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ABSTRACT OF THE DISSERTATION 
 

Non-GCA Modeling for Double-Gate and Ground-Plane MOSFETs 

 

 

by 

 

Mei-Hua Su 

 

Doctor of Philosophy in Electrical Engineering (Applied Physics) 

University of California San Diego, 2024 

Professor Yuan Taur, Chair 

 

 

In this dissertation, non-GCA models are developed for both DG (Double-Gate) MOSFETs 

and ground-plane bulk MOSGETs. It is widely known that MOSFET velocity saturation region is 

beyond the framework of GCA first invoked by Shockley in 1952, the bedrock of virtually all 

MOSFET models. A few papers in the literature have dealt with the 2-D nature of the field pattern 

in the saturation region of bulk or DG. In general, such models are unable to generate Ids-Vds 

curves continuous from the triode region into the velocity saturation region.                  



xv 

 

A DG MOSFET model that goes beyond the gradual channel approximation is developed 

by incorporating the effect of lateral field gradient on carrier density. It is shown that while the 

oxide field crosses zero at the point of saturation and becomes negative beyond it, the channel is 

not pinched off of charge carriers. The model generates Ids-Vds characteristics continuous into the 

saturation region with finite output conductance consistent with TCAD. An explicit expression is 

derived for the output conductance in saturation in terms of basic device parameters.         

 

The continuous model is later extending MOSFET I-V characteristics into the velocity 

saturation region with finite output conductance. Both the n = 1 and n = 2 models have been 

employed. It is shown that the standard relation of channel length modulation (CLM) for constant 

mobility must be modified for velocity saturation because the drain current is not simply inversely 

proportional to the channel length. Regional approximations are applied to derive explicit 

expressions for the output conductance in the velocity saturation region in terms of basic device 

parameters.         

 

In the following section, a non-GCA (Gradual Channel Approximation) model continuous 

into the velocity saturation region is developed for ground-plane bulk MOSFETs. The Ids-Vds 

characteristics generated by both the n = 1 and the n = 2 models are consistent with 2-D 

simulations. By incorporating source and drain series resistance into the model, it is shown that 

the model can reproduce the Ids-Vds data of 20 nm bulk MOSFETs published in the literature.   
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CHAPTER 1 INTRODUCTION 

In a field-effect transistor (FET), the current in the channel between the source and drain 

is modulated by the voltage applied to the gate. Under most bias conditions, the field in the gate 

direction is much stronger than the field in the source-drain direction. Modeling of an FET is much 

simplified under the gradual channel approximation (GCA), which assumes in the Poisson’s 

equation that the field in the source-drain direction is negligible compared to the field in the gate 

direction. Virtually all FET models stemmed from the framework of GCA first invoked by 

Shockley in 1952 [1][2]. While the application of GCA led to analytic models for the linear, 

parabolic, and subthreshold regions, it renders either no solution or a negative slope in the 

saturation region, i.e., in the Ids-Vds characteristics at drain voltages beyond the value where the 

current saturates.  

It has been recognized early on that the field pattern in the velocity saturation region is of 

a 2-D nature. A few papers in the literature [3][4] have dealt with the 2-D nature of the field pattern 

in the saturation region of MOSFETs. Their common approach is to divide the device into two 

sections. In the section on the source side, the GCA holds. In the section on the drain side, 2-D 

Gauss’ law is applied to obtain the length of the section, known as channel length modulation, as 

a function of drain voltage. However, the critical lateral field at the start of the “velocity saturation” 

section cannot be unambiguously defined. In general, such models are unable to generate Ids-Vds 

curves continuous from the triode region into the velocity saturation region.                  

In this dissertation, a non-GCA model is formulated by adding a source-drain field term to 

the gate-induced mobile charge density of the GCA model. It generates Ids-Vds curves continuous 
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from the triode region into the velocity saturation region for double-gate (DG) and ground-plane 

bulk MOSFETs. All have been verified by TCAD simulations.  

The outline of the dissertation is as follows. Chapter 2 details the problems encountered 

with GCA modeling of the MOSFET saturation region. Chapter 3 reviews the previous modeling 

of the MOSFET saturation region in the literature.  Chapters 4 describes the formulation of the 

proposed non-GCA model and its application to DG MOSFETs. Chapter 5 applies the non-GCA 

model to bulk MOSFETs, including the uniformly-doped and ground-plane devices. Chapter 6 is 

also part of the research work during the PhD study, but on a different topic: SCE (Short Channel 

Effect) on ET-SOI (Extreme Thin Silicon on Insulator) MOSFETs. Chapter 7 is the conclusion. 

 

References: 

[1] W. Shockley, “A unipolar field-effect transistor,” Proc. IRE, vol. 40, pp. 1365-1376, Nov. 1952.  

[2] C. T. Sah, “Characteristics of the metal-oxide-semiconductor transistors,” IEEE Trans. 

Electron Device, pp. 324-345, July 1964.  

[3] Y. El-Mansy and A. Boothroyd, “A simple two-dimensional model for IGFET operation in the 

saturation region,” IEEE Trans. Electron Devices, pp. 254-262, Mar. 1977. 

[4] P. K. Ko, R. S. Muller, and C. Hu, “A unified model for hot electron currents in MOSFETs,” 

1981 IEDM Technical Digest, pp. 600-603. 
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CHAPTER 2 PROBLEMS WITH GCA MODELING OF THE 

MOSFET SATURATION REGION 

2.1 GCA Model under Constant Mobility 

Figure 2.1 shows the schematic cross section of an n-channel MOSFET in which the source 

is the n+ region on the left, and the drain is the n+ region on the right. A thin oxide film separates 

the gate from the channel region between the source and drain. The x-axis is perpendicular to the 

gate electrode and is pointing into the p-type substrate with x = 0 at the silicon surface. The y-axis 

is parallel to the channel or the current flow direction, with y = 0 at the source and y = L at the 

drain. The MOSFET is assumed to be uniform along the z-axis over a distance called the channel 

width, W, determined by the boundaries of the thick field oxide. 

 

Figure 2.1 A schematic MOSFET cross section, showing the axes of coordinates and the bias 
voltages at the four terminals for the drain-current model. 
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Conventionally, the source voltage is defined as the ground potential. The drain voltage is 

Vds, the gate voltage is Vgs, and the p-type substrate is biased at Vbs. We assume Vbs = 0, i.e., the 

substrate contact is grounded to the source potential. The p-type substrate is assumed to be 

uniformly doped with an acceptor concentration Na. 

 

2.1.1 Bulk MOSFETs, Constant Mobility 

Gradual Channel Approximation 

A major assumption in any 1-D MOSFET model is the gradual channel approximation 

(GCA), which assumes that the variation of the electric field in the y-direction (along the 

channel) is much less than the corresponding variation in the x-direction (perpendicular to the 

channel) (Pao and Sah, 1966). This allows us to reduce the 2-D Poisson equation to 1-D slices (x-

component only). 

ψ(x, y) is the band bending, or intrinsic potential, at (x, y) with respect to the intrinsic 

potential of the bulk substrate. We further assume that V(y) is the electron quasi-Fermi potential at 

a point y along the channel with respect to the Fermi potential of the n+ source. The assumption 

that V is independent of x in the direction perpendicular to the surface is justified by the 

consideration that current is proportional to the gradient of the quasi-Fermi potential and that 

MOSFET current flows predominantly in the source-to-drain, or y-direction. At the source end of 

the channel, V(y = 0) = 0. At the drain end of the channel, V(y = L) = Vds. The electron quasi-Fermi 

potential at a point in the channel is essentially flat in the vertical direction across the n-type 

inversion layer. The effect of V is to multiply the electron density by 
/// fnn

E kTq kTqV kTe e e
−−  =  over 

its V = 0 value.  
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2 2
( )/

2 2

q V kT

a i

si

q
N n e

x y

 



− 
 + = +                                               (2.1) 

 

Assume 
2 2

2 2x y

  


 

   

2
( )/

2

q V kT

a i

si

d q
N n e

dx





− = + 
                         (2.2) 

Coupled to the current continuity eq.: (for constant mobility) 

( ) I
W

L
Q V dVds eff i

Vds

= − ( )
0                         (2.4) 

 

Its integration over the inversion layer gives the inversion charge per unit gate area, Qi: 

0
( ) ( , ) .

ix

iQ y q n x y dx= −                                             (2.5) 

𝐼𝑑𝑠 = 𝑞𝜇𝑒𝑓𝑓
𝑊

𝐿
∫ (∫

𝑛𝑖𝑒𝑞(𝜓−𝑉)/𝑘𝑇

ℰ(𝜓,𝑉)

𝜓𝑠

𝛿
𝑑𝜓) 𝑑𝑉.

𝑉𝑑𝑠

0
                                (2.6) 

This is referred to as Pao and Sah’s double integral (Pao and Sah, 1966). The boundary value ψs 

is determined by two coupled equations: 𝑉𝑔 − 𝑉𝑓𝑏 = 𝑉𝑜𝑥 + 𝜓𝑠 =
−𝑄𝑠

𝐶𝑜𝑥
+ 𝜓𝑠 and Qs = −εsiℰs(ψs) or 

Gauss’s law, where ℰs(ψs) is obtained by letting ψ =ψs in the equation: 

𝐸2(𝑥, 𝑦) = (
𝑑𝜓

𝑑𝑥
)

2

=
2𝑘𝑇𝑁𝑎

𝜀𝑠𝑖
[(𝑒−𝑞𝜓/𝑘𝑇 +

𝑞𝜓

𝑘𝑇
− 1) +

𝑛𝑖
2

𝑁𝑎
2 (𝑒−𝑞𝑉/𝑘𝑇(𝑒𝑞𝜓/𝑘𝑇 − 1) −

𝑞𝜓

𝑘𝑇
)]. 

In depletion and inversion where qψs/kT ≫ 1, only two of the terms in the above equation are 

significant and need to be kept. The merged equation is then 

𝑉𝑔𝑠 = 𝑉𝑓𝑏 + 𝜓𝑠 −
𝑄𝑠

𝐶𝑜𝑥
= 𝑉𝑓𝑏 + 𝜓𝑠 +

√2𝜀𝑠𝑖𝑘𝑇𝑁𝑎

𝐶𝑜𝑥
[

𝑞𝜓𝑠

𝑘𝑇
+

𝑛𝑖
2

𝑁𝑎
2 𝑒𝑞(𝜓𝑠−𝑉)/𝑘𝑇]

1/2

,      (2.7) 

which is an implicit equation for ψs(V). Equations (2.6) and (2.7) can only be solved numerically. 
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Charge Sheet Model 

Pao and Sah’s double integral can be simplified to a single integral if the inversion charge 

density Qi can be expressed as a function of ψs. This is the approach taken by the charge-sheet 

model (Brews, 1978). It is based on the fact that the inversion layer is located very close to the 

silicon surface like a thin sheet of charge. There is a sharp increase of the field (spatial integration 

of the volume charge density) across the thin inversion layer, but very little change of the potential 

(spatial integration of the field). The central assumption of the charge-sheet model is that Eq. (2.8) 

for the depletion charge density, 

2 ,d a d si a sQ qN W qN = − = −                                     (2.8) 

can be extended to strong inversion and beyond. Since the total silicon charge density Qs is given 

by Eq. (2.7) or 𝑉𝑔 − 𝑉𝑓𝑏 = 𝑉𝑜𝑥 + 𝜓𝑠 =
−𝑄𝑠

𝐶𝑜𝑥
+ 𝜓𝑠, Eq. (2.8) allows the inversion charge density to 

be expressed as 

( ) 2 .i s d ox gs fb s si a sQ Q Q C V V qN  = − = − − − +                      (2.9) 

 

The above is plotted in Fig. 2.2 for a fixed Vgs. Note from Eq. (2.4) that the drain current is 

proportional to the area under the ( )iQ V  curve between V = 0 and Vds. When Vds is small (linear 

region), the inversion charge density at the drain end of the channel is only slightly lower than that 

at the source end. As the drain voltage increases (for a fixed gate voltage), the area or current 

increases, but the inversion charge density at the drain decreases until finally it goes to zero when 

Vds = Vdsat = (Vgs − Vt)/m. At this point, Ids reaches its maximum value, Idsat of 

2( )
.

2

gs t

ds dsat eff ox

V VW
I I C

L m


−
= =  
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Figure 2.2 Inversion charge density as a function of the quasi-Fermi potential V. The solid curve is 

generated from the charge sheet model.   

 

  

Also plotted in Fig. 2.2 is the continuous −Qi(V) curve of the charge sheet model generated by 

numerically solving the implicit Eq. (2.7) for ψs(V), then calculating Qi(ψs) from Eq. (2.9). At V = 

0, −Qi is slightly lower than Cox(Vgs – Vt) due to the inversion layer capacitance effect discussed in 

the last subsection. Instead of −Qi = 0 at V = Vdsat then going negative as in the piecewise model, 

−Qi of the charge sheet model approaches 0 continuously as V → ∞. This means that Ids, 

proportional to the area under the charge sheet −Qi(V), converges continuously to the saturation 

value as Vds becomes >> Vdsat.  
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Figure 2.3 Ids-Vds curves (solid) solved from 
𝐼𝑑𝑠

𝜇𝑒𝑓𝑓𝑊
𝑦 = 𝐶𝑖𝑛𝑣 [(𝑉𝑔𝑠 − 𝑉𝑡)𝑉 −

𝑚

2
𝑉2] +

𝜀𝑠𝑖𝑑𝑠𝑖

2
[(

𝑑𝑉

𝑑𝑦
)

2

− 𝐸0
2] for the device. The dashed curves are from the GCA model for which currents 

saturate at Idsat. 

 

 

2.1.2 DG MOSFETs, Constant Mobility 
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and the current continuity eq.,  
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Figure 2.4 Schematic diagram of a double-gate MOSFET.  V(y) is the quasi-Fermi potential at a point in 
the channel. β is a function of V.   
 

 

where  is the potential, n is the carrier density, ni the intrinsic carrier concentration, V the Fermi 

potential, and Jx, Jy are the current densities. Fig. 1 shows the geometry of a symmetric double-

gate MOSFET. For a lightly doped body, the fixed charge density is negligible. Since the current 

is predominantly in the source-to-drain or y-direction, V is essentially a function of y only, 

independent of x. Eq. (2) is then simplified to    

constant==
dy

dV
qnJ y  ,                     (2.12) 

independent of y. Jy can be integrated in the x-direction to yield the total source-to-drain current:         

dy

dV
WQI ids = .          (2.13) 

Here,  is the mobility, W is the device width, and Qi is the mobile charge density per area equal 

to the integral of qn over thickness (x). 
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 In order to solve the coupled Poisson’s eq. and the current continuity eq. in 1-D slices in 

the x-direction, GCA is invoked that assumes 2ψ/y2 << 2ψ/x2 so that Eq. (1) is reduced to       

kTVq

i

si

en
q

x

/)(

2

2
−=



 



 .                    (2.14) 

With the condition ψ/x = 0 at x = 0 for symmetric DG MOSFETs, the solution to Eq. (5) takes 

the general form [8]: 









+=

)/ 2cos(

8
ln

2
)(

22

sisii

si

txtnq

kT

q

kT
Vx




 ,                        (2.15) 

where  is a constant of x, but a function of y. For every y  (0, L), ψ satisfies the condition  

2/

)2/()2/(

sitx

si

i

sigmgs

i
xt

txqEV

=


=

=−−−− 



                       (2.16) 

at the silicon-oxide interface. Here, m is the gate work function and  is the electron affinity of 

silicon. Substitution of Eq. (6) in Eq. (7) yields a relation between V and ,  









+−=−− 




 tan2)ln(cosln

2

sii

isi
tgs

t

t

q

kT
VVV ,          (2.17)                             

where 

22

8
ln

2

2 sii

sig

mt
tnq

kT

q

kT

q

E
V


 +−− .                (2.18) 

Both V and  are functions of y. Eq. (8) gives their one-to-one correspondence for a fixed Vgs. The 

use of the intermediary parameter  allows explicit expressions of charge, potential, and field at 

any point in the channel. For example,  




 tan82
2/ si

si

tx

sii
tq

kT

x
Q

si

=



=

=

,              (2.19) 

and 
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𝜓(𝑥) = 𝑉𝑔𝑠 − 𝑉𝑡 +
2𝑘𝑇

𝑞
[𝑙𝑛 (√

8𝜀𝑠𝑖𝑘𝑇

𝑞2𝑛𝑖𝑡𝑠𝑖
2

𝑐𝑜𝑠 𝛽

𝑐𝑜𝑠(2𝛽 𝑥/𝑡𝑠𝑖)
) −

2𝜀𝑠𝑖𝑡𝑖

𝜀𝑖𝑡𝑠𝑖
𝛽 𝑡𝑎𝑛 𝛽]            (2.20) 

The current continuity Eq. (4) can then be integrated with respect to  to obtain the source-drain 

current:   

 ==
d

s

ds

d
d

dV
Q

L

W
dVQ

L

W
I i

V

ids







 )(

0

s

d
sii

isi

si

si

t

t

q

kT

tL

W











 








+−








= 22

22

tan
2

tan
24 .  (2.21) 

s is the solution to Eq. (8) for V = 0, and d is the solution to Eq. (8) for V = Vds. Fig. 2 shows the 

Ids-Vds characteristics generated by this model compared to TCAD simulation. 

