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Numerical methods for high-dimensional probability density
function equations

H. Choa, D. Venturib, G. E. Karniadakisa

aDivision of Applied Mathematics, Brown University, Providence, RI 02912, USA
bDepartment of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA

95064, USA

Abstract

In this paper we address the problem of computing the numerical solution to kinetic
partial differential equations involving many phase variables. These types of equations
arise naturally in many different areas of mathematical physics, e.g., in particle systems
(Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and
Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and
coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three differ-
ent classes of new algorithms addressing high-dimensionality: The first one is based
on separated series expansions resulting in a sequence of low-dimensional problems
that can be solved recursively and in parallel by using alternating direction methods.
The second class of algorithms relies on truncation of interaction in low-orders that re-
sembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic
gas theory and it yields a hierarchy of coupled probability density function equations.
The third class of algorithms is based on high-dimensional model representations, e.g.,
the ANOVA method and probabilistic collocation methods. A common feature of all
these approaches is that they are reducible to the problem ofcomputing the solution to
high-dimensional equations via a sequence of low-dimensional problems. The effective-
ness of the new algorithms is demonstrated in numerical examples involving nonlinear
stochastic dynamical systems and partial differential equations, with up to 120 variables.

Key words: High-order numerical methods, proper generalized decomposition,
uncertainty quantification, stochastic dynamical systems, kinetic partial differential
equations, ANOVA decomposition.

1. Introduction

Kinetic equations are partial differential equations involving probability density func-
tions (PDFs). They arise naturally in many different areas of mathematical physics. For
example, they play an important role in modeling rarefied gasdynamics [1, 2], semi-
conductors [3], stochastic dynamical systems [4, 5, 6, 7, 8,9, 10], structural dynamics
Preprint submitted to Journal of Computational Physics November 12, 2015



Fokker-Planck [26, 4]
∂p
∂t
+

n∑

i=1

∂

∂zi
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(
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)

Boltzmann [1, 31]
∂p
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k=1

vk
∂p
∂zk
= H(p, p)

Liouville [7, 15, 29, 11]
∂p
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∂

∂zk
(Gk p) = 0

Malakhov-Saichev [17, 14]
∂p
∂t
+
∂
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3∑

k=1
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∫ z

−∞

∂p
∂xk

dz′
 = −

∂(Hp)
∂z

Mori-Zwanzig [30, 16]
∂p1

∂t
= PLp1 + PLetQL p2(0)+ PL

∫ t

0
e(t−s)QLQLp1ds

Table 1: Examples of kinetic equations arising in different areas of mathematical physics.

[11, 12, 13], stochastic partial differential equations (PDEs) [14, 15, 16, 17, 18], turbu-
lence [19, 20, 21, 22], system biology [23, 24, 25], etc. Perhaps, the most well-known
kinetic equation is the Fokker-Planck equation [4, 26, 27],which describes the evolu-
tion of the probability density function of Langevin-type dynamical systems subject to
Gaussian white noise. Another well-known example of kinetic equation is the Boltz-
mann equation [28] describing a thermodynamic system involving a large number of
interacting particles [2]. Other examples that are may not be widely known are the
Dostupov-Pugachev equations [7, 10, 11, 29], the reduced-order Nakajima-Zwanzig-
Mori equations [16, 30], and the Malakhov-Saichev PDF equations [17, 14] (see Table
1). Computing the numerical solution to a kinetic equation is a very challenging task
that involves several problems of different nature:

1. High-dimensionality: Kinetic equations describing realistic physical systems usu-
ally involve many phase variables. For example, the Fokker-Planck equation of
classical statistical mechanics yields a joint probability density function inn phase
variables, wheren is the dimension of the underlying stochastic dynamical system,
plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and time,
which could be hardly accessible by conventional numericalmethods. For ex-
ample, the Liouville equation is a hyperbolic conservationlaw whose solution is
purely advected (with no diffusion) by the underlying system’s flow map. This
can easily yield mixing, fractal attractors, and all sorts of complex dynamics.
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3. Lack of regularity: The solution to a kinetic equation is, in general, a distribution
[32]. For example, it could be a multivariate Dirac delta function, a function with
shock-type discontinuities [18], or even a fractal object (see Figure 1 in [16]).
From a numerical viewpoint, resolving such distributions is not trivial although in
some cases it can be done by taking integral transformationsor projections [33].

4. Conservation properties: There are several properties of the solution to a kinetic
equation that must be conserved in time. The most obvious oneis mass, i.e.,
the solution to a kinetic equation always integrates to one.Another property that
must be preserved is the positivity of the joint PDF, and the fact that a partial
marginalization still yields a PDF.

5. Long-term integration: The flow map defined by nonlinear dynamical systems can
yield large deformations, stretching and folding of the phase space. As a conse-
quence, numerical schemes for kinetic equations associated with such systems will
generally loose accuracy in time. This is known as long-termintegration problem
and it can be eventually mitigated by using adaptive methods.

Over the years, many different techniques have been proposed to address these is-
sues, with the most efficient ones being problem-dependent. For example, a widely used
method in statistical fluid mechanics is the particle/mesh method [22, 34, 35, 36], which
is based directly on stochastic Lagrangian models. Other methods make use of stochas-
tic fields [37] or direct quadrature of moments [38]. In the case of Boltzmann equation,
there is a very rich literature. Both probabilistic approaches such as direct simulation
Monte Carlo [39, 40], as well as deterministic methods, e.g., discontinuous Galerkin and
spectral methods [41, 42, 43], have been proposed to computethe solution. Probabilis-
tic methods such as direct Monte Carlo are extensively used because of their very low
computational cost compared to finite-volumes, finite-differences or spectral methods,
especially in the multi-dimensional case. However, Monte Carlo usually yields poorly
accurate and fluctuating solutions, which need to be post-processed appropriately, for
example through variance reduction techniques. We refer toDimarco and Pareschi [31]
for a recent review.

In our previous work [9], we addressed the lack of regularityand high-dimensionality
(in the space of parameters) of kinetic equations by using adaptive discontinuous Galerkin
methods [44, 45] combined with sparse probabilistic collocation. Specifically, the phase
variables of the system were discretized by using spectral elements on an adaptive non-
conforming grid that track the support of the PDF in time, while the parametric depen-
dence of the solution was handled by using sparse grids. However, the discontinuous
Galerkin method we proposed in [9] is effective for phase spaces of dimension not ex-
ceeding three.

In this paper, we address the high-dimensional challenge inboth of thephase space
and parametric space by using different techniques, i.e., separated series expansion
methods, Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) closures, and analysis
of variance (ANOVA) approximations. The key idea of separated representations is to
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approximate a multi-dimensional function in terms of series involving products of one-
dimensional functions [46, 47, 48, 49]. As we will see, this allows us to reduce the prob-
lem of computing the solution from high-dimensional kinetic equations to a sequence of
one-dimensional problems that can be solved recursively and in parallel by using alter-
nating direction algorithms, e.g., alternating least squares. The convergence rate of these
algorithms with respect to the number of terms in the series expansion strongly depends
on the kinetic equation as well as on its solution. For example, advection-dominated
equations yield a rather slow convergence rate1 [49]. Alongside separated representa-
tion, we also investigate BBGKY type closures that rely on truncation of interaction in
low-orders. Such an approach developed in kinetic gas theory [50] yields a hierarchy of
coupled PDF equations for a given stochastic dynamical system. The third approach we
consider is based on ANOVA approximation methods [51, 52, 53, 54]. The basic idea is
to represent multivariate PDFs in terms of series expansions involving functions with a
smaller number of variables. For example, a second-order ANOVA approximation of a
multivariate PDF inN variables2 is a series involving functions of at most two variables.
All of these methods allow us to reduce the problem of computing high-dimensional
PDF solutions to a sequence of problems involving low-dimensional PDFs. The range
of applicability the proposed new approaches as well as and other numerical methods is
sketched in Figure 1 as a function of the number of phase variablesn and the number of
parametersm appearing in the kinetic equation.

