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Abstract

Data-driven Approaches to Inventory Management

by

Ying Cao

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

With the advances in technologies and the growing popularity of e-commerce, huge
datasets and massive computational power have never been more accessible. Moreover,
the rising machine learning and distributionally robust optimization techniques bring new
opportunity for more effective inventory decision making in the data-rich environments. The
goal of this dissertation is, thus, to explore data-driven approaches to inventory management
problems that are efficient and practical.

We address the challenges in this field from three different aspects: firstly, we aim at
proposing a flexible model for capturing real-world demand process accurately with as few
assumptions as possible; then, we take into account additional features in the demand model
and derive robust inventory policies with out-of-sample performance guarantees under milder
assumption than current literature; and finally, we explore the usage of a group of decom-
position algorithms to tackle the increasing computational difficulty as the data size grows.
Chapter 2, Chapter 3 and Chapter 4 each delves into one of these three directions respec-
tively.

In Chapter 2, we leverage the universal approximating capability of neural network struc-
tures to approximate an arbitrarily complex autoregressive demand process without any
parametric assumptions. By adopting a quantile loss in training, we allow our neural net-
work to output directly an estimation of the critical quantile, which is indeed the inventory
policy for classical newsvendor problem. In addition, in contrast to the prevalent feedfor-
ward neural networks which are asymptotically stationary, the special structure we choose is
capable of handling nonstationary time series. To the best of our knowledge, this is the first
approach which deals with nonstationary time series without any parametric assumption
or preprocessing to capture the components like trend or seasonality. Though theoretical
guarantees are sacrificed due to a lack of assumption on the underlying real process, empir-
ical studies validate the performance of our approach on real-world nonstationary demand
process. Moreover, we establish the optimality of the myopic policy to the multi-period
newsvendor problem where unmet demand and excess inventory can be carried over to next
period, and argue that our approach is also a data-driven solution.
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The second project in Chapter 3 addresses the data-driven newsvendor problem from a
different angle with the goal to achieve robust policies as well as theoretical support. We
start with a simple linear demand model to incorporate information from other features
related to demand, such as price, materials and etc. And to hedge against uncertainty of the
demand distribution, the idea of distributionally robust optimization (DRO) is applied. We
contribute to the current literature of DRO applications in supervised learning by adopting
a fixed design interpretation of the features. Thus, similar to the neural network approach,
we are also able to relax the assumption of identical and independent sample points, which is
more applicable in real-world scenarios. Then, by leveraging results from fixed design linear
regression, we propose a two-step framework to obtain a newsvendor solution. Moreover,
Wasserstein metric is chosen for constructing the ambiguity set of all candidate distributions,
and based on which our data-driven policy can be obtained efficiently in polynomial time
and attains both finite-sample and asymptotic performance guarantees.

Finally, in Chapter 4, we put some effort in dealing with practical issues of implementing
such data-driven approaches when massive datasets are available. Specifically, we consider a
group of decomposition algorithms which are suitable for large-scale multi-block convex op-
timization problems with linear constraints. This problem setting covers a lot of applications
in machine learning and data-driven problems. We focus on a special case of such algorithms
which can be guaranteed to converge under mild conditions with linear rate, and also enjoys
the convenience of parallel implementable subproblems. We modify an adaptive parameter
tuning scheme to achieve faster convergence in practice. And at the end, we further show
that when parameters are chosen appropriately, global convergence can be established even
if the primal subproblems are only solved approximately.

We reckon that our results are just some primary attempts at achieving the goal of
efficient decision making in data-driven environment, and hope that this dissertation can
serve as a catalyst for other research in this field. Thus, we list a number of directions for
future research in the last chapter after the concluding remarks.
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Chapter 1

Introduction and Background

In this competitive market, especially with the success of e-commerce and online retail,
the importance of inventory management cannot be stressed enough. Classical inventory
management models use stochastic programming technique to determine optimal policies
or decisions, thus require the full knowledge of random phenomena such as distribution of
demand. Indeed, with these models, researchers have gained a great deal of insight into
the inventory control problems and provided elegant solutions such as (r,Q) policies, base-
stock policies [101] and etc. In reality, however, managers need to make decisions without
knowing the demand distribution. Often, specific probabilistic assumptions are made and
parameters are then estimated via observed data points. Consequently, the resulting policies
are sensitive to the parametric assumption and cannot deal with the case when independently
and identically distributed (i.i.d.) samples are not available.

The ever-evolving technologies have not only made us faster at producing the things we
need, but also helped us bring down error and uncertainty in ways that make us better
equipped than ever. Especially with the advances in technologies which result in increas-
ing speed of data generation, processing and analysis, we are able to make more accurate
inventory control decisions with less assumptions. The goal of this dissertation is to ex-
plore inventory problems under the data-driven environment, and develop more practical
yet robust solutions for real-world applications.

The following three chapters of this dissertation line up to work towards this goal using
three different strategies. Firstly, we aim at modeling complicated nonstationary demand
process without parametric assumptions; then, we introduce the technique of distributionally
robust optimization and derive robust newsvendor solutions under mild conditions; finally,
we investigate a group of decomposition algorithms which can be helpful in practice when
the problem size is large. The outline of this thesis is as follows:

In Chapter 2, we study the newsvendor problem, one of the most fundamental inven-
tory control models, under a framework of time series. Rather than using the prevalent
two-step approach which first estimates some parameters from data and then solves an op-
timization problem with the estimation plugged in, we propose an integrated approach that
incorporates the inventory-optimization into the machine learning training step. With the
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universal approximating theorem, our neural-network-based approach is nonparametric in
spirit. More importantly, by adding shortcuts in classical feedforward neural networks, the
special structure we consider is capable of capturing nonstationary components such as trend
and seasonality in the time series. With numerical studies on real-world time series, our re-
sults show that this approach gives better newsvendor decisions than the popular two-stage
approach or other parametric methods in the literature. To the best of our knowledge, this is
first data-driven approach to newsvendor that can deal with nonstationary demand process
without signal decomposition. Additionally, we show the generalizability of our method to
multi-period newsvendor problem.

Then, in Chapter 3, we look at the same problem from another perspective and take
into consideration information from other features related to demand in addition to the time
series. Instead of trying to give a nonparametric flexible model for the demand process, we
start with a very simple and restrictive linear model, but put our focus on developing a robust
solution with theoretical performance guarantees. In contrast to current literature where the
feature vector is interpreted as random with i.i.d. observations available, we proceed with
the fixed design interpretation where the features are regarded as deterministic (such as from
controlled experiments). As a result, we also assume all features are observable before the
decision making step, so that we do not have to account for the randomness of covariates in
the objective function. By leveraging the properties of ordinary least squares estimators and
the technique of distributionally robust optimization with Wasserstein metric, we propose a
two-step approach for generating a robust newsvendor solution. We show that not only this
solution is asymptotic optimal, but its out-of-sample performance is also bounded with high
probability in a finite-sample scenario. Ultimately, we demonstrate that our distributionally
robust optimization can be reformulated to a simple tractable equivalent problem. And the
distributionally robust solution can be obtained in polynomial time with a single iteration
of linear regression and then sorting.

The goal of Chapter 4 focuses on tackling data-driven problems when the data size is huge
so that special care should be taken to improve the practicality of such approaches. Specif-
ically, we consider a decomposition algorithm based on the application of proximal point
method. Compared to classical alternating direction method of multipliers which updates
each block of variables sequentially, the subproblems of our algorithm can be implemented
in parallel. Thus, it can better take advantage of the arising popularity of distributed com-
puting infrastructures. Moreover, this algorithm is guaranteed to be globally convergent
under mild assumptions with linear rate. We modify an existing adaptive parameter tuning
scheme to achieve faster convergence in practice. In addition, for a special case of such al-
gorithm, we prove that global convergence still holds even if all subproblems are only solved
approximately.

Finally, in Chapter 5, we conclude the dissertation and suggests some thoughts on future
directions for research.
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Chapter 2

Data-driven Approach for
Newsvendor under Nonstationary
Demand

2.1 Introduction

In varies fields of production/ inventory management, economic, engineering etc., predicting
quantiles of a random process provides essential information for decision making which is
ignored by traditional point estimation of the conditional expectation. Moreover, many of
these applications emphasize short-term forecasting where time series-based models, which
take into account the internal structure of a process involving over time, are often preferable
to explanatory approaches [114, 105]. Therefore, a time series model is considered in this
chapter. And we start with its application in the newsvendor problem, one of the most
fundamental stochastic inventory models, as it is well-known that the optimal stock level is
the so-called critical quantile. Moreover, we consider the extension to multiperiod inventory
control problem, where excess inventory and backlogged demand can be carried over to the
next period, and prove the optimality of the myopic policy. Meanwhile, our results can be
easily extended to predicting any quantile of a random process in other fields.

In practice, when the distribution of demand is unknown, managers need to decide the
inventory level based on historical demand observations. In the current analysis, we assume
that the demand observations are uncensored, that is, the sales reveal real demand. This
problem essentially boils down to predicting the critical quantile of the future demand.

To tackle the unknown demand distribution, a standard treatment is to first estimate
the distribution, and then use the estimation in the decision making step (see [41, 67, 122]
for a review). Often, the parametric form of the distribution is specified in advance, and
the parameters are then estimated from a random sample. Consequently, policies derived
in such case are very sensitive to the parametric assumption of the demand distribution.
Moreover, many a time, the available information is not sufficient to postulate an accurate
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model, or the real distribution is too complicated to be represented by any commonly used
models like Gaussian, exponential and etc.

To handle this problem, nonparametric and data-driven approaches have been developed,
which generally combine historical data and optimization techniques [11, 6, 100]. However,
most of the above mentioned methods, either parametric or nonparametric, assume that
demand process is i.i.d. in consecutive sales periods. Such assumptions. This assumption
though facilitates the establishment of asymptotic optimality of the resulting strategies,
suffers from a major practical limitation that demand in real life changes over time and is in
general time-correlated. For instance, the consumption of ice cream is obviously much higher
in summer than the rest of a year, thus its demand exhibits yearly seasonality; demand for
fast-fashion products often shows a product life cycle and low demand in past periods is
an indicator for customers’ lack of interest in one product in the future. Thus, intuitively,
managers should take into account these correlation and patterns, and always adjust their
inventory decision once new related information is available.

Indeed, for the reasons mentioned above, some authors have studied inventory models
with time-correlated demand (see [20] for a detailed review). Most of these papers either
assume perfect knowledge of the demand evolution or focus only on bounds of the objective
function via robust optimization. When the real demand evolution is unknown, mean square
error (MSE) criteria is used to estimate the parameters of a predefined demand model. For
example, linear demand models, especially the simplest AR(1) model is very popular ([45,
31]). However, simple models such as AR(1), which considers linear relationship only, is
in practice unrealistic. Moreover, as in the parametric distribution-fitting case, the choice
of evolution model may generate drastic errors in the inventory policy. Thus, data-driven
approaches under the time-series framework is in need.

Despite the existence of some nonlinear parametric autoregressive (NLAR) models (see
[47] for a short review), one of the goals of this chapter is therefore to provide a single-step
nonparametric solution for quantile forecasting of potentially time-correlated or even non-
stationary 1 time series. Then, we argue that it serves as a data-driven approach for making
inventory decisions in the newsvendor problem setting and its multiperiod extension. To the
best of our knowledge, this is the first work in the data-driven inventory management field
that deals with a general autoregressive demand process of unknown form, which also works
with nonstationary demand. In addition, we show that the myopic policy is still optimal in
the multiperiod newsvendor problem setting under autoregressive demand, without requiring
the demand process to be statistically increasing as did in the previous literature. Moreover,
comparing with the existing neural network based methods for quantile prediction by [103,
18] and [117], our method enjoys the advantage of being able to handle nonstationary time
series; and not requiring previous quantile values as input, which are not observable in prac-
tice. In fact, this is also the first time that a nonstationary time series can be dealt with

1When talking about stationarity , there are two interpretations. Besides the formal definition of sta-
tionary process in mathematics and statistics, we often also indicate the case where the demand distributions
do not change over time (i.i.d.) in inventory literature. In this study, we use its mathematical definition.
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without prespecified components of seasonality or trend.
The remainder of this chapter is organized as follows. In Section 2.2 we give a compre-

hensive literature review of related topics and techniques which inspired our research. In
Section 2.3, we introduce a special neural network structure known as the double parallel
feedforward neural networks (DPFNN). Then, we describe a quantile autoregression tech-
nique based on this structure and denote it by DPFNN-QAR. In Section 2.4, we discuss the
application of quantile autoregression for solving data-driven newsvendor problem and illus-
trate its efficiency using numerical studies; then, in Section 2.5, we consider the extension
to multiperiod inventory control problems, where excess inventory and backlogged demand
can be carried over to the next period. Finally, Section 2.6 contains the concluding remarks.

2.2 Literature Review

As discussed above, in this chapter, we aim at proposing a quantile forecasting method to
deal with nonstationary time series in a single step and argue that it’s a data-driven approach
for newsvendor problem using only historical sales data. Thus, We review three streams of
literature related to our initial work. We first go through some popular existing data-driven
approaches for inventory control with time series data, highlight their assumptions and
drawbacks, and then identify the improvement that we aim to achieve. Next, we introduce
the widely used econometric models for representing a time series, and the theory of quantile
regression for estimating any quantile of a random process. In next section, we propose a
model consolidating these ideas to achieve our goal.

2.2.1 Data-driven Inventory Models

Though parametric methods provide mathematical convenience and lead to some useful
theoretical insights into the problem, different choices of the distribution family can yield to
different solutions. To address this limitation, methods based directly on available demand
observations are developed. Liyanage et al. proposed to use the empirical distribution instead
of assuming a prior distribution family [83]. Levi et al. further analyzed this sample average
approximation (SAA) approach, and obtained an analytical bound on the probability that
the relative regret of the SAA solution exceeds a threshold [75]. Huh et al. presented how
to use Kaplan-Meier Estimator to deal with censored demand [65]. And Bisi, using an
online convex optimization procedure, proposed a nonparametric adaptive algorithm for
both perishable and non-perishable inventory system [13]. In addition, other data-driven
policies such as the Concave, Adaptive Value Estimation (CAVE) [43], which estimate the
value function instead of demand distribution using sample gradient is proposed.

The research detailed above is restricted to solving single-period newsvendor problem
with exclusive usage of uncensored i.i.d. historical demand data, while another few papers
have explored more complicated scenarios. Burnetas et al. developed a framework for jointly
determining price and ordering quantity [15], which is still restricted to the i.i.d. demand
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setting. [64] considered inventory decision for multiple products with a warehouse-capacity
constraint and relax the identical assumption. Likewise, Levi et al. allowed independent
but non-identical demand and proposed a near-optimal sampling-based policy [76]. Both
methods, however, assumed that multiple independent sample paths can be generated, such
information, however, is not available in real life.

Moreover, demand can be correlated, or exhibit some trend or seasonality as time evolves,
and learning these patterns will be the key to making informative decisions with only past
demand data. [9] assumed that demand is Markovian with given transition matrix, which
is still a strong assumption. Levina et al. applied weak aggregating algorithm (WAA) as an
online approach, to adaptively select ordering quantity from a pool of fixed expert advice,
when the demands in subsequent periods are i.i.d. [77]. Zhang et al. extended this algorithm,
by allowing each expert randomly switching his advice, to cope with a slightly non-stationary
environment [122]. However, the last two methods require predetermined finite countable
decisions and possible cost at each period and suffer from curse of dimensionanity. Beutel
and Minner introduced exogenous variables such as price and temperature, and estimated
the demand as linear combination of them [12]. Later, they take into consideration the
case of censored demand [96] by estimating the uncensored demand using a heuristic as a
first step. Similar to the aforementioned literature, we focus on solving inventory problems
with the demand data exclusively in this chapter, but our method can be easily extended to
include external signals.

