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Abstract

In this paper we address the problem of computing the nuadesiution to kinetic
partial diferential equations involving many phase variables. Thgsestof equations
arise naturally in many dierent areas of mathematical physics, e.g., in particlesyst
(Liouville and Boltzmann equations), stochastic dynatsyatems (Fokker-Planck and
Dostupov-Pugachev equations), random wave theory (Malaaichev equations) and
coarse-grained stochastic systems (Mori-Zwanzig equsitiolVe propose threeftr-
ent classes of new algorithms addressing high-dimensignalhe first one is based
on separated series expansions resulting in a sequence-afifeensional problems
that can be solved recursively and in parallel by using rédtiing direction methods.
The second class of algorithms relies on truncation of autigon in low-orders that re-
sembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKfvamework of kinetic
gas theory and it yields a hierarchy of coupled probabilgygity function equations.
The third class of algorithms is based on high-dimensionadl@hrepresentations, e.g.,
the ANOVA method and probabilistic collocation methods. @mnon feature of all
these approaches is that they are reducible to the problemngbuting the solution to
high-dimensional equations via a sequence of low-dimesiproblems. Theféective-
ness of the new algorithms is demonstrated in numerical pkaminvolving nonlinear
stochastic dynamical systems and partiffiedlential equations, with up to 120 variables.

Key words. High-order numerical methods, proper generalized decsitipn,
uncertainty quantification, stochastic dynamical systekimgtic partial diferential
equations, ANOVA decomposition.

1. Introduction

Kinetic equations are partialfiérential equations involving probability density func-
tions (PDFs). They arise naturally in manyfdrent areas of mathematical physics. For
example, they play an important role in modeling rarefied dyasamics [1, 2], semi-
conductors [3], stochastic dynamical systems [4, 5, 6, B, 0], structural dynamics
Preprint submitted to Journal of Computational Physics November 12, 2015
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Table 1: Examples of kinetic equations arising iffelient areas of mathematical physics.

[11, 12, 13], stochastic partial fiierential equations (PDEs) [14, 15, 16, 17, 18], turbu-
lence [19, 20, 21, 22], system biology [23, 24, 25], etc. Bpshthe most well-known
kinetic equation is the Fokker-Planck equation [4, 26, 8#jich describes the evolu-
tion of the probability density function of Langevin-typgraamical systems subject to
Gaussian white noise. Another well-known example of kinefjuation is the Boltz-
mann equation [28] describing a thermodynamic system vitvgla large number of
interacting particles [2]. Other examples that are may reotMidely known are the
Dostupov-Pugachev equations [7, 10, 11, 29], the reduodekdNakajima-Zwanzig-
Mori equations [16, 30], and the Malakhov-Saichev PDF dqnat[17, 14] (see Table
1). Computing the numerical solution to a kinetic equatisra ivery challenging task
that involves several problems oftidirent nature:

1. High-dimensionality: Kinetic equations describing realistic physical systemsis u
ally involve many phase variables. For example, the Folanck equation of
classical statistical mechanics yields a joint probabdiensity function im phase
variables, wherais the dimension of the underlying stochastic dynamicaiesys
plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and,t
which could be hardly accessible by conventional numemecathods. For ex-
ample, the Liouville equation is a hyperbolic conservat®n whose solution is
purely advected (with no ffusion) by the underlying system’s flow map. This
can easily yield mixing, fractal attractors, and all softsamplex dynamics.



3. Lack of regularity: The solution to a kinetic equation is, in general, a distidiu
[32]. For example, it could be a multivariate Dirac deltadtion, a function with
shock-type discontinuities [18], or even a fractal objesge( Figure 1 in [16]).
From a numerical viewpoint, resolving such distributioagot trivial although in
some cases it can be done by taking integral transformatiopsojections [33].

4. Conservation properties: There are several properties of the solution to a kinetic
equation that must be conserved in time. The most obviousineass, i.e.,
the solution to a kinetic equation always integrates to éweother property that
must be preserved is the positivity of the joint PDF, and tet that a partial
marginalization still yields a PDF.

5. Long-termintegration: The flow map defined by nonlinear dynamical systems can
yield large deformations, stretching and folding of the gghapace. As a conse-
guence, numerical schemes for kinetic equations assdaiatie such systems will
generally loose accuracy in time. This is known as long-tietegration problem
and it can be eventually mitigated by using adaptive methods

Over the years, many flierent techniques have been proposed to address these is-

sues, with the mostticient ones being problem-dependent. For example, a wickelgt u
method in statistical fluid mechanics is the parficlesh method [22, 34, 35, 36], which
is based directly on stochastic Lagrangian models. Othénade make use of stochas-
tic fields [37] or direct quadrature of moments [38]. In theeaf Boltzmann equation,
there is a very rich literature. Both probabilistic apptoes such as direct simulation
Monte Carlo [39, 40], as well as deterministic methods,, eligcontinuous Galerkin and
spectral methods [41, 42, 43], have been proposed to contpesolution. Probabilis-
tic methods such as direct Monte Carlo are extensively useduse of their very low
computational cost compared to finite-volumes, finitedences or spectral methods,
especially in the multi-dimensional case. However, Monéel@€usually yields poorly
accurate and fluctuating solutions, which need to be pastgssed appropriately, for
example through variance reduction techniques. We refBirtarco and Pareschi [31]
for a recent review.

In our previous work [9], we addressed the lack of regulaity high-dimensionality
(in the space of parameters) of kinetic equations by usiagtad discontinuous Galerkin
methods [44, 45] combined with sparse probabilistic ceitmm. Specifically, the phase
variables of the system were discretized by using spedaients on an adaptive non-
conforming grid that track the support of the PDF in time, levttihe parametric depen-
dence of the solution was handled by using sparse grids. Hawdne discontinuous
Galerkin method we proposed in [9] iffective for phase spaces of dimension not ex-
ceeding three.

In this paper, we address the high-dimensional challengetin of thephase space
and parametric space by using diferent techniques, i.e., separated series expansion
methods, Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKYlpsures, and analysis
of variance (ANOVA) approximations. The key idea of sepadlatepresentations is to
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approximate a multi-dimensional function in terms of seii@/olving products of one-
dimensional functions [46, 47, 48, 49]. As we will see, tHiswas us to reduce the prob-
lem of computing the solution from high-dimensional kinettjuations to a sequence of
one-dimensional problems that can be solved recursivalyiraparallel by using alter-
nating direction algorithms, e.qg., alternating least sgsiaThe convergence rate of these
algorithms with respect to the number of terms in the seripamsion strongly depends
on the kinetic equation as well as on its solution. For examativection-dominated
equations yield a rather slow convergence r§#®]. Alongside separated representa-
tion, we also investigate BBGKY type closures that rely ambation of interaction in
low-orders. Such an approach developed in kinetic gasy&6t yields a hierarchy of
coupled PDF equations for a given stochastic dynamicaésystThe third approach we
consider is based on ANOVA approximation methods [51, 52588 The basic idea is
to represent multivariate PDFs in terms of series expassiomlving functions with a
smaller number of variables. For example, a second-orded¥Napproximation of a
multivariate PDF irN variables is a series involving functions of at most two variables.
All of these methods allow us to reduce the problem of conmgutiigh-dimensional
PDF solutions to a sequence of problems involving low-disi@mal PDFs. The range
of applicability the proposed new approaches as well as #ret aumerical methods is
sketched in Figure 1 as a function of the number of phaseblaga and the number of
parametersn appearing in the kinetic equation.