This paper is organized as follows. In section 2, we present three different classes
of new algorithms to solve high-dimensional kinetic equations, i.e., the separated series
expansion method (section 2.1), the BBGKY closure approximation (section 2.2), and
the ANOVA series expansion method (section 2.3). The computational cost of these al-
gorithms is discussed in section 3. In section 4, we apply theproposed new techniques
to kinetic equations arising in nonlinear stochastic dynamical system theory (Kraichnan-
Orszag and Lorenz-96 systems) as well as to stochastic partial differential equations (ran-
dom advection and random diffusion problems). Finally, the main findings are summa-
rized in section 5. We also include a brief appendix dealing with the finite-dimensional
representation of the alternating-direction Galerkin algorithms we propose in section 2.1.

2. Numerical Methods

In this section we present three classes of algorithms to compute the numerical so-
lution of high-dimensional kinetic equations, such as those summarized in Table 1. The

1The Liouville equation is a hyperbolic conservation law in which the diffusion term is completely
absent (see Table 1). Therefore, the convergence rate of theseparated representation of the solution is
usually quite slow. On the other hand, fast convergence was observed for Fokker-Planck equations by
Leonenko and Phillips [47].

2In this paper, the total number of variablesN is the sum of the number of phase variablesn and the
number of parametersm appearing in the kinetic equation, i.e.,N = n + m.
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Figure 1: Range of applicability of different numerical methods for solving kinetic equations as a function
of the number of phase variablesn and the number parametersm appearing in the equation. Shown in
the upper right are: Separated series expansion methods (SSE - section 2.1), BBGKY closures (BBGKY
- section 2.2), high-dimensional model representations (ANOVA - section 2.3), adaptive discontinuous
Galerkin methods (DG) with sparse grids (SG) or tensor product probabilistic collocation (PCM) in the
parameter space, direct simulation Monte Carlo (DSMC).

first class is based on separated series expansions (SSE) andalternating direction meth-
ods. The second class of algorithms relies on the BBGKY type approximation (BBGKY)
and it yields a hierarchy of coupled probability density function equations. The third
class is based on high-dimensional model representations (ANOVA) and probabilistic
collocation methods. Hereafter we describe each method in detail.

2.1. Separated Series Expansions (SSE)

The method of separation of variables has been widely used toapproximate high-
dimensional functions in terms of low-dimensional ones. Inparticular, let us consider
the following separated expansion of anN-dimensional probability density function

p(z1, · · · , zN) =
R∑

r=1

αr pr
1(z1)pr

2(z2) · · · pr
N(zN) + ǫ(z1, · · · , zN), (1)

whereR is theseparation rank, pr
j are one-dimensional functions, andǫ is the residual.

The total number of variablesN in equation (1) is the sum of the phase variablesn and
the number of parametersm appearing in the kinetic equation. Specific examples will be
given in section 4. The main advantage of using a representation in the form (1) to solve
a high-dimensional kinetic PDE relies on the fact that the algorithms to computepr

j(z j)
and the normalization factorsαr involve operations with one function at a time. Thus, in
principle, the computational cost of such algorithms growslinearly with respect to the
dimensionN, potentially avoiding the curse of dimensionality.

For time-dependent PDEs, we can still look for solutions in the form (1), where we
simply add additional functions of the time variable in the separated series. This ap-
proach has been considered by several authors, e.g., [46, 55], and it was shown to work
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well for problems dominated by diffusion. However, for complex transient problems
(e.g., hyperbolic dynamics), such an approach is not practical as it requires a high res-
olution in time domain. To address this issue, a discontinuous Galerkin method in time
was proposed by Nouy in [49]. The key idea is to split the integration period into small
intervals (finite elements in time) and then consider a space-time separated representa-
tion of the solution within each interval. In this paper we follow a different approach,
based on explicit or implicit time-integration schemes. Inthis case, the separated rep-
resentation of the solution is computed at each time step. Let us formulate the method
with reference to a linear kinetic equation in the form

∂p(z, t)
∂t

= L(z)p(z, t), (2)

wherez = (z1, ..., zN) is the vector of phase variables andL(z) is a linear operator. For
instance, in the case of the Fokker-Planck equation (see Table 1) we havem = 0 (i.e.
N = n) and

L(z) = −
n∑

k=1

(
∂Gk(z)
∂zk

−Gk(z)
∂

∂zk

)
+

1
2

n∑

i, j=1


∂2bi j(z)

∂zi∂z j
+ bi j(z)

∂2

∂zi∂z j

 .

The time-discrete version of (2) can be easily obtained by applying, e.g., the Crank-
Nicolson scheme. This yields

p(z, t j+1) − p(z, t j)

∆t
=

1
2

(
L(z)p(z, t j+1) + L(z)p(z, t j)

)
, ∆t = t j+1 − t j,

i.e.,
(
I −

1
2
∆tL(z)

)
p(z, t j+1) =

(
I +

1
2
∆tL(z)

)
p(z, t j). (3)

Assuming thatp(z, t j) is known, (3) is a linear equation forp(z, t j+1) which can be writ-
ten concisely as3

A(z) p(z) = f (z), (4)

where

A(z)
.
=

(
I −

1
2
∆tL(z)

)
, f (z)

.
=

(
I +

1
2
∆tL(z)

)
p(z, t j). (5)

The system operatorA(z) and the right-hand-sidef (z) are assumed to be separable with
respect toz, i.e.,

A(z) =
nA∑

k=1

Ak
1(z1) · · · Ak

N(zN), f (z) =
n f∑

k=1

f k
1 (z1) · · · f k

N(zN). (6)

3Note that in equation (4) we have omitted the time-dependence in p(z, t j+1) for notational convenience.
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Note thatA(z) is separable ifL(z) is separable. An example is the Liouville operator
associated with the Kraichnan-Orszag problem (see subsequent equations (18a)-(18c)
and (19))

L(z) = −z1z2
∂

∂z1
− z2z3

∂

∂z2
− (z2

2 − z2
1)
∂

∂z3
− (z2 + z3). (7)

More generally, systems with polynomial-type nonlinearities always yield separable Li-
ouvillians L(z), and therefore separableA(z). At this point, we look for a separated
representation of the solution to (4) in the form

pR(z) =
R∑

r=1

αr pr
1(z1) · · · pr

N(zN), (8)

and we try to determineαr, pr
j and the separation rankR based on the condition

∥∥∥A(z)pR(z) − f (z)
∥∥∥ ≤ ε, (9)

in an appropriately chosen norm, and for a prescribed targetaccuracyε. This problem
does not admit a unique solution. In fact, there exist many possible choices ofαr, pr

j(z j)
andR that yield, in norm, the same target accuracy. Hence, different approaches exist
to computepr

j(z j) andαr. Hereafter, we focus our attention on alternating-direction
Galerkin and least squares methods.

Alternating Direction Algorithms
The basic idea of alternating direction methods is to construct the series expansion

(8) iteratively, by determiningpr
j(z j) one at a time while freezing all other functions.

This yields a sequence of low-dimensional problems that canbe solved efficiently and
in parallel [46, 47, 48, 49, 56, 57, 58]. To clarify how the method works in simple
terms, suppose we have constructed an approximated solution to (4) in the form (8), i.e.,
suppose we have availablepR(z). Then we look for an enriched solution in the form

pR(z) + r1(z1) · · · rN(zN),

where{r1(z1), ..., rN(zN)} are N unknown functions to be determined. In the alternat-
ing direction method, such functions are determined iteratively, one at a time. Typical
algorithms to perform such iterations are based on least squares,

min
r j

∥∥∥∥∥∥∥

nA∑

k=1

Ak
1 · · · A

k
N

(
pR + r1 · · · rN

)
−

n f∑

k=1

f k
1 · · · f k

N

∥∥∥∥∥∥∥

2

, (10)

or Galerkin methods
〈
q,

nA∑

k=1

Ak
1 · · · A

k
N

(
pR + r1 · · · rN

)〉
=

〈
q,

n f∑

k=1

f k
1 · · · f

k
N

〉
, (11)
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where〈·〉 is an inner product (multi-dimensional integral with respect to z), andq is a
test function, often chosen asq(z) = r1(z1) · · · rN(zN). In a finite-dimensional setting, the
minimization problem (10) reduces to the problem of finding the minimum of a scalar
function in as many variables as the number of unknowns we consider in each basis
function r j(z j), sayqz. Similarly, the alternating-direction solution to (11) isbased on
the iterated solution to a sequence of low-dimensional linear systems of sizeqz×qz. Note
that if A(z) in Eq. (4) is a nonlinear operator, then we can still solve (10) or (11), e.g., by
using Newton iterations. Once the functions{r1(z1), ..., rN(zN)} are computed, they are
normalized (yielding the normalization factorαR+1) and added topR(z) to obtainpR+1(z).
The separation rank is increased until (9) is satisfied for a desired target accuracyε.