2.2.2 Time Series Analysis

When a sequence of historical demand realizations is taken at successive equally spaced
points in time, our goal is to learn the behaviour of this process so as to predict the future.
This falls in the field of time series analysis:

Time series analysis accounts for the fact that data points taken over time may
have an internal structure (such as autocorrelation, trend or seasonal variation)
that should be accounted for.[29]

Let {Yt} be the process of interest and {yt} be the observed realizations. Among the rich
and rapidly growing techniques for analyzing time series, we review two groups of models
that are most closely related to our research, autoregressive models and the Holt-Winters
methods:

Autoregressive model is widely used to describe time-varying processes in nature, eco-
nomics, etc. It specifies that the output variable depends linearly on its own previous
(lagged) values and on a i.i.d. stochastic term. For example, an autoregressive model of
order p, denoted by AR(p) is defined as

Yt = β0 +

p∑
i=1

βiYt−i + εt, (2.1)
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where εt is i.i.d. or at least white noise. To avoid this restrictive linearity assumption, a
natural extension is the nonlinear autoregressive (NLAR) model (see [47] for a short review).
Again, the choice of a prespecified parametric form is crucial. More general autoregressive
models based on neural network have been proposed, most of them use a multilayer percep-
tron with a single layer of hidden neurons (i.e. a three-layer feedforward neural network).
The capability of such models to forecast nonstationary time series has been a topic of dis-
pute, limited empirical studies yield mixed results. While selected research [121, 91] find that
prior detrend and deseasonality are essential for artificial neural networks (ANN) models to
work, others [69] conclude the opposite. We will have a more detailed discussion on this
issue in Section 2.3.

Different extensions of AR models have also been developed to handle different nonsta-
tionary series. For example, if there is a trend with stochastic mean in data, integrated
AR model can be used; and if the data shows seasonality, seasonal AR models are useful.
However, the order of differencing and frequency also need to be determined in advance, and
the resulting seasonal AR models generally perform poorly in long-term prediction. Another
group of techniques, Holt-Winters’ methods, work better in modeling data with trend or
seasonality by decomposing the data into level, trend and seasonality components. Depend-
ing on the form of seasonality assumed, there are two versions of Holt-Winters’ formulation,
i.e. Additive Holt-Winters’ (HWA) and Multiplicative Holt-Winters’ (HWM). The addictive
version of Holt-Winters (HWA) assumes a linear trend and additive seasonal components:

Level : Lt = α(yt − St−k) + (1− α)(Lt−1 + Tt−1), (2.2)

Trend : Tt = β(Lt − Lt−1) + (1− β)Tt−1, (2.3)

Seasonality : St = γ(yt − Lt) + (1− γ)St−k, (2.4)

where k is the length of cyclical period, and should be specified as input. Then the one-step-
ahead forecast of the time series is

Ŷt = Lt−1 + Tt−1 + St−k. (2.5)

For the multiplicative seasonal version (HWM), while Equation (2.3) remains unchanged,
the other equations are modified as

Level : Lt = α(yt/St−k) + (1− α)(Lt−1 + Tt−1), (2.6)

Seasonality : St = γ(yt/Lt) + (1− γ)St−k (2.7)

and
Ŷt = (Lt−1 + Tt−1)St−k. (2.8)
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One of the common practices in time series analysis is to find the parameters α, β, γ such
that the sum of the squares of the forecast errors (SSE) is minimized, that is,

min
α,β,γ

N∑
t=2

(yt − Ŷt)2

s.t. 0 ≤ α, β, γ < 1.

(2.9)

Then, a quantile is obtained by assuming the time series has i.i.d. normal innovations with
the unknown variance estimated via observed residuals. Both versions are used as benchmark
algorithms in the numerical studies in this chapter. We refer the readers to [88] for more
implementation details of these two algorithms.

2.2.3 Quantile Regression

To define a time series by any parametric models including AR and Holt-Winters’ methods
reviewed above, the major challenge is to decide the parameter values. Given observations
from the process {y1, y2, ..., yN}, one common practice is to estimate the parameters by
ordinary least squares (OLS) method with the goal of minimizing the sum of the squares of
forecast errors [90]. Take the AR(p) model as an example, the forecasting error is defined as

et = yt − (β0 +

p∑
i=1

βiyt−i). (2.10)

The OLS estimator, equivalent to the maximum likelihood estimator (MLE), is found by
minimizing

β̃ = min
β

N∑
t=p+1

e2
t . (2.11)

Under certain regularity conditions, the obtained one-step-ahead forecast,

Ỹt = β̃0 +

p∑
i=1

β̃iyt−i, (2.12)

converges asymptotically to the conditional mean of yt given its lagged values. Nevertheless,
in many practical situations, such a point estimator is not informative enough. Especially
when the cost of overestimation and underestimation is asymmetrical, it is more desirable to
estimate some quantile of the distribution instead of its mean. In 1978, Koenker proposed
the method to estimate the quantiles in a linear regression model [72]. Later, Koenker and
Xiao extended it to the autoregressive case [73]. Sample quantile loss instead of the squared
loss in equation (2.11) is minimized in order to determine the parameter values. For any
τ ∈ (0, 1), parameters are estimated via

β̂ = min
β

N∑
t=p+1

ρτ (yt − (β0 +

p∑
i=1

βiyt−i)), (2.13)



CHAPTER 2. DATA-DRIVEN APPROACH FOR NEWSVENDOR UNDER
NONSTATIONARY DEMAND 9

where ρτ (·) is the usual check function, given as

ρτ (u) =

{
τu if u > 0

(τ − 1)u if u ≤ 0
. (2.14)

Then, an estimate of the τth quantile of yt conditional on its previous values is given by

Ŷt = β̂0 +

p∑
i=1

β̂iyt−i. (2.15)

Similar to the NLAR models, researchers also came up with different nonlinear quantile
autoregressive models [28, 82, 3], most of which work for stationary time series. Likewise,
quantile versions of the Holt-Winters’ methods are also developed in [2]. Denoted by QHWA
and QHWM respectively, they are also used as benchmark algorithms to compare with our
own method. We reckon that quantile regression is closely related to inventory control since
we are also considering asymmetric costs of understocking and overstocking, and thus can
be used as a data-driven approach for newsvendor-like problems.

2.2.4 Motivation

Considering the limitation of parametric time series models and the lack of data-driven
approaches under time-correlated demand, we aim to extend the linear AR models to a more
general form without having to specify its parametric form in advance. Meanwhile, inspired
by quantile regression and the fact that the optimal solution to newsvendor problem is the
famous critical quantile, we propose a data-driven algorithm for making inventory decisions
under such circumstances.

2.3 Quantile Forecasting with Neural Networks

The popular AR(p) models allow only linear terms, which oversimplifies most real-world
processes. Thus, we consider a more general autoregressive model to define a process with
potentially complicated nonlinear structure:

Yt = g(Yt−1, ..., Yt−p) + εt, (2.16)

where g(·) can be any continuous function of unknown form, random innovations {εt} are
i.i.d. with mean 0 and unknown variance σ2, but are not necessarily normally distributed.
Note that this is essentially a stronger assumption compared with the white noise innovation
assumed in traditional linear regression and autoregression models. The identical εt is crucial
in the quantile case, which allows us to consider the entire conditional distribution of Yt, not
merely its conditional mean.
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Let Zτ denote the τth quantile of the common cumulative density function of {εt}, that
is Pr(εt ≤ Zτ ) = τ , it follows that the τth conditional quantile of Yt can be written as

QYt(τ |yt−1, ..., yt−p) = g(yt−1, ..., yt−p) + Zτ . (2.17)

However, neither g(·) nor Zτ is known in practice, and are traditionally estimated sep-
arately in two consecutive steps. Given a predefined parametric form of g(·), OLS can be
used to set its parameters. Next, Zτ can be calculated using the forecast residuals by as-
suming normality of εt. With quantile regression technique, however, we can avoid making
the normality assumption of εt. In addition, by taking advantage of the universal approx-
imation capability of neural networks ([63] and [62]), the following approach we propose is
nonparametric in spirit and can be used to deal with any continuous function of g(·).

2.3.1 Structure of DPFNN

In this project, we propose to use neural networks as an nonlinear extension of linear quantile
autoregression, which is an universal approximator. In particular, we use a standard three
layer feedforward network (FNN) with shortcuts directly from the input nodes to the output
node, a.k.a. a double parallel feedforward network (DPFNN). This structure is better at cap-
turing linear mapping compared with normal FNN configuration, while remains sensitive in
nonlinear relationships ([109]). Moreover, the analysis of [74] and [104] suggested that while
FNN based autoregressive models are asymptotically stationary, adding shortcuts between
inputs and output allows them to model integrated time series. While the current neural
network based quantile estimation literature deal with nonstationary time series either by
preprocessing (e.g. [121]) or combining other models (e.g. [120]), we aim at capturing the
nonstationarity directly within the network structure. Thus, we reckon that DPFNN is suit-
able for modeling the potentially nonstationary demand process. As far as we know, we
are the first to use this structure in quantile autoregression studies and treat stationary and
nonstationary time series using exactly the same procedure.

The utilization of neural network as the baseline model arises from the famous Universal
Approximation Theorem stated as follows:

Theorem 2.1 (Universal Approximation Theorem by [62]). For any continuous function
g(·) on a compact set K, there exists a feedforward neural network (FNN), having only a
single hidden layer, which uniformly approximates g(·) to within an arbitrary ε > 0 on K.

i.e. given any ε > 0, there exits m, and parameters vi, bi, wi and
H(x) =

∑m
i=1 vif(wTt x+ bi) such that

|H(x)− g(x)| < ε ∀x ∈ K

where f(·) is a nonconstant, bounded, and monotonically-increasing continuous function (e.g.
sigmoid function f(x) = 1

1+e−x
).
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This theorem for standard FNN by [63] and [62] can be easily extended to the case of
DPFNN, since every FNN is a special case of a corresponding DPFNN when all weights on
shortcuts from inputs to output are set to zero. Then for any continuous g(·), the right-hand-
side of equation (2.17) can be arbitrarily closely approximated by some DPFNN structure
with sufficiently large number of hidden neurons and appropriately chosen parameters. We
denote such a DPFNN configuration by H(·; θ0) with θ0 containing all parameters of the
network. That is, the following equation holds with arbitrarily small gap (for simplicity, we
assume it holds with equality).

QYt(τ |yt−1, ..., yt−p) = H(yt−1, ..., yt−p; θ0)

= H(xt; θ0),
(2.18)

where Xt = (Yt−1, ..., Yt−p) and xt being the observed vector. Figure 2.1 shows a general
DPFNN structure considered in this project. It is a three-layer network with p input nodes,
m hidden nodes and a single output. As in most neural network training, the constant term
will be captured by assigning biases, and thus no input node is needed for it.

...

f

...
f

yt−1

yt−2

yt−3

yt−p

h1

hm

H(xt; θ0) = g(xt) + Zτ

Input
layer

Hidden
layer

Output
layer

Figure 2.1: A General DPFNN Model.

We denote weight matrix connecting the input layer and the hidden layer by Wp×m where
Wij is the linear weight on the link from input node i to hidden node j. Similarly, we can
denote the weight vector from the hidden layer to output node by u = (u1, u2, ..., um)T and
that from input layer to output node by v = (v1, v2, ..., vp)

T . Use bh = (bh1 , bh2 , ..., bhm)T and
bo as the biases at the hidden layer and output node respectively. And for representation
simplicity, we stack all these parameters together as θ. In addiction, an activation f(·),
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sigmoid function in this project, is used at all hidden nodes. So the output of this network
is given as

H(xt; θ) =

p∑
i=1

yt−ivi +
m∑
j=1

f(

p∑
i=1

yt−pwij + bhj)uj + bo. (2.19)

Observing the structure of DPFNN, we see that many widely used time series models
are special cases of DPFNN. For example, an AR(p) model is just a DPFNN with p input
nodes and 0 hidden nodes; moreover, a DPFNN with only nonzero weight on the shortcut
link from node yt−s (s < p) and node yt−1 to the output node is a seasonal AR(1)s model.
In general, a DPFNN model can be regarded as the combination of a simple stationary
FNN and a seasonal ARIMA (Autoregressive Integrated Moving Average) model, where
the former captures time-correlation and the latter adjusts for seasonality. With properly
chosen parameters, this DPFNN structure is able to capture both stationary time series and
non-stationary ones with trends and seasonality, thus it is selected in our research.

2.3.2 DPFNN-based Quantile Autoregression

Once the structure of a DPFNN is given (p and m can be selected by cross-validation as
suggested in many other neural network literature), our goal is to determine the value of θ0

based on the historical realizations of the time series. And the quantile regression technique
plays an important role. Inspired by Taylor’s quantile regression neural network model
([103]), which captures nonlinear relationships between the process of interest and multiple
exogenous features, we consider a network structure in the context of time series data instead.
The model we use also departs from more recent work of [117] in the sense that we do not
require historical quantiles, which are generally not observable, as inputs. Furthermore, a
DPFNN structure instead of classical FNN, as in the previous mentioned literature, is used.
To the best of our knowledge, it is the first time this structure has been used for quantile
autoregression, with which we provide a single-step framework to deal with nonstationary
time series and relax the assumption on trend and seasonality.

By the property of quantile, as θ0 corresponds to the real quantile value function, we
have that

θ0 ∈ arg min
θ
EYt|xt [ρτ (Yt −H(xt; θ))] ∀xt. (2.20)

So that an estimator θ̂N can be chosen such that the following empirical analogue of
expected loss in equation (2.20) is minimized

TC(θ) =
1

N − p

N∑
t=p+1

ρτ (yt −H(xt; θ)). (2.21)

Meanwhile, we can rewrite equation (2.16) as

Yt = H(Xt; θ0) + ut, (2.22)
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where {ut = εt − Zτ} are i.i.d. with Pr(ut ≤ 0) = τ . Note that this is indeed time series
forecasting under asymmetrical error loss, as the minima of each summand in equation (2.21)
is zero when the estimator H(xt; θ) equals the real value yt.

As in all neural network training cases, the loss function (2.21) is neither convex nor
concave. Stochastic gradient-based optimization methods such as Adam (A Method for
Stochastic Optimization), though do not guarantee the convergence to global optimum,
have been empirically found to outperform other methods in such cases ([70]). However, an
obstacle to apply these most widely used gradient-based methods to optimize (2.21) is that
it is not differentiable everywhere. So we follow the treatment in [18] and approximate the
error function using the finite smoothing method from [26]. Thus, the following cost function
is used in our experiments instead of (2.21):

ˆTC(θ) =
N∑

t=p+1

ρ̂τ (yt −H(xt; θ)), (2.23)

where the Huber function, as defined in (2.24), is used to approximate the check function
(2.14) and smooths the turning points by quadratic functions.

h(u) =

{
u2/(2ε) if 0 ≤ |u| ≤ ε

|u| − ε/2 if |u| > ε
(2.24)

for some small constant ε. And

ρ̂τ (u) =

{
τh(u) if u > 0

(1− τ)h(u) if u ≤ 0
. (2.25)

Training cycles repeated with decreasing values of ε. And [26] showed that as ε goes
to zero, the algorithm converges to the minimum of the original error function. As this is
essentially minimizing quantile autoregression costs with a DPFNN model, we denote the
method by DPFNN-QAR.

2.3.3 Simulation

Now we want to numerically verify the efficiency of our method. We start with weakly
stationary time series, which are commonly used in most current time series analysis lit-
erature. In next section, we will further establish some theoretical guarantees under this
scenario. However, as in almost all cases real-world time series are not perfectly stationary,
we generate data from the following nonlinear autoregressive model:

Yt = 30 + 0.5× Yt−1 + 0.2× Yt−1 × Yt−3

Yt−2

+ εt, (2.26)

with εt i.i.d N(0, 72). With these complete information, the real quantiles can be computed
easily.
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We initialize the generation with y1 = 100+ε1, y2 = 30+0.7×y1 +ε2, y3 = 30+0.5×y2 +
0.2× 100×y2

y1
+ε3 and the remaining from the above formula. We discard data from a warm-up

period of 500 points and keep the following 500 points. The first 400 points were used for
model selection and training. Given different initial seeds, three random sample paths are
generated. And it is verified that these series are stationary by Augmented Dickey-Fuller
Test with p-values of 1.7e−12, 4.8e−10 and 4.2e−11 respectively.

