UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Non-GCA Modeling for Double-Gate and Ground-Plane MOSFETs

Permalink

bttgs:ééescholarshiQ.orgéucéitem422c9x3sg

Author
Su, Mei-Hua

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/22c9x3s2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Non-GCA Modeling for Double-Gate and Ground-Plane MOSFETSs

A Dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

Electrical Engineering (Applied Physics)

by

Mei-Hua Su

Committee in charge:

Professor Yuan Taur, Chair
Professor Chung-Kuan Cheng
Professor Kenji Nomura
Professor Paul K. L. Yu

2024



Copyright
Mei-Hua Su, 2024

All rights reserved



The Dissertation of Mei-Hua Su is approved, and it is acceptable in
quality and form for publication on microfilm and electronically.

University of California San Diego

2024



DEDICATION

This dissertation is dedicated to my parents for their great support and unbounded love.



TABLE OF CONTENTS

DISSERTATION APPROVAL PAGE.......ccii ittt iii
DEDICATION . ..ottt et e st e et e e s e e s te e e te e e naeeeneeesteeanteeaneeenreeannes iv
TABLE OF CONTENTS ...t ecie ittt ettt a et e et e e st e e ta e e taeanaeesnaeesneeaneee e %
LIST OF FIGURES .......ccooi ettt ettt et e e nte et e e ta e e teennaeenneeennes vii
ACKNOWLEDGEMENTS......oiiii ettt ettt e st e et e naeesreeennaeaneeenneens Xii
AV I I TP TP P P PP RPPPPPP X1l
ABSTRACT OF THE DISSERTATION ....oooiiiiitii ettt Xiv
CHAPTER 1 INTRODUGCTION ....eiiiiiiiiiieeiiiiee ettt a et e e et e e e s snbaeeeeannees 1
CHAPTER 2 PROBLEMS WITH GCA MODELING OF THE MOSFET SATRURATION REGION....... 3

2.1 GCA MODEL UNDER CONSTANT IMOBILITY w..cvtiuiiirieiieieereereere et et sree e e sre e sneesreesreesreesneesneesnes 3

2.2 GCA MODEL UNDER VELOCITY SATURATION.....ccutitiittirieirieirtere st sne s e e 11
CHAPTER 3 HISTORY OF MODELING THE MOSFET SATURATION REGION........ccccviviiiieniiene 19

................................................................................................................................................................... 19

3.2 EL-MANSY AND BOOTHROYD’S TWO-DIMENSIONAL MODEL IN THE SATURATION REGION ................ 20

3.3 PING KO S PHD THESIS ..cciiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 23
CHAPTER 4 NON-GCA MODEL FOR DG MOSFETS .. oot 28

R 7 AN B I 1 O 1y T ] 28

4.2 CONSTANT IMOBILITY c.ooiiiiiieeeeeeeeeeeeee e 36

4. 3N=1 VELOCITY SATURATION ....uuuuteeiteeeeiietieeeessesssssssssssssssssssssssssssssssssssssssssnsssssssssnsssssssssssssssnssnnnn 43

4.4 N=2 VELOCITY SATURATION ....uuuuutuuuuuennnneennneenennsnasesansssesanssssaeanseaaseaaennasasnnssssssnnnsssnsssssssssssssssssssssnsnnnes 47

4.5 EXPLICIT SOLUTION BY REGIONAL APPROXIMATION ...ccooviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 54

4.6 NUMERICAL SOLUTION METHODS: FORWARD EULAER VERSUS BACKWARD EULER ........ccvvvvvvvviveennnes 57
CHAPTER 5 NON-GCA MODEL FOR BULK MOSFE T S... ittt 63

S.LUNIFORM DOPING ...covvitiiiieiiiieeetee ettt e e e ettt e e e e e s e e et e e e e e s e e et b seeesseea bbb seeeseeasbbaaseeessensrren 63

5.2 GROUND-PLANE IMOSFET S ..ottt e e eeeeeeeaeseeeseeseseseseseseesesseesseeeeseeseeneees 70
CHAPTER 6 SCE OF ET-SOI MOSFETS. ...ttt 91

6.1 SHORT-CHANNEL SOOI IMOSFET ... ittt e et e e e e et e e e e e s e e abb e eeeeeeasbaes 91

6.2 EFRECTS OF BOX THICKNESS, SILICON THICKNESS, AND BACKGATE BIASON SCE .......ccoovvvviiiieeenn. 95



CHAPTER 7 CONCLUSION

Vi



LIST OF FIGURES

Figure 2.1: A schematic MOSFET CroSS SECHION. .....cccuviiiiieeiiieeiiieesiiee st e e siee s sneee e 3
Figure 2.2: Inversion charge density as a function of the quasi-Fermi potential V. ....................... 7
Figure 2.3: lgs-Vds CUIVES (SOld) SOIVE. .....oioiiiiiieiiee e 8
Figure 2.4: Schematic diagram of a double-gate MOSFET. . .......ccccoiiiiiiiniiiie e 9
Figure 2.5: GCA model generated lgs-Vds CaraCteristiCs. ..........ccoovveiuieiiiiiie e 12

Figure 2.6: lgs-Vgs characteristics generated by the GCA models under the n = 1 velocity
SALUIALION MOEL. .. .eeeeeeeec e s et e e s e e e s earee s 15

Figure 2.7: lgs-Vgs characteristics generated by the GCA and under the n = 2 velocity saturation

=] 1[0 PO PP TP PR 16
Figure 2.8: dV/dy at the drain (y = L) versus Vgs for the case for n=1. ........cccooviiiiiiiiiinninnnn, 17
Figure 2.9: dV/dy at the drain (y = L) Versus Vas TOr N=2. .......cooooiiiiiiieecee e 18
Figure 3.1: A schematic cross section of an IGFET to illustrate source and drain section and

BXES. 1ttt E e e E e 20
Figure 3.2: Definition of the drain section bOUNdAries. ..........cccoveiiiieiiiie e 22
Figure 3.3: A closer look into the cross section of a MOSFET near drain. ...........ccccceevivveeinnnn, 23
Figure 4.1: Double-gate (DG) MOSFET SITUCIUIE. .....vvveeiiieeciie e ciee et see e 28
Figure 4.2: GCA model generated l4s-Vas characteristics compared to TCAD. .......cccceevvvvvevnnnn, 28
Figure 4.3: From TCAD at bias point A onthe Vgs = 1.5V curve in Fig. 4.2. .......ccccoovvvvennnene, 30
Figure 4.4: From TCAD at bias point B on the Vgs= 1.5V curve in Fig. 4.2. ......cccovvvvvinnnnnne, 30
Figure 4.5: From TCAD at bias point Bin Fig. 2, Vgs =15V, Vis = 1.8 V. cceoviiiiiiiiiiiiei, 32
Figure 4.6: From TCAD: Potential and Fermi potential along a cut through the center. ............. 32
Figure 4.7: Comparison of Qi(V) from TCAD, GCA model, and Eq. (4.19).........ccccoveeviveeiinnnnn 35

Figure 4.8: Potential contour plot from TCAD. The bias point is Vgs = 0.9 V, Vgs = 1.2 V, under
the n = 2 velocity saturation MOdel. ............cooviiiiiii i 36

Figure 4.9: (a) Solution to Eq. (4.9) with Igs set at 6% over the peak (ldasat). (b) Agreement
between the lq4s-Vas computed point by point and that by multiplying (laso/L) to the y(V) curve. .40

vii



Figure 4.10: Figure caption eXamMPIE. ........cooiiiiiiiiieie e 42

Figure 4.11: l4s-Vas characteristics generated by the GCA and non-GCA models under the n =1
velocity saturation MOEL. .........ooouiiiiii s 45

Figure 4.12: dV/dy at the drain (y = L) versus Vgs for the case in Fig. 4.11. .......c.ccooveviiiiennnene 46

Figure 4.13: l4s-Vgs characteristics (n = 1 velocity saturation) generated by the continuous non-
GCA model compared With TCAD. .......ooiiiiieii e 47

Figure 4.14: Comparison of gdc = dlgs/dVas versus Vgs (n = 1 vel. sat.) between TCAD and the
(001 T 1@ AN 11T o < PSSP 47

Figure 4.15: l4s-Vgs Characteristics generated by the GCA and non-GCA models under the n = 2
velocity saturation model. 1 = 200 cm?/V-s, Vsat= 107 cm/s. Ciny is taken to be sfti................... 50

Figure 4.16: dV/dy at the drain (y = L) versus Vgs for the case in Fig. 4.12. Labels above the non-
GCA curve indicate the carrier velocity at those bias POINtS. ........cccovviviiiiiiiiiiieieee e 51

Figure 4.17: l4s-V4s Characteristics (n = 2 velocity saturation) generated by the continuous non-
GCA model compared With TCAD. ......coiiiiiieiiieiie e 52

Figure 4.18: Comparison of gqc = dlgs/dVgs versus Vgs (n = 2 vel. sat.) between TCAD and the
non-GCA model. Open squares are calculated from the explicit Eq. (4.54) valid for Vgs > Vgsat. 52

Figure 4.19: Comparison of the rigorous all region model, Egs. (4.1), (4.2) to the Ciny model, Eq.
(4.19) at Vigs 70-270 MV @QDOVE VL. woeeiiiie ettt stae e anae e 53

Figure 4.20: Model validity versus channel length. n = 1 velocity saturation model is assumed in
DOth MOdEl AN TCAD. ..o ettt 57

Figure 4.21: Solutions for Backward Euler and Averaged Euler methods with different step sizes
dy.

nm.

Figure 5.1: Plots from TCAD simulations. (a) Potential y(x) and electron density n(x) (right
scale) along three vertical cuts (b) Electron density versus depth in silicon along five vertical cuts
between the saturation point and the drain (y = 500 nm).

viii



Figure 5.2: y(V) solution to Eq. (5.5) for two values of lgs: ldas1 is 3% over lgsat, las2 is 6% over

Idsat. ........................................................................................................................................... 69
Figure 5.3: lgs-Vas curves (solid) solved from Eq. (5.5) for the device described in the caption to

Fig. 5.2. The dashed curves are from the GCA model for which currents saturate at lgsat. ~ ...... 69
Figure 5.4: A schematic diagram showing the low-high (retrograde) step doping profile. ... ...... 73

Figure 5.5: Band diagram and charge distribution of an extreme retrograde-doped or ground-
plane NMOSFET at the threshold condition. ..ot 75

Figure 5.6: A schematic cross-section of ground-plane MOSFETSs. Shown on the right is the
depth profile of body doping along a vertical cutline. .........ccoooviiiiii i, 76

Figure 5.7: Band diagram of a ground-plane nMOSFET biased near the threshold. The p* ground
plane is grounded t0 the NT SOUICE. ........eiiiiieieieee et 77

Figure 5.8: Mobile charge density per area at a point in the channel versus electron quasi-Fermi
potential for a given gate VOITAGE. ......cc.uiiiiiiiieiie e 81

Figure 5.9: lgs-Vgs characteristics generated by the model in both linear and log scales compared
L0 T 1O A I ST UPTURPR PR 82

Figure 5.10: lgs-Vgs characteristics generated by the model compared to TCAD. The squares are
from the GCA model discussed in thiS SECHION. ........c.coiiiiiiiiieie e 82

Figure 5.11: lgs-Vgs characteristics generated by the n = 1 non-GCA model compared to TCAD.

................................................................................................................................................. 85
Figure 5.12: lgs-Vgs characteristics generated by the n = 2 non-GCA model compared to TCAD.
................................................................................................................................................. 86
Figure 5.13: lgs-Vgs characteristics generated by the n = 1 non-GCA model compared to TCAD
WIEH QIFFEIENT Osiv vttt e e b nees 87

Figure 5.14: 14s-Vgs characteristics generated by the n = 1 velocity saturation model compared to
the published data of 20 nm MOSFETS. (a) No source and drain resistance. (b) With source and
drain resistance (values given in the main text) added to the model. ...........ccccoviveeiiieeiiieennen. 89

Figure 6.1: A schematic cross-section of SOl CMOS, with shallow trench isolation, dual

polysilicon gates, and self-aligned SIlICIAE. ...........ccveeiiiii i 91
Figure 6.2: 2-D constant potential contours of (a) bulk and (b) SOl MOSFETS. .........cccceevuveen. 93
Figure 6.3: Short-channel V: roll-off of the bulk and SOl MOSFETs in Fig. 6.2. ........cccccevneee. 9



Figure 6.4: Aysmin, the minimum surface potential between the source and drain of a short
channel device with respect to that of the long channel device for the SOI and bulk MOSFETS in

g 8.5 ettt ettt e ettt e e ee et ee e s ee ettt 95
Figure 6.5: Cross-section of ET-SOI MOSFET investigated in this work. ...........c.ccccceiiennene 96
Figure 6.6: Short-channel V¢ roll-off versus BOX thiCKNess. ............ccoveiiiiiniiniinciciec 98
Figure 6.7: Short-channel V roll-off versus silicon thickness..............ccccooviiiinicic 99

Figure 6.8: Comparison of V: roll-off of nMOS with respect to substrate doping type and
(o00] a0t a1 1 LA o] o PSPPSRI 100

Figure 6.9: Comparison of SCE for different gate work function and backgate bias. ............... 101

Figure 6.10: Potential versus depth for the cases of Vbg = 3 V and Vbg =-3 V in Fig. 6.8. ....102



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Prof. Yuan Taur. Without his
tremendous help and enlightening guidance during the past 5 years, | am unable to reach this
milestone in my life. He is a great expert with 50 years’ research experience and knowledge in the
field of semiconductor physics. His deep insight and vast knowledge benefit me throughout the
whole PhD study. The way he thinks and the attitude he has in pursuing the truth significantly
influences me. | can take great advantage of all I learn from him for my whole life.

Tons of thanks should be given to my committee members, Prof. Paul K. L. Yu, Prof. Kenji
Nomura, Prof. Prabhakar Bandaru and Prof. Chung-Kuan Cheng for taking their time to serve as
committee members to review my dissertation and give me valuable comments.

Many thanks to my friends in UCSD, in particular, Chuyang Hong, Zhongjie Ren, Ruoman
Yang, Chi-Hsin Huang, Hao-ping Lin, Hsuan Chang and Ben Qiu. Those friendships have meant
a lot to me.

Finally, and most importantly, | want to express my sincere gratitude to my parents for
their endless love and support. This dissertation is dedicated to them.

Chapter 4, in full, is a reprint of the material as it appears in Yuan Taur, Woojin Choi,
Jianing Zhang, and Meihua Su, “A Non-GCA DG MOSFET Model Continuous into the Velocity
Saturation Region”, IEEE Trans. Electron Device, pp. 1160-1166, Mar. 2019. The dissertation
author was an investigator and author of this paper.

Chapter 5, in full, is a reprint of the material as it appears in M.-H. Su, C. Hong, and Y.
Taur, “A Non-GCA Model for Ground-Plane MOSFETSs”, Solid-State Electronics, vol. 209, p.

108754, Nov. 2023. The dissertation author was the primary investigator and author of this paper.

Xi



Chapter 6, in full, is a reprint of the material as it appears in M.-H. Su, C. Hong, S.
Cristoloveanu and Y. Taur, “Effects of BOX Thickness, Silicon Thickness, and Backgate Bias on
SCE of ET-SOI MOSFETs,” Microelectronic Engineering, 238, 111506, Jan. 2021. The

dissertation author was the primary investigator and author of this paper.

Xii



VITA

2017 Bachelor of Electrophysics, National Chiao Tung University

2019 Master of Science in Electrical Engineering (Applied Physics), University of California
San Diego

2024 Doctor of Philosophy in Electrical Engineering (Applied Physics), University of
California San Diego

PUBLICATIONS

[1] “A Non-GCA DG MOSFET Model Continuous into the Velocity Saturation Region”,
Yuan Taur, Woojin Choi, Jianing Zhang, and Meihua Su, IEEE TRANSACTIONS ON
ELECTRON DEVICES, MARCH 2019

[2] E. M. Su, D. C. Hong and Y. Taur, “Effects of BOX thickness, silicon thickness, and
backgate bias on SCE of ET-SOI MOSFETSs”, Microelectronic Engineering, vol. 238, pp.
111506, Jan. 2021.