The enrichment procedure just described has been criticized in the literature due to
its slow convergence, in particular for equations dominated by advection [49]. Depend-
ing on the criterion used to construct the separated expansion, the enrichment proce-
dure might not even converge. Recent work, indeed, aimed at finding optimal bases
with granted convergence properties, i.e., bases that minimize the separation rank and
simultaneously keep the overall error (9) bounded byε. For example, Doostan and Iac-
carino [59] proposed an alternating least-square algorithm that updates simultaneously
the entire rank of the basis set in thej-th direction. In this formulation, the least square
approach (10) becomes

min{
p1

j ,...,p
R
j

}

∥∥∥∥∥∥∥

nA∑

k=1

Ak
1 · · ·A

k
N


R∑

r=1

αr pr
1 · · · p

r
N

 −
n f∑

k=1

f k
1 · · · f

k
N

∥∥∥∥∥∥∥

2

.

The computational cost of this method clearly increases compared to (10). In fact, in
a finite dimensional setting, the simultaneous determination of

{
p1

j , ..., p
R
j

}
requires the

solution of aRqz × Rqz linear system, whereqz is the number of degrees of freedom for
eachpr

j(z j). However, this algorithm usually results in a separated solution with a lower
separation rankR than the regular approach.

Hereafter, we propose a new alternating direction Galerkinmethod that, as before,
updates the entire rank of the basis set in thej-th phase variable simultaneously. To this
end, we generalize the Galerkin formulation (11) to

〈
q,

nA∑

k=1

Ak
1 · · ·A

k
N


R∑

r=1

αr pr
1 · · · p

r
N


〉
=

〈
q,

n f∑

k=1

f k
1 · · · f

k
N

〉
, (12)

whereq(z) = span{pr
1(z1) · · · pr

N(zN) }Rr=1 In addition, we employ an adaptive strategy to
determine the separation rank based on the spectrumα = {α1, ..., αR} of the separated
series. The adaptive criterion is simple and effective :

• We increase the separation rankR if the ratioαR/α1 exceeds a thresholdθ.

The finite-dimensional representation of (12) and the summary of the algorithm is dis-
cussed in appendix A and Table 3, respectively.
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2.2. BBGKY closures

In addition to the separated series expansion method discussed in the previous sec-
tion, we propose here a BBGKY type closure to further reduce the dimensionality of a
kinetic equation. Let us introduce the method with reference to a nonlinear dynamical
system in the form

dx(t)
dt
= Q(x, ξ, t), x(0) = x0(ω), (13)

wherex(t) ∈ Rn is a multi-dimensional stochastic process,ξ ∈ Rm is a vector of random
variables,Q : Rn+m+1 → Rn is a Lipschitz continuous (deterministic) function, and
x0 ∈ R

n is a random initial state. Upon definition ofy(t) = (x(t), ξ), we can rewrite (13)
as

dy(t)
dt
= G(y, t), y(0) = (x0(ω), ξ(ω)), G(y, t) =

[
Q(y, t)

0

]
. (14)

Note thaty(t) ∈ RN andG : RN+1 → RN , whereN = n + m. The joint PDF ofy(t)
evolves according to the Liouville equation

∂p(z, t)
∂t

+ ∇ ·
[
G(z, t)p(z, t)

]
= 0, z ∈ RN , (15)

whose solution can be computed numerically only for smallN. This leads us to look
for PDF equations involving only a reduced number of phase variables, for instance, the
PDF of each componentyi(t). The derivation relies on the functional integral form
of the PDFpy(z, t) =

∫ ∏N
i=1 δ(zi − yi(x0, ξ; t))w(x0, ξ)dx0 dξ, wherew(x0, ξ) is the joint

PDF of the initial random variables and the parametersx0 andξ. Then, by differentiating
both sides with respect tot, the PDF of a single componentyi(t) satisfies4

∂pi(zi, t)
∂t

= −
∂

∂zi

∫ [
ẏi(t)δ(zi − yi(t))w(x0, ξ)

]
dx0 dξ

= −
∂

∂zi

∫ [
Gi(y, t)δ(zi − yi(t))p(y, t)

]
dy (16)

wherep(y, t) is the full joint PDF ofy(t). Similarly, the joint PDF ofyi(t) andy j(t) (i , j)
satisfies

∂pi j(zi, z j, t)

∂t
= −
∂

∂zi

∫ [
Gi(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy

−
∂

∂z j

∫ [
G j(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy. (17)

Higher-order PDF equations can be derived similarly. Unfortunately, the computation of
the integrals in (16) and (17) requires the full joint PDF ofy(t), which is available only if

4Note thatpi(zi, t) = p(ξi) for all n + 1 ≤ i ≤ n + m, and for allt ≥ 0.
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we solve the Liouville equation (15). As mentioned before, this is not feasible in practice
even for a low number of variables. Therefore, we need to introduce approximations.
The most common one is to assume that the joint PDFp(z, t) can be written in terms of
lower-order PDFs, e.g., asp(z, t) = p1(z1, t) · · · pN(zN , t). By using integration by parts,
this assumption reduces the Liouville equation to a hierarchy of one-dimensional PDF
equations (see, e.g., [16]).

Hereafter we follow a similar approach based on lower order PDFs at least in second
order. The idea is to approximate the dynamics in thei-th direction by primarily using
the correlation to thei-th variable. IfGi is a function ofzi andz j, the right-hand-side of
(17) becomes

−
∂

∂zi

∫ [
Gi(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy = −

∂

∂zi

[
Gi(zi, z j, t)pi j(zi, z j, t)

]
.

Otherwise, we approximate the equation by using the joint PDFspik(zi, zk) for k , i. To
this end, let us consider a specific form ofGi that allows us to simplify the equations,
i.e.,

Gi(y, t) = gii(yi, t) +
N∑

k=1
k,i

gik(yi, yk, t).

The integrals in the right hand side of the one-point PDF equation (16) can be now
computed exactly as

∂pi

∂t
= −
∂

∂zi

gii(zi, t)pi +

N∑

k,i

∫
gik(zi, zk, t)pikdzk

 ,

wherepi = p(zi, t) andpik = p(zi, zk, t). On the other hand, we approximate the integrals
in the two-points PDF equations (17) as

∂pi j

∂t
= −

∂

∂zi


(
gii(zi, t) + gi j(zi, z j, t)

)
pi j +


N∑

k,i, j

∫
gik(zi, zk, t)pikdzk

 p j



−
∂

∂z j


(
g j j(z j, t) + g ji(z j, zi, t)

)
pi j +


N∑

k,i, j

∫
g jk(z j, zk, t)p jkdzk

 pi

 ,

where we discarded all contributions from the three-pointsPDFs and the two-points
PDFs except the ones interacting with thei-th variable. A variance-based sensitivity
analysis in terms of Sobol indices [60, 61, 62] can be performed to identify the system
variables with strong correlations. This allows us to determine whether it is necessary
to add the other two-points correlations or the three-points PDF equations for a certain
triple {xk(t), xi(t), x j(t)}, and to further determine the equation for a general form ofGi.
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An Example: The Kraichnan-Orszag Problem
Let us apply the BBGKY type closure we described in the previous section to the