With the remaining testing set of 100 data points, we compare DPFNN-QAR forecasts
and real quantiles. The DPFNN structure is selected via Monte Carlo cross-validation
(MCCV) in the following manner:

1. For each value of p,m, clean the data into 500 − p records in the form of (xt, yt) for
t = p + 1, ..., 500, reserve the last 100 records as testing set and the other for training
and validation;

2. Randomly select 80% records from the training set and train the DPFNN for parame-
ters with τ = 0.5;

3. Then, use the xt from the remaining 20% validation set as the input to the trained
network, and calculate the total quantile loss on the validation set;

4. Repeat Step 2) to 3) for 10 times and calculate the average cost for each (p,m) com-
bination.

We present the cross-validation average costs in Table 2.1:

Table 2.1: Average Monte Carlo Cross-validation costs of Simulated Data (Sample 1).

m=0 m=1 m=2 m=3 m=4
p=1 244.27 237.04 237.81 235.51 235.82
p=2 251.53 246.62 248.31 245.94 245.44
p=3 246.06 245.83 245.87 246.15 246.34
p=4 243.21 242.78 242.94 243.33 243.46
p=5 225.24 224.96 225.16 224.94 225.78
p=10 231.54 230.99 230.84 231.98 231.41

As shown in Table 2.1, the affect of m is minimal compared with that of p. In fact,
many neural network literature has shown that it is sufficient to use about 3 to 5 hidden
neurons to approximate an arbitrary continuous function, and our experiment consolidate
the argument. Other complexity-based penalty criterion, such as AIC, can also be used for
selecting p. The discussion is omitted here since its not the focus of our study.

Once a model with p = 5 and m = 3 is selected and trained, we predict different quantiles
of several sample paths and compare them with the real values, and in Figure 2.2 we show
the results for 3 samples. The curves for our quantile prediction almost overlap the real
quantiles, indicating good performance of our DPFNN-based quantile prediction method. In
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Figure 2.2: Comparison between real quantiles and DPFNN-based predictions on simulated
data.

Table 2.2: Average Quantile Costs Differences between DPFNN-QAR Predictions and Real
Quantiles.

τ Sample 1 Sample 2 Sample 3
0.3 3.4% 1.4% -1.4%
0.5 0.6% -0.2% 0.0%
0.7 1.6% 3.1% 4.4%

Table 2.2, we summarize the percentage cost gaps between the DPFNN-QAR estimators and
the real quantiles on test set. The results tell the same story where the gaps are negligible in
many cases, and the average quantile costs of predictions are even lower in a few cases. We
further demonstrate its application in predicting quantiles of nonstationary real time series
in the next two sections.



CHAPTER 2. DATA-DRIVEN APPROACH FOR NEWSVENDOR UNDER
NONSTATIONARY DEMAND 16

2.4 Data-driven Newsvendor Problem

Now we consider the application of DPFNN-based quantile forecasting (DPFNN-QAR) in
the field of inventory management, and start with the newsvendor problem, one of the most
fundamental stochastic inventory models.

2.4.1 Problem Statement

The key element of this model is that the decision maker has a single opportunity to place
an order - before the random demand is observed, no excess inventory can be carried over
to the next period and all unmet demands are lost ([101]). It has important applications
in stocking level management for a variety of perishable products, including newspapers,
fresh produce, hotel and airline overbooking, and fashion goods etc. Specifically, we consider
the newsvendor problem which is solved repeatedly in successive periods. At each iteration,
the manager has to set the inventory level based on previous sales (we assume sales are
uncensored demand). The following elements are taken into consideration:

Decisions:

St: order-up-to inventory level at period t, assuming immediate delivery (zero lead
time)

Variables:

Dt: nonnegative random demand occurred at period t, and dt is the realized value

Parameters:

Ht: history of the process up to the beginning of period t, based on which a manager
makes the decision of St, e.g. Ht = (d1, d2, ..., dt−1, S1, ..., St−1)

c: constant ordering cost per unit

h: holding cost per unit paid for excess inventory at hand at the end of each period
after demand has been met

b: per unit understock cost (e.g. lost sales + penalty for unmet demand)

That is, at the beginning of time period t, the decision maker has to decide the order-up-
to inventory level St for this period, in order to trade off the purchasing costs, overstock costs
for excess inventory and understock costs for unmet demand. In the newsvendor setting,
since no excess inventory can be carried over to the later periods, St is essentially the quantity
that the decision maker has to order. To simplify the situation, we further assume that all
orders arrive immediately with zero lead time. To achieve the minimal expected total cost,
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it is well known that the optimal order-up-to level is given by the critical number ([101]
Section 4.4.2):

C(S) = cS + EDt|Ht{h(S −Dt)
+ + b(Dt − S)+}. (2.27)

And it follows that
S∗t = arg min

S
C(S)

= F−1
Dt|Ht(

b− c
h+ b

),
(2.28)

where FDt|Ht(·) is the cumulative density function (cdf) of Dt given Ht.
While most literature on newsvendor assume that this cdf is unchanged and independent

over time (i.i.d.), we propose to further explore the internal structure of the demand process
by assuming it follows the autoregressive model (2.16). i.e.

Dt = g(Dt−1, Dt−2, ..., Dt−p) + εt, (2.29)

where εt are i.i.d., following an unknown common distribution. Then, the optimal ordering
quantity for any period t given all historical demand is

S∗t = g(dt−1, dt−2, ..., dt−p) + Zτ , (2.30)

where Zτ is the b−c
h+b

th quantile of εt.
A practical limitation to use this result in real-life is that neither g(·) nor Zτ is known.

Instead, we need to determine the ordering quantities based on observable historical demand.
Observing S∗t follows the same structure as the conditional quantile as in (2.17), the problem
of determining the ordering quantities boils down to finding this quantile (2.17) of the demand
process with τ = b−c

h+b
. And it is thus naturally to use the DPFNN-QAR estimators to make

the inventory decisions. Note that since the network is selected and trained with historical
demand observations and its output is used directly as decisions, this is essentially a data-
driven approach for solving the newsvendor problem.

2.4.2 A Data-driven Approach

Existing parametric methods first assume that g(·) has a simple linear structure such as
AR(1) or AR(p) with unknown coefficients ([31] and [20]) and εt are normally distributed
with mean 0 and unknown variance σ2. Then, OLS estimator is used to replace the coef-
ficients of g(·) and forecast errors are regarded as a sample of εt to estimate σ. As in all
parametric approaches, the choice of the structure of g(·) impacts the results significantly.
Moreover, the simple linear g(·) and normal εt assumptions are too restrictive in most real-life
scenarios.

Inspired by the universal approximating capability of DPFNN and quantile regression,
we propose to use DPFNN-QAR to estimate S∗t = H(xt; θ0) in a single-step framework. And
we can rewrite the demand process (2.22) as Dt = H(xt; θ0)+ut where ut = εt−Zτ also i.i.d..
As discussed in Section 2.3, the structure of g(·) no longer needs to be defined in advance.
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Instead, g(·) is allowed to be nonlinear, arbitrarily complicated, depending on data and the
normality constraint of εt is also relaxed. Consequently, a natural practical policy is to use
the ordering quantities Ŝt = H(xt; θ̂), where H(xt; θ̂) is selected and trained following the
DPFNN-based quantile autoregression (DPFNN-QAR) procedure described in Section 2.3.

From a second point of view, this DPFNN-QAR approach can also be interpreted as an
integrated data-driven solution to newsvendor problem. To justify this argument, we refer
readers to the data-driven linear programming proposed by [12], where they assumed a linear
relationship between demand and some explanatory variables. This assumption leads to the
observation that the required inventory level is also a linear combination of the same factors,
whose coefficients can be determined by solving a data-driven cost model formulated as the
following LP problem:

min
β

N∑
i=1

(hyi + b(di − si) + cβTxi)

s.t.yi ≥ βTxi − di i = p+ 1, ..., n

si ≤ di i = p+ 1, ..., n

si ≤ βTxi i = p+ 1, ..., n

si, yi ≥ 0 i = p+ 1, ..., n.

(2.31)

By assuming that the demand is some complicated nonlinear function of the previous
p observations xt = (dt−1, dt−2, ..., dt−p), and then approximating it by a DPFNN structure
H(·; θ0), we obtain the following integrated approach for determine the stock inventory level
with historical demand {d1, ...dN}. The decision variables, in our case, are the weights θ and
indirectly the excess inventory levels yi and satisfied demands si. And the goal is likewise to
minimize the total in-sample costs:

min
θ

N∑
i=p+1

(hyi + b(di − si) + cH(xi; θ))

s.t.yi ≥ H(xi; θ)− di i = p+ 1, ..., n

si ≤ di i = p+ 1, ..., n

si ≤ H(xi; θ) i = p+ 1, ..., n

si, yi ≥ 0 i = p+ 1, ..., n.

(2.32)

However, model (2.32) can no longer be solved as an LP as the (2.31) proposed in [12], and
the fact that H(·; θ) being neither convex nor concave makes it even more challenging. To
characterize the optimal solution, we observe that regardless of the value of θ, the objective
function and constraints always force yi = max(H(xi; θ) − di, 0) and si = min(H(xi; θ), di).
Thus, (2.32) is equivalent to



CHAPTER 2. DATA-DRIVEN APPROACH FOR NEWSVENDOR UNDER
NONSTATIONARY DEMAND 19

min
θ

n∑
i=p+1

(hmax(H(xi; θ)− di, 0) + bmax(di −H(xi; θ), 0) + cH(xi; θ))

⇔min
θ

n∑
i=p+1

((h+ c) max(H(xi; θ)− di, 0) + (b− c) max(di −H(xi; θ), 0) + cdi)

⇔min
θ

n∑
i=p+1

(
h+ c

h+ b
max(H(xi; θ)− di, 0) +

b− c
h+ b

max(di −H(xi; θ), 0)).

(2.33)

The objective function is essentially the loss function used in DPFNN-QAR when choosing
τ = b−c

h+b
. Thus solving the data-driven newsvendor problem (2.32) is equivalent to training

a DPFNN-QAR model.

2.4.3 Asymptotic Optimality

When the demand process Dt is covariance stationary and some general regularity conditions
hold, it’s easy to verify the uniformly convergence of H(·, θ̂N) to H(·, θ0) by following a
similar argument as presented in [28] and Theorem 2.2 from [115], i.e. Ŝt converges to the
real optimal solution S∗t as the number of previous demand points goes to infinity. And
we can theoretically support the performance of DPFNN-QAR demonstrated in Subsection
2.3.3.

Theorem 2.2. Let {Dt} be an ergodic stationary process. Suppose that (i) The parameter
space Θ is compact; (ii) E[supθ∈Θ |H(Xt; θ)|] < ∞; (iii) Fu(·), the common cdf of {ut}, is
differentiable and has mass around 0 (i.e. if we denote its derivative by fu(·), there exits
ε > 0 such that fu(s) > 0 ∀s ∈ [−ε, ε]) . Then, H(·, θ̂N) converges to H(·, θ0) uniformly.

Proof. See Appendix for the proof.

Thus, the policy Ŝt is asymptotically optimal under the conditions of Theorem 2.2.

Corollary 2.1. If the demand process satisfies conditions of Theorem 2.2, then Ŝt converges
in probability to the optimal policy S∗t as the number of historical records N goes to infinity,

i.e. Ŝt
p→ S∗t Moreover, C(Ŝt)

p→ C(S∗t ).

Proof. It follows from the consistency of Ŝt and the continuous mapping theorem.

Nevertheless, through numerical examples in the next subsection, we show that this
method also works well on nonstationary time series.
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2.4.4 Case Study

Up till now, we have already shown theoretically and numerically that DPFNN-QAR is
efficient when deal with weakly stationary demand series. Many demand process in real
world, however, exhibits certain patterns. For example, the sales of many foods are obviously
seasonal. We apply the proposed method on such two real time series, and compare it to the
Holt-Winters’ methods with normal innovations and the quantile versions of Holt-Winters.
Moreover, we also consider a two-step procedure by stationarizing the time series first and
then training a model on the transformed data.

1) Datasets

Two time series are used for case study. The first one comes from the University of Wisconsin
Dairy Marketing and Risk Management Program maintained by Prof. Brian W. Gould of
the Dept. of Agricultural and Applied Economics. The time series contains the monthly
regular ice cream production (measured in thousand gallons) in US. We selected data from
January 1983 to January 2017, which contains 409 observations, where the first 360 were
used for model selection and training and the remaining for testing.

Figure 2.3: Ice-cream demand time series.

The other dataset contains monthly gasoline demand (measured in million gallons) in
Ontario, Canada from January 1960 to December 1975. We got these 192 fact values from
Datamarket 2. While the first 143 points are used for training and validation, we tested the
selected model on the remaining 49 months of data.

As demonstrated in Figure 2.3 and Figure 2.4, both time series show annual seasonal-
ity. Augmented Dickey-Fuller, with p-values of 0.40 and 0.99 further respectively, provides
evidence for nonstationarity. Furthermore, there is an obvious increasing trend in gasoline

2https://datamarket.com/data/set/22of/monthly-gasoline-demand-ontario-gallon-millions-1960-
1975#!ds=22of&display=line
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Figure 2.4: Gasoline demand time series.

demand, while there is no steady trend in the time series which imposes difficulties in data
preprocessing. Though we have to admit that newsvendor decisions are generally made on
store or warehouse levels, these nationwide time series should also be representative for some
demand patterns and bring some insights.

2) Benchmark Methods

Due to the cyclical pattern of these two time series, we select the widely used Holt-Winters’
triple exponential smoothing method, which is suitable for forecasting time series that exhibit
both trend and seasonality ([101] and [88]), to illustrate the prediction power of our model.
Depending on the form of seasonality assumed, there are two versions of Holt-Winters’ formu-
lation, i.e. Additive Holt-Winters’ (HWA) and Multiplicative Holt-Winters’ (HWM). Both
versions decompose the data into level, trend and seasonality components, where parame-
ters are estimated by minimizing mean squared errors of the training data. Then, a quantile
is obtained by assuming the time series has White Noise innovations (Gaussian) and then
estimating its variance via observed residuals. We refer the readers to [88] for details and
initialization of these two algorithms. Later, [2] proposed quantile versions of Holt-Winters
methods, denoted by QHWA and QHWM respectively, which replaces the MSE criterion by
the quantile loss just as we did in our method. We also implemented and compared these
methods with DPFNN-QAR. Please refer to Section 2.2 for the detailed formulation of these
methods.

Moreover, it is under these nonstationary real-world time series, we can observe the
major difference between our method and the quantile regression neural networks (QRNN)
proposed by [103] and [18]. Without data preprocessing, the original QRNN fails and pro-
duces estimations that are almost constant over time at the sample quantile of the training
data. We omit the details of QRNN results as they are far from being accurate. Instead, we
conduct comparison with a closely related and intuitive method, that is to first remove trend
and seasonality by differencing, train a QRNN model on the stationarized time series and
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finally convert back to the original scale. We denote this method by QRNN with differencing
(QRNN-D). Both order of simple and seasonal differences are selected to be 1 in our case, the
the stationarity of the two transformed times series is validated by Augmented Dickey-Fuller
test with p-values of 3.5e−7 and 2.2e−5. The structure of the QRNN is chosen via the same
cross-validation procedure where p = 18 and m = 3 are chosen for both datasets following
the same Monte Carlo cross-validation procedure as described in Subsection 2.3.3.

3) Experimental Design

The program is implemented in Python 3.5 using tensorflow 1.0 for modeling the neural
network structure. AdamOptimizer ([70]) is used with learning rate= (N − p) × 10−4 for
tuning the weights. And the algorithm terminates when a maximum number of 20000 is
reached or the relative change of loss function is less than 10−9. ε in (2.24) was initially
set to 2−5 and was halved every 500 training epochs. As for the benchmark algorithms,
they were also implemented in Python3.5 and the objective functions were optimized by
L-BFGS-B.

4) Results and Discussion

Based on the results from cross-validation, a DPFNN with p = 24 and m = 4 were used for
modeling the ice cream time series. Similarly p = 23 and m = 1 were chosen for the gasoline
series. Then, we trained the selected models and tested them on the reserved testing set.
Here, we demonstrate the predictions of the 0.8th quantile of the ice cream demand and the
0.4th quantile of the gasoline case as examples.
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Figure 2.5: Ice-cream Demand and Predictions.
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Figure 2.6: Cumulative quantile loss of different predictions of Ice Cream Demand.

Table 2.3: Relative Changes of Quantile Loss for Ice Cream Dataset.