This paper is organized as follows. In section 2, we predeeetdiferent classes
of new algorithms to solve high-dimensional kinetic eqoiagi, i.e., the separated series
expansion method (section 2.1), the BBGKY closure appration (section 2.2), and
the ANOVA series expansion method (section 2.3). The coatjmurtal cost of these al-
gorithms is discussed in section 3. In section 4, we applyptbposed new techniques
to kinetic equations arising in nonlinear stochastic dyicahsystem theory (Kraichnan-
Orszag and Lorenz-96 systems) as well as to stochastialgdifterential equations (ran-
dom advection and randomffiision problems). Finally, the main findings are summa-
rized in section 5. We also include a brief appendix dealiiity the finite-dimensional
representation of the alternating-direction Galerkirogtyms we propose in section 2.1.

2. Numerical Methods

In this section we present three classes of algorithms tqaterthe numerical so-
lution of high-dimensional kinetic equations, such as ¢h@smmarized in Table 1. The

1The Liouville equation is a hyperbolic conservation law ihigh the difusion term is completely
absent (see Table 1). Therefore, the convergence rate cfetterated representation of the solution is
usually quite slow. On the other hand, fast convergence wasroed for Fokker-Planck equations by
Leonenko and Phillips [47].

2In this paper, the total number of variablsis the sum of the number of phase varialteand the
number of parameters appearing in the kinetic equation, i.8l,= n+ m.
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Figure 1: Range of applicability of flerent numerical methods for solving kinetic equations amatfon
of the number of phase variablesand the number parametarsappearing in the equation. Shown in
the upper right are: Separated series expansion methods-(S&:tion 2.1), BBGKY closures (BBGKY
- section 2.2), high-dimensional model representationd@A - section 2.3), adaptive discontinuous
Galerkin methods (DG) with sparse grids (SG) or tensor prbgwbabilistic collocation (PCM) in the
parameter space, direct simulation Monte Carlo (DSMC).

first class is based on separated series expansions (SSElfemating direction meth-
ods. The second class of algorithms relies on the BBGKY typeaimation (BBGKY)
and it yields a hierarchy of coupled probability densitydtion equations. The third
class is based on high-dimensional model representat®NOYA) and probabilistic
collocation methods. Hereafter we describe each methodtaild

2.1. Separated Series Expansions (SSE)

The method of separation of variables has been widely usegpgooximate high-
dimensional functions in terms of low-dimensional onespdmticular, let us consider
the following separated expansion of ldrdimensional probability density function

R
P, 2n) = ) ar PiZ)Ps(@) - Ph(an) + ez, -+, 2n), (1)
r=1

whereR is theseparation rank, pg are one-dimensional functions, aads the residual.
The total number of variabled in equation (1) is the sum of the phase varialiiend
the number of parametensappearing in the kinetic equation. Specific examples will be
given in section 4. The main advantage of using a represemtatthe form (1) to solve
a high-dimensional kinetic PDE relies on the fact that tlgpathms to computep’j (z))
and the normalization factorg involve operations with one function at a time. Thus, in
principle, the computational cost of such algorithms grdiwsarly with respect to the
dimensionN, potentially avoiding the curse of dimensionality.

For time-dependent PDEs, we can still look for solutionshimfiorm (1), where we
simply add additional functions of the time variable in tleparated series. This ap-
proach has been considered by several authors, e.g., [A&risbit was shown to work



well for problems dominated by fllusion. However, for complex transient problems
(e.g., hyperbolic dynamics), such an approach is not maldis it requires a high res-
olution in time domain. To address this issue, a discontisuB@alerkin method in time
was proposed by Nouy in [49]. The key idea is to split the irdégn period into small
intervals (finite elements in time) and then consider a stiaoe separated representa-
tion of the solution within each interval. In this paper wéldar a different approach,
based on explicit or implicit time-integration schemes.this case, the separated rep-
resentation of the solution is computed at each time stepus.éormulate the method
with reference to a linear kinetic equation in the form

LD - Lo, @
wherez = (z, ..., zy) is the vector of phase variables ah) is a linear operator. For
instance, in the case of the Fokker-Planck equation (sele Talwe havem = 0 (i.e.
N = n) and

n n 2h. .
L(Z):_Z(%_Gk(z) 0 )+}Z(6 le(Z)-l-bij(Z) 82 ]

= 07 07 2”.:l 02,0z 07,0z

The time-discrete version of (2) can be easily obtained Iplyay, e.g., the Crank-
Nicolson scheme. This yields

p(za tj+l) - p(za t]) _ 1

At S 2

(L@P@ 1) + L@PE L)), At=tua-t;,

(| - %AtL(z)) P(Z tj+1) = (| + %AtL(z)) p(Z. tj). 3)

Assuming thatp(z, t;) is known, (3) is a linear equation f@(z, tj.1) which can be writ-
ten concisely &5

A2 p(2) = 1(2), (4)

where
A@Z) = (I - %AtL(z)), f(2) = (I + %AtL(z)) p(z ;). (5)

The system operat@k(z) and the right-hand-sidé(z) are assumed to be separable with
respect t, i.e.,

AQ@) = k;Ai(zl) o A@N), @)= kz; tK(z1) -+ fX(zn)- (6)

3Note that in equation (4) we have omitted the time-deperelénp(z, tj,1) for notational convenience.
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Note thatA(z) is separable iL(z) is separable. An example is the Liouville operator
associated with the Kraichnan-Orszag problem (see subse@guations (18a)-(18c)
and (19))

L@) = ~t2r - 275~ B - D) — (224 2) ™

071 02 2 073 '

More generally, systems with polynomial-type nonlingesitalways yield separable Li-
ouvillians L(z), and therefore separabl(z). At this point, we look for a separated
representation of the solution to (4) in the form

R
@) = D arpi(z) - py(@), 8)
r=1
and we try to determiney, pg and the separation rarkbased on the condition

|A@P @) - f@)] <&, (9)

in an appropriately chosen norm, and for a prescribed tagmiracys. This problem
does not admit a unique solution. In fact, there exist marsgibte choices ot pg (z)
andR that yield, in norm, the same target accuracy. Hendéermint approaches exist
to computeprj(zj) and «;. Hereafter, we focus our attention on alternating-dimecti
Galerkin and least squares methods.