Kraichnan-Orszag problem studied in [63]

dx1

dt
= x1x3, (18a)

dx2

dt
= −x2x3, (18b)

dx3

dt
= −x2

1 + x2
2. (18c)

In this case we haven = 3 phase variables andm = 0 parameters, i.e., a total number
of N = 3 variables. The three-dimensional Liouville equation forthe joint PDF of
{x1(t), x2(t), x3(t)}, is

∂p
∂t
+ z1z2

∂p
∂z1
− z2z3

∂p
∂z2
+ (z2

2 − z2
1)
∂p
∂z3
= (−z2 + z3)p, (19)

wherep = p(z1, z2, z3, t). On the other hand, by using the second-order BBGKY closure
described in the previous section, we obtain the following hierarchy of PDF equations

∂p1

∂t
= −

∂

∂z1

[
z1 〈x3〉3|1

]
, (20a)

∂p2

∂t
= −

∂

∂z2

[
−z2 〈x3〉3|2

]
, (20b)

∂p3

∂t
= −

∂

∂z3

[(
−〈x2

1〉1|3 + 〈x
2
2〉2|3

)]
, (20c)

∂p12

∂t
= −

∂

∂z1

[
z1 〈x3〉3|1p2

]
+
∂

∂z2

[
z2 〈x3〉3|2p1

]
, (20d)

∂p13

∂t
= −

∂

∂z1

[
z1z3p13

]
+
∂

∂z3

[
z2
1p13− 〈x

2
2〉2|3p1

]
, (20e)

∂p23

∂t
=
∂

∂z2

[
z2z3p23

]
+
∂

∂z3

[
〈x2

1〉1|3p2 − z2
2p23

]
, (20f)

where

〈 f (x)〉i| j
.
=

∫
f (z)pi j(zi, z j, t)dzi. (21)

Let us assess the accuracy of the second-order BBGKY closure(20a)-(20f) when
the initial condition{x1(0), x2(0), x3(0)} is jointly Gaussian

p(z1, z2, z3, t = 0) =
103

(2π)3/2
exp

−50

(
z1 −

1
10

)2

− 50
(
z2
2 + z2

3

) . (22)

Each PDF equation is discretized by using a Fourier spectralcollocation method with
with qz = 50 degrees of freedom in each variable. Time stepping is based on explicit
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Figure 2: Kraichnan-Orszag problem: PDF ofx1(t) (a) andx2(t) (b) at t = 4 andt = 8. Blue lines: results
from the full Liouville equation. Green and red dashed line:results of the BBGKY closure (20a)-(20f) at
t = 4 andt = 8, respectively.
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Figure 3: Kraichnan-Orszag problem: Absolute error in the mean (a) and in the standard deviation (b) of
xk(t) (k = 1, 2,3) computed by the two-points BBGKY closure (20a)-(20f).
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fourth-order Runge-Kutta scheme with∆t = 10−3. In Figure 2, we compare the PDF of
x1(t) andx2(t) as computed by the full system and the two-points BBGKY closure. We
observe that the two solutions are basically superimposed,suggesting that the effects of
the three-points correlations are negligible. We also remark that if we are interested only
in the PDF of one variable, then it is not necessary to solve the whole hierarchy of PDF
equations in the BBGKY closure. For example, to obtain the PDF of x1(t), we can just
solve Eqs. (20a), (20e), and (20f). In Figure 3, we plot the absolute error in the mean
and the standard deviation of{x1(t), x2(t), x3(t)} as computed by the BBGKY closure.
These errors arise because we are not including the three-points PDFs in the hierarchy
of equations.

We also emphasize that the PDF equation of a phase space function h(x1, x2, x3),
can be easily derived based on the BBGKY closure. For example, the PDF equation of
h = x1(t) + x3(t) is

∂ph(z)
∂t

= −
∂

∂z

[(
−z2 + 3z〈x3〉3|h − 2〈x2

3〉3|h + 〈x
2
2〉2|h

)
ph(z)

]
.

2.3. ANOVA Series Expansions

The ANOVA series expansion [53, 64] is another typical approach to model high-
dimensional functions. The series involves a superimposition of functions with an in-
creasing number of variables, and it is usually truncated ata certain interaction order.
Specifically, the ANOVA expansion of anN-dimensional PDF takes the from [65]

p(z1, z2, ..., zN) = q0 +

N∑

i=1

qi(zi) +
N∑

i< j

qi j(zi, z j) +
N∑

i< j<k

qi jk(zi, z j, zk) + · · · . (23)

The functionq0 is a constant. The functionsqi(zi), which we shall call first-order in-
teraction terms, give us the overall effects of the variableszi in p as if they were acting
independently of the other variables. The functionsqi j(zi, z j) describe the interaction ef-
fects of the variableszi andz j, and therefore they will be called second-order interactions.
Similarly, higher-order terms reflect the cooperative effects of an increasing number of
variables. The interaction termsqi jk··· can be computed in different ways [66, 67], e.g.,

q0 =

∫
p(z1, · · · , zN)dz1, · · · dzN ,

qi(zi) =
∫

p(z1, · · · , zN)
N∏

k=1
k,i

dzk − q0,

qi j(zi, z j) =
∫

p(z1, · · · , zN)
N∏

k=1
k,i, j

dzk − q0 − qi(zi) − q j(z j),

· · · .
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By using the ANOVA expansion we can represent both the parametric dependence as
well as the dependence on phase variables in the solution to akinetic equation. In the
first case, the ANOVA approach can be readily applied to the probabilistic collocation
method with appropriate anchor points [64, 54, 68, 52, 62], where we take the anchor
points as the mean value of the random variable in each direction. Then, the PDF equa-
tions in Table 1 can be solved at the reduced number of collocation points in the para-
metric space according to the ANOVA decomposition. On the other hand, representing
the dependence of the solution PDF on the phase variables through the ANOVA expan-
sion yields a hierarchy of coupled PDF equations that resembles the BBGKY closures
we presented in section 2.2. However, we comment that the BBGKY closure is more
convenient than the ANOVA approach due to its less intrusivederivation.

3. Computational Cost

Let us consider a kinetic partial differential equation withn phase variables andm
parameters, i.e., a total number ofN = n + m variables. Suppose that we represent
the solution by usingqz degrees of freedom5 in each phase variable andqb degrees of
freedom in each parameter. Thus, by using a regular tensor product, the number of
degrees-of-freedom becomesqz

n
qb

m and the computational cost grows exponentially as
O(qz

2n
qb

m). If we consider the sparse grid collocation for the parametric space, the cost
reduces to a logarithmic growth inm, but still suffers from the curse of dimensional-
ity. Hereafter, we compare the computational cost of the methods we discussed in the
previous sections that reveal less computational complexity.

ANOVA Series Expansion and BBGKY closures
If we consider the ANOVA expansion or the BBGKY hierarchy, the computational

complexity has a factorial dependence on the dimensionality n + m and the interaction
orders of the variablesν. In particular, the number of degrees-of-freedom assumingthat
qb = qz becomes

∑ν
s=1 C(n + m, s, qz), where

C(N, s, qz)
def
= qz

s
(

N
s

)
. (24)

Regarding the matrix-vector operations for the discretized variables in each level, the
computational cost follows asO

(
C(n + m, ν, qz

2ν)
)
. Let us describe the cost in de-

tail by considering the phase space and the parameter space separately. When high-
dimensionality only appears in the parameter space, the probabilistic collocation ANOVA
method can be combined with the tensor product in the phase space. In that case,
the degree of freedom and the computational cost becomesqz

n ∑ν
s=1 C(m, s, qb) and

5In a spectral collocation setting,qz is the number of collocation points in each phase variable.
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O
(
qz

2n C(m, ν, qb
ν
)
. On the other hand, if the phase space is in high-dimension, the appli-

cation of the BBGKY closure will reduce the computational cost toO (C(n, ν, qz
ν) qb

m),
Finally, we remark that instead of considering the BBGKY closure in the entire space, it
is reasonable to combine it with the ANOVA approach for further accuracy, since the in-
teraction order of the phase variables and the parameters, denoted asν andν′, can be con-
trolled separately. In this case, the number of degrees-of-freedom and the computational
cost becomes

(∑ν
s=1 C(n, s, qz)

) (∑ν′
s=1 C(m, s, qb)

)
andO

(
C(n, ν, qz

ν) C(m, ν′, qb
ν′)

)
. The

computational costs of these methods are summarized in Table 2.