Benchmark
Algorithm

τ = 0.2 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.8

HWA -5.53% -13.20% -12.57% -11.60% -19.37%
HWM -4.62% -12.34% -13.01% -12.90% -24.06%
QHWA -32.07% -15.38% -13.83% -17.57% -44.58%
QHWM -34.55% -15.20% -12.67% -15.41% -41.97%

QRNN-D -78.72% -73.47% -71.97% -73.53% -83.18%

The testing set of US regular ice cream demand consists of data from 49 months. The
real demand together with predictions by different methods are shown in Figure 2.5. The
performance of QRNN-D is significantly worse than all other methods as shown in Figure 2.5
and Table 2.3. Two reasons may have contributed to this failure - as shown in 2.3, there is no
steady linear trend in the time series and the order one differencing transformation may have
overfitted to the training data; as argued earlier, quantile estimation requires i.i.d. innova-
tions, such an assumption is rejected by the runs test as shown in Table 2.5. All the other
five types of predictions lie above of the real demand most of the time as desired, since now
we penalize underestimation more than overestimation. There are no significant difference
between the four groups of different versions of Holt Winters predictions, while the curve cor-
responding to DPFNN-QAR is closer to the real demand indicating a better prediction. The
efficacy of our method can also be seen by observing the cumulative quantile loss in Figure
2.6 (the result from QRNN-D is neglected as it’s significantly higher than the other methods).
In fact, the average quantile loss of DPFNN-QAR predictions in 49 month is significantly
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lower than all benchmark algorithms. To further illustrate the efficiency of our method over
the others, we ran experiments to predict different quantiles, and the relative changes of
average out-of-sample total costs, calculated as average loss of DPFNN−average loss of benchmark

average loss of benchmark
, are

summarized in the Table 2.3. The results show that our DPFNN-QAR method significantly
beat the five benchmark methods.
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Figure 2.7: Gasoline Demand and Predictions.

Figure 2.8: Cumulative quantile loss of different predictions of Gasoline Demand.
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Table 2.4: Relative Changes of Quantile Loss for Gasoline Dataset.

Benchmark
Algorithm

τ = 0.2 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.8

HWA -2.23% -8.60% -9.26% -6.27% 4.16%
HWM 7.78% -3.32% -6.65% -6.66% 7.69%
QHWA -10.85% -9.87% -9.06% -10.06% -32.56%
QHWM -13.22% -11.09% -10.71% -11.04% -28.77%

QRNN-D -73.18% -66.99% -66.76% -67.58% -73.20%

Similar experiment is conducted to predict the 0.4th quantile of the Gasoline demand
for 49 months. And the results are shown in Figure 2.7 and Figure 2.8 respectively. Again,
although the curve for QRNN-D looks much better compared with the first dataset, its
performance is still not promising in cost evaluation. One possible reason is that differenc-
ing transformation is not flexible enough to capture the real complicated nonstationarity as
efficient as the other models. Once the orders of differencing are determined, this trans-
formation assumes fixed linear trend and seasonality, while such elements are updated in
the Holt-Winters’ methods with each new data point and even more flexible structure is al-
lowed in DPFNN. Even though there can be other methods which stationarize these datasets
better, the best choice of such a method is unknown in practice. And the choice of transfor-
mation affects the final prediction dramatically, which is indeed the major shortcoming of
such two-step methods. Meanwhile, it is seen that although now we penalize overestimation
more, all Holt-Winters predictions tend to overestimate the process more than our method.
Again, we can see that the out-of-sample average period cost of DPFNN-QAR is much lower
in most cases than that of the Holt-Winters methods as shown in Figure 2.8 and Table 2.4.

One possible explanation for DPFNN-QAR performing less better in this dataset is that
we have much fewer observations. It reveals one shortcoming of this method that a large
number of records are needed for accurate estimation of those parameters.

To validate whether the i.i.d assumption of the random innovations is satisfied, we first
train all models using MSE criterion. Then, we use the residuals as a proxy for the sample
path of {εt} and perform the turning point test and the runs test using R. Both methods are
frequently used to test the null hypothesis that the remaining residuals are i.i.d. As shown,
in Table 2.5, we fail to reject the null hypothesis under DPFNN and Holt-Winters models,
hence the i.i.d. assumption is tenable.

2.5 Multiperiod Safety Stock

2.5.1 Problem Statement

Now we consider the extension to multiperiod newsvendor scenario, where excess inventory
will be carried over to the next period and unmet demand is backlogged. We introduce the
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Table 2.5: p-values of statistical tests for i.i.d. residuals.

p-value DPFNN QRNN-D HWA HWM
Ice-
cream

turning point test 0.818 0.818 0.818 0.645
runs test 0.183 0.002 0.311 0.663

Gasoline
turning point test 0.565 0.206 0.908 0.908

runs test 0.311 0.311 0.826 0.936

following notation:

Decisions:

St: order-up-to inventory level at period t, assuming immediate delivery (zero lead
time)

xt: initial inventory at the beginning of period t, negative xt means backlogged demand

Variables:

Dt: nonnegative random demand occurred at period t, and dt is the realized value

Parameters:

Ht: history of the process up to the beginning of period t, based on which a manager
makes the decision of St, e.g. Ht = (d1, d2, ..., dt−1, S1, ..., St−1)

c: constant ordering cost per unit

h: holding cost per unit paid for excess inventory at hand at the end of each period
after demand has been met

b: per unit understock cost (e.g. lost sales + penalty for unmet demand)

T : number of periods in the planning time horizon

γ: discounting factor for calculating the present value of future costs

Furthermore, x1 = 0 is given and it is required that St ≥ xt. To facilitate the derivation of
closed-form ordering policy, we need further assume that all remaining inventory at the end
of the planning horizon can be returned to supplier at the original price c, and all backlogged
demand will also be satisfied at the same cost.

Then, our goal is to find a sequence of ordering quantities S̄ = (S1, ...ST ), such that the
expected discounted total cost defined below is minimized.

fT (S̄) = E{
T∑
t=1

γt−1[c(St − xt) + g(St, Dt)]− γT cxT+1} (2.34)
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where x1 = 0 is known and

xt+1 = St −Dt t = 1, 2, ..., T (2.35)

g(St, Dt) = hmax(St −Dt, 0) + bmax(Dt − St, 0) (2.36)

2.5.2 Proposed Method

A base-stock is proven optimal in [101]. However, the optimality of the myopic policy
no longer holds since our demand process may not be stochastically increasing any more.
Instead, we need to reestablish the derivation of the optimal ordering policy for our autore-
gressive demand process based on the results of [106].

Theorem 2.3. If the cost at the end of the planning horizon is −cxT+1, then the myopic
base-stock quantity given by

S∗t = F−1
Dt|Ht(

b− (1− γ)c

h+ b
)

= g(dt−1, ..., dt−p) + Zτ

= H(xt; θ0)

(2.37)

is optimal in every period.

Proof. See proof in the Appendix section.

Thus, we propose to use the DPFNN-QAR prediction of the b−(1−γ)c
h+b

th quantile, Ŝt =

H(xt; θ̂), as the ordering quantity. Note that if H(·; θ̂)−H(·; θ0) ≤ δ and demand is strictly
bounded above from zero, say Dt ≥ 2δ, then it is always possible to order-up-to H(xt; θ̂) in
all periods since

H(xt; θ̂)−Dt ≤ H(xt+1; θ̂)

⇔H(xt; θ̂)− (H(xt; θ)− Zτ + εt) ≤ H(xt+1; θ̂)−H(xt+1; θ) +H(xt+1; θ)

⇔(H(xt; θ̂)−H(xt; θ))− (H(xt+1; θ̂)−H(xt+1; θ)) ≤ g(xt+1) + εt

(2.38)

The LHS≤ 2δ.
Again, following the same argument as in the classical newsvendor case, this DPFNN-

QAR policy is asymptotically optimal.

2.6 Conclusion

Although there is an extensive literature on stochastic inventory control, most studies assume
that future demand distribution is known in advance or the demand process evolves according
to a given model. However, in reality, the only observable information is the past demands
(or more precisely, the past sales). The majority of papers on data-driven approaches focus
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on identically and independently distributed demands. While it is of importance to learn
about and make use of the internal structure of a demand process when making inventory
decisions, very limited work have done to solve for inventory policies with time-correlated
demand observations.

Thus, we extend the AR(p) models to a more general autoregressive evolution for defining
the demand process so that the demand correlation can be captured and no parametric form
need to be determined in advance. And inspired by the universal approximation capability
of neural networks and the idea of quantile regression, we develop a neural network based
framework for predicting quantiles of this process. A DPFNN structure is chosen considering
its advantage of modeling nonstationarity over standard FNN structure, which is used in
most previous work on neural network-based time series analysis. Implementation details
of this algorithm is discussed, and its efficacy is shown by both theoretical analysis and
computational experiments. Subsequently, we propose to use the DPFNN-QAR predictions
as the ordering quantity in newsvendor setting and its multiperiod extension.

The contribution of this project is twofold. Aforementioned, we first extend the demand
of the newsvendor model to be an nonparametric autoregressive process and propose a data-
driven method for finding optimal ordering decisions. Second, our algorithm also uses a new
structure for quantile autoregression, which works for some nonstationary process. However,
due to the lack of assumptions on the real underlying demand process, we sacrifice the
availability of theoretical guarantees of our data-driven approach. Although our numerical
results support its efficiency, we cannot bound the out-of-sample costs, which is desirable in
practice especially when the manager needs to be risk-averse. Moreover, for many products
such as fashion goods, there may not be enough time series data to train such a neural network
model. Thus, in Chapter 3, we switch to a causal demand model which takes into account
external features. And based on the technique of distributionally robust optimization, we
aim at deriving a solution that performs well even under worst-case scenario.
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Chapter 3

Distributionally Robust Newsvendor
under Causal Demand

3.1 Introduction

In Chapter 2, we have introduced a neural network based method for solving newsvendor
problem under nonstationary demand, with the focus of providing more flexible and practical
decision making support with exclusively demand time series data. However, even though
the theoretical and numerical analysis have demonstrated the efficiency of such a method in
dealing with both stationary and nonstationary real-world time series, we have to admit that
there are still practical limitations with the approach. First, time series models, especially
neural network models, require a lot of historical demand data for training. However, for
new products and products with short life cycle, such as fashion goods, such information is
not available. This is where external features can play an important role to help estimating
demand based on side information and learning from similar products. For instance, in
almost cases, price is negatively related to demand and products with same material, style
may share similar demand pattern. With the growing availability of such data, feature-based
methods are introduced to take them into account [12, 7].

A more problematic shortcoming is that while the DPFNN-QAR performs well on real-
world nonstationary time series, we unfortunately cannot provide a theoretical guarantee
that it will perform well in all general cases. Even with weakly stationary and ergodic time
series, we can only establish asymptotic convergence, but cannot characterize the finite-
sample performance. Moreover, from simple linear models to flexible neural networks, most
aforementioned methods seek for estimators which minimize some certain loss function eval-
uated on the training data. Thus, in most cases, out-of-sample performance guarantees do
not exist with small or moderate sample size. It is possible that small changes in the data
or in sample size yield large changes in the resulting solution. We suggest [10] for a more
detailed discussion regarding this phenomenon.

In this chapter, we seek to address these two issues simultaneously and propose a robust
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feature-based newsvendor solution with finite-sample performance guarantees. We start with
a simple model by assuming that demand is a linear combination of multiple features with
unknown coefficients plus a random noise. Although we put our analysis under the umbrella
of data-driven newsvendor solution, due to the fact that the so-called critical quantile serves
as the optimal solution, our approach naturally solves any feature-based quantile prediction
and falls in the field of supervised learning.

When talking about supervised learning, especially linear regression, depending on the
nature of the design (feature) points, there are two versions. The fixed design version as-
sumes that the features observations in the data points are deterministic as given; while the
random design models correspond to the statistical learning setup where features are realized
i.i.d. from some underlying random vector. Current applications of distributionally robust
optimization in supervised learning fall in the second stream assuming a random covariate
vector and that i.i.d. sample of the features with their corresponding dependent variable
values are available for model training. As a result, they aim at minimizing the worst-case
expected cost with respect to randomness from both the covariate vector and some noise. In
this chapter, however, we consider a fixed design matrix instead. That is, we assume that
our data points are given in a non-i.i.d. manner such as a series of controlled experiments
and the features are observable or even designed before the decision making procedure. We
reckon that this assumption makes more sense in many real-world applications. For instance,
when predicting the demand of clothes, certain features such as colors and materials exhibit
different popularity patterns due to the fashion trends over time, thus, our observations will
be far from being i.i.d. This phenomena is also closely related to the study of covariate
shift [102]. Moreover, since in many cases features such as price and style are predetermined
before inventory decisions, we only need to cope with the conditional randomness of demand
in the objective function.

The chapter is organized as follows. We next provide a brief literature review on robust
optimization and feature-based and robust inventory management techniques in Section
3.2. Then in Section 3.3, we describe a distributionally robust feature-based newsvendor
model setup and propose a two-step framework for solving it. Section 3.4 establishes both
asymptotic and finite-sample performance guarantees. Section 3.5 rewrites it into a tractable
convex optimization formulation. Finally, in Section 3.7, we conclude the insights with a
discussion of the practical takeaways as well as limitations of the current setup. All proofs
for supporting our analysis can be found in Appendix B.

3.2 Literature Review

As discussed, our work contributes to the following two areas of investigation in inventory
management and robust optimization. On one hand, we extend the distributional robust op-
timization techniques to incorporate side information as observable features decision making
without assuming i.i.d. data points; on the other hand, we give a robust data-driven solu-
tion to newsvendor problem with both finite-sample and asymptotic performance guarantees.
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Thus, we review literature from these two fields in order to identify our contributions.
Compared with the numerous literature studying newsvendor problem, the work which

incorporates feature information is, though not entirely new, relatively limited. [7] provided
a detailed review of a few related work in comparison to their algorithms. [98] modeled
demand as a linear function of random features and solved an approximation of a robust
optimization for decision rules. Their theoretical results depend on the assumption that a
few important statistics such as mean and support etc. of the demand are known to the
decision maker. [50] took into account the information of a state feature and proposed to
solve a weighted empirical stochastic optimization problem. However, this approach requires
a discrete state variable and suffers from the curse of dimensionality when high-dimensional
feature data is available. Moreover, there is no guarantee on its out-of-sample performance.

From the perspective of data-driven decision making, as described in Section 2.4.2, [12]
proposed linear programming models to deal with the case when demand is a linear com-
bination of some exogenous variables and a random shock. Their cost model is essentially
the well-known linear quantile regression. Then, [96] extended it to the case where demand
is censored. However, in both papers, the goal was to minimize in-sample costs following
an empirical risk minimization (ERM) idea, also known as sample average approximation
(SAA), which essentially assumes that the real demand follows the empirical distribution of
the sample. This treatment in general suffers from the overfitting effects. Later, [7] incorpo-
rated regularization for dimension reduction and proposed another nonparametric approach
based on kernel regression. With assumption of linear demand process, compact support
of random shock density function and i.i.d. sample, the authors derived a high probability
bound for finite-sample optimality gap. Nevertheless, their performance bound is loose when
the feature space is of high dimension. And even with asymptotically infinite sample points,
the true out-of-sample cost cannot be bounded tightly.

In addition, above listed literature all assume each feature and demand data point is
drawn i.i.d. from an unknown joint distribution. Such assumption does not hold in many
real-world applications. For example, certain clothes materials and colors are more popular
in some time periods as fashion changes, and will be far from being i.i.d. Moreover, these
feature data can be observed in advance before decision making. However, current literature
did not take the feature information into account.

A another group of techniques which provide out-of-sample performance guarantees come
from the concept of robust optimization. Its usage in solving inventory problems dates back
to 1958 when Scarf proposed a min-max solution to newsvendor [97]. Considering all possible
values of the demand, a worst-case solution is used as the decision. Studies fall in this
stream also include [78, 92] etc. This treatment though increases robustness, is however too
conservative in most cases. For example, optimality may be sacrificed to cope with some
extreme values of demand that seldom occur.