[3] M.-H. Su, C. Hong, and Y. Taur, “A Non-GCA Model for Ground-Plane
MOSFETs”, Solid State Electronics, vol. 209, pp. 108754, Aug. 2023

FIELD OF STUDY

Major Field: Electrical Engineering
Focused Field: Applied Physics/Engineering Physics

Xiii



ABSTRACT OF THE DISSERTATION

Non-GCA Modeling for Double-Gate and Ground-Plane MOSFETSs

by

Mei-Hua Su

Doctor of Philosophy in Electrical Engineering (Applied Physics)
University of California San Diego, 2024

Professor Yuan Taur, Chair

In this dissertation, non-GCA models are developed for both DG (Double-Gate) MOSFETs
and ground-plane bulk MOSGETSs. It is widely known that MOSFET velocity saturation region is
beyond the framework of GCA first invoked by Shockley in 1952, the bedrock of virtually all
MOSFET models. A few papers in the literature have dealt with the 2-D nature of the field pattern
in the saturation region of bulk or DG. In general, such models are unable to generate 1ds-Vds

curves continuous from the triode region into the velocity saturation region.

Xiv



A DG MOSFET model that goes beyond the gradual channel approximation is developed
by incorporating the effect of lateral field gradient on carrier density. It is shown that while the
oxide field crosses zero at the point of saturation and becomes negative beyond it, the channel is
not pinched off of charge carriers. The model generates l4s-Vas characteristics continuous into the
saturation region with finite output conductance consistent with TCAD. An explicit expression is

derived for the output conductance in saturation in terms of basic device parameters.

The continuous model is later extending MOSFET 1-V characteristics into the velocity
saturation region with finite output conductance. Both the n = 1 and n = 2 models have been
employed. It is shown that the standard relation of channel length modulation (CLM) for constant
mobility must be modified for velocity saturation because the drain current is not simply inversely
proportional to the channel length. Regional approximations are applied to derive explicit
expressions for the output conductance in the velocity saturation region in terms of basic device

parameters.

In the following section, a non-GCA (Gradual Channel Approximation) model continuous
into the velocity saturation region is developed for ground-plane bulk MOSFETs. The lgs-Vs
characteristics generated by both the n = 1 and the n = 2 models are consistent with 2-D
simulations. By incorporating source and drain series resistance into the model, it is shown that

the model can reproduce the l4s-Vags data of 20 nm bulk MOSFETSs published in the literature.
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CHAPTER 1 INTRODUCTION

In a field-effect transistor (FET), the current in the channel between the source and drain
is modulated by the voltage applied to the gate. Under most bias conditions, the field in the gate
direction is much stronger than the field in the source-drain direction. Modeling of an FET is much
simplified under the gradual channel approximation (GCA), which assumes in the Poisson’s
equation that the field in the source-drain direction is negligible compared to the field in the gate
direction. Virtually all FET models stemmed from the framework of GCA first invoked by
Shockley in 1952 [1][2]. While the application of GCA led to analytic models for the linear,
parabolic, and subthreshold regions, it renders either no solution or a negative slope in the
saturation region, i.e., in the lgs-Vgs characteristics at drain voltages beyond the value where the

current saturates.

It has been recognized early on that the field pattern in the velocity saturation region is of
a 2-D nature. A few papers in the literature [3][4] have dealt with the 2-D nature of the field pattern
in the saturation region of MOSFETSs. Their common approach is to divide the device into two
sections. In the section on the source side, the GCA holds. In the section on the drain side, 2-D
Gauss’ law is applied to obtain the length of the section, known as channel length modulation, as
a function of drain voltage. However, the critical lateral field at the start of the “velocity saturation”
section cannot be unambiguously defined. In general, such models are unable to generate lgs-Vds

curves continuous from the triode region into the velocity saturation region.

In this dissertation, a non-GCA model is formulated by adding a source-drain field term to

the gate-induced mobile charge density of the GCA model. It generates lgs-Vas Curves continuous



from the triode region into the velocity saturation region for double-gate (DG) and ground-plane

bulk MOSFETS. All have been verified by TCAD simulations.

The outline of the dissertation is as follows. Chapter 2 details the problems encountered
with GCA modeling of the MOSFET saturation region. Chapter 3 reviews the previous modeling
of the MOSFET saturation region in the literature. Chapters 4 describes the formulation of the
proposed non-GCA model and its application to DG MOSFETSs. Chapter 5 applies the non-GCA
model to bulk MOSFETS, including the uniformly-doped and ground-plane devices. Chapter 6 is
also part of the research work during the PhD study, but on a different topic: SCE (Short Channel

Effect) on ET-SOI (Extreme Thin Silicon on Insulator) MOSFETSs. Chapter 7 is the conclusion.

References:

[1] W. Shockley, “A unipolar field-effect transistor,” Proc. IRE, vol. 40, pp. 1365-1376, Nov. 1952.
[2] C. T. Sah, “Characteristics of the metal-oXide-semiconductor transistors,” IEEE Trans.
Electron Device, pp. 324-345, July 1964.

[3] Y. El-Mansy and A. Boothroyd, “A simple two-dimensional model for IGFET operation in the
saturation region,” IEEE Trans. Electron Devices, pp. 254-262, Mar. 1977.

[4] P. K. Ko, R. S. Muller, and C. Hu, “A unified model for hot electron currents in MOSFETsS,”

1981 IEDM Technical Digest, pp. 600-603.



CHAPTER 2 PROBLEMS WITH GCA MODELING OF THE
MOSFET SATURATION REGION

2.1 GCA Model under Constant Mobility

Figure 2.1 shows the schematic cross section of an n-channel MOSFET in which the source
is the n* region on the left, and the drain is the n* region on the right. A thin oxide film separates
the gate from the channel region between the source and drain. The x-axis is perpendicular to the
gate electrode and is pointing into the p-type substrate with x = 0 at the silicon surface. The y-axis
is parallel to the channel or the current flow direction, with y = 0 at the source and y = L at the
drain. The MOSFET is assumed to be uniform along the z-axis over a distance called the channel

width, W, determined by the boundaries of the thick field oxide.

Polysilicon
gate . Gate
\ L'g.v oxide
W 2 A
| ds
r— /‘:‘
0 v L /
o % + Ao .
n* source __/ ,-—---%___ \_ n"drain x
L — __.’__ - “ . P
/ X
III.- o A
. T
Depletion _
region [nversion
~ channel —~L_
A N |
p-type substrate Vol
w

o Vy, |/

Figure 2.1 A schematic MOSFET cross section, showing the axes of coordinates and the bias
voltages at the four terminals for the drain-current model.



Conventionally, the source voltage is defined as the ground potential. The drain voltage is
Vs, the gate voltage is Vgs, and the p-type substrate is biased at Vbs. We assume Vs = 0, i.e., the
substrate contact is grounded to the source potential. The p-type substrate is assumed to be

uniformly doped with an acceptor concentration Na.

2.1.1 Bulk MOSFETSs, Constant Mobility

Gradual Channel Approximation

A major assumption in any 1-D MOSFET model is the gradual channel approximation
(GCA), which assumes that the variation of the electric field in the y-direction (along the
channel) is much less than the corresponding variation in the x-direction (perpendicular to the
channel) (Pao and Sah, 1966). This allows us to reduce the 2-D Poisson equation to 1-D slices (x-
component only).

w(X, y) is the band bending, or intrinsic potential, at (x, y) with respect to the intrinsic
potential of the bulk substrate. We further assume that V(y) is the electron quasi-Fermi potential at
a point y along the channel with respect to the Fermi potential of the n* source. The assumption
that V is independent of x in the direction perpendicular to the surface is justified by the
consideration that current is proportional to the gradient of the quasi-Fermi potential and that
MOSFET current flows predominantly in the source-to-drain, or y-direction. At the source end of
the channel, V(y = 0) = 0. At the drain end of the channel, V(y = L) = Vgs. The electron quasi-Fermi
potential at a point in the channel is essentially flat in the vertical direction across the n-type

e—qV/kT oc e—qqﬁn/kT _ eEfn/kT

inversion layer. The effect of V is to multiply the electron density by over

its V =0 value.



0%y +82l// :i[N +n.eq(u/7v)/kT:|
ox> oyt g, bt !

(2.1)
Assume v __ v
o2 ayz
d 21// _ i[N + n.eq(y/—V)/kT:|
dx> g, - !
(2.2)
Coupled to the current continuity eg.: (for constant mobility)
W Vds
|, =1 — -Q dv
ds :ueff L _[0 ( QI(V)) (24)
Its integration over the inversion layer gives the inversion charge per unit gate area, Qi:
Q(y) =-qf "n(x, y)dx. (25)
VdS 1!)5 n; eQ(IP—V)/kT
las = Quers T f (f Wdl/’) av. (2.6)

This is referred to as Pao and Sah’s double integral (Pao and Sah, 1966). The boundary value s

is determined by two coupled equations: V; — Vp, =V, + )5 = ;QS + s and Qs = —&siés(s) or
Gauss’s law, where &s(ws) is obtained by letting y =ys in the equation:

o) = (2)" =22 (o 4 22 1) 3 (oo - 1y 2]

In depletion and inversion where qws/KT > 1, only two of the terms in the above equation are

significant and need to be kept. The merged equation is then
2&5kTNg S 1/2
Vs = Vpp + 35 = 2 = Vpy g + LN [y K a1 (2)

which is an implicit equation for ws(V). Equations (2.6) and (2.7) can only be solved numerically.



Charge Sheet Model

Pao and Sah’s double integral can be simplified to a single integral if the inversion charge
density Qi can be expressed as a function of ys. This is the approach taken by the charge-sheet
model (Brews, 1978). It is based on the fact that the inversion layer is located very close to the
silicon surface like a thin sheet of charge. There is a sharp increase of the field (spatial integration
of the volume charge density) across the thin inversion layer, but very little change of the potential
(spatial integration of the field). The central assumption of the charge-sheet model is that Eg. (2.8)

for the depletion charge density,

Qs =—aNW, = — 2e40N ¢, (2.8)

can be extended to strong inversion and beyond. Since the total silicon charge density Qs is given

by Eq. 2.7) or V; — Vs = Vo + 95 = ;QS + 1, EQ. (2.8) allows the inversion charge density to
be expressed as
Qi = Qs _Qd = _Cox (Vgs _Vfb _l//s) + \ ngina!//s' (29)

The above is plotted in Fig. 2.2 for a fixed Vgs. Note from Eq. (2.4) that the drain current is

proportional to the area under the |Q; (V)| curve between V = 0 and Vas. When Vgs is small (linear

region), the inversion charge density at the drain end of the channel is only slightly lower than that
at the source end. As the drain voltage increases (for a fixed gate voltage), the area or current
increases, but the inversion charge density at the drain decreases until finally it goes to zero when

Vis = Vasaa = (Vgs — Vi)/m. At this point, lgs reaches its maximum value, lgsat Of

ﬂ (Vgs _Vt)z

Ids = Idsat :/ueffcox L 2m



f
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0
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0 0.5 1 15 2
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Figure 2.2 Inversion charge density as a function of the quasi-Fermi potential V. The solid curve is

generated from the charge sheet model.

Also plotted in Fig. 2.2 is the continuous —Qi(V) curve of the charge sheet model generated by
numerically solving the implicit Eq. (2.7) for ws(V), then calculating Qi(ys) from Eqg. (2.9). AtV =
0, —Qi is slightly lower than Cox(Vgs — V) due to the inversion layer capacitance effect discussed in
the last subsection. Instead of —Qi = 0 at V = Vasat then going negative as in the piecewise model,
—Qi of the charge sheet model approaches 0 continuously as V — co. This means that lgs,

proportional to the area under the charge sheet —Qi(V), converges continuously to the saturation

value as Vgs becomes >> Vysat.
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Figure 2.3 lgs-Vgs curves (solid) solved from lds Y = Ciny [(I(gS 1 EVZ] +
KeffW 2

Ao 2
SS‘Td“ [(Z—Z) - Eg] for the device. The dashed curves are from the GCA model for which currents
saturate at lgsat.

2.1.2 DG MOSFETs, Constant Mobility

Py v g q ,

PV Y :g—gn(x,y)::nieq("’ VT (2.10)
and the current continuity eq.,

a‘]x +6Jy :a(qn#a\/)_i_a qn’uﬂ =01 (211)

ox oy Ox ox ) oy oy
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Figure 2.4 Schematic diagram of a double-gate MOSFET. V(y) is the quasi-Fermi potential at a point in
the channel. £ is a function of V.

where wis the potential, n is the carrier density, ni the intrinsic carrier concentration, V the Fermi
potential, and Jx, Jy are the current densities. Fig. 1 shows the geometry of a symmetric double-
gate MOSFET. For a lightly doped body, the fixed charge density is negligible. Since the current
is predominantly in the source-to-drain or y-direction, V is essentially a function of y only,

independent of x. Eq. (2) is then simplified to

3, =qnyz—\;=constant, (212)

independent of y. Jy can be integrated in the x-direction to yield the total source-to-drain current:

I ZNWQi(i_\;' (2'13)

Here, u is the mobility, W is the device width, and Qi is the mobile charge density per area equal

to the integral of gxn over thickness (x).



In order to solve the coupled Poisson’s eq. and the current continuity eq. in 1-D slices in

the x-direction, GCA is invoked that assumes d%y/oy? << d>wlox? so that Eq. (1) is reduced to

gxw _ A gavin, (2.14)
&

si

With the condition dy/ox = 0 at x = 0 for symmetric DG MOSFETS, the solution to Eq. (5) takes

the general form [8]:

B 2kT 8eyKT p ' 215
V)=V "{ a*n COS(ZﬂX“si)} o

where £ is a constant of x, but a function of y. For every y € (0, L), w satisfies the condition

givgs_(¢m_Z_Eg/ZQ)_‘//(X=itsi/2) =igﬂ%ﬂ
t; X

(2.16)

X=xtg/2
at the silicon-oxide interface. Here, ¢m is the gate work function and y is the electron affinity of

silicon. Substitution of Eq. (6) in Eq. (7) yields a relation between V and f,

V,, -V, -V :ZI;T{In £ —In(cos f) + 2% Atan ﬁ] (2.17)
Eilg
where
E, 2KT . [8s.kT
Vo Fu 2K [BegkT 2.18
L 20" q \ong (219

Both V and gare functions of y. Eq. (8) gives their one-to-one correspondence for a fixed Vgs. The
use of the intermediary parameter £ allows explicit expressions of charge, potential, and field at

any point in the channel. For example,

Q =283%/: =8kl%ﬁtanﬁ, (2.19)

x=ttg /2 si

and
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_ _ 2kT 8e4kT cosf _ 2&t;
Y(x) = V;'S Vet q [ln (\’qznitszi cos(2p x/tsi)) Eitsi ptanp (2.20)

The current continuity Eq. (4) can then be integrated with respect to £ to obtain the source-drain

current:

Bs
. (2.21)

P

W (Ve W s dv . 2 2 et
o= [ QY = [ QB s a2 (ZZT) {ﬂtanﬂ—ifjt'ﬂztanzﬂ}

[ is the solution to Eq. (8) for V =0, and /& is the solution to Eq. (8) for V = Vgs. Fig. 2 shows the

las-Vas characteristics generated by this model compared to TCAD simulation.

2.2 GCA Model under Velocity Saturation

2.2.1 Bulk MOSFETS, velocity saturation

n = 1 Velocity Saturation

The GCA model approach is discussed first. We replace the low-field drift velocity, uef

UefrdV /dy
1+(Ueff/Vsar)av/dy

dvidy, in I (y) = _.ueffWZ_;Qi(Y) = _“effWZ_;Qi(V) with v = to obtain:

Hest dV/dy

o = Q) vy

(2.22)

Here V is the quasi-Fermi potential at a point y in the channel, and Qi(V) is the integrated (over the
depth) inversion charge density at that point. Note that dV/dy > 0. Current continuity requires that

lss be a constant, independent of y.

11
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GCA model generated lgs-Vgs characteristics compared to TCAD (¢ = 200 cm?/V-s). The

MOSFET structural parameters are shown in Fig. 1. SCE is negligible in this case.

Equation (2.22) can be rearranged to yield

Ids :_[:ueffWQi(V)_F—

(2.23)

/ueff Ids dV
dy

sat

After multiplying dy to the LHS, the above can be integrated from y = 0 to L and from V =0 to Vs

to solve lgs:

ds

—ua /L[ QV)av
1+ (/ueﬁvds /Vsat L) .