Separated Series Expansion (SSE)
The total number of degree of freedoms in the SSE method isRnqz + Rmqb, i.e., it

grows linearly with both n andm (see Table 2). In particular, if the separation rankR
is relatively small then the separated expansion method is much more efficient than ten-
sor product, sparse grid or ANOVA approaches, both in terms of memory requirements
as well as in terms of computational cost. The alternating-direction algorithm at the
basis of the separated series expansion method can be divided into two steps, i.e., the
enrichment and the projection steps (see Table 3). For a separation rankr, the number
of operations to perform these steps isO(rqz

2 + (rqz)3). Since we begin from the first
basis vector and gradually increase the separation rank, this cost has to be summed up
to r = 1, ...,R, and finally multiplied by the average number of iterationsnitr required
to achieve the target accuracyε. The computational cost of the projection step can be
neglected with respect to the one of the enrichment step, as it reduces to solving a linear
system of rather small size (R × R). Thus, the overall computational cost of the separated
expansion method can be estimated asO

(
R4nqz

3 + R4mqb
3
)

nitr, and it can be reduced

to O
(
R3nqz

2 + R3mqb
2
)

nitr by using appropriate iterative linear solvers.

4. Numerical Results

In this section we provide numerical examples to demonstrate the effectiveness of the
numerical methods we proposed in the paper. To this end, we will consider kinetic partial
differential equations corresponding to stochastic PDEs as well as stochastic dynamical
systems.

4.1. Stochastic Advection of Scalar Fields

We consider the following two stochastic advection equations

∂u
∂t
+

1+
m∑

k=1

1
2k

sin(kt)ξk(ω)


∂u
∂x
= 0, (25)

∂u
∂t
+
∂u
∂x
= sin(t)

m∑

k=1

1
5(k + 1)

sin((k + 1)x)ξk(ω), (26)
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Degrees of freedom Computational Cost

ANOVA qz
n ∑ν

s=1 qb
s

(
m
s

)
O

(
qz

2n
qb

2ν

(
m
ν

))

BBGKY
∑ν

s=1 qz
s

(
n + m

s

)
O

(
qz

2ν

(
n + m
ν

))

SSE R n qz + R m qb O
(
R4 n qz

3 + R4 m qb
3
)

nitr

Table 2: Number of degrees-of-freedom and computational cost of solving kinetic equations by using dif-
ferent methods. Shown are results for ANOVA method, BBGKY closures, and Separated Series Expansion
(SSE). In the Table,n andm denote the number of phase variables and parameters appearing in the kinetic
equation, respectively. We are assuming that we are representing the PDF solution withqz degrees of free-
dom in each phase variable andqb in each parameter. Also,R is the separation rank andniter is the average
number of iterations required for convergence of the separated expansion. The quantityν is the interaction
order of the ANOVA expansion or the BBGKY closure in the PDF solution.

wherex ∈ [0, 2π] and {ξ1, ..., ξm} are i.i.d. uniform random variables in [−1, 1]. As we
have shown in [17], the kinetic equations governing the joint probability density function
of {ξ1, ..., ξm} and the solution to (25) or (26) are, respectively,

∂p
∂t
+

1+
m∑

k=1

1
2k

sin(kt)bk


∂p
∂x
= 0, (27)

∂p
∂t
+
∂p
∂x
= −

sin(t)
m∑

k=1

1
5(k + 1)

sin((k + 1)x)bk


∂p
∂z
, (28)

wherep = p(x, t, z, b), b = {b1, ..., bm}. Note that this PDF depends onx, t, one phase
variablez (corresponding tou(x, t)) andm parametersb (corresponding to{ξ1, ..., ξm}).
The analytical solutions to Eqs. (27) and (28) can be obtained by using the method of
characteristics [69]. They are both in the form

p (x, t, z, b) = p0 (x − X(t, b), z − Z(x, t, b), b) , (29)

wherep0 (x, z, b) is the initial joint PDF ofu(x, t0) and{ξ1, ..., ξm}, and

X(t, b) = t −
m∑

k=1

(cos(kt) − 1)bk

2k2
, Z(x, t, b) = 0

in the case of equation (27), and

X (t, b) = t, Z (x, t, b) =
m+1∑

k=2

bk−1

10k

(
sin(kx − t)

k − 1
−

sin(kx + t)
k + 1

−
2 sin(k(x − t))
(k − 1)(k + 1)

)
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in the case of equation (28). In particular, in our simulations we set

p0(x, z, b) =

(
sin2(x)
2πσ1

exp

[
−

(z − µ1)2

2σ1

]
+

cos2(x)
2πσ2

exp

[
−

(z − µ2)2

2σ2

])
exp

[
−
|b|2

2

]
,

which has separation rankR = 2. Non-separable initial conditions can be approximated
in terms of series expansions in the form (1). We consider high-dimensional parametric
space form = 3, 13, 24, 54, 84, 114 and compare the SSE algorithm and the ANOVA
decomposition that work efficiently for this type of problems.

We computed the solution to (27) and (28) by using a separatedseries expansion and
the ANOVA expansion. The alternating-direction Galerkin method proposed in section
2.1 computes the solution in the form

p(x, t, z, b) ≃
∑

r

αr(t)pr
x(x)pr

z(z)pr
1(b1) · · · pr

m(bm), (30)

where the dependence onx andz is represented by using a Fourier spectral collocation
method withqz = 50 degrees of freedom in each variable, while the parametricdepen-
dence onbk (k = 1, ..,m) is represented with probabilistic collocation method based on
the Legendre polynomials of order6

qb = 7. On the other hand, the solution considering
the ANOVA expansion in the excitation space is in the form

p(x, t, z, b) ≃ q0(x, z) +
m∑

i=1

qi(x, z)qb
i (bi) +

m∑

i< j

qi j(x, z)qb
i j(bi, b j) + · · · . (31)

The solutions (30) and (31) are computed at each time step (∆t = 10−2) up to t = 3 by
using the Crank-Nicolson scheme (4) and the second-order Runge-Kutta, respectively.

In Figure 4, we plot the first few modespr
x(x)pr

z(z) of the separated series solution
to Eqs. (27) and (28) withm = 54 andm = 3, respectively. In the case of Eq. (27),
pr

x(x)pr
z(z) look very similar to each other forr ≥ 2, while in the case of Eq. (28) they

are all different, suggesting the presence of modal interactions and a larger separation
rank to achieve a prescribed target accuracy. This is also seen in Figure 5, where we plot
the normalization coefficients{α1, ..., αR}. Sinceαr can be interpreted as the spectrum
of the separated PDF solution, we see that the stochastic advection problem (26) yields
a stronger coupling between the modes, i.e., a slower spectral decay than the problem
(25).