In an effort to address these issues, distributionally robust optimization has gained popu-
larity in recent years. In this setting, an ambiguity set of possible probability distributions of
demand is constructed, and the objective function is reformulated with respect to the worst
case expected cost over the choice of a distribution in this set. In this field, different methods
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have been proposed for constructing the ambiguity sets, leading towards various theoretical
properties. Many of them have been applied for assisting inventory decision making in the
newsvendor problem. [89] studied the newsvendor problem with partial information about
the demand distribution (e.g., mean, variance, symmetry, unimodality), and derived the or-
der quantities that minimize the worst-case costs. With certain special cases, closed-form
solutions were derived and their relationship to entropy maximization was established. Sim-
ilarly, [124] focused on the case when only mean of the demand and one of its variance or
support is known. Instead of worst-case newsvendor cost, they attempted to minimize the
regret with respect to the expected cost based on complete information. [92] incorporated
CVaR-based profit maximization under the assumption of ellipsoid or box discrete distribu-
tion; and [119] demonstrated that optimal ordering decision with discrete demand is very
different from that with continuous demand. The similar idea has been extended to solve
more complicated inventory management problems beyond newsvendor, e.g. [108, 49, 5].

To take advantage of the historical demand points, a common practice is to firstly guess a
nominal distribution based on observed sample or expert advice (e.g. empirical distribution).
Then an ambiguity set can be constructed around this nominal distribution consisting of
those distributions that are not far from it, with different choices of metrics for measuring
this distance. For example, [113] constructs an ambiguity set such that the observed data
achieves an lower -bounded empirical likelihood; [10] uses the confidence region of a goodness-
of-fit test; [93] limits the variance distance between the candidate distributions and the
nominal; and [40] measures the distribution distance using the Wasserstein distance instead.
Other choices of distance metrics include but are not limited to other forms of f -divergence,
e.g. Kullback-Leibler divergence, Prokhorov metric etc. Among these options, Wasserstein
distance stands out being able to measure the distance between discrete and continuous
distributions and incorporates a notion of how close two points are to each other. Thus,
Wasserstein distance has become more and more popular in recent years and is chosen in
our study.

Nevertheless, aforementioned robust-optimization-based approaches all assume a station-
ary unchanging demand environment, so that when historical data is taken into considera-
tion, the demand points can be regarded as i.i.d. sample. Thus, they do not pertain to the
time-correlated and feature-dependent demand process we explore in this chapter. When it
comes to data-driven robust optimization with non-i.i.d. data, very limited work is currently
available. [116] allowed the sequence of future demands to evolve as a martingale, however,
still restricted to given constant mean and support. [20] explored the worst-case demand
realization under an autoregressive demand evolution, which can be too conservative in real-
world applications. Moreover, there is no out-of-sample performance guarantees for these
approaches. And again, for new or fast-fashion goods, there may not be sufficient demand
points available, and feature-based data is still not accounted for.
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Motivation and Contributions

Motivated by the lack of feature-based robust optimization techniques, we start with a linear
demand model and propose a data-driven robust solution to the newsvendor problem. Our
contributions can be summarized as follows:

− Distributionally robust optimization formulation without i.i.d. sample points. In con-
trast to the existing literature in robust or distributionally robust optimization, which
assume that i.i.d. sample points of the randomness are available so that an ambiguity
set can be constructed accordingly (e.g. [1]), we interpret the feature observations
as deterministic. The randomness only comes from the i.i.d. noises which are not ob-
servable directly. Moreover, when defining the objective function, we assume that the
features are already observed before the decision making process. To decouple the two
sources of obscurity from the unknown linear coefficients and the distribution of ran-
dom noise, we propose a two-step framework. Ordinary least squares (OLS) estimators
are used as a substitute for the coefficients, based on which a distributionally robust
estimator for quantile is derived.

− Finite-sample and asymptotic performance guarantees under milder conditions. Built
upon the famous closed-form expression of OLS estimators and its well-studied prop-
erties, we are able to extend the finite-sample and asymptotic performance guarantees
for classical distributionally robust optimization problems from [40] to the feature-
based case we explore. Sufficient conditions for such performance guarantees are de-
veloped explicitly to guide the choice of parameters in our approach and to achieve
high-probability optimality gap bounds. As a further matter, our theoretical analysis
holds under much milder conditions than assuming the availability of i.i.d. samples.
Moreover, assumption imposed on the random noise term is also much weaker. For
instance, [7] requires a continuous density function of the random noise defined on
known bounded domain, while we only require that the random noise has a light-tailed
distribution.

− A polynomial-time solvable reformulation. Besides providing an ambiguity set of can-
didate distributions that are more reasonable than those resulting from other popular
choices, the adaption of Wasserstein distance plays another important role, which facil-
itates us to set up a tractable reformulation of our distributionally robust optimization
problem via duality. In fact, due to the special structure of quantile loss (piece-wise
linear), our reformulation can be solved easily with a single iteration of linear regres-
sion and then sorting. Moreover, although our original formulation depends on the
realization of features, the solution is in fact feature-independent. Thus, our proposed
method can better enjoy good practicality in many real-world applications, and is
efficient even when the problem is of large scale.
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3.3 Formulation and Preliminaries

3.3.1 Problem Formulation

We consider the demand follows a linear model:

d = βT0 x+ ε, (3.1)

where d is the random demand of interest, x ∈ Rp is a vector of explanatory variables
(containing features such as price, material, color and etc.) and ε is random innovation. As
in Chapter 2, ε is assumed to be independently and identically distributed (i.i.d.) among
realizations with mean 0 and unknown variance σ2, but the common distribution Pε is not
necessarily normal. We further assume that ε is independent of x. We denote the observed
feature, demand tuples by {(xi, di)}Ni=1 where i is the index for data points.

As commonly seen in the linear regression, there are two interpretations regarding the
nature of the feature vector X. One assumes that x is a random effect and we can observe
an i.i.d. sample path of it via data, the other assumes that we will have a fixed design
matrix, e.g. values of xi are deterministic as given. When the first assumption is applied,
it follows that the realizations of d are also i.i.d. and all former analysis from [40, 1, 34]
follows directly. In this study, we approach with the second assumption, and the goal is
to find the conditional τth quantile, τ ∈ (0, 1), of D given observed x = c and historical
observations {(xi, di)}Ni=1. Following the linear model of demand process, the conditional
quantile of demand is also a linear combination of these features, denoted by Qτ (d|x = c):

Qτ (d|x = c) = βT0 c+ sτ , (3.2)

where sτ is the τth quantile of ε. However, both values of β0 and sτ are unknown in
practice. Considering the classical newsvendor problem as setup described in Section 2.4,
it follows that the optimal ordering quantity is exactly the conditional quantile of demand
with τ = b−c

h+b
.

When there is no intercept term in x, equation (3.2) is identifiable, it follows from the
definition of quantile that β0 and sτ are the unique solution to the stochastic optimization
problem:

β0, sτ = arg min
β,s

Ed|x=c[ρτ (d− βT c− s)]

= arg min
β,s

EPε [ρτ (β
T
0 c+ ε− βT c− s)],

(3.3)

and
sτ = arg min

s
EPε [ρτ (ε− s)], (3.4)

where ρτ (·) is the same check function defined in (2.14), and it imposes asymmetric costs to
overestimation and underestimation. And when demand indeed follows the (3.1), equations
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(3.3) and (3.4) hold for any value of c. i.e.

β0, sτ = arg min
β,s

Ed|x[ρτ (d− βTx− s)],∀x ∈ Rp

= arg min
β,s

E[ρτ (β
T
0 x+ ε− βTx− s)],∀x ∈ Rp,

(3.5)

However, conditional probability of d|x = c is not available in practice, and the uncer-
tainty comes from two resources, i.e. the undiscovered value of β0 and the unknown distri-
bution of ε. A common treatment is to replace the objective function in (3.5) by the total
quantile loss evaluated on training data as (3.6), which is recognized as quantile regression
[72].

β̂SAA, ŝSAA = arg min
β,s

i=N∑
i=1

ρτ (di − βTxi − s). (3.6)

Under the random x setting, SAA is essentially equivalent to replacing the real joint
distribution of (x, d) by the empirical probability, which converges to the real as sample
size grows large. However, in the deterministic design matrix setting we try to explore,
this converging empirical distribution property no longer holds as our data points are not
i.i.d. Moreover, regardless of the popularity and practical success of SAA, it suffers from
the criticism of overfitting. To obtain a robust solution with out-of-sample performance
guarantees, and to incorporate the feature information into consideration, we consider the
following robust optimization formulation:

β̂RO, ŝRO = arg min
β,s

sup
d∈Ξ(c)

ρτ (d− βT c− s). (3.7)

Since demand d is a function of c, it follows that when an ambiguity set of all possible
demand values is constructed, not only should we gather the information from historical data
{(xi, di)}Ni=1, but also account for the new value of feature c in decision making. Thus, we
have Ξ(c) depend on c, which is also random considering the randomness of {yi}Ni=1. Mean-
while, as argued above, such robust formulations are many a time too conservative and may
overemphasize some rare extreme cases. Thus, distributionally robust optimization (DRO)
alternatives, which hedge against a chosen set of candidate distributions, are becoming more
and more popular:

β̂DRO, ŝDRO = arg min
β,s

sup
Qd∈Pd

EQd [ρτ (d− βT c− s)], (3.8)

where Qd is a candidate conditional distribution of d given x = c and Pd is an ambiguity
set constructed via observing data {(xi, di)}Ni=1. Similarly, Pd also depends on the feature
value of interest, i.e. x = c. Equivalently, we can rewrite the formulation to expectation
with respect to ε as we assume that it is an i.i.d. process and is independent of x.

β̂DRO, ŝDRO = arg min
β,s

sup
Qε∈Pε

EQε [ρτ (β
T
0 c+ ε− βT c− s)], (3.9)



CHAPTER 3. DISTRIBUTIONALLY ROBUST NEWSVENDOR UNDER CAUSAL
DEMAND 36

where Qε and Pε are the candidate distribution and ambiguity set of ε respectively. As
reviewed in Section 3.2, there are various criteria which can be used to construct Pε. In this
research, we begin with the case where Wasserstein distance is chosen.

Compared with traditional random interpretation of x, there arises a major difficulty in
our deterministic design matrix formulation. Our i.i.d. process ε is not explicitly observable,
instead we can only obtain realizations of {di}Ni=1 where di = βT0 xi + εi and the value of β0 is
also unknown. To decouple the two sources of unknownness, we introduce a new notation,
ε(β) = ε + (β0 − β)T c. Its distribution is the same as ε with mean shifted by (β0 − β)T c.
Then, the distributionally robust optimization formulation (3.9) can be rewritten as

β̂DRO, ŝDRO = min
β,s

sup
Qε(β)∈P(β)

EQε(β) [ρτ (ε(β)− s)], (3.10)

where Qε(β) and P(β) are the corresponding candidate distribution and ambiguity set of
ε(β) respectively. And we detect that our ambiguity set should not only rely on the data
points and value of c, but also the value of β, which in turn need to be determined via the
optimization. However, with the intention to employ Wasserstein distance for constructing
an ambiguity set and achieve convergence, the center of the ball depends on the value of β.
Consequently, as we will discuss more in next section, the choice of a good radius rN also
depends on β. Hence, it’s very difficult to determine the optimal value of β simultaneously.

To simplify the problem described in (3.10) and obtain a tractable solution, we de-
cide to proceed as a two-step framework by providing a good guess of β0 first and then
solving an approximated problem. Then, for any guess of β, we can construct a sample
path {(εi(β) = di − βTxi)}Ni=1, and we consider the case where the ambiguity set is con-
structed as Wasserstein ball around the empirical distribution, i.e. P(β) := BrN

(
P̂N(β)

)
with P̂N(β) = 1

N

∑N
i=1 δ(εi(β)), where δ(ε(β)) denotes the unit mass on ε(β). In this chap-

ter, we start with using the least squared estimator β̂NOLS from classical linear regression as

the value for estimating β0. It is well-known that β̂NOLS is a consistent estimator of β0, and
has a nice closed-form solution with well-studied properties. It is well-known that

β̂NOLS = (XTX)−1XTY, (3.11)

where X ∈ RN×p is the design matrix with xi being its ith row and Y ∈ RN is a column
vector storing dis.

Let us further define ε′ = ε + (β0 − β̂NOLS)T c with unknown distribution Pε′ , i.e. Pε
shifted by (β0 − β̂NOLS)T c. Then, its corresponding approximated sample path is {εOLSi }Ni=1

with εOLSi = di − (β̂NOLS)Txi with an approximated empirical distribution P̂N(β̂NOLS) =
1
N

∑N
i=1 δ(ε

OLS
i ), resulting in a Wasserstein ball of P(β̂NOLS) := BrN

(
P̂N(β̂NOLS)

)
. Note that

εOLSi is the linear regression residual of the ith data point, but not a real realization of the
random variable ε′. Thus, compared with the current work of [40, 1], the ambiguity set of
our formulation is no longer centered at an empirical distribution of the random variable.
Finally, we aim at solving the following distributional robust optimization problem:



CHAPTER 3. DISTRIBUTIONALLY ROBUST NEWSVENDOR UNDER CAUSAL
DEMAND 37

min
s

sup
Qε′∈P

EQε′ [ρτ (ε
′ − s)], (3.12)

with P := BrN
(
P̂N(β̂NOLS)

)
, and let ŝN denotes the optimal solution of (3.12).

To understand how a Wasserstein ball looks like, let us introduce the following definition
from [1] with mildly modification to suit for our problem setting:

Definition 3.1. LetM(Ξ2) denote the set of probability distributions on Ξ×Ξ. The Wasser-
stein distance between two distributions P and Q supported on Ξ is defined as

dW (P,Q) := inf
Π∈M(Ξ2)

{∫
Ξ2

d(ξ, ξ′)Π(dξ, dξ′) : Π(dξ,Ξ) = Q(dξ),Π(Ξ, dξ′) = P(dξ′)
}
,

(3.13)
where ξ = (x, d) and d(ξ, ξ′) is a metric on Ξ.

We remark that there is a generalized p-Wasserstein metric defined on the kth moment for
some distance measure for k ≥ 1. In this chapter, we exclusively focus on the 1-Wasserstein
distance as given in Definition 3.1 and pick d(ξ, ξ′) to be the l2 (Euclidean) norm in our
analysis. In fact, since our analysis focus on a scalar random variable ε′, and any choice of
d(ξ, ξ′) will eventually become the absolute difference and does not affect the results.

Equivalently, the Wasserstein metric can also be defined in a dual representation.

Lemma 3.1. ([34], Theorem 3.2) For any distributions P,Q ∈M(Ξ) we have

dW (P,Q) = sup
f∈L

{∫
Ξ

f(ξ)P(dξ)−
∫

Ξ

f(ξ)Q(dξ)
}
, (3.14)

where L denotes the space of all Lipschitz functions with |f(ξ) − f(ξ′)| ≤ ‖ξ − ξ′‖ for all
ξ, ξ′ ∈ Ξ.

3.3.2 Preliminaries

Since our DRO solution relies on the OLS estimators which has an elegant closed form
representation (3.11), its performance also depends on how good β̂NOLS is as an proxy for

β0. Below we review the important assumptions for guaranteeing the performance of β̂NOLS,
together with some theoretical results. And throughout our analysis for DRO, we also make
the same assumptions.

Assumption 3.1. The design matrix X is of full rank. This ensures the invertibility of
matrix XTX, so that the closed-form solution (3.11) is well-defined.

Although we are proceeding with a fixed design model where xi’s should not be regarded
as i.i.d. samples, we still need to make some assumptions to permit a law of large numbers
for the purpose of establishing convergent results.
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Assumption 3.2. ([17]) As sample size N goes to infinity, the p ∗ p matrix

Mxx = limN−1XTX = limN−1

N∑
i=1

xix
T
i (3.15)

exists and is finite nonsingular.

This assumption immediately leads to the observation that cT (XTX)−1c→ 0 as N goes
to infinity for any bounded vector c, since

lim cT (XTX)−1c = lim
cT (N−1XTX)−1c

N

=
cT (limN−1XTX)−1c

N

=
cTM−1

xx c

N
→ 0.

(3.16)

Moreover, with the above two assumptions holding, by applying the Markov Law of Large
Numbers (Theorem A.9 from [17]), it can be proved that β̂NOLS is a (strongly) consistent
estimator.

Lemma 3.2. Under Assumptions 3.1 and 3.2, the OLS estimator is strongly consistent, i.e.

β̂NOLS
a.s.−−→ β0.

Closely related to linear regression is the so-called N×N “hat matrix”, aka the projection
matrix

H = X(XTX)−1XT . (3.17)

Its diagonal elements hii’s are widely known as the leverage scores of data points, measuring
how far away the features of each observation are from those of the other observations. And
nice properties of these measures as known in the following lemma.