Alternating Direction Algorithms

The basic idea of alternating direction methods is to constthe series expansion
(8) iteratively, by determiningpfj(zj) one at a time while freezing all other functions.
This yields a sequence of low-dimensional problems thatbeasolved #iciently and
in parallel [46, 47, 48, 49, 56, 57, 58]. To clarify how the hed works in simple
terms, suppose we have constructed an approximated sotat{d) in the form (8), i.e.,
suppose we have availab®(z). Then we look for an enriched solution in the form

pR(2) + ri(z) - - rn(zn),

where{ri(z), ...,rn(zy)} are N unknown functions to be determined. In the alternat-
ing direction method, such functions are determined ite¥lt one at a time. Typical
algorithms to perform such iterations are based on leastrequ

na ng
min ZA';---AKI(pR+r1---rN)—Zflk---fﬁ , (10)
k=1 k=1
or Galerkin methods
Na ng
<q,ZA‘{---AK.(pR+r1---rN)>=<q,Zf{‘---f,‘5>, (11)
k=1 k=1

7



where(-) is an inner product (multi-dimensional integral with regpt z), andq is a
test function, often chosen g&) = r1(z) - - - rn(zy). In a finite-dimensional setting, the
minimization problem (10) reduces to the problem of findihg minimum of a scalar
function in as many variables as the number of unknowns wsidenin each basis
functionrj(z;), sayq,. Similarly, the alternating-direction solution to (11)based on
the iterated solution to a sequence of low-dimensionallirgy/stems of sizg,xq,. Note
that if A(z) in Eq. (4) is a nonlinear operator, then we can still so® dr (11), e.g., by
using Newton iterations. Once the functiofng(z), ..., rn(zy)} are computed, they are
normalized (yielding the normalization facieg, 1) and added tpR(z) to obtainpR*1(2).
The separation rank is increased until (9) is satisfied farsardd target accuragy

The enrichment procedure just described has been crifigizthe literature due to
its slow convergence, in particular for equations domididte advection [49]. Depend-
ing on the criterion used to construct the separated expan#ie enrichment proce-
dure might not even converge. Recent work, indeed, aimedding optimal bases
with granted convergence properties, i.e., bases thamizaithe separation rank and
simultaneously keep the overall error (9) bounded:bifor example, Doostan and lac-
carino [59] proposed an alternating least-square alguorifiat updates simultaneously
the entire rank of the basis set in th¢h direction. In this formulation, the least square
approach (10) becomes

min
! pR]

Na R n¢

K k K K

" ZAl...AN[Zarprl...p[\l]_Zfl...fN
{pJ """ il k=1 r=1 k=1

The computational cost of this method clearly increasespewad to (10). In fact, in
a finite dimensional setting, the simultaneous determinadbif pjl, pJR requires the
solution of aRq; x Rq; linear system, whereg, is the number of degrees of freedom for
eachpg (zj). However, this algorithm usually results in a separatédtem with a lower
separation rank than the regular approach.

Hereafter, we propose a new alternating direction Galemiéthod that, as before,
updates the entire rank of the basis set injtiie phase variable simultaneously. To this
end, we generalize the Galerkin formulation (11) to

Na R n¢
<q,ZA'i"'A'§| Zarpfl...p;\l}>:<q,fo---f'N‘>, (12)
k=1 r=1 k=1

whereq(z) = spanipi(z) - - - py(2n) }rR=l In addition, we employ an adaptive strategy to
determine the separation rank based on the speatrum{ay, ..., ar} of the separated
series. The adaptive criterion is simple afiietive :

2

¢ We increase the separation raRlif the ratioar/a1 exceeds a threshold

The finite-dimensional representation of (12) and the sumrogthe algorithm is dis-

cussed in appendix A and Table 3, respectively.
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2.2. BBGKY closures

In addition to the separated series expansion method disdlis the previous sec-
tion, we propose here a BBGKY type closure to further redheedimensionality of a
kinetic equation. Let us introduce the method with refeeettica nonlinear dynamical
system in the form

dx(t)

a Qx,&.1), X(0) = xo(w), (13)
wherex(t) € R" is a multi-dimensional stochastic proceés R™is a vector of random
variables,Q : R™™1 _ R" s a Lipschitz continuous (deterministic) function, and
Xo € R"is a random initial state. Upon definition pft) = (x(t), £), we can rewrite (13)

as
YO _ gy, y(0) = (o), E@)), G(y,t)=[ S ] ()

dt
Note thaty(t) € RN andG : RN*1 — RN, whereN = n+ m. The joint PDF ofy(t)
evolves according to the Liouville equation

ap(z. 1)
at

whose solution can be computed numerically only for sallThis leads us to look
for PDF equations involving only a reduced number of phasbkes, for instance, the
PDF of each componer(t). The derivation relies on the functional integral form
of the PDFpy(z t) = fﬂi'\il 6(z — Yi(Xo, &; 1))W(Xg, £)dXxp d&, wherew(Xo, £€) is the joint
PDF of the initial random variables and the parametgrndé. Then, by diferentiating
both sides with respect tp the PDF of a single componey(t) satisfie$

+V-[G(z,t)p(z, )] = 0, zeRN, (15)

opi(z.1) _

el [ 15100 - Ot )] o

0
- f [Gi(y. 1)6(z — yi(t))p(y. t)] dy (16)

wherep(y, t) is the full joint PDF ofy(t). Similarly, the joint PDF ofy;(t) andy;(t) (i # j)
satisfies
opij(z.z,t) o
D [ 6000 - otz -y, )P0 oy
_9
f)Zj

[ le1t-09 -y - yiowe.old. @

Higher-order PDF equations can be derived similarly. Unifoately, the computation of
the integrals in (16) and (17) requires the full joint PDRy¢), which is available only if

4Note thatpi(z,t) = p(&) foralln+ 1 <i < n+m, and for allt > 0.
9



we solve the Liouville equation (15). As mentioned befonés is not feasible in practice
even for a low number of variables. Therefore, we need tmdhice approximations.
The most common one is to assume that the joint PRAt) can be written in terms of
lower-order PDFs, e.g., g%z,t) = p1(z1,1) - - - pn(2n, 1). By using integration by parts,
this assumption reduces the Liouville equation to a hiéraaf one-dimensional PDF
equations (see, e.g., [16]).

Hereafter we follow a similar approach based on lower ordi¢dat least in second
order. The idea is to approximate the dynamics inittledirection by primarily using
the correlation to théth variable. IfG; is a function ofz andz;, the right-hand-side of
(17) becomes

—a% f |Gi(y.1)5(@ - Yi®)o(z - y;(®)p(y. t)| dy = —a% Gi(z. 2. )pij(z.7.1)].

Otherwise, we approximate the equation by using the joirff®k(z, z) fork #i. To
this end, let us consider a specific form@fthat allows us to simplify the equations,
i.e.,

N
Gi(y:t) = Gy, ) + ) Gi¥is Yoo V-

k=1
ki

The integrals in the right hand side of the one-point PDF tong16) can be now
computed exactly as

’

o _ 0 oan N (> .
i lg.,(z,t)p. + kZ# fguk(zq,zk, t) pikdzc

wherep; = p(z,t) andpik = p(z, z, t). On the other hand, we approximate the integrals
in the two-points PDF equations (17) as

opij 0 N
R (i (@.1) + 6ij(z. 2. 1)) pij+{|;Ljf9ik(Z,Zk,t)pidek Pj
9 N
~ 3z (9ii(z, 1) + 9ii(z}. 3. 1) pij+[2fgjk(zj,zk,t)pjkdzk pil,
) K, |

where we discarded all contributions from the three-poRI3s and the two-points
PDFs except the ones interacting with thtlh variable. A variance-based sensitivity
analysis in terms of Sobol indices [60, 61, 62] can be peréatito identify the system
variables with strong correlations. This allows us to deiae whether it is necessary
to add the other two-points correlations or the three-gdRIDF equations for a certain
triple {x(t), %i(t), x;(t)}, and to further determine the equation for a general fori@;of