In Figure 6, we plot the PDF of the solution to Eq. (25). Such a PDF is obtained
by first solving (27) by using the separated expansion method, and then integrating (30)
numerically with respect to{b1, ..., bm}. Convergence with respect toR is demonstrated

6The number of degrees-of-freedom of the discretized space should be chosen carefully to balance the
errors between the space and time discretization and the truncation of the separated series. By considering
qb = 7 in this example, the error is dominated by the truncation ofthe separation rank.
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Figure 4: Stochastic Advection Problem: separated series expansion modes on the physical and response
space, that is,pr

x(x)pr
z(z) at t = 2.
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Figure 5: Stochastic Advection Problem: Spectra of the separated series expansion att = 2.
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Figure 6: Stochastic advection problem (25): PDF of the solution at different times. The PDF dynamics
is obtained by solving (27) with a separated series expansion. The separation rank is set toR = 8, and we
considerm = 54 random variables in (25).
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Figure 7: Stochastic advection problem (25): relativeL2 errors of using the full tensor product (PCM), the
separated series expansion (SSE), and the ANOVA approach (PCM-A, level 2) with respect to the analytical
solution (29). Shown are results att = 0.5, t = 1 andt = 3 for different separation ranksR and different
number of random variables:m = 3 (a) andm = 54 (b).
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Figure 8: Stochastic advection problem (26): PDF of the solution at different times. The PDF dynamics
is obtained by solving (28) with a separated series expansion. The separation rank is set toR = 8, and we
considerm = 24 random variables in (26).

in Figure 7. Note that the separated expansion method reaches the same error level as the
ANOVA approximation with just five modes fort ≤ 1, but it requires a larger separation
rank at later times in order to keep the same accuracy. In addition, the convergence rate
of the separated expansion method saturates withR due to time integration errors. In
Figure 8, we show the PDF of the solution to the advection problem (26) at different
times, where we have considered a random forcing term withm = 24 random variables.
Such a PDF is obtained by solving (28) with a separated seriesexpansion (30) of rank
R = 8. Convergence with respect toR is demonstrated in Figure 9. It is seen that the
convergence rate in this case is slower than in the previous example (see Figure 7), and
the overall relative error is larger. This is due to the presence of the time-dependent
forcing term in Eq. (26), which injects additional energy inthe system and yields new
SSE modes (see Figure 4). This yields a higher separation rank for a prescribed level
of accuracy. In addition, the plots suggest that the accuracy of the separated expansion
method depends primarily on the separation rankR of the solution rather than on the
dimensionality of the random forcing vector.

So far, we fixed the separation rankR throughout our simulations, to investigate con-
vergence and accuracy of the separated series expansion method. However, in practical
applications, the appropriate separation rank should be identified on-the-fly, i.e., while
the simulation is running. To address this question, in the previous section, we propose
an adaptive strategy based on the spectrumα = {α1, ..., αR} of the separated series, that
is, increasing the separation rankR if the ratioαR/α1 > θ. The corresponding adaptive
algorithm initialized with a separation rankr is denoted as Ar-SSE, and it is studied
hereafter with reference to Eq. (28). In Figure 10 we plotR versus time for different
thresholdsθ. It is seen that the adaptive algorithm yields a separation rank that increases
in time. In particular, the caseθ = 10−3 yields R = 10 at t = 3, which results in a
slightly larger error than the one obtained for fixedR = 10. In Figure 11, we compare
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Figure 9: Stochastic Advection Problem: RelativeL2 errors of the separated PDF solutions with respect to
the analytical solution (29). Shown are results for different number of random variablesm in (25)-(26) and
different separation ranksR. It is seen that the accuracy of the separated expansion method mainly depends
on the separation rank rather than on the number of random variables.
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Figure 10: Adaptive SSE algorithm: separation rankR (a) and relativeL2 error (b) versus time for different
thresholdsθ initiated with a separation rankr (Ar-SSE). A smallθ yields a large separation rank and a small
relative error.
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Figure 11: Adaptive SSE algorithm: comparison between the relativeL2 errors of the adaptive separated
expansion method (A-SSE) and the ANOVA (PCM-A, level 2) method. Results are for the kinetic equation
(28) with thresholdθ = 5 · 10−4. It is seen that the error of the A-SSE method is slightly independent ofm,
while the error of ANOVA level 2 increases as we increasem.

the accuracy of the A6-SSE method withθ = 5 · 10−4 and the ANOVA method (level
2). Specifically, we study the relativeL2 error of the solution to Eq. (28) for different
number of random variables, i.e.,m = 13, m = 24, andm = 54. We first notice that the
error in the A6-SSE method seems to be slightly independent ofm. On the other hand,
the error of ANOVA method increases withm, although such an error can be improved
by increasing the interaction order. However, this would yield an increasing number of
collocation points. For example, increasing the interaction order from two to three for
m = 54 would increase the number of collocation points from 70498 to 8578270 (see
[64]). In Figure 12, we compare the computational time of theseparated series expan-
sion method, with the ANOVA method of level two and sparse grid of level three on the
excitation space. The simulations are performed on a singleCPU of Intel Xeon E5540
(2.53 GHz) and the results are normalized with respect to thecomputing time using the
tensor product for the casem = 3. It is seen that the separated expansion method method
costs less than the ANOVA level 2 whenm ≥ 24 andR ≤ 8. In the case of equation (27),
the separated expansion method is more efficient than ANOVA, as it reaches the same
error level with a small separation rank (R < 8).

In summary, the separated series expansion method is effective for high-dimensional
kinetic equations provided the solution has a small separation rank. If the separation rank
is relatively large, then the ANOVA method is expected to be more efficient, although a
rigorous quantification of this statement should be done on acase-by-case basis.

4.2. Lorenz-96 system

The Lorenz-96 system is a continuous in time and discrete in space model often
used in atmospheric sciences to study fundamental issues related to forecasting and data
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Figure 12: Computational time (in seconds) of the separatedexpansion method (SSE), and probabilistic
collocation ANOVA level 2 (PCM-A) and sparse grid level 3 (PCM-S) as a function of the number of
random variablesm and separation rankR. The results are normalized with respect to the computing time
of using the tensor product withm = 3. The dotted lines correspond to extrapolations based on short-runs
estimates.

assimilation [70, 71]. The basic equations are

dxi

dt
= (xi+1 − xi−2) xi−1 − xi + F, i = 1, ..., n. (32)

Here we considern = 40,F = 1, and assume that the initial statex(0) = [x1(0), ..., x40(0)]
is jointly Gaussian with PDF

p(z1, ..., z40, t = 0) =

(
25
2π

)20 40∏

i=1

exp

[
−

25
2

(
zi −

i
40

)2]
. (33)

Thus, in this system we haven = 40 phase variables andm = 0 parameters, i.e.,
N = n. The kinetic equation governing the joint PDF of the phase variablesx(t) =
[x1(t), ..., x40(t)] is

∂p(z, t)
∂t

= −

40∑

i=1

∂

∂zi

[
((zi+1 − zi−2)zi−1 − zi + F) p(z, t)

]
, z ∈ R40 (34)

and it cannot be obviously solved in a tensor product representation because of high-
dimensionality and possible lack of regularity (forF > 10) related to the fractal structure
of the attractor [71]. Thus, we are led to look for reduced-order PDF equations. Specifi-
cally, we consider here the one-point and two-points BBGKY closures we discussed in
section 2.2. The first one yields the approximated system

∂pi(zi, t)
∂t

= −
∂

∂zi

[
(〈xi+1〉 − 〈xi−2〉) 〈xi−1〉i−1|i − (zi − F)pi(zi, t)

]
, (35)
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Figure 13: Lorenz-96 system: The mean (a, b) and standard deviation (c, d) computed by the one-point (a)
two-points (c) BBGKY closure compared to the Monte-Carlo simulation (b, d).

where〈〉i| j is defined in (21). In order to close such a system within the level of one-
point PDFs,〈xi−1〉i−1|xi

could be replaced, e.g., by〈xi−1〉 p(zi, t). Similarly, the two-points
BBGKY closure of the adjacent nodes yields the hierarchy

∂pi i+1(zi , zi+1, t)

∂t
= −

∂

∂zi

[
zi+1

〈
xi−1

〉
i−1|i

pi+1(zi+1, t) −
〈
xi−2

〉 〈
xi−1

〉
i−1|i

pi+1(zi+1, t)

−(zi − F ) pi i+1(zi , zi+1, t)
]
−
∂

∂zi+1

[〈
xi+2

〉
i+2|i+1

zi pi (zi , t) −
〈
xi−1

〉
zi pi i+1(zi , zi+1, t)

−(zi+1 − F ) pi i+1(zi , zi+1, t)
]
. (36)

By adding the two-points closure of one node apart, i.e.,xi−1 and xi+1, the quantity〈
xi−2

〉 〈
xi−1

〉
i−1|i

pi+1(zi+1, t) in the first row and
〈
xi−1

〉
zi pi i+1(zi , zi+1, t) in the second row can

be substituted by〈xi−2〉i−2|i 〈xi−1〉i−1|i+1 and 〈xi−1〉i−1|i+1 zi pi(zi , t), respectively. In our
simulation, we alternate between the two approximations atevery time step. Each
equation in (35)-(36) is discretized by using a Fourier spectral collocation method with
qz = 64 degrees of freedom in each variable, and fourth-order Runge-Kutta time inte-
gration with∆t = 10−3.