Lemma 3.3. ([19]) Let hii denoting the ith diagonal element of the projection matrix H
defined above, where X ∈ Rn×p is the design matrix. Then, the following results hold:

1. 0 ≤ hii ≤ 1, ∀i = 1, 2, . . . , N.

2. trace(H) =
∑N

i=1 hii = p.

The trace can be interpreted as the amount of information extracted from the observations
or degrees of freedom for signal [107]. Thus, the sum of leverage scores of all observations
equals to the number of features. Built upon the theoretical results for OLS estimators, and
with techniques from robust and distributionally robust optimization, we are able to derive
the performance guarantees of our DRO solution to (3.12) in next section.
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3.4 Performance Guarantees

3.4.1 Notation and Assumptions

This section establishes the theoretical performance guarantees for our distributionally ro-
bust solution. With finite sample points, we provide sufficient conditions for choosing the
Wasserstein ball radius such that the out-of-sample newsvendor loss can be bounded from
above with high probability. Then, we prove its asymptotic optimality by demonstrating
asymptotic consistency of the resulting estimators when sample size goes to infinity. To
clarify our analysis, let us firstly introduce the following notation:

− J∗: the theoretical minimal expected out-of-sample cost which we target at, i.e.

J∗ = min
β,s

Ed|c[ρτ (d− βT c− s)] = min
β,s

EPε(β) [ρτ (ε(β)− s)]. (3.18)

− ĴN : the objective value achieved by our distributionally robust optimization formula-
tion (3.12), i.e.

ĴN = min
s

sup
Qε′∈P

EQε′ [ρτ (ε
′ − s)], ε′ = ε+ (β0 − β̂NOLS)T c. (3.19)

− Joos: the expected out-of-sample cost achieved by our DRO solution ŝN , β̂
N
OLS, i.e.

Joos = EPε′ [ρτ (ε
′ − ŝN)]. (3.20)

The feasibility of ŝN , β̂
N
OLS to the original problem (3.9) implies that J∗ ≤ Joos. However,

this lower bound is of very limited use in practice as J∗ is unknown and our primary concern
should be to obtain an upper bound of our costs. Considering the fact that DRO evaluates
the worst-case costs, ĴN , which is random due to the randomness of the sample data, bounds
our costs from above if and only if the real distribution Pε′ actually falls into the ambiguity
set we used. Thus, we will examine the ambiguity set

P := BrN
(
P̂N(β̂NOLS)

)
:=
{
Q ∈M(Ξ) : dW (P̂N(β̂NOLS),Q) ≤ rN

}
,

(3.21)

which consists of all distributions within a Wasserstein ball of radius rN and center at
P̂N(β̂NOLS). Note that P̂N(β̂NOLS) is not constructed with an i.i.d. sample path, and the results
from [40] and [34] no longer holds. To reestablish the desired performance guarantees, we
decompose the estimation error into several sources and apply the attractive properties of
β̂NOLS. Throughout this chapter, we make the following additional assumptions.

Assumption 3.3. (Light-tailed assumption [[34], Assumption 3.3]) There exists an exponent
a > 1 such that

A := EPε [exp(‖ε‖a)] <∞.
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This light tail assumption requires the tail of the distribution of ε to decay at an expo-
nential rate, and it implies that the variance of ε is finite. With a > 1 and ‖ε‖ ≥ 0, we
have

σ2 − EPε [exp(‖ε‖a)] = EPε [ε
2]− EPε [exp(‖ε‖a)]

≤ EPε [|ε|2]− EPε [exp(|ε|)]
= EPε [|ε|2 − exp(|ε|)]
< 0

(3.22)

provided that x2 − exp(x) < 0, ∀x ≥ 0. Hence, we have σ2 is bounded by A . Thus, we can
assume that there is a known constant M such that σ2 ≤M .

3.4.2 Finite-sample Performance

Theorem 3.4. (Measure Concentration) Suppose Assumptions 3.1, 3.2 and 3.3 hold, then
for any η ∈ (0, 1), there exists rN such that rN → 0 as N →∞ and

PN{dW (Pε′ , P̂N(β̂NOLS)) ≥ rN} ≤ η,

where PN(·) denotes the joint distribution of the N samples.

Corollary 3.1. (Finite-sample Performance Guarantee) It follows immediately from Theo-
rem 3.4 that ĴN upper bounds the out-of-sample cost with high probability. i.e.

PN(Joos ≤ ĴN) ≥ 1− η.

The proof of Theorem 3.4 will rely on the following technical lemmas, where we decom-
pose the Wasserstein distance of the real distribution Pε′ and the approximated empirical
distribution P̂N(β̂NOLS) into three components,

dW (Pε′ , P̂N(β̂NOLS)) ≤ dW (Pε, P̂N(β0)) + dW (P̂N(β0), P̂N(β̂NOLS)) + dW (Pε′ ,Pε), (3.23)

by triangular inequality. And we propose sufficient conditions to bound each of these com-
ponent separately.

When β takes it real value β0, P̂N(β0) boil down to an empirical distribution of ε based
on i.i.d. samples. Thus, the result from [34] holds.

Lemma 3.5. ([34]) If Assumption 3.3 holds, then for any η′ ∈ (0, 1), we can set r1
N such

that
PNε {dW (Pε, P̂N(β0)) ≥ r1

N} ≤ η′ (3.24)

for all N ≥ 1, where

r1
N(η′) :=

{
( log(c1η′−1)

c2N
)
1
2 if N ≥ log(c1η′−1)

c2

( log(c1η′−1)
c2N

)
1
a if N < log(c1η′−1)

c2

(3.25)

where c1, c2 are positive constant that only depend on a and A (see [37] Theorem 2 for details
regarding choice of c1 and c2). And note that r1

N chosen according to (3.25) converges to 0
as N → 0.
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We further investigate the distance between a real empirical distribution P̂N(β0) and the
approximation with linear regression residuals P̂N(β̂NOLS). By using the closed form solution,
we can also bound it with certain probability.

Lemma 3.6. If Assumption 3.1, 3.2 and 3.3 holds, then we can set r2
N =

√
pM
Nη′

, such that

Pε{dW (P̂N(β0), P̂N(β̂NOLS)) ≥ r2
N} ≤ η′ (3.26)

for all η′ ∈ (0, 1), and that r2
N → 0 as N →∞.

The proof of Lemma 3.6 is built upon the property of the β̂NOLS and can be found in
Appendix B. Finally, it remains to bound the distance between distributions of ε and
ε′ = ε + (β0 − β̂NOLS)T c, where the latter one is just the first shifted by a constant. As a
result, we have

Lemma 3.7. If Assumption 3.3 holds, then for any η′ ∈ (0, 1), we can set

r3
N =

√
McT (XTX)−1c

η′

so that
Pε{dW (P̂ε,Pε′) ≥ r3

N} ≤ η′. (3.27)

And r3
N → 0 as N →∞.

Eventually, it therefore follows from Lemma 3.5, 3.6 and 3.7 that, for any η ∈ (0, 1), we
can pick η′ = η

3
and select r1

N , r2
N and r3

N according to the above derived conditions. Then,
by setting rN = r1

N + r2
N + r3

N , and using the decomposition in (3.23), we will have

PN(Pε′ ∈ BrN (P̂N(β̂NOLS))) =PN(dW (Pε′ , P̂N(β̂NOLS)) ≤ rN)

≥1− P(dW (Pε, P̂N(β0)) > r1
N)− P(dW (P̂N(β0), P̂N(β̂NOLS)) > r2

N)

− P(dW (Pε′ ,Pε) > r3
N)

≥1− 3η′

=1− η.
(3.28)

In this manner, we complete the proof of the claims of Theorem 3.4 and Corollary 3.1.

3.4.3 Asymptotic Performance

In addition to bound the out-of-sample performance with finite sample points, it is also of
interest to know how our method behaves as the sample size increases. Moreover, although
we demonstrated that ĴN can upper bound the best expected out-of-sample cost J∗ with
any desired probability, we have not been able to explicitly describe the gap between the
two values. From this point onward, we study the asymptotic behavior or the DRO solution
and show that the gap between ĴN and J∗ asymptotically converges to zero.
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Theorem 3.8. (Asymptotic Consistency) Suppose that Assumption 3.3 holds and that a
sequence ηN ∈ (0, 1) satisfies

∑∞
N=1 ηN <∞ and limN→∞ rN(ηN) = 0.1 Then

a) ĴN ↓ J∗ as N →∞ where J∗ is the optimal value of (3.18);

b) Any accumulation point of {(ŝN , β̂NOLS)} is P∞ -almost surely one of the optimal solu-
tion for (3.18).

The proof of Theorem 3.8 can be found in Appendix B. It relies on the following lemma
where we first show the convergence of any sequence of distributions that comes from the
corresponding sequence of Wasserstein balls. This result is essentially the same as Lemma
3.7 in [34].

Lemma 3.9. (Convergence of distribution, Lemma 3.7 of [34]) Assume 3.3 holds and a
sequence ηN ∈ (0, 1) that satisfies

∑∞
N=1 ηN < ∞ and limN→∞ rN(ηN) = 0. Then for any

sequence QN ∈ BrN (ηN )(
ˆPN(βNOLS)), N ∈ N, it converges under Wasserstein metric to Pε′

almost surely with respect to P∞ε , that is

P∞{ lim
N→∞

dW (Pε′ ,QN) = 0} = 1.

3.5 Tractable Reformulation

In the previous sections of this chapter, we have proposed a DRO approach for solving the
newsvendor problem with covariate information, which attains both finite-sample and asymp-
totic performance guarantees. However, formulation (3.12) consists of a seemly intractable
optimization problem with infinite-dimensions due to the candidate probability distributions.
To assure this approach’s practicality, we further demonstrate that it can be re-represented
as a tractable finite-dimensional convex program by following similar argument from [34].

Theorem 3.10. For any rN ≥ 0, (3.12) can be reformulated as

min
s,λ≥max{τ,1−τ}

λrN +
1

N

N∑
i=1

ρτ (ε
OLS
i − s) (3.29)

The above theorem provides a convex program reformulation of (3.12) with finite number
of summands, thus is tractable. The proof of this claim can be found in Appendix B.
Surprisingly, the two components in the reformulation are actually decoupled, which leads to
a simple closed-form solution for λ∗ = max{τ, 1−τ} and ŝN = arg mins

1
N

∑N
i=1 ρτ (ε

OLS
i −s).

Thus, ŝN is essentially the sample τth quantile of the sequence {εOLSi }Ni=1, and can be obtained

1A possible choice is ηN = exp {−
√
N}.
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in polynomial time by simply sorting the linear regression residuals. And our DRO solution
(β̂OLSN , ŝN) coincides with one of the currently popular procedures for quantile estimation
in linear models. And it follows that the asymptotic consistency of our DRO solution can
be also shown by proving the convergence of the sample quantile of the linear regression
residuals.

This observation is rather counterintuitive at first glance as the value of distributionally
robust decision ŝN is irrelevant to the radius rN of the ambiguity set. This is because in
the quantile regression case, our loss function ρτ (·) is of simple piece-wise linear form and
can be regarded as the maximum of two linear function, and our distance metric defined on
the space of ε′ also reduces to the absolute difference as it is a scalar variable. Thus, the
worst-case scenario is always attained at the tuning points as seen in the dual representation
(see Appendix B for more discussion). On the other hand, this is not to suggest that rN and
the previous DRO discussion is useless. As argued earlier, in practice we not only want an
easily accessible solution but also want it to be robust with measurable performance. With
finite data points, the conditions we derived for rN allow us to obtain an upper bound for
the out-of-sample cost with any desired probability.

3.6 Numerical Experiments

We validate the theoretical results of this chapter in the context of bike sharing. Specifically,
our goal is to forecast the aggregated bike demand during a certain hour based on external
information such as temperature, wind speed and etc. Accurate prediction of quantiles of the
random demand process helps us to capture its distribution and thus, will facilitate better
inventory management of bikes in the system.

Data used in our experiments is simulated based on a real dataset from [35]. By selecting
all observations that are recorded on weekdays from their training set, we obtain a dataset
with 7, 412 instances. We further preprocess the dataset by extracting features including hour
of the day, day of the week and etc. Then, we create dummy variables for the categorical
features, and remove some features by hypothesis testing to get rid of the multicollinearity
issue. Eventually, we obtain a design matrix with 30 useful features. To check the linear
relationship in the nature of this problem, we conducted a linear regression on 70% of the
dataset and test its performance on the remaining 30%. This model achieves R2 and OSR2

of 0.8389 and 0.8340 respectively, indicating good fitness of the linear model.
In order to generate the dataset which satisfies all assumptions required by our DRO

method for the numerical experiments, the coefficients of the aforementioned linear model
are recorded as β0, the coefficients for the underlying true linear relationship. Finally, values
of the dependent variable, demand, are generated by adding simulated noise, i.e.,

di = βT0 xi + εi. (3.30)

We considered two types of noises - Gaussian and uniformly distributed, both of which
satisfies our light-tailed assumption. Different values of variance σ = 0.2, 2, 20 and different
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quantiles τ = 0.3, 0.5, 0.7 are tested respectively. Since our data point are generated from
known εi distributions, we are able to evaluate the real optimal solutions. Furthermore, we
also use the SAA method from [96, 7] as a benchmark algorithm.
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Figure 3.1: Comparison of optimal, SAA and DRO approaches with Gaussian noises.

Among the 7, 412 observations of covariates provided by the biking sharing dataset in
total, 112 of them are randomly selected to serve as the covariates for testing purpose. For
each configuration of noise and τ values, our experiment comprises 50 simulation runs. In
each run we randomly select N , ranging from 100 to 7, 200, feature vectors from the training
covariate set. Demand values for these N training points and the reserved 112 test feature
vectors are generated according to (3.30). We calibrate the SAA and our DRO solutions to
the N training points and evaluate the average performance of each method on the 112 test
instances. Moreover, we calculate the average out-of-sample costs of each method across all
simulation runs, and denote them by J oos opt, J oos saa and J oos dro respectively.

Figure 3.1 and Figure 3.2 visualizes how the out-of-sample costs of different strategies
decreases as more data becomes available under various σ and τ values for Gaussian and
uniform noises respectively. All subplots indicate that our DRO approach achieves lower
out-of-sample cost compared with the SAA method under all scenarios, and the advantage
is more significant especially when the training sample size is smaller. Moreover, as the
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Figure 3.2: Comparison of optimal, SAA and DRO approaches with Uniform noises.

variance becomes larger, our DRO strategy dominates the SAA approach significantly even
with moderate sample size. This observation is consistent with the results demonstrated
in Table 3.1, where we quantify the average out-of-sample costs for all experiment settings.
The percentage values within the parentheses correspond to the improvement of our DRO
strategy compared with the SAA approach, calculated as J oos dro−J oos saa

J oos saa
. With all of these

values being significantly negative, it indicates that the DRO policy achieves better quantile
prediction.

Moreover, even when the sample size become larger than 200 and the curves for SAA and
DRO almost overlap with each other under small variance scenarios in Figure 3.1 and Figure
3.2, it can be shown that our DRO solution still dominates. For example, in Figure 3.3 and
Figure 3.4, we plot the tails of cost curves for the τ = 0.3 and σ = 0.2 case with sample sizes
ranging from 400 to 7, 200. It is clearly seen that the DRO solution consistently achieves
lower out-of-sample quantile loss. In fact, our empirical studies also provide evidence that the
DRO performance among the 50 simulation runs achieves smaller variances compared with
the performance of the SAA policy across all runs. Although the gap between the two policies
seems to be small in terms of the average quantile loss when sample size is large enough,
the real difference can be significant when we scale it back to the original newsvendor cost,
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Table 3.1: Comparison of average out-of-sample costs.