 

 

2.2 GCA Model under Velocity Saturation 

 

2.2.1 Bulk MOSFETs, velocity saturation 

n = 1 Velocity Saturation 

The GCA model approach is discussed first. We replace the low-field drift velocity, μeff 

dV/dy, in 𝐼𝑑𝑠(𝑦) = −𝜇𝑒𝑓𝑓 𝑊
𝑑𝑉

𝑑𝑦
𝑄𝑖(𝑦) = −𝜇𝑒𝑓𝑓𝑊

𝑑𝑉

𝑑𝑦
𝑄𝑖(𝑉) with 𝑣 =

𝜇𝑒𝑓𝑓𝑑𝑉/𝑑𝑦

1+(𝜇𝑒𝑓𝑓/𝜈𝑠𝑎𝑡)𝑑𝑉/𝑑𝑦
 to obtain: 

( ) .
1 ( / )

eff

ds i

eff sat

dV dy
I WQ V

dV dy



 
= −

+
                                (2.22) 

 

Here V is the quasi-Fermi potential at a point y in the channel, and Qi(V) is the integrated (over the 

depth) inversion charge density at that point. Note that dV/dy > 0. Current continuity requires that 

Ids be a constant, independent of y. 
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 Figure 2.5 GCA model generated Ids-Vds characteristics compared to TCAD ( = 200 cm2/V-s). The 

MOSFET structural parameters are shown in Fig. 1. SCE is negligible in this case.   

 

 

Equation (2.22) can be rearranged to yield 

( ) .
eff ds

ds eff i

sat

I dV
I WQ V

dy






 
= − + 

 

                              (2.23) 

After multiplying dy to the LHS, the above can be integrated from y = 0 to L and from V = 0 to Vds 

to solve Ids: 

0
( ) ( )

.
1 ( )

dsV

eff i

ds

eff ds sat

W L Q V dV
I

V L



 

−
=

+


                                 (2.24) 

The numerator is simply the long-channel current, Eq. (2.4), without velocity saturation. It is clear 

that if the “average” field along the channel, Vds/L, is much less than the critical field Ec = νsat/μeff, 

the drain current is hardly affected by velocity saturation. When Vds/L becomes comparable to or 



13 

 

greater than Ec, however, the drain current is significantly reduced. A convenient, approximate 

expression for Qi(V) is Eq. (2.25): 

( ) ( ),i inv gs tQ V C V V mV− = − −                                           (2.25) 

where 𝐶𝑖𝑛𝑣(𝑉𝑔𝑠 − 𝑉𝑡), is given by Eq. (2.9) of the charge sheet model with s = s,s for V = 0. The 

integration in Eq. (2.24) can then be carried out to yield 

2( )[( ) ( 2) ]
.

1 ( )

eff inv gs t ds ds

ds

eff ds sat

C W L V V V m V
I

V L



 

− −
=

+
                  (2.26) 

For a given Vgs, Ids increases with Vds until a maximum current is reached. The saturation 

voltage, Vdsat, is found by solving dIds/dVds = 0. To compact the equations, a dimensionless 

parameter 

2 ( )eff gs t

sat

V V
z

mv L

 −
                          (2.27) 

is introduced. It is a measure of the severity of velocity saturation. Then,  

( )
1

1 1
2( ) /

1 2 ( ) ( )

gs t

eff gs t s

sat
dsat

efa ft

Lv
V

V V m

V V m L
z

  

−
=

+ −
+ −

+
               (2.28) 

This expression is always less than the long-channel saturation voltage, (Vgs − Vt)/m. Substituting 

Eq. (2.28) into Eq. (2.26), we find the saturation current, 

.
1 1

( )
1 1

inv sat gdsat s t

z
C WI v V V

z

+ −
−

+ +
=                                     (2.29) 

For z << 1, Eq. (2.29) is reduced to the long-channel saturation current, 

2( )
.

2

gs t

dsat eff inv

V VW
I C

L m


−
=                                              (2.30) 

For z >> 1, Eq. (2.29) becomes the velocity-saturation-limited current,  

( ).dsat inv sat gs tI C W V V= −                                            (2.31) 
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Note that in this limit, Idsat is independent of channel length L and varies linearly with Vgs − Vt 

instead of quadratically as in the long-channel case.  

 

At the saturation point, V(y = L) = Vdsat. It can be shown that 

( ) ( ).dsat inv sat gs t dsat sat iI C Wv V V mV Wv Q y L= − − = − =        (2.32) 

In other words, carriers at the drain are traveling at the saturation velocity, which means dV/dy → 

∞ in 𝑣 =
𝜇𝑒𝑓𝑓𝑑𝑉/𝑑𝑦

1+(𝜇𝑒𝑓𝑓/𝜈𝑠𝑎𝑡)𝑑𝑉/𝑑𝑦
. Note that −Qi of Eq. (2.25) is positive at this point. The commonality 

between the current saturation in the case of constant mobility and in the case of velocity saturation 

is therefore not −Qi → 0, but the divergence of dV/dy under the GCA model. 

For Vds > Vdsat, the GCA model breaks down. 

 

n = 2 Velocity Saturation 

It has been known that the n = 1 velocity saturation model has a discontinuity problem with 

the 2nd order derivative around Vds = 0 because the dV/dy factor in the denominator of Eq. (6.41) 

should in fact be dV/dy to keep it always positive (Joardar et al., 1998). 



15 

 

 

Figure 2.6 Ids-Vds characteristics generated by the GCA models under the n = 1 velocity saturation 

model. The MOSFET parameters are tinv = 3.3 nm, Na = 1018 cm-3 (uniform), n+ silicon gate work 

function, so Vt = 0.4 V and m = 1.28. Other parameters are eff = 200 cm2/V-s, vsat = 107 cm/s, and dsi = 20 

nm. 

 

 

To satisfy the continuity requirement, n needs to be an even integer. The least of which is 2. For 

the GCA model with n = 2 velocity saturation, Eq. (2.22) becomes 

2 2

( )
( ) .

1 ( / ) ( / )

eff

ds i

eff sat

dV dy
I WQ V

dV dy



 
= −

+
                             (2.33) 

It can be re-arranged to yield an integral equation between Ids and Vds for a given Vgs, 

2 2

0
[ ( )] ( / ) .

dsV

ds eff i ds satLI WQ V I v dV= −                             (2.34) 

With Qi(V) of Eq. (2.25), the above integral can be carried out by transforming V to an intermediary 

variable u,   

( ) ( / )cosh .inv gs t ds satWC V V mV I v u− − =                          (2.35) 

Then,  
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 2
sinh cosh ,

2

s

d

ueff ds

u
inv sat

I
L u u u

mWC v


= −                         (2.36) 

where us and ud are given by 𝑊𝐶𝑖𝑛𝑣(𝑉𝑔𝑠 − 𝑉𝑡 − 𝑚𝑉) = (𝐼𝑑𝑠/𝑣𝑠𝑎𝑡) 𝑐𝑜𝑠ℎ 𝑢, with V = 0 and Vds, 

respectively.      

 The Ids-Vds curve generated for a fixed Vgs is shown in Fig. 2.7. There is a maximum Vds = 

Vdsat where Ids reaches a peak value Idsat beyond which no solution exists. This corresponds to ud = 

0 where the factor in the square root of Eq. (2.34) is zero, meaning carriers are traveling at vsat and 

dV/dy → ∞. The peak current is        

( ) / cosh ,dsat inv gs t sat sI WC V V v u= −                                 (2.37) 

where us (for the peak point) is solved by the implicit equation, 

( )
sinh .

2 cosh

eff gs t s
s

sat s

V V u
L u

mv u

 −  
= − 

 
                                  (2.38) 

 

 

Figure 2.7    Ids-Vds characteristics generated by the GCA and under the n = 2 velocity saturation 

relation. The device parameters are the same as those described in the caption to Fig. 2.6.  
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2.2.2 DG MOSFETs, velocity saturation 

Fig. 2.8 and 2.9 plot the gradient of Fermi potential dV/dy for n=1 and n=2 cases at y = L, 

i.e., the drain end versus Vds. At the current peak in the GCA model, dV/dy →  and v = vsat. Past 

the peak, dV/dy < 0, clearly unphysical.  

 

 

 

Figure 2.8  dV/dy at the drain (y = L) versus Vds for the case in Fig. 2.8. Labels above the non-GCA curve 
indicate the carrier velocity at those bias points. 
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Figure 2.9  dV/dy at the drain (y = L) versus Vds for the case in Fig. 2.8. Labels above the non-GCA curve 

indicate the carrier velocity at those bias points. 
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CHAPTER 3 HISTORY OF MODELING THE MOSFET 

SATURATION REGION 

 

3.1 Reddi and Sah’s Concept of Pinch-off in Metal-Oxide-

Semiconductor Transistor (MOST) 

As the drain voltage is increased beyond VDS, the length of the pinch-off region will widen 

resulting in a decrease of the effective channel length; this in turn will cause the drain current to 

increase. This is one of the causes for finite source to drain incremental resistance for VD > VDS. 

This effect in a way is analagous to the Early effect in bipolar transistors. 

The channel shrinkage (ΔL) can be approximated by 

 

∆𝐿 =  [ 2𝜀(𝑉𝑑 − 𝑉𝑑𝑠)/𝑞𝑁𝐴]1/2                                                      (3.1) 

 

Early effect in BJT is a 1-D effect, not the 2-D effect with MOSFET saturation. 

The channel region of MOSFET has mobile charge, unlike the depletion region of a p-n junction. 

 

Thus, for VD > VDS, ID can be expressed as 

𝐼𝐷 𝑉𝐷>𝑉𝐷𝑆
 =  

𝐼𝐷𝑆

(1−
∆𝐿

𝐿
)
 =  

𝐿𝐼𝐷𝑆

𝐿− {
2𝜀

𝑞𝑁𝐴
(𝑉𝑑−𝑉𝑑𝑠)}

1/2                                   (3.2) 

 

In a DG MOSFET, there is no doping hence NA = 0 → clearly does not work.  
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It is worth noting that in some works, e.g., [11], a CLM of 
adsatdss qNVVL /)(2 −=  is used, 

derived from the widening of the space charge region due to drain voltage. The physics is 

analogous to the finite output conductance in the forward active region of a bipolar junction 

transistor (BJT), or Early effect. This clearly does not apply to saturation in MOSFETs. Early 

effect in BJT is due to encroachment of the base-collector depletion region into the neutral base 

region. It is a 1-D phenomenon at moderate fields involving the fixed dopant charge in the base 

region. MOSFET saturation, on the other hand, has to do with the 2-D nature of the device. It 

happens at high fields and involves only the mobile charge. One factor in common between BJT 

and MOSFET is that the output conductance in the active or the saturation region goes up with 

thinner base width or shorter channel length (before SCE kicks in). 

 

3.2 El-Mansy and Boothroyd’s Two-Dimensional Model in the 

Saturation Region 

 

Figure 3.1  A schematic cross section of an IGFET to illustrate source and drain section and axes. 
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THE MODEL 

The model developed here is based on the second approach in the previous discussion, i.e., 

dividing the space-charge region along the channel into two sections. In the source section the 

GCA is valid and any of the various models available [6], [9], [12] for this section can be used. In 

the drain section the two-dimensional nature of the potential distribution is accounted for. 

Condition for the validity of the GCA is 

 

∂2𝑈

∂𝑥𝟐  /  
∂2𝑈

∂𝑦𝟐  ≥  𝐾                                                                          (3.3) 

where K is a large number (note that exact validity of the GCA corresponds to an infinite value for 

K). 

 

Use an empirical criterion to divide the MOSFET channel into a source section (where GCA 

works) and a drain section which they analyze later.  

 

The expression 

 

𝑈𝑠1  =  𝑈𝑠𝑠 +
𝑈𝑠𝑝−𝑈𝑠𝑠

1+ 𝐹∙(𝑡𝑖/𝐿)
                                                 (3.4) 

was found to yield results close to those obtained from numerically solving (la) for a wide range 

of device parameters and applied voltages. The factor F is, in general, a slowly increasing function 

of gate voltage, and different values for it may be needed for different voltage ranges. 
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Figure 3.2  Definition of the drain section boundaries. 

 

 

Boundary 1): This is the boundary separating the source and drain sections. The potential and field 

at this boundary are defined from the solution in the source section, while the physical location of 

that boundary along the surface is defined from the solution in the drains section. 

Boundary 2): This is the semiconductor-insulator interface. 

Boundary 3): This is the drain metallurgical junction. 

Boundary 4): This is located at a distance x1 from the surface. The potential and electric field at 

this boundary are assumed to be zero. 

 

𝑑𝐼𝑑

𝑑𝑈𝑠𝑑
 =  

1

𝐿𝑒
∙

1

(−𝐸𝑠𝑑)
                                                          (3.5) 

has to be solved numerically. This is a first order differential equation, and any of the standard 

methods can be used to solve it. Of course the boundary condition for solving the equation is Id = 

I1 when Usd = US1. 
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3.3 Ping Ko’s PhD Thesis 

  

Figure 3.3  A closer look into the cross section of a MOSFET near drain     

 

Along the surface, the quasi-Fermi level V(y) increases from Vdsat at y = 0 to Vds at y = ΔL. 

This results in a reduction of the potential drop Vox across the oxide, since the total band offset, 

 

𝑉𝑔 − 𝑉𝑓𝑏 = 𝑉𝑜𝑥(𝑦) + 𝜓𝑠(𝑦) = 𝑉𝑜𝑥(𝑦) + 2𝜓𝐵 + 𝑉(𝑦)                          (3.6) 

 

is constant for a fixed gate voltage. Here the surface potential ψs is assumed to be pinned at 2𝜓𝐵 +

𝑉 as given by Eq. (3.3) for strong inversion. This is valid as long as 𝑉(𝑦)  ≤ (𝑉𝑔𝑠 − 𝑉𝑡)/𝑚, the 

long-channel pinch-off voltage. It then follows that the vertical field at the silicon surface,  

ℰ𝑥(0, 𝑦) =
𝜀𝑜𝑥

𝜀𝑠𝑖
ℰ𝑥(𝑦) =

𝜀𝑜𝑥

𝜀𝑠𝑖

𝑉𝑜𝑥(𝑦)

𝑡𝑜𝑥
                                           (3.7) 

Also decreases toward the drain, as depicted in Fig. 3.29. The silicon-oxide boundary condition, 

Eq. (2.146), was applied to here with ℰ𝑜𝑥 being the oxide field. At 𝑦 = 0, all the silicon charges 

are still controlled by the gate, so that the one-dimensional Gauss’s law is applicable: 
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ℰ𝑥(0,0) =
𝑞𝑁𝑎𝑥𝑗+𝑄𝑖(𝑦=0)

𝜀𝑠𝑖
,                                                               (3.8) 

where 𝑄𝑖  (> 0) is the mobile (electron) charge density per unit area. It is assumed here that the 

junction depth 𝑥𝑗 is comparable to the depletion width 𝑊𝑑𝑚 . 