10



An Example: The Kraichnan-Orszag Problem
Let us apply the BBGKY type closure we described in the prewvisection to the
Kraichnan-Orszag problem studied in [63]

dx
d_tl = X1X3, (18a)
dx
o = e (18b)
dX3
E = —Xi + Xg. (18C)

In this case we have = 3 phase variables armd = 0 parameters, i.e., a total number
of N = 3 variables. The three-dimensional Liouville equation tlee joint PDF of

{xa(t), X2(t), X3(1)}, is

d d
a—f tuz - P 2223— +(Z - Zi) =(-z+z)p, (19)
Z

wherep = p(z1, 2, 73, t). On the other hand, by using the second-order BBGKY closure
described in the previous section, we obtain the followiregdrchy of PDF equations

0 0
% = "o [z (X3)3p1] » (20a)
0 0
% =" [~22(X3)32] (20b)
0 0
% = _8_23 [(—(X%>1|3 + (X%>2|3)] , (20c)
op12 d 9
Sl [21 (Xa)32P2] + 8_22 [22 (Xa)32P1] » (20d)
d 8
% - [2123 Pas] + [Z% P13 — (B)23P1 ], (20€)
0 (9
% "oz (2223 P23] * o [<x1>1|3p2 zgng] (20f)
where
(FODij = f f(2)pij(z. 7. t)dz. 21)

Let us assess the accuracy of the second-order BBGKY cl¢20e9-(20f) when
the initial condition{xz(0), x2(0), x3(0)} is jointly Gaussian

(22)

03 2
p(z1, 2, 23, t = 0) = (;)3/2 exp[ 50(21 - %) - 50(% + z%)

Each PDF equation is discretized by using a Fourier spectifdcation method with

with g; = 50 degrees of freedom in each variable. Time stepping isdbasexplicit
11



(a) (b)

-0.5

Figure 2: Kraichnan-Orszag problem: PDPx({t) (a) andx,(t) (b) att = 4 andt = 8. Blue lines: results
from the full Liouville equation. Green and red dashed liresults of the BBGKY closure (20a)-(20f) at
t = 4 andt = 8, respectively.

(@) (b)

Figure 3: Kraichnan-Orszag problem: Absolute error in tream(a) and in the standard deviation (b) of
*(t) (k =1, 2,3) computed by the two-points BBGKY closure (20a)-(20f).
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fourth-order Runge-Kutta scheme withh = 10~3. In Figure 2, we compare the PDF of
x1(t) andx(t) as computed by the full system and the two-points BBGKY wlesWe
observe that the two solutions are basically superimpaaegijesting that theffiects of
the three-points correlations are negligible. We also r&riet if we are interested only
in the PDF of one variable, then it is not necessary to solgeuhole hierarchy of PDF
equations in the BBGKY closure. For example, to obtain théBDx; (t), we can just
solve Eqgs. (20a), (20e), and (20f). In Figure 3, we plot theohlie error in the mean
and the standard deviation pfy(t), X»(t), x3(t)} as computed by the BBGKY closure.
These errors arise because we are not including the thiaesgeDFs in the hierarchy
of equations.

We also emphasize that the PDF equation of a phase spac@fuhty, xo, X3),
can be easily derived based on the BBGKY closure. For exartie®DF equation of
h = x1(t) + x3(t) is

op(2 o

= 5 [(—22 + 32(Xa)ah — 20G)an + (X)an) IOh(Z)] :

2.3. ANOVA Series Expansions

The ANOVA series expansion [53, 64] is another typical apploto model high-
dimensional functions. The series involves a superimjposibf functions with an in-
creasing number of variables, and it is usually truncateal @rtain interaction order.
Specifically, the ANOVA expansion of ad-dimensional PDF takes the from [65]

N N N
P21, 22, 20) = Go+ ) Gi(2) + ) Gii(Z.2) + ) Gik(Z. 2,20+ (29)
i=1 i<j i<j<k

The functionqp is a constant. The functiorg(z), which we shall call first-order in-
teraction terms, give us the overaitects of the variableg in p as if they were acting
independently of the other variables. The functionéz, z;) describe the interaction ef-
fects of the variableg andz;, and therefore they will be called second-order interastio
Similarly, higher-order terms reflect the cooperatiieets of an increasing number of
variables. The interaction terngg.. can be computed in fierent ways [66, 67], e.g.,

qo=fp(z1,---,zN)dzl,---dzN,
N

a@) = [ P20 [ |dac-a
k=1
ki

N

41(@.2) = [ P20 | | dac-do- 0@ - ay(z),
k=1
Keei |
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By using the ANOVA expansion we can represent both the pararagependence as
well as the dependence on phase variables in the solutiorkittetic equation. In the
first case, the ANOVA approach can be readily applied to tiodailistic collocation
method with appropriate anchor points [64, 54, 68, 52, 6Xjene we take the anchor
points as the mean value of the random variable in each dinecthen, the PDF equa-
tions in Table 1 can be solved at the reduced number of coldotaoints in the para-
metric space according to the ANOVA decomposition. On tireiohand, representing
the dependence of the solution PDF on the phase variablmsgiinthe ANOVA expan-
sion yields a hierarchy of coupled PDF equations that rekesrthe BBGKY closures
we presented in section 2.2. However, we comment that theKBBGosure is more
convenient than the ANOVA approach due to its less intrudasvation.

3. Computational Cost

Let us consider a kinetic partial flerential equation witm phase variables anu
parameters, i.e., a total number Mf = n + m variables. Suppose that we represent
the solution by usingy, degrees of freedofin each phase variable amg degrees of
freedom in each parameter. Thus, by using a regular tensdugt, the number of
degrees-of-freedom becomgs q,™ and the computational cost grows exponentially as
O(9-2" q5™). If we consider the sparse grid collocation for the paraimspace, the cost
reduces to a logarithmic growth im, but still sufers from the curse of dimensional-
ity. Hereafter, we compare the computational cost of thehoug we discussed in the
previous sections that reveal less computational contglexi

ANOVA Sries Expansion and BBGKY closures

If we consider the ANOVA expansion or the BBGKY hierarchye ttomputational
complexity has a factorial dependence on the dimensignalit m and the interaction
orders of the variables. In particular, the number of degrees-of-freedom assurthiag
qo = qz becomeg’ ¢ ; C(n+m, s, qz), where

ot sa) o[ ) 24)

Regarding the matrix-vector operations for the discretizariables in each level, the
computational cost follows a® (C(n+ m, v, qzzv)). Let us describe the cost in de-
tail by considering the phase space and the parameter sppammtly. When high-
dimensionality only appears in the parameter space, thmpilistic collocation ANOVA
method can be combined with the tensor product in the phaseespln that case,
the degree of freedom and the computational cost becapies; ; C(m, s qp) and

5In a spectral collocation setting; is the number of collocation points in each phase variable.
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O(g2"C(m, v, qv*). On the other hand, if the phase space is in high-dimensieraipli-
cation of the BBGKY closure will reduce the computationastcm O (C(n, v, 42”) qp™),
Finally, we remark that instead of considering the BBGKYstie in the entire space, it
is reasonable to combine it with the ANOVA approach for farthccuracy, since the in-
teraction order of the phase variables and the parametastatl as andy’, can be con-
trolled separately. In this case, the number of degredeeetiom and the computational
cost becomefyy_; C(n. s qz)) (2%, C(M s qp)) andO (C(n, v, q2") C(M. V', q")). The
computational costs of these methods are summarized i 2abl

