerkin weighted residual

method seeks a solution that minimizes the residual by requiring that it be orthogonal to

the approximate solution,
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∫
Ω

R∗u dΩ = 0 . (3.7)

Comparing Eqs. (3.4) and (3.7), it is seen that the weight function must lie in the same space

as the approximate solution with the exception of the trivial solution. Therefore, ψ may be

expressed in the same basis as u in Eq. (3.1),

ψ =
N∑

i = 1

Diφi , (3.8)

where different scalar coefficients Di are used for generality and to contrast with Cj in Eq.

(3.1). More specifically, a Galerkin method with the approximate solution and weight func-

tion sharing the same function space is referred to as a Bubnov-Galerkin method. Writing

Eq. (3.7) with u given by Eq. (3.1) and ψ given by Eq. (3.8) gives∫
Ω

[
R

(
N∑
j = 1

Cjφj

)]∗ N∑
i = 1

φi dΩ = 0 , (3.9)

where R(u) indicates that the residual R may be a general nonlinear function of u. Requiring

Eq. (3.9) to hold for all j ∈ N results in N equations for the N coefficients in u,∫
Ω

[R (Cjφj)]
∗ φi dΩ = 0 for j ∈ N . (3.10)

3.1.1 The Weak Form

To ensure a finite integral in Eq. (3.10), the shape functions must be sufficiently differentiable.

Define the Hilbert-space norm in 1D for a function χ as

‖χ‖Hl(Ω) ≡

[
l∑

j = 0

∫
Ω

∂jχ

∂xj
∂jχ

∂xj
dΩ

]1/l

, (3.11)

where l > 0 is an integer. For a weighted residual statement with highest derivative l on the

shape functions, finite integrals require that the H l(Ω) norm be finite, or that u ∈ H l(Ω) and

ψ ∈ H l(Ω). If the residual R contains higher than first-order derivatives in u, differentiability

requirements of the shape functions can be reduced by integrating the residual by parts to

transfer some differentiability requirements to the weight function. The resulting equation

is referred to as the “weak form” of the original “strong form” equation. Provided the weak
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form holds for all choices of ψ, the weak form is equivalent to Eq. (3.10) and is solved in this

work in place of Eq. (3.10).

The weak form of the Navier-Stokes model is obtained multiplying Eq. (2.47) by ψ and

integrating by parts where possible, giving∫
Ω

ε
∂ρf
∂t

ψdΩ−
∫

Ω

ερf ~V · ∇ψdΩ +

∫
Γ

ερf ~V · n̂ψdΓ = 0 ,
(3.12a)

∫
Ω

[
ε
∂(ρfVi)

∂t
− ερfgi +WρfVi − P

∂ε

∂xi

]
ψdΩ−

∫
Ω

ερfVi~V · ∇ψdΩ +∫
Ω

(
−εP ∂ψ

∂xi
+ µ̃∇Vi · ∇ψ

)
dΩ +

∫
Γ

(
ερfVi~V · n̂+ εPni − µ̃∇Vi · n̂

)
ψdΓ = 0 , (3.12b)

∫
Ω

[
ε
∂(ρfEf )

∂t
− ερf~g · ~V + α(Tf − Ts)− q̇f

]
ψdΩ −

∫
Ω

εHfρf ~V · ∇ψdΩ +∫
Ω

κf∇Tf · ∇ψdΩ +

∫
Γ

(
εHfρf ~V · n̂− κf∇Tf · n̂

)
ψdΓ = 0 , (3.12c)

∫
Ω

[
(1− ε)ρsCp,s

∂Ts
∂t

+ α(Ts − Tf )− q̇s
]
ψdΩ +∫

Ω

κs∇Ts · ∇ψdΩ−
∫

Γ

κs∇Ts · n̂ψdΓ = 0 .

(3.12d)

Similarly, the weak form of the friction-dominated model in Eq. (2.48) is∫
Ω

ε
∂ρf
∂t

ψdΩ−
∫

Ω

[
ε2

W
(ρf~g −∇P )

]
· ∇ψdΩ +

∫
Γ

[
ε2

W
(ρf~g −∇P )

]
ψdΓ = 0 ,

(3.13a)

∫
Ω

[
−ερfgi +WρfVi − P

∂ε

∂xi

]
ψdΩ −

∫
Ω

εP
∂ψ

∂xi
dΩ +

∫
Γ

εPniψdΓ = 0 ,
(3.13b)

∫
Ω

[
ερfCp,f

∂Tf
∂t

+ ερfCp,f ~V · ∇Tf + α(Tf − Ts)− q̇f
]
ψdΩ +∫

Ω

κf∇Tf · ∇ψdΩ−
∫

Γ

κf∇Tf · n̂ψdΓ = 0 , (3.13c)
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∫
Ω

[
(1− ε)ρsCp,s

∂Ts
∂t

+ α(Ts − Tf )− q̇s
]
ψdΩ +∫

Ω

κs∇Ts · ∇ψdΩ−
∫

Γ

κs∇Ts · n̂ψdΓ = 0 .

(3.13d)

In Eqs. (3.12b) and (3.13b), i = 1, 2, 3 represents each component of the momentum equation.

The pressure kernel with strong form ε∇P is first written as ∇(εP )−P∇ε; then, the ∇(εP )

term is integrated by parts so that pressure appears in a boundary integral to provide a

natural pressure BC.

Finally, the weak form of the meso and micro scale models in Eqs. (2.122), (2.128), and

(2.129) is ∫
Ω

[
ρCp,

∂T
∂t

ψ + k∇T · ∇ψ +Qψ

]
dΩ−

∫
Γ

k∇T · n̂ψdΓ = 0 , (3.14)

where  = S and Q = q̇s for Eq. (2.122);  = meso and Q = 〈q̇〉 for Eq. (2.128); and  = micro

and Q = ˆ̇q for Eq. (2.129).

The MOOSE framework is designed based on object-oriented programming principles

that abstract much of the numerical implementation of Eqs. (3.12)–(3.14) from the software

developer, such as numeric integration, physical-to-master mappings, and looping over the

basis and weight function summations in Eqs. (3.1) and (3.8), to MOOSE framework classes

and the LibMesh FE library. Application developers simply need to override the quadrature

point residual calculation of base Kernel and BoundaryCondition classes to represent their

desired physics. For example, the source code responsible for residual calculation of the

diffusive kernel contribution to Eqs. (3.12c) and (3.13c) at a quadrature point is shown in

Listing 3.1.

Real

FluidEnergyDiffusiveFlux :: computeQpResidual ()

{

return _kappa_f[_qp] * _grad_T_fluid[_qp] * _grad_test[_i][_qp];

}

Listing 3.1: Pronghorn source code calculation of
∫

Ω κf∇Tf · ∇ψdΩ.

FluidEnergyDiffusiveFlux is the kernel class name and computeQpResidual is the

name of the base Kernel method that provides the residual calculation at a quadrature point.

kappa f is the name of the κf material property coupled to the kernel; grad T fluid is the

name of the gradient of the fluid temperature ∇Tf coupled to the kernel; and grad test is

the name of the gradient of the weight function ∇ψ, indexed by i as shown in Eq. (3.8).
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The base Kernel class loops over the computeQpResidual method at each quadrature point,

with index qp, to construct the discretized residual.

Each of the kernels and BCs in Eqs. (3.12)–(3.14) are implemented in this manner in

Pronghorn. Intermediate Material classes express all possible solution variables—P and

ρf for the mass equation; ~V , ~v, ρf ~V , and ρf~v for the momentum equations; Tf and ρfEf

for the fluid energy equation; and Ts for the solid energy equation—as material properties.

This enables a flexible coupling in the class constructors that is agnostic to the underlying

set of solution variables. Unless otherwise noted, all integrals are evaluated with Gaussian

quadrature rules in this work.

The multiscale closures are implemented by overriding the property evaluation of base

Material classes. For example, the source code responsible for calculation of the effective

fluid thermal conductivity κf at a quadrature point is shown in Listing 3.2.

void

LinearPecletKappaFluid :: computeQpProperties ()

{

_kappa_f[_qp] = _k_f[_qp] * (_epsilon[_qp] + _C0 * _Pe[_qp]);

}

Listing 3.2: Pronghorn source code evaluation of κf by Eq. (2.110).

LinearPecletKappaFluid is the material class name corresponding to the closure in Eq.

(2.110) and computeQpProperties is the name of the base Material method that provides

the material property calculation at a quadrature point. kappa f is the name of the com-

puted property. epsilon, k f, and Pe are the names of the porosity ε, fluid thermal

conductivity kf , and Peclet number Pe, materials coupled to the LinearPecletKappaFluid

material, respectively. C0 is the name of a user-specified scaling parameter. Each of the

closures in Eqs. (3.12)–(3.14) are implemented in this manner in Pronghorn and consumed

by kernel and BC classes as required in the weak form.

3.1.2 The Selection of Basis and Weight Functions

The FEM solves the weak form in a domain discretized into computational elements. Fig.

3.2 shows an example discretization of a rectangular domain into a number of triangular

elements. Each black dot represents a “node;” only the nodes coinciding with the highlighted

element are shown.

If ψ and φ are nonzero over the entire domain, every region of the problem is tightly
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coupled to all other regions, resulting in a dense matrix system. A sparse system can be

attained by restricting the shape functions to a nodal basis such that

φi(Ωj) = δij , (3.15)

where Ωj is the coordinate describing the location of the j-th node and δij is the Kronecker

delta. The number of nodes in the entire domain, N , determines the number of basis

functions used in the approximate solution in Eq. (3.1). Unless otherwise noted, first-order

Lagrange basis functions are used for all solution variables in this work, though the MOOSE

framework supports higher orders and many other shape function families, such as Hermite

and monomial functions.

Figure 3.2: Illustration of a continuous domain discretized into triangular finite elements.

The boundary terms in Eqs. (3.12)–(3.14) are integrals over the entire boundary. The

boundary may in general be decomposed into the portion on which Dirichelt conditions are

specified, ΓDirichlet, and the portion on which Neumann conditions are specified, ΓNeumann.

The boundary is the union of these two boundaries

Γ ≡ ΓDirichlet ∪ ΓNeumann , (3.16)

where ΓDirichlet∩ΓNeumann = ∅. On Dirichlet boundaries, the fluxes appearing in the boundary

integrals may be unknown. Rather than back-calculating the flux that results in the desired

Dirichlet condition on the primal variable, Dirichlet conditions are imposed by requiring

ψ = 0 for Γ ∈ ΓDirichlet . (3.17)

All Dirichlet BCs in Pronghorn are strongly enforced. The DirichletBC class, a child of the

BoundaryCondition class, abstracts the implementation details of the “removal” of Dirichlet

nodes from the solve.
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3.1.3 Method of Lines Time Stepping

The expansion used for the approximate solution in Eq. (3.1) is assumed separable in space

and time. That is, the expansion coefficients Cj are only functions of time, while the basis

functions φj are only functions of space. All time derivatives in Eqs. (3.12)–(3.14) are

replaced by Finite Difference (FD) approximations, a method that is often referred to as the

MOL. For time step m+ 1, all other terms in the weak form are evaluated at time m or time

m+ 1 for explicit and implicit FD approximations, respectively.

The MOOSE framework abstracts much of the details of the MOL implementation to

MOOSE framework classes and the PETSc library. For instance, there is no time indexing

in the variables and material properties referenced in the example source snippets shown in

Listings 3.1 and 3.2. Application developers take advantage of polymorphism to represent

time derivatives in the source implementation agnostic of the discretization, similar to the

spatial representation shown in Section 3.1.1. For example, the source code responsible

for residual calculation of the time derivative contribution to Eqs. (3.12a) and (3.13a) at a

quadrature point is shown in Listing 3.3.

Real

MassTimeDerivative :: computeQpResidual ()

{

return _epsilon[_qp] * _drho_f_dt[_qp] * _test[_i][_qp];

}

Listing 3.3: Pronghorn source code calculation of
∫

Ω ε
∂ρf
∂t ψdΩ.

MassTimeDerivative is the kernel class name, drho f dt is the name of the density

time derivative ∂ρf/∂t material coupled to the kernel, and test is the name of the weight

function ψ. Other terms have the same interpretation as in Listings 3.1 and 3.2. Unless

otherwise noted, an implicit Euler discretization is used for all time derivatives in this work.

3.1.4 SUPG Stabilization

The continuous FEM is well-known to be conditionally stable for convection-diffusion equa-

tions. Consider the 1D, linear convection-diffusion equation,

− αd
∂2υ

∂x2
+ V

∂υ

∂x
= 0 , (3.18)

where αd is the diffusivity, V is the velocity, and υ is a transported scalar. For a linear
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Lagrange interpolation on uniform elements, the stability criterion for Eq. (3.18) is straight-

forward to derive and is shown elsewhere [80]. This derivation yields

Peel > 1 , (3.19)

where Peel is the element Peclet number, defined as

Peel ≡
‖~V ‖he

2αd
, (3.20)

where he is the element size. For generality, Eq. (3.20) is shown in terms of a general

diffusivity αd rather than the thermal diffusivity k/ρCp used in the definition of Pe in Eq.

(2.54).

It can be shown that a linear Lagrange interpolation of Eq. (3.18) on uniform elements is

equivalent to a central FD approximation of both the diffusive and convective kernels. This

symmetric discretization results in non-physical nodal oscillations for flows with Peel > 1

with magnitudes that tend to increase with Peel [80, 232].

Fig. 3.3 illustrates typical convective and diffusive processes transporting a passive scalar

in both space and time between the same IC and the same end time. While diffusion is a

symmetric phenomenon, convection transports in the direction of velocity such that the flow

at a point is only dependent on the upstream conditions. This observation is the underlying

cause of the numeric instability—a symmetric discretization of the convective derivative

is a poor representation of convective physics unless the symmetry of the diffusive process

dominates the upwind nature of convection, or Peel < 1. The same conclusion can be shown

in a more rigorous manner in terms of the self-adjoint and non-self-adjoint properties of

diffusion and convection operators, respectively [232].

For systems with some diffusion, the mesh can in theory be refined until Peel < 1;

however, this strategy is often prohibitively expensive. This section describes an upwind

Petrov-Galerkin method that supplements the weak forms in the fluid conservation equa-

tions with additional integrals that act to discretize the convective kernels with upwind

approximations to better match the directional dependence of convection.

Petrov-Galerkin methods differ from Bubnov-Galerkin methods in that the approximate

solution and the weight function no longer live in the same function space; that is, ψ is

no longer given by Eq. (3.8). For the Petrov-Galerkin methods considered here, the weight

function is instead given as the sum of the original element-continuous weight functions ψ

and an element-discontinuous function ψ?,
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initial

final

(a) Convective phenomenon

initial

final

(b) Diffusive phenomenon

Figure 3.3: Difference between (a) convective (flow from left to right) and (b) diffusive transport
of a passive scalar from the same IC (—) to the same end time (- - -).

ψ̃ = ψ + ψ? , (3.21)

where ψ̃ represents the Petrov-Galerkin weight function and ψ is given by Eq. (3.8). The

weighted residual statement in Eq. (3.10) becomes∫
Ω

[R (Cjφj)]
∗ φi dΩ +

∫
Ω

[R (Cjφj)]
∗ ψ?i dΩ = 0 for j ∈ N . (3.22)

The first integral is the same Bubnov-Galerkin weighted residual statement from Eq. (3.10).

While the first integral in Eq. (3.22) is integrated by parts where possible, the second integral

cannot be integrated by parts because ψ? is discontinuous across elements. If the approximate

solution shape functions are sufficiently differentiable to have nonzero and finite derivatives

in the second term, the Petrov-Galerkin method is consistent—that is, the solution to Eq.

(3.22) is the same as the solution to the Bubnov-Galerkin form in Eq. (3.10).

For a linear Lagrange interpolation of Eq. (3.18) on uniform elements, selecting ψ? as

ψ? =
he

2‖~V ‖
~V · ∇ψ (3.23)

is equivalent to a central FD approximation of the diffusive kernel and an upwind approxi-

mation of the convective kernel that eliminates the Peel stability criterion [80, 232, 236].

In 1981, Brooks developed a consistent generalization of Eq. (3.23) to multi-dimensional,

coupled, systems of convection-diffusion equations known as the Streamline Upwind Petrov-

Galerkin (SUPG) method that is now widely used in continuous FEM discretizations of
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convection-diffusion systems [110, 232, 237–242]. The remainder of this section describes

the application of the SUPG stabilization scheme to the macroscale equations described in

Chapter 2. A detailed discussion of the stabilization is presented to illustrate the extension

of the original SUPG method to porous flows.

The Navier-Stokes and friction-dominated fluid conservation equations are sufficiently

different to warrant separate discussions of the SUPG stabilization for each model. Stabi-

lization of the Navier-Stokes model is described first due to its similarity to the conservative

forms of convection-diffusion equations for which the SUPG method was originally formu-

lated. Rewrite the fluid conservation equations in the Navier-Stokes model in Eq. (2.47) in

compact notation as

∂(ε~U)

∂t
+
∂(ε ~Fi)

∂xi
− ∂ ~Gi

∂xi
+ ~S = ~0 , (3.24)

where ~U is the vector of conserved quantities,

~U ≡



ρf

ρfV1

ρfV2

ρfV3

ρfEf


; (3.25)

~Fi is the inviscid flux vector in the i-th dimension,

~Fi ≡



ρfVi

ρfV1Vi + Pδ1i

ρfV2Vi + Pδ2i

ρfV3Vi + Pδ3i

ρfViHf


; (3.26)

~Gi is the diffusive flux vector in the i-th dimension,
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~Gi ≡



0

µ̃∂V1
∂xi

µ̃∂V2
∂xi

µ̃∂V3
∂xi

κf
∂Tf
∂xi


; (3.27)

and ~S is the source vector,

~S =



0

−ερfg1 +WρfV1 + P ∂ε
∂x1

−ερfg2 +WρfV2 + P ∂ε
∂x2

−ερfg3 +WρfV3 + P ∂ε
∂x3

−ερfgiVi + α(Tf − Ts)− q̇f


. (3.28)

For notational simplicity, ε is shown within the time differentiation term in Eq. (3.24) though

the actual implementation assumes porosity is independent of time. Define a quasi-linear

residual ~R as

~R ≡ ∂(ε~U)

∂t
+ εAi

∂~U

∂xi
+ ~Fi

∂ε

∂xi
− ∂ ~Gi

∂xi
+ ~S , (3.29)

where Ai are the inviscid flux Jacobian matrices,

Ai ≡
∂ ~Fi

∂~U
. (3.30)

The inviscid flux Jacobian matrices require the partial derivatives of P , Hf , and the compo-

nents of ~U with respect to the components of ~U . The partial derivative of Ui with respect

to Uj is

∂Ui
∂Uj

= δij . (3.31)

The derivative of Hf with respect to ~U is

∂Hf

∂~U
=

1

ρf

[
∂P
∂U0
−Hf

∂P
∂U1

∂P
∂U2

∂P
∂U3

∂P
∂U4

+ 1
]
. (3.32)

The derivative of pressure with respect to ~U is written in the form of a chain rule as
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∂P

∂~U
=
∂P

∂vf

∂vf

∂~U
+
∂P

∂ef

∂ef

∂~U
, (3.33)

where vf is the fluid intrinsic phase-averaged specific volume; ∂P/∂vf and ∂P/∂ef are ob-

tained from the EOS; ∂vf/∂~U is given as

∂vf

∂~U
=
[
v2
f 0 0 0 0

]
; (3.34)

and ∂ef/∂~U is given as

∂ef

∂~U
= vf

[
‖~V ‖2 − Ef −V1 −V2 −V3 1

]
. (3.35)

With the derivatives in Eqs. (3.31)–(3.35), the inviscid flux Jacobian matrices are

Ai =



0 δ1i δ2i δ3i 0

−U1Ui

U2
0

+ δ1i
∂P
∂U0

δ1iζ1 + δ̃1i
Ui

U0
δi2

U1

U0
+ δ1i

∂P
∂U2

δi3
U1

U0
+ δ1i

∂P
∂U3

δ1i
∂P
∂U4

−U2Ui

U2
0

+ δ2i
∂P
∂U0

δ1i
U2

U0
+ δ2i

∂P
∂U1

δ2iζ2 + δ̃2i
Ui

U0
δi3

U2

U0
+ δ2i

∂P
∂U3

δ2i
∂P
∂U4

−U3Ui

U2
0

+ δ3i
∂P
∂U0

δ1i
U3

U0
+ δ3i

∂P
∂U1

δ2i
U3

U0
+ δ3i

∂P
∂U2

δ3iζ3 + δ̃3i
Ui

U0
δ3i

∂P
∂U4

Ui
∂Hf

∂U0
Ui

∂Hf

∂U1
+ δ1iHf Ui

∂Hf

∂U2
+ δ2iHf Ui

∂Hf

∂U3
+ δ3iHf Ui

∂Hf

∂U4


, (3.36)

where the following terms are defined for conciseness,

δ̃ij ≡ 1− δij , (3.37)

ζi ≡
2Ui
U0

+
∂P

∂Ui
. (3.38)

All prerequisite notation has been introduced to now describe the stabilization. The SUPG

method adds the following integral to the Bubnov-Galerkin weak form,∫
Ω

ε
[
Ai

(
τSUPG ~R

)]
· ∂

~W

∂xi
dΩ , (3.39)

where τSUPG is a matrix of stabilization coefficients and ~W is the vector of weight functions

corresponding to each coupled equation. To clearly illustrate the indexing, rewrite Eq. (3.39)

as
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∫
Ω

εAi,jk τSUPG,kl Rl
∂Wj

∂xi
dΩ . (3.40)

For the five coupled equations in Eq. (3.24) in three spatial dimensions, j, k, l = 1, 2, 3, 4, 5

and i = 1, 2, 3. In other words, j, k, l represent the number of coupled equations and i

represents the number of spatial dimensions. The weak form of the Navier-Stokes model

with the SUPG stabilization is then

∫
Ω

[
ε ~W · ∂

~U

∂t
+
∂ ~W

∂xi
·
(
~Gi − ε ~Fi

)
+ ~W · ~S

]
dΩ +

∫
Γ

(
ε ~Fi − ~Gi

)
· ~WnidΓ +∫

Ω

ε
[
Ai

(
τSUPG ~R

)]
· ∂

~W

∂xi
dΩ = 0 ,

(3.41)

where integration by parts is applied only to the element-continuous terms. The first two

integrals in Eq. (3.41) have already been presented in Eq. (3.12).

While perhaps not immediately apparent, Eq. (3.39) is equivalent to upwinding in di-

rections parallel to the velocity vector. To the j-th coupled equation is added an integral

involving terms proportional to ~V · ∇Wj, ~Ru · ∇Wj, and ∂Wj/∂xj (no summation implied),

where ~Ru is the vector of momentum quasi-linear strong residuals. These new terms have a

clear resemblance to the 1D ψ? in Eq. (3.23) that introduced an upwind discretization of the

convective derivative, but now generalized to coupled systems of equations. As an instructive

example, Appendix C shows the SUPG integrals in Eq. (3.41) for the mass, momentum, and

energy conservation equations in the Navier-Stokes model with the ideal gas EOS.

The friction-dominated model lacks convective terms in the momentum conservation

equations and the fluid energy conservation equation is not written in conservative form.

Rather than cast the friction-dominated model into the notation in Eq. (3.24), carrying

through the algebra in Eq. (3.39) shows that a term proportional to ~Ri ·∇W0 is added to the

Navier-Stokes mass conservation equation. Extending this concept to the friction-dominated

model, the following integral is added to the friction-dominated mass conservation equation,∫
Ω

τ̃
(
ε∇P − ερf~g +Wρf ~V

)
· ∇ψdΩ , (3.42)

where τ̃ is a scalar stabilization parameter. The weak form of the friction-dominated mass

conservation equation with the SUPG stabilization is then
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∫
Ω

ε
∂ρf
∂t

ψdΩ−
∫

Ω

[
ε2

W
(ρf~g −∇P )

]
· ∇ψdΩ +

∫
Γ

[
ε2

W
(ρf~g −∇P )

]
ψdΓ+∫

Ω

τ̃
(
ε∇P − ερf~g +Wρf ~V

)
· ∇ψdΩ = 0 .

(3.43)

The first two integrals in Eq. (3.43) have already been presented in Eq. (3.13a). No additional

integrals are added to the momentum conservation equations due to the lack of convective

terms.

Finally, the fluid energy conservation equation is stabilized using the single-equation form

suggested by Eq. (3.23) by adding the following integral to the fluid energy conservation

equation,

∫
Ω

τ̃

[
ερfCp,f

∂Tf
∂t

+ ερfCp,f ~V · ∇Tf −∇ · (κf∇Tf ) + α(Tf − Ts)− q̇f
]
~V · ∇ψdΩ . (3.44)

The weak form of the friction-dominated fluid energy conservation equation with the SUPG

stabilization is then

∫
Ω

[
ερfCp,f

∂Tf
∂t

+ ερfCp,f ~V · ∇Tf + α(Tf − Ts)− q̇f
]
ψdΩ +

∫
Ω

κf∇Tf · ∇ψdΩ +∫
Γ

κf∇Tf · n̂ψdΓ +

∫
Ω

τ̃

(
ερfCp,f

∂Tf
∂t

+ ερfCp,f ~V · ∇Tf
)
~V · ∇ψdΩ +∫

Ω

τ̃ [−∇ · (κf∇Tf ) + α(Tf − Ts)− q̇f ] ~V · ∇ψdΩ = 0 .

(3.45)

The first three integrals in Eq. (3.45) have already been presented in Eq. (3.13c). The SUPG

stabilization terms in Eq. (3.39) for the Navier-Stokes model and in Eqs. (3.42) and (3.44)

for the friction-dominated model are implemented in Pronghorn in a similar manner as the

other kernels as described in Section 3.1.1.

τSUPG represents a matrix of intrinsic time scales; for coupled systems of equations,

each component in τSUPG is a combination of the waves associated with the eigenvalues of

the equation system. Rather than solve an eigenvalue problem at each quadrature point,

computational efficiency motivates a diagonal approximation,



CHAPTER 3. PRONGHORN: SOFTWARE FOR MULTISCALE ANALYSIS 90

τSUPG =



τc 0 0 0 0

0 τu 0 0 0

0 0 τu 0 0

0 0 0 τu 0

0 0 0 0 τe


, (3.46)

where the stabilization parameters for the mass, momentum, and energy conservation equa-

tions are τc, τu, and τe, respectively [110, 237–241]. τc, τu, and τe are typically selected as

characteristic time scales representing normalized temporal, advective, and diffusive terms

in the weak form [238].

Three different time scales are considered in the construction of the τc, τu, and τe

values — 1) a transient limit, τtemporal; 2) an advective limit, τadvective; and 3) a diffusive

limit, τdiffusive. These time scales are combined into a single representative time scale with

smooth transitions among its components,

τj =

[(
1

τtemporal

)2

+

(
1

τadvective

)2

+

(
1

τdiffusive

)2
]−1/2

, (3.47)

where j = c, u, e. The τtemporal, τadvective, and τdiffusive terms may in general be unique for each

of the conservation equations. However, for the present analysis, the mass, momentum, and

energy conservation equations share the same advective and temporal limits. The advective

limit is given as

τadvective =
he

2
(
‖~V ‖+ c

) , (3.48)

and the temporal limit is given as

τtemporal =
∆t

2
. (3.49)

Lacking diffusive terms, there is no diffusive limit for the mass conservation equation. For

the momentum conservation equation, the diffusive limit is given as

τdiffusive =
ρfh

2
e

4 (µ̃/ε)
, (3.50)

while for the energy conservation equation is given as
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τdiffusive =
ρfCp,fh

2
e

4 (κf/ε)
. (3.51)

The scalar stabilization parameter τ̃ in the SUPG stabilization of the friction-dominated

model is taken as Eq. (3.51). The element size he is for simplicity taken as the minimum

dimension of the element, though methods based on flow-aligned or element-averaged scales

have been used elsewhere [110, 237, 238, 241].

The selection of τSUPG requires a balance between accuracy and stability—too small a

τSUPG will still exhibit nodal oscillations, while too large a τSUPG will result in excessive

diffusion for basis functions with orders less than the highest derivative in the strong form

PDE. The above definitions for τc, τu, and τe are only approximate, and a multiplier C̃ is

used to scale the stabilization parameter. All simulations should be run for a number of C̃

values to determine an appropriate balance between stability and accuracy.

3.2 Solution Methods

This section describes the numerical solution of the coupled system of macroscale, mesoscale,

and microscale equations. A Picard iteration described in Section 3.2.1 is used to couple the

solutions on the three length scales, where the solution on each individual scale is obtained

with a Newton-Krylov method described in Section 3.2.2.

3.2.1 Picard Iteration of Multiple Applications

Coupling between the macro, meso, and micro length scales is achieved using Picard iteration.

The MOOSE framework uses a hierarchical tree-like system to control execution of and data

transfer between multiple applications within a single simulation. A “master” application

controls a number of sub-applications and facilitates data transfer between itself and the sub-

applications. Each sub-application may itself control a number of sub-applications, locally

acting as a master application to sub-applications double nested relative to the top-level

application.

The coupling tree is highly parallelized. The master application uses all processors, while

all its sub-applications run simultaneously in parallel with the resources allocated to the local

master application. For instance, consider a three-tiered coupling system with application A
controlling five sub-applications Bi for i = 1 · · · 5, each of which controls two sub-applications

Cij for j = 1, 2. Allocating a total of 60 MPI processes to application A will run each of
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the B applications with 12 processes and each of the C applications with 6 processes; all

B processes run in parallel with one another and all C processes run in parallel with one

another.

MOOSE’s coupling system specifically aims to address many of the shortcomings of earlier

multiphysics simulations that relied on rigid one-to-one spatial and temporal data transfers

through the file system. All MOOSE applications may be coupled on different spatial meshes

with subcycling time stepping, and all data is communicated in memory. As an example, Fig.