Noise σ N
J oos opt J oos saa J oos dro

τ = 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Gaussian

0.2
100 0.070 0.080 0.070 3.618 7.551 4.775 0.675 (−81.3%) 1.305 (−82.7%) 1.844 (−61.4%)
500 0.070 0.080 0.070 0.074 0.084 0.074 0.072 (−2.8%) 0.082 (−2.5%) 0.072 (−2.8%)
1000 0.070 0.080 0.070 0.072 0.082 0.072 0.071 (−1.2%) 0.081 (−1.1%) 0.071 (−1.3%)

2.0
100 0.696 0.798 0.695 7.981 12.344 8.323 1.542 (−80.7%) 1.462 (−88.2%) 2.448 (−70.6%)
500 0.696 0.797 0.696 0.751 0.846 0.792 0.717 (−4.5%) 0.824 (−2.6%) 0.720 (−9.1%)
1000 0.696 0.798 0.694 0.717 0.826 0.720 0.705 (−1.8%) 0.810 (−1.9%) 0.708 (−1.6%)

20.0
100 6.947 7.979 6.963 19.005 19.146 15.917 8.764 (−53.9%) 10.426 (−45.5%) 9.515 (−40.2%)
500 6.965 7.975 6.959 8.058 8.596 7.821 7.183 (−10.9%) 8.245 (−4.7%) 7.184 (−8.1%)
1000 6.956 7.976 6.950 7.204 8.247 7.203 7.068 (−1.9%) 8.125 (−1.5%) 7.086 (−1.6%)

Uniform

0.2
100 0.073 0.087 0.072 2.510 7.558 4.603 0.811 (−67.7%) 1.065 (−85.9%) 1.456 (−68.4%)
500 0.073 0.087 0.073 0.077 0.093 0.078 0.075 (−3.4%) 0.089 (−5.3%) 0.075 (−4.3%)
1000 0.073 0.087 0.073 0.075 0.089 0.075 0.074 (−1.8%) 0.087 (−1.9%) 0.074 (−2.1%)

2.0
100 0.728 0.865 0.728 8.303 10.967 8.335 1.580 (−81.0%) 1.710 (−84.4%) 2.875 (−65.5%)
500 0.728 0.867 0.729 0.787 0.924 0.791 0.746 (−5.1%) 0.886 (−4.2%) 0.748 (−5.5%)
1000 0.727 0.865 0.727 0.752 0.910 0.753 0.737 (−2.0%) 0.874 (−4.0%) 0.737 (−2.1%)

20.0
100 7.272 8.658 7.272 15.806 22.028 18.218 8.982 (−43.2%) 10.925 (−50.4%) 10.270 (−43.6%)
500 7.277 8.648 7.281 8.016 9.433 8.300 7.491 (−6.5%) 8.876 (−5.9%) 7.481 (−9.9%)
1000 7.268 8.650 7.275 7.566 9.042 7.554 7.368 (−2.6%) 8.764 (−3.1%) 7.360 (−2.6%)

which is the real metric that we care about. In addition, the newsvendor cost differences can
accumulate along different sales periods. Thus, we believe that an inventory policy following
our DRO approach can potentially reduce the newsvendor costs significantly, compared with
the current data-driven method based on SAA, in real-world applications.
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Figure 3.3: Comparison of optimal, SAA and DRO approaches with Gaussian noises,
τ = 0.3 and σ = 0.2.
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Figure 3.4: Comparison of optimal, SAA and DRO approaches with Uniform noises,
τ = 0.3 and σ = 0.2.

3.7 Conclusion

In this chapter, we considered the classical newsvendor problem where the demand is a
linear function of some covariate variables plus i.i.d random noises. At the beginning of
each sale period, the decision maker observes the values of the covariates first and has
to decide the stocking level in order to minimize expected cost for overstocking or loss of
sales. Provided that the optimal solution to newsvendor problem conforms to the well-known
closed-form formula as a critical quantile, and that the expected costs are proportional to
the corresponding expected quantile loss, this problem essentially boils down to quantile
prediction with observable covariates information.

We explored the problem under a data-driven environment with the goal of developing a
robust solution. In contrast to current literature which admits a random design of the feature
matrix, and tries to minimize the expected cost with respect to random realization of the
covariates, we proceed with a fixed design model. We reckon that this fixed feature interpre-
tation better fits the real-life applications such as deciding inventory level of fashion goods,
as features such as style and material follows trend over time and should not be regarded
as i.i.d. samples and they are known before inventory decision has to be made and thus are
not random in nature. Then, by leveraging the OLS estimators for linear coefficients and
the recently developed distributionally robust optimization tools with Wasserstein metric,
we proposed a two-step distributionally robust approach to the problem of interest.

Built upon the properties of the OLS estimators and the structure of Wasserstein distance,
we bounded the expected our-of-sample cost with any desired probability and also demon-
strated that the solution is asymptotic optimal. Moreover, our performance guarantees hold
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under milder conditions compared with current literature [7]. Finally, by applying duality
theories, we represented the original infinite-dimensional DRO formulation in a tractable
equivalent reformulation. It is worth noting that, due to the special structure of quantile
loss, this reformulation is polynomial solvable with a single iteration of linear regression
followed by sorting.

Meanwhile, we will extend our discussion to algorithms that are suitable for more large-
scale data-driven problems in Chapter 4 and more potential future research directions in
Chapter 5.



49

Chapter 4

An Algorithm for Large-Scale Convex
Optimization Problems with Linear
Constraints

4.1 Introduction

In the previous two chapter, we delved into data-driven approaches for inventory management
problems from two different perspectives. One attempts to provide a more flexible way
for modeling time series demand process with less assumptions, and the other seeks to
develop robust solution with performance guarantees. Both result in minimizing certain
objective functions, (2.33) and (3.29) respectively, which are evaluated on historical data
points. However, the first approach sacrifices theoretical performance guarantee and the
latter requires a restrictive linear demand model. Thus, one naturally potential extension to
incorporate these two ideas is to consider distributionally robust decisions under a demand
process that is more flexible than linear models. One the other hand, given another demand
model, the resulting reformulation of the DRO problem will not as easy to solve as (3.29).
For instance, let us first consider the easy case where the cost function is still convex and that
a random design with i.i.d. samples is assumed. Then, all analysis for DRO with Wasserstein
metric in previous literature holds and leads to a convex finite-dimensional reformulation as
shown in Theorem 4.2 of [34]. The number of variables and constraints both grow linearly as
the number of data points increases, and soon falls in the field of big-data machine learning
and large-scale data-driven problems. To enhance the application of such models with the
ever-increasing data size, it is desired that distributed algorithms can be designed to take
advantages of the fast growing computation infrastructures.

One group of formulations that are particularly popular in this stream of work belong to
large-scale convex optimization problems with linear constraints, where the decision variables
satisfy a multi-block structure. And our goal of this chapter is to explore efficient distributed
algorithms for such a problem.
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A general form can be expressed as the following problem (P ):

min
x

m∑
i=1

θi(xi)

s.t.
m∑
i=1

Aixi = b

xi ∈ χi, i = 1, . . . ,m,

(4.1)

where χi ⊆ Rni , i = 1, . . . ,m (m ≥ 2) are closed convex sets, Ai ∈ Rl∗ni , b ∈ Rl and
θi(xi) : Rni → R, i = 1, . . . ,m are closed proper convex functions (not necessarily smooth).
And we further denote n =

∑m
i=1 ni, A = [A1 A2 . . . Am], x = [xT1 xT2 . . . xTm]Tand φ(x) :=∑m

i=1 θi(xi). The DRO reformulation can be rewritten in this multi-block form by creating
duplicated variables as did in [85, 44].

Then, we obtain the corresponding Lagrangian function as

L(x, λ) = φ(x)− λT (Ax− b), (4.2)

where λ ∈ Rl is the Lagrangian multiplier and let Ω := χ1 × χ2 × . . .× χm × Rl. Note that
the Lagrangian relaxation problem,

min
x
L(x, λ) = min

x1,x2,...,xm
L(x1, x2, . . . , xm, λ), (4.3)

is decomposable with respect to xi’s. And throughout this chapter, we make the following
assumptions.

Assumption 4.1. The solution set of (P ), Ω∗, is nonempty.

Assumption 4.2. There exists a saddle point ω∗ = (x∗, λ∗)T ∈ Ω∗ to the problem (P ). That
is, there exists ω∗ such that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ∈ Rn,∀λ ∈ Rl, (4.4)

and
−ATi λ∗ ∈ ∂θi(x∗i ), for i = 1, 2, . . . ,m, (4.5)

Ax∗ =
m∑
i=1

Aix
∗
i = b, (4.6)

where ∂θi(x) denotes the subdifferentials of θi at x.

With the arising popularity of machine learning and other data-driven large-scale convex
optimization problems, this formation has found wide applications in different fields (see, e.g.,
[86, 8, 4, 81, 14, 44, 85] etc.). Thus, it is of great interest and value that a decomposition
scheme is available where the properties of θi’s can be exploited individually. Among the
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numerous splitting methods designed for (4.1), dual ascent is a classical idea that leads to
decentralized algorithm, and is often referred to as dual decomposition. At each iteration,
a Lagrangian relaxation problem (4.3), which is decomposable across xi’s and can be solved
in parallel, is solved for updating the primal variables; then, a dual ascent update for the
Lagrangian multiplier is performed (see Chapter 2 of [14] for a review). To bring robustness
to the dual decomposition method and to ensure convergence without assumptions on the
strict convexity or finiteness of the objective function, augmented Lagrangian methods were
developed with an additional quadratic penalty term add to the Lagrangian function, i.e.

Lρ(x, λ) = φ(x)− λT (Ax− b) +
ρ

2
‖Ax− b‖2. (4.7)

Application of dual ascent to this modified problem is known as the method of multipliers.
Originally presented about four decades ago in [39, 94, 42], this method has been revived in
recent years due to its usefulness in solving large-scale problems arising in image processing
and statistical learning; see e.g., [14], [33] and references therein.

Unlike the original Lagrangian function, quadratic term in (4.7) destroys the separa-
bility. In order to decompose the large-scale problem and explore the property of each θi
independently, the alternating direction method of multipliers (ADMM) is developed, which
splits the problem by minimizing the augmented Lagrangian function with respect to each
block of xi alternatively in a Gauss-Seidel manner, and followed by an update for λ. Its
application for solving two-block structured convex problems (i.e. m = 2) has been well
studied in the literature. Global convergence is guaranteed with proper choice of ρ ([32,
58]) and convergence rate properties have been established (see, e.g., [14, 58, 57]). However,
when it comes to the multi-block case (i.e. m ≥ 3), its convergence has remained unclear
for a long time. In [111], the authors proposed a strategy that first transforms a multi-
block problem into an equivalent two-block problem and then solves it using the standard
two-block ADMM. Although convergence is established, their approach is not as efficient
as standard multi-block ADMM in practice (though the later lacks theoretical convergence
guarantees). Recently, [48] showed that ADMM is globally convergent when θi’s are further
assumed to be strongly convex. Since then, this condition is relaxed to allow only parts of
θi’s to be strongly convex but may require some rank conditions on Ai’s (see, e.g., [24] and
[80]). Without imposing any strong convexity assumption, [25] gave a sufficient condition
that ensure the convergence for the three-block problem (i.e. m = 3) which requires Ai’s
to be orthogonal; [79] demonstrated the convergence of standard multi-block ADMM when
applied to a certain problem under some further conditions on the augmented Lagrangian
function. Meanwhile, a counterexample was constructed in [25] showing that the standard
ADMM is not necessarily convergent when the aforementioned conditions are violated. It
is therefore of great interest to design algorithms which are convergent under more general
conditions.

This has inspired researchers to develop extensions of ADMM with provable convergence
on multi-block minimization problems under different conditions. Most of the modifications
involve correcting the output of ADMM [56] or employing a proximal term to solve the
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primal updates approximately, where the augmented function is replaced by

L̃1
γ(x;λ) = φ(x)− λT (Ax− b) +

ρ

2
‖Ax− b‖2 + ‖x− xk‖2

P , (4.8)

where ||w||2P := wTPw.
This kind of approach has been given various names in different literature, sometimes it

is referred to as the proximal alternating direction method of multipliers, or is also known
as PPA-like method etc. The later name comes from the fact that it can be regarded as the
application of the proximal point algorithm (PPA) to both the primal and dual problems
(see [94]). Works fall in this category include [60, 99] with various recent modifications
including the work of [55, 38, 54, 79, 22] and etc. Despite the different conditions required for
convergence, i.e. strong convexity of all or parts of the objective functions and rank conditions
on matrices Ai’s, these methods are also compelled to a Gauss-Seidel implementation due
to the coupling quadratic terms. Thus, it is clear that this type of sequential approaches
will not be very efficient, especially when m is large. Moreover, the coefficient matrix of the
quadratic terms requires additional computational effort for solving the subproblems. Both
of these issues can be resolved if P is chosen carefully so the cross terms between xi’s can
be cancelled out, thereby leading to a special case with easier subproblems (4.9):

L̃2
γ(x1, . . . , xm;λ) = φ(x)− λT (Ax− b) +

γ

2

m∑
i=1

‖xi − qki ‖2
Pi
, (4.9)

where qki is some linear transformation of xki .
Note that separability is preserved in (4.9) and in many cases the resulting subproblems

are much easier to solve, even closed form solutions can be derived. Inspired by the fact
that the

∑m
i=1 ||xi− qki ||2Pi term is similar to the proximal term in the classical PPA method,

these techniques are sometimes known as customized PPA regularization or linearization,
and have been extensively studied. Methods following this idea date back to more than two
decades ago, when [27] presented a proximal-based decomposition method, known as pre-
dictor corrector proximal multiplier method (PCPM), for a special two-block minimization
problem where A2 = −I and b = 0. The algorithm optimizes two subproblems in the form
of (4.9) with qki = xki simultaneously, and updates λ twice in a single iteration. However,
when directly extended to the case with general linear constraints, known as the Primal-Dual
Hybrid Gradient Algorithm (PDHG) by [123], the method became divergent. A variant by
[21] ensures the convergence by a modified proximal operator (CP-method). Later, [61] and
[59] accelerated the CP-method by adding a simple correction step, and revisited the proof
of its convergence from a variational inequality point of view. We refer the readers to [52]
for a review of PDHG and its extensions, where another convergent variant of PDHG is
proposed without having to calculate qki but requiring a more complicated correction on the
primal variables and taking extra effort for matrix inversion and multiplication.

Heretofore, the aforementioned PPA-like methods consider either a general convex opti-
mization or a very special two-block problem scenario. While in the multi-block case (4.1),
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special attention to design decomposition schemes is deserved as we have observed the fail-
ures of many direct extensions of decomposition methods. In succession to their earlier
relaxed CP-method, Bingsheng He et al. have proposed similar customized PPA algorithms
to deal with the two-block and multi-block cases [16, 46]. The methods were originally pro-
posed in the form of (4.7), and then part of the subproblems were converted into (4.9) by a
linearization procedure under certain circumstance. Another group of PPA-based decompo-
sition schemes take into account the idea of gradient descent. Replacing aki by the gradient
of the quadratic penalty in the original augmented Lagrangian function, [84] proposed the
so-called alternating proximal gradient method (APGM) for a general two-block problem. It
is then naturally extended to the multi-block case, however, with convergence only provable
under the strong convexity of θi’s [23].

Motivation. The algorithm considered in this chapter falls in the form of (4.9), and
is the direct extension of PCPM to solve a general problem (P ). It should be pointed
out that, this method can be implemented Jacobian manner, and enjoys the advantages of
parallel computing for the arising large-scale problems. In the Era of Big Data, millions of
data records are gathered on daily basis, and even simple algorithms can become intractable
when the problem size becomes extremely large and it is even impossible to store the whole
algorithm structure with data in a single machine. Thus, the separability of an algorithm is
the key to win a success in taking advantage of the big data and scaling the problem size in
machine learning and data-driven decision making. We then realize that this is essentially
a special case of the so-called Jacobi-Proximal ADMM algorithm proposed recently in [30].
Then, by leveraging the PPA interpretation of this algorithm and its equivalent variational
inequality (VI) reformulation, we reestablish its globally convergence and linear convergence
rate without assuming strong convexity of any objective function θi. Nor do we need to
impose any column conditions on any matrix Ai. And our results is consistent with the
analysis in [30].

However, despite of the theoretical linear convergence rate of this algorithm, its real-
life application is very limited as the derived conditions for convergence guarantees are too
conservative, leading to slow convergence in practice. To improve its performance, we provide
a parameter tuning heuristic that is more flexible than the one proposed in [30]. Moreover,
we show that a special case of such algorithm is still convergent even if we cannot, or it is
too expensive to, solve the subproblems exactly.