Separated Series Expansion (SSE)

The total number of degree of freedoms in the SSE meth&hds + Rmqy, i.e., it
growslinearly with bothn andm (see Table 2). In particular, if the separation rdk
is relatively small then the separated expansion methodighmmore éicient than ten-
sor product, sparse grid or ANOVA approaches, both in terffmseanory requirements
as well as in terms of computational cost. The alternatingeton algorithm at the
basis of the separated series expansion method can bedlividetwo steps, i.e., the
enrichment and the projection steps (see Table 3). For aa@&parankr, the number
of operations to perform these stepsi6q,2 + (rq,)°). Since we begin from the first
basis vector and gradually increase the separation raisk¢alst has to be summed up
tor = 1,...,R, and finally multiplied by the average number of iterations required
to achieve the target accuraey The computational cost of the projection step can be
neglected with respect to the one of the enrichment stepyadtices to solving a linear
system of rather small siz&k R). Thus, the overall computational cost of the separated
expansion method can be estimated){t?“an + R4mqb3) nir, and it can be reduced

to O (R3nqz2 + R3mqb2) nir by using appropriate iterative linear solvers.

4, Numerical Results

In this section we provide humerical examples to demoresthat éfectiveness of the
numerical methods we proposed in the paper. To this end, eamsider kinetic partial
differential equations corresponding to stochastic PDEs dsawstochastic dynamical
systems.

4.1. Stochastic Advection of Scalar Fields
We consider the following two stochastic advection equntio

m

au 1 ou

st 1+ 2, z(sm(kt)gk(w) X 0, (25)
8u ou 1 26
5+ 55 = SN0 Z 5(k 5 Sin(l+ Déiw). (26)
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Degrees of freedom Computational Cost

4 m vV m
ANOVA 0" o, qbs(s) O(sznCIbz (V))
, n+m ,(n+m
o sl ol
SSE Rng, + Rmap O(R“nqz3+R“mqb3)nitr

Table 2: Number of degrees-of-freedom and computatiorstl @osolving kinetic equations by using dif-
ferent methods. Shown are results for ANOVA method, BBGKa&dres, and Separated Series Expansion
(SSE). In the Tablen andm denote the number of phase variables and parameters apgpeathe kinetic
equation, respectively. We are assuming that we are ragiiegehe PDF solution witly, degrees of free-
dom in each phase variable amgin each parameter. Als® is the separation rank amg, is the average
number of iterations required for convergence of the sepdmxpansion. The quantityis the interaction
order of the ANOVA expansion or the BBGKY closure in the PDFRusion.

wherex € [0, 27] and {&4, ..., &m} are i.i.d. uniform random variables i1, 1]. As we
have shown in [17], the kinetic equations governing thetjpinbability density function
of {&4, ..., &m} and the solution to (25) or (26) are, respectively,

[ i sm(kt)bk} 27)

k=1

op op (.. 1 ap
= = —[sm(t) ; 5K ) sin(k + 1)x)bk} 7’ (28)

wherep = p(x,t,z b), b = {by,...,bn}. Note that this PDF depends ont, one phase
variablez (corresponding tai(x,t)) andm parameter$ (corresponding tdé, ..., Em}).
The analytical solutions to Egs. (27) and (28) can be obthineusing the method of
characteristics [69]. They are both in the form

p(xt,zb) = po(x—X(t,b),z— Z(x,t,b),b), (29)

wherepg (X, z b) is the initial joint PDF ofu(x, tg) and{&y, ..., &m}, and

X(t.b)=t- > W’ Z(x.1,b) =
k=1

in the case of equation (27), and

s sm(kx t)  sinkx+t) 2sink(x-t))
X(tb)=t  2(xtb)= Z ( T T k+1 _(k—l)(k+1))
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in the case of equation (28). In particular, in our simulagiove set

o 2.0) = (00 - EM | O g (s |l L,

which has separation rark= 2. Non-separable initial conditions can be approximated
in terms of series expansions in the form (1). We considén-Highensional parametric
space fom = 3, 13, 24, 54, 84, 114 and compare the SSE algorithm and the ANOVA
decomposition that workfgciently for this type of problems.

We computed the solution to (27) and (28) by using a sepasatéels expansion and
the ANOVA expansion. The alternating-direction Galerkiethod proposed in section
2.1 computes the solution in the form

POtz b) = > ar ()P ()PP (1) - - Pin(brm), (30)

where the dependence grandzis represented by using a Fourier spectral collocation
method withg, = 50 degrees of freedom in each variable, while the paramespen-
dence orby (k = 1, .., m) is represented with probabilistic collocation methoddabasn
the Legendre polynomials of ordeg, = 7. On the other hand, the solution considering
the ANOVA expansion in the excitation space is in the form

PO.t,Zb) = do(x2) + ). G AP (b) + ) ai(x (b, b) +--- . (31)
i=1

i<j

The solutions (30) and (31) are computed at each time ateg (L02) up tot = 3 by
using the Crank-Nicolson scheme (4) and the second-ordegéri{utta, respectively.

In Figure 4, we plot the first few modegg (x)p}(2) of the separated series solution
to Egs. (27) and (28) witlm = 54 andm = 3, respectively. In the case of Eq. (27),
py(X)py(2) look very similar to each other far > 2, while in the case of Eq. (28) they
are all diferent, suggesting the presence of modal interactions aadyerlseparation
rank to achieve a prescribed target accuracy. This is almoigd-igure 5, where we plot
the normalization cd@cients{a, ..., ar}. Sincea, can be interpreted as the spectrum
of the separated PDF solution, we see that the stochastactol problem (26) yields
a stronger coupling between the modes, i.e., a slower sppaletcay than the problem
(25).

In Figure 6, we plot the PDF of the solution to Eqg. (25). SuchDiRs obtained
by first solving (27) by using the separated expansion metod then integrating (30)
numerically with respect t¢by, ..., bn}. Convergence with respect Bis demonstrated

5The number of degrees-of-freedom of the discretized spamald be chosen carefully to balance the
errors between the space and time discretization and theation of the separated series. By considering
qp = 7 in this example, the error is dominated by the truncatiothefseparation rank.
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SSE modes - Eq. (27)
r=2 r=3 r=4
3.14 3.14 3.14 3.14
so W W o Ee e w a ao:-‘- s o - - -
- W - - - - -
-3.14 -3.14 -3.14 -3.14
x 6.28 0 x 6.28 0 x 6.28 0 x 6.28 0 T 6.28
SSE modes - Eq. (28)
r=2 r=3 =4 r=5
L — 3.14 3.14
e T o= =
0 x 6.28 % x 6.28 2% z 6.28
r=7 r=8
3.14 3.14 3.14
o o — — . 4 e
314 x 6.28 2% z 6.28 2% x
Figure 4: Stochastic Advection Problem: separated sexigansion modes on the physical and response
space, that isp{(X)p}(2) att = 2.
0
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Figure 5: Stochastic Advection Problem: Spectra of the rsepd series expansiontat 2.
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t=00 t=15 t=30
3.14