3.4 illustrates one possible execution and communication structure within a single Picard

iteration for a simulation involving two applications on the same spatial domain.

Figure 3.4: Illustration of one possible execution and communication structure for coupling
multiple applications within the MOOSE framework.

Both the master application and sub-application may in general solve a set of coupled

nonlinear equations. In Picard iteration n within the time step incrementing to simulation

time t, the master application first solves a set of coupled equations with the Newton-Krylov
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method described in Section 3.2.2. The master application then transfers the variable T to

a sub-application that depends on that variable, such as through a source term or material

property. Interpolation between meshes, sampling from element centroids, and functional

expansions are several of the mechanisms available for representing data transfers between

applications. For this example, Fig. 3.4 depicts this data transfer as a mesh interpolation.

Next, the sub-application solves a set of coupled equations with the Newton-Krylov

method described in Section 3.2.2. The master application then retrieves the variable φ

from the sub-application to use in dependent terms in its set of equations. The coupled

simulation proceeds to the next time step if the relative change in the solution from the

previous Picard iteration is less than a specified tolerance. If not converged, the Picard

iteration is repeated. The example illustrated in Fig. 3.4 is fairly simplistic, and the multi-

application execution and data transfer system in MOOSE accommodates many other types

of coupling, such as scalar and boundary coupling, with more fine-grained communication

patterns.

Fig. 3.5 shows an illustration of the length scale coupling in Pronghorn when the HSD

is used to describe the internal pebble heat transfer. The macroscale model is the master

application, which controls the execution of the “first-tier” mesoscale sub-applications. Each

mesoscale application controls the execution of the “second-tier” microscale sub-applications.

In a single Picard iteration, the multiscale coupling procedure with the HSD meso and micro

scale model is as follows—

1. The master application solves the macroscale model.

2. The master application calculates the average solid surface temperature Ts and solid

power density in each element of the macroscale mesh.

3. The master application transfers the averaged solid surface temperature as a BC and

the averaged solid power density as a source term to a mesoscale sub-application in

each element. Six macroscale elements are highlighted in Fig. 3.5; the “color” in the

element represents the magnitude of the solid surface temperature used as a BC in the

mesoscale model. Note the similarity of this process to that illustrated in Fig. 2.3.

4. The first-tier sub-applications solve the mesoscale models, which themselves consist of

several steps repeated until convergence of the pebble temperature distribution—

a) The first-tier sub-applications solve the mesoscale model given a previous mi-

croscale solution in each element of the mesoscale mesh.
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b) The first-tier sub-applications calculate averaged power densities in each element

of the mesoscale mesh.

c) The first-tier sub-applications transfer the averaged power densities as a source

term to a microscale sub-application in each element.

d) The second-tier sub-applications solve the microscale models.

e) The first-tier sub-applications retrieve the microscale solution in each element of

the mesoscale mesh and apply the continuity in heat flux and temperature BC

with the summation in Eq. (2.130).

Figure 3.5: Illustration of the hierarchical multiscale execution and data transfer in Pronghorn
when using the HSD pebble model.

It is important to note that this coupling algorithm only applies to steady-state flows. An

extension to transient modeling requires communication of the pebble surface heat flux to

the macroscale application for use as a source term in the fluid energy conservation equation
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instead of the α(Tf − Ts) kernel. Transient capabilities are to be implemented in the near

future.

For generality, Fig. 3.5 shows a number of microscale simulations in each pebble. As

discussed in Section 2.2, the thin fuel-matrix region of the PB-FHR modeled in Chapter 6

warrants the simplifying assumption that a single average microscale domain in each peb-

ble captures the average particle heat transfer. Therefore, a single microscale domain is

simulated in each mesoscale domain.

As compared to the HSD model, the multiscale coupling procedure is much simpler for the

HL model due to the use of a single differential equation to describe the pebble temperature

distribution. For the HL method, the above calculation sequence replaces step 4, and all its

sub-steps, with solution of the HL model in Eq. (2.122) in a first-tier sub-application. The

HL method therefore does not involve second-tier sub-applications.

3.2.2 Newton-Krylov Nonlinear Solution

This section describes the solution of a nonlinear system of equations—for the macroscale

model, this refers to the four coupled equations in Eq. (2.47) or Eq. (2.48); for the mesoscale,

this refers to the HL model in Eq. (2.122) or the HSD model in (2.128); and for the microscale,

this refers to the HSD model in Eq. (2.129) or the HL model in Eq. (2.122). Notably,

Pronghorn differs from many Navier-Stokes solvers in that the fluid conservation equations

are solved together in the same matrix system, rather than with segregated solvers such as

the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE).

A Newton-Krylov method is used to solve the FE discretized forms of the multiscale

models presented in Section 3.1.1 with the SUPG stabilization terms given in Section 3.1.4.

The nonlinear system of equations is a root-finding problem; extending Eq. (3.3) to the

discretized case, this nonlinear system is

~R(~u) = 0 , (3.52)

where ~R is the discrete nonlinear residual vector and ~u is the discrete approximate nonlinear

solution. A Newton-Krylov method first linearizes Eq. (3.52) to the form

A~x = ~b , (3.53)

where A is a matrix, ~x is the linear solution vector, and ~b is the RHS vector; linearization

with Newton’s method is explained shortly. Following this linearization, the Newton-Krylov
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method involves two main loops—1) an inner loop with index k that iteratively solves for ~x

in Eq. (3.53); and 2) an outer loop with index i that iteratively solves for ~u in Eq. (3.52).

Linearization is performed with Newton’s method by forming a Taylor series approxima-

tion about the current nonlinear iterate,

~R(~ui+1) = ~R(~ui) +
∂ ~R(~ui)

∂~u
(~ui+1 − ~ui) +O(~ui+1 − ~ui)2 . (3.54)

Setting Eq. (3.54) to zero and neglecting higher-order terms, a linear form is obtained,

J(~ui)~δi = −~R(~ui) , (3.55)

where J(~ui) is the Jacobian of the i-th iterate, defined as

J(~ui) ≡
∂ ~R(~ui)

∂~u
, (3.56)

and ~δi is the update vector, defined as

~δi ≡ ~ui+1 − ~ui . (3.57)

Comparing Eq. (3.55) with the general linear form in Eq. (3.53) shows that A represents J,
~b represents −~R, and ~x represents ~δi. To match the convention used in most linear algebra

texts, the notation in Eq. (3.53) is used in the remainder of this section to describe the linear

problem in Eq. (3.55).

To summarize the Newton-Krylov method, the inner loop iteratively solves for ~xk until

the norm of the linear residual in the k-th iteration, ~rk, is less than a specified tolerance εl,

‖~rk‖ ≤ εl , (3.58)

where

~rk ≡ A~xk −~b . (3.59)

After the linear iterations have converged, the (i+ 1)-th nonlinear iterate is calculated as

~ui+1 = ~ui + ~xk . (3.60)

The matrix A and RHS vector ~b are then updated based on ~ui+1, and the process repeated

to obtain the next nonlinear iterate ~ui+2.
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The nonlinear problem is converged once the norm of the nonlinear residual in the i-th

iteration is less than a specified tolerance εn,

‖~R(~ui)‖ ≤ εn . (3.61)

The Generalized Minimal Residuals (GMRES) method, a Krylov subspace iterative method

commonly used to solve non-symmetric linear systems, is used for solution of Eq. (3.53)

[243]. A Krylov space is a vector space built by repeatedly applying a matrix to a vector.

The Krylov space Kk built by repeatedly applying A to ~r0 is

Kk = span{~r0,A~r0, · · · ,Ak−1~r0} . (3.62)

In each linear iteration, the GMRES method computes the (k+ 1)-th linear iterate from the

space ~x0 +Kk by minimizing the L2 norm of the linear residual over ~x0 +Kk.
The convergence of iterative linear solvers such as GMRES generally depends on the

condition number and location and clustering of the eigenvalues of A [244]. The total

number of linear iterations can be dramatically reduced by applying a preconditioner matrix

M in such a way as to reduce the condition number and/or shift the eigenvalue spectrum

[245]. GMRES and other linear solvers based on minimizing residuals typically employ a

“right” preconditioning process, which applies M to the linear system in Eq. (3.53) as

AM−1(M~x) = ~b , (3.63)

so that the residual is unchanged. PETSc options are exposed directly to MOOSE applica-

tions, enabling the use of a large set of preconditioners [246].

AD, sometimes referred to as “algorithmic differentiation,” is used to calculate the Jaco-

bians in Eq. (3.56) [247]. Operator overloads are defined for all of the fundamental arithmetic

operators, such as addition, subtraction, multiplication, and division, as well as for elemen-

tary functions such as exponentials and logarithms. These overloads then systematically

apply the chain rule to the sequence of arithmetic operations used to construct the residual
~R to compute a working precision accurate estimate of the derivatives of ~R with respect to

~u. The use of AD enables faster application development by avoiding the by-hand derivation

of nonlinear residual derivatives. In many cases, AD also decreases the number of linear

and nonlinear iterations due to the more accurate Jacobian evaluation. The use of AD also

allows seamless interchange between different sets of solution variables without any modifi-

cations to the kernel and BC classes that would otherwise be required for by-hand Jacobian

evaluation.
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3.3 Software Engineering Design

High-quality software is essential to support the safety analysis of nuclear reactors. The

MOOSE framework follows an Nuclear Quality Assurance Level 1 (NQA-1) development

process to certify software providing safety functions for nuclear facilities. The MOOSE

framework meets the NQA-1 standards through supporting a software engineering design

incorporating the use of git version control, GitHub pull requests and peer review, CI with

regression and unit tests of the framework and registered applications, and code style and

formatting requirements [248]. Pronghorn shares many of these software engineering best

practices, including—

• INL GitLab repository with issue tracking and peer review of all proposed changes;

• CI with a regression and Googletest unit test suite to ensure proper application be-

havior before new feature addition to both Pronghorn and the MOOSE framework;

• Hierarchical Extensible Markup Language (XML) input file syntax;

• In-source C++ Doxygen documentation;

• In-source Markdown for rendering a navigable user guide as a HyperText Markup

Language (HTML) web page; and

• In-repository theory manual.

Select examples from Pronghorn’s regression test suite are described at greater length in

Chapter 4.
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Chapter 4

Pronghorn Model Verification

The use of computational models to predict reactor response to nominal and off-normal

conditions requires high software quality and a strong V&V base. The integrated documen-

tation, use of version control systems, and CI testing discussed in Section 3.3 ensure high

software reliability, efficiency, and maintainability. Equally important is the establishment

of a set of verification tests and validation benchmarks relevant to the software’s intended

application space.

Efforts underway at INL and UCB focus on building a comprehensive software test matrix

to support qualification of Pronghorn for single-phase PBRs. The objective of this section

is to describe a small subset of these verification tests in order to 1) emphasize the rigor in

the numerical implementation of the models in Chapter 2 and 2) support the application

of Pronghorn to low-speed gas-cooled pebble experiments in Chapter 5 and to salt-cooled

PBRs in Chapter 6. Additional verification exercises such as the code-to-code Organisation

for Economic Cooperation and Development (OECD) PBMR benchmark and code-to-code

comparisons against STAR-CCM+ are described at length elsewhere [249, 250].

This chapter is organized as follows. Section 4.1 discusses the use of the Method of

Manufactured Solutions (MMS) to verify correct source implementation of all kernels and

BCs. The rigorous developer-imposed requirement to satisfy theoretical convergence rates

for all source objects reflects the high caliber of the physics implementation, an essential first

step before conducting more complex analyses.

The focus of Chapters 5 and 6 are on porous flows, but the pebble region of most PBRs

is adjacent to a non-porous, open plenum that falls under the purview of a multidimensional

T/H core simulator such as Pronghorn. Therefore, T/H models of PBRs must be able to

accurately predict fluid mixing in this plenum region and the resulting thermal stresses on
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core structural materials. The macroscale models derived in Chapter 2 reduce to equations

applicable to open flows by setting ε = 1, W = 0, µ̃ = µf , α = 0, κf = kf , and κs = ks.

To contrast with the porous simulations in Chapters 5 and 6 and to verify the macroscale

models for open flows such as in plena, Sections 4.2 and 4.3 demonstrate application of the

porous macroscale models to open flows with thermal and flow characteristics relevant to

PBRs.

Section 4.2 presents Pronghorn simulations of a numerical benchmark defined by de Vahl

Davis and Jones for viscous natural convection flow in a square enclosure [251]. Many PBR

designs incorporate natural convection cooling in shutdown conditions, and this benchmark

is an indication of the macroscale model’s capabilities for modeling thermally-driven natural

circulataion.

Section 4.3 presents Pronghorn simulations of inviscid flow over a cylinder. Most gas-

cooled PBRs operate at high Reynolds number, making inviscid flow models a reasonable

simplification over viscous models and their accompanying boundary layer meshing require-

ments. In the limit of zero Mach number, the compressibility effects in the macroscale

model become insignificant, allowing a comparison to an analytic incompressible potential

flow solution. This analysis therefore serves as a demonstration of the macroscale model’s ca-

pabilities for modeling inviscid flow and compressibility effects that may be quite significant

in gas-cooled systems with large core temperature rises [252].

All of the analyses in Chapters 5 and 6 use the friction-dominated macroscale model in

Eq. (2.48) due to its more robust convergence properties and faster runtime relative to the

Navier-Stokes model in Eq. (2.47). By using the Navier-Stokes model, the verification tests

presented in Sections 4.2 and 4.3 provide a diversity to the macroscale model applications

in this dissertation and demonstrate Pronghorn’s capacity as a general-purpose flow solver.

To enable reproduction of the simulations presented in this chapter, Appendix D lists all

data and input files related to this chapter.

4.1 Method of Manufactured Solutions

The MMS is used to verify correct source code implementation of all contributions to the

residuals in Eqs. (3.12) and (3.13)—that is, all kernel and BC objects.

A user-specified solution to a particular governing equation is “manufactured” by adding

an appropriate forcing term to that equation [253]. For example, the diffusion equation with

unity diffusivity has the strong form
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−∇2Φ = 0 , (4.1)

where Φ is the solution variable. For a manufactured solution of the form

Φ = f(~x, t) , (4.2)

where f is a generic function, solution of the modified equation

−∇2Φ = −∇2f(~x, t) (4.3)

with the appropriate BCs on Φ will return the manufactured solution in Eq. (4.2) provided

the source implementation of the diffusion kernel is correct. Successively refining the mesh

and/or time resolution can then be used to estimate convergence rates for various FE basis

function orders and FD time integration schemes.

To verify spatial convergence, the L2 norm relative to the manufactured solution is com-

puted on a series of uniformly refined meshes. When measured in the L2 norm, the FEM is

second-order accurate in space with linear elements and third-order accurate in space with

quadratic elements.

While arbitrary manufactured solution spatial dependencies are selected for the spatial

convergence tests, the temporal convergence tests manufacture solutions that are separable

in time and space. Further, the spatial dependence is linear such that the use of linear FE

basis functions nearly isolates the time discretization error from the spatial discretization

error. To verify temporal convergence, the spatial mesh is fixed and the L2 norm relative

to the manufactured solution is computed on a series of uniformly refined time step sizes.

When measured in the L2 norm, the time integration is first-order accurate in time with the

backward Euler method and second-order accurate in time with the Backward Differentiation

Formula 2 (BDF2), Crank-Nicolson, and Diagonally-Implicit Runge-Kutta (DIRK) methods.

Correct source implementation is inferred by achieving these theoretical spatial and tem-

poral convergence rates. As an example, MMS convergence rates for the −∇ · (κs∇Ts) and

ερfCpf∂Tf/∂t kernels are shown in Fig. 4.1. The expected convergence rates of 2 and 3 for

linear and quadratic elements, respectively, are obtained for the spatial kernel. The expected

convergence rates of 1 and 2 are obtained for the various time discretization schemes for the

time-dependent kernel. Many more MMS tests are performed for all other contributions to

the weak residual, but are not shown here.
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Figure 4.1: MMS convergence studies for the (a) ∇ · (κs∇Ts) kernel and (b) ερfCpf∂Tf/∂t kernel.
Discrete points are error measurements and solid lines are linear fits.

4.2 Natural Convection in an Open Cavity

Many PBRs are designed to remove decay heat via thermally-driven natural convection. The

Rayleigh number Ra quantifies the relative importance of buoyant forces to diffusive forces,

and is defined as

Ra ≡
|g|ρ2

fCp,fβfL
3∆Tf

µfkf
, (4.4)

where ∆Tf/L is the imposed temperature gradient in a domain of length L. Provided

the imposed temperature gradient is not entirely aligned with the gravitational acceleration

vector, then for sufficiently large Rayleigh number, buoyant forces overcome dissipative forces

to produce convective motions [254, 255]1.

This section presents Pronghorn simulations of flow in an open square cavity with dif-

ferentially heated walls to verify the applicability of the Navier-Stokes macroscale model

to open natural convection flows. This verification exercise is relevant to the use of coarse

mesh tools for prediction of mixing and thermal striping in the open plena adjacent to many

PBR beds. Additional objectives of this analysis are to 1) illustrate the reduction of the

macroscale models in Chapter 2 to the open flow equations through proper closure selection

1Here, “aligned” contrasts from “anti-aligned.”
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and 2) demonstrate mesh refinement studies for a physics simulation that are then omitted

in all later chapters for brevity.

The problem geometry is shown in Fig. 4.2; the domain and BCs are selected based on

a benchmark defined by de Vahl Davis and Jones [251]. The cavity dimension L is 1 m,

gravity acts in the −z direction, velocity satisfies no-slip BCs on all surfaces, and the top

and bottom boundaries are insulated. The temperature is TH on the heated boundary and

TC on the cooled boundary. The fluid is modeled with the Navier-Stokes macroscale model

in Eq. (2.47) with ε = 1, W = 0, µ̃ = µf , α = 0, κf = kf , and κs = ks and properties

closed by the ideal gas EOS. The Prandtl number is fixed at 0.71 and the Rayleigh number

is varied from 103 to 106 by varying the fluid dynamic viscosity and thermal conductivity.

Figure 4.2: Problem set-up for natural convection flow in an L× L m square enclosure.

Pronghorn predictions of velocity, temperature, and Nusselt number are compared with

a reference solution distributed with the benchmark [251]. In addition to spatial velocity

and temperature distributions, pointwise information requested of the original benchmark

participants includes

• Maximum x-direction velocity on the x+ = 0.5 plane, V +
x,max, and its z-location z+

u ;

• Maximum y-direction velocity on the z+ = 0.5 plane, V +
z,max, and its x-location x+

v ;

• Maximum Nusselt number on the x+ = 0 plane, Numax, and its location z+
max;

• Minimum Nusselt number on the x+ = 0 plane, Numin, and its location z+
min; and

• Average Nusselt number 〈Nu〉.

All locations, velocities, and temperatures are presented in nondimensional form by defin-

ing the following quantities,



CHAPTER 4. PRONGHORN MODEL VERIFICATION 104

x+ =
x

L
, z+ =

z

L
, V +

i = Vi
ρfCp,fL

kf
, T+

f =
Tf − TC
TH − TC

. (4.5)

A mesh refinement study based on a subset of the numeric information requested of bench-

mark participants is shown in Fig. 4.3. For each Rayleigh number, the same starting mesh

is uniformly refined until the L1 norm of the error in each of the scalar metrics is less than

5%. Here, “uniform refinement” refers to a division of each quadrilateral element into four

quadrilateral elements based on the original element’s centroid.
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Figure 4.3: L1 error norm of scalar benchmark metrics as a function of the mesh refinement.

A total of five meshes are considered, with errors computed relative to the most refined

mesh. A continuous decrease in error with mesh refinement demonstrates that the numerical
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implementation is convergent. While the MMS studies described in Section 4.1 have already

demonstrated these convergence properties, Fig. 4.3 provides an example of the mesh refine-

ment studies performed for physics simulations for which an analytic reference solution is

not available. All results shown in the remainder of this section are obtained on the finest

mesh considered during this refinement study.

Fig. 4.4 shows Pronghorn predictions of fluid temperature, x-direction velocity, and z-

direction velocity with contours in white for Rayleigh numbers of 103, 104, 105, and 106.

Note the use of different color scales for the velocity figures to enhance clarity. For all cases,

the decrease in density along the hot surface causes the fluid to rise along the left wall, while

the increase in density along the cool surface causes the fluid to sink along the right wall.

As the Rayleigh number increases, the thickness of the thermal boundary layer on the hot

and cool surfaces becomes thinner, the fluid motion becomes more chaotic, and the heat

flux between the vertical cavity walls increases. For higher Rayleigh numbers, the largest

z-velocity magnitudes occur in thinner regions near the vertical walls, while the increased

momentum of the vertical flows causes the regions of large x-velocity magnitudes to move

closer to the corners of the cavity.

Table 4.1 provides a quantitative comparison between the Pronghorn and reference so-

lutions for the scalar benchmark metrics. Given the limited significant figures reported in

the benchmark, some relative errors are zero. For most data points, Pronghorn agrees with

the reference solution to less than 1% relative error. The largest relative errors, observed in

the predictions for z+
max, represent absolute errors on the order of 0.001. When expressed in

dimensional form with Eq. (4.5), the absolute error in this zmax for L = 1 m is only 1 mm.

The excellent agreement with the reference benchmark solution demonstrates the capacity

of the Navier-Stokes macroscale model to simulate open natural convection flows, providing

important verification for the modeling of depressurized conduction cool-down in gas-cooled

PBRs in Chapter 5.
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(a) T+
f , Ra = 1031234 (b) V +

x , Ra = 1031234 (c) V +
z , Ra = 1031234

(d) T+
f , Ra = 1041234 (e) V +

x , Ra = 1041234 (f) V +
z , Ra = 1041234

(g) T+
f , Ra = 1051234 (h) V +

x , Ra = 1051234 (i) V +
z , Ra = 1051234

(j) T+
f , Ra = 1061234 (k) V +

x , Ra = 1061234 (l) V +
z , Ra = 1061234

Figure 4.4: Pronghorn predictions of T+
f , V +

x , and V +
z for (a – c) Ra = 103, (d – f) Ra = 104,

(g – i) Ra = 105, and (j – l) Ra = 106.
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Table 4.1: Pronghorn (PH) and reference (Ref.) solutions for the natural convection benchmark [256] with percent error
(Err.) between Pronghorn and the reference.

|††Ra = 103|†† Ra = 104 Ra = 105 Ra = 106

Ref. PH Err. Ref. PH Err. Ref. PH Err. Ref. PH Err.

V +
x,max 3.649 3.651 0.05 16.178 16.210 0.20 34.730 34.864 0.39 064.630 064.780 0.23

z+
u 0.813 0.812 0.12 00.823 00.823 0.00 00.855 00.855 0.00 000.850 000.852 0.23

V +
z,max 3.697 3.699 0.05 19.617 19.635 0.09 68.590 68.719 0.19 219.360 220.640 0.58

x+
v 0.178 0.180 1.12 00.119 00.120 0.84 00.066 00.066 0.00 000.038 000.038 0.00

〈Nu〉 1.118 1.118 0.00 02.243 02.245 0.09 04.519 04.519 0.00 008.800 008.827 0.31

Numin 0.692 0.693 0.14 00.586 00.588 0.34 00.729 00.731 0.27 000.989 000.981 0.81

z+
min 1.000 1.000 0.00 01.000 01.000 0.00 01.000 01.000 0.00 001.000 001.000 0.00

Numax 1.505 1.505 0.00 03.528 03.532 0.11 07.717 07.725 0.10 017.925 017.480 2.48

z+
max 0.092 0.090 2.17 00.143 00.144 0.70 00.081 00.082 1.23 000.038 000.041 7.89
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4.3 Inviscid Flow Over a Cylinder

Because statements of momentum conservation that include the deviatoric viscous stress

tensor are often combined with no-slip velocity BCs on solid surfaces, the Navier-Stokes

model is characterized by thin boundary layers that require enormous element counts and

frequently, computationally prohibitive run times, to resolve. However, most gas-cooled

PBRs operate at high Reynolds number such that inertial momentum transport dominates

diffusive momentum transport. Because frictional momentum losses are still considered

through the distributed loss term Wρf ~V , omitting the deviatoric stress tensor is a reasonable

simplification to momentum conservation in high-Reynolds-number porous flows that results

in more tractable boundary layer meshing requirements [98]. Omission of the −∇ · (µ̃∇~V )

kernel results in flows with significantly different mathematical and physical character to

warrant additional verification exercises beyond the viscous convection flow considered in

Section 4.2.

This section presents Pronghorn simulations of inviscid flow over a cylinder to verify

applicability of the inviscid variation of the Navier-Stokes macroscale model, referred to here

as the “Euler” macroscale model for brevity, to open flows. This verification exercise is

relevant to the use of coarse mesh tools for simulation of effectively 1D fluid flow in riser

channels in PBR reflectors and mixing and thermal striping in the open plena adjacent to

many PBR beds.

The problem geometry is shown in Fig. 4.5. The cylinder radius R is 0.25 m. The

top, bottom, and cylinder surface boundaries are modeled as insulated slip walls; the left

boundary is an inlet with uniform inflow condition

~V = U~ex ; (4.6)

and the right boundary is a free outlet. The domain width W , height H, and distance from

entrance to the cylinder center L are selected based on recommendations by Hoffman et. al

to introduce a small distortion from the free-stream velocity U at the top, bottom, and inlet

boundaries [257]. The fluid is modeled with the Euler macroscale model in Eq. (2.47) with

ε = 1, W = 0, µ̃ = 0, α = 0, κf = 0, and κs = 0 and properties closed by the ideal gas

EOS. Further, gravitational acceleration effects are neglected by setting ~g = ~0. The inlet

temperature is 300 K and the outlet pressure is 1 atm. All ICs are uniform and correspond

to the inlet temperature and outlet pressure.

This particular problem is selected to verify the Euler model because many other canoni-

cal Euler flows contain shocks that are not accurately captured with the numerical discretiza-
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tion described in Chapter 3 due to a lack of “shock-capturing” terms [258, 259].

Figure 4.5: Problem set-up for flow over a cylinder in a rectangular enclosure.

In addition, an analytic incompressible potential flow exists for comparison at low Mach

numbers where compressibility effects—the only underlying difference between a compress-

ible Euler model and an incompressible potential flow model for the problem in Fig. 4.5—are

small. After outlining the potential flow solution, comparisons are made between Pronghorn’s

compressible Euler model and the incompressible potential flow solution for several different

Mach numbers to illustrate that the compressible Euler solution tends towards the analytic

incompressible solution as compressibility effects diminish.

The potential flow equations are a simplification to the Euler model for irrotational flow,

or flows with zero vorticity [117, 260]. Irrotational flow is automatically satisfied if the

velocity can be expressed as the gradient of a scalar potential φ,

~V = ∇φ , (4.7)

because the curl of a gradient of a scalar is zero. For steady flow, substituting Eq. (4.7)

into the incompressible Euler mass conservation equation gives a Laplace equation for the

potential,

∇2φ = 0 . (4.8)

For flow past a 2D cylinder, an analytic solution to Eq. (4.8) is formed by superimposing

the solution for uniform inflow with the solution for a doublet, a combination of a source

and sink of equal strength separated by a finite distance. A derivation of this solution is
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available in many introductory fluid mechanics texts [260]. For a cylinder centered on the

origin, the x- and y-velocity components are

Vx,p = U

[
1−R2 x2 − y2

(x2 + y2)2

]
, (4.9)

Vy,p = −2UR2 xy

(x2 + y2)2
, (4.10)

where a p subscript is used to denote the potential flow solution. The Bernoulli equation

is a simplification of the Euler momentum conservation equation for steady, irrotational,

and isentropic flow. Because the ICs are uniform, the potential flow model corresponds to

isentropic flow. The Bernoulli equation for ~g = ~0 is

∇
(

1

2
ViVi +

P

ρf

)
= 0 . (4.11)

To obtain the solution for pressure, apply Eq. (4.11) at the free-stream conditions of ~V = U~ex

and P = P∞ in combination with the velocity solutions in Eqs. (4.9) and (4.10) to give

Pp = P∞ +
1

2
ρf
(
U2 − ViVi

)
. (4.12)

Eqs. (4.9), (4.10), and (4.12), are referred to here as the “potential flow solution.”

The Mach number Ma is defined as

Ma ≡ ‖
~V ‖
c

(4.13)

and represents the proximity of the flow to supersonic conditions. By writing the stagnation

pressure as a Taylor series in terms of the Mach number for an ideal gas, compressibility

effects are small for Mach numbers less than about 0.3. Therefore, in the limit of zero Mach

number, Pronghorn’s compressible Euler solution should predict velocities and pressures

that match the potential flow solution. However, a flow simulation at exactly zero Mach

number would correspond to a stagnant fluid for which matching the nonzero velocities in

Eqs. (4.9) and (4.10) would not be possible. Therefore, the objective of comparing the

compressible Euler solution with the incompressible potential flow solution is only to show

that the difference between the two solutions decreases as the Mach number decreases. This

investigation verifies both 1) correct numerical implementation of the inviscid form of the

Navier-Stokes macroscale model and 2) the mechanically compressible dependence on the

fluid EOS.
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Three different values of the Mach number are considered—0.08, 0.16, and 0.32. Each

Mach number is a factor of two larger than the next-smallest value, and a Mach number of

0.32 is just above the classically-quoted value of 0.3 below which compressibility effects are

insignificant.

A number of different metrics are used to assess the difference between the compress-

ible Euler and incompressible potential flow solutions. The relative L2 norm of the x-

velocity, y-velocity, and pressure are evaluated over the entire domain and are represented

as ‖Vx − Vx,p‖/‖Vx,p‖, ‖Vy − Vy,p‖/‖Vy,p‖, and ‖P −Pp‖/‖Pp‖, respectively. From Eqs. (4.9)

and (4.10), the potential flow velocity at the top of the cylinder is 2U . While the three

norms listed earlier are computed over the entire domain, a point indicator of the velocity

difference is useful for assessing error contributions due to the finite geometry. Therefore,

the relative difference in the velocity at the top of the cylinder is included and represented

as |Vx(0, R)− 2U |/2U .