 

Similar to El-Mansy and Boothroyd, also apply 2-D Gauss’ law to the velocity saturation region 

near the drain.   

 

Carriers are already traveling at velocity such that 𝐼𝑑𝑠 = 𝑊𝑄𝑖𝑣𝑠𝑎𝑡, the mobile charge density, 

𝑄𝑖(𝑦) = 𝑞 ∫ 𝑛(𝑥, 𝑦)𝑑𝑥,
𝑥𝑗

0
                                                (3.9) 

has to remain constant, i.e., independent of y, toward the drain in order to maintain current 

continuity. Therefore, as the vertical field  𝓔𝒙(𝟎, 𝒚) and the gate-controlled charge decrease 

toward the drain, some of the mobile charge spreads deep and becomes controlled by the 

drain. The physics is similar to that of the 2-D fields discussed in Section 3.2.1. The difference is 

that fixed depletion charges are involved in the short-channel effect, while mobile charges are 

involved in the saturation region. As a result of the drain gradually taking control of the mobile 

charge, the electric field,  ℰ𝑦 , originating from the drain increases toward the drain. 

Assuming that ℰ𝑦  is uniform in the x-direction and neglecting the vertical field at the bottom 

boundary (𝑥 = 𝑥𝑗), one can apply the two-dimensional Gauss’s law to a thin slice of width 𝑑𝑦 

and length 𝑥𝑗 located at y (Fig. 3.29): 

 

ℰ𝑥(0, 𝑦)𝑑𝑦 − ℰ𝑦(𝑦 + 𝑑𝑦)𝑥𝑗 + ℰ𝑦(𝑦)𝑥𝑗 =
𝑞𝑁𝑎𝑥𝑗𝑑𝑦+𝑄𝑖(𝑦)𝑑𝑦

𝜀𝑠𝑖
                 (3.10) 
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Expanding ℰ𝑦(𝑦 + 𝑑𝑦) into ℰ𝑦(𝑦) + (𝑑ℰ𝑦/𝑑𝑦)𝑑𝑦 and making use of Eq. (3.88), we obtain 

 

−𝑥𝑗
𝑑ℰ𝑦

𝑑𝑦
= ℰ𝑥(0,0) − ℰ𝑥(0, 𝑦).                                                            (3.11) 

From Eqs. (3.87) and (3.86), the vertical field difference can be expressed as 

 

ℰ𝑥(0,0) − ℰ𝑥(0, 𝑦) =
𝜀𝑜𝑥

𝜀𝑠𝑖𝑡𝑜𝑥
[𝑉𝑜𝑥(0) − 𝑉𝑜𝑥(𝑦)] =

𝜀𝑜𝑥

𝜀𝑠𝑖𝑡𝑜𝑥
[𝑉(𝑦)  − 𝑉(0) ].       (3.12) 

 

Since 𝑉(0) = 𝑉𝑑𝑠𝑎𝑡  and ℰ𝑦 = − 𝑑𝑉/𝑑𝑦, substituting Eq. (3.92) into Eq. (3.91) yields  

𝑑2𝑉

𝑑𝑦𝟐 =
𝜀𝑜𝑥

𝜀𝑠𝑖𝑡𝑜𝑥𝑥𝑗
[𝑉(𝑦)−𝑉𝑑𝑠𝑎𝑡],                                                     (3.13) 

or  

𝑑2𝑉

𝑑𝑦𝟐 =
𝑉(𝑦)−𝑉𝑑𝑠𝑎𝑡

𝑙𝟐 ,                                                                     (3.14) 

 

Where the characteristic length 𝑙 is given by  

𝑙 = √
𝜀𝑠𝑖

𝜀𝑜𝑥
𝑡𝑜𝑥𝑥𝑗 ≈ √3𝑡𝑜𝑥𝑥𝑗.                                                         (3.15) 

 

Did not realize that the vertical field in oxide goes through zero and becomes negative close to the 

drain.   

 

Equation (3.94) is a linear, second-order differential equation which can be solved with the 

boundary conditions 𝑉(0) = 𝑉𝑑𝑠𝑎𝑡 and ℰ𝑦(0) = [−𝑑𝑉/𝑑𝑦]𝑦=0 = −ℰ𝑠𝑎𝑡 : 
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𝑉(𝑦) = 𝑉𝑑𝑠𝑎𝑡 + 𝑙ℰ𝑠𝑎𝑡 𝑠𝑖𝑛ℎ (
𝑦

𝑙
).                                                    (3.16) 

Mathematically, there is no unambiguous definition for ℰ𝑠𝑎𝑡 ,  the lateral field at the 

saturation point, since carriers do not reach saturation velocity until ℰ𝑦 = ∞. In practice, carriers 

traveling close to the saturation velocity start moving away from the surface when the lateral 

field becomes appreciable compared to the vertical field. A good choice for ℰ𝑠𝑎𝑡  is a field 

strength on the order of or several times the critical field ℰ𝑐 defined by Eq. (3.71). For example, 

ℰ𝑠𝑎𝑡 = 2ℰ𝑐 = 2𝑣𝑠𝑎𝑡/𝜇𝑒𝑓𝑓 , which is on the order of 5 × 104 𝑉/𝑐𝑚 for electrons, has been used in 

the literature (Ko, 1982). This is a reasonable value, since the vertical field in a MOSFET device 

typically lies in the range of 105-106 V/cm. 

 

Peak Field at the Drain  

Once 𝑉(𝑦) is known, 𝛥𝐿 can be found by solving 𝑉(𝑦 = 𝛥𝐿) = 𝑉𝑑𝑠: 

 

 𝛥𝐿 = 𝑙𝑙𝑛 [
𝑉𝑑𝑠−𝑉𝑑𝑠𝑎𝑡

𝑙ℰ𝑠𝑎𝑡
+ √(

𝑉𝑑𝑠−𝑉𝑑𝑠𝑎𝑡

𝑙ℰ𝑠𝑎𝑡
)

2

+ 1 ].                                          (3.17) 

 

It is them straightforward to substitute 𝛥𝐿 into Eq. (3.85) or, more accurately, replace 𝐿 with 𝐿 −

𝛥𝐿 in Eq. (3.78), to obtain the source-drain current beyond saturation. From Eq. (3.96), the electric 

field along the channel is given by 

ℰ𝑦(𝑦) = −
𝑑𝑉

𝑑𝑦
= −ℰ𝑠𝑎𝑡𝑐𝑜𝑠ℎ(

𝑦

𝑙
),                                                   (3.18) 

which increases exponentially toward the drain. An example is shown in Fig. 3.30. The peak field 

is reached at the drain, where 
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ℰ𝑚𝑎𝑥 ≡ ℰ𝑦(𝑦 = 𝛥𝐿) = −√(
𝑉𝑑𝑠−𝑉𝑑𝑠𝑎𝑡

𝑙
)

2

+ ℰ𝑠𝑎𝑡
2.                              (3.19) 

 

This field can be as high as mid-105 to 106 V/cm and is responsible for a variety of hot carrier 

effects such as impact ionization, substrate current, and oxide degradation. In general, all models 

that partitioned MOSFET into two sections are not continuous from the triode (GCA) region to 

the saturation region. They cannot predict where the partition point (e.g., Esat above) is. 
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CHAPTER 4 NON-GCA MODEL FOR DG MOSFETS 

4.1 TCAD Simulations  

 

 

Figure 4.1 Double-gate (DG) MOSFET structure assumed in this work. tsi = 4 nm, ti = 2 nm, si = i = 

11.80. The gate work function is such that Vt = 0.33 V.  

 

 

Figure 4.2 GCA model generated Ids-Vds characteristics compared to TCAD ( = 200 cm2/V-s). The 
MOSFET structural parameters are shown in Fig. 4.1. SCE is negligible in this case.   
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To gain a deeper understanding of the physical picture in the saturation region, we dissect 

in detail the TCAD simulation case in Fig. 4.2. Drain-induced barrier lowering (DIBL) due to 

SCE is negligible in this example. The point labeled A at Vds = 1.3 V on the Vgs = 1.5 V curve is 

slightly beyond the saturation voltage of Vdsat = Vgs – Vt  1.17 V. The electron density n near the 

drain is shown in Fig. 4.3 along several lateral cuts at various depths. It is clear that there is no 

“pinchoff” of channel depicted in the textbooks based on the GCA. Even along the surface (x = 2 

nm), the electron density never falls below 1019 cm-3. This fact was also pointed out in a 2012 

publication with TCAD simulations. It clearly demonstrates the failure of GCA.   

 

Fig. 4.4 goes further by looking at point B in Fig. 4.2, where Vds = 1.8 V on the Vgs = 1.5 

V curve. Here, we plot the potential   versus depth (x) between the gates along three vertical cuts 

near the drain, at y = 93.2, 95.2, and 97.2 nm. There is a change of sign of the vertical field, Ex = -

/x, at y = 95.2 nm. On the source side of 95.2 nm, Ex is such that electrons are attracted toward 

the gates. This is the normal direction of the field effect that gives rise to “inversion” or turns the 

device on. However, on the drain side of 95.2 nm, Ex is such that electrons are repelled from the 

gates. Thus the so-called “pinchoff” point should be interpreted as the point where Ex changes sign 

or where Ex = 0. The Fermi potential V at the point of zero oxide field is Vdsat  1.17 V. It is at y = 

95.2 nm in this case while V(y = 100 nm) = Vds = 1.8 V. However, the channel is not pinched off 

when Ex = 0. The electron density, also plotted in Fig. 4.4, in the y = 95.2 nm case is above 1019 

cm-3 at every depth. Channel length modulation should then be interpreted as the movement of the 

point of zero oxide field toward the source as the drain voltage goes beyond saturation.  
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Figure 4.3 From TCAD at bias point A on the Vgs = 1.5 V curve in Fig. 4.2: Electron concentration near 

the drain (y = 100 nm) along several lateral cuts from the surface to the center. The source-drain doping 

level is 1021 cm-3. 
 

 

Figure 4.4 From TCAD at bias point B on the Vgs = 1.5 V curve in Fig. 4.2: Potential (solid) versus depth 

along 3 cuts, before the point of saturation (y = 93.2 nm), at the point of saturation (y = 95.2 nm), and after 
saturation (y = 97.2 nm). Electron density (dotted) in each case is shown using the scale to the right.    
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When Ex = 0, 2/x2 is also 0 (at y = 95.2 nm). When Ex < 0 (on the negative x side), 

2/x2 is also < 0. This clearly contradicts Eq. (2.14) of GCA. The key factor is, of course, that 

the 2/y2 term in the full 2-D Eq. (2.10) cannot be neglected when biased near and beyond the 

saturation point.  

 

The current continuity Eq. (2.13) is based on the assumption that the Fermi potential V 

varies predominantly in the direction of current flow, namely, the y-direction. Fig. 4.5 verifies that 

this is still a good approximation in the saturation region. The condition of current continuity 

constrains the product of Qi and dV/dy to be a constant, independent of y. When biased near or 

beyond Vdsat, Qi plummets as y moves toward the drain. GCA says that Qi → 0 (pinchoff) and 

dV/dy →  at the point of saturation. However, when dV/dy increases sharply with y, d2V/dy2 also 

increases and becomes appreciable. It is shown in Fig. 4.6 that dV/dy and /y tend to track each 

other owing to the fact that the current in this bias region is predominantly a drift current. The 

2/y2 term in Eq. (2.10) then makes the electron density n nonzero and positive even though 

2/x2 is zero or negative. From this picture, pinchoff never happens. When Qi is diminishing, 

current continuity forces dV/dy to go up, which in turn causes 2/y2 to go up and replenishes Qi. 

This picture is consistent with the TCAD revelations in Figs. 4.3 and 4.4  
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Figure 4.5  From TCAD at bias point B in Fig. 2, Vgs = 1.5 V, Vds = 1.8 V: Constant Fermi potential contours 

near the drain. The most sloped angle between the gradient of V(x, y) and y-axis is 5, meaning Jy is cos 5 

= 0.996 of the total magnitude of J.   

 

 

 

Figure 4.6  From TCAD: Potential and Fermi potential along a cut through the center of silicon. The bias 

point is labeled C in Fig. 4.2. 
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Justification of Qi(V) and Cinv Determination  

Qi as a function of V, or Eq. (4.19), is closely examined in this section with the help of 

TCAD. Based on the analytic potential model for DG MOSFETs, a GCA model, Qi is given by   




tan8
si

si
i

tq

kT
Q = ,                 (4.1) 

where the intermediary parameter   (0, /2) is related to Vgs and V through an implicit equation,   









+−=−− 




 tan2)ln(cosln

2

sii

isi
tgs

t

t

q

kT
VVV ,            (4.2)  

with    
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8
ln

2

2 sii

sig

mt
tnq

kT

q

kT

q

E
V


 +−− .                      (4.3) 

In the above, m is the gate work function,  and ni are the electron affinity and intrinsic carrier 

concentration of silicon. An example of Qi versus V of the above model is shown in Fig. 4.7. Note 

that when V exceeds Vgs – Vt and → , the LHS of Eq. (4.2) is negative and  becomes < 1 or << 

1. Qi exhibits subthreshold behavior, i.e., exponentially approaching zero but staying positive, 

much like the case when Vgs – Vt < 0. This is a common fallacy of all GCA models, including the 

charge sheet model for bulk MOSFETs. While the subthreshold behavior is correct when Vgs – Vt 

< 0, it is incorrect in saturation when Vgs – Vt > 0 but < V.  

 

Stemmed from the 2/x2 term in 2D Poisson’s equation, Qi is the charge induced in the 

channel by the gate, directly related to the field in the oxide perpendicular to the channel, Ex. As 

shown in the potential contour plot from TCAD in Fig. 4.8, this field changes sign along the 

channel: positive between the source and the point where V  Vgs – Vt, and negative beyond it.  

While Ex therefore Qi < 0 is not allowed in GCA models, it is perfectly fine with the non-GCA 
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model in which Qi of Eq. (4.26) ensures that the total mobile charge density, Qi + Qi, stays 

positive (for current continuity) even when Qi is negative. Proper modeling of the negative Qi 

behavior, however, is important because it causes Qi to go higher, thereby lowering the output 

conductance.    

The TCAD Qi(V) curve in Fig. 4.6 is extracted from Ex close to the gate which by Gauss’s 

law gives the total charge density in the two gate electrodes, Qi = 2i Ex. Near and beyond the point 

where Ex changes sign, Ex close to silicon deviates from that close to the gate because the effect of 

the lateral component, Ey, becomes appreciable. It is worth noting in Fig. 4.7 that the point of V = 

Vdsat, beyond which GCA stops working, is unremarkable. This shows that the transition from the 

GCA region to the velocity saturation region is rather gradual, which suggests that there is no clear 

cut division of the channel into two distinct regions.  