(2.24)

The numerator is simply the long-channel current, Eq. (2.4), without velocity saturation. It is clear

that if the “average” field along the channel, Vgs/L, is much less than the critical field Ec = vsat/zet,

the drain current is hardly affected by velocity saturation. When Vgs/L becomes comparable to or

12



greater than Ec, however, the drain current is significantly reduced. A convenient, approximate
expression for Qi(V) is Eq. (2.25):

-Q(V) =G, (Vg -V, —mV), (2.25)
where Cip, (Vg5 — V¢), is given by Eq. (2.9) of the charge sheet model with ys = yss for V.= 0. The
integration in Eq. (2.24) can then be carried out to yield

| Hon Cons W/ L)V Vo)Vl (m/2)Vi] (2.26)
) 1+ (/ueffvds/vsat L)

For a given Vgs, lgs increases with Vgs until a maximum current is reached. The saturation

voltage, Vusar, is found by solving dlgs/dVes = 0. To compact the equations, a dimensionless

parameter
g = 2t Ve =V 2.27)
mv,, L
is introduced. It is a measure of the severity of velocity saturation. Then,
o 2V —V) I m _ﬁ(\/m—l) (2.28)

1+ \/l+ 2/ueff (Vgs _Vt)/(mvsatl—) - Hest

This expression is always less than the long-channel saturation voltage, (Vgs — Vi)/m. Substituting

Eqg. (2.28) into Eq. (2.26), we find the saturation current,

Ji+z-1

Idsat = CianVsat (Vgs _Vt) \/m_l_l (229)
For z << 1, Eq. (2.29) is reduced to the long-channel saturation current,
W (Vg -V)°
Idsat = :ueffCinv T : om . (2.30)
For z >> 1, Eq. (2.29) becomes the velocity-saturation-limited current,
Idsat = CianVsat (Vgs _Vt)' (231)

13



Note that in this limit, lssat is independent of channel length L and varies linearly with Vgs — V4

instead of quadratically as in the long-channel case.

At the saturation point, V(y = L) = Vgsat. It can be shown that
Idsat = CianVsat (\/gs _Vt - desat) = _VvvsatQi (y = L) (232)

In other words, carriers at the drain are traveling at the saturation velocity, which means dV/dy —

UerradV /dy
1+(Ueff/Vsar)dV/dy

winv = . Note that —Q; of Eq. (2.25) is positive at this point. The commonality

between the current saturation in the case of constant mobility and in the case of velocity saturation
is therefore not —Qi — 0, but the divergence of dV/dy under the GCA model.

For Vgs > Vgsat, the GCA model breaks down.

n = 2 Velocity Saturation
It has been known that the n = 1 velocity saturation model has a discontinuity problem with

the 2" order derivative around Vgs = 0 because the dV/dy factor in the denominator of Eq. (6.41)

should in fact be |dV/dy| to keep it always positive (Joardar et al., 1998).

14
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Figure 2.6 lqs-Vas characteristics generated by the GCA models under the n = 1 velocity saturation
model. The MOSFET parameters are tiny = 3.3 nm, N, = 10*® cm™ (uniform), n* silicon gate work
function, so Vy = 0.4 V and m = 1.28. Other parameters are zr = 200 cm?/V-s, vsa= 10" cm/s, and dsi = 20
nm.

To satisfy the continuity requirement, n needs to be an even integer. The least of which is 2. For

the GCA model with n = 2 velocity saturation, Eg. (2.22) becomes

Her (dV /dY)

1y =-WQ, (V) - (2.33)
: JL+ (g 1V )@V 1 dy)?

It can be re-arranged to yield an integral equation between lgs and Vgs for a given Vg,
Ly =t [, IWQUV)T = (1, / v,p)?aV. (2.34)

With Qi(V) of Eq. (2.25), the above integral can be carried out by transforming V to an intermediary
variable u,

WC,,, (Vg =V, —mV) = (I / v, ) coshu. (2.35)

sat

Then,
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I :
L= ¢ Isinhucoshu—u]
2mWGC, v

inv " sat

- (2.36)

d

where us and uqg are given by WC,,, (Vs — Ve — mV) = (Igs/Vsqe) coshu, with V = 0 and Vs,
respectively.

The lgs-Vgs curve generated for a fixed Vs is shown in Fig. 2.7. There is a maximum Vgs =
Vusat Where Igs reaches a peak value lgsat beyond which no solution exists. This corresponds to uq =
0 where the factor in the square root of Eq. (2.34) is zero, meaning carriers are traveling at vsar and
dV/dy — . The peak current is

Idsat :WCinv (Vgs _Vt)v /COSh usn (237)

sat

where us (for the peak point) is solved by the implicit equation,

-V
L= Hest (Vgs t) sinh u, - U . (238)
2mv, coshu,
5
4 F
Rl \
k) last GCA
ﬁ solution
= 21
—~
1F n=2
L =200 nm
Points: GCA Ves=1.5V
0 " 1 " 1 " 1
0 0.5 1 1.5
lx(ls' M)

Figure 2.7 lqgs-Vas characteristics generated by the GCA and under the n = 2 velocity saturation
relation. The device parameters are the same as those described in the caption to Fig. 2.6.
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2.2.2 DG MOSFETSs, velocity saturation

Fig. 2.8 and 2.9 plot the gradient of Fermi potential dV/dy for n=1 and n=2 cases aty =L,
i.e., the drain end versus Vgs. At the current peak in the GCA model, dV/dy — oo and v = vsat. Past

the peak, dV/dy < 0, clearly unphysical.

6E+6 [
E 4E+6 - GCA
2
> 2E+6 [
£ i
(U L
5 0E+0 —
= ' Viysat
5 -2E+6 [
% -
-4E+6 [
[ GCA
-6E+6 n=1
M 1 M 1 M 1 M 1 L 1 M 1
0 0.2 0.4 0.6 0.8 1 1.2
Vs (V)

Figure 2.8 dV/dy at the drain (y = L) versus Vs for the case in Fig. 2.8. Labels above the non-GCA curve
indicate the carrier velocity at those bias points.
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Figure 2.9 dV/dy at the drain (y = L) versus Vgs for the case in Fig. 2.8. Labels above the non-GCA curve
indicate the carrier velocity at those bias points.
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CHAPTER 3 HISTORY OF MODELING THE MOSFET

SATURATION REGION

3.1 Reddi and Sah’s Concept of Pinch-off in Metal-Oxide-

Semiconductor Transistor (MOST)

As the drain voltage is increased beyond Vps, the length of the pinch-off region will widen
resulting in a decrease of the effective channel length; this in turn will cause the drain current to
increase. This is one of the causes for finite source to drain incremental resistance for Vp > Vps.
This effect in a way is analagous to the Early effect in bipolar transistors.

The channel shrinkage (4L) can be approximated by
AL = [2&(Vy — Vg5)/qNa] ™2 (3.1)

Early effect in BJT is a 1-D effect, not the 2-D effect with MOSFET saturation.

The channel region of MOSFET has mobile charge, unlike the depletion region of a p-n junction.

Thus, for Vp > Vps, Ip can be expressed as

I LI
Ipypysvps = o = = (3.2)

_AL 1/2
- L- {qi,sA(Vd_Vds)}

In a DG MOSFET, there is no doping hence Na =0 — clearly does not work.
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It is worth noting that in some works, e.g., [11], a CLM of AL = [2¢ (v, -V,.)/aN, IS Used,

derived from the widening of the space charge region due to drain voltage. The physics is
analogous to the finite output conductance in the forward active region of a bipolar junction
transistor (BJT), or Early effect. This clearly does not apply to saturation in MOSFETS. Early
effect in BJT is due to encroachment of the base-collector depletion region into the neutral base
region. It is a 1-D phenomenon at moderate fields involving the fixed dopant charge in the base
region. MOSFET saturation, on the other hand, has to do with the 2-D nature of the device. It
happens at high fields and involves only the mobile charge. One factor in common between BJT
and MOSFET is that the output conductance in the active or the saturation region goes up with

thinner base width or shorter channel length (before SCE kicks in).

3.2 El-Mansy and Boothroyd’s Two-Dimensional Model in the

Saturation Region

)
l § po— Source Section _——" D ?

AL =

th)B

Figure 3.1 A schematic cross section of an IGFET to illustrate source and drain section and axes.
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THE MODEL
The model developed here is based on the second approach in the previous discussion, i.e.,
dividing the space-charge region along the channel into two sections. In the source section the
GCA is valid and any of the various models available [6], [9], [12] for this section can be used. In
the drain section the two-dimensional nature of the potential distribution is accounted for.
Condition for the validity of the GCA is
%u , o%u

S/ sE =K (3.3)

where K is a large number (note that exact validity of the GCA corresponds to an infinite value for

K).

Use an empirical criterion to divide the MOSFET channel into a source section (where GCA

works) and a drain section which they analyze later.

The expression

Usp —Uss

U = Uss + 75 F-(t;/L)

(3.4)

was found to yield results close to those obtained from numerically solving (la) for a wide range
of device parameters and applied voltages. The factor F is, in general, a slowly increasing function

of gate voltage, and different values for it may be needed for different voltage ranges.
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Figure 3.2 Definition of the drain section boundaries.

Boundary 1): This is the boundary separating the source and drain sections. The potential and field
at this boundary are defined from the solution in the source section, while the physical location of
that boundary along the surface is defined from the solution in the drains section.

Boundary 2): This is the semiconductor-insulator interface.

Boundary 3): This is the drain metallurgical junction.

Boundary 4): This is located at a distance x1 from the surface. The potential and electric field at

this boundary are assumed to be zero.

dlg — 1 1 (35)

dUsq Le (—Esq)

has to be solved numerically. This is a first order differential equation, and any of the standard
methods can be used to solve it. Of course the boundary condition for solving the equation is 4 =

I when Ugg = Usa.
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Figure 3.3 A closer look into the cross section of a MOSFET near drain

Along the surface, the quasi-Fermi level V(y) increases from Vgsat at y = 0 to Vgs at y = AL.

This results in a reduction of the potential drop Voxacross the oxide, since the total band offset,

Vo = Vo = Vox ) + ¥5(y) = Vox ) + 29 + V() (3.6)

is constant for a fixed gate voltage. Here the surface potential s is assumed to be pinned at 2y 5 +
V as given by Eg. (3.3) for strong inversion. This is valid as long as V(y) < (Vs —V;)/m, the

long-channel pinch-off voltage. It then follows that the vertical field at the silicon surface,

ox X Vox
£:(0,y) = 2 E,(y) = e (3.7)

&si  tox
Also decreases toward the drain, as depicted in Fig. 3.29. The silicon-oxide boundary condition,

Eq. (2.146), was applied to here with &,, being the oxide field. Aty = 0, all the silicon charges

are still controlled by the gate, so that the one-dimensional Gauss’s law is applicable:
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£,(0,0) = LeXtUuL=0) (3.8)

Esi
where Q; (> 0) is the mobile (electron) charge density per unit area. It is assumed here that the

junction depth x; is comparable to the depletion width Wy, .

Similar to EI-Mansy and Boothroyd, also apply 2-D Gauss’ law to the velocity saturation region

near the drain.

Carriers are already traveling at velocity such that I;, = W Q,vs,., the mobile charge density,

QGO =gy nCxy)dx, (39)
has to remain constant, i.e., independent of y, toward the drain in order to maintain current
continuity. Therefore, as the vertical field &,(0,y) and the gate-controlled charge decrease
toward the drain, some of the mobile charge spreads deep and becomes controlled by the
drain. The physics is similar to that of the 2-D fields discussed in Section 3.2.1. The difference is
that fixed depletion charges are involved in the short-channel effect, while mobile charges are
involved in the saturation region. As a result of the drain gradually taking control of the mobile

charge, the electric field, &, originating from the drain increases toward the drain.
Assuming that £, is uniform in the x-direction and neglecting the vertical field at the bottom
boundary (x = x;), one can apply the two-dimensional Gauss’s law to a thin slice of width dy

and length x; located at y (Fig. 3.29):

£:(0,y)dy — £,(y + dy)x; + £, (y)x; = Loy U (3.10)

Esi
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Expanding &, (y + dy) into &, (y) + (d€, /dy)dy and making use of Eq. (3.88), we obtain

ac

From Eqgs. (3.87) and (3.86), the vertical field difference can be expressed as

Eox
Esitox Esitox

Since V(0) = Vgsqe and €, = — dV /dy, substituting Eq. (3.92) into Eq. (3.91) yields

A’V &ox

vz [V(.V)_Vdsat]:

dy EsiloxXj
or

dzv _ V) -Vasat
dy? 12 ’

Where the characteristic length [ is given by

o
l = /ﬁtoxxj = \[3toxX;.

[V (0) = Vo ()] = =2 [V () —V(0)].

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Did not realize that the vertical field in oxide goes through zero and becomes negative close to the

drain.

Equation (3.94) is a linear, second-order differential equation which can be solved with the

boundary conditions V(0) = Vysq¢ and £,,(0) = [—dV /dy], o = —Esq:

25



V) = Vasae + LEsarsinh (). (3.16)

Mathematically, there is no unambiguous definition for &, the lateral field at the
saturation point, since carriers do not reach saturation velocity until £, = co. In practice, carriers
traveling close to the saturation velocity start moving away from the surface when the lateral
field becomes appreciable compared to the vertical field. A good choice for &, is a field
strength on the order of or several times the critical field £, defined by Eq. (3.71). For example,
Esat = 2E. = 2Vgq¢/Uesr, Which is on the order of 5 X 10* V /cm for electrons, has been used in
the literature (Ko, 1982). This is a reasonable value, since the vertical field in a MOSFET device

typically lies in the range of 10°-108 VV/cm.

Peak Field at the Drain

Once V(y) is known, AL can be found by solving V(y = AL) = Vy,:

_ _ 2
AL = lin [Vds Ydsat 4 J (astasar)” 4 1]. (3.17)

lgsat lgsat

It is them straightforward to substitute AL into Eq. (3.85) or, more accurately, replace L with L —
AL in Eq. (3.78), to obtain the source-drain current beyond saturation. From Eq. (3.96), the electric
field along the channel is given by

av

€y () = =3 = —Esarcosh(®), (3.18)

which increases exponentially toward the drain. An example is shown in Fig. 3.30. The peak field

is reached at the drain, where
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_ 2
Emax = &y = A1) = —j (Farasar) 4 £, 2 (3.19)
This field can be as high as mid-10° to 10° VV/cm and is responsible for a variety of hot carrier
effects such as impact ionization, substrate current, and oxide degradation. In general, all models
that partitioned MOSFET into two sections are not continuous from the triode (GCA) region to

the saturation region. They cannot predict where the partition point (e.g., Esat above) is.
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CHAPTER 4 NON-GCA MODEL FOR DG MOSFETSs

4.1 TCAD Simulations

dy
(el

Figure 4.1 Double-gate (DG) MOSFET structure assumed in this work. ts =4 nm, ti=2 nm, & = & =
11.8&. The gate work function is such that V; = 0.33 V.
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Figure 4.2 GCA model generated lgs-Ves characteristics compared to TCAD (u = 200 cm?/V-s). The
MOSFET structural parameters are shown in Fig. 4.1. SCE is negligible in this case.
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To gain a deeper understanding of the physical picture in the saturation region, we dissect
in detail the TCAD simulation case in Fig. 4.2. Drain-induced barrier lowering (DIBL) due to
SCE is negligible in this example. The point labeled A at Vgs = 1.3 V on the Vgs = 1.5 V curve is
slightly beyond the saturation voltage of Vgsat = Vgs — Vi = 1.17 V. The electron density n near the
drain is shown in Fig. 4.3 along several lateral cuts at various depths. It is clear that there is no
“pinchoff” of channel depicted in the textbooks based on the GCA. Even along the surface (x = 2
nm), the electron density never falls below 10%° cm™. This fact was also pointed out in a 2012

publication with TCAD simulations. It clearly demonstrates the failure of GCA.