A mesh refinement study is performed for the largest Mach number of 0.32 in the same

fashion as in Section 4.2. A starting mesh is uniformly refined until the relative changes

in the three L2 norms described in the preceding paragraph are less than 5% between two

successive meshes. The finer of these two meshes is then used for all other Mach numbers.

First, a quantitative comparison between Pronghorn’s compressible Euler model and the

incompressible potential flow solution is provided. Table 4.2 summarizes the difference be-

tween the two models as a function of the Mach number. As expected, the difference between

Pronghorn’s compressible Euler solution and the incompressible potential flow solution de-

creases as the Mach number decreases.

Table 4.2: Difference between Pronghorn’s compressible Euler solution and the incompressible
potential flow solution as a function of the Mach number.

Ma ‖Vx−Vx,p‖
‖Vx,p‖

‖Vy−Vy,p‖
‖Vy,p‖

|Vx(0,R)−2U |
2U

‖P−Pp‖
‖Pp‖

0.08 3.53× 10−3 3.27× 10−2 2.62× 10−3 1.50× 10−5

0.16 3.60× 10−3 3.70× 10−2 1.91× 10−2 7.29× 10−5

0.32 4.88× 10−3 8.48× 10−2 8.72× 10−2 6.71× 10−4

For the L2 norms computed over the entire domain, or the second, third, and fifth columns

in Table 4.2, the reduction in these norms when halving the Mach number from 0.32 to 0.16

is much larger than the reduction when halving the Mach number from 0.16 to 0.08. For

instance, the relative x-velocity norm decreases by a factor of 1.35 when halving the Mach
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number from 0.32 to 0.16, while only decreasing by a factor of 1.02 when halving the Mach

number from 0.16 to 0.08. This occurs because of the finite size of the domain. That is,

the difference in the two solutions should not be expected to tend to zero in the limit of

zero Mach number—the top and bottom walls are streamlines in the compressible Euler

model, while the potential flow solution was derived with free stream BCs as x, y → ∞
that result in nonzero curvature at y = ±H/2. To more clearly see this effect, consider the

pointwise difference in the x-velocity at the top of the cylinder, which is sufficiently far from

boundaries as to be unaffected by the W and H dimensions. In halving the Mach number

from 0.32 to 0.16 and from 0.16 to 0.08, the relative difference in the x-velocity at the top

of the cylinder decreases by a factor of 4.56 and 7.29, respectively. No significantly reduced

solution difference is observed as the Mach number decreases for this pointwise metric.

The implicit BC on the upper boundary does not impose any free-stream pressure such

that the relative difference in the pressure distributions is comparatively unaffected by the

finite nature of the domain. The relative difference in the pressure decreases by a factor of

9.20 as the Mach number is halved from 0.32 to 0.16 and by a factor of 4.79 as the Mach

number is halved from 0.16 to 0.08.

To conclude this section, Pronghorn predicted velocity and pressure distributions for an

inlet Mach number of 0.08 are presented. Define a nondimensional speed V + as

V + =
‖~V ‖
U

. (4.14)

For the incompressible potential flow solution, V + varies from zero on the front and back

sides of the cylinder to 2.0 at the top and bottom of the cylinder. In the region near the

cylinder, Fig. 4.6 shows the nondimensional speed and pressure. In the speed subfigure,

streamlines are shown as black lines. In the pressure subfigure, contours are shown colored

by the pressure. The flow is nearly symmetric about the cylinder. At the front and rear

stagnation points, the pressure is highest and the velocity lowest. Flow acceleration around

the cylinder results in the highest velocities and lowest pressures occurring on the top and

bottom of the cylinder. As already shown by the various norms in Table 4.2, the velocity and

pressure match the incompressible potential flow solution to within 4% relative difference.

Overall, the mechanical compressibility effects are correctly modeled with the inviscid

Navier-Stokes macroscale model. The combination of 1) reduced differences between the

compressible Euler and incompressible potential flow solutions as the Mach number decreases

and 2) low relative differences for Mach numbers in the range of 0.08 ≤ Ma ≤ 0.32 demon-
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strates the capacity of the inviscid Navier-Stokes model to simulate open flows, providing

important verification for the modeling of high-Reynolds number flows in PBRs.

Figure 4.6: Pronghorn predicted V +, with streamlines in black, and P , with contours shown
colored by P , for an inlet Mach number of 0.08.

4.4 The Heat Source Decomposition Model

Given the computing resources available for routine design and analysis, the heterogeneous

nature of PBR fuels requires the use of multiscale models to predict temperatures. Simply

homogenizing the fission heat source and thermal properties fails to capture the thermal

resistance imposed by the low-conductivity buffer layer, and may result in significant under-

prediction of fuel temperatures.

Two multiscale models were introduced in Chapter 2—the HSD model and the HL

model. This section applies the HSD model to a Cartesian domain consisting of nine CFPs

in a matrix and provides a comparison against a fully-resolved heat conduction solution of

the same geometry. The objectives of this analysis are to 1) verify the HSD method for a

simple, but representative, domain; 2) explain the microscale “translation” process in Eq.

(2.130); and 3) address the accuracy of the averaging approximation in Eq. (2.133). Because

the MMS tests described in Section 4.1 verify correct implementation of the diffusion kernels
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needed for the multi-layer HL method, no such dedicated verification is required for the HL

method, which is simply a multi-layer conduction model.

For this demonstration problem, each CFP is composed of five material layers with a

uniform heat source of 2 × 108 W m−3 in the center kernel. While this power density is

higher than that used in most PBRs, the larger magnitude is selected to accentuate the

differences between the meso and micro scale solutions. The CFPs occupy 40% by volume

of the matrix material. Fig. 4.7 shows the mesh, colored by material ID, used to obtain the

reference temperature solution. The CFP layer thicknesses are the same as those in the PB-

FHR design in Table 6.2 and are typical of most TRISO particle designs. Thermal properties

in dimensionally consistent units are shown for each material in Fig. 4.7. Thermal BCs are

selected to have a significant thermal gradient over the domain. The top, left, and right

boundaries are set to 1100◦C, 1100◦C, and 1150◦C, respectively, while the bottom boundary

is insulated.

Figure 4.7: Reference mesh and problem setup for a heterogeneous solid with CFPs in a matrix.

The reference temperature solution, shown in Fig. 4.8, is obtained by solving the heat

conduction equation in Eq. (2.122) with the MOOSE heat conduction module. The tem-

perature contours are tightly packed in the second material layer in each CFP due to its

relatively low thermal conductivity. The objective of the HSD model is to approximate the

temperature distribution in Fig. 4.8 with significantly lower computational effort.
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Figure 4.8: Reference temperature solution for the mesh in Fig. 4.7 with contour lines in white.

The HSD method involves the coupled solutions of the mesoscale model in Eq. (2.128)

and the microscale model in Eq. (2.129). The mesoscale mesh encompasses the entire het-

erogeneous region and is shown in Fig. 4.9a. The CFP properties are homogenized with the

volume average in Eq. (2.136). ρmeso, and Cp,meso are then evaluated with the volume average

in Eq. (2.136), while kmeso is evaluated with the Chiew and Glandt averaging theorem in Eq.

(2.138). The volumetric heat source is averaged over the CFPs and matrix. The mesoscale

solution is shown in Fig. 4.9b.

(a) Mesoscale problem (b) Mesoscale solution

Figure 4.9: HSD mesoscale (a) mesh and (b) solution with contour lines in white.

The mesoscale temperature represents a long-wavelength “background” response to the
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BCs, averaged thermal properties, and averaged heat source. Note that the color bar in Fig.

4.9b is intentionally not the same as in Fig. 4.8 to reinforce that it is the sum of the meso

and micro scale solutions that satisfies the imposed BCs.

The microscale domain, shown in Fig. 4.10a, is a 1D representation of a CFP plus a

layer of matrix material sized to preserve all material PFs. ρmicro, Cp,micro, and kmicro are the

local properties shown in Fig. 4.7. The fluctuating heat source is positive within the central

kernel and negative in all other regions to preserve the zero average. Fig. 4.10b shows the

microscale temperature solution. Because the fluctuating heat source is negative outside the

central kernel, the temperature is negative in the outermost regions of the domain.

(a) Microscale problem (b) Microscale solution

Figure 4.10: HSD microscale (a) mesh and (b) solution.

Fig. 4.11 shows the reference and HSD solutions along a horizontal line passing through

the centers of the middle row of particles. The low-conductivity buffer results in significantly

higher kernel temperatures than in surrounding materials. The bottom section of Fig. 4.11

shows the microscale solution translated to the location of each of the three particles. Ac-

cording to Eq. (2.130), the HSD multiscale approximation is the sum of the long-wavelength

mesoscale solution and the translated microscale solutions, and is shown as a red dashed line

in Fig. 4.11. The HSD solution agrees very well with the reference temperature solution; the

only source of error in the HSD method is the homogenization of the mesoscale properties.

It is important to note that legacy PBR applications that simply homogenize the thermal

properties and heat source to represent the fuel temperature with a single heat conduction

PDE can only predict the long-wavelength background temperature in Fig. 4.11. Such mod-
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els would fail to capture the high kernel temperatures resulting from the buffer thermal

resistance, and are hence not considered in this work.
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Figure 4.11: Multiscale, mesoscale, microscale, and reference solutions for the problem in Fig. 4.7.

Next, in order to verify applicability of the HSD method to transients, consider the same

problem in Fig. 4.7 with a time-dependent heat source given by

q̇ = 2× 108(t+ 1) . (4.15)

With this heat source, Fig. 4.12a shows the reference and HSD multiscale solutions along

a horizontal line passing through the centers of the middle row of particles. The HSD

approximation again agrees very well with the reference solution at all times considered.

Fig. 4.12b shows the average temperatures of each material as a function of time. To

reflect conditions typical of PBR analysis, where the CFP locations are unknown, the HSD

averages are evaluated with Eq. (2.133). Excellent agreement is observed between the mul-

tiscale and reference solutions, especially considering that the mesoscale solution in this

particular test problem varies on the order of the micro length scale.

The excellent agreement between the HSD model and reference solution demonstrates

the capacity of the HSD model to simulate heat conduction in heterogeneous solids, provid-

ing important verification before application of the HSD model to the Mark-1 PB-FHR in

Chapter 6.
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Figure 4.12: Reference (—) and HSD multiscale solutions (- -) (a) along a line through the centers
of the middle row of particles and (b) spatially-averaged for the problem in Fig. 4.7 with the heat

source in Eq. (4.15).
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Chapter 5

The SANA Experiments

Power densities of gas-cooled PBRs are typically low enough that radiation and conduction

between touching pebbles, in combination with an ex-vessel cooling system, is sufficient

to remove decay heat in a depressurized LOFC by natural convection cooling. However,

low power densities result in larger reactor vessels that both complicate rail transport and

increase structural material costs. Economic feasibility may motivate stretching paper design

concepts to higher power densities or uprating an existing reactor. Safe reactor operation

requires T/H tools that can accurately model natural convection decay heat removal and

the proximity of fuel temperatures to maximum allowable operating limits, especially when

maximization of power density is a primary design objective.

The SANA facility is a scaled experiment built and operated in Germany in the mid

1990s that models depressurized cool-down of gas-cooled PBRs as a function of power den-

sity, coolant, and pebble properties [152]. This section presents Pronghorn simulations of all

steady-state and axisymmetric SANA experiments to assess the capability of the macroscale

model for predicting core temperatures in depressurized LOFC events. This validation ex-

ercise is one piece of a much larger test matrix designed to qualify the multiscale model and

its implementation in Pronghorn for gas- and liquid-cooled PBRs [261].

The accuracy of porous media simulations is dependent on the closure relationships used

to describe the solid-fluid phase distribution, interphase momentum and energy transfer, and

lumped parameter effective heat transfer. Few T/H simulations of reactor conditions have

quantified the sensitivity of temperature predictions to the selection of particular closures

from the enormous literature on the subject. For instance, a distillation of this literature over

the course of a five year PhD project has resulted in the implementation of seven porosity

models; four friction factor models; five interphase convective heat transfer coefficient mod-
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els; 245 effective solid conductivity models as permutations of the seven κradiation models,

seven κconduction models, and five κcontact models; and two effective fluid conductivity models.

The selection of these particular correlations for implementation in Pronghorn reflects their

prominence in the porous media literature, and is by no means exhaustive.

Due to the wealth of solid temperature data available, the SANA experiments are a

useful baseline data set from which the sensitivity of pebble temperatures to variations in

macroscale model closures can be obtained. By individually varying the porosity, near-wall

effective solid thermal conductivity, interphase heat transfer and drag, and thermal dispersion

models—the five closures that tend to vary the most between applications of the macroscale

model in Chapter 2 to gas-cooled PBRs—guidelines for closure selection and development

are provided.

The remainder of this section is organized as follows. Section 5.1 introduces the SANA

facility and experiments. Section 5.2 describes the Pronghorn model of the facility. Section

5.3 then presents simulation results for all 52 of the steady-state and axisymmetric experi-

ments performed, plus an open upper plenum case, using a single set of baseline macroscale

closures. When available, code-to-code comparisons are made to Flownex and GAMMA,

two porous media applications that have previously been used to model gas-cooled PBRs

[146, 147]. Simulation data has graciously been provided by Dr. C. G. Du Toit of the School

of Mechanical and Nuclear Engineering at North-West University, South Africa and Dr. H.

S. Lim of KAERI.

In Section 5.4, macroscale closures are individually varied from the baseline set used in

Section 5.3 to determine the sensitivity of pebble temperature to closure selection. Finally,

Section 5.5 provides conclusions on the applicability of the friction-dominated macroscale

model to the simulation of depressurized conduction cool-down in gas-cooled PBRs, with

particular emphasis on the importance of closure selection in future modeling activities and

recommendations for experimental programs aimed at new closure development.

5.1 The SANA Facility

The SANA facility consists of a closed cylindrical steel vessel containing about 9500 non-

fueled pebbles heated by electrical resistance heaters in a variety of configurations in both

steady and transient conditions [152]. A depiction of the facility in a full-length, single-

heater configuration is shown in Fig. 5.1. Insulation on the bottom and top of the bed

limits axial heat loss. The pebble surface temperature is measured throughout the bed with
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thermocouples at five different elevations, indicated as “bottom,” “near bottom,” “middle,”

“near top,” and “top” in Fig. 5.1. The precise axial coordinate of these measurement planes

varied from test to test, and the scale shown in Fig. 5.1 is approximate. Most experiments

involved a single centrally-located heater in an axisymmetric configuration, though several

experiments placed multiple heaters throughout the bed so that the power distribution was

no longer axisymmetric; these cases are not considered here.

Figure 5.1: Illustration of the SANA facility with a single full-height heater. Temperature
measurement planes are indicated as “bottom,” “near bottom,” “middle,” “near top,” and “top”

(adapted from [152]).

A total of 52 steady-state and axisymmetric experiments were conducted with three

different pebble designs, two different coolants, four different heater configurations, and seven

different heater powers, resulting in a total of nearly 1300 solid temperature measurements.

Fig. 5.2 shows these experimental settings that, when permuted, encompass all the settings

of the 52 experiments. Some heater configurations were only performed with 6 cm graphite

pebbles, so not all experiments implied by Fig. 5.2 were necessarily conducted, though all

settings are represented.

The three pebble designs—6.5 cm diameter aluminum oxide, 6 cm diameter electric

graphite, and 3 cm matrix graphite—vary in their diameter and thermal properties. The

smaller the pebble diameter, the greater the interphase friction and convective heat transfer.

The three pebbles also have significantly different thermal conductivities; the electric graphite
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thermal conductivity is approximately two times and ten times larger than that of the matrix

graphite and aluminum oxide, respectively. The higher the pebble thermal conductivity, the

greater the effective solid thermal conductivity and heat transfer mechanisms independent

of convection.

Figure 5.2: Experimental matrix for the 52 steady-state and axisymmetric SANA experiments
(adapted from [152]).

Experiments are performed with both helium and nitrogen due to the extensive use of

helium coolant and nitrogen’s thermodynamic similarity to air, barring high graphite corro-

sion rates. The SANA facility operates at atmospheric pressure, so both coolants correspond

to depressurized LOFC conditions; experiments with nitrogen represent surrogates for air

ingress, where natural convection cooling is distinct from that with helium. Helium and

nitrogen have significantly different thermal properties; the helium thermal conductivity is

approximately five times larger than that of nitrogen, resulting in stronger convective trans-

port but weaker diffusive transport in nitrogen than in helium. The various combinations

of pebble design and coolant result in different relative strengths of convective to diffusive

transport and buoyant forces to friction losses.

The partial length heater configurations are surrogates for partial control rod insertion,

while the open plenum case models the bed-cavity interface found in most gas-cooled PBRs.

Finally, the various heater powers correspond to the decreasing decay heat levels at various
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times following an initial shutdown. The maximum power density of 28 kW m−3 represents

about 1% of the full power of a typical gas-cooled PBR design, or decay heat levels several

hours after shutdown.

All 52 of the steady-state and axisymmetric cases are simulated with Pronghorn. Vali-

dation results for eight cases are presented in detail, while the remaining 44 are summarized

with error histogram plots. These eight cases are selected to cover most of the range of pow-

ers, heater arrangements, coolants, and pebble types used in the experiments, in addition

to permitting direct comparison with the available Flownex and GAMMA results. Table

5.1 summarizes these eight cases and provides case letters for differentiation. One experi-

ment with an open upper plenum is discussed as a separate demonstration of the macroscale

model’s capabilities for predicting bed-to-plenum heat and mass transfer. Fluid tempera-

ture and velocity results, for which no experimental data was collected, are also shown for a

number of additional experiments aside from the eight highlighted cases.

Table 5.1: A summary of the SANA cases simulated with Pronghorn and presented in detail in
this text. Case letters are provided for reference.

Case Heater Description Pebble Type dp (cm) Fluid Power (kW)

A full-height graphite 6.0 He 05

B full-height graphite 6.0 He 35

C full-height graphite 6.0 N 05

D full-height graphite 6.0 N 35

E full-height aluminum oxide 6.5 He 30

F full-height aluminum oxide 6.5 N 30

G bottom half graphite 6.0 He 20

H bottom half graphite 6.0 N 20

I bottom half, open plenum graphite 6.0 N 05

5.2 Computational Model

The low power and absence of forced convection cooling results in slow natural circula-

tion flows with momentum conservation dominated by drag effects. Therefore, the friction-

dominated model in Eq. (2.48) is used for the macro length scale. The homogeneous pebble

interiors and steady-state conditions preclude the need for meso and micro scale models be-
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cause the temperature everywhere in a pebble with no heat source is equal to its uniform

surface temperature. Helium and nitrogen properties are obtained with the Spline-Based

Table Lookup (SBTL) method described in Appendix B. Pebble properties are given in

Appendix B.

The lack of significant azimuthal asymmetries justifies the use of a 2D cylindrically-

symmetric geometry. For simplicity, only the interior of the vessel is modeled. That is, the

left boundary coincides with the heater surface, the right boundary coincides with the inner

surface of the vessel, and the bottom and top boundaries coincide with the inner surfaces

of the insulation. The effects of the vessel and insulation on heat transfer are approximated

using the thermal resistance concept—the heat flux on a boundary is modeled as series

conduction through a number of homogeneous layers, followed by parallel convection and

radiation from the vessel surface to the ambient. That is, the boundary heat flux q̃ is

approximated as

q̃ =
T − T∞

Ab

[∑nl

i = 1Rcond,i + 1
(hc+hr)As

] , (5.1)

where Ab is the area of the boundary; As is the area of the surface; nl is the number of

conduction layers; Rcond,i is the conduction resistance of the i-th layer; hc is the convective

heat transfer coefficient; and hr is the radiation heat transfer coefficient,

hr = εσ
(
T 2

surf + T 2
∞
) (
T 1

surf + T∞
)
, (5.2)

where Tsurf is the surface temperature. In Eqs. (5.1) and (5.2), “boundary” refers to the

mesh sideset where the BC is applied and “surface” refers to the interface between the

nl-th conduction layer and the ambient. An under-relaxed fixed point iteration is performed

to obtain Tsurf. Eq. (5.1) approximates the heat transfer through the conduction layers as

unidirectional along n̂ and may not be accurate for very large thermal gradients in directions

perpendicular to n̂.

On the bottom, top, and right boundaries, the heat flux applied to the solid energy

conservation equation is given by Eq. (5.1) with constant insulation and vessel thermal

properties [152]. The vessel emissivity and convection heat transfer coefficient are assumed

to be 0.8 and 15 W m−2 K−1, respectively. Neither of these values are provided with the

benchmark documentation, so both values were selected to be in the center of the ranges

used by other participants [101, 145, 147, 148, 262]. Due to the lower thermal conductivity
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of the fluid phase and the low velocities expected, the fluid is assumed insulated on the

bottom, top, and right boundaries.

On the heater surface, the total heat flux q̃tot is assumed uniform and is split between

the phases according to the effective thermal conductivities [263]. On the left boundary, the

heat flux into the solid phase is given as

q̃ =
κs

κf + κs
q̃tot , (5.3)

while the heat flux into the fluid phase comprises the remainder of the total heat flux. Eq.

(5.3) is a very crude approximation of the multi-phase heat transfer processes that occur

near walls in packed beds. Other simplified BCs have been proposed [263], but preliminary

tests with different BCs did not show any clear advantage of any one option over another.

Finally, zero normal mass flux is weakly imposed on all surfaces, while tangential slip is

permitted.

The baseline set of macroscale closures used in Section 5.3 are as follows. W is given

by Eq. (2.97), α is given by Eq. (2.107), and κf is given by Eq. (2.109). κs is given by

the sum of Eqs. (2.111), (2.113), and (2.116), with Eq. (2.120) applied within a half pebble

diameter of the walls as a correction to κradiation. For all three pebble types, the emissivity,

elastic modulus, and Poisson ratio are assumed to be 0.8, 9×109 Pa, and 0.136, respectively

—values typically ascribed to PBR fuel pebbles—since more detailed information was not

available.

No information is available regarding the bed filling method, so ε∞ is selected as 0.39, a

value commonly used for packed sphere beds. For all cases except the open plenum case, the

porosity is given by Eq. (2.84) with εwall = 0.8. For the open plenum case, the porosity in

the plenum is unity and in the bed is given by Eq. (2.84) with εwall = 1 to ensure a smooth

transition to the plenum in the near-wall region.

Mesh refinement studies are performed for the highest-powered cases of each experiment

category (such as nitrogen coolant with 3 cm pebbles and a long central heater) to ensure

converged results, but for brevity are not shown here. Finally, to enable reproduction of the

simulations presented in this chapter, Appendix D lists all data and input files related to

this chapter.
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5.3 Baseline Results

This section presents Pronghorn simulations for the 52 steady-state and axisymmetric SANA

experiments and one open plenum test using the baseline set of closures described at the end

of Section 5.2.

Section 5.3.1 presents detailed validation results for the select cases given in Table 5.1,

while all 52 steady-state and axisymmetric cases are summarized in Section 5.3.2. To avoid

repeating the same error discussion with each new validation case, all discussion of the effects

of modeling simplifications and differences in the Pronghorn, Flownex, and GAMMA models

is deferred to Section 5.3.2.

5.3.1 A Selected Subset of the Experiments

A total of nearly 1300 solid temperature measurements were made across the steady-state and

axisymmetric SANA experiments. While no fluid temperature or velocity data was recorded,

a qualitative discussion of the effect of coolant and pebble properties on flow and heat

transport via fluid temperature and velocity predictions provides useful physical intuition for

understanding the later presentation of solid temperature data. Fig. 5.3 shows Pronghorn

predictions of fluid temperature and velocity streamlines for the six experiments with a

long central heater and 30 kW heater power. The top and bottom rows show predictions

for helium and nitrogen coolant, respectively. The left, middle, and right columns show

predictions for 6 cm electric graphite pebbles, 3 cm matrix graphite pebbles, and 6.5 cm

aluminum oxide pebbles, respectively. In each figure, the left axis is the r-z symmetry axis

that coincides with the center of the heater.

A natural convection flow is established as fluid buoyantly rises near the heater surface

and cools near the vessel outer surface. The insulation on the bottom and top of the bed

induces primarily radial temperature gradients. The low thermal conductivity of nitrogen

results in more significant convective transport than in helium, which manifests as larger

axial fluid temperature gradients and a recirculation vortex located closer to the bottom of

the bed.

The thermal conductivity of the pebbles is directly related to the maximum temperature

in the bed—from left to right, the pebble thermal conductivity decreases. Experiments with

aluminum oxide pebbles and nitrogen coolant have the greatest convective heat transport,

while experiments with graphite pebbles and helium coolant have the greatest diffusive heat

transport.
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Figure 5.3: Pronghorn predicted fluid temperature and velocity streamlines for a full-length heater
at 30 kW for helium (top row) and nitrogen (bottom row) coolant for the three pebble types.

To provide physical insight for the partial-length heater experiments, Fig. 5.4 shows

Pronghorn predictions of fluid temperature and velocity streamlines for the eight experiments

with a half-length heater in the bottom of the bed and 6 cm graphite pebbles. The top and

bottom rows again show predictions for helium and nitrogen coolant, respectively, while

each column corresponds to a unique power level. The higher the heater power, the further

upward the recirculation vortex moves for the helium tests, as energy transfer is primarily

diffusive and in the radial direction. For nitrogen, higher heater powers result in stronger fluid

acceleration in the upwards direction, pushing the recirculation vortex further downwards

as the fluid changes directions along the top and right walls of the vessel. Both of these

observations are related to the stronger convective transport in nitrogen.

Moving to the solid temperature, similar trends with pebble and coolant thermal prop-

erties will be highlighted with each case. In presenting the validation data, all experimental

results are shown as discrete points and Pronghorn predictions are shown as solid lines (—).

When available, Flownex results are shown as dashed lines (- -) and GAMMA results are

shown as dotted lines ( · · · ). Measurements were taken at the five axial elevations shown in

Fig. 5.1, but only three of these elevations are plotted to simplify data presentation. The
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axial coordinate of these elevations is shown in the figure legends as z = zi, where zi is the

coordinate.

Figure 5.4: Pronghorn predicted fluid temperature and velocity streamlines for a partial-length
heater in the bottom of the bed for helium (top row) and nitrogen (bottom row) for 6 cm graphite

pebbles for four power levels.

Figs. 5.5 and 5.6 show Pronghorn and Flownex solid temperature predictions for heater

powers of 5 and 35 kW and 6 cm graphite pebbles with helium and nitrogen coolant, respec-

tively. The 5 kW cases in Figs. 5.5a and 5.6a are shown on the same temperature scale of

0 to 500◦C, while the 35 kW cases in Figs. 5.5b and 5.6b are shown on the same temper-

ature scale of 0 to 1200◦C. Similar to the fluid temperature shown in Fig. 5.3, the greater

diffusive transport in helium results in smaller axial solid temperature gradients and a lower

maximum temperature as compared to nitrogen. Pronghorn and Flownex agree well for the

helium cases and reasonably well for the nitrogen cases, though Pronghorn predicts lower

temperatures at the lowest elevation in the nitrogen cases than Flownex. Both Pronghorn

and Flownex tend to overpredict temperatures near the surface of the heater.

Fig. 5.7 shows Pronghorn solid temperature predictions for a heater power of 30 kW

and 6.5 cm aluminum oxide pebbles with helium and nitrogen coolant. Compared to the



CHAPTER 5. THE SANA EXPERIMENTS 129

graphite pebble experiments in Figs. 5.5 and 5.6, the lower thermal conductivity of the

aluminum oxide results in larger radial temperature gradients and higher peak temperatures

by about 400◦C. Pronghorn predicts the experimental data well at all points except at the

lowest elevation close to the heater surface for helium.
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(a) Case A: 5 kW helium
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(b) Case B: 35 kW helium

Figure 5.5: Pronghorn (—) and Flownex (- -) predicted solid temperature for (a) case A and (b)
case B, or a full-length heater with helium and 6 cm graphite pebbles.
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(a) Case C: 5 kW nitrogen
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(b) Case D: 35 kW nitrogen

Figure 5.6: Pronghorn (—) and Flownex (- -) predicted solid temperature for (a) case C and (b)
case D, or a full-length heater with nitrogen and 6 cm graphite pebbles.
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Fig. 5.8 shows Pronghorn, Flownex, and GAMMA solid temperature predictions for a

heater power of 20 kW in the bottom half of the bed with 6 cm graphite pebbles and helium

or nitrogen coolant. Near the heater surface, the temperature distribution is inverted relative

to the long central heater cases in Figs. 5.5 and 5.6, being highest at the bottom of the bed.

This occurs due to the absence of a heat source in the top of the bed. The lower thermal

conductivity of nitrogen results in poorer radial heat transport than in helium, resulting in

an opposite temperature trend near the bed periphery compared to helium. All codes show

similar trends in Fig. 5.8, but the absolute variation is larger than for the full-length heater

results. Pronghorn tends to underpredict temperatures in the higher elevations relative to

Flownex and GAMMA.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radial position (m)

0

200

400

600

800

1000

1200

1400

1600

S
o
lid

 t
e
m

p
e
ra

tu
re

 (
°C

)

z = 9 cm

z = 50 cm

z = 91 cm

(a) Case E: 30 kW helium

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radial position (m)

0

200

400

600

800

1000

1200

1400

1600
S
o
lid

 t
e
m

p
e
ra

tu
re

 (
°C

)
z = 9 cm

z = 50 cm

z = 91 cm

(b) Case F: 30 kW nitrogen

Figure 5.7: Pronghorn (—) predicted solid temperature for (a) case E and (b) case F, or a
full-length heater with helium or nitrogen and 6.5 cm aluminum oxide pebbles.