  

The most elementary form of Qi,         

)(2 VVVCQ tgsoxi −−=           (4.4) 

where Cox = i/ti, does capture the negative going behavior for V beyond Vgs – Vt, consistent with 

TCAD. But its value at V = 0, indicated in Fig. 4.7, is over estimated because the semiconductor 

capacitance is not taken into account. This Qi value at the source is of critical importance as the 

GCA current is directly proportional to it. Here then lies the rationale behind Eq. (4.19): insert a 

correction factor, Cinv/Cox, given by the ratio of Eq. (4.1) to Eq. (4.2) for  = s at V = 0, namely,  

sssiiisiss

sssiiisi

ox

inv

tt

tt

C

C





tan)/(2)ln(cosln

tan)/(2

+−
= .               (4.5) 

This factor has a slight dependence on Vgs. It varies from 0.842 at Vgs = 1.2 V to 0.734 at Vgs = 0.6 

V in our device example. As can be seen in Fig. 6, Qi(V) of Eq. (4.19) does not exactly match the 
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TCAD curve. But it turns out, as shown in Figs. 4.13-14 and Figs 4.17-18 below, the deviation has 

little or no effect on the Ids-Vds or output conductance characteristics.      

 

While the TCAD Qi(V) curve in Fig. 4.7 is extracted from the device under the n = 2 

velocity saturation model, additional examination reveals similar results under the n = 1 model. It 

appears that Qi(V) characteristic is transport independent.   

 

 

 

Figure 4.7 Comparison of Qi(V) from TCAD, GCA model, and Eq. (4.19). 
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Figure 4.8 Potential contour plot from TCAD. The bias point is Vgs = 0.9 V, Vds = 1.2 V, under the n = 2 

velocity saturation model. The gates (top and bottom of the plotting window) are at a potential of 1.1 V. 

The x- and y-label units are in m, with L = 50 nm. The arrows point to the location in channel where the 
quasi-Fermi potentials are Vgs – Vt = 0.57 V, and Vdsat = 0.26 V, respectively. 

 

4.2 Constant Mobility 

It is abundantly clear that the key factor missing in GCA is the effect of 2/y2 on the 

mobile charge density. To construct a continuous model that extends into saturation region, we 

begin with the textbook expression of inversion charge density as a function of the Fermi potential 

V in the channel,   

)(2 VVVCQ tgsoxi −−= .                   (4.6) 

This equation over simplifies the inversion charge to a delta function of zero depth, hence over 

estimates the current. But it serves to bring forth the key concept of the approach. Instead of using 

this expression as the only Qi in the current continuity Eq. (2.13) as in a GCA model, we add a 

Qi due to 2/y2:    
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Fig. 4.6 justifies the approximation 2/y2  d2V/dy2. Also, n is taken to be uniform over tsi, in 

view of Fig. 4.5. With Qi added to Qi of Eq. (4.6), the current continuity Eq. (2.13) becomes  
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This equation can be integrated once to yield  
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where E0 = (dV/dy)y=0 at the source. Since d2V/dy2 is negligible at the source, setting V = 0 in Eq. 

(4.8) gives   

)(2
0

tgsox

ds

VVWC

I

−
=


E .    (4.10) 

For a given Ids, Eq. (4.9) can be solved for y(V) or V(y) with the initial condition V(0) = 0. Then 

Vds is given by the value of V where y reaches L. In other words, the model constructs Ids-Vds 

characteristics by finding Vds for given Ids rather than the more conventional way of solving Ids 

given Vds. Needless to say, further efforts are needed to turn it into a SPICE-like model.  

 

 To generate a continuous solution y(V), a repetitive numerical procedure should be 

followed with good accuracy whether (dV/dy)2 is negligible or not. The method we practiced is to 

go from a point of (V, y) to the next point, (V + V, y + y), by solving y from  
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for a given incremental V. The above can be re-organized into a cubic equation of unknown y 

with explicit solutions. [Note: While in this specific case, it is easier to solve a quadratic equation 
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in V for a given y, the cubic equation approach is more general and applicable to the model 

discussed later with more complex 1st term (due to Qi).]    

 

 Without the 2nd term (due to Qi), Eq. (4.9) is just the standard GCA result that has a peak 

value of Cox(Vgs – Vt )
2 at V = Vgs – Vt, as illustrated in Fig. 4.9(a) (solid curve labeled Qi). It means 

that Ids cannot exceed the saturation current, Idsat = (W/L)Cox(Vgs – Vt )
2. Past the peak, Qi of Eq. 

(4.6) becomes negative, hence forbidden by the GCA model. It is often regarded as unphysical in 

the textbooks. However, as revealed in Fig. 4.4, the vertical field (Ex) does change sign at the point 

where V = Vgs – Vt. What is unphysical then is not 2/x2 < 0. Rather, what is unphysical is the 

GCA itself past the point of saturation. Note that when y(V) approaches the peak with the 1st term 

dominating, dy/dV → 0, which turns on the square of the reciprocal, (dV/dy)2 in the 2nd term (E0
2 

is negligible), thereby removing the peak. Even when the 1st term (due to Qi) decreases past V = 

Vgs – Vt, the 2nd term (due to Qi) just picks up the slack and ensures that the sum (y) keeps on 

increasing with V, albeit at a lower rate [Fig. 4.9(a), solid curve labeled Qi + Qi].  

 

 To investigate the effect of the negative oxide field, Eq. (4.9) is also solved with the 1st 

term (due to Qi) set at a constant equal to the peak value for V > Vgs – Vt , i.e., past the peak. The 

results are shown as dashed lines in Fig. 4.9(a). It is noteworthy that while the Qi terms are 

dramatically different in the two cases, the total y(V), labeled as Qi + Qi in Fig 4.9(a), differ only 

slightly. This means that the 2nd term (Qi in Fig. 4.9(a)) adjusts to the 1st term to make the total 

y(V) slope slightly positive beyond the point of saturation. Mathematically, dy/dV can decrease 

with V indefinitely but can never reach or cross zero, because that would mean the reciprocal, 

dV/dy, in Eq. (16) goes to infinity.               
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 The y(V) curve in Fig. 4.9(a) was obtained with a presumed Ids value (6% over Idsat). It 

gives the Vds value (2.3 V) when y reaches L (100 nm). In principle, this process needs be repeated 

by varying Ids over an array of values to generate an entire Ids-Vds curve point by point. A much 

simpler approximation is to turn the y(V) curve generated with one fixed Ids0 into an Ids-Vds curve 

by multiplying y with (Ids0/L). To justify it mathematically, we rewrite Eq. (4.9) by introducing z 

 y Ids0:   
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Since the (dV/dz)2 term is only significant in saturation where Ids  Idsat or slightly higher, a choice 

of the factor in front: Ids0
2  Idsat

2 will give it the right magnitude. In the triode region, only the 1st 

term on the RHS of Eq. (4.12) is important, and z/L gives the Ids in that region as a function of V 

= Vds. At the point of Ids = Ids0 (in saturation), the solution is exact because at the voltage V = Vds 

where y(V) = L, z/L = Ids0. For Ids slightly below or above Ids0, e.g., Ids = (1 + )Ids0, z/L = Ids if y is 

taken to (1 + )L. Fig. 4.9(b) compares the Ids-Vds from the rigorous point-by-point solution of Eq. 

(4.9) to that generated by multiplying the y(V) curve with (Ids0/L). While the two are not exactly 

identical, the latter is an excellent approximation to the former.            
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(a) 

 

(b) 

Figure 4.9 (a) Solution to Eq. (4.9) with Ids set at 6% over the peak (Idsat). The curve labeled Qi is the 

contribution of the 1st term to y. Qi is from the 2nd term. The dashed curves are the solution with the Qi 

term set to the peak value after the peak. (b) Agreement between the Ids-Vds computed point by point and 

that by multiplying (Ids0/L) to the y(V) curve.     
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As shown in Fig. 4.9(b), there is an equivalence of Ids to (y/L)Idsat. Therefore, dy/L = dIds/Idsat, which 

simply restates the very concept of CLM. With that, (dV/dy)-1 is converted to the output 

conductance and solved from Eq. (4.13):  
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where V = Vds at y = L. If Vds is not too close to Vdsat, the 1st and the 3rd terms in the square bracket 

are negligible compared to the 2nd term. An approximate expression for the output conductance in 

the saturation region is then:   
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The output conductance decreases with increasing Vds bias, as depicted in Fig. 4.10(b). Note that 

L(CLM)  log(Vds – Vdsat). 

 

The dimensionless factor, tsiti/L
2, in the square root of Eq. (4.15) indicates that the 

saturation region characteristics are scalable with respect to the x- and y-dimensions of the device. 

For our example of si = ox, tsi = 4 nm, tox = 2 nm, and L = 100 nm,   
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The slopes given by the above equation are indicated in Fig. 4.10(a) above the Vgs = 1.5 V and 2.0 

V curves. 

 

 

(a) 

 

(b) 

Figure 4.10 (a) Ids-Vds curves solved compared to TCAD. L = 100 nm. (b) Output conductance versus Vds. 

Open squares in each curve indicate where Vdsat is for that Vgs. 
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4.3  n =1 Velocity Saturation 

With the n = 1 velocity saturation model, the current continuity eq. takes the form 

dy
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i
ids

)/)(/(1 0

0






+
== ,                            (4.17) 

where Ids is the source-drain current independent of y, 0 is the low-field mobility, W is the device 

width, Qi is the mobile charge density per unit area, and V(y) is the electron quasi-Fermi potential 

at a point y in the channel. Here, the driving force is taken to be dV/dy so that Ids will not exceed 

WQivsat. By multiplying the denominator on both sides and integrating from V(0) = 0 to V(L) = Vds, 

Eq. (4.17) yields  
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)/(

 .    (4.18) 

The simplest expression for Qi(V) under GCA is 

)(2 VVVCQ tgsinvi −−= ,              (4.19) 

where Cinv is the inversion layer capacitance per unit area and Vt is the threshold voltage. While 

here the non-GCA model is applied to DG MOSFETs, the only factor pertaining to DG MOSFETs 

is 2Cinv. The same model can be easily adopted for bulk MOSFETs by using a different Cinv 

appropriate for bulk MOSFETs.   

 

Eq. (4.18) is then easily integrated to give 
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The Ids-Vds characteristics are plotted in Fig. 4.11 in which we see the problem with GCA for Vds 

beyond Vdsat where Ids reaches its peak, Idsat. Vdsat can be solved from the condition, dIds/dVds = 0,  
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where z is a dimensionless parameter defined as   
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Substituting Vdsat back in Eq. (4.20) gives  
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It can also be shown from the above that  

)(2 dsattgssatinvdsat VVVWvCI −−= ,    (4.24) 

namely, carriers move at vsat at the drain end under the peak current condition.  

 

 Note from Eq. (4.23) that Idsat is not simply  1/L as in the constant mobility case. This 

means that the conventional relation for channel length modulation (CLM), Ids/Idsat = L/L where 

L/L is the fractional reduction of the GCA channel length, needs to be modified for the velocity 

saturation case. From Eq. (4.23),    
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Note that if z = 0, it reduces to the familiar form of CLM for the constant mobility case. But if z 

>> 1, Ids can be independent of L if fully velocity saturated (at the source). The factor on CLM 

under n = 1 velocity saturation, (Idsat/Idsat)/(L/L), for the L = 50 nm device at Vgs = 1.2 V is  

0.35, meaning only 3.5% increase of current for 10% modulation of channel length. This relation 

will be applied to derive an output conductance for the n = 1 velocity saturation case.  
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Figure 4.11 Ids-Vds characteristics generated by the GCA and non-GCA models under the n = 1 velocity 

saturation model. 0 = 200 cm2/V-s, vsat = 107 cm/s. Cinv is taken to be i/ti. 
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to Qi of Eq. (4.7) yields 
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By multiplying the denominator to the LHS, it can be integrated once:  
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where E0 = (dV/dy)y=0 at the source. Since d2V/dy2 is negligible at the source, setting V = 0 in Eq. 

(4.17) gives   
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For a given Ids, Eq. (4.28) is a 1st order ordinary differential equation that can be solved numerically 

for V(y), and therefore Vds = V(L). This can be done in small steps of, e.g., y = 0.5 nm, with a 

general-purpose mathematical tool like matlab, or even with a spread sheet . The continuous Ids-

Vds characteristics generated are also shown in Fig. 4.11.  

 

Fig. 4.12 plots the gradient of Fermi potential dV/dy at y = L, i.e., the drain end versus Vds. 

At the current peak in the GCA model, dV/dy →  and v = vsat. Past the peak, dV/dy < 0, clearly 

unphysical. The key effect of the (dV/dy)2 term in Eq. (4.28) is to remove the singularity and keep 

dV/dy finite and positive. Carrier velocity approaches vsat, but never reaches vsat. Past Vdsat, dV/dy 

is approximately a linear function of Vds with an intercept  Vdsat. This turns out to be a general 

behavior regardless of n = 1 or n = 2 velocity saturation models.  

 

 

 

Figure 4.12  dV/dy at the drain (y = L) versus Vds for the case in Fig. 4.11. Labels above the non-GCA curve 

indicate the carrier velocity at those bias points. 
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Figure 4.13  Ids-Vds characteristics (n = 1 velocity saturation) generated by the continuous non-GCA model 

compared with TCAD. 

 

 

Figure 4.14  Comparison of gdc  dIds/dVds versus Vds (n = 1 vel. sat.) between TCAD and the non-GCA 

model. Open squares are calculated from the explicit Eq. (42) valid for Vds > Vdsat.   
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problems with modeling of analog circuits like mixers. Here we extend the non-GCA model 

described above to the n = 2 velocity saturation case at the expense of further mathematical 

complexity.       

 

 For n = 2, Eq. (4.17) becomes 
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For the GCA part of the model, the above can be re-arranged to yield an integral equation between 

Ids and Vds: 
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With Qi(V) given by the simple relation, Eq. (4.19), the integral can be carried out by introducing 

an intermediary parameter u,  
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where us and ud satisfy      

ssatdstgsinv uvIVVWC cosh)/()(2 =−             (4.33) 

and 

dsatdsdstgsinv uvIVVVWC cosh)/()(2 =−− .                    (4.34) 

For a given Ids, us is given explicitly by Eq. (4.33). Then Eq. (4.32) is an implicit equation that 

solves for ud, which in turn is used to determine Vds in Eq. (4.34). The Ids-Vds curve generated for 

Vgs = 1.2 V is shown in Fig. 4.15. There is a maximum Vds = Vdsat where Ids reaches a peak value 

Idsat beyond which no solution exists. This corresponds to ud = 0 where the factor in the square root 

of Eq. (4.31) is zero. The same Eq. (4.24) also holds for the n = 2 case. At saturation, us is the 

solution to the implicit equation       
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And Idsat is given by 
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The above equations give the channel length modulation for the n = 2 case:  
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The factor on CLM, (Idsat/Idsat)/(L/L), under n = 2 velocity saturation is  0.3, for the L = 50 nm 

device at Vgs = 1.2 V.  

 

 To continue the solution beyond the current peak, Qi of Eq. (4.26) is added to Qi as in the 

n = 1 case: 
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This equation cannot be integrated like Eq. (4.27). Instead, we convert the 2nd derivative to  
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By squaring Eq. (4.38) and defining   
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a 1st order differential equation is obtained: 
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With Qi(V) given by Eq. (4.19), this equation is numerically solved for g(V). After that, g-1/2 = 

dy/dV is readily integrated from V = 0 to Vds where y = L is reached. The continuous solution of 
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Ids-Vds is plotted in Fig. 4.15. Fig. 4.16 plots dV/dy at the drain (y = L) versus Vds. The same linear 

behavior as in the n = 1 case is observed. We derive the general expression based on regional 

approximation in the velocity saturation region.              