-3.14
3.14 6.28 0

Figure 6: Stochastic advection problem (25): PDF of thetsmiuat diferent times. The PDF dynamics
is obtained by solving (27) with a separated series expandibe separation rank is setfo= 8, and we
considem = 54 random variables in (25).
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Figure 7: Stochastic advection problem (25): relatiyeerrors of using the full tensor product (PCM), the
separated series expansion (SSE), and the ANOVA appro&M-{®, level 2) with respect to the analytical
solution (29). Shown are resultstat 0.5,t = 1 andt = 3 for different separation rank® and diferent
number of random variables = 3 (a) andm = 54 (b).
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3.14

t=10 t=20 t=30

Figure 8: Stochastic advection problem (26): PDF of thetsmiuat diferent times. The PDF dynamics
is obtained by solving (28) with a separated series expandibe separation rank is setfo= 8, and we
considem = 24 random variables in (26).

in Figure 7. Note that the separated expansion method refftheame error level as the
ANOVA approximation with just five modes fdr< 1, but it requires a larger separation
rank at later times in order to keep the same accuracy. Iniaddithe convergence rate
of the separated expansion method saturates Rvitlue to time integration errors. In
Figure 8, we show the PDF of the solution to the advection lprol(26) at diferent
times, where we have considered a random forcing termnwvith24 random variables.
Such a PDF is obtained by solving (28) with a separated sexigansion (30) of rank
R = 8. Convergence with respect Bis demonstrated in Figure 9. It is seen that the
convergence rate in this case is slower than in the previcaisple (see Figure 7), and
the overall relative error is larger. This is due to the pneseof the time-dependent
forcing term in Eqg. (26), which injects additional energytlie system and yields new
SSE modes (see Figure 4). This yields a higher separatidnfoara prescribed level
of accuracy. In addition, the plots suggest that the acgushthe separated expansion
method depends primarily on the separation rBi the solution rather than on the
dimensionality of the random forcing vector.

So far, we fixed the separation raRkhroughout our simulations, to investigate con-
vergence and accuracy of the separated series expansibadnétowever, in practical
applications, the appropriate separation rank should &etified on-the-fly, i.e., while
the simulation is running. To address this question, in tle®ipus section, we propose
an adaptive strategy based on the spectum{a1, ..., ar} of the separated series, that
is, increasing the separation raRKf the ratio ar/a1 > 6. The corresponding adaptive
algorithm initialized with a separation rankis denoted as ASSE, and it is studied
hereafter with reference to Eq. (28). In Figure 10 we [ptotersus time for dterent
thresholdg. It is seen that the adaptive algorithm yields a separatiok that increases
in time. In particular, the casge = 103 yieldsR = 10 att = 3, which results in a
slightly larger error than the one obtained for fiXed= 10. In Figure 11, we compare
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Stochastic Advection Problem (25) Stochastic AdvectiombRm (26)
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Figure 9: Stochastic Advection Problem: Relativeerrors of the separated PDF solutions with respect to
the analytical solution (29). Shown are results fdfetient number of random variablesin (25)-(26) and
different separation rank It is seen that the accuracy of the separated expansiorothetainly depends

on the separation rank rather than on the number of randoiables.
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Figure 10: Adaptive SSE algorithm: separation r&la) and relative, error (b) versus time for dierent
thresholdg initiated with a separation rank(A,-SSE). A smalb yields a large separation rank and a small
relative error.
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Figure 11: Adaptive SSE algorithm: comparison between ¢fegive L, errors of the adaptive separated
expansion method (A-SSE) and the ANOVA (PCM-A, level 2) noethResults are for the kinetic equation
(28) with threshold = 5- 107%. It is seen that the error of the A-SSE method is slightly petelent oin,
while the error of ANOVA level 2 increases as we increase

the accuracy of the ASSE method wittd = 5- 10~* and the ANOVA method (level
2). Specifically, we study the relatiie, error of the solution to Eq. (28) for fierent
number of random variables, i.en,= 13, m = 24, andm = 54. We first notice that the
error in the A-SSE method seems to be slightly independenh.oOn the other hand,
the error of ANOVA method increases with, although such an error can be improved
by increasing the interaction order. However, this woukld/ian increasing number of
collocation points. For example, increasing the intecactirder from two to three for
m = 54 would increase the number of collocation points from B#98578270 (see
[64]). In Figure 12, we compare the computational time of¢hparated series expan-
sion method, with the ANOVA method of level two and sparsé gfilevel three on the
excitation space. The simulations are performed on a si@gle of Intel Xeon E5540
(2.53 GHz) and the results are normalized with respect tedngputing time using the
tensor product for the cage= 3. Itis seen that the separated expansion method method
costs less than the ANOVA level 2 whem> 24 andR < 8. In the case of equation (27),
the separated expansion method is mdfeient than ANOVA, as it reaches the same
error level with a small separation ranR € 8).

In summary, the separated series expansion methdteitige for high-dimensional
kinetic equations provided the solution has a small sejoaredink. If the separation rank
is relatively large, then the ANOVA method is expected to lergficient, although a
rigorous quantification of this statement should be done casa-by-case basis.

4.2. Lorenz-96 system

The Lorenz-96 system is a continuous in time and discrete@tes model often
used in atmospheric sciences to study fundamental isslagsdéo forecasting and data
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Figure 12: Computational time (in seconds) of the separaxpansion method (SSE), and probabilistic
collocation ANOVA level 2 (PCM-A) and sparse grid level 3 (MES) as a function of the number of
random variablesn and separation ranR. The results are normalized with respect to the computine ti
of using the tensor product with = 3. The dotted lines correspond to extrapolations based an-gims
estimates.

assimilation [70, 71]. The basic equations are

dx .
d_)'? = (X1 — Xi2) Xi,1— X + F, i=1..,n (32)

Here we considen = 40,F = 1, and assume that the initial sta(@) = [Xx1(0), ..., X40(0)]
is jointly Gaussian with PDF

2520 40 25 i \2
p(z, ..., a0, t = 0) = (g) [1[ exp|—= (Zi - %) ] (33)

Thus, in this system we hawe = 40 phase variables amd = 0 parameters, i.e.,
N = n. The kinetic equation governing the joint PDF of the phaséaséesx(t) =

[X1(1), ..., X40(t)] is

40
st =—;8%[((z+1—z_z>z_l—a+m pzb]. zeR®  (33)

and it cannot be obviously solved in a tensor product reptasen because of high-
dimensionality and possible lack of regularity (for> 10) related to the fractal structure
of the attractor [71]. Thus, we are led to look for reducedeorPDF equations. Specifi-
cally, we consider here the one-point and two-points BBGKdéuares we discussed in
section 2.2. The first one yields the approximated system

opi(z.1)
ot

_8% [0 - <Xi_22?z) O4-Diyi = @ - F)pi(@, )] (35)
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Figure 13: Lorenz-96 system: The mean (a, b) and standardtibev(c, d) computed by the one-point (a)
two-points (c) BBGKY closure compared to the Monte-Carlaglation (b, d).

where();; is defined in (21). In order to close such a system within thellef one-
point PDFs(x;_1);_1x, could be replaced, e.g., B¥_1) p(z,t). Similarly, the two-points
BBGKY closure of the adjacent nodes yields the hierarchy

6pii+ (Z’Z+ ’t) _ 6
# - E [Zu <Xi—1>i,1|i pi+1(Z+1’ t) - <Xi—2> <)§71>i,1“ Pm(%w t)