Finally, Fig. 5.9a shows Pronghorn solid temperature predictions for a heater power of

5 kW in the bottom half of the bed and an open plenum in the top third of the bed for

6 cm graphite pebbles and nitrogen coolant. Reasonable agreement is obtained with the

experimental data, though temperatures are slightly overpredicted near the heater surface

at the middle and top elevations.

Fig. 5.9b shows the predicted fluid temperature with velocity streamlines. The transition

from the pebble bed to the open plenum is clearly visible in the velocity streamlines. Fluid

re-entering the porous region is pulled towards the high-porosity region near the wall where

friction factors are lower. When combined with the significantly reduced friction in the open

plenum relative to the bed, this results in primarily radial flow in the plenum.
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(a) Case G: 20 kW helium
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(b) Case H: 20 kW nitrogen

Figure 5.8: Pronghorn (—), Flownex (- -), and GAMMA (· · ·) predicted solid temperature for (a)
case G and (b) case H, or a half-length heater in the bottom of the bed and 6 cm graphite pebbles.
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Figure 5.9: Pronghorn predicted (a) solid temperature and (b) fluid temperature with velocity
streamlines for case I, or an open plenum and 6 cm graphite pebbles.

It should be noted that the use of a friction-dominated model in the plenum is not

justified as it is in the pebble bed because there is a large mixing region. However, the

lack of experimental data for the plenum region precludes directly assessing the accuracy of

the plenum velocity and fluid temperature predictions. Additional validation is required for

open plenum geometries, though the solution in the bed region agrees reasonably well with
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experimental data.

5.3.2 All Steady-State Axisymmetric Tests

This section summarizes the results for all 52 steady-state and axisymmetric experiments,

with a total of 1292 experimental pebble temperature data points. For simplicity, the plenum

test shown at the end of Section 5.3.1 is excluded from the histograms shown here and in

Section 5.4. The error relative to the experimental measurements, enum is defined as

enum ≡ Ts (~xi)− Ts,exp,i , (5.4)

where Ts (~xi) is the predicted solid temperature at position ~xi and Ts,exp,i is the experimentally-

measured solid temperature at position ~xi. The maximum error is defined to occur at the

data point with error furthest from zero, and may be either positive or negative.

Fig. 5.10 shows a histogram of the error for all 52 cases with the available Flownex

and GAMMA data. Significantly more cases were simulated with Pronghorn than with

Flownex and GAMMA. To provide a fair comparison of the average error and standard

deviation, Table 5.2 shows the mean, standard deviation σ, and maximum error for all 52

cases simulated with Pronghorn, the six cases simulated with Flownex, and the four cases

simulated with GAMMA.

300 200 100 0 100 200 300
Solid Temperature Error (°C)

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

O
cc

u
rr

e
n
ce

s

Pronghorn

Flownex

GAMMA

Figure 5.10: Histogram of solid temperature error for Pronghorn (52 cases), Flownex (six cases),
and GAMMA (four cases).
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In each column, the number of points compared between the three tools are the same.

When directly comparing Pronghorn to Flownex and GAMMA, Pronghorn predicts a slightly

smaller mean error and lower standard deviation relative to both Flownex and GAMMA.

Pronghorn predicts a significantly smaller maximum error for the Flownex cases, but a

slightly larger error for the GAMMA cases. Given the cases simulated, the three codes are

of comparable accuracy.

Table 5.2: The mean, standard deviation σ, and maximum solid temperature error for the six
Flownex cases, the four GAMMA cases, and all 52 cases. All units are ◦C.

Flownex cases1 GAMMA cases2 |††All cases|††

Mean σ Max. Mean σ Max. Mean σ Max.

Flownex -19.8 51.4 -207.0 — — — — — —

GAMMA — — — -4.3 50.9 147.5 — — —

Pronghorn 0-7.8 47.5 -155.8 -1.6 48.7 148.4 22.6 54.6 198.6

1 A, B, C, D, H, and the 20 kW top half heater with 6 cm graphite pebbles and nitrogen.
2 G, H, and the 30 kW long heater with 6 cm graphite pebbles with helium and nitrogen.

It should be noted that the presentation of the error and standard deviation for the

SANA cases should not be taken as an indication of the expected accuracy of the macroscale

model for all applications. Rather, this condensed presentation is performed to provide a

quantitative comparison against Flownex and GAMMA and to provide a rough sense of the

accuracy of porous media T/H simulations in friction-dominated flows such as LOFC decay

heat removal.

The standard deviation for all simulation tools is similar, on the order of 50◦C. The

SANA experiments are a challenging benchmark because of the large thermal gradients near

the heater and outer radial wall. Fig. 5.11 shows the error in the Pronghorn predictions as

a function of distance from the radial and axial walls. Black dots represent individual data

points, while larger red dots are the means of the data at each value of the independent

variable, either the radial distance or the axial distance.

The spread, or standard deviation, in the error decreases with distance from radial and

axial walls. This is expected because of the isotropic assumptions made in the derivation of

porous media closures from bed-averaged data. Additional contributors to near-wall errors

include the use of simplified thermal resistance BCs and momentum equations that permit

slip, the latter of which results in an overprediction of the velocity near the wall and a corre-
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sponding overprediction of convective heat transfer and drag. Therefore, the large standard

deviation of 50◦C can be partially attributed to the significant fraction of experimental data

points close to bounding walls.
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(a) Error vs. distance from radial wall
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Figure 5.11: Solid temperature error as a function of distance from (a) a radial wall (inner or
outer), and (b) an axial wall (lower or upper). Each black dot is one data point. Each red dot is

the mean error for the data at each value of the independent variable.

Fig. 5.11a shows that the mean error decreases with distance from the radial walls, while

no such trend is clearly visible in Fig. 5.11b for the mean error as a function of distance

from the axial walls. This supports the claim that the SANA experiments are a challenging

benchmark due to the very large thermal gradients in the radial direction. No such decrease

in average error exists for distances from the axial walls, which are insulated to the extent

that thermal boundary effects are less significant but are still characterized by slip effects

and anisotropic momentum and heat transfer. This suggests that 1) the average error in

Pronghorn simulations will be lower for systems with less significant thermal boundary layers;

and 2) more sophisticated heat flux BCs can potentially reduce mean error in the near-wall

regions.

On average, Pronghorn overpredicts the solid temperature by 22.6◦C. In addition to the

identified near-wall error contributions of isotropic closures, slip, and simplified resistance

BCs, additional modeling approximations that may have affected the accuracy of the sim-

ulations include the constant vessel surface convection coefficient and emissivity and the

constant pebble emissivity, elastic modulus, and Poisson ratio. In all cases shown in Section

5.3, temperatures are generally overpredicted near the heater surface. This may indicate that
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the closures used for κs underpredict the effective thermal conductivity in this region or that

the pebble emissivity is too low. Pebble emissivities of 0.9 and 0.85 have been used in other

simulations of PBRs [101, 178]. Therefore, a higher emissivity is not without precedent, but

an emissivity of 0.8 is used for easier comparison to Flownex and GAMMA.

Additional insight can be obtained when considering the error for different subsets of the

experiments as summarized in Table 5.3. On average, Pronghorn predicts the helium cases

with 16.6◦C lower standard deviation than the nitrogen cases. The maximum error for the

nitrogen cases is 31.9◦C higher than for the helium cases. The greater convective transport

in nitrogen is more difficult to capture with the friction-dominated model.

Table 5.3: The mean, standard deviation, and maximum error for different subsets of the 52
steady-state and axisymmetric SANA cases.

Temperature Error (◦C)

# Cases Mean σ Max.

All cases 52 22.6 -54.6 -198.6

Helium coolant 26 20.5 -45.8 -166.7

Nitrogen coolant 26 24.8 -62.4 -198.6

3 cm matrix graphite pebbles 12 44.2 -48.7 -198.6

6 cm electric graphite pebbles 28 02.0 -48.4 -189.6

6.5 cm aluminum oxide pebbles 12 45.8 -55.8 -181.3

Full-length heater 36 30.5 -52.7 -198.6

Partial-length heater 16 03.9 -54.7 -189.6

Pronghorn predicts temperatures with the aluminum oxide pebbles with a standard de-

viation approximately 7.3◦C higher than the two types of graphite pebbles. This may be

attributed to the use of graphite emissivity, Young’s modulus, and Poisson ratio for the

aluminum oxide pebbles due to a lack of aluminum oxide data.

The 6 cm graphite pebble cases are predicted with remarkably lower mean error than

the other two types of pebbles. While this may be partially attributable to the fact that

partial-length heater cases were only performed with the 6 cm graphite pebbles, this lower

error may be related to the use of the KTA correlations for drag and heat transfer, which

were developed based on experiments using 6 cm graphite pebbles. Lower errors for the 3

cm matrix graphite and 6.5 cm aluminum oxide pebbles might be obtained if using closures

based on those specific pebble designs. Finally, a margin of 1% in temperature, 2 cm in
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axial position, and 1 cm in radial position are the levels of uncertainty in the experimental

measurements themselves [145].

Overall, good agreement is obtained with both Flownex and GAMMA. Visual compar-

isons against THERMIX, TINTE, and TRIO-EF results available in the literature [101] show

good agreement with Pronghorn. Differences between Pronghorn, Flownex, and GAMMA

exist because of the use of different closures, equation models, and BCs. For example, nei-

ther Flownex nor GAMMA consider an axial dependence in the porosity, while Pronghorn

considers a 2D r-z dependence. Flownex and GAMMA include a viscous stress term in

the conservation of momentum equation, while Pronghorn permits slip. Flownex uses a

constraint-style equation to represent heat transfer between pebbles, while Pronghorn and

GAMMA combine the solid effective heat transfer term with the conservation of solid energy

equation. Different vessel surface convection coefficients are used in all three applications.

Significant development efforts in all three applications are required to fully disentan-

gle these simultaneous effects to identify the most significant contributors to the different

temperature predictions. Simulations of a small subset of the SANA experiments with the

compressible Navier-Stokes macroscale model suggest that temperatures may differ by up to

20 to 30◦C in some regions of the bed, though not always in the direction of lower error [264].

A rigorous quantification of the effect of macroscale model differences between Pronghorn,

Flownex, and GAMMA is an area of future work.

5.4 Sensitivity to Macroscale Closures

This section explores the sensitivity of pebble temperature to particular closures for porosity,

the near-wall treatment for the solid effective thermal conductivity, interphase heat trans-

fer and drag, and thermal dispersion. The geometric representation and BCs described in

Section 5.2 are unchanged.

Table 5.4 shows the mean, standard deviation, and maximum error for the baseline

Pronghorn model in comparison to various closure modifications. The data in each row

was obtained by simulating all 52 steady-state and axisymmetric cases with a single isolated

change in macroscale closures from the baseline model described in Section 5.2. For example,

the entry labeled “constant ε” represents simulation predictions with the porosity closure

used in the baseline model replaced by the constant porosity model in Eq. (2.81) with all

other closures fixed. “Near-wall scaling κs” represents predictions with a 0.5 multiplier on

κradiation in the near-wall region instead of the Tsotsas correlation in Eq. (2.120). “Ergun
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W” represents predictions with the Ergun interphase friction factor in Eq. (2.96) instead of

the KTA correlation in Eq. (2.97). “Gnielinski α” represents predictions with the Gnielinski

interphase convective heat transfer coefficient in Eq. (2.103) instead of the KTA correlation

in Eq. (2.107). “With dispersion” represents predictions with the linear Peclet dispersion

model in Eq. (2.110) instead of the zero-dispersion model in Eq. (2.109).

To quantify the significance of the lack of complete experimental facility information,

simulations are also performed for two different constant values of the vessel convection

coefficient and for two different values of the pebble emissivity. Results are presented in

terms of the thermocouple locations within the bed to illustrate how the error varies as a

function of position. The near-wall region is defined to occur within a half pebble diameter

of the walls, while the bulk region constitutes all other points. 459 points lie in the near-wall

region, while the remaining 833 are in the bulk.

Table 5.4: The mean, standard deviation σ, and maximum solid temperature error for all 52 cases
simulated with Pronghorn as a function of location within the bed for various closure

modifications to the baseline model described in Section 5.2. All units are ◦C.

|††All|†† Near-Wall Bulk

Mean σ Max. Mean σ Max. Mean σ Max.

Baseline 22.6 54.6 -198.6 29.3 60.5 -198.6 18.9 50.7 181.3

Constant ε 34.2 66.0 -280.1 42.1 74.4 -280.1 29.8 60.4 250.4

Near-wall scaling κs 35.5 52.0 -197.3 41.3 58.5 -197.3 32.3 47.8 191.1

Ergun W 21.1 54.4 -211.6 27.2 59.7 -197.8 17.7 50.9 211.6

Gnielinski α 22.0 54.9 -211.1 28.2 60.3 -196.3 18.6 51.4 211.1

With dispersion 21.5 54.2 -208.1 27.5 59.6 -194.1 18.1 50.7 208.1

hc = 10 W m−2 K−1 36.1 51.3 -218.0 41.4 57.0 -206.8 33.2 47.6 218.0

hc = 20 W m−2 K−1 11.6 57.8 -215.3 18.5 63.1 -215.3 07.8 54.3 203.6

ε = 0.7 35.5 63.6 -221.4 45.0 70.7 -221.4 30.3 58.7 195.0

ε = 0.9 09.5 48.8 -179.5 13.7 53.9 -179.5 07.2 45.7 167.3

For all models in Table 5.4, the mean error and standard deviation are both approximately

10◦C higher in the near-wall region than in the bulk. This is expected due to the use

of isotropic macroscale closures and the use of slip BCs, and is in line with the dependence

shown in Fig. 5.11. Interestingly, the location of the maximum error is not wholly dominated
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by the near-wall region; of the 10 models considered, the highest error occurs in the bulk

region for four models.

Less than 2◦C difference in both the mean and standard deviation are observed when

varying the drag, interphase heat transfer, and thermal dispersion models. This relative

average insensitivity to the drag and heat transfer correlation agrees with results observed

by others [104]. However, the maximum error for the Ergun drag model, the Gnielinski

convective heat transfer model, and the linear Peclet thermal dispersion model result in

26.8 to 30.3◦C higher maximum error in the bulk region, but little absolute change in the

near-wall region.

The solid temperature is sensitive to both the porosity model and the near-wall effective

solid thermal conductivity treatment. A constant porosity on average results in a 11.6◦C

higher error and a 11.4◦C higher standard deviation than a 2D porosity. The maximum

error in the near-wall and bulk regions increases by 81.5◦C and 69.1◦C, respectively. A

simple scaling factor applied to the effective solid thermal conductivity in the near-wall

region results in a 12.9◦C higher error, but a 2.6◦C lower standard deviation, than the use

of a different κradiation correlation. The maximum error in the near-wall region is relatively

unaffected, while the maximum error in the bulk region increases by 9.8◦C.

While a constant porosity only differs from the 2D r-z porosity in the near-wall region,

and the wall treatment for solid effective thermal conductivity is only applied in the near-wall

region, it is important to note that the use of these different closures affects the accuracy

in all regions of the bed. Additional investigations are required to determine how these

conclusions extend to geometries with larger bed to pebble diameter ratios.

The solid temperature is also sensitive to the vessel convection coefficient and pebble

emissivity. A range of 24.5◦C in mean error and 6.5◦C in standard deviation is observed

depending on the selection of hc, while a range of 26.0◦C in mean error and 14.8◦C in

standard deviation is observed depending on the selection of ε. For all the variations in

closure parameters, increasing the pebble emissivity from 0.8 to 0.9 is the only change that

simultaneously results in a lower mean error, a smaller standard deviation, and a lower

maximum error relative to the baseline model. This strong dependence on emissivity has been

observed elsewhere, and motivates complete characterization of pebble material properties

[101]. Some error and spread in the Pronghorn simulations must therefore be attributed to

a lack of complete experimental and material details in the benchmark specifications.
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5.5 Summary and Conclusions

Essential to the development of any new simulation tool is the establishment of a strong

validation base. This section demonstrated validation of the friction-dominated macroscale

model and its numerical implementation in Pronghorn with the SANA experiments, a scaled

experiment modeling depressurized natural convection decay heat removal. Using a single

baseline set of closures, Pronghorn on average overpredicts solid temperature by 22.6◦C with

a standard deviation of 54.6◦C. A code-to-code comparison with Flownex and GAMMA

shows similar accuracy, but with the additional advantages of 3D unstructured meshing and

comprehensive multiphysics coupling to MOOSE applications.

The standard deviation decreases with distance from radial and axial walls, while the error

only decreases with distance from radial walls. These observations highlight the need for

anisotropic drag and heat transfer closures for near-wall regions, which are all but absent from

the porous media literature. The primarily radial temperature gradient in the SANA facility

also suggests that more accurate predictions can be achieved with improved isotropic closures

such as heat flux BCs and near-wall corrections to the effective solid thermal conductivity.

Future computational and physical experiments must consider the near-wall region as dis-

tinct from the bulk region. Multiscale coupling to high-resolution CFD or the incorporation

of new experimentally-derived closures has the potential to reduce the standard deviation in

near-wall regions and consequently achieve more precise predictions of PBR T/H to allow

reactor design with smaller thermal margins and improved economic viability. The SANA

experiments are particularly well-suited for a multiscale demonstration due to the relatively

small vessel size and the high number of measurements taken within dp/2 distance from

walls.

The standard deviation and maximum error are 16.6◦C higher and 31.9◦C higher, re-

spectively, for the experiments with nitrogen coolant. The greater convective transport in

nitrogen than in helium is more difficult to capture with the friction-dominated model. Fu-

ture work will repeat the SANA experiments with the compressible Navier-Stokes model to

determine the improvement in accuracy when considering momentum advection.

Interestingly, the error is about 40◦C lower for the experiments with 6 cm diameter

graphite pebbles than for the other two pebble types. While this may be partially at-

tributable to the absence of partial-length heater tests with other pebbles, this lower error

may also be due to the use of macroscale heat transfer and drag closures obtained specifically

from experiments with 6 cm diameter graphite pebbles [159, 164]. Further, the higher error

associated with the aluminum oxide pebble experiments and the sensitivity to the vessel
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convection coefficient and pebble emissivity show that a potentially large systematic error

term is present resulting from incomplete experimental characterization.

Statistical analysis shows that the interphase drag, heat transfer, and thermal dispersion

models are, on average, of little significance to solid temperature, though errors in the

bulk region of the bed increased by up to 30.3◦C when using different closures. The solid

temperature is sensitive to the models used for porosity and the near-wall treatment of the

solid effective thermal conductivity in the entirety of the bed. The highest single increase in

error of 81.5◦C was observed when switching from a 2D porosity distribution to a constant

distribution. Similar sensitivity studies should be repeated for more systems to generalize

these conclusions as a function of power density, bed size, and other characteristic scales.
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Chapter 6

The Pebble Bed Fluoride-Salt-Cooled

High-Temperature Reactor

Throughout most of the history of the PBR concept, helium has been the working fluid of

choice [26, 27, 37, 39, 57–59, 62–67]. Helium has low neutron interaction cross sections, a

thermal conductivity several times larger than other common gases [265], and is chemically

compatible with fuel and structural materials. However, in the past 20 years, considerable

interest has grown in the use of molten salt coolants for PBRs. The volumetric heat capacities

of molten salts, like most liquids, are two to three orders of magnitude higher than those of

gases at the same temperature and pressure. Even when pressurized to tens of atmospheres,

the lower volumetric heat capacity of gas-cooled systems limits them to power densities

two to three orders of magnitude smaller than liquid-cooled systems. Power density often

directly translates to the structural material inventory, which contributes roughly 10% of

the overnight capital cost of construction [77]. Atmospheric pressure systems also eliminate

many complex pressurizing systems, further reducing cost.

The early development of gas-cooled systems emphasized high outlet temperatures needed

for process heat applications. While the initial goal of a sustained 1000◦C outlet temperature

has in most gas-cooled designs been reduced to the 750◦C range due to material limitations,

the high boiling points of molten salts enable operation at similar temperatures as gas-cooled

systems while retaining the operational simplicity associated with single-phase flow. High

temperature operation also corresponds to higher thermal efficiency.

To place these statements in a more quantitative perspective, Fig. 6.1 shows characteristic

primary loop operating pressure and core outlet temperature for seven representative reactor

designs based on six different coolants—water in a Boiling Water Reactor (BWR), water in
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a Pressurized Water Reactor (PWR), sodium in a fast reactor, carbon dioxide in an AGR,

helium in a HTGR, FLiBe in a High Temperature Reactor (HTR), and an organic oil in

an organic-cooled reactor1. The area of each circle is proportional to the volumetric heat

capacity ρfCpf of each coolant at the average operating temperature and pressure.
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Figure 6.1: Characteristic pressure and outlet temperature for seven representative reactor
designs based on six common coolants. The area of each circle is proportional to ρfCp,f .

Salt-cooled designs can operate at similar outlet temperatures as many helium-cooled

PBRs and carbon-dioxide-cooled AGRs without significant pressurization. Most chemically

pure molten salts are compatible with common structural materials such as nickel alloys

and graphite [266]. Lubrication of graphite in salt is also expected to result in significantly

less dust production from frictional pebble wear than in helium-cooled PBRs. Further, many

fission products are soluble in molten salts. Through proper fission product cold trap design,

salt-cooled systems may exhibit a more predictable source term than gas systems, simplifying

both accident analyses and decommissioning activities [39].

The selection of reactor coolant is always a balance between many design objectives that

include efficiency, reliability, safety, and economics. Molten salts have relatively high freez-

ing points, in the vicinity of 450 to 500◦C; extensive trace heating systems are required to

prevent salt freezing and flow blockages. And while salts such as FLiBe contribute to neu-

tron moderation [266], the high (n,3 H) absorption cross section in 6Li requires enrichment

1Water in a SCWR is not included because the extreme changes in thermal properties with temperature
and pressure at and beyond the critical point make calculation of a meaningful average ρfCp,f difficult.
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of the lithium in lithium-bearing salts from a natural 7Li concentration of 92.41% to high

purities, typically 99.995%, to ensure a negative coolant temperature coefficient and accept-

able tritium production rates. The lack of significant infrastructure results in an uncertain

cost associated with 7Li enrichment. The design of FLiBe-cooled PBRs in particular often

includes additional constraints on minimizing coolant inventory to reduce cost [113].

The multiscale model described in Chapter 2 applies to all single-phase PBRs. Chapter 5

presented validation of the friction-dominated macroscale model to depressurized conduction

cool-down in gas-cooled PBRs. At the time of writing, a lack of experimental data for salt-

cooled PBRs precludes a similar validation for salt systems. Therefore, in lieu of validation

exercises, this section demonstrates application of the multiscale model to full-core, steady-

state analysis of a salt-cooled PBR considering the pebble bed, outer reflector bypass, and

conjugate heat transfer with structural materials.

The objectives of this section are to 1) assess the capability of the multiscale model

for capturing physics important to salt-cooled PBRs; 2) describe the incorporation of high-

resolution CFD into the coarse-mesh multiscale model for closure generation; and 3) predict

the core T/H of a salt-cooled design of current interest to the Nuclear Engineering de-

partment at UCB—the Mark-1 PB-FHR. This particular concept design is selected for the

present application because several aspects of the core design both highlight model and im-

plementation strengths relative to “legacy” PBR simulation tools and constitute significantly

different T/H conditions than seen in most helium-cooled PBRs. For example, a combination

of radial and axial inflow BCs results in multi-dimensional core flow, rather than the “plug”

flow typically observed in helium-cooled PBRs. The interaction of these non-uniform flow

BCs with non-Cartesian inflow and outflow boundaries necessitates unstructured meshing

capabilities.

An unconventional reflector block design with strong coupling between horizontal and

vertical flow channels requires generation of new drag closures with off-line CFD modeling.

The pebble design is also distinct from the gas-cooled design shown in Fig. 1.2. A very thin

fuel-matrix annulus, as opposed to a large central heterogeneous core, may cause the HL

method to perform poorly because of thermal resistance distortion. The HSD verification

performed for compacts in Chapter 4 may also not extend to thin regions, especially when

considering the ad hoc averaging and extrema approximations in Eqs. (2.131)–(2.133).

This section also incorporates many additional physical phenomena that are often omitted

in preliminary analyses of salt-cooled designs. In place of a simple volume average of the

phase thermal conductivities [77, 78], inter-pebble stagnant conduction, contact conduction,

and radiation are considered. And while the increase in advective heat transfer due to
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thermal dispersion is usually neglected [77, 78], this “braiding” effect is also included. Likely

more significant than the inclusion of additional macroscale physics is the addition of bypass

flow modeling in this work. A lack of reflector drag closures prevented earlier studies from

accounting for the reduction in core cooling associated with core bypass [77, 78], resulting

in non-conservative maximum fuel temperature predictions.

The remainder of this section is organized as follows. Section 6.1 describes the Mark-1 PB-

FHR design, revisiting in greater detail the features highlighted in the preceding paragraphs.

Section 6.2 describes the computational model of the Mark-1 PB-FHR core. To determine

the applicability of the HSD and HL methods to fuel designs with thin fuel-matrix annuli,

Section 6.3 compares the HSD and HL fuel models against reference, explicitly-resolved,

PB-FHR pebbles. To enable full-core modeling incorporating bypass flow, Section 6.4 de-

scribes the generation of drag correlations for the outer reflector blocks at end-of-life using

COMSOL Multiphysics. Several gap sizes are investigated to identify the sensitivity of core

undercooling to reflector block lifetime.

Section 6.5 then combines the macroscale model described in Section 2.1, the meso and

micro scale models described in Section 2.2 and verified in Section 6.3, and the high-resolution

reflector block closure generation discussed in Section 6.4 to full-core steady-state analysis

of the Mark-1 PB-FHR. Section 6.5.1 evaluates several potential core-flow BCs from the

perspective of the bypass fraction, outlet fluid temperature distribution, and pumping power.

For a number of different reflector block gap distributions, an inflow BC design that achieves

low bypass, pressure drop, and maximum outlet temperatures is recommended for more

detailed analysis.

Section 6.5.2 then provides predictions of pressure; velocity; and fuel, coolant, and struc-

tural material temperatures for the coupled pebble bed and reflector system with the inflow

BC developed in Section 6.5.1. Finally, Section 6.6 revisits the limitations of the present

work and outlines next steps in improving multiscale models for salt-cooled PBRs.

6.1 The Mark-1 Design

The Mark-1 PB-FHR is a 236 MWth FLiBe-cooled PBR concept developed by UCB, MIT,

and UW through a DOE Integrated Research Project (IRP) [113]. This section introduces

the reactor design features salient for multiscale T/H analysis in later sections. All geo-

metric, operational, and material descriptions of the PB-FHR are taken from a technical

design report published in 2014 by the T/H Lab at UCB [113]. For brevity, the “Mark-1”
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designation is dropped throughout this section.

The nominal operating conditions of the PB-FHR relevant to core thermal analysis are

summarized in Table 6.1. The core consists of fixed block-type inner and outer graphite

reflectors that constrain the pebbles into an annulus. Fig. 6.2a shows an illustration of the

pebble bed region and a crude representation of the inner reflector. Conceptual streamlines

are hand-drawn as gray lines; flow into the outer reflector is not shown.

Table 6.1: Nominal operating conditions of the PB-FHR.

Operating Condition Value

Thermal power 236 MWth

Total mass flowrate 976 kg s−1

Inlet temperature 600◦C

Outlet temperature 700◦C

Outlet pressure 2 atm

Surrounding the pebble bed is an outer graphite reflector, which is successively enclosed

in a stainless steel 316 core barrel, a thin coolant downcomer region, and a stainless steel

316 reactor vessel. A Refractory Reactor Cavity Liner System (RRCLS) consisting of 0.5 m

thick insulating fire brick liner blocks within a water-cooled reactor cavity liner plate reduce

parasitic heat losses while ensuring sufficient heat removal in Beyond Design Basis Events

(BDBEs). The cavity liner plate is nominally maintained at 30◦C to protect the thick layer of

concrete encasing the RRCLS. Thermal properties for stainless steel, fire brick, and reflector

graphite are provided in Appendix B.

Fig. 6.2b shows a Computer-Aided Design (CAD) rendering of the reactor vessel internals

with the inner reflector mostly withdrawn from the top of the core and the bed region vacated

of pebbles. FLiBe enters the downcomer from two cold legs and then flows upwards directly

into the pebble bed, the outer reflector, and through a series of machined channels in the

central reflector. Fig. 6.3 shows a CAD model of one of the stacked blocks comprising

the inner reflector at the core axial mid-plane. Each block is 0.26 m tall and consists of

eight control rod channels and 16 instrumentation channels. Coolant flows upwards through

the eight “teardrop”-shaped channels and the eight control rod channels, entering the bed

through horizontal slots between lobes and through the 20 coolant suction holes on each

lobe, of which five are indicated on the bottom lobe in Fig. 6.3. 70% of the total flow enters

the bed through the central reflector, while the remaining flow is split between the pebble
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bed and the outer reflector according to the bypass flow fraction, or the fraction of the total

flow that enters the outer reflector.

(a) Pebble bed and inner reflector (b) Reactor vessel internals

Figure 6.2: Schematic of the PB-FHR (a) pebble bed region with conceptual streamlines drawn in
gray and (b) reactor vessel internals (adapted from [113, 267]).

In most PBR designs, the coolant flow is primarily axial, lacking major inlet flow paths

originating in the reflectors. However, radial flow results in a lower core pressure drop than

purely axial flow because the fluid path length through the bed is reduced. The FLiBe leaves

the pebble bed through the defueling chute at the top of the core and through a series of

axisymmetric suction holes on the inner surface of the outer reflector that connect to a single

hot leg. The coolant from the defueling chute and the hot leg then mixes in a collection

plenum before transport to a power conversion system.

The outer reflector is constructed as rings of stacked graphite blocks; there are 24 blocks

per ring. Fig. 6.4a shows a CAD model of one ring of blocks, while Fig. 6.4b shows a close-up

view of a single block. Each block contains a vertical coolant channel that is connected to

the bed by 24 horizontal suction holes. Grooves on the back of each block fit into ribs on

the core barrel to maintain alignment. The PB-FHR outer reflector block design differs from
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that in most gas-cooled PBRs because the presence of horizontal suction channels leads to

a strong coupling between horizontal and vertical flows.