 

 

 

Figure 4.15 Ids-Vds characteristics generated by the GCA and non-GCA models under the n = 2 velocity 

saturation model. 0 = 200 cm2/V-s, vsat = 107 cm/s. Cinv is taken to be i/ti. 
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Figure 4.16 dV/dy at the drain (y = L) versus Vds for the case in Fig. 4.12. Labels above the non-GCA curve 

indicate the carrier velocity at those bias points. 
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with the above factor are in close agreement with TCAD for both the n = 1 and n = 2 cases. Further 

examination of the output conductance, gdc  dIds/dVds, in Figs. 4.14 and 4.18 again shows 
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Figure 4.17 Ids-Vds characteristics (n = 2 velocity saturation) generated by the continuous non-GCA model 

compared with TCAD. 

 

 

Figure 4.18  Comparison of gdc  dIds/dVds versus Vds (n = 2 vel. sat.) between TCAD and the non-GCA 

model. Open squares are calculated from the explicit Eq. (4.54) valid for Vds > Vdsat. 
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This is depicted in Fig. 4.19, where the discrepancy starts to show at Vgs = 0.5 V and becomes 

worse at Vgs = 0.4 V—only 3kT/q above Vt. One fix is to generalize Eq. (4.19) to  

)(2 mVVVCQ tgsinvi −−= ,    (4.42) 

by introducing a parameter m (< 1) to describe the decreased slope of Qi versus V when Vgs – Vt is 

only a few kT/q. m can be determined from the all region model, Eqs. (4.1), (4.2). For example, m 

 0.7 when Vgs = 0.4 V. Far above Vt, m  1. The non-GCA model can be modified in a 

straightforward way to accommodate this additional parameter.      

  

 

 

Figure 4.19  Comparison of the rigorous all region model, Eqs. (4.1), (4.2) to the Cinv model, Eq. (4.19) at 

Vgs 70-270 mV above Vt. 
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4.5 Explicit Solution by Regional Approximation 

The results that dV/dyy = L is a linear function of Vds for both n = 1 (Fig. 4.12) and n = 2 

(Fig. 4.16) clearly indicate that it is more general than the specific velocity saturation model. This 

function is derived analytically below following a regional approximation. In the velocity 

saturation region, (0/vsat)(dV/dy) >> 1 such that carrier velocity  vsat. Both Eqs. (4.27) and (4.38) 

can then be simplified to  









+−−=

2

2

)(2
dy

Vd
tVVVCWvI sisitgsinvsatds  ,               (4.43) 

with Qi given by Eq. (4.19). By applying Eq. (4.39), the above equation becomes  

2

2
)(2 




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
=−−−

dy

dV

dV

dt
VVVC

Wv

I sisi
tgsinv

sat

ds  .             (4.44) 

Integrating the above from Vdsat to V, and making use of Eq. (4.24) for Idsat, it can be shown that  
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The above can be written as 

 22
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where 
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2
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dsat
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invsat
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I
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and  

2
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2
dsatVinv

sisi
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dV

C

t
ba 




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


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Since Ids  Idsat, a is  0.03 V or less for the device being considered. If Vds is not too close to Vdsat, 

dV/dyVds at the drain >> dV/dyVdsat. Therefore, 

)(
2

aVV
t

C

dy

dV

dy

dV
dsatds

sisi

inv

VLy ds

+−=
=


.                          (4.49) 

This agrees well with the straight lines in Figs. 4.12 and 4.16.  

 

 Eq. (4.46) indicates that V is an exponential function of y beyond the point of saturation. 

Integration with the condition V(y = L) = Vds yields  

22)( baVVaVV dsatdsat ++−++− 







−− )(

2
exp)(2 Ly

t

C
VV

sisi

inv
dsatds


,               (4.50) 

under the assumption that Vds is not too close to Vdsat. In terms of CLM, the point y = L – L where 

V = Vdsat moves toward the source as Vds increases: 















++

−
=

22

)(2
ln

2 baa

VV

C

t
L dsatds

inv

sisi .       (4.51) 

Similar exponential expressions of V(y) have been derived in for bulk MOSFETs where 2Cinv 

becomes Cox and tsi is replaced by xj, the source-drain junction depth. L of Eq. (4.51) is weakly 

dependent on dV/dyVdsat which goes into a2 + b2 per Eq. (4.48). dV/dyVdsat cannot be determined 

analytically because it is at the transition point between the GCA model and the fully velocity 

saturated model, Eq. (4.43). Numerically, dV/dyVdsat depends on Vgs, as well as on whether the vsat 

model is n = 1 or n = 2. For the device considered, dV/dyVdsat goes from 3(vsat/0) to 9(vsat/0).  

 

The factor 22 baa ++  in Eq. (4.51) then ranges from 0.04 V to 0.11 V, meaning a log factor as 

large as ln(50)  4 and L of  9 nm.              

 



56 

 

 To derive an explicit expression for the output conductance in the velocity saturation 

region, we use Eq. (4.25) for the n = 1 case and note from Eq. (4.50) that for an incremental Vds, 

the GCA channel length is further shortened by 

dsatds

ds

inv

sisi

VV

V
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t
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−
=
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                 (4.52) 

Therefore, 
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Here, for better accuracy, L in Eq. (4.25) is replaced by the GCA channel length, L – L. It can 

make as much as 20% difference on the conductance result. For the n = 2 case, Eq. (4.37) is used:   
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Because of the factors due to modified CLM, the output conductance in the velocity saturation 

region is lower than that in the saturation region of the constant mobility case. The output 

conductance calculated from the analytic Eqs. (4.53), (4.54) is also shown in Figs. 4.14 and 4.18 

over the range of Vds > Vdsat for each Vgs bias. They agree well with the numerical model and TCAD 

results.  

 

 SCE is negligible at L = 50 nm. It is worthwhile to push the model-TCAD comparison to 

shorter L and find out at what channel length SCE starts to have non-negligible effect on the output 

conductance in the saturation region. Fig. 4.20 shows that the model is accurate down to L = 20 

nm. Below that SCE sets in, having a stronger influence on gdc at Vgs = 0.6 V than 1.2 V because 

the closer Vgs is to Vt, the more sensitive is Qi to Vt reduction due to DIBL. The onset is generally 

comparable to the slope of exp(-L/2) from the scale length model where  = tsi + 2 ti = 8 nm.  
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This can be generalized to state that the range of model validity is L  2, similar to the common 

criterion for tolerable SCEs based on the subthreshold leakage current.      

 

 

Figure 4.20  Model validity versus channel length. n = 1 velocity saturation model is assumed in both 
model and TCAD.  

 

 

4.6 Numerical Solution Methods: Forward Euler versus 

Backward Euler 

In numerical analysis and scientific computing, the backward Euler method (or implicit 

Euler method) is one of the most basic numerical methods for the solution of ordinary 

differential equations. It is similar to the (standard) Euler method, but differs in that it is 

an implicit method. The backward Euler method has error of order one in time. 
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Consider the ordinary differential equation 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) with initial value 𝑦(𝑡0) =

𝑦0 Here the function  𝑓 and the initial data 𝑡0 and 𝑦0 are known; the function  𝑦 depends on the 

real variable  𝑡 and is unknown. A numerical method produces a sequence 𝑦0, 𝑦1, 𝑦2, … such 

that 𝑦𝑘  approximates  𝑦(𝑡0 + 𝑘ℎ), where ℎ is called the step size. 

The backward Euler method computes the approximations using 𝑦𝑘+1 = 𝑦𝑘  + ℎ𝑓(𝑡𝑘+1, 𝑦𝑘+1). 

This differs from the (forward) Euler method in that the forward method uses  𝑓(𝑡𝑘 , 𝑦𝑘) in place 

of  𝑓(𝑡𝑘+1, 𝑦𝑘+1). 

The backward Euler method is an implicit method: the new approximation 𝑦𝑘+1 appears 

on both sides of the equation, and thus the method needs to solve an algebraic equation for the 

unknown 𝑦𝑘+1. For non-stiff problems, this can be done with fixed-point iteration: 

 

𝑦𝑘+1
[0]

= 𝑦𝑘 ,    𝑦𝑘+1
[𝑖+1]

= 𝑦𝑘 + ℎ𝑓 (𝑡𝑘+1, 𝑦𝑘+1
[𝑖]

). 

If this sequence converges (within a given tolerance), then the method takes its limit as the new 

approximation 𝑦𝑘+1.  

 

For a given Ids, solve the following 1st order differential eq. for V(y) with the boundary 

condition V(y = 0) = 0. Use a constant step size of, for example, y = 0.5 nm. Then, Vds = V(y = 

L), i.e., the value of V when y reaches 50 nm.  

2

2 2

0 0

0

1
2 ( )

2 2

ds ds si si
ox g

sat

I I t dV
y V C V V V V

W v W dy





   
+ = − − + −   

     

E                                (4.55) 

and 

https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Stiff_equation
https://en.wikipedia.org/wiki/Fixed-point_iteration
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0

0 0 02 ( ) ( / )

ds

ox g sat ds

I

WC V V v I 
=

− −
E .                                                    (4.56) 

Going from V at a point y to the next point y + y with dV/dyV, at point n+1, y goes to y 

+ y and V goes to V + V. We would like to find the value of dV/dyV+V. The value of dV/dy 

is in eq. 4.57:  

2 2

0 0

0

2 1
2 ( ) ( , )

2

ds ds
ox g

si si sat

dV I I
y V C V V V V f y V

dy t W v W 

  
= + + − − −   

  
E

.           (4.57) 

Different Euler methods were tried to solve the above equations. Forward Euler is defined as 

dV= dy  dV/dyV  where dV/dyV is the dV/dy evaluated at the point (y, V). Backward Euler 

method is defined as dV = dy  dV/dyV+dV  where dV/dyV+dV is the dV/dy evaluated at the 

point (y + dy, V + dV). 

i.e., 

22
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( ) ( ) 2 ( )( )
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ox gs t
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I I V V t V
y y V V C V V V V

W v W y
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 
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+ + + = − + − + −   

     

E ,          (4.58) 

 

Then V is solved from the above eq. 

 

In Averaged Euler,  

dV is dy  ½{dV/dyV+dV + dV/dyV}, therefore  dV/dyV+dV = 2  dV/dy − dV/dyV}. 

i.e., 

2
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( ) ( ) 2 ( )( ) 2
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ox gs t

sat V

I I V V t V dV
y y V V C V V V V
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Figure 4.21  Solutions for Backward Euler and Averaged Euler methods with different step sizes dy. 

 

 

Backward Euler has V(y) near the drain is step-size dependent until dy = 0.1 nm while in, 

averaged Euler, V(y) has little step-size dependence. dy = 1 nm is good enough. The plot below 

shows an example that the forward Euler method may not converge even with a small dy of 0.1 

nm. The averaged and backward Euler methods always converge with a dy = 1 nm.  
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Figure 4.22 Solutions from Forward Euler and Averaged Euler methods with step sizes dy of 0.1 

nm. 
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CHAPTER 5 NON-GCA MODEL FOR BULK MOSFETS 

5.1 Uniform Doping 

Non-GCA Model for the Saturation Region 

The MOSFET current model covered thus far has been developed under the framework 

of Gradual Channel Approximation (GCA). It assumes that the field gradient in the y-direction or 

the channel direction is negligible compared to the field gradient in the x-direction or the gate 

direction so 2-D Poisson’s equation,  

2 2

2 2
[ ( ) ( ) ( ) ( )],d a

si

q
p x n x N x N x

x y

 



+ − 
+ = − − + −

 
                (5.1) 

is reduced to the 1-D MOS equation of  
𝑑2𝜓

𝑑𝑥2 = −
𝑑ℰ

𝑑𝑥
= −

𝑞

𝜀𝑠𝑖
[𝑝(𝑥) − 𝑛(𝑥) + 𝑁𝑑

+(𝑥) − 𝑁𝑎
−(𝑥)]. 

The GCA model works fine in the linear, parabolic, and subthreshold regions, but fails in the 

saturation region when Vds > Vdsat. However, the current continuity equation, 𝐼𝑑𝑠(𝑦) =

−𝜇𝑒𝑓𝑓 𝑊
𝑑𝑉

𝑑𝑦
𝑄𝑖(𝑦) = −𝜇𝑒𝑓𝑓𝑊

𝑑𝑉

𝑑𝑦
𝑄𝑖(𝑉):   

( )ds eff i

dV
I W Q V

dy
= −                    (5.2) 

demands that the product (−Qi)dV/dy be a constant throughout the channel. When −Qi → 0, 

dV/dy → ∞ thus invalidating the GCA.  

 In most standard texts, this is called the “pinch-off” condition. Pinch-off is a term 

originally applied to JFETs (Junction Field-Effect Transistor) in the early days of transistor 

development (Shockley, 1952). It describes how a p- or n-type conducting path is squeezed to 

zero by the encroaching depletion regions of reverse-biased p-n junctions on both sides of the 

path. It is rather misleading to use “pinch-off” to describe the point of current saturation in 
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MOSFETs because what goes to zero at V = Vdsat is the vertical field, 
0

( / ) ,x x
x

=
= −  E  or the 

gate induced charge density, not the entire mobile charge density. As a matter of fact, both 

2/x2 and Ex become negative beyond V = Vdsat, as seen in Fig. 5.1(a) from 2-D numerical 

simulations. This shows that the above Vdsat behavior of the charge-sheet curve is a consequence 

of the GCA model not allowing Ex to go negative, rather than being physically correct. Also 

shown in Fig. 5.1(a) is that the electron density is never zero whether (/x)x=0 is positive or 

negative. From the 2-D Eq. (5.1) perspective, when 2 2/ x   is negative, the 2 2/ y   term 

becomes more positive to overcome the negative 2 2/ x  , thus making the total sum positive. 

In this regard, “pinch-off” never happens; 2 2/ y   and therefore the lateral field increase 

sharply while the vertical field takes on negative values when Vds > Vdsat.      
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                               (a)  

 

(b) 

Figure 5.1 Plots from TCAD simulations. (a) Potential (x) and electron density n(x) (right scale) along 

three vertical cuts: (i) before the saturation point, (ii) at the saturation point, (iii) beyond the saturation 

point. For this plot,  is defined as the intrinsic potential with respect to the Fermi potential of the source. 

The MOSFET parameters are L = 500 nm, tinv = 3.3 nm, Na = 1018 cm-3 (uniform), Vgs = 1.5 V, Vds = 2.0 
V. The gate work function is that of n+ silicon. (b) Electron density versus depth in silicon along five 

vertical cuts between the saturation point and the drain (y = 500 nm). The junction depth is xj = 50 nm in 

this case. 
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A Continuous Non-GCA Model into the Saturation Region 

To construct a non-GCA model, a 2 2/ y   term is added to −Qi in the current continuity 

equation (Taur and Lin, 2018): 

2

2
( ) .ds eff i si si

d dV
I W Q V d

dy dy


 

 
= − + 

 
                 (5.3)  

Here, dsi is an effective depth in silicon to convert the per volume charge density, 
2 2/sid dy  , to 

an area charge density. For double-gate MOSFETs with thin silicon film, the clear choice for dsi 

is the silicon thickness. For bulk MOSFETs, dsi is some fraction of the junction depth xj. This can 

be seen in the TCAD plot in Fig. 5.1(b) of the depth distribution of the electron density beyond 

the point of saturation. When the vertical cut moves closer to the drain junction, the electron 

density spreads deeper towards the junction depth, xj = 50 nm, indicating a similar spread of the 

current density. In this regard, dsi is an effective or average depth rather than a physical depth. 

For this example, a depth parameter of dsi = 20 nm serves as a good approximation. Also seen in 

Fig. 5.1(b) is that the electron density per area, i.e., n(x) integrated over x, which has been 

decreasing before the saturation point (y  491.4 nm), keeps on decreasing through the saturation 

point until a point of minimum at y  497 nm very close to the drain junction edge.   

For the expression of −Qi(V) in 𝐼𝑑𝑠 = 𝜇𝑒𝑓𝑓𝑊 [−𝑄𝑖(𝑉) + 𝜀𝑠𝑖𝑑𝑠𝑖
𝑑2𝜓

𝑑𝑦2
]

𝑑𝑉

𝑑𝑦
, we choose Eq. 