In Figure 13, we plot the mean and the standard deviation of the solution to (32)
computed by the one- and two-points BBGKY closures and the Monte Carlo simulation
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Figure 14: Lorenz-96 system: The absolute error of the mean (a) and standard deviation (c, d) by using
the BBGKY closure compared to the Monte-Carlo simulation inlog-scale. In (c) and (d), the results are
computed by the one- and two-points BBGKY closure (Eqs. (35)and (36), respectively) and theL1 error is
shown in (b).

- 50000 solution samples. It is seen that the mean of the BBGKYclosure coincides
with the one obtained from the Monte Carlo and the one-point closure. However, the
standard deviation is slightly different. The absolute error in log-scale compared to the
Monte Carlo simulation is shown in Figure 14, where we observe the reduced error in the
standard deviation by involving the two-points PDFs. This can be also seen in Figure 14
(b) where we plot theL1 error of the moments. Note that adding the two-points PDFs to
the hierarchy in this case improves the error in the standarddeviation by a small amount.

4.3. Stochastic diffusion equation

An interesting question arises whether it is possible to determine a closed PDF evo-
lution equation of the solution to second order PDEs at a specific space-time location.
Unfortunately, the answer is negative due to its nonlocal solutions in space and time.
This nonlocal feature yields the impossibility to determine a point-wise equation for
the probability density. Still, there has been extensive studies to tackle this problem
by use of functional integral methods, in particular those involving the Hopf charac-
teristic functional [72, 73, 74]. Here we consider the semi-discrete form of PDEs that
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can be written in a form of multi-dimensional dynamical system that yields a Liouville
type PDF equation. Afterwards, the BBGKY closure is employed to the corresponding
multi-dimensional PDF system, combined with the ANOVA method in case we have a
high-dimensional excitation space.

Let us consider a diffusion equation as follows:

∂u
∂t
=
∂

∂x

(
µ(x, t;ω)

∂u
∂x

)
, (37)

wherex ∈ [0, 2π], t ≥ 0 andµ(x, t;ω) > 0 is the random diffusivity. This equation is
accompanied by a periodic boundary conditionu(0, t;ω) = u(2π, t;ω) andux(0, t;ω) =
ux(2π, t;ω). We then discretize the solution in the physical space by using a set of
orthogonal basis functions inL2([0, 2π]). Here, we consider the Fourier basis functions
as

u(x, t;ω) = û0(t;ω) +
∑

k

(ûk(t;ω) sin(kx) + û−k(t;ω) cos(kx)) . (38)

We assume that we have available a similar representation for the diffusivity µ(x, t;ω)
with coefficients{µ̂k(t;ω)} in terms of random variables as ˆµk(t;ω) = µ̂k(t; ξ(ω)). Then,
the dimensionality of the kinetic equation depends on the truncation of the solution (38)
and the parameters. In other words, the dimensionality can be as high as the number
of basis functions, which will be necessary when the solution in the physical space has
low regularity. Thus, we employ the BBGKY closure approach developed in Section 2.2
to obtain a reduced-order PDF equation, approximating the system within lower order
interactions. When the random coefficient is independent of the physical variable, the
Fourier modes are independent. Therefore, we can truncate the BBGKY closure at the
level of one-point PDFs. The equation becomes

∂pk(zk, t)
∂t

= −
∂

∂zk

[
−k2µ(t, bµ) zk pk(zk)

]
, (39)

wherebµ is a vector of parametric random variables. In case of space dependent coeffi-
cients, interactions between the Fourier coefficients occur. Hence, it becomes inevitable
to include the higher-order joint PDFs. We compute the two-point BBGKY closure for
the joint PDF equation of thek-th andl-th coefficient as

∂pkl(zk, zl, t)
∂t

= −
∂

∂zk

[
Q(pkl, k)

]
−
∂

∂zl

[
Q(pkl, l)

]
, (40)

where

Q(pi j, i)
def
=



−i2µ̂0zi pi j +
∑

n+m=i

(
mi
2 (−µ̂n〈z−m〉−m|i − µ̂−n〈zm〉m|i)

)
p j

+
∑

n−m=|i|

(
m(n−m)

2 (µ̂n〈z−m〉−m|i − µ̂−n〈zm〉m|i)
)

p j, i ≥ 0

−i2µ̂0zi pi j +
∑

n+m=|i|

(
−mi

2 (µ̂n〈zm〉m|i − µ̂−n〈z−m〉−m|i)
)

p j

+
∑

n−m=|i|

(
m(n−m)

2 (µ̂n〈zm〉m|i + µ̂−n〈z−m〉−m|i

)
p j, i < 0

.

(41)
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Figure 15: The mean (a, c) and standard deviation (b, d) of thesolution to the heat equation with time-
correlated random coefficient with correlation lengthlc = 0.1 (a, b) and space dependent coefficient (c,
d) up to timet = 1. The shown results are computed by the PDF (REPDF) and the Monte Carlo (MC)
approach, where we cannot visually distinguish the difference in the results.

Here, 〈·〉m|i is defined as in Eq. (21), and the arguments of ˆµn are omitted. Finally,
when the dimensionality of the parametric space exceeds three, we employ the ANOVA
decomposition.

We first consider a time-dependent random coefficient for the diffusion term, and
compute the solution by using the one-point BBGKY closure (39). In particular, we
take a log-normal random coefficient µ(t;ω) defined asV(t;ω) = log(µ(t;ω)), where
V(t;ω) is a mean-zero exponentially correlated Gaussian processwith correlation time
lc = 0.1. The coefficient is represented by using the Karhunen-Loève expansion in a
series expansion form. It involves 20 Gaussian random variables, that is truncated to
achieve 97% of the eigen-spectrum, and we employ the ANOVA method of level two
for the collocation basis based on the Hermite polynomials.We simply consider the
initial solution u(x, t = 0;ω) = sin(x)η1(ω) with a Gaussian random variableη1(ω) =
N(1, 0.1), which makes the initial condition of the BBGKY closure aspη1(z1). Thus, the
total dimensionality of the kinetic equation is 21. For the time integration, we employ
the fourth-order Runge-Kutta method with time step∆t = 10−3. Figure 15 shows the
evolution of the mean and standard deviation of the solutionat timet = 0, 0.5, 1. The
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BBGKY results coincide with the reference solution computed by using the Monte-
Carlo simulation with 50,000 samples, and we remark that therelativeL2 error stays at
the level ofO(10−4).

In case of a space dependent random coefficient, we considerV(x;ω) = log(2µ(x;ω)),
whereV(x;ω) =

∑2
k=1 (sin(kx)ξk(ω) + cos(kx)ξ−k(ω)) andξk(ω) ∼ N(0, 1/32) for all k’s.

Here, we compute the PDF by using the two-points closure (40). By taking the initial so-
lution asu(x, t = 0;ω) = η0(ω)+

∑3
k=1 (sin(kx)ηk(ω) + cos(kx)η−k(ω)) ,with independent

Gaussian random variablesηk(ω) = N(1, 0.1) for k , 0 andη0(ω) = N(0, 0.1), the initial
condition for the two-points BBGKY closure becomespkl(zk, zl, t = 0) = pηk(zk)pηl (zl).
We take the resolution of the solution to be the same as the initial condition by using
seven Fourier coefficients. Thus, the kinetic equation lies in a 11-dimensionalspace with
seven phase variables and four parameters. Again, the parametric space is accompanied
with the ANOVA method of level two. Figure 15 compares the mean and standard devia-
tion compared to 50,000 Monte Carlo simulations at timet = 0, 0.5, 1, and the two lines
cannot be visually distinguished. For both of the first and second moment, the relative
L2 error stays within the level ofO(10−3). Thus, we conclude that the PDF of the solu-
tion to a time and space dependent diffusion equation can be computed with reasonable
accuracy considering the time step and the truncation of thecomputational domain by
using the BBGKY closures and ANOVA approach.