Figure 6.3: Schematic of one of the stacked inner reflector blocks at the core mid-plane of the
PB-FHR with various channels and flow paths indicated.

(a) Ring of outer reflector blocks (b) Close-up view of single reflector block

Figure 6.4: Schematic of the PB-FHR outer reflector (a) ring and (b) block [113].

The core contains two different types of 3 cm diameter pebbles—fuel pebbles and non-

fueled graphite blanket pebbles. Approximately 470,000 fuel pebbles comprise the majority

of the bed, while approximately 218,000 graphite pebbles are located in a thin region adjacent

to the outer reflector to protect the outer reflector from fast fluence. These two regions are

shown as “fuel pebbles” and “non-fuel pebbles” in Fig. 6.2.

The PB-FHR fuel pebble differs from the nominal gas-cooled pebble design introduced in

Section 1.1. To allow higher power densities without exceeding integrity temperature limits,
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the fuel-matrix region occupies a thin annular shell near the pebble surface instead of a large

central core, a concept that has been considered since the very early days of PBRs [26]. The

fuel pebbles consist of three regions—1) a central graphite core with an outer radius of 1.2

cm; 2) a heterogeneous fuel-matrix region with 30.9% PF of CFPs in a graphite matrix with

a thickness of 0.2 cm; and 3) an outer graphite shell with a thickness of 0.1 cm.

The density of the center graphite core is selected such that the total pebble density

is 84% of the coolant density at average operating conditions to ensure neutral buoyancy

[266]. The CFP uses the standard TRISO particle design. The CFP consists of a central

UC1.5O0.5 fissile kernel successively enclosed by a porous graphite buffer, an inner PyC layer,

a SiC layer, and an outer PyC layer. A schematic of a fuel pebble with randomized particle

coordinates obtained using the OpenMC Monte Carlo code is shown in Fig. 6.5 [228]. Colors

indicate the different material regions.

Figure 6.5: Schematic of a PB-FHR fuel pebble along a slice through the center of the pebble
with random particle coordinates obtained from the OpenMC Monte Carlo code [228].

The present analysis assumes a slightly thicker fuel-matrix shell thickness than the nom-

inal design in order to fit the specified number of CFPs given the constraint that particles

cannot intersect the boundaries of the shell. The use of a thicker fuel-matrix region also meets

realistic minimum inter-particle separation distances required to attain low as-manufactured

defect fractions when using overcoating fabrication methods [30, 268, 269]. The geometry of

the fuel particles and the pebble thermal properties are given in Table 6.2. Constant prop-

erties are selected based on evaluating the temperature-dependent correlations in Appendix

B at the expected operating temperature. Finally, the pebble emissivity, Poisson ratio, and

elastic modulus are assumed to be 0.8, 9× 109 Pa, and 0.136, respectively [270].
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Table 6.2: Properties and kernel geometry for the PB-FHR fuel pebble [80].

Material
ρS kS Cp,S Outer Radius

(kg m−3) (W m−1 K−1) (J kg−1 K−1) in CFP (µm)

UC1.5O0.5 11000 03.5 0400 200

Porous carbon 01000 00.5 0720 300

Inner PyC 01900 04.0 0720 335

SiC 03180 13.9 1300 370

Outer PyC 01900 04.0 0720 405

Graphite core 01450 15.0 1800 —

Graphite matrix 01600 15.0 1800 —

Graphite shell 01600 15.0 1800 —

6.2 Computational Model

This section describes the computational model of the PB-FHR reactor. The combination

of the downcomer and the axisymmetric suction holes connecting the bed to the collection

plenum results in nearly axisymmetric flow in the reactor. Therefore, the PB-FHR is modeled

as a 2D axisymmetric domain. The Pronghorn model, colored by mesh block ID and with

major dimensions indicated, is shown through a central slice in Fig. 6.6. The geometry of the

outlet suction holes and collection plenum remain to be developed, so the coolant flow path

from the bed to the collection plenum is approximated as an axisymmetric flow channel of

simplified geometry. This “outlet plenum” is shown in cyan. The significance of the various

dashed lines are described in Section 6.5.

A top-down schematic of a section of the outer reflector block model at the axial mid-

plane of the reactor is shown in Fig. 6.7. Several simplifications have been made relative

to the as-designed component shown in Fig. 6.4. The protruding ribs from the barrel and

“lips” forming small sheaths between adjacent rings are neglected. While not shown in Fig.

6.4, the PB-FHR design report also describes triangular notches machined into the corners

of each block with carbon fiber tube inserts to suppress vertical bypass flows; a lack of any

visual depiction of these notches and tubings precludes their inclusion in the present work.

Gaps exist between the reflector blocks and between the barrel. Gaps may also exist

between each layer of blocks and the layers above and below due to as-manufactured contact

gap tolerances and spatially-varying deformation. The widths of these gaps are represented
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as ∆h and ∆v, respectively. Both the horizontal and vertical gaps are assumed to be uniform,

which neglects the spatial dependence of the graphite dimensional changes and implies that

the reflector blocks float relative to neighboring blocks above and below. The implications

of this assumption are revisited in Section 6.6.

Figure 6.6: Slice through center of r-z axisymmetric Pronghorn model of the PB-FHR.

Finally, and perhaps most significantly, no geometric information is available for the

reflector block design at axial positions away from the core mid-plane. For instance, the outer

reflector thickness towards the bottom of the reactor is 0.793 m. Rather than arbitrarily

assume the horizontal suction channels are 0.393 m longer than the design at the mid-plane

or that no suction channels exist, requiring significantly more CFD simulations, the entire

outer reflector is modeled with the same closures as those calculated for the mid-plane blocks.

Fig. 6.8 shows more detailed schematics of the dimensions of a single outer reflector block

at the axial mid-plane of the reactor with ∆h = 0 and ∆v = 0.

The pebble bed, outer reflector, and outlet plenum are modeled as porous media, while

the barrel, vessel, and fire bricks are modeled as conducting slabs. Small convective flows

in gaps between the fire bricks are neglected. While coolant flows in the downcomer and

inner reflector, both of these regions are also modeled as conducting slabs for two reasons.

First, the inlet plenum geometry remains to be developed, so the geometry connecting the
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downcomer to the bed and reflectors is unknown. Second, the axial distribution of flow from

the inner reflector into the bed is an open design question for the PB-FHR [77, 78, 113].

Figure 6.7: Top-down schematic of a section of the outer reflector at the axial mid-plane of the
PB-FHR as represented in COMSOL.

(a) Volume rendering (b) Wireframe rendering

Figure 6.8: Schematic of the PB-FHR outer reflector blocks at the axial mid-plane as represented
in COMSOL for ∆h = 0 and ∆v = 0 as (a) volumes and (b) wireframes.

If the inner reflector were modeled as a porous medium, the interphase friction factor

W as a function of height must be imposed in a manner to obtain the desired axial flow
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distribution, resulting in a complex nonlinear problem for every potential inlet flow BC.

Instead, the flow into the core is imposed on the inlet to the pebble bed region and along the

inner reflector outer surface according to the desired axial distribution. The inner reflector

is modeled as a two-phase conducting slab mixture of 50% FLiBe and 50% graphite.

Many methods have been developed to model reflector bypass flows in PBRs, with the

particular geometry usually playing a role in model selection. The three most common

approaches are to 1) resolve a portion of the bypass paths and pebble bed, where a turbulence

model is applied to the bypass regions and a porous media model to the bed region [271,

272]; 2) calculate reflector block resistance factors with off-line CFD simulations that are

used in a flow network model [273–275]; or 3) model the reflector blocks as porous media.

The porous media approach is selected in the present study because of the more complex

reflector structure in the PB-FHR than in the HTR-PM and PBMR designs that are the

focus of the previously-cited works. While Pronghorn includes capabilities for modeling 1D

flow channels in a 3D solid by coupling to RELAP-7 [276], the presence of the 24 horizontal

coolant channels precludes a clean separation of the vertical and horizontal flows. Further,

the present analysis considers vertical gaps between blocks that may form due to spatially-

varying irradiation- and temperature-induced deformation.

In the porous regions, the friction-dominated macroscale model in Eqs. (2.48a)–(2.48d)

is used because of the relatively low Reynolds numbers expected. For the pebble bed region,

ε = 0.4, W is given by Eq. (2.96), α is given by Eq. (2.108), and κf is given by Eq. (2.110).

κs considers the combined heat transfer paths by radiation, conduction, and contact, and is

given as the sum of Eqs. (2.111), (2.113), and (2.116).

While outlet plena in PBRs are frequently modeled as porous media [271], the lack of

any geometric description of the PB-FHR outlet plenum requires simplified closure selection

for this region. For the outlet plenum, ε = 0.5, κf is given by Eq. (2.109), κs is given by

Eq. (2.121), and α = 0. The drag is approximated with the Churchill friction correlation

assuming the outlet plenum consists of npipe 1 cm diameter pipes, where npipe is calculated

based on the assumed 50% porosity [277]. Section 6.4 describes the generation of anisotropic

drag models for the outer reflector with COMSOL CFD simulations.

A total inlet flow of 976 kg s−1 at 600◦C is imposed along the inner reflector outer surface,

the bottom of the pebble bed, and the bottom of the outer reflector. Beginning with zero

bypass, the mass flowrate into the outer reflector is incrementally increased until the pressure

at the bed and outer reflector inlet matches to within 10 Pa, approximating the effect of

an inlet plenum. An outlet pressure of 2 atm is imposed on all outflow boundaries. Due to

the low flows expected, the fluid phase is assumed insulated on all walls. The solid phase
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is assumed insulated on all boundaries except the fire brick surface, where a temperature of

30◦C is imposed to match the nominal operating temperature of the RRCLS.

Fig. 6.9 summarizes the multiscale model and its application to the PB-FHR. The 2D

r-z mesh, before applying a variety of surface and curve mesh refinements, is shown in the

center. White arrows represent the flow BCs into the core through the inner reflector, outer

reflector, and pebble bed and out of the core through the pebble bed, outlet plenum, and

outer reflector. The length of each arrow approximates spatially-nonuniform velocities.

Figure 6.9: High-level summary of the multiscale method applied to the PB-FHR.

Within each computational element of the macroscale mesh in the pebble region, the

average power density and surface temperature are passed to a mesoscale model of a rep-

resentative pebble as a source term and uniform Dirichlet BC, respectively. For the fuel

pebbles, the homogeneous graphite shell and core are modeled with the heat conduction

equation, while the fuel-matrix annulus is modeled with the HSD method, as opposed to

the HL method, for reasons elaborated upon in Section 6.3. For the blanket pebbles, the

absence of heterogeneous regions allows modeling directly with the heat conduction equa-

tion. Text boxes in Fig. 6.9 with “heat conduction module” and “Pronghorn” indicate that

kernel objects from the MOOSE heat conduction module and the Pronghorn application,

respectively, are used to construct the residual in those regions.
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To enable reproduction of the simulations presented in this chapter, Appendix D lists all

data and input files related to this chapter.

6.3 Verification of the Meso and Micro Scale Models

This section compares the HSD and HL methods against reference temperature solutions

obtained with the MOOSE heat conduction module. The reference solutions are obtained

on meshes that explicitly account for all CFPs and their layers; these are referred to as

“fully-resolved” pebbles. The objective is to assess the applicability of the HSD and HL

meso and micro scale models to the PB-FHR design and quantify the error as a function of

thermal and geometric conditions.

When applying the multiscale model described in Section 2.2 to the full core, the uni-

form surface temperature of a representative pebble in each element is obtained as the cell

averaged value of the macroscale solid surface temperature. Therefore, the present investiga-

tion assumes a uniform pebble surface temperature BC to decouple the pebble temperature

solution from the macroscale model. This surface BC is arbitrarily set to 1000◦C, though

the use of constant pebble properties simply shifts all temperatures downward by δs if the

surface BC is instead 1000− δs ◦C.

The simulations performed here match the geometry and materials of the PB-FHR fuel

pebble shown in Fig. 6.5 in all regards except that the particle PF is varied from 5 to 30.9%

to investigate applicability of the HSD and HL methods to variations in pebble design. The

pebble power is held fixed at 236 MWth divided by the 470,000 fuel pebbles. A total of 11

reference pebbles are constructed at PFs of 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0,

27.5, and 30.9%. The reference meshes are constructed with particle coordinates obtained

using the random packing algorithms in the OpenMC Monte Carlo code with all CFP layers

resolved [42]. Only one sixteenth of the pebble is meshed to reduce runtime; any particles

that are “cut” by the x = 0, y = x, or z = 0 faces of the partial pebble are first removed. To

preserve the correct PF, those particles are each re-sampled with new random coordinates

such that they are fully contained within the fuel-matrix annulus or their centers are on the

cut faces. This permits insulated BCs to be applied on all faces without geometric distortion.

Simulations with full and eighth pebbles show negligible impact of this resampling on average

and maximum material-wise temperatures, so the use of a sixteenth of a pebble is a reasonable

model for the present analysis.

Approximately 2× 108 p tetrahedral elements are used in the reference meshes, where p
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is the PF. That is, the one-sixteenth reference pebble at 30.9% PF contains approximately

60 × 106 elements. The HSD and HL methods each represent approximately five orders of

magnitude reduction in the number of elements relative to the reference because the HSD

and HL methods are run on a 1D mesh.

Fig. 6.10 shows a close-up view of a portion of the tetrahedral reference mesh at 20%

PF. The colors represent the different materials present; the gray, purple, and red colors

correspond to the graphite core, graphite matrix, and graphite shell, respectively, while the

other colors represent the layers of the CFP. Some elements may appear non-tetrahedral

because of the particular manner in which the slice was taken in the mesh.

Figure 6.10: Close-up view of a portion of the tetrahedral reference mesh at 20% PF. The colors
represent different materials present, with the gray, purple, and red colors corresponding to the

graphite core, matrix, and shell, respectively; other colors represent the CFP layers.

For illustration, Fig. 6.11 shows the reference fuel kernel temperature solution for 15%

particle PF. Temperatures in the matrix and all CFP layers exterior to the central fissile

kernel are not shown, while the core and shell regions are shown as gray blocks for scale.

An inset shows the tetrahedral mesh in the CFPs, where the color represents the material

ID (with a different color coding from Fig. 6.10. Because the heat source is uniform and

localized to the kernel, kernel temperatures are highest in the particle center.

To provide a second perspective at a different PF, the reference temperature solution at

20% PF is shown in Fig. 6.12a along a radial plane and in Fig. 6.12b on the surfaces of the

particles with the core and shell shown for context. Different color scales are used to make

results clearer. Note that the seemingly larger particles in Fig. 6.12b relative to Fig. 6.11

simply reflect the outer PyC surfaces as opposed to the much smaller fissile kernels.
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Figure 6.11: Reference temperature solution in the kernels for 15% PF with the shell and core
shown as gray blocks.

The absence of a heat source in the central graphite core results in a nearly uniform

temperature distribution in this region, and the majority of the radial temperature drop

occurs over the fuel-matrix region. Ten other simulations at different PFs were performed,

but for brevity not shown here.

The HSD method is applied with Eq. (2.138) used to average the fuel-matrix properties

with the CFPs properrties and Eq. (2.137) used for all other averages. After several trial-

and-error tests, the HL method is applied for two pseudo-particles; using a single particle

resulted in poorer temperature predictions because of a reduced geometric attenuation, while

no significant difference was observed for more than two pseudo-particles.

Figs. 6.13a and 6.13b compare the reference (•), HSD method (—), and HL method (- -)

integral temperature solutions as a function of PF. The PF corresponding to the PB-FHR

fuel design is highlighted with a gray vertical line. The maximum kernel, average kernel, and

average buffer temperatures are shown in Fig. 6.13a, while average graphite temperatures

in the core, matrix, and shell of the pebble are shown in Fig. 6.13b. Different temperature

scales are used to make results clearer.

As shown in Fig. 6.13a, the temperature in each layer of the particle decreases with

increasing PF because the power per particle decreases. As shown in Fig. 6.13b, the temper-

ature in regions outside the particle increases slightly with PF because the effective thermal

conductivity of the heterogeneous region decreases with the replacement of relatively high
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(a) Along plane parallel to x axis (b) Particle surfaces with core and shell

Figure 6.12: Reference temperature solution for 20% PF (a) along a radial plane and (b) on the
surfaces of the particles, with the shell and core shown for context. Different temperature scales

are used to enhance clarity.
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Figure 6.13: Reference (•), HSD (—), and HL method (- -) integral temperature solutions for (a)
materials within the particle and (b) materials not within the particle as a function of PF.

thermal conductivity matrix by lower thermal conductivity CFPs.

The HSD is in remarkably good agreement with the reference solution over all ranges in

PF. The maximum error over all PFs for regions within the particle is only 9.0◦C, and occurs

for the maximum kernel temperature at the lowest PF where clustering effects are the most
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significant. The maximum error for regions outside the particle is only 2.3◦C. Conversely,

the accuracy of the HL method is strongly affected by PF, since the PF determines the

overall thermal resistance from the pseudo-particles to the matrix. The smaller the PF, the

thinner the layers surrounding the pseudo-particles and the smaller the overall resistance.

The total thermal resistance increases with PF; therefore, the HL method predicts increasing

temperatures within all particle layers with increasing PF due to the continual increase in

resistance, a nonphysical trend. The HL method predicts nearly identical average kernel and

buffer temperatures, which demonstrates a general failure to capture the thermal resistance.

While the HL method predicts the correct trend of increasing temperatures outside the

particle with PF in Fig. 6.13b, the error increases with PF. This occurs because of a com-

bination of lower effective thermal conductivity and the division of the continuous matrix

material into increasingly separated segments. The HL method does not converge to the

reference at either low or high PF, and nonphysical particle temperature trends with PF do

not establish confidence in the robustness of the method.

Because a single reference solution is obtained at each PF, the variations of the tempera-

ture distribution originating from the stochastic nature of the particle distribution have been

neglected. For a similar CFP design, Liu et al. estimate a 5◦C standard deviation in tem-

peratures associated with the stochastic particle distribution [190]. Future work extending

this research will perform multiple reference calculations to estimate the standard deviation

for the PB-FHR design.

Table 6.3 summarizes the error in the HSD and HL solutions for the nominal PB-FHR

design at 30.9% PF. The HSD method predicts all temperatures to within 1.8◦C, which

supports the use of the HSD method for steady-state analysis of the PB-FHR. It is rather

fortuitous that a reasonable agreement is obtained for the HL method for the maximum and

average kernel temperatures given the general failure to predict temperatures over the PF

range investigated. The underprediction of the CFP thermal resistance and the division of

the continuous matrix results in temperature overpredictions of 22.3 to 38.2◦C in regions

outside the kernel aside from the shell. The HL method is not recommended for analysis

of the PB-FHR because of its inability to account for thermal resistance in low-PF fuel

variations, and hence is not considered further in this chapter.

The uniquely “thermally-thin” fuel-matrix region may explain the high accuracy of the

HSD and the low accuracy of the HL method. Only at relatively high PFs can the HL method

reasonably approximate the thermal resistance while preserving volume fractions with cu-

bic spherical weighting. In addition, the approximations made in the effective mesoscale

properties in the HSD method are of smaller absolute consequence because of the thin shell
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thickness.

Table 6.3: Temperature error (multiscale minus reference) for the HSD and HL methods applied
to the nominal PB-FHR fuel design at 30.9% PF.

Maximum Average Average Average Average Average

Kernel Kernel Buffer Matrix Pebble Core Pebble Shell

HSD Error (◦C) −0.1 −0.9 0− 0.2 01.4 01.8 −0.2

HL Error (◦C) −3.9 −1.7 −22.3 22.9 38.2 −0.1

To expand upon this last point, Fig. 6.14 shows the error (HSD multiscale minus ref-

erence) as a function of PF for integral temperature solutions (a) in the particle and (b)

outside the particle for four different closure selections. Solid (—) lines correspond to the

Chiew and Glandt model in Eq. (2.138) for the fuel-matrix with a parallel average for all

other mixtures. Dashed (- -) lines correspond to the Chiew and Glandt model for the fuel-

matrix with a series average for all other mixtures. Dashed-dot (− · −) lines correspond to

the Lewis and Nielsen model in Eq. (2.140) for the fuel-matrix with a parallel average for all

other mixtures. Dotted (· · · ) lines correspond to the Lewis and Nielsen model for the fuel-

matrix with a series average for all other mixtures. In other words, two different fuel-matrix

closures and two different CFP and pebble layer closures are considered; the permutation

gives four total sets of homogenization closures.

The difference in temperature predictions among the various mixing closures generally

increases with PF as the fuel-matrix acts more as a mixture and less like pure graphite.

However, the maximum difference in temperature predictions for all PF is only about 4◦C,

demonstrating the relative insensitivity of the PB-FHR pebble temperature predictions to

mixing closures for the thin fuel-matrix region. Jagged behavior in the error likely occurs

due to small stochastic differences in the distance between the stochastic particle distribution

and the mean distribution. In absolute terms, the non-smooth error behavior as a function

of PF is only on the order of 1◦C. In general, temperatures are more sensitive to the series

or parallel CFP averaging model than to the binary Chiew and Glandt or Lewis and Nielsen

mixing method for the fuel-matrix properties.

It should be emphasized that the conclusions obtained in this section only apply to steady-

state modeling of the PB-FHR. Similar verifications should be performed before application

of the HSD and HL models to transients in the PB-FHR or to gas-cooled reactor fuel pebbles

with thicker characteristic fuel-matrix regions.
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Figure 6.14: Integral temperature solutions for (a) materials within the particle and (b) materials
not within the particle as a function of PF. Solid (—) lines: Chiew and Glandt with parallel

average; dashed (- -) lines: Chiew and Glandt with series average; dashed-dot (− · −) lines: Lewis
and Nielsen with parallel average; and dotted (· · · ) lines: Lewis and Nielsen with series average.

6.4 CFD Modeling of Bypass Flows

This section presents COMSOL CFD modeling of flow through the PB-FHR outer reflector

blocks; the objective is to obtain anisotropic drag correlations with form given by Eq. (2.99)

to predict the maximum core bypass fraction. The presence of horizontal suction channels

and a lack of graphite keys in the PB-FHR outer reflector block precludes the use of drag

models developed for the HTR-PM or PBMR. After describing the CFD model, correlation

methodology, and mesh refinement study, anisotropic drag correlations are provided and

select velocity and pressure predictions are shown.

Irradiation-induced dimensional changes in graphite are a complex function of the raw

materials, manufacturing process, isotropy, in-service load conditions, and operating temper-

ature [278]. Generally, graphite initially shrinks and later swells during service. Temperature

changes during transients and the resultant differential thermal expansion of the graphite

and steel core structures also contribute to dimensional changes; for instance, the thermal

expansion coefficient of steel may be five times that of graphite [278]. Neutron flux and

temperature gradients over the reflector blocks on core peripheries are usually large enough

that dimensional changes may also be a function of position, especially in the 10 to 20 cm

facing the bed [58].

Predicting the reflector block gap size with coupled solid mechanics and microstructure
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models is beyond the scope of the present investigation. Instead, the objective of this analysis

is to predict the maximum core bypass fraction over the reflector lifetime, which represents

the greatest diversion of coolant from the fuel. While core bypass has a significant effect on

coolant and fuel temperatures, this effect has been assigned a medium-level importance in

Phenomenon Identification and Ranking Tables (PIRTs) because the maximum core bypass

fraction can be bounded by assuming a limiting reflector gap size [279]. For example, a

maximum block shrinkage of 2% was assumed for the THTR [58].

The protective graphite pebble layer in the PB-FHR likely results in lower fluence in the

outer reflector than in the non-shielded THTR, so a maximum shrinkage of 1% is assumed

in this investigation. Assuming uniform and isotropic gaps, this shrinkage corresponds to

gaps of 5 mm width, which is comparable to values suggested in other bypass flow studies

[61, 273, 274]. Further, to obtain a coarse understanding of the extent to which the gap size

affects the core bypass fraction, a gap size of 10 mm is also considered. While a 10 mm gap

size is likely unrealistically large when applied to the entire outer reflector, a gap size of 10

mm could be considered the maximum gap size in the areas of highest fluence.

Fig. 6.15 shows the two COMSOL representations of the PB-FHR outer reflector block for

a 10 mm gap—Fig. 6.15a depicts the flow model used to correlate drag in the axial direction

and Fig. 6.15b depicts the flow model used to correlate drag in the horizontal direction.

(a) Vertical flow geometry (b) Horizontal flow geometry

Figure 6.15: (a) Vertical and (b) horizontal COMSOL models of the PB-FHR outer reflector
block with inlet, outlet, and symmetry boundaries indicated. All other boundaries are no-slip.
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Symmetry permits modeling of half a block for the vertical flows and a quarter of a block

for the horizontal flows, though this quarter-block geometry is not shown in Fig. 6.15b. Inlet,

outlet, and symmetry boundaries are indicated, with all remaining boundaries modeled as

no-slip walls. A uniform velocity is imposed on inlet boundaries, while a uniform atmospheric

pressure is imposed on outlet boundaries.

The complex geometry of the outer reflector block introduces several complications in the

use of a porous media macroscale model for this region. In the reflector, the characteristic

macro length scale L is on the same order as the characteristic meso length scale l, and the

averaging theorems in Appendix A used to derive the porous media equations in Chapter 2

are less accurate when l/L ≈ 1. Provided the macroscale model is understood to represent

flow and heat transfer averaged over a group of blocks or even a group of quarter-blocks, the

length scale criterion of l� L can more closely be satisfied.

Related to the smaller scale separation than in the pebble region, the porosity and hy-

draulic diameter in the reflector are both functions of position to a larger extent than in the

bed. For simplicity of model correlation and based on the quarter-block averaging interpre-

tation, both the porosity and hydraulic diameter are taken as uniform in space. Because of

the different no-slip BCs in the two cases shown in Fig. 6.15, the hydraulic diameter is dif-

ferent for the vertical and horizontal models. Table 6.4 provides the porosity and hydraulic

diameters for the two gap sizes considered.

Table 6.4: Outer reflector porosity and hydraulic diameter as a function of the gap size.

Gap size (mm) Porosity Vertical D (cm) Horizontal D (cm)

05.0 0.112 2.00 2.58

10.0 0.146 2.65 3.43

While two-equation turbulence models are usually employed for CFD simulations of PBR

reflector blocks [271, 274, 275, 280], limited project resources restricted the present analysis

to the incompressible Navier-Stokes equations with the Spalart-Allmaras turbulence model.

The Spalart-Allmaras model is robust, fast, and often recommended as an IC for complex

two-equation industrial simulations. However, the model is known to be less accurate for

shear flows and decaying turbulence, and may underpredict flow separation.

Ideally, the CFD simulations presented in this section would be compared against ex-

perimental data to guide turbulence model selection. For example, comparisons against

experimental data revealed that Van Wyk’s two-layer Re-Normalization Group (RNG) k-ε
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simulations of a simplified PBMR outer reflector block exhibited pressure drop errors on the

order of 100 to 200% [275]. The complex block geometry of the PB-FHR makes a priori

estimates of the error associated with the use of a one-equation turbulence model difficult.

With an abundance of conservatism, errors as high as several hundred percent may exist in

the friction factor predictions later in this section. However, the present simulations are still

expected to capture the relative change in the friction factor as the block gap size is var-

ied, an important objective in the consideration of multiple block gap widths. A sensitivity

analysis will be performed in the future to propagate the uncertainty in the outer reflector

friction factor correlation to the core bypass fraction.

FLiBe properties are assumed constant and obtained from the correlations provided in

Appendix B at 650◦C, the nominal average bed fluid temperature [80]. An automatic wall

treatment switches between a low-Reynolds-number formulation and a wall function formu-

lation depending on the mesh resolution near the wall. All other turbulence parameters in

the Spalart-Allmaras model use default settings; for full details, the reader is referred to the

COMSOL documentation [208].

Given the assumptions made in the block geometry and the use of the relatively coarse

porous media model for the reflector region, a one-equation turbulence model is of comparable

fidelity. Future work will repeat these calculations with more accurate turbulence models as

more refined reflector geometry specifications become available.

Vertical and horizontal models are simulated for Reynolds numbers in the range of 250

to 2000. For the vertical flow direction, this upper limit is based on a maximum 30% bypass

into the reflector, or the complete diversion of the non-inner-reflector flow from the pebble

bed to the outer reflector. For the horizontal flow direction, this upper limit is based on

100% of the total mass flow passing horizontally through the reflector with a uniform axial

distribution. Coincidentally, both of these limits are nearly the same and slightly below

2000, hence the selection of an upper Reynolds number of 2000.

For each flow direction, a mesh refinement study is performed for the highest Reynolds

number of 2000. The bulk of the mesh consists of tetrahedral elements, with boundary layers

meshed with prismatic elements and a stretching factor of 1.2. The mesh is progressively

refined near the no-slip walls by halving the thickness of the first boundary layer cell and

increasing the number of boundary layer cells by 50% until the relative change in the friction

factor is less than 5%.

Fig. 6.16 shows COMSOL predictions of the velocity streamlines for a 5 mm gap at

Reynolds numbers of (a) 500 and (b) 2000 in the two flow directions. For each Reynolds

number, the velocities are shown on the same color scale, with the horizontal flow case
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shown on the left and the vertical flow case shown on the right. For horizontal flow, FLiBe

passes through the horizontal channels and expands within the vertical coolant channel, with

several jets impinging on the back wall of the vertical channel. The fluid is then redirected

downwards and flows to the back of the block through the thin gap between adjacent rings

of blocks. For vertical flow, the incoming fluid is split between the vertical coolant channel

and flows through the gaps on the front, back, and side of the block. A nearly circular

“stagnation” line delineates these two flow paths. A small amount of the flow also passes

through the horizontal flow channels between the vertical channel and the bed region.