(5.4):  

( ) ( ),i inv gs tQ V C V V mV− = − −                                               (5.4) 

which does go negative beyond V = Vdsat = (Vgs – Vt)/m (see the dotted line in Fig. 2.2). Here, Cinv 

is used in place of Cox to take the inversion layer capacitance into account. At the source, 

( )inv gs tC V V−  is given by 𝑄𝑖 = 𝑄𝑠 − 𝑄𝑑 = −𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑓𝑏 − 𝜓𝑠) + √2𝜀𝑠𝑖𝑞𝑁𝑎𝜓𝑠 of the charge 
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sheet model with s = s,s for V = 0. The linear slope of Qi(V) is a reasonable approximation for 

gs tV V−  larger than several kT/q, e.g., 0.2 V.gs tV V−   For near-threshold bias conditions, the 

decrease of Qi with V is much softer due to inversion layer capacitance effects (Ren and Taur, 

2020).  

To make Eq. (5.3) easier to solve, an approximation, 2 2 2 2/ /d dy d V dy  , is made on 

the grounds that near the drain where the 
2 2/sid dy   term is important, the current is mostly 

drift, i.e., / / .d dy dV dy   With that substitution, Eq. (5.3) can be integrated once to yield: 

2

2 2

0( ) ,
2 2

ds si si
inv gs t

eff

I m d dV
y C V V V V

W dy





   
= − − + −   

     

E          (5.5) 

where E0 is dV/dy at y = 0. Since the non-GCA term in Eq. (5.3) is negligible at y = 0, we have  

0 .
( )

ds

eff inv gs t

I

WC V V
=

−
E                       (5.6) 

Equation (5.5) is a 1st-order ordinary differential equation valid for all regions above threshold, 

both before and after saturation. For a given Ids, it solves for V(y) numerically from y = 0 to y = 

L, yielding Vds = V(L) as the result. The standard method of evaluating dV/dy = f(y, V) and 

applying it to get to the next point runs into the trouble of magnifying the numerical imprecision 

in the region of V << Vdsat where y(V) is simply given by the 1st term (GCA) on the RHS of Eq. 

(5.5) with the 2( / )dV dy  term (non-GCA) negligible. Instead, to go from a point (y, V) to the 

next point (y + y, V + V), the following difference equation is used:   

2 2

2

, ,

( ) (2 ( ) 2 ,
2 2

ds si si
inv gs t

eff y V y V

I m d V dV dV
y C V V V V V V

W y dy dy

 
   

 

       
 = − − + + − −        

           

 (5.7) 
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where (dV/dy)y,V is the value of dV/dy at (y, V). For a given y, the above can be re-grouped into 

a quadratic equation for V with standard solutions. This procedure can be repeated for a large 

number of steps on a spread sheet to produce a continuous transition from the GCA dominated 

region to the non-GCA region.     

Examples of the solution V(y) for two different values of Ids, both slightly over Idsat, are 

plotted in Fig. 5.2 as y versus V so that y can be decomposed into its two components: the 1st 

term on the RHS of Eq. (5.5) stemming from −Qi (labeled GCA) and the 2nd term from 

2( / )dV dy  (labeled non-GCA). Consider first the GCA curve. It has a peak value of y = 

(Idsat/Ids)L at V = Vdsat = (Vgs – Vt)/m, then decreases toward zero. This would be unphysical, like 

the downturn of Ids past Vdsat, were the −Qi component solely responsible for the current. In the 

non-GCA model, the additional component from 2( / )dV dy , while negligible for V < Vdsat, 

increases sharply beyond Vdsat so the sum y (solid curves) continues to increase towards L, as 

seen in Fig. 5.2. The slope dy/dV is, of course, never negative although is much reduced in the 

saturation region than before saturation.  

The notion of Channel Length Modulation (CLM) is based on the fact that the peak y-

value of the GCA curve, (Idsat/Ids)L, at V = Vdsat becomes < L if Ids > Idsat. If we let this y value to 

be L – L, we obtain Ids = Idsat/(1 – L/L). In view of the full non-GCA model, CLM only serves 

as an approximation as the y value at V = Vdsat on the solid curve in Fig. 5.2 is slightly higher 

than the y value at V = Vdsat on the dashed (GCA) curve.    
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Figure 5.2  y(V) solution to Eq. (5.5) for two values of Ids: Ids1 is 3% over Idsat, Ids2 is 6% over Idsat. The 

device is the same as that of Fig. 5.1, with Vt = 0.4 V, m = 1.28, biased at Vgs = 1.5 V so Vdsat = 0.86 V and 
Idsat = 2.0 A/cm. dsi is chosen to be 20 nm. The crossover with the y = L line gives the Vds solution for the 

particular Ids. The Ids2 result is further partitioned into two curves, according to the two terms on the RHS 

of Eq. (5.5). The dashed curve labeled GCA is the 1st term divided by (Ids/effW). The dotted curve labeled 

non-GCA is the 2nd term divided by the same. 

 

Figure 5.3 shows the Ids-Vds curves generated from this model. They are continuous from 

the linear and parabolic regions into the saturation region.   

 

 

Figure 5.3   Ids-Vds curves (solid) solved from Eq. (5.5) for the device described in the caption to Fig. 5.2. 

The dashed curves are from the GCA model for which currents saturate at Idsat. 
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Regional Approximation for the Saturation Region 

Equation (5.5) can be greatly simplified in the saturation region where y  L as is evident 

in Fig. 5.2. The E0
2 term can also be dropped. Further rearrangement yields  

2

2( ) ( ) ,
2 2

si si
ds dsat inv dsat

eff

L m d dV
I I C V V

W dy





 
− + − =  

 
      (5.8) 

where Vdsat and Idsat are given by 𝑉𝑑𝑠 = 𝑉𝑑𝑠𝑎𝑡 =
𝑉𝑔𝑠−𝑉𝑡

𝑚
 and 𝐼𝑑𝑠 = 𝐼𝑑𝑠𝑎𝑡 = 𝜇𝑒𝑓𝑓𝐶𝑜𝑥

𝑊

𝐿

(𝑉𝑔𝑠−𝑉𝑡)2

2𝑚
. If 

Vds is not too close to Vdsat, the first term on the LHS is much smaller than the second term. It 

then follows that in the saturation region, dV/dy increases linearly with V − Vdsat. Further 

integration gives V(y) as an exponential function of y,  exp si si invy / ε d / (mC ) . 
 

 The 

correlation between the characteristic lateral length / ( )si si invd mC  and the vertical dimensions 

reflects the 2-D nature of the non-GCA effect (Ko et al., 1981). 

Based on the CLM picture, there is a correspondence of y with Ids. Specifically, y/L = 

Ids/Idsat. Equation (5.8) then gives the output conductance in the saturation region:       

1

2
.ds dsat si si dsat

ds inv ds dsat

dI I dV d I

dV L dy mC L V V


−

 
= = 

− 
               (5.9) 

For not too short channel devices, the dimensionless square root factor is << 1, e.g.,  1/40 for 

the device in Fig. 5.3. The slope in the saturation region increases with Vgs through the Idsat factor 

and decreases with Vds for a given Vgs.  

 

 

5.2 Ground-Plane MOSFETs 
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Nonuniform Channel Doping 

In this section, we consider the threshold voltage and the maximum depletion width of a 

nonuniformly doped MOSFET. Specific examples include high-low and low-high doping 

profiles.  

By employing the depletion approximation in subthreshold, the electric field, surface 

potential, and threshold voltage can be solved for an arbitrary p-type doping profile N(x). The 

electric field is obtained by integrating Poisson’s equation once (neglecting mobile carriers in the 

depletion region): 

( ) ( ) ,
dW

x
si

q
x N x dx


= E                                   (5.10) 

where Wd is the depletion-layer width. Integrating again gives the surface potential, 

( )
0

d dW W

s
x

si

q
N x dx dx


 =                                     (5.11) 

Using integration by parts, one can show that the above is equivalent to (Brews, 1979) 

( )
0

.
dW

s

si

q
xN x dx


=                                 (5.12) 

The integral of xN(x) equals the center of mass of N(x) within (0, Wd) times the integral of N(x). 

The maximum depletion-layer width (long-channel) Wdm is determined by the condition 

ψs = 2ψB when Wd = Wdm. The threshold voltage of a nonuniformly doped MOSFET is then 

determined by both the integral (depletion charge density) and the center of mass of N(x) 

within (0, Wdm). 
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Retrograde (Low–High) Channel Profile 

When the channel length is scaled to 0.25 μm and below, higher doping concentration is 

needed in the channel to reduce Wdm and control the short-channel effect. If a uniform profile 

were used, the threshold voltage 𝑉𝑡 = 𝑉𝑓𝑏 + 2𝜓𝐵 +
√4𝜀𝑠𝑖𝑞𝑁𝑎𝜓𝐵

𝐶𝑜𝑥
 would be too high even with dual 

polysilicon gates. The problem is further aggravated by quantum effects, which, can add another 

0.1–0.2 V to the threshold voltage because of the increasing fields (van Dort et al., 1994). 

To reduce the threshold voltage without significantly increasing the gate depletion 

width, a retrograde channel profile, i.e., a low–high doping profile as shown schematically in 

Fig. 5.4, is required (Sun et al., 1987; Shahidi et al., 1989). Such a profile is formed using 

higher-energy implants that peak below the surface. It is assumed that the maximum gate 

depletion width extends into the higher-doped region. All the equations in the previous section 

remain valid for Ns < Na. For simplicity, we assume an ideal retrograde channel profile for which 

Ns = 0. Equation 𝑉𝑡 = 𝑉𝑓𝑏 + 2𝜓𝐵 +
1

𝐶𝑜𝑥
√2𝜀𝑠𝑖𝑞𝑁𝑎 (2𝜓𝐵 −

𝑞(𝑁𝑠−𝑁𝑎)𝑥𝑠
2

2𝜀𝑠𝑖
)  +

𝑞(𝑁𝑠−𝑁𝑎)𝑥𝑠

𝐶𝑜𝑥
 then 

becomes 

24
2 .a si B a s

t fb B s

ox a ox

qN qN x
V V x

C qN C

 
= + + + −                            (5.13) 

Similarly, 𝑊𝑑𝑚 = √
2𝜀𝑠𝑖

𝑞𝑁𝑎
(2𝜓𝐵 −

𝑞(𝑁𝑠−𝑁𝑎)𝑥𝑠
2

2𝜀𝑠𝑖
) with Ns = 0 gives the maximum depletion width, 

24
.si B

dm s

a

W x
qN

 
= +                                                    (5.14)  

The net effect of low–high doping is that the threshold voltage is reduced, but the depletion 

width has increased, just opposite to that of high-low doping. All other expressions, such as those 
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for the subthreshold swing and the substrate sensitivity, in the previous subsection apply with 

Wdm replaced by Eq. (5.14). 

 

Figure 5.4     A schematic diagram showing the low-high (retrograde) step doping profile. x = 0 

denotes the silicon–oxide interface. 

 

Extreme Retrograde Profile and Ground-Plane MOSFET 

Two limiting cases are worth discussing. If 𝒙𝒔 ≪ (𝟒𝜺𝒔𝒊𝝍𝑩/𝒒𝑵𝒂)𝟏/𝟐, then Wdm remains 

essentially unchanged from the uniformly doped value [Eq. (5.14)], while Vt is lowered by a net 

amount equal to qNaxs/Cox [Eq. (5.13)]. In the other limit, Na is sufficiently high that 𝑥𝑠 ≫

(4𝜀𝑠𝑖𝜓𝐵/𝑞𝑁𝑎)1/2. In that case, Wdm ≈ xs, and the entire depletion region is undoped. All the 

depletion charge is located at the edge of the depletion region. The square root term in Eq. (5.13) 

can be expanded into a power series to yield 

( )2 /
2 .

si B s

t fb B

ox

x
V V

C

 
= + +                                         (5.15) 
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The last term, due to the depletion charge density in silicon, εsi(2ψB /xs), can also be derived from 

Gauss’s law by considering that the field in the undoped region is constant and equals 2ψB/xs at 

threshold. Note that the work function difference that goes into Vfb is between the gate and the p+ 

silicon at the edge of the depletion region. Using m = 1 + 3tox/Wdm= 1 + 3tox/xs, we can rewrite 

Eq. (5.15) as 

2 ( 1)2 .t fb B BV V m = + + −                                                 5.16) 

Comparison with 𝑉𝑡 = −
𝐸𝑔

2𝑞
+ 𝜓𝐵 +

4𝜀𝑠𝑖𝜓𝐵

𝑊𝑑𝑚

𝑡𝑜𝑥

𝜀𝑜𝑥
= −

𝐸𝑔

2𝑞
+ 𝜓𝐵 + 2(𝑚 − 1)(2𝜓𝐵) shows that, with 

the extreme retrograde profile, the depletion charge (the third) term of Vt is reduced to half of the 

uniformly doped value.  

All the essential device characteristics, such as SCE (Wdm), subthreshold slope (m), and 

threshold voltage, are determined by the depth of the undoped layer, xs. The limiting case of 

retrograde channel profile therefore degenerates into a ground-plane MOSFET (Yan et al., 

1991). The band diagram and charge distribution of such a device at the threshold condition are 

shown schematically in Fig.5.5. Note that the field is constant (no curvature in potential) in the 

undoped region between the surface and xs. There is an abrupt change of field at x = xs, where a 

delta function of depletion charge (area = 2εsiψB/xs) resides. Beyond xs, the bands are essentially 

flat. It is desirable not to extend the p+ region under the source and drain junctions, since that will 

increase the parasitic junction capacitance. The ideal channel doping profile is then that of a 

low–high–low type, in which the narrow p+ region is used only to confine the gate depletion 

width. Such a profile is also referred to as pulse-shaped doping or delta doping in the literature.  
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Figure 5.5  Band diagram and charge distribution of an extreme retrograde-doped or ground-plane 
nMOSFET at the threshold condition. 

 

Near the limits of bulk MOSFET scaling, the body needs to be doped above 1019 cm-3 to 

constrain the gate depletion depth to  10 nm for control of the short-channel effect. The threshold 

voltage, on the other hand, needs to be scaled down below  0.3 V for a supply voltage of  1.0 

V. This is accomplished by employing low-high (retrograde) body doping which, for a given gate 
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depletion width, has a reduced depletion charge density. The extreme limit of low-high doping is 

a ground-plane MOSFET (also known as super-steep retrograde) shown schematically in Fig. 5.6. 

It consists of a lightly doped or essentially undoped surface layer of depth xs on top of a highly 

doped (Na) p+ body (for nMOSFETs). The gate depletion width is essentially xs with all the 

depletion charge located at the step where the body doping changes abruptly from 0 to Na.  

 

 

Figure 5.6   A schematic cross-section of ground-plane MOSFETs. Shown on the right is the depth 

profile of body doping along a vertical cutline.    

 

A Non-GCA Model for Ground-Plane MOSFETs  

In this work, we develop a model for ground-plane MOSFETs by first deriving an analytic 

solution under the Gradual Channel Approximation (GCA). The GCA model works for long 

channel MOSFETs with constant mobility. For shorter length MOSFETs in which velocity 

saturation occurs, it is necessary to implement a non-GCA model incorporating the gate-induced 

mobile charge density from the GCA model. The Ids-Vds characteristics generated from both the n 

=1 and n = 2 velocity saturation models are verified by TCAD simulations. For comparison with 

the published hardware data of 20 nm bulk MOSFETs, source-drain series resistances are added 

to the model.    
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Figure 5.7   Band diagram of a ground-plane nMOSFET biased near the threshold. The p+ ground plane 

is grounded to the n+ source.       