Fig. 4.4 goes further by looking at point B in Fig. 4.2, where Vgs = 1.8 V on the Vg = 1.5
V curve. Here, we plot the potential y versus depth (x) between the gates along three vertical cuts

near the drain, at y = 93.2, 95.2, and 97.2 nm. There is a change of sign of the vertical field, & = -

owlox, aty = 95.2 nm. On the source side of 95.2 nm, E is such that electrons are attracted toward
the gates. This is the normal direction of the field effect that gives rise to “inversion” or turns the

device on. However, on the drain side of 95.2 nm, & is such that electrons are repelled from the
gates. Thus the so-called “pinchoff” point should be interpreted as the point where Ex changes sign
or where & = 0. The Fermi potential V at the point of zero oxide field is Vgsat = 1.17 V. Itisaty =

95.2 nm in this case while V(y = 100 nm) = Vgs = 1.8 V. However, the channel is not pinched off

when & = 0. The electron density, also plotted in Fig. 4.4, in the y = 95.2 nm case is above 10*°

cm at every depth. Channel length modulation should then be interpreted as the movement of the

point of zero oxide field toward the source as the drain voltage goes beyond saturation.
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Figure 4.3 From TCAD at bias point A on the Vg = 1.5 V curve in Fig. 4.2: Electron concentration near
the drain (y = 100 nm) along several lateral cuts from the surface to the center. The source-drain doping
level is 10%* cm,
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Figure 4.4 From TCAD at bias point B on the Vg = 1.5 V curve in Fig. 4.2: Potential (solid) versus depth
along 3 cuts, before the point of saturation (y = 93.2 nm), at the point of saturation (y = 95.2 nm), and after
saturation (y = 97.2 nm). Electron density (dotted) in each case is shown using the scale to the right.
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When & = 0, &?y/ox? is also 0 (at y = 95.2 nm). When & < 0 (on the negative x side),
?ylox? is also < 0. This clearly contradicts Eq. (2.14) of GCA. The key factor is, of course, that
the &2 y/oy? term in the full 2-D Eq. (2.10) cannot be neglected when biased near and beyond the

saturation point.

The current continuity Eg. (2.13) is based on the assumption that the Fermi potential V
varies predominantly in the direction of current flow, namely, the y-direction. Fig. 4.5 verifies that
this is still a good approximation in the saturation region. The condition of current continuity
constrains the product of Q; and dV/dy to be a constant, independent of y. When biased near or
beyond Vasa, Qi plummets as y moves toward the drain. GCA says that Qi — 0 (pinchoff) and
dV/dy — oo at the point of saturation. However, when dV/dy increases sharply with y, d?V/dy? also
increases and becomes appreciable. It is shown in Fig. 4.6 that dV/dy and /0y tend to track each
other owing to the fact that the current in this bias region is predominantly a drift current. The
oyAloy? term in Eq. (2.10) then makes the electron density n nonzero and positive even though
0yA1ox? is zero or negative. From this picture, pinchoff never happens. When Q; is diminishing,
current continuity forces dVv/dy to go up, which in turn causes 6y#/0y? to go up and replenishes Qi.

This picture is consistent with the TCAD revelations in Figs. 4.3 and 4.4
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Figure 4.5 From TCAD at bias point B in Fig. 2, Vg = 1.5V, Vgs = 1.8 V: Constant Fermi potential contours
near the drain. The most sloped angle between the gradient of V(x, y) and y-axis is 5°, meaning Jy is cos 5°
= 0.996 of the total magnitude of J.
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Figure 4.6 From TCAD: Potential and Fermi potential along a cut through the center of silicon. The bias
point is labeled C in Fig. 4.2.
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Justification of Qi(V) and Cin Determination

Qi as a function of V, or Eq. (4.19), is closely examined in this section with the help of

TCAD. Based on the analytic potential model for DG MOSFETSs, a GCA model, Qi is given by

Q :8qu‘t95‘,8tan/3, (4.1)

where the intermediary parameter g € (0, 772) is related to Vgs and V through an implicit equation,

VARRVARY :Zlgr{lnﬂ—ln(cosﬂﬂzgsitiﬂtanﬁ] (4.2)

gs
&y

with

E )
V=g, — g0y KTy [BekT (4.3)
29" q  \ont

In the above, ¢ is the gate work function, y and n; are the electron affinity and intrinsic carrier
concentration of silicon. An example of Q; versus V of the above model is shown in Fig. 4.7. Note
that when V exceeds Vgs — Vi and — oo, the LHS of Eq. (4.2) is negative and £ becomes < 1 or <<
1. Qi exhibits subthreshold behavior, i.e., exponentially approaching zero but staying positive,
much like the case when Vgs — Vit < 0. This is a common fallacy of all GCA models, including the
charge sheet model for bulk MOSFETSs. While the subthreshold behavior is correct when Vgs — Vi

<0, it is incorrect in saturation when Vgs — V¢ > 0 but < V.

Stemmed from the 0y#/0x? term in 2D Poisson’s equation, Q; is the charge induced in the
channel by the gate, directly related to the field in the oxide perpendicular to the channel, &. As
shown in the potential contour plot from TCAD in Fig. 4.8, this field changes sign along the
channel: positive between the source and the point where V = Vgs — Vi, and negative beyond it.

While & therefore Qi < 0 is not allowed in GCA models, it is perfectly fine with the non-GCA
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model in which AQ; of Eq. (4.26) ensures that the total mobile charge density, Qi + AQj, stays
positive (for current continuity) even when Q; is negative. Proper modeling of the negative Qi
behavior, however, is important because it causes AQi to go higher, thereby lowering the output
conductance.

The TCAD Qi(V) curve in Fig. 4.6 is extracted from & close to the gate which by Gauss’s
law gives the total charge density in the two gate electrodes, Qi = 2& &. Near and beyond the point
where & changes sign, & close to silicon deviates from that close to the gate because the effect of
the lateral component, &, becomes appreciable. It is worth noting in Fig. 4.7 that the point of V =
Vasat, beyond which GCA stops working, is unremarkable. This shows that the transition from the
GCA region to the velocity saturation region is rather gradual, which suggests that there is no clear

cut division of the channel into two distinct regions.

The most elementary form of Qj,

Q =2C, (Vg -V, V) (4.4)
where Cox = &/ti, does capture the negative going behavior for V beyond Vgs — Vi, consistent with
TCAD. But its value at V = 0, indicated in Fig. 4.7, is over estimated because the semiconductor
capacitance is not taken into account. This Qi value at the source is of critical importance as the
GCA current is directly proportional to it. Here then lies the rationale behind Eq. (4.19): insert a
correction factor, Cin/Cox, given by the ratio of Eq. (4.1) to Eq. (4.2) for g= /& at V = 0, namely,

~inv _ 2(‘gsiti /gitsi)ﬁs tan ﬂs . (45)
Co. InB,—In(cos B,)+2(t,/ 5t,) B, tan B,

This factor has a slight dependence on Vgs. It varies from 0.842 at Vgs = 1.2 V 10 0.734 at Vgs = 0.6

V in our device example. As can be seen in Fig. 6, Qi(V) of Eq. (4.19) does not exactly match the
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TCAD curve. But it turns out, as shown in Figs. 4.13-14 and Figs 4.17-18 below, the deviation has

little or no effect on the Iq4s-Vas or output conductance characteristics.

While the TCAD Qi(V) curve in Fig. 4.7 is extracted from the device under the n = 2
velocity saturation model, additional examination reveals similar results under the n = 1 model. It

appears that Qi(V) characteristic is transport independent.

8E-6

Vgs =09V
Vgs= 1.2V

6E-6 F = 2Cox (Vgs -V)
4E-6
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Qi (Clcm?)
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-4E-6 2Ciny (Vgs -Vi-Vv) T

'
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h
o

-6E-6
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Figure 4.7 Comparison of Q;(V) from TCAD, GCA model, and Eq. (4.19).
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Figure 4.8 Potential contour plot from TCAD. The bias point is Vg = 0.9 V, Vg = 1.2 V, under the n = 2
velocity saturation model. The gates (top and bottom of the plotting window) are at a potential of 1.1 V.
The x- and y-label units are in um, with L = 50 nm. The arrows point to the location in channel where the
quasi-Fermi potentials are Vg — Vi = 0.57 V, and Vusar = 0.26 V, respectively.

4.2 Constant Mobility

It is abundantly clear that the key factor missing in GCA is the effect of oy2/oy? on the
mobile charge density. To construct a continuous model that extends into saturation region, we
begin with the textbook expression of inversion charge density as a function of the Fermi potential
V in the channel,

Q =2C, (Vy —V, -V). (4.6)
This equation over simplifies the inversion charge to a delta function of zero depth, hence over
estimates the current. But it serves to bring forth the key concept of the approach. Instead of using
this expression as the only Qi in the current continuity Eq. (2.13) as in a GCA model, we add a

AQi due to dyAloy?:
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o d
AQi = (qAn)tsi = gsitsi 6y7l/2/ ~ gsitsi Tw ’ (47)

Fig. 4.6 justifies the approximation oy2/oy? ~ d?V/dy?. Also, An is taken to be uniform over tg, in

view of Fig. 4.5. With AQ; added to Q; of Eq. (4.6), the current continuity Eq. (2.13) becomes

d?v Jdv
I, = ,uW{ZCOX VoV, =)+t dyz}dy : (4.8)

This equation can be integrated once to yield

do o v VL at|(av) ., 4.9
MNy_zco{(vgs V)V 2} . dej EO} (4.9)

where & = (dV/dy)|,=o at the source. Since d?V/dy? is negligible at the source, setting V = 0 in Eq.

(4.8) gives

E _ Ids
0 21WC (Vo —V,)

(4.10)

For a given lgs, EQ. (4.9) can be solved for y(V) or V(y) with the initial condition V(0) = 0. Then
Vs is given by the value of V where y reaches L. In other words, the model constructs lgs-Vas
characteristics by finding Vas for given lgs rather than the more conventional way of solving lgs

given Vgs. Needless to say, further efforts are needed to turn it into a SPICE-like model.

To generate a continuous solution y(V), a repetitive numerical procedure should be
followed with good accuracy whether (dV/dy)? is negligible or not. The method we practiced is to

go from a point of (V, y) to the next point, (V + 6V, y + &y), by solving 8y from

Ly s o _ LWV et | (V) 4.11
ﬂw<y+5y>—2cox[wgs VO +ov) - } : H@j Eo} (4-11)

for a given incremental 6V. The above can be re-organized into a cubic equation of unknown oy

with explicit solutions. [Note: While in this specific case, it is easier to solve a quadratic equation
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in oV for a given dy, the cubic equation approach is more general and applicable to the model

discussed later with more complex 1% term (due to Qi).]

Without the 2" term (due to AQj), Eq. (4.9) is just the standard GCA result that has a peak
value of Cox(Vgs — Vi )? at V = Vgs — V4, as illustrated in Fig. 4.9(a) (solid curve labeled Qj). It means
that 14 cannot exceed the saturation current, lasat = £(W/L)Cox(Vgs — Vi )2. Past the peak, Qi of Eq.
(4.6) becomes negative, hence forbidden by the GCA model. It is often regarded as unphysical in
the textbooks. However, as revealed in Fig. 4.4, the vertical field (€x) does change sign at the point
where V = Vg — Vi. What is unphysical then is not dy#/ox? < 0. Rather, what is unphysical is the
GCA itself past the point of saturation. Note that when y(V) approaches the peak with the 1% term
dominating, dy/dV — 0, which turns on the square of the reciprocal, (dV/dy)? in the 2" term (&2
is negligible), thereby removing the peak. Even when the 1% term (due to Q;) decreases past V =
Vgs — Vi, the 2™ term (due to AQ) just picks up the slack and ensures that the sum (y) keeps on

increasing with V, albeit at a lower rate [Fig. 4.9(a), solid curve labeled Qi + AQi].

To investigate the effect of the negative oxide field, Eq. (4.9) is also solved with the 1%
term (due to Qi) set at a constant equal to the peak value for V > Vg — V¢, i.e., past the peak. The
results are shown as dashed lines in Fig. 4.9(a). It is noteworthy that while the Qi terms are
dramatically different in the two cases, the total y(V), labeled as Qi + AQ; in Fig 4.9(a), differ only
slightly. This means that the 2" term (AQi in Fig. 4.9(a)) adjusts to the 1% term to make the total
y(V) slope slightly positive beyond the point of saturation. Mathematically, dy/dV can decrease
with V indefinitely but can never reach or cross zero, because that would mean the reciprocal,

dVv/dy, in Eqg. (16) goes to infinity.
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The y(V) curve in Fig. 4.9(a) was obtained with a presumed lgs value (6% over lgsat). It
gives the Vgs value (2.3 V) when y reaches L (100 nm). In principle, this process needs be repeated
by varying lq¢s over an array of values to generate an entire lqgs-Vas curve point by point. A much
simpler approximation is to turn the y(V) curve generated with one fixed lgso into an lgs-Vs curve
by multiplying y with (laso/L). To justify it mathematically, we rewrite Eq. (4.9) by introducing z

=V laso:

7 Cow V2T et o (aVY (4.12)
/Nv_zcox|:(vgs Vt) 2:|+2|:|d50(dzj E0:|

Since the (dV/dz)? term is only significant in saturation where lgs ~ lgsat OF slightly higher, a choice
of the factor in front: laso? ~ lasai® Will give it the right magnitude. In the triode region, only the 1
term on the RHS of Eq. (4.12) is important, and z/L gives the lgs in that region as a function of V
= Vgs. At the point of lgs = lgso (in saturation), the solution is exact because at the voltage V = Vgs
where y(V) = L, z/L = lgso. For lgs slightly below or above lgso, €.9., las = (1 + )laso, Z/L = lgs if y is
taken to (1 + S)L. Fig. 4.9(b) compares the lqs-Vas from the rigorous point-by-point solution of Eq.
(4.9) to that generated by multiplying the y(V) curve with (lsso/L). While the two are not exactly

identical, the latter is an excellent approximation to the former.
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Figure 4.9 (a) Solution to Eq. (4.9) with lgs set at 6% over the peak (lgsa). The curve labeled Qi is the
contribution of the 1% term to y. AQ; is from the 2™ term. The dashed curves are the solution with the Q;
term set to the peak value after the peak. (b) Agreement between the lgs-Vas computed point by point and
that by multiplying (laso/L) to the y(V) curve.

Regional approximation

In saturation, the 1% term of
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gs Vvt gs vt

I

<]

essentially a constant, equal to lasat(L/W). The 2" term is simply given by

[ 200~V V)V =-C,,(V,, ~V, ~V)? - Ths,

gs—Vt

Ids Idsat 2 5| 5| dV 2 (413)
- L+C,V -V, -E
LW y LW oV Vo)™ = 2 H dy J 0 }

As shown in Fig. 4.9(b), there is an equivalence of lgs to (y/L)lasat. Therefore, dy/L = dlgs/ldsat, Which
simply restates the very concept of CLM. With that, (dV/dy)?! is converted to the output

conductance and solved from Eq. (4.13):

-1/2
(?\I/ds — Idljat ‘95|25| |:(Ids — Idsat)L + Cox(vds _Vdsat)2 + gsitsi E02:| (414)
ds ;UVV 2

where V = Vgs aty = L. If Vgs is not too close to Vasa;, the 1% and the 3" terms in the square bracket

are negligible compared to the 2" term. An approximate expression for the output conductance in

the saturation region is then:

dlds ~ 85|t3|t| Idsat . (415)
dVds 2gl L Vds _Vdsat

The output conductance decreases with increasing Vs bias, as depicted in Fig. 4.10(b). Note that

AL(CLM) ~ IOg(Vds - Vdsat).

The dimensionless factor, tsiti/L2, in the square root of Eq. (4.15) indicates that the
saturation region characteristics are scalable with respect to the x- and y-dimensions of the device.

For our example of &;i = &ox, tsi =4 nm, tox =2 nm, and L = 100 nm,

dlds zi Idsat . (416)
dv,, 50V, -V,

sat
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The slopes given by the above equation are indicated in Fig. 4.10(a) above the Vgs = 1.5V and 2.0

V curves.
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Figure 4.10 (a) las-Vas curves solved compared to TCAD. L = 100 nm. (b) Output conductance versus Vgs.
Open squares in each curve indicate where Vysa is for that Vgs.
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4.3 n =1 Velocity Saturation

With the n = 1 velocity saturation model, the current continuity eq. takes the form

av HWQ, av (4.17)
by 1+ (/v )(dV /dy) dy

Ids :ﬂWQ

where lgs is the source-drain current independent of y, o is the low-field mobility, W is the device
width, Qi is the mobile charge density per unit area, and V(y) is the electron quasi-Fermi potential
at a point y in the channel. Here, the driving force is taken to be dV/dy so that lss will not exceed
WQivsat. By multiplying the denominator on both sides and integrating from V(0) =0 to V(L) = Vs,

Eq. (4.17) yields

MW ey . 4.18
* L + (,Uo /Vsat)vds J.O QI (V)dv ( )

The simplest expression for Qi(V) under GCA is
Qi = 2Cinv(vgs _Vt _V) ! (419)

where Ciny is the inversion layer capacitance per unit area and V¢ is the threshold voltage. While
here the non-GCA model is applied to DG MOSFETSs, the only factor pertaining to DG MOSFETSs
is 2Cinv. The same model can be easily adopted for bulk MOSFETs by using a different Ciny

appropriate for bulk MOSFETS.