5. Summary and Discussion

In this paper we proposed and validated three different classes of new algorithms
to compute the numerical solution of high-dimensional kinetic partial differential equa-
tions. The first class of algorithms is based on separated series expansions (SSE) and it
yields a sequence of low-dimensional problems that can be solved recursively and in par-
allel by using alternating direction methods. In particular, we developed a new algorithm
that updates the entire rank of the separated representation in each variable, minimizing
separation rank and improving the convergence rate. We alsoproposed an adaptive
version of such an algorithm and we demonstrated its effectiveness in numerical appli-
cations to random advection of passive scalar fields. The second class of algorithms we
proposed is based on a hierarchy of coupled probability density function equations that
resembles the BBGKY [50] and the Lundgren-Monin-Novikov [75, 76] hierarchies. We
studied the accuracy and the computational efficiently of low-order truncations of the
hierarchy (BBGKY closure) for the Lorenz-96 system and the semi-discrete form of the
diffusion equation. The third class of algorithms relies on high-dimensional model repre-
sentations (ANOVA expansions) and probabilistic (sparse)collocation methods. A com-
mon feature of all these methods is that they allow us to reduce the problem of comput-
ing the solution to high-dimensional kinetic equations to asequence of low-dimensional
problems. The range of applicability of proposed new algorithms is sketched in Figure
1 as a function of the number of phase variablesn and the number of parametersm ap-
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pearing in the kinetic equation. The SSE scales linearly andthe ANOVA method scales
factorially with the dimension of the phase space, and they yield comparable results for
moderate separation ranks. However, for large separation ranks the ANOVA method is
preferable to SSE in terms of computational cost. We emphasize that the choice between
ANOVA and SSE does not depend on the number of variables in thekinetic equation but
rather on the properties of its solution, in particular the separation rank. In addition,
in order to approximate the kinetic system regarding the interaction order between the
variables, the BBGKY closure and the ANOVA method is convenient to be employed
for the phase variable and the parameters, respectively.

Further developments of the proposed algorithms can be addressed along different
directions. For example, one can consider tensor interpolative [77, 78] and tensor train
decompositions [79] to further improve the SSE method, by accelerating the rank reduc-
tion process. This is very useful when solving systems with large separation rank, such
as those arising from Eq. (28). In addition, iterative solvers with appropriate precondi-
tioners and adaptive methods can further reduce the computational cost of determining
ANOVA and SSE decompositions (see [64] and section 2.1). Adaptive strategies can
also be applied to the conditional moment approach by using variance-based sensitivity
analysis, e.g., in terms of Sobol indices [60, 61].
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A. Finite-Dimensional Representation of the Alternating Direction Algorithm

In this appendix we provide additional details on the discretization of the alternating
direction Galerkin algorithm we proposed in section 2.1. Tothis end, let us first represent
the basis functions appearing in joint probability density(1) in terms of polynomials as

pr
n(zn) =

qz∑

j=1

pr
n, jφn, j(zn), (42)

whereqz is the number of degrees of freedom in each variable. For example, in sec-
tion 4.1, we have considered a spectral collocation method in which {φ1, j} and {φ2, j}

are trigonometric interpolants while{φn, j}
N
n=3 are Lagrange interpolants through Gauss-

Legendre-Lobatto points. The vector

pr
n =

[
pr

n,1, · · · , p
r
n,qz

]

collects the (normalized) values of the solution at the collocation points. In such a
collocation framework, we can write the expansion (1) in terms of a tensor product of
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degrees of freedom as

p =
∞∑

r=1

αrpr
1 ⊗ · · · ⊗ pr

N . (43)

Accordingly, the finite dimensional version of Eq. (4) is

Ap = f,

where

A =
nA∑

k=1

Ak
1 ⊗ · · · ⊗ Ak

N, f =
n f∑

k=1

fk
1 ⊗ · · · ⊗ fk

N , (44)

Ak
n[i, j] =

∫
φn,i(zn) Ak

n(zn)φn, j(zn) dzn, fk
n [i] =

∫
f k
n (zn)φn,i(zn) dzn. (45)

By using a Gauss quadrature rule to evaluate the integrals, we obtain system matrices
Ak

n that either diagonal or coincide with the classical differentiation matrices of spec-
tral collocation methods [80]. For example, in the case of equation (27) we have the
components

A1
1[i, j] = wx[i]δi j, Ak

1[i, j] =
∆t
2

wx[i]Dx[i, j], k = 2, ..., nA,

A1
2[i, j] = A2

2[i, j] = wz[i]δi j, Ak+2
2 [i, j] =

sin(ktn+1)
2k

wz[i]δi j, k = 1, ...,m,

Ak
3[i, j] = wb[i]δi j, k , 3, A3

3[i, j] = wb[i]qb[i]δi j, · · ·

whereqb denotes the vector of collocation points,wx, wz, andwb are collocation weights,
Dx is the differentiation matrix, andδi j is the Kronecker delta function. A substitution of
the finite-dimensional representations (43), (44) and (45)into the Galerkin orthogonality
conditions (12) yields a sequence of linear system

Bnp̂n = bn, (46)

whereBn is a block matrix withR × R blocks of sizeqz × qz, andbn is multi-component
vector. Specifically, thehv-th block ofBn and theh-th component ofbn are obtained as

Bhv
n =

nA∑

k=1


N∏

i,n

[
ph

i

]T
Ak

i pv
i

 Ak
n, bh

n =

n f∑

k=1


N∏

i,n

[
ph

i

]T
fk
i

 fk
n.

The solution vector
p̂n =

[
p1

n, ..., p
R
n

]T

is normalized aspr
n/

∥∥∥pr
n

∥∥∥ for all r = 1, ..,R andn = 1, ...,N. This operation yields the
coefficientsα = (α1, ..., αR) in (43) as a solution to the linear systems

Dα = d, (47)
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Compute the separated representation of the initial condition p(t0)
for t1 ≤ ti ≤ tnT do

Computef by usingp(ti−1)
SetR = 1
while

∥∥∥ApR(ti) − f
∥∥∥ > ε do

Initialize
{
pR

1(ti), ..., pR
N(ti)

}
at random

while
∥∥∥ApR(ti) − f

∥∥∥ does not decreasedo
Solve Eq. (46) for 1≤ n ≤ N

end while
Normalize the basis set and compute the coefficients{α1, ..., αR}

SetR = R + 1
end while

end for

Table 3: Main steps of the proposed alternating-direction Galerkin algorithm.

where the entries of the matrixD and the vectord are, respectively

Dhv =

nA∑

k=1

N∏

i=1

[
ph

i

]T
Ak

i pv
n, dh =

n f∑

k=1

N∏

i=1

[
ph

i

]T
fk
i .

The main steps of the algorithm are summarized in Table 3.

Stopping Criterion. The stopping criterion for the alternating-direction algorithm is
based on the condition‖ApR−f‖ < ε, which involve the computation of anN-dimensional
tensor norm. This can be quite expensive and compromise the computational efficiency
of the whole method. To avoid this problem, we replace the condition ‖ApR − f‖ < ε
with a simpler criterion for convergence, i.e.,

max



∥∥∥p̃R
1 − pR

1

∥∥∥
∥∥∥pR

1

∥∥∥
, ...,

∥∥∥p̃R
N − pR

N

∥∥∥
∥∥∥pR

N

∥∥∥

 ≤ ε1, (48)

where
{
p̃R

1 , ..., p̃
R
N

}
denotes the solution at the previous iteration. Note that the condition

(48) involves the computation ofN vector norms instead of oneN-dimensional tensor
norm.
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