 

 

5.2.1 Long-Channel GCA Model 

The band diagram of a ground-plane nMOSFET is shown schematically in Fig. 5.7. In the 

undoped silicon region between x = 0 and x = xs, there is only the inversion charge (electrons) 

density hence Poisson’s equation takes the form 

𝑑2𝜓

𝑑𝑥2
=

𝑞

𝜀𝑠𝑖
𝑛𝑖𝑒

𝑞(𝜓−𝑉)/𝑘𝑇                                               (5.17) 

where ψ(x)  –[Ei(x) – Efs]/q is the potential function defined in Fig. 5.7 referenced to the source 

Fermi level Efs. In the above equation, si is the permittivity of silicon, ni is the intrinsic carrier 

concentration, and V is the electron quasi-Fermi potential at a point in the channel. V is independent 

of x but varies along the channel from 0 at the source to Vds at the drain.  

The hole density is neglected in Eq. (5.17). This is valid for most of the undoped region 

where the valence band edge is well below the Ef of the p+ substrate (Fig. 5.7). The highest hole 
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density in the undoped region occurs right below x = xs. The justification for neglecting the hole 

density there is given later after discussing depletion of the ground plane.  

 

By multiplying dψ/dx to both sides, Eq. (5.7) can be integrated once to obtain  

dψ

dx
= -√

2kTni

εsi
eq(ψ-V)/kT + E0

2                                              (5.18) 

where 0 is a constant of integration. The general solution to Eq. (5.17) includes the possibility of 

a negative constant, or 0
2 < 0. As far as the ground-plane MOSFET is concerned, only the 0

2 > 

0 solution is needed. Equation (5.18) has the closed form solution:  

ψ(x) = V +
2kT

q
ln {

√
εsi

2kTni
E0

sinh[
qE0x

2kT
+z0]

}                                     (5.19) 

where z0 is the second integration constant. 

 

The constants 0 and z0 are determined by the boundary conditions at x = 0 and x = xs. At 

x = 0, the continuity of displacement at the Si-SiO2 interface yields 

𝜀𝑜𝑥
𝑉𝑔𝑠−𝜙𝑚𝑖−𝜓(0)

𝑡𝑜𝑥
= −𝜀𝑠𝑖

𝑑𝜓

𝑑𝑥
|

𝑥=0
                              (5.20) 

Here, ox is the permittivity of the gate oxide with a thickness tox, Vgs is the applied gate to source 

voltage, and 𝜙𝑚𝑖 ≡ (𝜙𝑚 − 𝜙𝑠𝑖) is the work function difference between the gate and intrinsic 

silicon. At x = xs, the simple boundary condition is 𝜓(𝑥𝑠) = −𝐸𝑔/2𝑞 if there were no depletion in 

the p+ ground plane. But the depletion effect is nonnegligible on the nanometer scale even if the 

p+ is doped as high as Na = 1020 cm-3. To account for that, we note that for 𝜓′(𝑥) in the p+ region 

(x  xs),  
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𝑑2𝜓′

𝑑𝑥2 =
𝑞

𝜀𝑠𝑖
[𝑁𝑎 − 𝑛𝑖𝑒

−𝑞𝜓′/𝑘𝑇].                                          (5.21) 

 

Integrate once with the condition 𝑑𝜓′/𝑑𝑥 = 0 at 𝜓′ = −(𝑘𝑇/𝑞) 𝑙𝑛( 𝑁𝑎/𝑛𝑖), 

(
𝑑𝜓′

𝑑𝑥
)

2

=
2𝑘𝑇𝑁𝑎

𝜀𝑠𝑖
[

𝑛𝑖

𝑁𝑎
𝑒−𝑞𝜓′/𝑘𝑇 +

𝑞𝜓′

𝑘𝑇
+ 𝑙𝑛 (

𝑁𝑎

𝑛𝑖
) − 1].                       (5.22) 

The boundary condition at x = xs for  and d/dx is then 

(
dψ

dx
|

x=xs

)
2

=
2𝑘𝑇𝑁𝑎

𝜀𝑠𝑖
[

𝑛𝑖

𝑁𝑎
𝑒−𝑞𝜓(𝑥𝑠)/𝑘𝑇 +

𝑞𝜓(𝑥𝑠)

𝑘𝑇
+ 𝑙𝑛 (

𝑁𝑎

𝑛𝑖
) − 1]                      (5.23) 

                         

for matching 𝜓′ and 𝑑𝜓′/𝑑𝑥 in the p+ region. 

 

Applying Eq. (5.18) to Eq. (5.23) yields 

E0
2 =

2kTNa

εsi
[

ni

Na
e-qψ(xs)/kT + ln (

Na

ni
eqψ(xs)/kT) -1] −

2𝑘𝑇𝑛𝑖

𝜀𝑠𝑖
𝑒𝑞[𝜓(𝑥𝑠)−𝑉]/𝑘𝑇         (5.24) 

Let x = xs in Eq. (5.19) and approximate sinh [
qE0xs

2kT
+ z0]  as 

1

2
exp [

qE0xs

2kT
+ z0], we obtain 

2kT

q
z0 = V +

2kT

q
ln {2√

εsi

2kTni
E0} -E0xs-ψ(xs)                               (5.25) 

Let x = 0 in Eqs. (5.18), (5.19) and substitute 𝜓(0) and (𝑑𝜓/𝑑𝑥)|𝑥=0 in Eq. (5.20): 

𝑉𝑔𝑠 − 𝜙𝑚𝑖 = 𝑉 +
2𝑘𝑇

𝑞
𝑙𝑛 {√

𝜀𝑠𝑖

2𝑘𝑇𝑛𝑖
ℰ0} −

2𝑘𝑇

𝑞
𝑙𝑛[𝑠𝑖𝑛ℎ 𝑧0] +

𝜀𝑠𝑖

𝜀𝑜𝑥
𝑡𝑜𝑥ℰ0 𝑐𝑜𝑡ℎ 𝑧0      (5.26) 

An implicit equation for a single unknown (xs) is obtained by expressing z0 in Eq. (5.26) with 

Eq. (5.25), then replacing all 0 in terms of (xs) using Eq. (5.24). 

To justify that the hole density is negligible in Eq. (5.17), we first note that the average 

field in the undoped region (0, xs) is av  (Eg/q)/xs for gate voltages close to the condition where 
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the front surface inverts, like that shown in Fig. 5.7. For xs = 10 nm in our case, av  1 MV/cm. 

For this field, Eq. (5.23) with Na = 1020 cm-3 gives (xs)  −0.54 V thus p(xs) = ni exp[−q(xs)/kT] 

 1019 cm-3. For x < xs, the effect of p(x) = ni exp[−q(x)/kT] on the field  can be estimated from 

Poisson’s equation as follows:          

/
( ) ( )/

0 (0)
( )

s s s

q kT
x x q x kT

i i
si si si av

q q e kT
p x dx n d n e


 




  

−
−

 = = 
− E
E E

 

Plugging in the numbers above,   (kT/siav)p(xs)  0.04 MV/cm << av. This shows that the 

hole density in the undoped region has a negligible effect on (x) compared to the existing field 

av in the undoped region.     

 

Once 0 and z0 are solved for given Vgs and V, the mobile charge density Qi (taken as 

positive) can be evaluated from Gauss’ law:  

Qi(Vgs, V) = -εsi [
dψ

dx
|

x=0
-

dψ

dx
|

x=xs

] = εsiE0 {coth z0 - coth [
qE0xs

2kT
+ z0]}         (5.27) 
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Figure 5.8   Mobile charge density per area at a point in the channel versus electron quasi-Fermi potential 

for a given gate voltage. The solid lines are solved from Eq. (5.27). The dashed lines are the linear 

approximation of Eq. (5.32).  

 

 

Figure 5.8 shows an example of Qi versus V plots solved from the model for several 

values of Vgs. For the case of constant mobility (0), the long channel MOSFET current is simply 

given by the integral of Qi with respect to V from 0 to Vds, the source-to-drain voltage: 

𝐼𝑑𝑠(𝑉𝑔𝑠, 𝑉𝑑𝑠) = 𝜇0
𝑊

𝐿
∫ 𝑄𝑖(𝑉𝑔𝑠 , 𝑉)𝑑𝑉

𝑉𝑑𝑠

0
.   (5.28) 

Here, W and L are the width and length of the MOSFET. Model generated Ids-Vgs plots for L = 1 

m are shown in Fig. 5.9. They are consistent with TCAD simulations. The Ids-Vds plots are shown 

in Fig. 5.10. The model currents in saturation are slightly ( 3%) below those of TCAD. The slight 

discrepancy is resolved by applying the non-GCA model described in the next section to this case.  
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Figure 5.9   Ids-Vgs characteristics generated by the model in both linear and log scales compared to TCAD. 

The device parameters assumed are: tox = 2 nm, ox = si, xs = 10 nm, Na = 1020 cm-3, and 0 = 200 cm2/V-s. 

The gate work function is that of n+ silicon.    

 

 

Figure 5.10   Ids-Vds characteristics generated by the model compared to TCAD. The squares are from the 

GCA model discussed in this section. The dots are from the non-GCA model discussed in the next 

section. 
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5.2.2  Non-GCA Model with 𝑛 = 1 and 𝑛 = 2 Velocity Saturation 

 Below 1 m channel length, MOSFET currents are limited by velocity saturation. We 

consider two velocity saturation models here: n = 1 and n = 2. For n = 1,   

 

Ids =
μ0WQi

1+(μ0/vsat)(dV/dy)

dV

dy
.         (5.29) 

 For n = 2, 

Ids =
μ0WQi

√1+(μ0/vsat)2(dV/dy)2

dV

dy
.                                (5.30) 

In the above, 0 is the low-field mobility, vsat is the saturation velocity. Application of the GCA 

model from the previous section to Eqs. (5.29) or (5.30) yields unphysical Ids-Vds results: either a 

negative slope or no solution beyond the Ids peak, because dV/dy diverges when vsat is reached in 

the channel.  

To deal with the problem, we apply a non-GCA model by adding a lateral field term, 𝑄𝑖𝐿 =

𝜀𝑠𝑖𝑑𝑠𝑖𝑑2𝑉/𝑑𝑦2, to the mobile charge density, where dsi is a depth parameter  xs, the undoped 

region depth. Thus, for n = 1, 

Ids =
μ0W

1+(μ0/vsat)(dV/dy)
(Qi

' + εsidsi
d2V

dy2
)

dV

dy
                   (5.31)  

The gate induced mobile charge density Qi in the GCA model is given by Eq. (5.27) and plotted 

in Fig. 5.8 (solid curves). It never goes negative because Qi is the total mobile charge density in 

the GCA model. Physically, however, the gate induced charge density, proportional to the oxide 

field in the gate direction, does go negative over the channel portion where the channel potential 

V becomes higher than the gate potential. In the non-GCA model, Eq. (5.31), 𝑄𝑖
′
 can go negative 
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while the total mobile charge density, 𝑄𝑖
′ + 𝑄𝑖𝐿 , stays positive. In this work, we make use of the 

well-known expression for 𝑄𝑖
′
: 

Qi
' = Cinv(Vgs-Vt-mV),                             (5.32) 

with m the body effect factor given by 1 + (𝜀𝑠𝑖/𝑥𝑠)/(𝜀𝑜𝑥/𝑡𝑜𝑥). The other parameters are extracted 

from the GCA model as follows: 𝐶𝑖𝑛𝑣(𝑉𝑔𝑠 − 𝑉𝑡) is given by 𝑄𝑖(𝑉 = 0), i.e., the initial Qi value in 

Fig. 5.8. The slope, 𝑚𝐶𝑖𝑛𝑣 , is set so that the maximum positive area under Eq. (5.32), 

∫ 𝑄𝑖
′(𝑉)𝑑𝑉

𝑉𝑔𝑠−𝑉𝑡
𝑚

0
=

𝐶𝑖𝑛𝑣(𝑉𝑔𝑠−𝑉𝑡)2

2𝑚
, equals the integrated area of Eq. (5.27) in Fig. 5.8, ∫ 𝑄𝑖(𝑉)𝑑𝑉

∞

0
, 

for each Vgs. The so-obtained 𝑄𝑖
′(𝑉) are shown as dashed lines in Fig. 5.8. 𝑄𝑖

′
 changes sign when 

the potential in the channel exceeds 
𝑉𝑔𝑠−𝑉𝑡

𝑚
 and the field in the oxide reverses. The extracted Cinv is 

somewhat lower than Cox because of the finite inversion layer capacitance. It can be seen in Fig. 

5.8 that Cinv, proportional to the slope −𝑑𝑄𝑖/𝑑𝑉, decreases towards lower gate voltages. In this 

case, Cinv = 0.9 Cox, 0.85 Cox, and 0.75 Cox, respectively for the three Vgs shown.      

 By multiplying the denominator to the LHS, Eq. (5.31) can be integrated once:  

       
Ids

μ0W
y +

Ids

vsatW
V = Cinv [(Vgs-Vt)V-

m

2
V2] +

εsidsi

2
[(

dV

dy
)

2

-E1
2]              (5.33) 

 

where 1 = (dV/dy)y=0 at the source. Since d2V/dy2 is negligible at the source, setting V = 0 in Eq. 

(5.31) gives   

 

E1 =
Ids

μ0WQi
'(V=0)-(μ0/vsat)Ids

.                 (5.34) 
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For a given Ids, Eq. (5.33) is a 1st order ordinary differential equation that can be solved numerically 

for V(y). Vds is then the value of V(y) when y reaches L. The n = 1 Ids-Vds characteristics generated 

by the model are shown in Fig. 5.11. They are in close agreement with TCAD simulations. 

 

 

Figure 5.11   Ids-Vds characteristics generated by the n = 1 non-GCA model compared to TCAD. The 

parameters are L = 100 nm, vsat = 107 cm/s, dsi = 5 nm. The rest of parameters are the same as those in the 

caption to Fig. 5.9. 

 

 

Similarly, the n = 2 non-GCA model looks like  

 

Ids =
μ0W

√1+(μ0/vsat)2(dV/dy)2
(Qi

' + εsidsi
d2V

dy2
)

dV

dy
.                                 (5.35) 

 

To numerically solve this equation, a different procedure from that of n = 1 is followed. Equation 

(5.35) is first converted to a first-order differential equation in 2( ) ( / )g V dV dy [3]:  
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2 2

2 2 20
01 ( ) .

2

si si
ds i

sat

d dg
I g W g Q V

v dV

 


    + = +    
    

                                 (5.36) 

The initial condition g(V = 0) is obtained by neglecting d2V/dy2 in Eq. (5.35) and solving for 

(dV/dy)2: 

 

2

0

2
2

( / )
( 0)

( 0) ( / )

ds

i ds sat

I W
g V

Q V I Wv


= =

  = −
 

                       (5.37) 

 

After g(V) is solved numerically, g-1/2 = dy/dV is readily integrated from V = 0 to Vds where y = L 

is reached. The n = 2 Ids-Vds characteristics solved by the model are shown in Fig. 5.12 to be 

consistent with TCAD results.   

         

 

Figure 5.12   Ids-Vds characteristics generated by the n = 2 non-GCA model compared to TCAD. The 

parameters are the same as those in Fig. 5.11. 
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Figure 5.13   Ids-Vds characteristics generated by the n = 1 non-GCA model compared to TCAD with 

different dsi. The rest of parameters are the same as those in the caption to Figs. 5.9 and 5.11. 