(a) Re = 500

(b) Re = 2000

Figure 6.16: COMSOL velocity predictions for a 5 mm gap at Reynolds numbers of (a) 500 and
(b) 2000 for flow in the horizontal (left column) and vertical (right column) directions.

Fig. 6.17 shows COMSOL predictions of the velocity streamlines for a 10 mm gap at
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Reynolds numbers of (a) 500 and (b) 2000 in the two flow directions. For each Reynolds

number, the velocities are again shown on the same color scale. While the velocity predictions

for the 5 and 10 mm gaps are quite similar, there are a number of small differences. To

conserve mass, the 10 mm gap results in roughly half the peak velocity as the 5 mm gap.

For the horizontal flow case, the larger gap size results in less “undercutting” of flow from

the horizontal gaps to the vertical gaps, as evident by the streamline directions near the

horizontal and vertical gap junction. For the vertical flow case, a larger gap size results in

more streamlined vertical flow through the center channel.

(a) Re = 500

(b) Re = 2000

Figure 6.17: COMSOL velocity predictions for a 10 mm gap at Reynolds numbers of (a) 500 and
(b) 2000 for flow in the horizontal (left column) and vertical (right column) directions.

Fig. 6.18 shows COMSOL predictions of the pressure for a 5 mm gap at Reynolds numbers
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of (a) 500 and (b) 2000 in the two flow directions. For each Reynolds number, the pressure

is shown on the same color scale. For both the horizontal and vertical flow cases, most of the

pressure drop occurs as the flow changes direction along the first perpendicularly-oriented

no-slip face encountered. For the horizontal flow cases, the pressure is highest in the center

of the inlet face and very low at the acceleration point where flow exits the vertical channel

and enters the horizontal gap. For the vertical flow cases, the pressure is highest between

the vertical coolant channel and the back-facing gap, with the highest stagnation pressure

shifting closer to the coolant channel for higher Reynolds number.

(a) Re = 500

(b) Re = 2000

Figure 6.18: COMSOL pressure predictions for a 5 mm gap at Reynolds numbers of (a) 500 and
(b) 2000 for flow in the horizontal (left column) and vertical (right column) directions.

Fig. 6.19 shows COMSOL predictions of the pressure for a 10 mm gap at Reynolds
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numbers of (a) 500 and (b) 2000 in the two flow directions. For each Reynolds number, the

pressure is again shown on the same color scale. When normalized to the range [0, 1], the

pressure distributions for the 5 and 10 mm gaps are very similar, especially for the vertical

flow case. For the horizontal flow case and a larger gap size, the low-pressure region at the

acceleration point between the vertical channel and the horizontally-oriented gap is more

dispersed.

(a) Re = 500

(b) Re = 2000

Figure 6.19: COMSOL pressure predictions for a 5 mm gap at Reynolds numbers of (a) 500 and
(b) 2000 for flow in the horizontal (left column) and vertical (right column) directions.

Fig. 6.20 shows the friction factor as a function of Reynolds number in the vertical and

horizontal flow directions for the two gap sizes considered. For each gap size and flow

direction, simulations were performed at eight Reynolds numbers except for the vertical flow
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case with the 5 mm gap, where the largest mesh size resulted in prohibitively long runtimes

given project computing constraints. Solid markers represent CFD data points and lines

represent the friction factor fits with the form given in Eq. (2.99).
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Figure 6.20: COMSOL predictions of the friction factor (discrete points) as a function of
Reynolds number for 5 and 10 mm gaps. Continuous lines are fits to CFD data with Eq. (2.99).

Table 6.5 summarizes the A and B coefficients used to correlate the pressure drop with

Eq. (2.99) for horizontal and vertical flows, respectively. The “rr” subscripts refer to the

radial flow correlation and the “zz” subscripts refer to the axial flow correlation. The average

and maximum percent error of the correlation with respect to the CFD data points is on the

order of several percent, indicating a good fit of the CFD data to Eq. (2.99).

Table 6.5: Outer reflector friction factor correlations for radial and axial flow, with Aij and Bij
defined in Eq. (2.99). The error in the correlation is calculated relative to the CFD data points.

Percent Error Percent Error

Gap (mm) Arr Brr Avg. Max. Azz Bzz Avg. Max.

5.0 1337.76 2.58 0.47 1.09 593.78 0.96 0.65 1.50

10.0 0479.38 1.44 0.43 1.17 193.47 0.50 1.90 3.82

Because of the alignment of the largest coolant channel with the vertical direction, fric-

tion factors are larger in the radial direction than in the axial direction. At gap sizes of 5
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and 10 mm, the radial friction factor is on average 151.8% higher and 176.3% higher, re-

spectively, than the axial friction factor. Over the Reynolds number range investigated, the

friction factor on average increases by 105.5% and 125.7% for the radial and axial directions,

respectively, when the gap size decreases from 10 mm to 5 mm. Therefore, as the gap size

is reduced, the axial friction factor increases faster than the radial friction factor.

It is important to revisit the assumptions made in the present simulations to acknowl-

edge sources of error and highlight the need for further study. Grooves on the block faces

were neglected for ease of incorporating dimensional changes, while braided carbon fiber tub-

ing was not considered since there was insufficient characterization in the available design

documents. Accounting for these geometric details will likely result in different friction fac-

tors. Further, the one-equation Spalart-Allmaras turbulence model is used because of limited

computational resources and the substantial geometric simplifications already assumed.

From a more fundamental perspective, the pressure gradient was correlated in terms of

a diagonal tensor with coefficients obtained from isolated simulations of flow in mutually or-

thogonal directions. Experiments are required to quantify the accuracy of this decomposition

for the particular geometry considered.

For both the vertical and horizontal flow cases, a uniform mass flux was imposed on

the inlet face. For the vertical flow cases in particular, a uniform inlet flux is a significant

simplification of the actual inflow that would be more heavily concentrated near the vertical

coolant channel from the upstream block ring. If multiple stacked blocks were considered for

the vertical direction, the flow entering the second block would be more heavily concentrated

near the mouth of the vertical coolant channel, reducing the fraction of flow stagnating on the

bottom horizontal surface. The increase in streamlining with stacked blocks would therefore

likely result in a reduction in the axial friction factors.

The BC imposed at the bed-reflector interface should also account for the randomly-

heaped pebble geometry, which has a significant effect on the flow distribution in this region

[139]. Future work will repeat the CFD correlation of outer reflector block friction factors

with a two-equation turbulence model for multiple stacked blocks adjacent to a resolved

pebble bed.

6.5 Multiscale Core Analysis

This section combines the multiscale PBR model described in Chapter 2 with the HSD veri-

fication in Section 6.3 and reflector block drag models in Section 6.4 to full-core, steady-state
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analysis of the PB-FHR. The heat source is specified with the sinusoidal axial distribution

shown in Fig. 6.21 to decouple the thermal physics from neutronics feedback.

Figure 6.21: Volumetric heat source q̇s assumed for the PB-FHR.

Several different analyses are performed to demonstrate the multiscale model developed

in Chapter 2 and predict T/H phenomena of interest to reactor design. In Section 6.5.1, a

number of different inflow BCs are evaluated from the perspective of the end-of-life bypass

fraction, outlet fluid temperature distribution, and pumping power. These three metrics are

indicative of the thermal performance of the PB-FHR.

The bypass fraction is related to bulk coolant diversion from the pebble bed, which is

expected to uniformly increase pebble temperatures and the proximity to CFP failure limits.

The maximum and mass-flux-weighted fluid temperature on the plenum inlet are indicative

of the highest temperatures expected in downstream structural materials, which are often

limited by integrity concerns. For instance, the average outlet coolant temperature in the

TMSR-SF1 is limited to 730◦C, the highest allowable usage temperature of Hastelloy N [79].

If Hastelloy N comprises structural materials in the PB-FHR outlet plenum, the mass-flux-

weighted fluid temperature on the plenum inlet must be below 730◦C to ensure material

integrity. Related to the bypass fraction, basic energy conservation implies that the outlet

fluid temperature is roughly inversely proportional to the core mass flow rate; achieving a

uniform and low outlet fluid temperature requires both low bypass and a judicious choice of

inlet flow BC. Closely related to the inflow BC, in particular the combination of axial and

radial inlets, the core pressure drop is an indication of pumping requirements.
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For a number of different reflector block gap distributions, an inflow BC design that

achieves low bypass, maximum and average outlet fluid temperatures, and pressure drop

is recommended for more detailed analysis in Section 6.5.2. Multiscale predictions of fuel

and blanket pebble temperature distributions provide additional insights into the effects of

bypass and inflow BC design on fuel and structural material temperature limits.

It should be emphasized that the primary purpose of this section is to demonstrate, by

example application to the PB-FHR, a multiscale model applicable to salt-cooled PBRs.

Therefore, the predictions given in Sections 6.5.1 and 6.5.2 should be understood as prelim-

inary and subject to revision upon more refined design information.

6.5.1 Inflow Conditions and Core Bypass

This section demonstrates macroscale analysis of the PB-FHR with a number of different

inflow BCs to investigate 1) how the inlet flow BC affects the fluid temperature distribution

and bypass fraction and 2) recommend an inlet BC that achieves a balance between min-

imizing the bypass fraction, maximum and average fluid temperature on the plenum inlet,

and core pressure drop. A number of different reflector block gap sizes are considered to

understand how the bypass fraction varies with reflector dimensional changes and whether

inflow BC design optimization must consider variation in bypass over reflector lifetime.

Because flow exchanges between the bed and the reflectors via gaps and the horizontal

coolant channels, the bypass fraction can be defined several different ways. Two colored

dashed lines are shown in Fig. 6.6 to aid in this description. The “inlet” bypass fraction is

defined as the fraction of the total mass flow that enters the bottom of the outer reflector, or

along the surface indicated with a green dashed line. Some of this flow may re-enter the bed,

so the inlet bypass fraction does not necessarily represent the fraction of flow that bypasses

the pebbles. Instead, the “total” bypass fraction is calculated as the fraction of the total

mass flow that bypasses the surfaces indicated with red dashed lines. This flow evades most

of the pebble bed, and is considered a more representative measure of the bypass fraction.

Three different inner reflector flow BC are considered in this section; each specifies the

same total mass flow from the inner reflector, but differs in the axial variation. These BCs

are referred to as conditions A, B, and C, and are illustrated in Fig. 6.22; the lengths of the

black arrows roughly correspond to the magnitude of the mass flux at the indicated axial

position. Not shown are the inflow BCs on the bottom of the pebble bed and outer reflector,

which are selected based on equalizing the core and reflector pressure drop as described in

Section 6.2.
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(a) Condition A (b) Condition B (c) Condition C

Figure 6.22: Illustration of three different inner reflector flow BCs considered for the PB-FHR.
The left axis of each figure is the r-z symmetry axis. Condition C is shown for m > 1.

Condition A sets a uniform mass flux along the entire reflector height, while condition B

sets a uniform mass flux only along the centermost vertical and angled regions of the bed.

Condition C sets a linear variation with height along the centermost vertical region, or

ρf ~V = Ãz + B̃ , (6.1)

where z is the vertical coordinate and Ã and B̃ are constants selected to obtain 1) the

required total mass flow and 2) m times higher mass flow at the top than the bottom. In

other words, if the z-coordinate joining the vertical and upper slanted faces of the inner

reflector is z1 and the z-coordinate joining the vertical and lower slanted faces of the inner

reflector is z0, Ã and B̃ are defined to satisfy

Ãz1 + B̃ = m
(
Ãz0 + B̃

)
(6.2a)

ṁir = 2π

∫ z1

z0

(
Ãz + B̃

)
dz , (6.2b)

where ṁir is the mass flowrate entering the bed from the inner reflector, or 70% of the total

mass flow of 976 kg s−1.
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Three different values of m are considered—m = 0.2, which represents a 5× larger

mass flux at the bottom than at the top; m = 1.0, which represents uniform mass flux;

and m = 5.0, which represents a 5× larger mass flux at the top than at the bottom. To

differentiate between different values of m, condition C is subscripted with the value of m.

For example, C5.0 represents condition C with m = 5.0. Therefore, a total of five BCs with

three underlying axial distributions are considered—conditions A, B, C0.2, C1.0, and C5.0.

For each inflow BC, three different reflector block gap size distributions are considered—

uniform 5 mm gaps throughout the reflector, uniform 10 mm gaps throughout the reflector,

and a linear interpolation of 5 and 10 mm gaps with the piecewise sinusoidal axial distribution

shown in Fig. 6.23.

Figure 6.23: Piecewise sinusoidal gap size distribution used to approximate spatially-varying
block deformation. The left axis is the r-z symmetry axis.

This piecewise sinusoidal distribution, which is referred to as the “axial” distribution,

approximates the dependence of block deformation on fast fluence by assuming larger gaps

near the core axial mid plane where the power density is largest. Representing the sinusoidal

power density function generically as f(z), the A and B drag coefficients in the sinusoidal

region are computed as

Aij = f(z)Aij,10 + [1− f(z)]Aij,5 , (6.3)
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Bij = f(z)Bij,10 + [1− f(z)]Bij,5 , (6.4)

where the “5” and “10” subscripts indicate drag coefficients correlated for the 5 and 10 mm

uniform gaps, respectively. That is, the axial distribution linearly interpolates between the

two gap sizes with a sinusoidal distribution.

It is important to note that uniform 10 mm gaps are likely unrealistically large, and T/H

predictions for uniform 10 mm gaps should not be regarded as representative of the PB-FHR

outer reflector end-of-life condition. Instead, the 10 mm gaps are considered to understand

the sensitivity of bypass to the gap size and to contrast the axial distribution in Fig. 6.23

with uniform distributions.

Figs. 6.24–6.26 show the predicted fluid temperature and velocity streamlines in the

pebble bed, plenum, and outer reflector for the five flow BCs considered for 5 mm gaps, 10

mm gaps, and the axial gap distribution, respectively. In each subfigure, the r-z symmetry

axis is on the left boundary and black arrows indicate the inner reflector flow BC. Gray

blocks represent the inner reflector, barrel, downcomer, and vessel. All temperatures in

Figs. 6.24–6.26 are shown on the same color scale.

Figure 6.24: Predicted fluid temperature and velocity streamlines for a 5 mm reflector gap.

For all BCs and gap distributions, the bed is characterized by a combination of radial

and axial flow. The horizontal component of velocity generally decreases moving towards

the outer reflector because the drag is larger in the reflector than in the pebble bed. Flow in

the outer reflector is primarily vertical, though flow enters the bed along the bottom slanted
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face adjacent to the outer reflector and shortly below the inlet to the outlet plenum to pass

through the lower-resistance plenum instead of the higher-resistance reflector blocks.

Figure 6.25: Predicted fluid temperature and velocity streamlines for a 10 mm reflector gap.

Figure 6.26: Predicted fluid temperature and velocity streamlines for the axial reflector gap
distribution shown in Fig. 6.23.

The fluid temperature is highest near the core outlet due to the continual heating in

the bed. The blanket graphite pebbles result in a thin stream of cool fluid along the in-

terface between the bed and the outer reflector. Because heat transfer between the fluid

and reflectors is neglected, the fluid temperature in the outer reflector and along the inner
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reflector surface matches the inlet temperature. Including convective heat transfer between

the fluid and reflector blocks will result in higher fluid temperatures in both the inner and

outer reflectors.

Table 6.6 summarizes the bypass fraction, the maximum and mass-flux-weighted fluid

temperature on the plenum inlet, and the core pressure drop for the three gap distributions

and five inflow BCs considered. Note that the fluid temperature measurements correspond

to the plenum inlet along the upper angled portion of the bed. The mass-flux-weighted fluid

temperature along all core outlets, including the top of the outer reflector, is slightly below

the nominal 700◦C outlet temperature due to minor heat losses to the RRCLS system.

Table 6.6: Predicted bypass, pressure drop, and maximum and mass-flux-weighted average
fluid temperature along the plenum inlet as a function of inflow BC and reflector gap size1.

Percent Bypass Temperature (◦C)

Gap Flow BC ∆P (atm) Total Inlet Average Maximum

5 mm

A 1.16 12.7 17.8 728.9 842.4

B 1.16 11.9 15.1 717.9 804.0

C0.2 1.22 13.3 15.3 711.8 757.4

C1.0 1.22 13.0 15.1 715.3 767.8

C5.0 1.17 12.7 14.8 714.1 772.0

10 mm

A 1.10 24.9 25.5 746.4 878.8

B 1.10 21.9 24.0 735.0 817.8

C0.2 1.14 21.9 26.7 732.2 774.8

C1.0 1.12 21.8 26.1 732.2 771.1

C5.0 1.11 21.6 26.2 728.4 782.1

axial

A 1.14 13.2 17.9 729.9 859.8

B 1.15 12.3 15.1 719.1 813.6

C0.2 1.19 14.0 15.4 715.3 767.8

C1.0 1.17 13.6 15.1 716.1 770.7

C5.0 1.15 13.3 15.0 716.6 773.6

1 The bolded lines correspond to the BC selected for further study in Section 6.5.2.

To interpret the data in Table 6.6, some general observations are first made with regards

to all gap sizes and flow BCs. For all cases, the inlet bypass fraction is higher than the
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total bypass fraction because some fluid flows into the bed from the reflector, especially near

the angled boundary at the bottom fueling chute. When averaged over the different inflow

conditions and gap sizes, approximately 3% of the total mass flow enters the bed from the

outer reflector.

The core pressure drop is fairly insensitive to the gap size and inflow condition. The

pumping power P is the power required to overcome frictional and gravitational pressure

losses in a loop system, and is defined as

P ≡ ṁ

ρf
∆P , (6.5)

where ṁ is the core mass flowrate and ∆P is the core pressure drop. Averaged over all

cases, a core pressure drop of 1.15 atm results in a pumping power of approximately 58

kW, approximately one to two orders of magnitude smaller than characteristic of gas-cooled

PBRs and liquid-metal reactors.

The inflow BC has a significant effect on the bypass and outlet fluid temperature distri-

bution. For a fixed gap distribution, varying the inflow BC results in roughly a 0.025 range

in bypass fraction, a 15◦C range in average plenum inlet fluid temperature, and a 95◦C range

in maximum plenum inlet temperature.

Conditions A and B result in the highest temperatures because a large fraction of the

inner reflector flow is introduced in low-power regions towards the exit of the bed. By

restricting the inlet flow to the central vertical section of the inner reflector via conditions

C0.2, C1.0, and C5.0, the maximum outlet fluid temperature decreases by roughly 90◦C and

40◦C relative to conditions A and B, respectively. Among the three C condition variations,

the linear variation in velocity from the inner reflector does not have a significant effect on

the average outlet temperature, while lower values of m result in lower maximum outlet

temperatures because the fluid path length through the bed is longer.

Generally, a higher bypass flow corresponds to higher average and maximum outlet fluid

temperatures as coolant is diverted from the bed. This occurs because less heat can be

removed with a lower flowrate. However, for all gap distributions, condition C1.0 has the same

or higher total bypass fraction than condition B, but a significantly lower maximum outlet

temperature because fluid is preferentially introduced near the highest-powered regions. This

shows that the bypass fraction is not the sole determining factor of the maximum and average

outlet fluid temperature because the inflow BC also plays an important role.

However, for a fixed inflow BC, the bypass fraction is indicative of the maximum and

average fluid outlet temperatures. The smaller the gap size, the higher the reflector flow
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resistance. Comparing the three gap distributions shows that higher reflector resistances

cause lower maximum and average fluid outlet temperatures because fluid preferentially

flows through the pebble bed and is able to remove fission heat. Decreasing the gap size

from 10 mm to 5 mm lowers the maximum and average outlet fluid temperatures by ap-

proximately 20◦C. For almost all inflow BCs, the pressure drop and average and maximum

outlet temperature for the axial distribution lies within the range predicted for uniform 5

mm gaps and uniform 10 mm gaps. This is expected due to the construction of the reflector

drag models for the axial distribution as a linear interpolation of the 5 and 10 mm gap

correlations.

Uniform 10 mm gaps are likely unrealistically large, so either the uniform 5 mm gaps or

the axial distribution may be considered representative of the reflector end-of-life condition,

contingent on the accuracy of linear interpolation between uniform gap sizes used in the

axial distribution. Depending on the inflow BC and how the bypass is defined, the maxi-

mum bypass fraction for the PB-FHR is predicted in the range of 11.9 to 17.9%. Though

characterized by different bed and reflector designs, this range is in line with the 18% bypass

observed in the THTR [281] and bypass fractions on the order of 10% predicted for the

HTR-PM [273, 282].

While the axial distribution lies closer to the midpoint of the 5 and 10 mm distributions

in terms of temperatures, the bypass fractions are nearly the same as predicted for uniform

5 mm gaps. This suggests that the bypass fraction is most sensitive to the drag coefficient

at the bottom and top extremes of the bed. The lower fluence in these regions likely results

in gaps smaller than 5 mm at end-of-life, and the bypass fractions in Table 6.6 should be

understood as upper bounds on the actual bypass fraction.

Based on the comparisons performed in this section, condition C0.2 is recommended as

the starting point for more refined design calculations for the PB-FHR because 1) the core

pressure drop differs by 7% or less among the different BCs considered; 2) condition C0.2

results in significantly lower maximum and average outlet temperatures than conditions

A and B; and 3) condition C0.2 generally achieves a lower maximum and average outlet

temperature than other values of m. For condition C0.2, the maximum bypass fraction is

predicted in the range 13.3 to 15.4%, depending on how the bypass is defined. Condition

C0.2 is highlighted in Table 6.6 and explored in greater depth in the next section.
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6.5.2 Core Analysis for an Optimized Inflow Condition

This section provides in-depth core T/H predictions for the three reflector gap distributions

with the C0.2 inflow condition. As discussed at the end of Section 6.5.1, this inlet BC is

selected for more detailed analysis because the average and maximum outlet fluid temper-

atures are generally lower than for the other BCs considered, with only minor differences

in core pressure drop. Therefore, all results presented in this section correspond to inflow

condition C0.2.

Fig. 6.27 shows the fluid temperature with velocity streamlines for the three gap distri-

butions; all temperatures are shown on the same color scale. While the same data is shown

in Figs. 6.24–6.24, excluding flow conditions A and B from the shared color scale enables

clearer visualization.

Figure 6.27: Predicted fluid temperature with velocity streamlines for inflow condition C0.2 for all
gap distributions.

Because core bypass diverts coolant from the entirety of the bed, a higher bypass raises

the fluid temperature nearly uniformly through the bed. This is evident in the qualitative

similarity in the fluid temperature among the different reflector gap sizes shown in Fig.

6.27. Fluid temperature differences are primarily constrained to the magnitude, rather than

distribution, especially when comparing the two uniform block gap sizes. For all gap dis-

tributions, fluid enters the bed from the outer reflector along the bottom slanted face. An

exchanging core-reflector flow path also exists near the axial mid-plane; flow exits the bed

to the lower-resistance blocks, flows upwards in the outer reflector through several blocks,
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and re-enters below the outlet plenum. This flow is most visible in the uniform 10 mm and

axial gap distributions, where the resistance near the core mid-plane is lowest.

For all gap distributions, the pressure drop is nearly linear with height; contours are pri-

marily horizontal, with slight radial tilt near the plenum inlet. Fig. 6.28 shows the predicted

pressure with contours in an inset in the pebble bed, plenum, and outer reflector for the 5

mm gap distribution. Because no significant difference is visible for the 10 mm and axial gap

distributions aside from a slight shift in magnitude, the pressure predictions for the 10 mm

and axial gap distributions are omitted for brevity. In Fig. 6.28, the short dashed lines on

the right face of the open 3D rendering outline the pebble bed region. The discontinuities

in the pressure contours near the top of the core occur over the thin solid walls encasing the

outlet plenum.

Figure 6.28: Predicted pressure with contours for inflow condition C0.2 for the 5 mm gap
distribution. Short dashed lines outline the pebble bed region.

For all three gap distributions, Fig. 6.29 shows the predicted pebble surface temperature

in the bed region and Fig. 6.30 shows the solid temperature in the inner reflector, outer

reflector, outlet plenum, barrel, downcomer, and vessel. The same color scale is used for

Figs. 6.29 and 6.30. The fire brick is excluded from the visualization in Fig. 6.30 because the

600◦C temperature drop from the vessel surface to the RRCLS system would saturate the

color scale for visualization. The temperature contours in the fire brick are nearly vertical,

as heat is conducted nearly entirely in the radial direction from the vessel surface.

The interface between the fuel and blanket pebbles is clearly visible in the pebble surface

temperature distribution in Fig. 6.29. The combination of radial and axial coolant flow in



CHAPTER 6. THE PEBBLE BED FHR 181

the bed results in the highest temperatures occurring near the outlet of the bed and along the

fuel-blanket interface due to a combination of higher coolant temperature and higher power

density. Similar to the fluid temperatures shown in Fig. 6.27, the reflector gap profile and

the resultant differences in core bypass primarily affect the magnitude of the solid surface

temperature, rather than the distribution.

Figure 6.29: Predicted pebble surface temperature for inflow condition C0.2 for all gap
distributions.

The sharp line between fuel pebbles and blanket pebbles will in reality be smoothed

from small amounts of pebble radial diffusion, while the sinusoidal power density does not

account for radial peaking near reflectors [77]. Both of these effects will be considered in

future analyses.

Heat conducts from the pebbles to the graphite reflectors and through the barrel, down-

comer, vessel, and fire bricks to removal by the RRCLS system. The highest reflector tem-

peratures occur in the inner reflector and near the core outlet. As mentioned in reference

to the fluid temperature distribution shown in Figs. 6.24–6.26, the omission of convective

heat transfer between the fluid and reflectors overpredicts graphite temperatures in these

regions. By neglecting convective heat transfer in the reflectors, the simulated temperature

difference between the solid and fluid phases is about 100◦C in some regions such as near the

outlet plenum and in the upper portion of the center reflector. To provide an exceedingly

coarse estimate of the error in the reflector temperature predictions, at the upper limit of

convective heat transfer coefficients, this 100◦C temperature difference suggests that the re-

flector temperatures might be overpredicted by 50◦C. When considering a finite heat transfer
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coefficient, the temperature overprediction in the reflectors is likely on the order of tens of

degrees. Therefore, while the 10 mm gap results in the highest reflector temperatures in Fig.

6.30, the higher bypass flow may compensate by providing more heat removal than for the

lower-bypass conditions.

Figure 6.30: Predicted solid temperature for inflow condition C0.2 for all gap distributions.

For all three gap distributions, Figs. 6.31, 6.32, and 6.33 show the maximum UC1.5O0.5

temperature in the fueled region, the average UC1.5O0.5 temperature in the fueled region,

and the average graphite temperature in the bed, respectively. The same color scale is used

in Figs. 6.31–6.33.

The distribution of fissile kernel and graphite temperatures in the fuel pebble region is

similar to the sinusoidal power density, but with maximum values shifted towards the right

and slightly upwards in the core due to the combination of radial and axial flow inlets.

The graphite temperature distribution in the blanket pebble region directly follows the fluid

temperature distribution due to a lack of a volumetric heat source in this region.

The close proximity of CFPs to the pebble surface results in roughly a 10◦C difference

between maximum and average kernel temperatures. Relative to gas-cooled designs with

large central fuel-matrix regions, the PB-FHR pebble exhibits reduced pebble-wise temper-

ature peaking. The maximum kernel temperature across all gap distributions is 880.1◦C,

far below the 1250◦C limit for long-term operation of TRISO particles [28, 30]. Additional

simulations under transient conditions are required to assess proximity to TRISO particle

failure temperatures for a wider set of possible operating states.
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Figure 6.31: Predicted maximum UC1.5O0.5 temperature for inflow condition C0.2 for all gap
distributions.

Figure 6.32: Predicted maximum UC1.5O0.5 temperature for inflow condition C0.2 for all gap
distributions.

Similar to the fluid and solid temperature distributions shown in Figs. 6.27–6.30, the

coolant bypass from the core raises temperatures nearly uniformly through the bed. Table

6.7 summarizes the core maximum fluid temperature, maximum pebble surface temperature,

maximum kernel temperature, and maximum of the average graphite as a function of outer

reflector gap size. A maximum temperature is provided for the kernel to represent the

proximity to individual-particle failure modes. Graphite forms many layers of the CFPs
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as well as the matrix, shell, and inner core. Therefore, the maximum of the pebble-wise

average graphite temperature, rather than the maximum graphite temperature, is provided

as a more meaningful indication of pebble thermal conditions, such as potentials for fission

product diffusion.

Figure 6.33: Predicted average graphite temperature for inflow condition C0.2 for all gap
distributions.

Table 6.7: Predicted total bypass; maximum fluid, pebble surface, and UC1.5O0.5 temperatures;
and maximum average graphite temperature for inflow condition C0.2.

Maximum Temperature (◦C)

Gap Bypass (%) FLiBe Pebble Surf. UC1.5O0.5 Avg. Graphite

5 mm 13.3 766.7 791.8 860.2 816.6

10 mm 21.9 787.2 813.5 880.1 837.5

When the maximum fluid temperature is normalized to a common value for all three

gap profiles, the temperature metrics shown in Table 6.7 are very similar. For instance, for

all three gap distributions, the maximum pebble surface temperature is approximately 25◦C

higher than the maximum fluid temperature, the maximum average graphite temperature is

approximately 25◦C higher than the maximum pebble surface temperature, and the maxi-

mum kernel temperature is approximately 43◦C higher than the maximum average graphite

temperature.
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This reinforces that the primary effect of the core bypass is to uniformly raise core temper-

atures. From the 5 mm gaps to the axial distribution, all temperatures increase by roughly

9◦C, while from the axial distribution to the 10 mm gaps, all temperatures increase by a

further 12◦C. In order of increasing gap resistance, the maximum core temperatures decrease

nearly linearly as less fluid is diverted through the reflector. However, it is interesting to note

that the bypass fraction does not exhibit a similar linear trend. From the 5 mm gaps to the

axial distribution, the bypass fraction increases by 0.007, while from the axial distribution

to the 10 mm gaps, the bypass fraction increases by 0.079. This order of magnitude higher

increase in the bypass does not directly translate to an order of magnitude higher increase

in core temperatures, reinforcing the conclusion in Section 6.5.1 that the effect of the bypass

fraction on core temperatures is a nonlinear function of operating conditions and flow BCs.