Eq. (4.18) is then easily integrated to give

= HWC3,, [2(Vgs —Vi Ve _Vdsz] ) (4.20)
L+ (,uo /Vsat)vds

ds

The l4s-Vgs characteristics are plotted in Fig. 4.11 in which we see the problem with GCA for Vs

beyond Vgsat Where lgs reaches its peak, lgsat. Vasat can be solved from the condition, dlgs/dVgs = 0,
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Vi = et (142 -1), (4.21)

0

where z is a dimensionless parameter defined as

R\ N (4.22)
VsatL
Substituting Vusat back in Eq. (4.20) gives
Idsat = 2Cinv\NVsat (Vgs _Vt) 1+z-1 (423)

Vi+z +1 '
It can also be shown from the above that

Idsat = 2Cinvvvvsat (Vgs _Vt _Vdsat) ! (424)

namely, carriers move at vsa at the drain end under the peak current condition.

Note from Eq. (4.23) that lgsat is not simply oc 1/L as in the constant mobility case. This
means that the conventional relation for channel length modulation (CLM), dlas/lasat = SL/L where
oL/L is the fractional reduction of the GCA channel length, needs to be modified for the velocity

saturation case. From Eq. (4.23),

1 & 1

lisat V1+z 2 14z L

&

(4.25)

Note that if z = 0, it reduces to the familiar form of CLM for the constant mobility case. But if z
>> 1, lgs can be independent of L if fully velocity saturated (at the source). The factor on CLM
under n = 1 velocity saturation, (ldsat/lasat)/(SL/L), for the L = 50 nm device at Vgs = 1.2 V is ~
0.35, meaning only 3.5% increase of current for 10% modulation of channel length. This relation

will be applied to derive an output conductance for the n = 1 velocity saturation case.
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Figure 4.11 lgs-Vgs characteristics generated by the GCA and non-GCA models under the n = 1 velocity

saturation model. o = 200 cm?/V-s, vsar= 107 cm/s. Ciny is taken to be &i/t;.

The problem of negative slope is solved by taking the effect of lateral field gradient,

d?V/dy?, on mobile charge density into account. Adding

o° dav
AQi = (qAn)tsi = gsitsi 6y(/2/ = gsitsi dyz
to Qi of EqQ. (4.7) yields
Ids = /JO W[QI + gsitsi dZ\ijdV '
1+ (pt I )(AV / dly) dy® ) dy

By multiplying the denominator to the LHS, it can be integrated once:

2
2 il dv
ey ley 220, (VY - |+ 2| 6t
U v W 2 2 |\ dy

sat

(4.26)

(4.27)

(4.28)

where & = (dV/dy)|,=o at the source. Since d?V/dy? is negligible at the source, setting V = 0 in Eq.

(4.17) gives

Ids

& = :
° IUOWQi(V :0)_(:u0/Vsat)|ds
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For a given lgs, Eq. (4.28) is a 1% order ordinary differential equation that can be solved numerically
for V(y), and therefore Vgs = V(L). This can be done in small steps of, e.g., dy = 0.5 nm, with a
general-purpose mathematical tool like matlab, or even with a spread sheet . The continuous lgs-

Vs characteristics generated are also shown in Fig. 4.11.

Fig. 4.12 plots the gradient of Fermi potential dV/dy aty =L, i.e., the drain end versus Vgs.
At the current peak in the GCA model, dV/dy — oo and v = vsa. Past the peak, dV/dy < 0, clearly
unphysical. The key effect of the (dV/dy)? term in Eq. (4.28) is to remove the singularity and keep
dV/dy finite and positive. Carrier velocity approaches vsa, but never reaches Vsat. Past Vasat, dV/dy
is approximately a linear function of Vgs with an intercept ~ Vsar. This turns out to be a general

behavior regardless of n = 1 or n = 2 velocity saturation models.
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Figure 4.12 dV/dy at the drain (y = L) versus Vs for the case in Fig. 4.11. Labels above the non-GCA curve
indicate the carrier velocity at those bias points.
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Figure 4.13 l4s-Vgs characteristics (n = 1 velocity saturation) generated by the continuous non-GCA model
compared with TCAD.

300
Lines: TCAD
100 E Dots: Model
3 Sq.: Explicit eq.

30 + + + ! Vgsat

105—

Gy (QHem)

03r

01 " 1 " 1 " 1 " 1 " "
0 0.2 0.4 0.6 0.8 1 12

Vgs (V)

Figure 4.14 Comparison of gqc = dlgs/dVgs versus Vgs (n = 1 vel. sat.) between TCAD and the non-GCA
model. Open squares are calculated from the explicit Eq. (42) valid for Vgs > Vsat.

4.4 n =2 Velocity Saturation

It has been known that the n = 1 velocity saturation models have discontinuity in their 2"

derivative around Vgs = 0. While this is all right for modeling of digital circuits, it may cause

47



problems with modeling of analog circuits like mixers. Here we extend the non-GCA model
described above to the n = 2 velocity saturation case at the expense of further mathematical

complexity.

For n =2, Eq. (4.17) becomes

| HNQ, av (4.30)
T (v )@V T dy)? dy

For the GCA part of the model, the above can be re-arranged to yield an integral equation between

Ids and Vds:

Llgs = .[:ds \/W 2Qizzuo2 - Idsz(/'lo /Vsat)zdv : (431)

With Qi(V) given by the simple relation, Eq. (4.19), the integral can be carried out by introducing

an intermediary parameter u,

= ﬁ[sinh ucoshu — “]Ed , (4.32)
where us and ug satisfy
2NC,,, (Ve V1) = (I / Vi) cOsh (4.33)
and
2NVC,,,, (Vo =V, = Vo) = (14 /vy, ) coshuy . (4.34)

For a given lgs, Us is given explicitly by Eq. (4.33). Then Eq. (4.32) is an implicit equation that
solves for ug, which in turn is used to determine Vgs in Eq. (4.34). The lgs-Vgs curve generated for
Vgs = 1.2 V is shown in Fig. 4.15. There is a maximum Vgs = Vasat Where lgs reaches a peak value
lasat beyond which no solution exists. This corresponds to ug = 0 where the factor in the square root
of Eq. (4.31) is zero. The same Eq. (4.24) also holds for the n = 2 case. At saturation, us is the

solution to the implicit equation
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-V,
L= M{smh Ug _Lj| . (435)
2V, coshug

And lgsat is given by

Idsat = 2chinv(vgs _Vt)v /cosh U - (436)

sat

The above equations give the channel length modulation for the n = 2 case:

I,
|

S

_ dLsinhu, coshu, —u, (4.37)
L sinhu, coshu, +ug

dsat

The factor on CLM, (lgsat/ ldsar)/(OL/L), under n = 2 velocity saturation is ~ 0.3, for the L = 50 nm

device at Vgs=1.2 V.

To continue the solution beyond the current peak, AQi of Eq. (4.26) is added to Qi as in the

n =1 case:

Ids :W(Qi + 8sitsi dZ\g J Iuo dl ) (438)
dy* ) 1+ (uty 1)@V /dly)? dy

This equation cannot be integrated like Eq. (4.27). Instead, we convert the 2" derivative to

dv :dVd(va:ld[dvjz. (4.39)
dy> dydvidy ) 2dviady
By squaring Eq. (4.38) and defining

o0-(§ ] (4.40
y

a 1% order differential equation is obtained:

2 2
2 2, 2 sitsi d
3 [1(#] g}w Qe+ %] (441

With Qi(V) given by Eq. (4.19), this equation is numerically solved for g(V). After that, g™/? =

dy/dV is readily integrated from V = 0 to Vgs where y = L is reached. The continuous solution of
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las-Vas is plotted in Fig. 4.15. Fig. 4.16 plots dV/dy at the drain (y = L) versus Vgs. The same linear
behavior as in the n = 1 case is observed. We derive the general expression based on regional

approximation in the velocity saturation region.

70
60 ——— O —— ¢
[ non-GCA
50| X
g [ last GCA
S 401 solution
< I
- 30}
s ! GCA
20 n=2
[ L =50 nm
10 Vgs=1.2V
0 L L L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2
Vds (V)

Figure 4.15 lgs-Vgs characteristics generated by the GCA and non-GCA models under the n = 2 velocity
saturation model. s = 200 cm?/V-s, Vst = 107 cm/s. Ciny is taken to be &/ti.
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Figure 4.16 dV/dy at the drain (y = L) versus Vs for the case in Fig. 4.12. Labels above the non-GCA curve
indicate the carrier velocity at those bias points.

Figs. 4.13 and 4.17 show that the lqs-Vgs characteristics generated by the non-GCA model
with the above factor are in close agreement with TCAD for both the n =1 and n = 2 cases. Further
examination of the output conductance, g4c = dlas/dVas, in Figs. 4.14 and 4.18 again shows

reasonably close agreements between the model and TCAD over the entire range of Vgs.

Although the simple Eq. (4.19) for Qi(V) works fine for Vgs — Vi > 250 mV (= 10 kT/q), it
loses its accuracy when Vs is within 100-200 mV of V.. In that case, the relation between Q; and

Vgs — Vi —V is more accurately expressed by the rigorous, all region model of Egs. (4.1) and (4.2)

through the intermediary parameter S.
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Figure 4.17 lgs-Vgs characteristics (n = 2 velocity saturation) generated by the continuous non-GCA model

compared with TCAD.
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Figure 4.18 Comparison of gqc = dlgs/dVgs versus Vgs (n = 2 vel. sat.) between TCAD and the non-GCA

model. Open squares are calculated from the explicit Eq. (4.54) valid for Vgs > Visat.
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This is depicted in Fig. 4.19, where the discrepancy starts to show at Vgs = 0.5 V and becomes
worse at Vg¢s = 0.4 V—only 3kT/q above V:. One fix is to generalize Eq. (4.19) to

Q =2C;,, (Vs -V, —mV), (4.42)
by introducing a parameter m (< 1) to describe the decreased slope of Q; versus V when Vgs — V4 is
only a few kT/g. m can be determined from the all region model, Egs. (4.1), (4.2). For example, m
~ 0.7 when Vg = 0.4 V. Far above V;, m =~ 1. The non-GCA model can be modified in a

straightforward way to accommodate this additional parameter.

3E-6
Vo = Solid: All region model
93 Dotted: Eq. (3), Ciny
2E-6
&
5
(:), 1E-6
e
OE+0
‘1E'6 M 1 M 1 M 1 M 1 M 1

0 006 01 015 02 025 03
vV (V)

Figure 4.19 Comparison of the rigorous all region model, Egs. (4.1), (4.2) to the Ciny model, Eqg. (4.19) at
Vgs 70-270 mV above V..

53



4.5 Explicit Solution by Regional Approximation

The results that dV/dy|y - is a linear function of Vgs for both n = 1 (Fig. 4.12) and n = 2
(Fig. 4.16) clearly indicate that it is more general than the specific velocity saturation model. This
function is derived analytically below following a regional approximation. In the velocity
saturation region, (uo/vsat)(dV/dy) >> 1 such that carrier velocity ~ vsar. Both Eqgs. (4.27) and (4.38)

can then be simplified to
I, :vvvsa{zcmv(vgs —V, =V + &ty ‘l;q , (4.43)

with Qi given by Eq. (4.19). By applying Eq. (4.39), the above equation becomes

2
Iy gty d (dv 4.44
_ds _oC _V V) = Geitsi 2P EY .
Wv (Vo =V =V) 2 dV(dyJ ( )

sat

Integrating the above from Vgsar to V, and making use of Eq. (4.24) for lgsat, it can be shown that

2 2
Ids - Idsat 2 & t : dV dV
Zds T Tdsat (\/ _\/ C. (V-V =S| 28 | 22 . 4.45
\stat (V dsat) + mv(V dsat) 2 |:( dy dy b ( )

The above can be written as

2
avY 2c,
(5 =20l e (4.46)
where
— Ids — Idsat - Ids — Idsat —V -V 4.47
= 2\statcinv Idsat (VQS l dsat) ( )
and
2
a2 b2 = Sl [(AV ) (4.48)
2Cinv dy Vgsat
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Since lgs ~ lgsat, @ is ~ 0.03 V or less for the device being considered. If Vgs is not too close to Vsat,
dV/dy | ves at the drain >> dV/dy | vasar. Therefore,

dv
dy

v
dy

~ 2Cinv (Vds _Vdsat + a) ' (449)

&t

=
Vs si-si

y=L

This agrees well with the straight lines in Figs. 4.12 and 4.16.

EqQ. (4.46) indicates that V is an exponential function of y beyond the point of saturation.

Integration with the condition V(y = L) = Vs yields

V-V, +a+ \/(V Vi +2) +b% = 2(V,, _vdsat)exp{ &tinV(y _ L)} , (4.50)

under the assumption that Vgs is not too close to Vasat. In terms of CLM, the pointy = L — AL where

V = Vgsat moves toward the source as Vgs increases:

AL = ‘gsitsi |n{ 2(\/ds _Vdsat) J . (451)
2Cinv a-f-\/a2 +Db?

Similar exponential expressions of V(y) have been derived in for bulk MOSFETs where 2Ciny

becomes Cox and tsi is replaced by x;, the source-drain junction depth. AL of Eq. (4.51) is weakly
dependent on dV/dy | vasat which goes into a2 + b? per Eq. (4.48). dV/dy | vasat cannot be determined
analytically because it is at the transition point between the GCA model and the fully velocity
saturated model, Eq. (4.43). Numerically, dV/dy | vasar depends on Vgs, as well as on whether the vsat

model is n = 1 or n = 2. For the device considered, dV/dy | vasar goes from 3x(Vsat/ 1i0) to 9x(Vsat/ 1)

The factor a++a®+b? in Eq. (4.51) then ranges from 0.04 V to 0.11 V, meaning a log factor as

large as In(50) ~ 4 and AL of ~ 9 nm.
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To derive an explicit expression for the output conductance in the velocity saturation
region, we use Eq. (4.25) for the n = 1 case and note from Eq. (4.50) that for an incremental 6V,

the GCA channel length is further shortened by

oL |Esti _ Mes (4.52)
2Cinv Vds _Vdsat
Therefore,
dl ds _ 5' ds _ gsitsi Idsat . (453)
dVds évds 2Cinv(l'i' Z)(L - AL)2 Vds _Vdsat

Here, for better accuracy, L in Eq. (4.25) is replaced by the GCA channel length, L — AL. It can

make as much as 20% difference on the conductance result. For the n = 2 case, Eq. (4.37) is used:

dly &gty sinh u, cosh u, — u | et (4.54)
dv,, \2C,, (L—-AL)?\sinhu,coshu, +u, )V, —V,.,

Because of the factors due to modified CLM, the output conductance in the velocity saturation
region is lower than that in the saturation region of the constant mobility case. The output
conductance calculated from the analytic Eqgs. (4.53), (4.54) is also shown in Figs. 4.14 and 4.18
over the range of Vs > Vgsat for each Vs bias. They agree well with the numerical model and TCAD

results.

SCE is negligible at L =50 nm. It is worthwhile to push the model-TCAD comparison to
shorter L and find out at what channel length SCE starts to have non-negligible effect on the output
conductance in the saturation region. Fig. 4.20 shows that the model is accurate down to L = 20
nm. Below that SCE sets in, having a stronger influence on gqc at Vgs = 0.6 V than 1.2 V because
the closer Vgs is to Vi, the more sensitive is Qi to Vi reduction due to DIBL. The onset is generally

comparable to the slope of exp(-#L/21) from the scale length model where 4 = tsj + 2 ti = 8 nm.
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This can be generalized to state that the range of model validity is L > 24, similar to the common

criterion for tolerable SCEs based on the subthreshold leakage current.