0
_(Z - F) Pml(Z, 4.1 t)] - f [<)§+2>i+2|i+1 zZp (Z’ t) - <)§71> 4 pml(l’ 4,15 t)

_(;+1 -F ) pml(l, Z+1’t)] . (36)

By adding the two-points closure of one node apart, kes; and X1, the quantity
(X2 {X_1), gy Pra(Z,0. 1) inthe firstrow and(x_,) z P, (2. Z,,, ) in the second row can
be substituted byXi_2)i_gji (Xi-1)i—gi+1 and(Xi—1)i_1j+1 % P,(Z.1), respectively. In our
simulation, we alternate between the two approximationsvaty time step. Each
equation in (35)-(36) is discretized by using a Fourier saécollocation method with
qz = 64 degrees of freedom in each variable, and fourth-ordeigB#utta time inte-
gration withAt = 1073,

In Figure 13, we plot the mean and the standard deviation ekdtution to (32)
computed by the one- and two-points BBGKY closures and thetdGarlo simulation
24
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Figure 14: Lorenz-96 system: The absolute error of the mapar(d standard deviation (c, d) by using
the BBGKY closure compared to the Monte-Carlo simulatiotoigrscale. In (c) and (d), the results are
computed by the one- and two-points BBGKY closure (Egs. &) (36), respectively) and the error is
shown in (b).

- 50000 solution samples. It is seen that the mean of the BB@K¥Sure coincides
with the one obtained from the Monte Carlo and the one-pdogure. However, the
standard deviation is slightly flerent. The absolute error in log-scale compared to the
Monte Carlo simulation is shown in Figure 14, where we obséne reduced error in the
standard deviation by involving the two-points PDFs. Tlais be also seen in Figure 14
(b) where we plot thé; error of the moments. Note that adding the two-points PDFs to
the hierarchy in this case improves the error in the standewéhtion by a small amount.

4.3. Sochastic diffusion equation

An interesting question arises whether it is possible tereine a closed PDF evo-
lution equation of the solution to second order PDEs at aispapace-time location.
Unfortunately, the answer is negative due to its nonlochltEms in space and time.
This nonlocal feature yields the impossibility to determia point-wise equation for
the probability density. Still, there has been extensiveliss to tackle this problem
by use of functional integral methods, in particular thasenlving the Hopf charac-
teristic functional [72, 73, 74]. Here we consider the seliscrete form of PDEs that
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can be written in a form of multi-dimensional dynamical systthat yields a Liouville
type PDF equation. Afterwards, the BBGKY closure is emptbtethe corresponding
multi-dimensional PDF system, combined with the ANOVA neethn case we have a
high-dimensional excitation space.

Let us consider a ffusion equation as follows:

n_ 9
ot 0x
wherex € [0, 2x], t > 0 andu(x,t; w) > 0O is the random diusivity. This equation is
accompanied by a periodic boundary conditidf, t; w) = u(2r,t; w) anduy(0,t; w) =
Ux(2r,t; w). We then discretize the solution in the physical space liggua set of

orthogonal basis functions i?([0, 27]). Here, we consider the Fourier basis functions
as

(,u(x, t; w)%) , (37)

u(x, t; w) = lip(t; w) + Z (k(t; w) sin(kx) + 11_k(t; w) coskx)) . (38)
k

We assume that we have available a similar representatiotihndadifusivity u(Xx, t; w)
with codficients{i(t; w)} in terms of random variables ag(f; w) = k(t; £(w)). Then,
the dimensionality of the kinetic equation depends on tinedation of the solution (38)
and the parameters. In other words, the dimensionality eaasbhigh as the number
of basis functions, which will be necessary when the satuitiothe physical space has
low regularity. Thus, we employ the BBGKY closure approaekieloped in Section 2.2
to obtain a reduced-order PDF equation, approximating yetems within lower order
interactions. When the random d¢beient is independent of the physical variable, the
Fourier modes are independent. Therefore, we can truritatBBGKY closure at the
level of one-point PDFs. The equation becomes

whereb, is a vector of parametric random variables. In case of spaperdient cdé-
cients, interactions between the Fourierf@o&nts occur. Hence, it becomes inevitable
to include the higher-order joint PDFs. We compute the twivpBBGKY closure for
the joint PDF equation of thketh andl-th codficient as

opu(z.2.t) _ 0 0
A2 = o [0 W] - 2 [P, (40)
where
~i27107 Bij + et (B (~An(Zmd-mi = n(Zmdrit)) P
Q(pii,i) & + el (M Gan(Zm)-mi — fn{Zmdmi)) Py, §> 0
ij>1) =

_izﬁozi Pij + Zn+m=|i (‘%(ﬁn(&n)m{i - ﬁ—n<1m>—m|i)) Pj
+ et (M i + fion(Z-md-mi) P}, 1 <O

(41)
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Figure 15: The mean (a, c) and standard deviation (b, d) ofthation to the heat equation with time-
correlated random céigcient with correlation length, = 0.1 (a, b) and space dependent f&ént (c,
d) up to timet = 1. The shown results are computed by the PDF (REPDF) and thrteMoarlo (MC)
approach, where we cannot visually distinguish tifgedeénce in the results.

Here, (-)mi is defined as in Eq. (21), and the argumentgpfafe omitted. Finally,
when the dimensionality of the parametric space exceeds thre employ the ANOVA
decomposition.

We first consider a time-dependent randomflicent for the difusion term, and
compute the solution by using the one-point BBGKY closur@)(3In particular, we
take a log-normal random cfieient u(t; w) defined asv(t; w) = log(u(t; w)), where
V(t; w) is a mean-zero exponentially correlated Gaussian progigsscorrelation time
lc = 0.1. The cofficient is represented by using the Karhunen-Loéve expansia
series expansion form. It involves 20 Gaussian random blasa that is truncated to
achieve 97% of the eigen-spectrum, and we employ the ANOVateof level two
for the collocation basis based on the Hermite polynomi&ige simply consider the
initial solution u(x,t = O;w) = sin(X)n1(w) with a Gaussian random variabje(w) =
N(1,0.1), which makes the initial condition of the BBGKY closure@s(z,). Thus, the
total dimensionality of the kinetic equation is 21. For tived integration, we employ
the fourth-order Runge-Kutta method with time step= 10-3. Figure 15 shows the
evolution of the mean and standard deviation of the soluitimet = 0, 0.5, 1. The
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BBGKY results coincide with the reference solution compluls/ using the Monte-
Carlo simulation with 50,000 samples, and we remark thatealadive L, error stays at
the level ofO(107%).