At each computational element in the bed, the HSD model is used to compute integral

temperature solutions that were shown for the kernel and graphite in Figs. 6.31–6.33. To

provide additional elaboration on the HSD model application to the PB-FHR, the left half of

Fig. 6.34 shows the pebble surface temperature with solid black contour lines for the 5 mm

gap distribution. This data is also shown in Fig. 6.29 on a shared color scale for all three gap

distributions. Throughout the bed, nine equally-spaced axial positions are indicated with

horizontal dashed lines. The axially-symmetric sinusoidal power distribution results in the

same pebble power density at z = 0.53 and 4.78 m, at z = 1.06 and 4.25 m, at z = 1.59 and

3.72 m, and at z = 2.13 and 3.19 m.

On each horizontal line, a colored circle indicates the location of the maximum UC1.5O0.5

temperature on that line. Because the sinusoidal power distribution only contains an axial

dependence, the maximum UC1.5O0.5 temperature location coincides with the maximum

pebble surface temperature location. In the right half of Fig. 6.34, the meso and micro

scale temperature distributions are shown at the nine axial positions at the maximum kernel

temperature location. Recall that the mesoscale temperature represents the long-wavelength

heat conduction solution due to the homogenized heat source and thermal properties, while

the mesoscale temperature represents a small-scale correction associated with a localized

heat source and heterogeneous CFP thermal properties.

Because the locations of the CFPs within each PB-FHR pebble are unknown, the meso

and micro scale temperatures are shown on separate plots rather than summed together

as in Eq. (2.130). The maximum and average temperatures shown in Figs. 6.31–6.33 are

evaluated with the approximations in Eqs. (2.131) and (2.133), respectively. Discontinuities

exist between the fuel-matrix temperature and the homogeneous core and shell temperatures

in the mesoscale solution because it is only the sum of the meso and micro scale solutions
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that satisfy continuity in temperature and heat flux with neighboring regions.

Figure 6.34: Predicted pebble surface temperature (left) and meso and micro scale temperatures
(right) for inflow condition C0.2 for the 5 mm gap distribution.

Most of the mesoscale temperature drop occurs over the fuel-matrix annulus. The lack of

a volumetric heat source, combined with the uniform pebble surface BC, results in uniform

temperatures in the inner pebble core region due to the zero heat flux centerline condition.

Moving from the bottom of the bed to the top, the pebble surface temperature increases

as the fluid temperature rises by convective heat transfer. It is the combination of a high

surface temperature with a high power density that results in the highest kernel temperatures

occurring in the upper half of the bed, about 1 m above the axial mid-plane.

Because the surface BC in the microscale domain is independent of the pebble surface

temperature, the microscale solution is only dependent on the pebble power density. There-

fore, the nine unique axial positions collapse into five microscale temperature distributions

corresponding to the five unique power densities. With properties and geometry fixed, the



CHAPTER 6. THE PEBBLE BED FHR 187

maximum kernel temperature in the microscale solution is directly related to the power

density. Most of the microscale temperature drop occurs across the low-conductivity porous

buffer layer. While virtually all porous graphite thermal properties are quoted as constant in

the literature [77, 85, 144, 178, 188, 283–285], small absolute changes in thermal conductivity

associated with fission product gas accumulation or other irradiation-induced degradations

may have a large effect on maximum temperature predictions, and are worthy of future

study.

6.6 Summary and Conclusions

The high volumetric heat capacity and high boiling point of molten salts have in the past

20 years led to considerable interest in the use of salt coolants for PBRs. Essential to the

development of a general-purpose, single-phase PBR T/H simulation tool is demonstration

for a wide range of systems. In lieu of an experimental validation similar to that performed

for gas coolants in Chapter 5, this section applied the multiscale models in Chapter 2 to the

PB-FHR, a FLiBe-cooled PBR under development by the Nuclear Engineering Department

at UCB.

The PB-FHR design differs from gas-cooled PBRs in several important areas, motivating

the exploratory investigations performed in this chapter. Though the PB-FHR CFP design

is based on the standard TRISO particle, the fuel-matrix region of the PB-FHR fuel pebbles

is only 0.2 cm thick, or about 2.5 CFPs wide. For comparison, the fuel-matrix core of the

HTR-10 pebble is 5 cm thick, or about 55 CFPs wide. This factor of about 20 difference in

thermal “thickness” required verification of the HSD and HL methods for the PB-FHR fuel

design.

In Section 6.3, the HSD and HL model predictions were compared against reference,

fully-resolved, fuel pebble heat conduction for a range of pebble thermal conditions. The

HSD model predicts material-wise average and maximum temperatures to within 10◦C over

a wide range in particle PF, demonstrating both the robust nature of the HSD model to

variations in pebble design and its applicability to the nominal PB-FHR design. Conversely,

the HL method exhibits non-physical trends with PF and generally fails to predict integral

temperatures due to an inability to preserve the particle thermal resistance at low PFs. At

low PFs, where the HSD error in the maximum kernel temperature is on the order of 10◦C,

the HL method is characterized by errors in excess of 200◦C. Recent transient studies of the

PB-FHR with the HL model [77] should be repeated with the more accurate HSD model
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to reevaluate proximity to thermal limits and Doppler broadening negative temperature

feedback.

Predicting core bypass flows has been identified as an important area in simulation tool

development for gas-cooled PBRs [279]. Bypass flows divert coolant from the fuel, resulting

in higher fuel and coolant temperatures that reduce margins to CFP and structural material

failure and other complications such as excessive forces in defueling chutes. Bypass flow is

expected to play an equivalently important role in salt-cooled PBRs, but to the author’s

knowledge, no studies have attempted to quantify the bypass fraction in the PB-FHR [286].

Full-core resolved CFD modeling of the entire PB-FHR outer reflector system is beyond

reach of the computing resources available for this work. Based on the multiscale concept

applied to the pebble bed region, this work models the outer reflector blocks as a porous

media with macroscale closures obtained from the CFD simulations. The presence of both

horizontal and vertical machined flow channels in the PB-FHR outer reflector block results in

stronger axial and radial coupling than in prototypic gas-cooled reflector blocks, precluding

the utilization of existing gas-cooled PBR reflector block friction factor correlations.

In Section 6.4, anisotropic drag models were correlated with COMSOL Multiphysics CFD

simulations of half- and quarter-size blocks as a function of Reynolds number and block gap

size. Uniform gap widths of 5 and 10 mm were considered. These fairly large gaps were

selected to bound the maximum bypass fraction expected over a lifetime of temperature-

and irradiation-induced dimensional changes in the reflector blocks. A significant number

of simplifying geometric and model assumptions were made in this analysis. Grooves on

the block faces were neglected for ease of incorporating dimensional changes, while braided

carbon fiber tubing was not considered due to insufficient characterization in the available

design documents. Uniform gaps neglect the dependence of deformation on fast fluence,

which is significantly higher in the 10 to 20 cm facing the bed. Therefore, radial gaps would

likely be more similar to wedges than prisms, with larger widths near the pebble region and

smaller widths near the core barrel.

Further, uniform gaps in the axial direction result in block rings floating relative to one

another; while the graphite reflectors are nearly neutrally-buoyant in the FLiBe coolant, the

horizontal gaps are also more similar to wedges than prisms. In the absence of deformed

block measurements for the PB-FHR, these simplified geometries should be understood as

coarse approximations to the true block geometry. Because the gap widths are likely smaller

than 5 mm in lower-fluence regions, these simplified geometries are in line with the present

objective of bounding the maximum bypass fraction.

From a more fundamental perspective, the pressure gradient was correlated in terms of
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a diagonal tensor with coefficients obtained from isolated simulations of flow in mutually or-

thogonal directions. Experiments are required to quantify the accuracy of this decomposition

for the particular geometry considered.

The one-equation Spalart-Allmaras turbulence model is used due to limited computa-

tional resources and the substantial geometric simplifications already made. By modeling

a single reflector block, flow development effects were not considered. For the vertical flow

cases in particular, imposing a uniform mass flux on the inlet faces is a simplification of the

actual flow distribution that would be more heavily concentrated near the vertical coolant

channel. The reduction in directional changes expected when considering multiple stacked

blocks will likely reduce the friction factors in the axial direction, increasing flow through

the outer reflector.

The BC imposed at the bed-reflector interface should also account for the randomly-

heaped pebble geometry, which has a significant effect on the flow distribution in this region

[139]. The modeling of the pebble surfaces as a straight vertical wall in the present work

is analogous to approximating a “snowman”-type structure as a cylinder without resolution

of individual pebbles. Future work will repeat the CFD correlation of outer reflector block

friction factors with a two-equation turbulence model for multiple stacked blocks adjacent

to a resolved pebble bed.

The CFD pressure drop predictions for 5 and 10 mm gaps were correlated as friction

factors for the radial and axial flow directions. While only two gap sizes were considered,

it is clear that the gap width has a significant effect on the drag. By decreasing the gap

width from 10 to 5 mm, the friction factor on average increases by 105.% and 125.7% for

the radial and axial directions, respectively. The friction factor is also very dependent on

the flow direction with the radial friction factor 151.8% and 176.3% higher than the axial

friction factor at gap sizes of 5 and 10 mm, respectively.

In Section 6.5, the multiscale model was applied to full-core steady-state analysis of the

PB-FHR. In Section 6.5.1, five different inner reflector BCs were considered in conjunction

with three different reflector block gap distributions to 1) investigate how the inlet flow

BC affects the fluid temperature distribution and bypass fraction and 2) recommend an

inlet BC that achieves a balance between minimizing the bypass fraction, maximum and

average fluid temperature on the plenum inlet, and core pressure drop. For all BCs and gap

distributions considered, a net flow of coolant from the outer reflector into the pebble bed

exists, primarily along the bottom angled surface of the outer reflector. The core pressure

drop is fairly insensitive to the gap size and inflow condition, though BCs with a lower

“center of mass flux” exhibit higher pressure drops because of the longer fluid path length
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through the bed.

The inflow BC has a significant effect on the bypass and outlet fluid temperature distri-

bution. For a fixed gap distribution, varying the inflow BC results in roughly a 0.025 range

in bypass fraction, a 15◦C range in the average plenum inlet temperature, and a 95◦C range

in the maximum plenum inlet temperature. Generally, a higher reflector block resistance

results in a lower bypass and lower core temperatures, but comparisons among multiple BCs

show that the bypass fraction must be considered in tandem with the flow BCs as indicators

of the maximum and average fluid temperature along the inlet plenum.

By balancing the core pressure drop, maximum coolant outlet temperature, and range in

coolant outlet temperature, an inlet BC more heavily weighted towards the bottom of the bed

is recommended as a starting point for further design studies. For this particular BC, if the 5

mm uniform gaps or the sinusoidal interpolation between 5 and 10 mm gap distributions are

representative of reflector block end-of-life conditions, the core bypass fraction is estimated

to be in the range of 13.3–15.4%. The similarity in the bypass fraction for the uniform 5

mm and axial gap distributions implies that the bypass fraction is strongly affected by the

block drag near the extremities of the bed. A different block design in these regions may

allow greater control over the core bypass fraction.

In Section 6.5.2, in-depth T/H predictions for the three reflector gap distributions were

shown for the optimized inflow condition. Because core bypass diverts coolant from the

entirety of the bed, a higher bypass raises core temperatures nearly uniformly through the

bed. Fluid, pebble surface, kernel, and graphite temperatures for the three gap distributions

differ from one another primarily in magnitude. Averaged over the various gap distributions,

the maximum average graphite temperature and maximum kernel temperature are approx-

imately 25◦C higher and 68◦C higher, respectively, than the pebble surface temperature.

While differences in hundreds of degrees between peak and surface fuel temperatures are

common in LWRs and some gas-cooled PBRs, the close proximity of the CFPs to the pebble

surface results in relatively small fuel temperature gradients in the PB-FHR design.

Project timelines restricted the CFD modeling to prediction of friction factor closures for

the outer reflector blocks. The complex inner and outer reflector block geometries precluded

the use of existing convective heat transfer closures, so convective heat transfer was neglected

in the reflectors. Therefore, fluid temperatures in the outer reflector are underpredicted,

while reflector temperatures are overpredicted. Because the highest fluid temperatures oc-

cur in the pebble bed region, where convective heat transfer is considered, this modeling

simplification is likely conservative from the perspective of peak temperatures. Further, the

use of a sinusoidal heat source to decouple the thermal analysis from neutron transport
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neglects radial power peaking [77]. For the axial power distribution assumed in this work,

the highest kernel temperatures were observed at the interface between the fuel and blanket

pebbles, where power peaking may result in even higher temperatures.

A number of important geometric design details for the PB-FHR are either lacking or

insufficiently characterized, requiring several assumptions in the construction of a computa-

tional model of the reactor that may also affect the applicability of the predictions in this

chapter to the nominal PB-FHR design. Insufficient details for the inlet plenum design,

combined with the desired flexibility in specifying the inlet flow BC, motivated modeling

the inner reflector as a solid conducting slab mixture of FLiBe and graphite. And, even

though the outer reflector block geometry varies with height because of the conical fueling

and defueling regions, the same drag closures were used throughout. Future work will refine

the geometry and closures in the computational model and revisit the predictions made in

this chapter.

The primary objective of this section was to apply the models in Chapter 2 to a salt-

cooled PBR with a design that differs significantly from the gas-cooled concepts that have

dominated the assessment of multiscale thermal models for PBRs. The multi-dimensional

core flow and the interaction of the bed with the angled outlet is easily accounted for with

the unstructured meshing capabilities available with MOOSE-based applications. A large

suite of macroscale closures allows the inclusion of radiation and pebble contact conduction

physics that have been neglected in most previous models of the PB-FHR. Importantly, the

T/H models implemented in Pronghorn are just one component in a comprehensive MOOSE-

based reactor analysis framework. Ongoing work at INL in the areas of multiphysics coupling

to neutron transport, systems-level T/H, and fuels performance will expand the multiscale

models described in this work to more complex analysis and transients relevant to advanced

reactor design.
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Chapter 7

Conclusions

In 2009, reflecting on the operating experiences of the first PBR, the AVR, the German

chemist Rainer Moormann commented that

Ironically, the pebble bed HTR concept has probably survived until now

mainly as consequence of one of its weak points, its insufficient in-core

instrumentation abilities.1

Deficiencies in early computational models of the AVR contributed to core temperatures

exceeding licensing limits by hundreds of degrees, an effect that was only quantified following

a complicated melt wire pebble experiment with a data lead time of 15 months. However,

to design PBRs with an exclusive emphasis on experimentation, with all the attendant

difficulties of data collection in a high temperature, high radiation, and stochastically moving

environment, would be an incredibly expensive, and possibly unfruitful, endeavor.

One might pessimistically interpret this quotation as an indication that the PBR concept

should be rejected from future study, thereby abandoning its many advantages in the areas

of high temperature efficiency, process heat applications, slowly-evolving transients, passive

heat removal, and low excess reactivity. Instead, Moormann’s position is here viewed as

an impetus to develop more accurate computational models of PBRs that can augment

complementary experimental research programs.

This dissertation developed multiscale models of PBRs with the hope that delivering

fast-running and accurate predictions of pebble bed thermal and flow physics to the nuclear

industry will translate to an increased viability of the PBR concept. With the objective

1R. Moormann, “AVR prototype pebble bed reactor: A safety re-evaluation of its operation and conse-
quences for future reactors,” Kerntechnik, vol. 74, pp. 8–21, 2009.



CHAPTER 7. CONCLUSIONS 193

of improving modeling fidelity in areas of safety relevance to PBRs, specific emphasis was

placed on 1) model validation against experimental data, 2) identifying knowledge gaps that

affect model accuracy, and 3) incorporating core bypass flow predictions to bound the core

coolant diversion, an effect whose underestimation was likely a leading contributor to the

high temperatures observed in the AVR [61].

For M&S to be a valuable design tool for reactor development, numerical models must

be able to characterize the proximity of the reactor state to the thermal, mechanical, and

radiation limits bounding the desired operating space. Given today’s computing resources

and a length scale separation of approximately six orders of magnitude—from a CFPs layer

thickness on the scale of 10−5 m to a full core height on the scale of 101 m—precludes routine

design and analysis with fully-resolved models for all length scales and heterogeneities.

In Chapter 2, multiscale analysis of PBRs was introduced as a means for obtaining repre-

sentative T/H physics predictions over many orders of magnitude in space with full-reactor

runtimes on the order of a few Central Processing Unit (CPU) minutes. These models were

presented in terms of three important characteristic length scales—1) the macroscale, incor-

porating the core and surrounding structural materials; 2) the mesoscale, encompassing a fuel

pebble; and 3) the microscale, spanning a CFP. Spatial homogenization of the Navier-Stokes

equations with conjugate heat transfer between the coolant and the pebbles was performed

to obtain a porous media macroscale model. Two meso and micro scale models were con-

sidered. The first was a homogeneous multi-layer conduction model motivated by a simple

numerical implementation in existing single-PDE software tools and a previous dissertation

based upon the method [77]. The second was a linear superposition approach that augments

a long-wavelength background temperature solution with microscale corrections accounting

for the locality of heat generation and layer thermal resistances.

In Chapter 3, the incorporation of these multiscale models into a new software application,

Pronghorn, built upon the open-source FE MOOSE framework was described. The objective

of this new tool development was to deliver the multiscale T/H models described in Chapter

2 within a high-performance, portable, and extensible computing platform that leverages

state-of-the-art numerical methods, nonlinear solvers, and meshing. Flexible in-memory

multiphysics data communication systems, general 3-D unstructured meshes, and a modern

software engineering design greatly expand upon the capabilities available to the nuclear

community for modeling of PBRs. Chapter 3 described the spatial discretization, numerical

stabilization, nonlinear solution methods, and length scale coupling used to translate the

equation and closure models in Chapter 2 into predictive software.

The use of computational models to predict reactor response to nominal and off-normal
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conditions requires high software quality and a strong V&V base. Chapter 4 discussed

several verification activities used to highlight the high caliber of Pronghorn’s numerical

implementation, illustrate the reduction of the macroscale models to open flows, and sup-

port a common simplification used to reduce boundary layer meshing requirements. A

small selection of the MMS verifications shows that the numerical implementation is con-

vergent and matches theoretical spatial and temporal convergence rates for FE and FD

discretizations. Excellent agreement is obtained between Pronghorn and a reference solution

to a nearly-incompressible, thermally-driven natural circulation numerical benchmark; this

demonstrates that the macroscale model is relevant to the open natural convection flows

that may be observed in reactor plena, the accurate prediction of which has significant im-

plications for assessing cyclic fatigue of structural materials. And in the limit of decreasing

Mach number, a comparison of inviscid flow over a cylinder to an analytic potential flow

solution exemplifies the general applicability of the macroscale model to both compressible

and nearly-incompressible flows, which is an essential prerequisite in the development of an

all-speed flow solver for reactors that exhibit the full range from low-speed natural circulation

to high-speed blowdown depressurization.

Chapter 5 then applied the multiscale model to the SANA experiments, a scaled facility

modeling depressurized conduction cool-down of gas-cooled PBRs as a function of power

density, coolant, and pebble properties. By considering a total of 52 experiments with

nearly 1300 solid temperature data points, Pronghorn’s friction-dominated macroscale model

is capable of predicting solid temperatures with a mean error of 22.6◦C and a standard

deviation of 54.6◦C. A code-to-code comparison with two other commonly-used porous

media applications shows a similar accuracy, but with Pronghorn’s additional advantages

in the areas of 3D unstructured meshing and comprehensive multiphysics coupling to other

MOOSE applications.

By exploring the error and standard deviation as a function of space, the higher error

and standard deviation in the near-wall regions of the SANA facility exhibit the need for

multiscale coupling to high-resolution CFD and experimental programs to obtain refined

anisotropic drag and heat transfer closures in these regions. The primarily radial temperature

gradients also suggest that more accurate predictions can be achieved with improved wall

heat flux BCs.

Next, by individually varying macroscale closures from a baseline set and repeating all

52 steady-state and axisymmetric simulations, a deeper understanding of the influence of

various macroscale closures on solid temperature predictions in gas-cooled pebble beds was

obtained. The solid temperature is sensitive to the porosity and effective thermal conductiv-
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ity models, with the average error increasing by 11.6◦C and 12.9◦C, respectively. Even though

these closures only varied from the baseline set in the near-wall region, the solid temperature

predictions are affected throughout the entire bed. This spatial coupling demonstrates that

accurate closures in the near-wall region affect heat and mass transfer over much greater

distances. Of the nine single-closure variations from the baseline set, changing the unchar-

acterized pebble emissivity from 0.8 to 0.9 was the only modifications that simultaneously

decreased the average error (from 22.6◦C to 9.5◦C) and the standard deviation (from 54.6◦C

to 48.8◦C). Equally important to T/H modeling of pebble beds is complete facility char-

acterization to reduce such systemic errors, and future experimental programs are eagerly

anticipated to further the V&V of Pronghorn’s multiscale models.

The multiscale model described in Chapter 2 applies to all single-phase PBRs. In the last

20 years, considerable interest has grown in the use of molten salt coolants for PBRs due to

their high volumetric heat capacity, low vapor pressure, and high boiling points. To assess

the capability of the multiscale model for capturing physics important to salt-cooled PBRs,

Chapter 6 applies the multiscale model to the Mark-1 PB-FHR, a small modular reactor

design under development at UCB. This particular concept is selected to 1) highlight model

strengths relative to “legacy” PBR simulation tools, 2) demonstrate the use of high-resolution

CFD for macroscale closure generation, and 3) illustrate the capacity of the multiscale model

to account for very different T/H conditions than seen in most gas-cooled PBRs such as a

“thermally-thin” fuel-matrix region and multidimensional core and reflector flow.

In Section 2.2, the HSD and HL fuel models were compared against reference, explicitly-

resolved, PB-FHR pebbles. The HSD model predicts material-wise average and maximum

temperatures to within 10◦C over a wide range in particle PF, demonstrating both the robust

nature of the model to variations in pebble design and its applicability to the nominal PB-

FHR design. Conversely, the HL method exhibits non-physical trends with PF and generally

fails to capture the coated particle layer resistance at low PF. Predicting core bypass flows

has been identified as a contributor to the high temperatures observed in the AVR because

coolant is diverted from the fuel. Bypass flow is expected to play an equivalently important

role in salt-cooled PBRs, but to the author’s knowledge, no studies have attempted to

quantify the bypass fraction in the PB-FHR. In Section 6.4, resolved turbulence modeling

of the outer reflector block was performed with COMSOL CFD. A block gap size of 5 mm

was considered as representative of an end-of-life, maximum-deformation condition, while

a 10 mm gap was also simulated to explore the sensitivity of the bypass to the gap width.

Anisotropic friction factor models were correlated as a function of Reynolds number for axial

and radial flows, providing an important closure needed for porous media modeling of the
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reflector region.

Section 6.5.1 then combined the HSD verification from Section 2.2 with the friction factor

models for steady-state core analysis. Five different inner reflector flow BCs were considered

in conjunction with three different reflector block gap distributions to 1) investigate how the

inlet flow BC affects the fluid temperature distribution and bypass fraction and 2) recommend

an inlet BC that achieves a balance between minimizing the bypass fraction, maximum and

average fluid temperature on the plenum inlet, and core pressure drop. For all BCs and gap

distributions considered, a net flow of coolant from the outer reflector into the pebble bed

occurs along the bottom angled surface of the outer reflector and slightly below the plenum

inlet. For a fixed gap distribution, varying the inflow BC results in roughly a 0.025 range

in bypass fraction, a 15◦C range in the average plenum inlet temperature, and a 95◦C range

in the maximum plenum inlet temperature. Generally, a higher reflector block resistance

results in a lower bypass and lower core temperatures, but comparisons among multiple BCs

show that the bypass fraction must be considered in tandem with the flow BCs as indicators

of the outlet fluid temperature.

A “bottom-peaked” inflow BC is recommended for further study because the longer

path-length of the fluid through the bed achieves low temperature peaking on the core outlet,

increasing the margin to structural material damage limits. For this particular BC, assuming

a 5 mm gap distribution is representative of an end-of-life condition, the core bypass fraction

of the PB-FHR is estimated to be in the range of 13.3–15.4%, depending on how the bypass

is defined. The similarity in the bypass fraction between the uniform 5 mm gap distribution

and a linearly interpolated 5 mm/10 mm piecewise sinusoidal distribution shows that the

bypass is very dependent on the gap width at the axial extremes of the bed. A different

block design in these regions may allow greater control over the core bypass fraction.

Section 6.5.2 then concludes with research by conducting multiscale analysis of the PB-

FHR for the bottom-peaked inflow BC as a function of the reflector block gap width. Because

core bypass diverts coolant from the entirety of the bed, a higher bypass raises core tem-

peratures nearly uniformly through the bed. Fluid, pebble surface, kernel, and graphite

temperatures for the three gap distributions considered differ from one another primarily

in a magnitude shift. Averaged over the various gap distributions, the maximum average

graphite temperature and maximum kernel temperature are approximately 25◦C and 68◦C

higher, respectively, than the pebble surface temperature. While differences in hundreds of

degrees between peak and surface fuel temperatures are common in LWRs and some gas-

cooled PBRs, the close proximity of the CFPs to the pebble surface results in relatively

small fuel temperature gradients in the PB-FHR design. The maximum kernel temperature
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is approximately 93◦C higher than the maximum fluid temperature, which retains significant

margin to fuel damage limits.

The conclusions of this research are subject to many limitations in the multiscale model

and completeness of the SANA facility characterization and the PB-FHR design reports.

In addition to fundamental thermophysical properties for the fluid and solid phases, the

multiscale model contains at least nine closures—the porosity ε, the interphase friction

factor W , the interphase heat transfer coefficient α, the effective fluid thermal conductivity

κf , the effective solid thermal conductivity κs, the Brinkman viscosity µ̃, and the mesocale-

averaged density ρmeso, isobaric specific heat capacity Cp,meso, and thermal conductivity kmeso.

The present thermal and flow predictions are limited by the accuracy of these closures, and

collaboration with future experimental and numerical modeling programs is required to refine

these closures in near-wall regions and for new reactor designs, such as the PB-FHR.

A significant limitation of the porous media macroscale modeling approach exists with

regards to predicting the maximum fuel temperature. Because porous media models are

based on spatial averaging, all local flow and heat transfer effects are only retained in an

average sense. The distribution of temperature on an individual pebble surface is unknown.

Resolved CFD simulations of pebbles show that surface temperatures can be tens to hundreds

of degrees higher at stagnation points, which translates to higher fuel temperatures than a

surface-uniform solid temperature can capture. While PBRs generally have large margins

to fuel damage limits, reactors with higher power densities and operating temperatures may

require more refined analysis capabilities than the methods developed in this work.

Chapters 4 and 5 presented a small subset of the V&V matrix used to qualify Pronghorn’s

models to single-phase PBR design and safety analysis. Without similarly available salt-

cooled experimental data, all predictions made for the PB-FHR Sections 6.5.1 and 6.5.2

should be regarded as preliminary and subject to revision upon additional experimental val-

idation. Many geometric simplifications were required in Chapter 6 due to the nature of the

ongoing PB-FHR design process at UCB. The assumed reflector block geometry neglected

carbon fiber tubing and grooves to allow simpler CFD model construction. Combined with

the uniform inflow BCs and the use of a one-equation turbulence model, the friction factor

predictions made in Section 6.4 may differ by 100% or more from experimentally-measured

values. Since errors on the order of 100% or more are sometimes observed, even with the

use of more accurate two-equation models for similar geometries [275], experimental data is

necessary to validate the bypass modeling in Chapter 6. Future efforts to correlate convec-

tive heat transfer coefficients will also be performed to obtain more accurate temperature

predictions in both the inner and outer reflector.
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Finally, comprehensive modeling of PBRs must consider the simultaneously interacting

physical processes of heat and mass transfer, neutron transport, materials performance, and

structural mechanics, among many others. This dissertation focused exclusively on T/H

modeling, which is just one component of a multiphysics reactor analysis framework needed

to fully vet proposed reactor designs against a wide variety of safety, efficiency, and economic

viability criteria. By developing high-quality predictive models capable of rapid T/H design

and analysis, this work enables an increased fidelity in design-level PBR simulation tools by

plugging into the larger community developing Generation-IV reactor models. By deepening

the understanding of pebble bed thermal and flow physics, this research contributes to the

viability of a promising energy technology in addressing the climate change needs of the

future.
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0944-2952, 1997.

[60] V. Sobes, B. Forget, and A. Kadak, “Individual pebble temperature peaking factor

due to local pebble rearrangement in a pebble bed reactor core,” Nuclear Engineering

and Design, vol. 241, pp. 124–133, 2011. doi: 10.1016/j.nucengdes.2010.10.032.

[61] C. Viljoen, S. Sen, F. Reitsma, O. Ubbink, P. Pohl, and H. Barnert, “The re-evaluation

of the AVR melt-wire experiment using modern methods with specific focus on bound-

ing the bypass flow effects,” in Proceedings of HTR, 2008.

[62] R. Baumer, I. Kalinowski, E. Rohler, J. Schoning, and W. Wachholz, “Construction

and operating experience with the 300-MW THTR nuclear power plant,” Nuclear

Engineering and Design, vol. 121, pp. 155–166, 1990. doi: 10.1016/0029-5493(90)

90100-C.

[63] K. Hofmann and W. Trapp, “THTR 300 MWe prototype reactor - safety assessment,”

RWTUV Anlagentechnik GmbH, Tech. Rep. 16.07.2001.