Solid: Model
Points: TCAD

L R 4

Vgs=1.2V

0.5

0.3
0.2

\~ exp[-aL/24]

Oge @ Vys = 1.2V (QYem)

01 1 M 1 M 1 M 1 M 1
10 20 30 40 50

L (nm)

Figure 4.20 Model validity versus channel length. n = 1 velocity saturation model is assumed in both
model and TCAD.

4.6 Numerical Solution Methods: Forward Euler versus

Backward Euler

In numerical analysis and scientific computing, the backward Euler method (or implicit
Euler method) is one of the most basic numerical methods for the solution of ordinary
differential equations. It is similar to the (standard) Euler method, but differs in that it is

an implicit method. The backward Euler method has error of order one in time.
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Consider the ordinary differential equation % = f(t,y) with initial value y(t,) =

v, Here the function f and the initial data t, and y, are known; the function y depends on the
real variable t and is unknown. A numerical method produces a sequence yq, ¥4, ¥, ... Such

that y, approximates y(t, + kh), where h is called the step size.
The backward Euler method computes the approximations using yx+1 = ¥« + hf (bks1, Vies1)-

This differs from the (forward) Euler method in that the forward method uses f (¢, y,) in place

of f(tks1) Yies1)-

The backward Euler method is an implicit method: the new approximation y; ,, appears
on both sides of the equation, and thus the method needs to solve an algebraic equation for the

unknown y, ;. For non-stiff problems, this can be done with fixed-point iteration:

0 i+1 .
Vo =Y e = v+ hf (teen vih).

If this sequence converges (within a given tolerance), then the method takes its limit as the new

approximation y, , ;.

For a given lgs, solve the following 1% order differential eq. for V(y) with the boundary
condition V(y = 0) = 0. Use a constant step size of, for example, dy = 0.5 nm. Then, Vgs = V(y =

L), i.e., the value of V when y reaches 50 nm.

2
Id Id 1 2 &qts dv 2 (455)
—& g4 6\ =2C VS VA VL PR L f i [ :
%Wy VoW o{(\/g oV =3 } 5 H dyj Eo]

and
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E, - lgs . (4.56)
ZIUOWCOX (Vg _Vo) - (/uo /Vsat) Ids

Going from V at a point y to the next point y + &y with dV/dy| v, at point n+1, y goes to y
+ 8y and V goes to V + 8V. We would like to find the value of dV/dy | v:sv. The value of dV/dy

isineq. 4.57:

dv , 2 [y I, [ 1 2}
v _ g2y SRV BRI To) —V,V -ZV2 |t = f(yV
dy \/Eo At {,UOW y 5 or| Vg —Vo) > (y.V)

(4.57)
Different Euler methods were tried to solve the above equations. Forward Euler is defined as
dV=dy x dV/dy|v where dV/dy|v is the dV/dy evaluated at the point (y, V). Backward Euler
method is defined as dV = dy x dV/dy|v+av where dV/dy | vsav is the dV/dy evaluated at the
point (y + dy, V + dV).

ie.,

i |¢ — _ _(V+6V)Z gsitsi ﬂ 2_ 21, (458)
AR A TARY 260{(\/% V) ov) - } : K(Wj Eo}

Then 6V is solved from the above eq.

In Averaged Euler,
dV is dy x %{dV/dy| v+av + dV/dy| v}, therefore dV/dy|v+av = 2 x dV/dy — dV/dy|v}.

ie.,

i g _ _ _(\/+5V)2 &gl ﬂ_dl 2_ 2|, (4.59)
LR R CH R GRSl [(zgy dyvj 50]
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Figure 4.21 Solutions for Backward Euler and Averaged Euler methods with different step sizes dy.

Backward Euler has V(y) near the drain is step-size dependent until dy = 0.1 nm while in,
averaged Euler, V(y) has little step-size dependence. dy = 1 nm is good enough. The plot below
shows an example that the forward Euler method may not converge even with a small dy of 0.1

nm. The averaged and backward Euler methods always converge with a dy =1 nm.
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Figure 4.22 Solutions from Forward Euler and Averaged Euler methods with step sizes dy of 0.1
nm.
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CHAPTER 5 NON-GCA MODEL FOR BUuLK MOSFETSs

5.1 Uniform Doping

Non-GCA Model for the Saturation Region

The MOSFET current model covered thus far has been developed under the framework
of Gradual Channel Approximation (GCA). It assumes that the field gradient in the y-direction or
the channel direction is negligible compared to the field gradient in the x-direction or the gate

direction so 2-D Poisson’s equation,

vy v g R .
—5 +—5 =——[P(X) =n(X) + Ng (x) = N (X)], (5.1)
ox°® 8y2 Esi d a

is reduced to the 1-D MOS equation of ZZTf = —% = — giﬂ [p(x) —n(x) + Nf(x) — Nz ()]

The GCA model works fine in the linear, parabolic, and subthreshold regions, but fails in the

saturation region when Vgs > Vasat. However, the current continuity equation, I;5(y) =

~HerrW o Qi(¥) = —HorsW T Qu(V):
dv
o =~ W Q) (5.2)

demands that the product (—Qi)xdV/dy be a constant throughout the channel. When —Q; — 0,
dV/dy — oo thus invalidating the GCA.

In most standard texts, this is called the “pinch-off” condition. Pinch-off is a term
originally applied to JFETs (Junction Field-Effect Transistor) in the early days of transistor
development (Shockley, 1952). It describes how a p- or n-type conducting path is squeezed to
zero by the encroaching depletion regions of reverse-biased p-n junctions on both sides of the

path. It is rather misleading to use “pinch-off” to describe the point of current saturation in
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MOSFETSs because what goes to zero at V = Vasat is the vertical field, E =—(0y / ax)|X:0, or the
gate induced charge density, not the entire mobile charge density. As a matter of fact, both
0° ylox? and Ex become negative beyond V = Vgsa;, as seen in Fig. 5.1(a) from 2-D numerical

simulations. This shows that the above Vgsat behavior of the charge-sheet curve is a consequence

of the GCA model not allowing Ex to go negative, rather than being physically correct. Also
shown in Fig. 5.1(a) is that the electron density is never zero whether (8 w/0x)|x=o IS positive or
negative. From the 2-D Eq. (5.1) perspective, when &%y / ox* is negative, the o%y / oy® term
becomes more positive to overcome the negative d%y / ox*, thus making the total sum positive.
In this regard, “pinch-off” never happens; d%y / dy? and therefore the lateral field increase

sharply while the vertical field takes on negative values when Vgs > Vsat.
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Figure 5.1 Plots from TCAD simulations. (a) Potential y(x) and electron density n(x) (right scale) along
three vertical cuts: (i) before the saturation point, (ii) at the saturation point, (iii) beyond the saturation
point. For this plot, y is defined as the intrinsic potential with respect to the Fermi potential of the source.
The MOSFET parameters are L = 500 nm, tiny = 3.3 nm, Na = 10" cm™ (uniform), Vgs = 1.5V, Vs = 2.0
V. The gate work function is that of n* silicon. (b) Electron density versus depth in silicon along five
vertical cuts between the saturation point and the drain (y = 500 nm). The junction depth is x; = 50 nm in



A Continuous Non-GCA Model into the Saturation Region

To construct a non-GCA model, a 6%y / oy? term is added to —Qj in the current continuity

equation (Taur and Lin, 2018):

av

& (5.3)

2
l4s = £4eg W |:_Qi V) +e4dg (Zyl/zl}

Here, dsi is an effective depth in silicon to convert the per volume charge density, £,d%y / dy?, to
an area charge density. For double-gate MOSFETSs with thin silicon film, the clear choice for dsi
is the silicon thickness. For bulk MOSFETS, dsj is some fraction of the junction depth x;. This can
be seen in the TCAD plot in Fig. 5.1(b) of the depth distribution of the electron density beyond
the point of saturation. When the vertical cut moves closer to the drain junction, the electron
density spreads deeper towards the junction depth, x; = 50 nm, indicating a similar spread of the
current density. In this regard, dsi is an effective or average depth rather than a physical depth.
For this example, a depth parameter of dsi = 20 nm serves as a good approximation. Also seen in
Fig. 5.1(b) is that the electron density per area, i.e., n(x) integrated over x, which has been
decreasing before the saturation point (y ~ 491.4 nm), keeps on decreasing through the saturation

point until a point of minimum at y ~ 497 nm very close to the drain junction edge.

For the expression of —Qi(V) in Iys = perrW [—Qi(V) + &d a*y

] av
St dyz

o we choose Eq.
(5.4):
_Qi (V) = Cinv(\/gs _Vt B mV), (54)

which does go negative beyond V = Vgsat = (Vgs — Vi)/m (see the dotted line in Fig. 2.2). Here, Cin

is used in place of Cox to take the inversion layer capacitance into account. At the source,

Cmv(\/gs =V,) isgiven by Q; = Qs — Qq = —Cox (Vzs — Vg — ¥5) + /2&5;q N5 Of the charge
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sheet model with ys = yss for V = 0. The linear slope of Qi(V) is a reasonable approximation for

Vi, =V, larger than several kT/q, e.g., V, =V, > 0.2 V. For near-threshold bias conditions, the

decrease of |Qi| with V is much softer due to inversion layer capacitance effects (Ren and Taur,
2020).

To make Eq. (5.3) easier to solve, an approximation, d?y /dy® ~d?/ /dy?, is made on
the grounds that near the drain where the £,d %y / dy® term is important, the current is mostly

drift, i.e., dy /dy =dV /dy. With that substitution, Eq. (5.3) can be integrated once to yield:

Ids y=CinV|:(Vgs Vt)VmV2j|+é‘SI—dSII:(de gz:l' (55)

;ueffW 2 2 W

where Eo is dV/dy at y = 0. Since the non-GCA term in Eq. (5.3) is negligible at y = 0, we have

|
% — ds ] (56)
/ueffWCinv (Vgs _Vt)

Equation (5.5) is a 1%*-order ordinary differential equation valid for all regions above threshold,
both before and after saturation. For a given Igs, it solves for V(y) numerically fromy=0toy =
L, yielding Vgs = V(L) as the result. The standard method of evaluating dVv/dy = f(y, V) and
applying it to get to the next point runs into the trouble of magnifying the numerical imprecision

in the region of V << Vysar Where y(V) is simply given by the 1% term (GCA) on the RHS of Eq.

(5.5) with the (dV /dy)? term (non-GCA) negligible. Instead, to go from a point (y, V) to the

2 2
yVv dy yVv

(5.7)

next point (y + oy, V + V), the following difference equation is used:

&y4d oV

0y =Co{ Vg VOOV = D[ (Vv + v+ S H—j—d\’

dy

/ueffW 2
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where (dV/dy)lyv is the value of dV/dy at (y, V). For a given &y, the above can be re-grouped into
a quadratic equation for 6V with standard solutions. This procedure can be repeated for a large
number of steps on a spread sheet to produce a continuous transition from the GCA dominated
region to the non-GCA region.

Examples of the solution V(y) for two different values of lgs, both slightly over lgsat, are
plotted in Fig. 5.2 as y versus V so that y can be decomposed into its two components: the 1%
term on the RHS of Eq. (5.5) stemming from —Q; (labeled GCA) and the 2" term from

(dV /dy)? (labeled non-GCA). Consider first the GCA curve. It has a peak value of y =

(lasat/las)L at V = Vgsat = (Vgs — Vi)/m, then decreases toward zero. This would be unphysical, like
the downturn of lgs past Vasat, Were the —Qi component solely responsible for the current. In the
non-GCA model, the additional component from (dV /dy)?, while negligible for V < Vgsa,
increases sharply beyond Vgsat S0 the sum y (solid curves) continues to increase towards L, as
seen in Fig. 5.2. The slope dy/dV is, of course, never negative although is much reduced in the
saturation region than before saturation.

The notion of Channel Length Modulation (CLM) is based on the fact that the peak y-
value of the GCA curve, (lgsat/las)L, at V = Vasat becomes < L if lgs > lgsat. 1T we let this y value to
be L — AL, we obtain lgs = lgsat/(1 — AL/L). In view of the full non-GCA model, CLM only serves
as an approximation as the y value at V = Vgsat On the solid curve in Fig. 5.2 is slightly higher

than the y value at V = Vgsat 0N the dashed (GCA) curve.
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Figure 5.2 y(V) solution to Eq. (5.5) for two values of lgs: las1 iS 3% over lgsat, las2 IS 6% over lgsat. The
device is the same as that of Fig. 5.1, with V= 0.4 V, m = 1.28, biased at Vgs = 1.5 V s0 Vusar = 0.86 V and
lasat = 2.0 A/cm. dsi is chosen to be 20 nm. The crossover with the y = L line gives the Vgs solution for the
particular lgs. The lgsp result is further partitioned into two curves, according to the two terms on the RHS

of Eq. (5.5). The dashed curve labeled GCA is the 1* term divided by (las/1&#W). The dotted curve labeled
non-GCA is the 2" term divided by the same.

Figure 5.3 shows the lgs-Vgs curves generated from this model. They are continuous from

the linear and parabolic regions into the saturation region.

las (Alcm)

Figure 5.3 lgs-Vas curves (solid) solved from Eq. (5.5) for the device described in the caption to Fig. 5.2.
The dashed curves are from the GCA model for which currents saturate at lgsat.
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Regional Approximation for the Saturation Region
Equation (5.5) can be greatly simplified in the saturation region where y ~ L as is evident

in Fig. 5.2. The Eq? term can also be dropped. Further rearrangement yields

2
L g.d.(dV
_ +— C -V Csisi , 58
,UeffW( ds dsat) mv(V dsat) 2 [dyj ( )
where Vasat and lasat are given by Vo = Vyeqr = Vgs %and Iy = Iyq = teffCox W(Vgsz nrt) If

Vs 1S not too close to Vgsat, the first term on the LHS is much smaller than the second term. It

then follows that in the saturation region, dV/dy increases linearly with V —Vgsat. Further

integration gives V(y) as an exponential function of y, o exp[y | \Jegdg / (mC,,) } The

correlation between the characteristic lateral length /s.d, /(mC,,) and the vertical dimensions

reflects the 2-D nature of the non-GCA effect (Ko et al., 1981).
Based on the CLM picture, there is a correspondence of Ay with Algs. Specifically, Ay/L =

Algs/lgsat. EqQuation (5.8) then gives the output conductance in the saturation region:

dlds — Idsat dv 55|d5| Idsat (59)
dv, L Ldy mC, L” V, V..

For not too short channel devices, the dimensionless square root factor is << 1, e.g., ~ 1/40 for

the device in Fig. 5.3. The slope in the saturation region increases with Vgs through the lqsat factor

and decreases with Vgs for a given Vs.

5.2 Ground-Plane MOSFETSs
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Nonuniform Channel Doping

In this section, we consider the threshold voltage and the maximum depletion width of a
nonuniformly doped MOSFET. Specific examples include high-low and low-high doping
profiles.

By employing the depletion approximation in subthreshold, the electric field, surface
potential, and threshold voltage can be solved for an arbitrary p-type doping profile N(x). The
electric field is obtained by integrating Poisson’s equation once (neglecting mobile carriers in the

depletion region):
E(x)= giJ‘:Vd N (x)dx, (5.10)

where Wg is the depletion-layer width. Integrating again gives the surface potential,

Wy
X

q Wy ' '
,=— N (x")dx"dx 5.11
vom ol NG (511)
Using integration by parts, one can show that the above is equivalent to (Brews, 1979)
q W
Vi jo XN (X)dx. (5.12)

The integral of xN(x) equals the center of mass of N(x) within (0, Wq) times the integral of N(x).
The maximum depletion-layer width (long-channel) Wan is determined by the condition

ws = 2ys When Wq = Wam. The threshold voltage of a nonuniformly doped MOSFET is then

determined by both the integral (depletion charge density) and the center of mass of N(x)

within (0, Wam).
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Retrograde (Low—High) Channel Profile

When the channel length is scaled to 0.25 um and below, higher doping concentration is

needed in the channel to reduce Wgm and control the short-channel effect. If a uniform profile

were used, the threshold voltage V; = Vj,, + 25 + —W would be too high even with dual

ox

polysilicon gates. The problem is further aggravated by quantum effects, which, can add another
0.1-0.2 V to the threshold voltage because of the increasing fields (van Dort et al., 1994).