 

 

5.2.3 Comparison with Hardware Data by Adding Rsd 

Model with Parasitic Source and Drain Resistance  

 In reality, there are source and drain series resistances in a MOSFET device that can 

adversely affect the drain current. An example is shown in Fig. 5.14(a) where the Ids-Vds 

characteristics generated by the intrinsic model of Section III are plotted alongside with the 

published data of 20 nm bulk MOSFETs. It is relatively straightforward to add source and drain 

series resistance to the non-GCA model since it computes Vds for a given Ids. Models that compute 

Ids for a given Vds would require multiple iterations. 
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 With a source resistance Rs, the applied Vgs is reduced by the IR drop such that the gate 

voltage experienced by the intrinsic device is       

Vgs
' = Vgs-RsIds.                       (5.38) 

For each given set of 𝑉𝑔𝑠
′ and Ids as the input, the n = 1 velocity saturation model in the previous 

section is called upon to calculate 𝑉𝑑𝑠
′ of the intrinsic device. Then the external source-to-drain 

voltage is given by     

Vds = Vds
' + (Rs + Rd)Ids.                  (5.39) 

By repeating the procedure for a series of Ids values with the same Vgs, an Ids-Vds characteristic is 

generated for that Vgs. Note that 𝑉𝑔𝑠
′ takes on different values as Ids is varied under the same Vgs.    

 

Figure 5.14(b) shows that, with proper gate-voltage dependent series resistance added to the 

n = 1 velocity saturation model, the Ids-Vds characteristics generated closely match the 20 nm 

MOSFET data. Here, Rs and Rd vary from 150 -m to 200 -m to 600 -m for Vgs = 0.9, 0.7, 

and 0.5 V, respectively. The other device parameters in the model are listed in the figure captions.    
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Figure 5.14    Ids-Vds characteristics generated by the n = 1 velocity saturation model compared to the 

published data of 20 nm MOSFETs. (a) No source and drain resistance. (b) With source and drain resistance 

(values given in the main text) added to the model. In both (a) and (b), solid curves are the published 
hardware data, dots are the model results. Parameters used in the model are: L = 20 nm, EOT = 1.2 nm, m 

= 1.3, Vt = 0.25 V, dsi = 15 nm. The mobility and saturation velocity assumed are the same as in the earlier 

figures. Similar Cinv, namely, Cinv = 0.87 Cox, 0.71 Cox, and 0.65 Cox, for Vgs = 0.9, 0.7, and 0.5 V respectively 

are used. 
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CHAPTER 6  SCE OF ET-SOI MOSFETS 

SOI CMOS involves building more or less conventional MOSFETs on a thin layer of 

crystalline silicon, as illustrated in Fig. 6.1. The thin layer of silicon is separated from the 

substrate by a thick layer (typically 25 nm or more) of buried SiO2 film, thus electrically 

isolating the devices from the underlying silicon substrate and from each other. An SOI CMOS 

process can be readily developed due to the compatibility with established bulk processing 

technology. 

 

 

Figure 6.1. A schematic cross-section of SOI CMOS, with shallow trench isolation, dual 

polysilicon gates, and self-aligned silicide. 

 

6.1 Short-Channel SOI MOSFETs 

Short-Channel SOI MOSFETs 

It has long been reported in the literature that fully-depleted SOI MOSFETs are more 

susceptible to short-channel effects (SCE) for lack of a conducting plane not too far below the 

device region (Su et al., 1994; Wong et al., 1994). The 2-D scale length model, however, does 

not apply to SOI MOSFETs because no closed rectangular region can be defined with known 
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potential values on its boundary. TCAD has become a necessary tool for investigating SCE in 

SOI MOSFETs (Xie et al., 2013). 

 

2-D Fields in the Buried Oxide  

Figure 6.2 compares the constant potential contours of a bulk ground-plane MOSFET 

with an SOI MOSFET side by side. In the bulk case, the 2-D fields are confined to the depletion 

(undoped) region bounded below by the conducting substrate. In the SOI case, on the other hand, 

the 2-D fields from the source and drain penetrate into the thick BOX region. Conceptually, 

since the scale length is given by the effective vertical distance between the gate and the bottom 

conductor, deeper field penetration would worsen the SCE. The mitigating factor is that the 

depth of field penetration is channel length dependent. Only for very long channel devices is the 

vertical distance given by the entire BOX thickness. For short channel devices where it matters, 

the effective depth of field penetration is much less than the BOX thickness.   
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(a)      (b) 

Figure 6.2. 2-D constant potential contours of (a) bulk and (b) SOI MOSFETs. For both 

devices, tox = 1 nm, L = 50 nm, Vds = 1.0 V, Vbs = Vbg = 0. For the bulk, the depletion region 

(undoped) depth is 10 nm. For the SOI, the silicon thickness is 10 nm, and the BOX thickness is 

200 nm. The labels refer to the potential as that defined  
𝑑2𝜓

𝑑𝑥2 =
𝑞

𝜀𝑠𝑖
𝑛𝑖𝑒

𝑞(𝜓−𝑉)/𝑘𝑇 , i.e., ψ(x, y)  –

[Ei(x, y) – Efs]/q. The value of Vgs is such that the minimum surface potential between the source 

and drain, s,min, is 0.29 V (after Xie et al., 2013). 

 

 

 Figure 6.3 compares the Vt roll-off curves of the bulk and SOI MOSFETs in Fig. 6.2. By 

defining an Lmin where the Vt roll-off is Vt = −50 mV, we obtain Lmin = 29 nm for the bulk 

MOSFET1 and Lmin = 58 nm for the SOI MOSFET. To gain further insight, s,min, the minimum 

surface potential between the source and drain of a short channel device with respect to that of 

the long channel device, is plotted as a function of L in Fig. 6.4. For the bulk MOSFET, s,min 

versus L is largely proportional to exp[−L/(2)], as expected from the scale length model with a 

 of 12.6 nm given by 
1

𝜀𝑜𝑥
𝑡𝑎𝑛 (

𝜋𝑡𝑜𝑥

𝜆
) +

1

𝜀𝑠𝑖
𝑡𝑎𝑛 (

𝜋𝑊𝑑𝑚

𝜆
) = 0 for Wdm = 10 nm and tox = 1 nm. For 

the SOI MOSFET, first, the exponential slope is far less steep compared to that of the bulk 
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device, indicating longer  and worse SCE. Second, the exponential slope is not constant, but 

increases towards shorter L, i.e., the effective  decreases with decreasing L. This is attributed to 

the decrease of the depth of 2-D field penetration in Fig. 6.2(b) as L is shortened.  

 

 

 

Figure 6.3. Short-channel Vt roll-off of the bulk and SOI MOSFETs in Fig. 6.2. Here, Vt is defined as 

the Vgs value where Ids = 10-8 A (W/L = 1), and Vt roll-off is defined as Vt = Vt(L) – Vt(Long channel). 

The -50 mV intercepts are L = 29 nm for bulk and 58 nm for SOI.  
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Figure 6.4. s,min, the minimum surface potential between the source and drain of a short channel 

device with respect to that of the long channel device for the SOI and bulk MOSFETs in Fig. 6.5. The 

dashed line is exp[−L/(2)] with  = 12.6 nm. The 50 mV intercepts are L = 26 nm for bulk and 45 nm 

for SOI. 

 

 

6.2 Effects of BOX Thickness, Silicon Thickness, and Backgate 

Bias on SCE 

Tremendous progress has recently been made on ET-SOI (extremely thin silicon-on-

insulator) material and technology. Silicon film as thin as 5 nm and BOX (buried oxide) layer as 

thin as 10 nm are currently available. They are expected to allow scaling of MOSFET channel 

lengths to a regime competitive with FinFETs.    

 

An analytic scale length model has been developed that works well for predicting the SCE 

(short-channel effect) of bulk and DG (double-gate) MOSFETs. However, no such analytic model 

is available for SOI MOSFETs. By using TCAD simulations, an empirical expression of minimum 
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channel length has been worked out for SOI devices with BOX layers 200 nm thick. But it is not 

clear how it may improve with thinner BOX layers.          

 

In this work, we extend the investigation of SCE in ET-SOI MOSFETs in terms of the 

minimum channel length as a function of the BOX thickness and silicon thickness. Another factor 

is the effect of backgate bias on SCE. To realize a threshold voltage target in the range of 0.3-0.4 

V (nMOS), either a midgap gate with positively biased backgate or an n+ silicon work function 

gate with negatively biased backgate can be used. They make a significant difference on SCE 

because in subthreshold the mobile charge density peaks at the back surface in the former case and 

peaks at the front surface in the latter case.           

  

 

Figure 6.5. Cross-section of ET-SOI MOSFET investigated in this work. The range of BOX thickness is 

10-200 nm. The range of silicon thickness is 2-10 nm. An EOT of 1 nm is assumed. Vds = 1.0 V. Different 

type and concentration of substrate doping have been studied.   
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Effect of BOX and Silicon Thickness on SCE   

Fig. 6.5 shows a schematic cross-section of the ET-SOI n-channel MOSFET studied in this 

work. The silicon body is undoped. The substrate is either lightly doped (1015 cm-3, n- or p-) or a 

ground plane (51018 cm-3, n+ or p+ GP). A gate oxide thickness of 1 nm is assumed. Both midgap 

and n+ silicon gate work functions are considered.  

 

Fig. 6.6 shows the threshold roll-off curves for different BOX thickness obtained from 

TCAD simulations. Vt-roll-offs are extracted from high-drain bias (Vds = 1.0 V) subthreshold Ids-

Vgs characteristics at a constant current level of 10-8 A (W/L = 1) for different channel lengths. The 

minimum channel length (Lmin) is defined as the channel length with a Vt-roll-off of 100 mV.  

       

The improvement of Lmin with BOX thickness is rather moderate—about 20% from a BOX 

thickness of 200 nm to 10 nm. This is because the depth of 2-D field penetration into BOX is 

channel length dependent,  0.2L empirically [4]. Therefore, thick BOX does not pay a penalty, 

in terms of the field penetration hence SCE, as much as the physical BOX thickness. 
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Figure 6.6. Short-channel Vt roll-off versus BOX thickness. A p+ GP connected to the n+ source is assumed 
in all three cases. Lmin are 52, 47, 42 nm for BOX thickness of 200, 25, 10 nm, respectively. 

 

 

Fig. 6.7 plots the Vt-roll-off of ET-SOI MOSFETs with different silicon thickness for the 

same BOX thickness of 10 nm. In this case, Lmin is very sensitive to the silicon thickness, 

improving by over 2 when tsi is reduced from 10 nm to 2 nm. The latter is close to the quantum 

limit below which the threshold voltage becomes highly sensitive to the silicon thickness. An 

empirical expression for Lmin is  

min 03.3 ( )siL t l  +  

where l0  3 nm for tox = 1 nm and tBOX = 10 nm. The experimental result of 20 nm MOSFETs with 

3.5 nm silicon film lends support to the above expression. 
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Figure 6.7. Short-channel Vt roll-off versus silicon thickness. A p+ GP connected to the n+ source is assumed 

in all three cases. Lmin are 42, 27, 16 nm for silicon thickness of 10, 5, 2 nm, respectively.  

 

 

Effects of Substrate Doping, Gate Work Function, and Back Gate Bias on SCE  

For thin BOX MOSFETs, the substrate doping type and concentration have an effect on 

SCE. Figure 6.8 compares the Vt-roll-off with a p- (1015 cm-3) substrate, a p+ ground plane (51018 

cm-3), an n- (1015 cm-3) substrate, and an n+ ground plane (51018 cm-3). The p+ ground plane helps 

SCE slightly compared to that of a p- substrate. But with an n+ ground plane or n- substrate, the 

SCE is significantly worse. The case of nMOS on n+ ground plane is relevant because its SCE is 

equivalent to that of a pMOS on p+ ground plane if the p+ layer is formed uniformly over the entire 

substrate. From the SCE point of view, it is most desirable to have a p+ ground plane under nMOS 

and an n+ ground plane under pMOS, much like the p-well and n-well configuration in a bulk 

CMOS technology.   
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Figure 6.8. Comparison of Vt roll-off of nMOS with respect to substrate doping type and concentration. 
The substrate is grounded to the source in all cases. 

 

 

To realize a desirable threshold voltage in the range of 0.3-0.4 V, the choice of gate work 

function plays a major role. Midgap work function gives too high a value and n+ silicon work 

function too low. Since it is difficult to fine tune the gate work function to the precise value 

between midgap and n+, the common practice is to adjust Vt by a substrate bias, Vbg. For midgap 

gates, a positive Vbg is applied to lower Vt while for n+ silicon gates, a negative Vbg is applied to 

raise Vt. They have opposite effects on the SCE.  

 

 Figure 6.9 compares the Vt-roll-off of three devices, all with long channel threshold within 

0.3-0.4 V. The first device has midgap work function on the front gate with Vbg = 3 V to lower the 

threshold. The second device has Vbg = 0 and relies on the work function of front gate to adjust Vt 

to the desired value. In this case, the SCE is independent of the Vt value. The third device has n+ 

work function on the front gate with Vbg = −3 V to raise the threshold. The figure shows that the 
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first device with Vbg > 0 has the worst SCE while the third device with Vbg < 0 has the best SCE, 

with an Lmin about 30% shorter than the one with Vbg = 3 V.  

 

 

Figure 6.9. Comparison of SCE for different gate work function and backgate bias. With midgap work 
function, Vbg = 3 V is applied to lower Vt and with n+ silicon work function, Vbg = -3 V is applied to raise 

Vt. The middle case relies on the gate work function with no Vbg to tune Vt to the right range. Lmin are 32, 

27, 24.5 nm respectively for the three cases. 

 

 

The underlying reason is made clear in Fig. 6.9 where the potential versus depth is 

compared between the devices with positive and with negative Vbg. The device with Vbg = −3 

V has a field in silicon such that the potential is higher at the front surface. Its subthreshold 

swing is  65 mV/decade or            
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as expected. In the above, the numerator is the dielectric distance between the gate and the 

substrate, and the denominator is the dielectric distance from the front channel to the substrate. 

The device with Vbg = 3 V, however, has a field in the opposite direction such that the potential is 

highest at the back surface. The subthreshold swing is  77 mV/decade or   
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( / ) ( / )
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( / )

si ox ox si si ox BOX

si ox BOX

t t t
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t

   

 
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   

Here, the denominator is reduced to the dielectric distance between the back channel and the 

substrate. This means that in addition to the worse Vt roll-off, the midgap device with Vbg = 3 V 

has degraded subthreshold swing such that its off current level is orders of magnitude higher than 

the device with Vbg = −3 V. 

 

 

Figure 6.10. Potential versus depth for the cases of Vbg = 3 V and Vbg = -3 V in Fig. 6.8. The gate biases 

are in subthreshold such that Ids = 10-8 A (W/L = 1) in both devices.  
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CHAPTER 7 CONCLUSION 

In this dissertation, a continuous MOSFET model has been developed that takes the effect 

of lateral field gradient on carrier density into account. It goes beyond the GCA model and 

produces finite output conductance in the saturation region, without invoking CLM. It also 

explains why the carrier density is not pinched off even though the oxide field is zero or negative 

beyond the saturation point. Model generated Ids-Vds and gdc-Vds curves are consistent with TCAD 

simulations.   

 

By capturing the essential physics, namely, the effect of lateral field gradient on carrier 

density, the model reduces the 2D potential problem to a first-order ordinary differential equation 

that can be solved readily on a spread sheet or with a standard mathematical tool. With regional 

approximations, the differential equation is solved analytically for V(y) in the velocity saturation 

region. When coupled with modified CLM relations between current and GCA length, closed-

form expressions are derived for the output conductance under both n = 1 and n = 2 models. The 

analytic solution derived for the velocity saturation region can be used to construct a compact 

model by connecting it to the conventional GCA solution for the triode region. 

 

A physical model for ground-plane MOSFETs near the limit of bulk CMOS scaling is also 

developed. It starts with a GCA model for long channel devices by analytically solving 1-D 

Poisson’s equation, taking into account depletion in the ground-plane. A non-GCA model 

continuous into the velocity saturation region is then formulated with the addition of a lateral-field 

driven mobile charge density in the current continuity equation. By incorporating series source 
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and drain resistance to the model, it produces Ids-Vds characteristics similar to the published 20 nm 

MOSFET data.     