[64] A. Koster, H. Matzner, and D. Nicholsi, “PBMR design for the future,” Nuclear

Engineering and Design, vol. 222, pp. 231–245, 2003. doi: 10.1016/S0029-5493(03)

00029-3.

http://dx.doi.org/10.1016/j.ces.2006.02.011
http://dx.doi.org/10.1002/aic.10314
http://dx.doi.org/10.1016/j.enpol.2011.01.066
http://dx.doi.org/10.1016/j.nucengdes.2010.10.032
http://dx.doi.org/10.1016/0029-5493(90)90100-C
http://dx.doi.org/10.1016/0029-5493(90)90100-C
http://dx.doi.org/10.1016/S0029-5493(03)00029-3
http://dx.doi.org/10.1016/S0029-5493(03)00029-3


BIBLIOGRAPHY 205

[65] Z. Gao and L. Shi, “Thermal hydraulic calculation of the HTR-10 for the initial and

equilibrium core,” Nuclear Engineering and Design, vol. 218, pp. 51–64, 2002. doi:

10.1016/S0029-5493(02)00198-X.

[66] F. Chen, Y. Dong, and Z. Zhang, “Post-test simulation of the HTR-10 reactivity

insertion without scram,” Annals of Nuclear Energy, vol. 92, pp. 36–45, 2016. doi:

10.1016/j.anucene.2016.01.023.

[67] Y. Xu, S. Hu, F. Li, and S. Yu, “High temperature reactor development in China,”

Progress in Nuclear Energy, vol. 47, pp. 260–270, 2005. doi: 10.1016/j.pnucene.

2005.05.026.

[68] Z. Zhang, Y. Dong, W. Qi, and J. Sun, HTR-PM: making dreams come true, 2019.

[Online]. Available: https://tinyurl.com/yx7jxsw7.

[69] World Nuclear News, Key components of second HTR-PM reactor connected, 2020.

[Online]. Available: https://tinyurl.com/wn5nz3m.

[70] Z. Dai, Molten Salt Reactors and Thorium Energy, Chapter 17: Thorium Molten Salt

Reactor Nuclear Energy System (TMSR). Woodhead Publishing, 2017.

[71] X-Energy is developing a pebble bed reactor that they say can’t melt down, 2018. [On-

line]. Available: https://tinyurl.com/sofq386.

[72] 2019. [Online]. Available: https://kairospower.com/.

[73] F. Sefidvash, “A fluidized-bed nuclear reactor concept,” Nuclear Technology, vol. 71,

pp. 527–534, 1985. doi: 10.13182/NT85-A33675.

[74] ——, “Status of the small modular fluidized bed light water nuclear reactor concept,”

Nuclear Engineering and Design, vol. 167, pp. 203–214, 1996. doi: 10.1016/S0029-

5493(96)01276-9.

[75] X. Cai, S. Qiu, W. Tian, and G. Su, “Development of a thermal-hydraulic analysis

code for the Pebble Bed Water-Cooled Reactor,” Nuclear Engineering and Design,

vol. 241, pp. 4978–4988, 2011. doi: 10.1016/j.nucengdes.2011.09.007.

[76] H. Li, S. Qiu, Y. Zhang, G. Su, and W. Tian, “Thermal hydraulic investigations with

different fuel diameters of Pebble Bed Water Cooled Reactor in CFD simulation,”

Annals of Nuclear Energy, vol. 42, pp. 135–147, 2012. doi: 10.1016/j.anucene.

2011.11.010.

http://dx.doi.org/10.1016/S0029-5493(02)00198-X
http://dx.doi.org/10.1016/j.anucene.2016.01.023
http://dx.doi.org/10.1016/j.pnucene.2005.05.026
http://dx.doi.org/10.1016/j.pnucene.2005.05.026
https://tinyurl.com/yx7jxsw7
https://tinyurl.com/wn5nz3m
https://tinyurl.com/sofq386
https://kairospower.com/
http://dx.doi.org/10.13182/NT85-A33675
http://dx.doi.org/10.1016/S0029-5493(96)01276-9
http://dx.doi.org/10.1016/S0029-5493(96)01276-9
http://dx.doi.org/10.1016/j.nucengdes.2011.09.007
http://dx.doi.org/10.1016/j.anucene.2011.11.010
http://dx.doi.org/10.1016/j.anucene.2011.11.010


BIBLIOGRAPHY 206

[77] X. Wang, “Coupled neutronics and thermal-hydraulics modeling for Pebble-Bed Fluoride-

Salt-Cooled High-Temperature Reactor,” PhD thesis, University of California, Berke-

ley, 2018.

[78] R. Scarlat, “Design of complex systems to achieve passive safety: Natural circula-

tion cooling of liquid salt pebble bed reactors,” PhD thesis, University of California,

Berkeley, 2012.

[79] Y. Xiao, L. Hu, S. Qiu, D. Zhang, G. Su, and W. Tian, “Development of a thermal-

hydraulic analysis code and transient analysis for a FHTR,” in Proceedings of the

International Conference on Nuclear Engineering, 2014.

[80] A. Novak, S. Schunert, R. Carlsen, P. Balestra, D. Andrš, J. Kelly, R. Slaybaugh, and
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Rep.

[255] M. Sandberg, N. Berg, and G. Johnsson, “Rayleigh-Bénard convection,” 2011.

[256] G. D. V. Davis, “Natural convection of air in a square cavity: a benchmark numerical

solution,” International Journal for Numerical Methods in Fluids, vol. 3, pp. 249–264,

1983. doi: 10.1002/fld.1650030305.

[257] J. Hoffman and N. Jansson, “A computational study of turbulent flow separation for

a circular cylinder using skin friction boundary conditions,” Quality and Reliability

of Large-Eddy Simulations II, vol. 16, pp. 57–69, 2011. doi: 10.1007/978-94-007-

0231-8_5.

http://dx.doi.org/10.5334/jors.bx
http://dx.doi.org/10.1002/fld.1650030304
http://dx.doi.org/10.1016/j.nucengdes.2010.01.022
http://dx.doi.org/10.1016/j.nucengdes.2010.01.022
http://dx.doi.org/10.1115/1.1436090
http://dx.doi.org/10.1002/fld.1650030305
http://dx.doi.org/10.1007/978-94-007-0231-8_5
http://dx.doi.org/10.1007/978-94-007-0231-8_5


BIBLIOGRAPHY 222

[258] T. Hughes, L. Franca, and M. Mallet, “A new finite element formulation for com-

putational fluid dynamics: i. symmetric forms of the compressible Euler and Navier-

Stokes equations and the second law of thermodynamics,” Computer Methods in Ap-

plied Mechanics and Engineering, vol. 54, pp. 223–234, 1986. doi: 10.1016/0045-

7825(86)90127-1.

[259] T. Tezduyar and Y. Park, “Discontinuity capturing finite element formulations for

nonlinear convection-diffusion-reaction problems,” Computer Methods in Applied Me-

chanics and Engineering, vol. 59, pp. 307–325, 1986. doi: 10.1016/0045-7825(86)

90003-4.

[260] B. Munson, T. Okiishi, W. Huebsch, and A. Rothmayer, Fluid Mechanics. John Wiley

& Sons, 2013.

[261] “MAMMOTH and Pronghorn development and test matrix plan,” Idaho National

Laboratory, Tech. Rep., 2020, Internal Report.

[262] P. Rousseau, C. du Toit, and W. Landman, “Validation of a transient thermal-fluid

systems CFD model for a packed bed high temperature gas-cooled nuclear reactor,”

Nuclear Science and Engineering, vol. 236, pp. 555–564, 2006. doi: 10.1016/j.

nucengdes.2005.11.016.

[263] B. Alazmi and K. Vafai, “Constant wall heat flux boundary conditions in porous media

under local thermal non-equilibrium conditions,” International Journal of Heat and

Mass Transfer, vol. 45, pp. 3071–3087, 2002. doi: 10.1016/S0017-9310(02)00044-3.
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Appendix A

Mathematical Properties of Averages

This section presents theorems for relating a generic field Φ in a multi-phase domain to

various mathematical operations on its spatial average. Note that most of the notation in

this section has been introduced in Chapter 2.

The key requirement for the use of these averaging identities is that the spatial average

be independent of the size of the averaging REV. Therefore, before deriving these identities,

this requirement is provided a quantitative standing in terms of the relative length scale

separation l/L. Independence of the spatial average on the REV size is equivalent to the

requirement that the average of the average equals the average, or

〈〈Φ〉〉 ≡ 〈Φ〉 . (A.1)

Eq. (A.1) also implies that

〈〈Φk〉k〉k = 〈Φk〉k . (A.2)

Eqs. (A.1) and (A.2) require that the averaging volume be much larger than the volume over

which the microscopic solution varies appreciably. Forming a Taylor series expansion of 〈Φ〉
about the centroid of the REV gives

〈Φ〉 = 〈Φ〉c + xi

(
∂〈Φ〉
∂xi

)
c

+
xixj

2

(
∂2〈Φ〉
∂xi∂xj

)
c

+O(xixjxk) , (A.3)

where the “c” subscript indicates the centroid. Taking the average of Eq. (A.3) gives
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〈〈Φ〉〉 = 〈Φ〉c +

(
∂〈Φ〉
∂xi

)
c

1

V–

∫
V–
xid V– +

1

2

(
∂2〈Φ〉
∂xi∂xj

)
c

1

V–

∫
V–
xixjd V– +O(xixjxk)

= 〈Φ〉c +
1

2

(
∂2〈Φ〉
∂xi∂xj

)
c︸ ︷︷ ︸

O(1/L2)

1

V–

∫
V–
xixjd V–︸ ︷︷ ︸
O(l2)

+O(xixjxk) ,
(A.4)

where all terms subscripted with “c” are independent of the averaging volume. The xid V–

integral is zero because the coordinate xi is measured from the centroid of the averaging

volume such that the integration represents an integral of an odd function. Based on this

Taylor series analysis of 〈Φ〉 and 〈〈Φ〉〉, the assumption of spatial averages being independent

of the REV volume is accurate to O(l/L)2. Expressing volume averages in terms of a one-

dimensional integral of a spatially-dependent surface average shows that volume averages

are also equivalent to area averages with accuracy O(l/L)2.

A number of identities are now derived to address specific terms that arise in the averaging

of the conservation equations in Chapter 2. Combining Eqs. (2.11), (A.1), and (A.2) gives

Φkfk = 〈Φk〉+ Φ̂kfk , (A.5a)

Φkfk = 〈Φk〉k + Φ̂kfk . (A.5b)

The presence of the phase function fk indicates that Φk and Φ̂k both are zero in the non-k

phases, which is why Eq. (A.5b) is also valid. By switching orders of integration, it is shown

that the extrinsic average of an intrinsic average equals the intrinsic average,

〈〈Φk〉k〉 ≡
1

V–

∫
V–
〈Φk〉kd V–

=
1

V–

∫
V–

(
1

V– k

∫
V– k

d V– Φfk

)
d V–

=
1

V– k

∫
V– k

(
1

V–

∫
V–
d V– Φfk

)
d V–

= 〈Φk〉k .

(A.6)

A similar process of swapping orders of integration shows that the intrinsic average of an

extrinsic average equals the extrinsic average,

〈〈Φk〉〉k = 〈Φk〉 . (A.7)

To relate averages of gradients to gradients of averages, consider a point located on a curve

with arc length s. At each point on this curve, define a REV V– (s) and the surface bounding
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that volume S(s). By assuming a continuous and invertible mapping between time and arc

length, the general transport theorem commonly used to relate Eulerian and Lagrangian

representations of continua can be written as

d

ds

∫
V– (s)

Φd V– =

∫
V– (s)

∂Φ

∂s
d V– +

∫
S(s)

Φ
d~x

ds
· n̂dS

=

∫
S(s)

Φ
d~x

ds
· n̂dS ,

(A.8)

where the velocity of the surface ~V = ∂~x/∂t was also transformed by substituting arc

length for time. Φ only depends on arc length implicitly through its dependence on the

spatial coordinate, so the first term on the RHS of Eq. (A.8) is zero. Conservation of

mass at stationary, impermeable, boundaries requires the nonzero component of ∂~x/∂s be

perpendicular to the unit normal vector at the solid-fluid interface, giving a zero dot product.

Hence, the area S(s) in Eq. (A.8) can be replaced by the total area minus the solid-fluid

interface area Si(s), or

S(s) ≡ Se(s) + Si(s) , (A.9)

where Se(s) is the portion of the REV surface area that it not a phase interface. Rewriting

Eq. (A.8) using Eq. (A.9) gives

d

ds

∫
V– (s)

Φd V– =

∫
Se(s)

Φ
d~x

ds
· n̂dS . (A.10)

Finally, each point along the curve is described by a position vector ~x0(s) relative to an

arbitrary origin. Let the vector ~p(s) represent the location of the points on the enclosing

surface relative to a point on the curve. The vector representing points on the surface is then

the sum of the vector to a point on the curve plus the vector to the point on the surface,

~x(s) = ~x0(s) + ~p(s) . (A.11)

By the chain rule, the directional derivative with respect to the arc length is

d

ds
=

d

dxi

dxi
ds

= ∇ · d~x
ds

.

(A.12)

Using Eq. (A.11) and (A.12) in Eq. (A.10) gives
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d~x0

ds
·
(
∇
∫
V– (s)

Φd V– −
∫
Se(s)

Φn̂dS

)
=

∫
Se(s)

Φ
d~p

ds
· n̂dS , (A.13)

where d~x0/ds is independent of the area integration variable for a fixed value of s. As long

as V– (s) is translated along the curve without rotation, then any differential change in ~p is

parallel to the surface, and hence the RHS in Eq. (A.13) is zero. Then, because the vector

~x0 was arbitrary, the expression must hold for any vector ~x0, which requires

∇
∫
V– (s)

Φd V– −
∫
Se(s)

Φn̂dS = 0∫
V–
∇Φkd V– = ∇

∫
V–

Φkd V– +

∫
Si

Φkn̂kdS ,

(A.14)

where the divergence theorem was applied to the Se(s) area integral,∫
V– (s)

∇Φd V– =

∫
Se(s)

Φn̂dS +

∫
Si(s)

Φn̂dS . (A.15)

Finally, dividing Eq. (A.14) by V– gives the relation between the average of a gradient and

the gradient of the average,

〈∇Φk〉 = ∇〈Φk〉+
1

V–

∫
Si

Φkn̂kdS , (A.16a)

〈∇Φk〉 = εk∇〈Φk〉k +
1

V–

∫
Si

Φ̂kn̂kdS . (A.16b)

Equality between the average of a gradient and the gradient of an average is offset by the

integral of the field over the phase interfacial area [203]. Extensions of Eq. (A.16) to vectors

convert gradients to divergences.

Now, in order to relate the averages of time derivatives to the time derivatives of averages,

divide each term in the general transport theorem by V– and use the identities derived

previously to give

d

dt

1

V–

∫
V–

Φkd V– =
1

V–

∫
V–

∂Φk

∂t
d V– +

1

V–

∫
Si

Φk ~wk · n̂kdS

d〈Φk〉
dt

=

〈
∂Φk

∂t

〉
+

1

V–

∫
Si

Φk ~wk · n̂kdS ,

(A.17)

where ~w is the velocity of the phase interface [97]. Finally, several relations between averages

of products are needed to average nonlinear advective terms. From Eq. (2.18), an average
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of the product ~VkΦk over V– can be related to an average over the phase volume V– k, giving

〈~VkΦk〉 = εk〈~VkΦk〉k , (A.18a)

〈~VkΦk〉 = εk〈~Vk〉k〈Φk〉k + 〈~̂VkΦ̂k〉 , (A.18b)

where Eq. (A.5) was substituted for both ~Vk and Φk and Eq. (2.18) was used to rewrite

εk〈~̂VkΦ̂k〉k. For the case of three averaged terms, represented in generic notation akbkck,

〈akbkck〉 = εk〈akbkck〉f

= 〈âkb̂kĉk〉+ 〈âkb̂k〉〈ck〉k + 〈âkĉk〉〈bk〉k + 〈ĉkb̂k〉〈ak〉k + εk〈ak〉k〈bk〉k〈ck〉k .
(A.19)
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Appendix B

Fluid and Solid Material Properties

This section provides the correlations used for fluid and solid material properties. The

units given in the front matter are used throughout—K for temperature, kg m−3 for density,

W m−1 K−1 for thermal conductivity, kg m−1 s−1 for dynamic viscosity, and J kg−1 K−1 for

isobaric specific heat capacity.

Fluid Properties

This section provides the correlations used for fluid material properties; unless otherwise

noted, all properties are available in the MOOSE fluid properties module.

FLiBe

The material properties for FLiBe, a peritectic molar composition of 67% LiF and 33% BeF2,

are given as [287, 288]

ρf = − 0.4884Tf + 1.7324× 10−7(P − Patm) + 2413.0 , (B.1a)

kf = 5.0× 10−4Tf + 0.63 , (B.1b)

µf = 1.16× 10−4e3755.0/Tf , (B.1c)

Cp,f = 2416.0 , (B.1d)

where Patm ≡ 101325 Pa is an atmospheric pressure reference point. A finite partial deriva-

tive of density with respect to pressure is included to obtain finite derivatives needed for the

SUPG stabilization.
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Helium

Helium material properties are given as [289]

ρf = 48.14× 10−5P
(
Tf + 0.4446× 10−5P T −0.2

f

)−1
, (B.2a)

kf = 2.682× 10−3
[
1.0 + 1.123× 10−8P T

0.71(1.0−2.0×10−9P )
f

]
, (B.2b)

µf = 3.674× 10−7T 0.7
f , (B.2c)

Cp,f = 5195.0 . (B.2d)

Alternatively, a MOOSE helium properties module based on the SBTL method is available

[290].

Ideal Gas

The ideal gas EOS provides material properties for a generic gas as

ρf =
P

Tf

M

8.3144598
, (B.3a)

kf = kf,0 , (B.3b)

µf = µf,0 , (B.3c)

Cp,f = Cp,f,0 , (B.3d)

where M is the molar mass, and kf,0, µf,0, and Cp,f,0 are constant values chosen depending

on the fluid modeled.

Nitrogen

The correlations providing nitrogen material properties are based on the Span et. al and

Lemmon and Jacobsen EOS, and are far too lengthy to repeat, even in this Appendix [291,

292]. Additional information may be found in the cited references and in the MOOSE fluid

properties module documentation.

Alternatively, a MOOSE nitrogen properties module based on the SBTL method is avail-

able [290].

Solid Properties

This section provides the correlations used for solid material properties. Note that these

properties are functions of TS, the internal solid temperature, rather than Ts, or the intrinsic

phase-averaged solid surface temperature.
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Aluminum oxide

Aluminum oxide material properties are given as [152, 293]

ρS = 3637 , (B.4a)

kS = 743.0066 T−0.69515
S , (B.4b)

Cp,S = 880 . (B.4c)

Electric graphite

Sigri Al 2-500 electric graphite material properties are given as [152, 294]

ρS = 1673 , (B.5a)

kS = 2.5738× 104T −0.86367
S , (B.5b)

Cp,S = 4184

(
0.5421 + a1TS +

a2

TS
+
a3

T 2
S

+
a4

T 3
S

+
a5

T 4
S

)
, (B.5c)

where a1 = −2.4267 × 10−6, a2 = −90.273, a3 = −43449, a4 = 1.5931 × 107, and a5 =

−1.4369× 109.

Fire Brick

Type C-22Z fire brick material properties are given as [295, 296]

ρS = 737 , (B.6a)

kS = 0.26 , (B.6b)

Cp,S = 1050 . (B.6c)

Matrix graphite

Matrix graphite material properties are given as [152, 294]

ρS = 1632 , (B.7a)

kS = − 22.05679 ln (TS) + 194.32788 , (B.7b)

Cp,S = 4184

(
0.5421 + a1TS +

a2

TS
+
a3

T 2
S

+
a4

T 3
S

+
a5

T 4
S

)
, (B.7c)

where a1 = −2.4267 × 10−6, a2 = −90.273, a3 = −43449, a4 = 1.5931 × 107, and a5 =

−1.4369×109. The graphite reflector properties are assumed given by these matrix graphite

properties.
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Porous graphite

The material properties for porous graphite, or the low-density buffer layer in CFPs, are

assumed constant based on experimental data and values used elsewhere [77, 85, 144, 178,

188, 283–285] as

ρS = 1000 , (B.8a)

kS = 0.5 , (B.8b)

Cp,S = 720 . (B.8c)

Pyrolitic graphite (PyC)

The material properties for PyC are assumed constant based on experimental data and values

used elsewhere [77, 85, 144, 178, 188, 283, 284, 297–300] as

ρS = 1900 , (B.9a)

kS = 4.0 , (B.9b)

Cp,S = 720 . (B.9c)

Some experimental measurements suggest that the thermal conductivity of the inner and

outer PyC in CFPs differ due to the annealing process of the inner layer during SiC deposi-

tion, but this is not considered here [284, 285, 297–299].

Stainless steel 316

The material properties for stainless steel 316 are given as [301]

ρS = 7863 , (B.10a)

kS = 15.17 + 13.3
TS − 273

1000
, (B.10b)

Cp,S =
7.8× 106

ρS

(
0.4533 + 0.382

TS − 273

1000

)
. (B.10c)

Silicon carbide (SiC)

The material properties for SiC are given as [77, 144, 178, 302]

ρS = 3216 , (B.11a)

kS =
(
−0.0003 + 1.05× 10−5TS

)−1
, (B.11b)

Cp,S = 925.65 + 0.3772TS − 7.9259× 10−5T 2
S − 3.1946× 107T−2

S . (B.11c)
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Uranium oxycarbide

Due to a lack of other closures, uranium oxycarbide properties are approximated as the UO2

properties in Eq. (B.12).

Uranium dioxide (UO2)

UO2 material properties are given as

ρS = 10970
(
1.0056 + d1TS + d2T

2
S + d3T

3
S

)
, (B.12a)

kS =


100

6.8337 + b1TS + b2T 2
S

+ 0.12783TS e
−13475.11144

TS TS < 2670

4.1486− 2.2673× 10−4TS else

, (B.12b)

Cp,S =


C1a

2
1e

a1
TS[

TS

(
e

a1
TS − 1

)]2 + 2C2TS + C3a2e
− a3

TS

[
1 +

a3 (TS − 298.15)

T 2
S

]
TS < 2670

167 else

,

(B.12c)

where for conciseness d1 = −1.6324 × 10−5, d2 = −8.3281 × 10−9, d3 = 2.0176 × 10−13,

b1 = 1.6693 × 10−2, b2 = 3.1885 × 10−6, a1 = 516.11, a2 = 8.6144 × 10−5, a3 = 1.8815/a2,

C1 = 78.212, C2 = 3.8616× 10−3, and C3 = 3.3993× 108 [303].
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Appendix C

Ideal Gas SUPG Stabilization

This section presents the inviscid flux Jacobian matrices Ai defined in Eq. (3.30) and the

additional SUPG integral terms in Eq. (3.39) for the conservation equations in Eq. (3.24)

for the ideal gas EOS. This example helps build the connection between the generic, multi-

dimensional, coupled equation system SUPG method given in Eq. (3.39) with the single-

equation, 1D, form in Eq. (3.23).

The inviscid flux Jacobian matrices defined in Eq. (3.30) with the ideal gas EOS are

A1 =



0 1 0 0 0

γ−1
2
‖~V ‖2 − V 2

1 (3− γ)V1 (1− γ)V2 (1− γ)V3 γ − 1

−V2V1 V2 V1 0 0

−V3V1 V3 0 V1 0

V1

[
γ−1

2
‖~V ‖2 −Hf

]
(1− γ)V 2

1 +Hf (1− γ)V1V2 (1− γ)V1V3 V1γ


, (C.1)

A2 =



0 0 1 0 0

−V1V2 V2 V1 0 0

γ−1
2
‖~V ‖2 − V 2

2 (1− γ)V1 (3− γ)V2 (1− γ)V3 γ − 1

−V3V2 0 V3 V2 0

V2

[
γ−1

2
‖~V ‖2 −Hf

]
(1− γ)V1V2 (1− γ)V 2

2 +Hf (1− γ)V2V3 V2γ


, (C.2)
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A3 =



0 0 0 1 0

−V1V3 V3 0 V1 0

−V2V3 0 V3 V2 0

γ−1
2
‖~V ‖2 − V 2

3 (1− γ)V1 (1− γ)V2 (3− γ)V3 γ − 1

V3

[
γ−1

2
‖~V ‖2 −Hf

]
(1− γ)V1V3 (1− γ)V2V3 (1− γ)V 2

3 +Hf V3γ


, (C.3)

where γ is the specific heat ratio,

γ ≡ Cp,f
Cv,f

, (C.4)

and Cv,f is the fluid isochoric specific heat capacity,

Cv ≡
(
∂e

∂T

)
v

. (C.5)

Carrying through the algebra in Eq. (3.40) for j = 0 gives the following additional term for

the mass conservation equation, ∫
Ω

ε τu∇W0 · ~Ru dΩ , (C.6)

The mass conservation equation is stabilized by a term proportional to the dot product of

the gradient of the mass equation weight function with the momentum equation quasi-linear

strong residuals.

Carrying through the algebra in Eq. (3.40) for j = 1, 2, 3 gives the following additional

term for the j-th momentum equation,

∫
Ω

ετu

[
(1− γ)~V · ~Ru

∂Wj

∂xj
+ ~V · ∇WjRuj + Vj∇Wj · ~Ru

]
dΩ +∫

Ω

ετeRe(γ − 1)
∂Wj

∂xj
dΩ +

∫
Ω

ετcRc

[
−Vj ~V · ∇Wj +

1

2
(γ − 1)‖~V ‖2∂Wj

∂xj

]
dΩ

(C.7)

where summation over j is not implied, Rc is the continuity equation quasi-linear strong

residual, and Re is the energy equation quasi-linear strong residual. The momentum equa-

tions are therefore stabilized by terms proportional to the continuity, momentum, and energy

equation quasi-linear strong residuals.
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Carrying through the algebra in Eq. (3.40) for j = 4 gives the following additional term

for the energy conservation equation,

∫
Ω

ετu

[
Hf∇W4 · ~Ru + (1− γ)

(
~V · ~Ru

)(
~V · ∇W4

)]
dΩ +∫

Ω

ετeReγ~V · ∇W4dΩ +

∫
Ω

ετcRc

[
(γ − 1)

2
‖~V ‖2 −Hf

]
~V · ∇W4dΩ .

(C.8)

The energy equation is therefore stabilized by a term proportional to the continuity, mo-

mentum, and energy equation quasi-linear strong residuals.
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Appendix D

Reproducibility

Reproducible science refers to the concept that all research outputs should be repeatable

using a complete computational environment consisting of the software application, input

files, and data results. This section describes the complete computational environment used

to obtain the results in this dissertation.

The Pronghorn project is hosted on an INL internal GitLab site. Currently, the best way

to request access is to post on the MOOSE users group at https://tinyurl.com/rkgccw7.

The Pronghorn repository hash used for the present work is

d2429e07d746e4a4e996b1806ccdc35937395690

Simple meshes were generated within the MOOSE framework with the MeshGenerator sys-

tem, while more complex meshes were generated with Cubit version 15.1b [304]. Output

files are of Exodus II format and are visualized in Paraview version 5.0.1 [305].

The Latex source files and figures used to compile this dissertation are available in a

public git repository that may be cloned by running

git clone git@github.com:aprilnovak/thesis.git

Table D.1 provides paths for the tests, input files, and data files referenced in this dissertation

in order of appearance. All path names are written in typewriter font. For all files within

the problems directory, README markdown files provide more detailed information on file

descriptions and directory structure. Note that all input files are based on the Pronghorn

commit hash given at the beginning of this section, and are meant as an illustration of

the method used. The values of local variables in file headers are for some cases varied to

https://tinyurl.com/rkgccw7
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explore different thermal conditions, such as the multiscale verification in Section 6.3, and

must change to cover the full range of results in this dissertation.

A † superscript in Table D.1 indicates that the data file corresponds to a mesh or time

convergence study. If data files are not specifically listed for a particular item, this implies

that data was collected directly from Exodus output files. Output files may be generated

from any of the inputs indicated in Table D.1 by running

pronghorn-opt -i file.i

where file.i is the name of the input file and pronghorn-opt is the name of the OPT method

compiled executable that should be in the PATH environment variable.
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Table D.1: Paths to tests, input files, and data files for the simulations performed in this dissertation. A † superscript
indicates that the data files contain mesh and/or time refinement studies.

Section Description Type Location

3.3
regression tests tests pronghorn/test/tests

unit tests tests pronghorn/unit

4.1 MMS tests
tests pronghorn/test/tests/mms

data files† pronghorn/doc/verification/convergence figures.py

4.2 convection flow
input files pronghorn/problems/rayleigh-benard

data files† pronghorn/problems/rayleigh-benard/pronghorn/horizontal refine.py

4.3 cylinder flow
input files pronghorn/problems/potential-flow

data files† pronghorn/doc/vv/potential flow.py

4.4 HSD verification input files
pronghorn/problems/multiscale/stainsby

pronghorn/problems/multiscale/stainsby/transient

5.3 and 5.4 SANA validation
input files

pronghorn/problems/sana/revisited/bottom-half-heater

pronghorn/problems/sana/revisited/long-central-heater

pronghorn/problems/sana/revisited/plenum

pronghorn/problems/sana/revisited/top-half-heater

data files pronghorn/doc/papers/SANA-Revisited/data.py

6.3 pebble verification
input files

thesis/hsd

thesis/hl

data files pronghorn/doc/papers/PBFHR/hsd data.py

6.4 reflector CFD
input files thesis/outer reflector fluid.mph (before mesh refinements)

data files thesis/drag.py

6.5 PB-FHR modeling input files
pronghorn/problems/pb-fhr/pronghorn/core with plenum

pronghorn/problems/pb-fhr/pronghorn/core with plenum/axial gaps
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