To reduce the threshold voltage without significantly increasing the gate depletion
width, a retrograde channel profile, i.e., a low—high doping profile as shown schematically in
Fig. 5.4, is required (Sun et al., 1987; Shahidi et al., 1989). Such a profile is formed using
higher-energy implants that peak below the surface. It is assumed that the maximum gate
depletion width extends into the higher-doped region. All the equations in the previous section

remain valid for Ns < Na. For simplicity, we assume an ideal retrograde channel profile for which

— 2 —
NS = 0 Equat'on Vt — ‘/fb + 21/)3 + C_\/ngina (21/)3 _ q(Ng Na)xs) + Q(Nsc Ng)xs then

1
0x 2¢&gi 0x

qNa 4gsiw qNaXS
Vt =Vfb +21//B +C—0X /qTaB'Fxs—C—OX. (513)

. _ 2
Similarly, W,,,, = \/2;“ (21/),9 — q(stg#)xs) with Ns = 0 gives the maximum depletion width,

de .y 5
W, = [ZsifB . 5.14
" / N + X (5.14)

The net effect of low-high doping is that the threshold voltage is reduced, but the depletion

becomes

width has increased, just opposite to that of high-low doping. All other expressions, such as those
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for the subthreshold swing and the substrate sensitivity, in the previous subsection apply with

Wam replaced by Eq. (5.14).

Channel
doping
A
‘?\‘ a
N,
| | -
0 Xy Hi.fm X

Figure 5.4 A schematic diagram showing the low-high (retrograde) step doping profile. x =0
denotes the silicon—oxide interface.

Extreme Retrograde Profile and Ground-Plane MOSFET

Two limiting cases are worth discussing. If xg < (4£5;5/qN )%, then Wam remains
essentially unchanged from the uniformly doped value [Eq. (5.14)], while V¢ is lowered by a net
amount equal to gNaxs/Cox [EQ. (5.13)]. In the other limit, Na is sufficiently high that x, >
(4e,5/qN)Y?. In that case, Wam = Xs, and the entire depletion region is undoped. All the
depletion charge is located at the edge of the depletion region. The square root term in Eg. (5.13)

can be expanded into a power series to yield

gsi (ZWB / Xs)

0Xx

V, =V, +2p, + (5.15)
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The last term, due to the depletion charge density in silicon, &si(2ws /xs), can also be derived from
Gauss’s law by considering that the field in the undoped region is constant and equals 2yg/Xs at
threshold. Note that the work function difference that goes into Vi, is between the gate and the p*
silicon at the edge of the depletion region. Using m = 1 + 3tox/Wam= 1 + 3tox/Xs, We can rewrite
Eq. (5.15) as

V, =V, + 25 +(M—=1) 2. 5.16)

Comparison with V; = —f—z + oy + sibplor ’j—z + g + 2(m — 1)(2y5) shows that, with

Wam €ox
the extreme retrograde profile, the depletion charge (the third) term of V: is reduced to half of the
uniformly doped value.

All the essential device characteristics, such as SCE (Wam), subthreshold slope (m), and
threshold voltage, are determined by the depth of the undoped layer, xs. The limiting case of
retrograde channel profile therefore degenerates into a ground-plane MOSFET (Yan et al.,
1991). The band diagram and charge distribution of such a device at the threshold condition are
shown schematically in Fig.5.5. Note that the field is constant (no curvature in potential) in the
undoped region between the surface and xs. There is an abrupt change of field at x = xs, where a
delta function of depletion charge (area = 2&siws/xs) resides. Beyond xs, the bands are essentially
flat. It is desirable not to extend the p* region under the source and drain junctions, since that will
increase the parasitic junction capacitance. The ideal channel doping profile is then that of a
low-high—low type, in which the narrow p* region is used only to confine the gate depletion

width. Such a profile is also referred to as pulse-shaped doping or delta doping in the literature.
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Figure 5.5 Band diagram and charge distribution of an extreme retrograde-doped or ground-plane
nMOSFET at the threshold condition.

Near the limits of bulk MOSFET scaling, the body needs to be doped above 10'° cm= to
constrain the gate depletion depth to ~ 10 nm for control of the short-channel effect. The threshold
voltage, on the other hand, needs to be scaled down below ~ 0.3 V for a supply voltage of ~ 1.0

V. This is accomplished by employing low-high (retrograde) body doping which, for a given gate
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depletion width, has a reduced depletion charge density. The extreme limit of low-high doping is
a ground-plane MOSFET (also known as super-steep retrograde) shown schematically in Fig. 5.6.
It consists of a lightly doped or essentially undoped surface layer of depth xs on top of a highly
doped (Na) p* body (for nMOSFETS). The gate depletion width is essentially xs with all the

depletion charge located at the step where the body doping changes abruptly from 0 to Na.

t

Oox

Doping

ource s Undoped Dra

* Sili N) ’ |:|
p* Silicon (V,) =

Figure 5.6 A schematic cross-section of ground-plane MOSFETSs. Shown on the right is the depth
profile of body doping along a vertical cutline.

X

mdaqg

A Non-GCA Model for Ground-Plane MOSFETSs
In this work, we develop a model for ground-plane MOSFETS by first deriving an analytic

solution under the Gradual Channel Approximation (GCA). The GCA model works for long
channel MOSFETs with constant mobility. For shorter length MOSFETSs in which velocity
saturation occurs, it is necessary to implement a non-GCA model incorporating the gate-induced
mobile charge density from the GCA model. The lgs-Vas characteristics generated from both the n
=1 and n = 2 velocity saturation models are verified by TCAD simulations. For comparison with
the published hardware data of 20 nm bulk MOSFETS, source-drain series resistances are added

to the model.
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Figure 5.7 Band diagram of a ground-plane nMOSFET biased near the threshold. The p* ground plane
is grounded to the n* source.

5.2.1 Long-Channel GCA Model

The band diagram of a ground-plane nMOSFET is shown schematically in Fig. 5.7. In the
undoped silicon region between x = 0 and x = Xs, there is only the inversion charge (electrons)

density hence Poisson’s equation takes the form

Y _ 4 e dW-V)/KT (5.17)

dx? Ei
where w(x) = —[Ei(X) — Ess]/q is the potential function defined in Fig. 5.7 referenced to the source
Fermi level E«. In the above equation, & is the permittivity of silicon, n; is the intrinsic carrier
concentration, and V is the electron quasi-Fermi potential at a point in the channel. V is independent
of x but varies along the channel from 0 at the source to Vgs at the drain.
The hole density is neglected in Eq. (5.17). This is valid for most of the undoped region

where the valence band edge is well below the Es of the p* substrate (Fig. 5.7). The highest hole
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density in the undoped region occurs right below x = xs. The justification for neglecting the hole

density there is given later after discussing depletion of the ground plane.

By multiplying dw/dx to both sides, Eq. (5.7) can be integrated once to obtain

dv _ -J&eq(w-V)/kT + E2 (5.18)

dx €si

where Eo is a constant of integration. The general solution to Eq. (5.17) includes the possibility of
a negative constant, or E¢> < 0. As far as the ground-plane MOSFET is concerned, only the E¢? >

0 solution is needed. Equation (5.18) has the closed form solution:

. qEox ]
sinh T 20

SSin_Eo
y(x) =V + Z‘jTTln N (5.19)

where zo is the second integration constant.

The constants Eg and zo are determined by the boundary conditions at x = 0 and x = Xs. At

x = 0, the continuity of displacement at the Si-SiO; interface yields

Vgs—dmi—1¥(0) - —¢ ay

- T Csi
tox dx lx=0

(5.20)

ox

Here, & is the permittivity of the gate oxide with a thickness tox, Vgs is the applied gate to source
voltage, and ¢,,; = (P — @) is the work function difference between the gate and intrinsic
silicon. At x = xs, the simple boundary condition is ¥ (xs) = —E,/2q if there were no depletion in
the p* ground plane. But the depletion effect is nonnegligible on the nanometer scale even if the
p* is doped as high as Na = 10 cm. To account for that, we note that for 1'(x) in the p* region

(X > Xs),
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dx?2

L = LN, —ne~av/i]. (5.21)

Integrate once with the condition dy'/dx = 0 aty' = —(kT/q) In( N, /n;),

(d_llf')z _ 2kTNg [;_;e—qw'/kT n ‘L_f +In (’:’l_‘:) _ 1], (5.22)

dx Esi

The boundary condition at x = xs for yand dy/dx is then

2
dy — 2KTNg [T ,—qyp(xs)/kT 4 TP (Xs) Na) _
(dX X=XS) Esi [Na € ° + kT + ln (Tli) 1] (523)

for matching ¢ and dvy'/dx in the p* region.

Applying Eq. (5.18) to Eq. (5.23) yields

g2 = ZMa [13_ e-qV(xs)/KT 4 | (& eqw(xs)/kT) _1] _ 2T L q[p(x5)-V]/KT (5.24)

€si nj Esi

qEoXs 9EoXs

Let x = xs in Eq. (5.19) and approximate sinh [ + zo] as- S exp [ + zo], we obtain

2kT 2KkT si
L Zo=V+="In {2 leT EO} -EoXs-y(Xs) (5.25)

Let x =0 in Egs. (5.18), (5.19) and substitute 1)(0) and (diy/dx)|,= in Eq. (5.20):
— i =V + ﬂl { /2:;’ 80} — —ln[smhzo] + toxeo cothz, (5.26)

An implicit equation for a single unknown yAxs) is obtained by expressing zo in Eq. (5.26) with

Eqg. (5.25), then replacing all Eo in terms of y(xs) using Eq. (5.24).

To justify that the hole density is negligible in Eq. (5.17), we first note that the average

field in the undoped region (0O, xs) is Eav = (Eg/q)/xs for gate voltages close to the condition where
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the front surface inverts, like that shown in Fig. 5.7. For xs = 10 nm in our case, Eay = 1 MV/cm.
For this field, Eq. (5.23) with Na = 10%° cm™ gives y(xs) ~ —0.54 V thus p(Xs) = ni exp[—q w(Xs)/KT]
~ 10 cm. For x < Xs, the effect of p(x) = ni exp[-quAx)/kT] on the field AE can be estimated from
Poisson’s equation as follows:

qu /KT
QJ‘ p(X)dX 7nJ"l/(Xs)e d(//z kT nie,q,/,(xs)/k-r
gsiEav

Plugging in the numbers above, AE ~ (KT/&iEav)p(Xs) ~ 0.04 MV/cm << Ea. This shows that the
hole density in the undoped region has a negligible effect on y(x) compared to the existing field

Eav in the undoped region.

Once Eo and zo are solved for given Vg and V, the mobile charge density Q; (taken as

positive) can be evaluated from Gauss’ law:

_dy
x=0 dxlx

Qi(Vgs, V) = -5 [3:': ] = g4 Eq {coth Z, - coth [qEOXS + ZO]} (5.27)
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Figure 5.8 Mabile charge density per area at a point in the channel versus electron quasi-Fermi potential
for a given gate voltage. The solid lines are solved from Eq. (5.27). The dashed lines are the linear
approximation of Eq. (5.32).

Figure 5.8 shows an example of Q; versus V plots solved from the model for several
values of Vgs. For the case of constant mobility (10), the long channel MOSFET current is simply

given by the integral of Q; with respect to V from 0 to Vs, the source-to-drain voltage:
W Vgs
Las (Vg Vas) = o Jy ©° Qi(Vys, V)V (5.28)

Here, W and L are the width and length of the MOSFET. Model generated l4s-Vgs plots for L =1
um are shown in Fig. 5.9. They are consistent with TCAD simulations. The l¢s-Vgs plots are shown
in Fig. 5.10. The model currents in saturation are slightly (~ 3%) below those of TCAD. The slight

discrepancy is resolved by applying the non-GCA model described in the next section to this case.
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Figure 5.9 l4s-Vgs characteristics generated by the model in both linear and log scales compared to TCAD.
The device parameters assumed are: tox = 2 NM, &ox = &i, Xs = 10 nm, Na = 10? cm™®, and 20 = 200 cm?/V-s.
The gate work function is that of n* silicon.
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Figure 5.10 Igs-Vgs characteristics generated by the model compared to TCAD. The squares are from the
GCA model discussed in this section. The dots are from the non-GCA model discussed in the next
section.
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5.2.2 Non-GCA Model withn = 1 and n = 2 Velocity Saturation

Below 1 pum channel length, MOSFET currents are limited by velocity saturation. We

consider two velocity saturation models here: n=1and n=2. Forn =1,

WQ; dv
I = Yo & 5.29
4 ™ 14 (y/Vsar) (dV/dy) dy (5.29)

Forn=2,

WQ;

ly = o W0 . (5.30)
d

J1+(u0/vsat)2(dV/dy)2 y

In the above, o is the low-field mobility, vsa is the saturation velocity. Application of the GCA
model from the previous section to Egs. (5.29) or (5.30) yields unphysical lgs-Vgs results: either a
negative slope or no solution beyond the I4s peak, because dV/dy diverges when vsq is reached in

the channel.

To deal with the problem, we apply a non-GCA model by adding a lateral field term, Q;, =
g5;ds;d?V /dy?, to the mobile charge density, where dsi is a depth parameter < xs, the undoped

region depth. Thus, forn =1,

_ oW ! . dZ_V av
las = 1+(y/Vsat) (dV/dy) (Q‘ T &sidsi dyz) dy (5.31)

The gate induced mobile charge density Qi in the GCA model is given by Eq. (5.27) and plotted
in Fig. 5.8 (solid curves). It never goes negative because Q; is the total mobile charge density in
the GCA model. Physically, however, the gate induced charge density, proportional to the oxide

field in the gate direction, does go negative over the channel portion where the channel potential

V becomes higher than the gate potential. In the non-GCA model, Eq. (5.31), Q; can go negative
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while the total mobile charge density, Q; + Q,, stays positive. In this work, we make use of the
well-known expression for Q; :

Qi' = Cinv (Vgs'Vt-mV)J (532)

with m the body effect factor given by 1 + (&5;/x5)/(€0x/tox)- The other parameters are extracted
from the GCA model as follows: Ciy,, (V35 — V¢) is given by Q;(V = 0), i.e., the initial Qi value in

Fig. 5.8. The slope, mC;,,, is set so that the maximum positive area under Eg. (5.32),

Vgs—Vt

Jy ™ Q@ (Vav = W equals the integrated area of Eq. (5.27) in Fig. 5.8, [.” Q;(V)dV,
for each Vgs. The so-obtained Q; (V) are shown as dashed lines in Fig. 5.8. Q; changes sign when

the potential in the channel exceeds % and the field in the oxide reverses. The extracted Ciny is

somewhat lower than Cox because of the finite inversion layer capacitance. It can be seen in Fig.
5.8 that Ciny, proportional to the slope —dQ;/dV, decreases towards lower gate voltages. In this

case, Cinv = 0.9 Cox, 0.85 Cox, and 0.75 Cox, respectively for the three Vgs shown.

By multiplying the denominator to the LHS, Eq. (5.31) can be integrated once:

las lds v _ R _myo] | &sidsi [(dV 2_ 2
Y TV = Ciny | (Vs V-2 V2| + =5 [( ) El] (5.33)

where E1 = (dV/dy)|y-o at the source. Since d2V/dy? is negligible at the source, setting V =0 in Eq.

(5.31) gives

E, = las (5.34)

L L WQi (V=0)-(y/Vsat)lds
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For a given lgs, Eq. (5.33) is a 1% order ordinary differential equation that can be solved numerically
for V(y). Vs is then the value of V(y) when y reaches L. The n = 1 lq4s-Vas Characteristics generated

by the model are shown in Fig. 5.11. They are in close agreement with TCAD simulations.
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Figure 5.11 lgs-Vgs characteristics generated by the n = 1 non-GCA model compared to TCAD. The
parameters are L = 100 nm, vsa = 10” cm/s, dsi = 5 nm. The rest of parameters are the same as those in the
caption to Fig. 5.9.

Similarly, the n = 2 non-GCA model looks like

Ids -

i 2
ho ¥ (Q +eada ) & (5.35)
J 1+(1p/Vsat) 2(dV/dy)?