In case of a space dependent randonffa@ent, we consideY (X; w) = log(2u(X; w)),
whereV(X; w) = Zﬁzl (sin(kX)éx(w) + coskx)é_k(w)) andéy(w) ~ N(0, 1/3?) for all K's.
Here, we compute the PDF by using the two-points closure @}aking the initial so-
lution asu(x,t = O;w) = no(w)+2§:1 (sin(kX)nk(w) + coskX)n_k(w)) , with independent
Gaussian random variableg(w) = N(1, 0.1) for k # 0 andng(w) = N(0, 0.1), the initial
condition for the two-points BBGKY closure becomgg(z, z,t = 0) = p,, (z) p, (2)-
We take the resolution of the solution to be the same as thialindbndition by using
seven Fourier cdcients. Thus, the kinetic equation lies in a 11-dimensigpake with
seven phase variables and four parameters. Again, the paiaspace is accompanied
with the ANOVA method of level two. Figure 15 compares the maad standard devia-
tion compared to 50,000 Monte Carlo simulations at tire€0, 0.5, 1, and the two lines
cannot be visually distinguished. For both of the first antbed moment, the relative
L, error stays within the level dD(1073). Thus, we conclude that the PDF of the solu-
tion to a time and space dependerfudion equation can be computed with reasonable
accuracy considering the time step and the truncation o€dneputational domain by
using the BBGKY closures and ANOVA approach.

5. Summary and Discussion

In this paper we proposed and validated threffedént classes of new algorithms
to compute the numerical solution of high-dimensional timpartial diferential equa-
tions. The first class of algorithms is based on separatéessexpansions (SSE) and it
yields a sequence of low-dimensional problems that canlwedcecursively and in par-
allel by using alternating direction methods. In particiNee developed a new algorithm
that updates the entire rank of the separated representaté&ach variable, minimizing
separation rank and improving the convergence rate. Weplgoosed an adaptive
version of such an algorithm and we demonstratedffeciveness in numerical appli-
cations to random advection of passive scalar fields. Thenskclass of algorithms we
proposed is based on a hierarchy of coupled probabilityijefusiction equations that
resembles the BBGKY [50] and the Lundgren-Monin-Noviko®[76] hierarchies. We
studied the accuracy and the computatiorfiatiently of low-order truncations of the
hierarchy (BBGKY closure) for the Lorenz-96 system and tmisdiscrete form of the
diffusion equation. The third class of algorithms relies on fdghensional model repre-
sentations (ANOVA expansions) and probabilistic (spacsépcation methods. A com-
mon feature of all these methods is that they allow us to redue problem of comput-
ing the solution to high-dimensional kinetic equations segquence of low-dimensional
problems. The range of applicability of proposed new athans is sketched in Figure
1 as a function of the number of phase varialsiend the number of parametersap-
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pearing in the kinetic equation. The SSE scales linearlyta@d\NOVA method scales

factorially with the dimension of the phase space, and thelg yomparable results for
moderate separation ranks. However, for large separatioksithe ANOVA method is

preferable to SSE in terms of computational cost. We empédisat the choice between
ANOVA and SSE does not depend on the number of variables ikitle¢ic equation but

rather on the properties of its solution, in particular teearation rank. In addition,

in order to approximate the kinetic system regarding theradtion order between the
variables, the BBGKY closure and the ANOVA method is coneahito be employed

for the phase variable and the parameters, respectively.

Further developments of the proposed algorithms can beessiell along éerent
directions. For example, one can consider tensor inteiipelf/7, 78] and tensor train
decompositions [79] to further improve the SSE method, logkerating the rank reduc-
tion process. This is very useful when solving systems veithd separation rank, such
as those arising from Eq. (28). In addition, iterative stdweith appropriate precondi-
tioners and adaptive methods can further reduce the cotitmahcost of determining
ANOVA and SSE decompositions (see [64] and section 2.1). pfiga strategies can
also be applied to the conditional moment approach by usanignce-based sensitivity
analysis, e.g., in terms of Sobol indices [60, 61].
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A. Finite-Dimensional Representation of the Alternating Direction Algorithm

In this appendix we provide additional details on the diszagion of the alternating
direction Galerkin algorithm we proposed in section 2.1thisend, let us first represent
the basis functions appearing in joint probability dengityin terms of polynomials as

9z
Ph(Za) = D Bhini(Z0), (42)
j=1

I

whereq; is the number of degrees of freedom in each variable. For pbearn sec-
tion 4.1, we have considered a spectral collocation methoahich {¢1 j} and{¢2 }

are trigonometric interpolants while, j}r’:‘:3 are Lagrange interpolants through Gauss-
Legendre-Lobatto points. The vector

p:1 = [p:],l’ o p;,qz]

collects the (normalized) values of the solution at theawation points. In such a

collocation framework, we can write the expansion (1) imgrmf a tensor product of
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degrees of freedom as

p=) apie - ®p. (43)
r=1
Accordingly, the finite dimensional version of Eq. (4) is
Ap=f,
where
na Nt
A=) Ag--gAf, =) fle off (44)
k=1 k=1

AN ] = f i (20) A @) () Ozns 1] = f @)dniz) Az, (45)

By using a Gauss quadrature rule to evaluate the integragbtain system matrices
AK that either diagonal or coincide with the classicatatientiation matrices of spec-
tral collocation methods [80]. For example, in the case afatign (27) we have the
components

. . . At . .
Alli, ] = wylilsij, A, j] = ?WX[I]Z)X[I, il, k=2, ....,na,

Sin(ktn+1)
2k

AN, 11 = welilsij, k#3, A3, ] = welilap[i]5i),

AZli, i1 = AZlI, 1] = wolileij, A5, j] = wi]oij, k=1,...m,

whereqy, denotes the vector of collocation points,, w,, andwy are collocation weights,
Dy is the diterentiation matrix, andij is the Kronecker delta function. A substitution of
the finite-dimensional representations (43), (44) and i@b)the Galerkin orthogonality
conditions (12) yields a sequence of linear system

Bn,ljn = bp, (46)

whereB, is a block matrix withR x R blocks of sizey; X qz, andby, is multi-component
vector. Specifically, thév-th block of B, and theh-th component ob,, are obtained as

na N Nt N
gy - 3" [n o Arpiv]Aﬁ, -3 [n o fik)fh.
k=1\i#n k=1 \izn
The solution vector .
B = [Ph . ]

is normalized apl/ ||py|| for all r = 1,..,Randn = 1,...,N. This operation yields the
codficientsa = (a1, ..., ar) in (43) as a solution to the linear systems

Da =d, (47)
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Compute the separated representation of the initial comdit(ty)
fort; <t <ty do
Computef by usingp(ti_1)
SetR=1
while |ApR(t) - f|| > & do
Initialize {p{(t), .... pR(t;)} at random
while ||ApR(t;) - f|| does not decreasto
Solve Eq. (46) for xn< N
end while
Normalize the basis set and compute thefiicients{a;, ..., ar}
SetR=R+1
end while
end for

Table 3: Main steps of the proposed alternating-directiafetkin algorithm.

where the entries of the matrix and the vectod are, respectively

na N - Nt N T
D= D [ [[p] Afer.d"= D, [ [[el]

k=1 i=1 k=1 i=1

The main steps of the algorithm are summarized in Table 3.

Sopping Criterion. The stopping criterion for the alternating-direction altom is

based on the conditigiApR-f|| < &, which involve the computation of at-dimensional
tensor norm. This can be quite expensive and compromiseothputational #iciency
of the whole method. To avoid this problem, we replace thealitiom |[ApR - f|| < &

with a simpler criterion for convergence, i.e.,

max{li’ﬁ?—p?li Ii’ﬁﬁ-pﬁll}<81 )
[ PRI S~

where{'ﬁi‘, ...,'ﬁﬁ} denotes the solution at the previous iteration. Note trattndition
(48) involves the computation df vector norms instead of ord-dimensional tensor
norm.
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