To numerically solve this equation, a different procedure from that of n = 1 is followed. Equation

(5.35) is first converted to a first-order differential equation in g(v) = (dv /dy)? [3]:
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|d52|:1+£l::tJ g‘|:W2ﬂozgl:Qi,(V)+£Si2%;g/:| _ (536)

The initial condition g(V = 0) is obtained by neglecting d2v/dy? in Eq. (5.35) and solving for

(dVv/dy)%

(s / 11V)? (5.37)

o Qv =0 - (1, Wy’

After g(V) is solved numerically, g™’ = dy/dV is readily integrated from V = 0 to Vgs where y = L
is reached. The n = 2 l4s-Vgs characteristics solved by the model are shown in Fig. 5.12 to be

consistent with TCAD results.
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Figure 5.12 lgs-Vgs characteristics generated by the n = 2 non-GCA model compared to TCAD. The
parameters are the same as those in Fig. 5.11.
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Figure 5.13 lgs-Vgs characteristics generated by the n = 1 non-GCA model compared to TCAD with
different dsi. The rest of parameters are the same as those in the caption to Figs. 5.9 and 5.11.

5.2.3 Comparison with Hardware Data by Adding Rsq

Model with Parasitic Source and Drain Resistance

In reality, there are source and drain series resistances in a MOSFET device that can
adversely affect the drain current. An example is shown in Fig. 5.14(a) where the lgs-Vds
characteristics generated by the intrinsic model of Section Il are plotted alongside with the
published data of 20 nm bulk MOSFETS. It is relatively straightforward to add source and drain
series resistance to the non-GCA model since it computes Vgs for a given lgs. Models that compute

l¢s for a given Vgs would require multiple iterations.
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With a source resistance Rs, the applied Vgs is reduced by the IR drop such that the gate

voltage experienced by the intrinsic device is

Vgs = Vis-Relgs. (5.38)

For each given set of ;" and las as the input, the n = 1 velocity saturation model in the previous

section is called upon to calculate V, of the intrinsic device. Then the external source-to-drain
voltage is given by

Vgs = Vags + (Rs + Ry)lgs. (5.39)

By repeating the procedure for a series of Igs values with the same Vgs, an lgs-Vas characteristic is

generated for that Vgs. Note that Vgs' takes on different values as lgs is varied under the same Vgs.

Figure 5.14(b) shows that, with proper gate-voltage dependent series resistance added to the
n = 1 velocity saturation model, the l4s-Vas characteristics generated closely match the 20 nm
MOSFET data. Here, Rs and Rq vary from 150 Q-um to 200 Q-um to 600 Q-um for Vgs = 0.9, 0.7,

and 0.5 V, respectively. The other device parameters in the model are listed in the figure captions.
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Figure 5.14  lgs-Vgs characteristics generated by the n = 1 velocity saturation model compared to the
published data of 20 nm MOSFETSs. (a) No source and drain resistance. (b) With source and drain resistance
(values given in the main text) added to the model. In both (a) and (b), solid curves are the published
hardware data, dots are the model results. Parameters used in the model are: L =20 nm, EOT =1.2 nm, m
=1.3, Vi=0.25V, ds = 15 nm. The mobility and saturation velocity assumed are the same as in the earlier
figures. Similar Cin, namely, Cin = 0.87 Cox, 0.71 Coy, and 0.65 Coy, for Vgs = 0.9, 0.7, and 0.5 V respectively
are used.
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CHAPTER 6 SCE OoF ET-SOI MOSFETS

SOI CMOS involves building more or less conventional MOSFETS on a thin layer of
crystalline silicon, as illustrated in Fig. 6.1. The thin layer of silicon is separated from the
substrate by a thick layer (typically 25 nm or more) of buried SiO- film, thus electrically
isolating the devices from the underlying silicon substrate and from each other. An SOl CMOS
process can be readily developed due to the compatibility with established bulk processing

technology.

Silicide

Silicide

Buried oxide layer

Silicon substrate

Figure 6.1. A schematic cross-section of SOl CMOS, with shallow trench isolation, dual
polysilicon gates, and self-aligned silicide.

6.1 Short-Channel SOl MOSFETSs

Short-Channel SOl MOSFETs

It has long been reported in the literature that fully-depleted SOl MOSFETS are more
susceptible to short-channel effects (SCE) for lack of a conducting plane not too far below the
device region (Su et al., 1994; Wong et al., 1994). The 2-D scale length model, however, does

not apply to SOI MOSFETSs because no closed rectangular region can be defined with known
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potential values on its boundary. TCAD has become a necessary tool for investigating SCE in

SOl MOSFETSs (Xie et al., 2013).

2-D Fields in the Buried Oxide

Figure 6.2 compares the constant potential contours of a bulk ground-plane MOSFET
with an SOl MOSFET side by side. In the bulk case, the 2-D fields are confined to the depletion
(undoped) region bounded below by the conducting substrate. In the SOI case, on the other hand,
the 2-D fields from the source and drain penetrate into the thick BOX region. Conceptually,
since the scale length is given by the effective vertical distance between the gate and the bottom
conductor, deeper field penetration would worsen the SCE. The mitigating factor is that the
depth of field penetration is channel length dependent. Only for very long channel devices is the
vertical distance given by the entire BOX thickness. For short channel devices where it matters,

the effective depth of field penetration is much less than the BOX thickness.
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Figure 6.2.  2-D constant potential contours of (a) bulk and (b) SOl MOSFETSs. For both
devices, tox =1 nm, L =50 nm, Vgs = 1.0 V, Vs = Vipg = 0. For the bulk, the depletion region
(undoped) depth is 10 nm. For the SOI, the silicon thickness is 10 nm, and the BOX thickness is

2
200 nm. The labels refer to the potential as that defined <% = Ln,e4®-VV/AT e y(x,y) =
dx? Esi

[Ei(x, ¥) — Ess]/g. The value of Vs is such that the minimum surface potential between the source
and drain, s min, is 0.29 V (after Xie et al., 2013).

Figure 6.3 compares the V; roll-off curves of the bulk and SOl MOSFETS in Fig. 6.2. By
defining an Lmin where the V; roll-off is AV: = —50 mV, we obtain Lmin = 29 nm for the bulk
MOSFET? and Lmin = 58 nm for the SOl MOSFET. To gain further insight, A wsmin, the minimum
surface potential between the source and drain of a short channel device with respect to that of
the long channel device, is plotted as a function of L in Fig. 6.4. For the bulk MOSFET, A ys min

versus L is largely proportional to exp[-7L/(21)], as expected from the scale length model with a

A 0f 12.6 nm given bysitan (”t/lﬂ) + i'tan ("W%) = 0 for Wgm = 10 nm and tox = 1 nm. For

Esi

the SOl MOSFET, first, the exponential slope is far less steep compared to that of the bulk
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device, indicating longer A and worse SCE. Second, the exponential slope is not constant, but
increases towards shorter L, i.e., the effective A decreases with decreasing L. This is attributed to

the decrease of the depth of 2-D field penetration in Fig. 6.2(b) as L is shortened.

0

S-01F
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@

< -02r
t; =10 nm
tx=1nm

_0.3 [ 1 1 N 1 N N N PR |
10 20 30 50 100 200

L (nm)

Figure 6.3. Short-channel V; roll-off of the bulk and SOl MOSFETSs in Fig. 6.2. Here, V. is defined as
the Vgs value where lgs = 108 A (W/L = 1), and V; roll-off is defined as AV: = V(L) — Vi(Long channel).
The -50 mV intercepts are L = 29 nm for bulk and 58 nm for SOI.
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Figure 6.4. A s min, the minimum surface potential between the source and drain of a short channel
device with respect to that of the long channel device for the SOl and bulk MOSFETS in Fig. 6.5. The

dashed line is exp[—zL/(24)] with 4 = 12.6 nm. The 50 mV intercepts are L = 26 hm for bulk and 45 nm
for SOL.

6.2 Effects of BOX Thickness, Silicon Thickness, and Backgate

Bias on SCE

Tremendous progress has recently been made on ET-SOI (extremely thin silicon-on-
insulator) material and technology. Silicon film as thin as 5 nm and BOX (buried oxide) layer as
thin as 10 nm are currently available. They are expected to allow scaling of MOSFET channel

lengths to a regime competitive with FInFETS.

An analytic scale length model has been developed that works well for predicting the SCE
(short-channel effect) of bulk and DG (double-gate) MOSFETSs. However, no such analytic model

is available for SOl MOSFETS. By using TCAD simulations, an empirical expression of minimum
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channel length has been worked out for SOI devices with BOX layers 200 nm thick. But it is not

clear how it may improve with thinner BOX layers.

In this work, we extend the investigation of SCE in ET-SOI MOSFETSs in terms of the
minimum channel length as a function of the BOX thickness and silicon thickness. Another factor
is the effect of backgate bias on SCE. To realize a threshold voltage target in the range of 0.3-0.4
V (nMOS), either a midgap gate with positively biased backgate or an n* silicon work function
gate with negatively biased backgate can be used. They make a significant difference on SCE
because in subthreshold the mobile charge density peaks at the back surface in the former case and

peaks at the front surface in the latter case.

Source

n Silicon
n

BOX (e

Substrate
l ng

Figure 6.5. Cross-section of ET-SOI MOSFET investigated in this work. The range of BOX thickness is
10-200 nm. The range of silicon thickness is 2-10 nm. An EOT of 1 nm is assumed. Vgs = 1.0 V. Different
type and concentration of substrate doping have been studied.

96



Effect of BOX and Silicon Thickness on SCE

Fig. 6.5 shows a schematic cross-section of the ET-SOI n-channel MOSFET studied in this
work. The silicon body is undoped. The substrate is either lightly doped (10%° cm=, n"or p) or a
ground plane (5x10% cm, n* or p* GP). A gate oxide thickness of 1 nm is assumed. Both midgap

and n* silicon gate work functions are considered.

Fig. 6.6 shows the threshold roll-off curves for different BOX thickness obtained from
TCAD simulations. Vi-roll-offs are extracted from high-drain bias (Vas = 1.0 V) subthreshold Igs-
Vs characteristics at a constant current level of 10® A (W/L = 1) for different channel lengths. The

minimum channel length (Lmin) is defined as the channel length with a Vi-roll-off of 100 mV.

The improvement of Lmin with BOX thickness is rather moderate—about 20% from a BOX
thickness of 200 nm to 10 nm. This is because the depth of 2-D field penetration into BOX is
channel length dependent, ~ 0.2xL empirically [4]. Therefore, thick BOX does not pay a penalty,

in terms of the field penetration hence SCE, as much as the physical BOX thickness.
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Figure 6.6. Short-channel V; roll-off versus BOX thickness. A p* GP connected to the n* source is assumed
in all three cases. Lmin are 52, 47, 42 nm for BOX thickness of 200, 25, 10 nm, respectively.

Fig. 6.7 plots the Vi-roll-off of ET-SOI MOSFETSs with different silicon thickness for the
same BOX thickness of 10 nm. In this case, Lmin iS very sensitive to the silicon thickness,
improving by over 2x when ts; is reduced from 10 nm to 2 nm. The latter is close to the quantum
limit below which the threshold voltage becomes highly sensitive to the silicon thickness. An
empirical expression for Lmin IS

L = 3.3%(t, +1;)
where lo ~ 3 nm for tox = 1 nm and tsox = 10 nm. The experimental result of 20 nm MOSFETSs with

3.5 nm silicon film lends support to the above expression.
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Figure 6.7. Short-channel V; roll-off versus silicon thickness. A p* GP connected to the n* source is assumed
in all three cases. Lmin are 42, 27, 16 nm for silicon thickness of 10, 5, 2 nm, respectively.

Effects of Substrate Doping, Gate Work Function, and Back Gate Bias on SCE

For thin BOX MOSFETS, the substrate doping type and concentration have an effect on
SCE. Figure 6.8 compares the Vi-roll-off with a p~ (10 cm®) substrate, a p* ground plane (5x10*®
cm3), an n” (10% cm®) substrate, and an n* ground plane (5x10'8 cm™). The p* ground plane helps
SCE slightly compared to that of a p~ substrate. But with an n* ground plane or n" substrate, the
SCE is significantly worse. The case of nMOS on n* ground plane is relevant because its SCE is
equivalent to that of a pMOS on p* ground plane if the p* layer is formed uniformly over the entire
substrate. From the SCE point of view, it is most desirable to have a p* ground plane under nMOS
and an n* ground plane under pMQOS, much like the p-well and n-well configuration in a bulk

CMOS technology.
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Figure 6.8. Comparison of V; roll-off of nMOS with respect to substrate doping type and concentration.
The substrate is grounded to the source in all cases.

To realize a desirable threshold voltage in the range of 0.3-0.4 V, the choice of gate work
function plays a major role. Midgap work function gives too high a value and n* silicon work
function too low. Since it is difficult to fine tune the gate work function to the precise value
between midgap and n*, the common practice is to adjust V: by a substrate bias, Vig. For midgap
gates, a positive Vig is applied to lower V; while for n* silicon gates, a negative Vg is applied to

raise Vi. They have opposite effects on the SCE.

Figure 6.9 compares the Vi-roll-off of three devices, all with long channel threshold within
0.3-0.4 V. The first device has midgap work function on the front gate with Vg =3 V to lower the
threshold. The second device has Vg = 0 and relies on the work function of front gate to adjust V:
to the desired value. In this case, the SCE is independent of the V: value. The third device has n*

work function on the front gate with Vg = —3 V to raise the threshold. The figure shows that the
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first device with Vg > 0 has the worst SCE while the third device with Vpg < 0 has the best SCE,

with an Lmin about 30% shorter than the one with Vpg = 3 V.

-0.05
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Figure 6.9. Comparison of SCE for different gate work function and backgate bias. With midgap work
function, Vg = 3 V is applied to lower V; and with n* silicon work function, Vi = -3 V is applied to raise
V. The middle case relies on the gate work function with no Vg to tune V; to the right range. Lmin are 32,
27, 24.5 nm respectively for the three cases.

The underlying reason is made clear in Fig. 6.9 where the potential versus depth is
compared between the devices with positive and with negative Vig. The device with Vg = —3
V has a field in silicon such that the potential is higher at the front surface. Its subthreshold

swing is ~ 65 mV/decade or

SS ~ (gsi /gOX)tOX +t5i + (SSi /gox)tBOX XGO mV/decade
t; + (gsi ! &, )tsox

as expected. In the above, the numerator is the dielectric distance between the gate and the
substrate, and the denominator is the dielectric distance from the front channel to the substrate.
The device with Vbg = 3 V, however, has a field in the opposite direction such that the potential is

highest at the back surface. The subthreshold swing is ~ 77 mV/decade or
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~ (gsi /gox)tox +tsi + (‘C"si /8ox)tBOX

(&4 1 €5)tsox

SS x 60 mV/decade

Here, the denominator is reduced to the dielectric distance between the back channel and the
substrate. This means that in addition to the worse V; roll-off, the midgap device with Vpg = 3 V
has degraded subthreshold swing such that its off current level is orders of magnitude higher than

the device with Vpg = -3 V.
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Figure 6.10. Potential versus depth for the cases of Vg =3 V and Vg = -3 V in Fig. 6.8. The gate biases
are in subthreshold such that lgs = 10® A (W/L = 1) in both devices.
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CHAPTER 7 CONCLUSION

In this dissertation, a continuous MOSFET model has been developed that takes the effect
of lateral field gradient on carrier density into account. It goes beyond the GCA model and
produces finite output conductance in the saturation region, without invoking CLM. It also
explains why the carrier density is not pinched off even though the oxide field is zero or negative
beyond the saturation point. Model generated las-Vas and gac-Vas curves are consistent with TCAD

simulations.

By capturing the essential physics, namely, the effect of lateral field gradient on carrier
density, the model reduces the 2D potential problem to a first-order ordinary differential equation
that can be solved readily on a spread sheet or with a standard mathematical tool. With regional
approximations, the differential equation is solved analytically for V(y) in the velocity saturation
region. When coupled with modified CLM relations between current and GCA length, closed-
form expressions are derived for the output conductance under both n = 1 and n = 2 models. The
analytic solution derived for the velocity saturation region can be used to construct a compact

model by connecting it to the conventional GCA solution for the triode region.

A physical model for ground-plane MOSFETS near the limit of bulk CMOS scaling is also
developed. It starts with a GCA model for long channel devices by analytically solving 1-D
Poisson’s equation, taking into account depletion in the ground-plane. A non-GCA model
continuous into the velocity saturation region is then formulated with the addition of a lateral-field

driven mobile charge density in the current continuity equation. By incorporating series source
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and drain resistance to the model, it produces lgs-Vgs characteristics similar to the published 20 nm

MOSFET data.
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