The remainder of this chapter is organized as follows. In next section, we give a brief
review of a few lemmas which form the foundation for many algorithm analysis in this
field. Then, in Section 4.3, we introduce a multi-block decomposition algorithm with linear
convergence guarantee, discuss the related study of such an algorithm in current literature
and propose a new heuristic for parameter tuning. Afterward, in Section 4.4, we modify
the algorithm so that the primal updates can be solved approximately and reestablish the
convergence of the inexact version. Finally, we make some conclusion in Section 4.5.
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4.2 Preliminaries

The reformulation of a convex optimization as variational inequalities (VI) has become an in-
creasingly popular approach in algorithm design, as it significantly simplifies the convergence
analysis process. In this section, we review two lemmas from the literature which illustrate
this connection and state another lemma which is useful in our analysis In particular, the
first two lemmas are taken from [54].

Lemma 4.1. ([54]) Let χ ⊆ Rn be a nonempty closed convex set, both φ(x) : Rn → R
and g(x) : Rn → R are closed convex functions. Further assume that g(x) is smooth and
differentiable. Then we have

x∗ ∈ arg min{φ(x) + g(x)|x ∈ χ} (4.10)

if and only if
x∗ ∈ χ, φ(x)− φ(x∗) + (x− x∗)T∇g(x∗) ≥ 0 ∀x ∈ χ. (4.11)

Lemma 4.2. ([54]) Let χ ⊆ Rn be a nonempty closed convex set, φ(x) : Rn → R be a closed
convex function. Consider the following constrained convex optimization problem

x∗ ∈ arg min{φ(x)|Ax = b, x ∈ χ}, (4.12)

where A ∈ Rl∗n, b ∈ Rl. Assume that the feasible set of (4.12) in nonempty, define λ ∈ Rl

as the dual variables corresponding to the m linear constraints and λ∗ as the optimal dual
solution. Then we can rewrite (4.12) as the variational inequalities:

ω∗ ∈ Ω, φ(x)− φ(x∗) + (ω − ω∗)TF (ω∗) ≥ 0 ∀ω ∈ Ω (4.13)

where

ω =

(
x
λ

)
, ω∗ =

(
x∗

λ∗

)
, F (ω) =

(
−ATλ
Ax− b

)
(4.14)

and
Ω = χ×Rl.

Moreover,
(ω − ω̄)T (F (ω)− F (ω̄)) = 0, ∀ω, ω̄ ∈ Ω, (4.15)

which implies
ω∗ ∈ Ω, φ(x)− φ(x∗) + (ω − ω∗)TF (ω) ≥ 0 ∀ω ∈ Ω. (4.16)

These two lemmas imply that problem (P ) can be rewritten as a set of variational in-
equalities. Thus, to show the convergence of this algorithm, it is equivalent to demonstrate
that the accumulating point of this algorithm satisfies these inequalities. Moreover, the fol-
lowing lemma further helps with establishing its little o convergence rate, which is slightly
stronger than the classical linear rate.

Lemma 4.3. ([30]) If a sequence {ak} ⊆ R obeys: (1) ak ≥ 0; (2)
∑∞

k=1 ak ≤ +∞; (3) ak
is monotonically non-increasing, then we have ak = o(1/k).
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4.3 The Exact Predictor Corrector Proximal

Multiplier Method

4.3.1 Algorithm Description

Based on the properties of PPA and its primal-dual application, the predictor corrector
proximal multiplier method (PCPM) was developed by Chen and Teboulle in 1994 [27]. It
works on a special case of (P ) where m = 2, n1 = n2, A2 = −I and b = 0. Further all,
while their approach belongs to the case of (4.9), they consider a very special case where
all Pis are diagonal matrices. The authors derived sufficient conditions to guarantee its
global linear convergence under some extra conditions and allowed the primal updates to be
solved approximately. The algorithm we consider applies the exact same logic to the general
problem (P ) but allows more general Pis, and starts with the case when all subproblems are
solved exactly. Furthermore, we allow for a linear correction on the second dual update as
this technique has been empirically shown to accelerate the convergence in practice, any all
analysis still holds without this correction, i.e. γ = 1. Thus, we denote it the exact predictor
corrector proximal multiplier method (EPCPM), as described in Algorithm 1.

Algorithm 1: EPCPM.

Input: ω0, ρ, γ, Pi for i = 1, 2, . . . ,m.
for k = 1, 2, . . . do

1 Step1. Compute λk+1
p = λk − ρ(Axk − b);

2 Step2. Solve

xk+1
i = arg min

xi∈χi

{
L(xk1, . . . , xi, . . . , x

k
m, λ

k+1
p ) +

1

2
||xi − xki ||2Pi

}
,∀i = 1, 2, . . . ,m;

3 Step3. Update

λk+1 = λk − γρ(Axk+1 − b).

Same as PCPM, each iteration of Algorithm 1 consists of two steps for updating the dual
variables, and a single primal variable update which is decomposable across each block of x.
They can also be regarded as a proximal steps operated on the dual and primal problems
of (P ) respectively. And we will show in the following discussion that the additional dual
update is essential for guaranteeing the convergence. Since a general instance of (P ) may
violate the structure required in the original PCPM paper, the convergence proof in [27] no
longer hold. However, we later realize that Algorithm 1 is essentially a special case of the
Jacobi-Proximal ADMM algorithm (Prox-JADMM) proposed in [30] with slightly differently
defined Pi’s. Thus, its convergence results follow directly from the general case. In order to
clarify our notation and to facilitate our discussion on the inexact version of the algorithm,
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we reestablish the result for Algorithm 1 explicitly from the perspective of PPA and VI
properties.

4.3.2 Convergence Guarantees

The condition to ensure that Algorithm 1 is globally convergent is stated in the following
theorem. The result is essentially the same as Theorem 2.1 from [30] with the prox-linear
design. The difference in representation is mainly because that we use a different definition
of the parameters.

To simplify the notation, let us first define that

R =


P1 · · · 0 0
...

. . .
...

...
0 · · · Pm 0
0 · · · 0 1

γρ
Il

 , (4.17)

G =


ρAT1A1 · · · ρAT1Am

1−γ
γ
AT1

...
. . .

...
...

ρATmA1 · · · ρATmAm
1−γ
γ
ATm

0 · · · 0 0

 , (4.18)

and

Q =


P1 − ρ

δ1
AT1A1 · · · 0 0

...
. . .

...
...

0 · · · Pm − ρ
δm
ATmAm 0

0 · · · 0
2−γ−

∑m
i=1 δi

ργ2
Il

 , (4.19)

where Il is an identity matrix of size l × l, 0 are matrices with all elements being zero and
match the dimensions, and δi > 0, i = 1, 2, . . . ,m are a positive scalars that help us to
derive sufficient conditions for achieving convergence.

Theorem 4.4. Suppose that the solution set of the convex optimization problem (P ) is
nonempty, and the sequence {ωk} is generated by Algorithm 1. Specifically, if one chooses
γ ∈ (0, 2) and some δi ∈ (0, 1] such that the other parameters ρ and Pi satisfy the following
conditions: {

Pi � ρ
δi
ATi Ai, i = 1, 2, . . . ,m,∑m

i=1 δi < 2− γ,
(4.20)

then, the sequence {ωk} is convergent.

The proof is based upon the properties of PPA and VI conditions, which can be found in
Appendix C. Furthermore, considering a special case where Pi = τiIni , and by letting each
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δi <
2−γ
m

, the condition (4.20) can be simplified to

τi >
mρ

2− γ
‖Ai‖2 =

mρ

2− γ
λmax(ATi Ai), i = 1, 2, . . . ,m, (4.21)

where λmax(·) denotes the maximal eigenvalue of a matrix. Besides, it can also be shown
that this algorithm achieves a o(1/k) convergence rate.

Lemma 4.5. When the conditions in Theorem 4.4 are satisfied, then

i) ‖ωk − ωk+1‖2
W ≤ ‖ωk−1 − ωk‖2

W ,

ii) ‖ωk − ωk+1‖2
W = o(1/k),

where

W =


P1 − ρAT1A1 · · · 0 0

...
. . .

...
...

0 · · · Pm − ρATmAm 0
0 · · · 0 1

ργ
Il

 . (4.22)

Now, let {ωkj} be a convergent subsequent of {ωk}, converging to ω∞. Then, with
assertion ii) and take kj →∞, we can easily verify, from the standard analysis for contraction
methods (see, e.g., [53]), that ω∞ satisfies the VI corresponding to (P ) and it is an optimal
solution to (P ).

4.3.3 A Special Case

In EPCPM algorithm, the choice of parameters Pis are crucial factors that decide the algo-
rithm’s performance. When Pis are too small, it takes risk of not converging. On the other
hand, if Pis are chosen too large, the primal updates converges slowly as we penalize too
much to change the primal solutions by imposing large values of ‖xi−xki ‖2

Pi
. Although The-

orem 4.4 provides a sufficient condition for guaranteeing the linear convergence of EPCPM,
which, however, is actually quite conservative, leading to slow convergence, because a few in-
equalities in the derivation are rather loose. In the following, we use a special case of EPCPM
as an example and prove that conditions derived in Theorem 4.4 can be unnecessarily too
conservative.

The setup of our example takes γ = 1, Pi = τTni , ∀i and ρ = 1
τ
. We denote it

as SPCPM (Special case of PCPM), which can be described as the above framework.
Then, the sufficient conditions for global convergence from Theorem 4.4 is immediately
τ ≥ maxi[

√
mλmax(ATi Ai)]. On the other hand, we can actually achieve faster convergence

by choosing less conservative parameters according to the following theorem.

Theorem 4.6. Suppose that the solution set of the convex optimization problem (P ) is
nonempty, and the sequence {ωk} is generated by Algorithm 2. If one chooses τ ≥

√
2‖A‖,

then, the sequence {ωk} is convergent.
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Algorithm 2: SPCPM.

Input: ω0 and τ .
for k = 1, 2, . . . do

1 Step1. Compute λk+1
p = λk − 1

τ
(Axk − b);

2 Step2. Solve

xk+1
i = arg min

xi∈χi

{
L(xk1, . . . , xi, . . . , x

k
m, λ

k+1
p ) +

τ

2
||xi − xki ||2

}
,∀i = 1, 2, . . . ,m;

3 Step3. Update

λk+1 = λk − 1

τ
(Axk+1 − b).

Thus, a sufficient condition for guaranteeing the convergence of Algorithm 2 is to choose
τ ≥ min{maxi[

√
mλmax(ATi Ai)],

√
2‖A‖}. The condition given in Theorem 4.4 can be con-

servative.

4.3.4 Adaptive Parameter Tuning

Unfortunately, the approach for obtaining tighter convergence conditions does not apply to
general case. Consequently, approaches like EPCPM are less frequently used in practice
compared with ADMM, even though the latter lacks of a guarantee for convergence. In fact,
however, we can see that in Appendix C to have a converging solution, it suffices to have the
term ‖ωk+1−ωk‖2

Q > 0. Thus, having Q being a positive definite matrix is a sufficient but not
necessary condition. Based on this observation, [30] has proposed an Adaptive Parameter
Tuning strategy (Strategy 1).

Strategy 1: Adaptive Parameter Tuning from [30].

Input: small P 0
i � 0(i = 1, 2, . . . ,m) and small η > 0.

for k = 1, 2, . . . do
if ‖ωk−1 − ωk‖2

Q > η · ‖ωk−1 − ωk‖2 then

P k+1
i ← P k

i , ∀i ;
else

Increase Pi:

P k+1
i ←− αiP

k
i + βiQi (αi > 1, βi > 1, Qi � 0), ∀i;

Restart with ωk ← ωk−1.

Strategy 1 starts with small proximal parameters Pi and gradually increases them until
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the contraction property holds. And the authors also showed that if Pi are initialized suffi-
ciently small and then adaptively adjusted following this scheme, the algorithm converges to
a solution to problem (P ). They have also empirically demonstrated that it typically takes
only a few iterations to get constant satisfactory parameters, which are usually much smaller
than those proposed in Theorem 4.4. However, we realize that this strategy can be further
improved as it suffers from the following three limitations:

1. The initial values of Pis are crucial to the performance of this strategy. If they are
chosen too small, it will take more diverging iterations to find appropriate parame-
ters; however, if they are initialized too large, the strategy cannot reversely tune the
parameters to accelerate convergence.

2. Fixed step-sizes are used in this strategy, and we face almost the same difficulty in
choosing adequate values for αi and βi for all i = 1, 2, . . . ,m. If these parameters
are chosen too small, it takes more iterations to adjust Pis so that the algorithm
converges; and if they are too large, the resulting stable Pis will be large leading to
slow convergence of the algorithm.

To take account of the tradeoff, we propose the following modified Strategy 2, which allows
two-directional tuning with changing step-sizes. And the step-sizes depend on the movement
of the previous iteration. Thus, we name this new strategy as Adaptive Parameter Tuning
with Feedback.

Strategy 2: Adaptive Parameter Tuning with Feedback .

Input: small P 0
i � 0(i = 1, 2, . . . ,m), t > 0 and small η1 > 0, η2 > 0 and η1 < η2.

for k = 1, 2, . . . do
Compute:

∆1 = ‖ωk+1 − ωk‖2
Q − η1‖ωk+1 − ωk‖2;

∆2 = ‖ωk+1 − ωk‖2
Q − η2‖ωk+1 − ωk‖2.

if ∆1 < 0 then
P k+1
i ← P k

i − t∆1Qi; ω
k ← ωk−1 ;

if ∆2 > 0 then
P k+1
i ← P k

i − t∆2Qi; ω
k ← ωk−1

else
P k+1
i ← P k

i , ∀i.

Intuition behind Strategy 2 is to bound the value of ‖ωk+1 − ωk‖2
Q within an inter-

val of [η1‖ωk+1 − ωk‖2, η2‖ωk+1 − ωk‖2] so that we can use small Pis which also guarantee
convergence. Meanwhile, we also set the step-sizes to be proportional to the gap between
‖ωk+1 − ωk‖2

Q the value of and the boundaries. Thus, by setting small η2, it is clear that
the resulting parameters Pi are usually smaller than those obtained from Theorem 4.4 and
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Strategy 1, thereby leading to faster algorithm convergence in practice. Moreover, compared
with Strategy 1, it can be easily seen that the computation effort required at each iteration
remains unchanged, while the new Strategy requires much less input parameters (a single
value of t v.s. values of αi, βi, ∀i).

4.3.5 Numerical Experiments

In [30], the authors compared the Jacobi-Proximal ADMM algorithm using parameter tun-
ing strategy 1 with a couple of popular parallel splitting algorithms on two problems, i.e.
Exchange Problem and l1-minimization. The benchmark algorithms include:

− Prox-JADMM: Jacobi-Proximal ADMM (Algorithm 4 of [30] tuned according to
Strategy 1)

− VSADMM: Variable Splitting ADMM (Algorithm 1 of [30])

− Corr-JADMM: Jacobi ADMM with correction steps

Moreover, the authors have kindly shared all codes and instances they used on their web-
site1. We adopt the same experimental setting and all benchmark algorithms’ parameters
as given in the literature. To further compare with our approach, we initialize the EPCPM
algorithm such that is is equivalent to the initialization of Prox-JADMM but tune the pa-
rameters according to Strategy 2 instead. All experiments are run in MATLAB (R2018b)
on a MacBook with an Intel Core i7 CPU (2.2 GHz) and 8 GB of RAM.

Exchange Problem

The exchange problem aims at minimizing the total costs among N agents that exchange
commodities subject to an equilibrium constraint:

min
x

N∑
i=1

fi(xi)

s.t.
N∑
i=1

xi = 0.

(4.23)

A special quadratic objective function in the form of fi(xi) = 1
2
‖Cixi − di‖2 is considered,

where N = 100, Ci are random Gaussian, di = Cix
∗
i with random generated solution x∗ ∈ R90

according to [30], so are parameters for all benchmark algorithms. For EPCPM, we set γ to
be 1, ρ = 0.01 as in Prox-JADMM and Pi initialized as 0.1(N − 1)ρIni + ρATi Ai and then
adaptively tuned according to Strategy 2.

1https://github.com/ZhiminPeng/Jacobi-ADMM
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l1-minimization

The l1 minimization problem, also known as the basis pursuit problem, is another commonly
used example in literature for demonstrating the efficiency of algorithms for large-scale con-
vex optimization. It’s mathematical formulation is

min
x
||x||1

s.t. Ax = b,
(4.24)

where A ∈ Rl×n and b ∈ Rl. Similarly, all problem instances and benchmark algorithms are
generated and set up as described in [30]: A is randomly generated from standard Gaussian
distribution with size 300×1000; the optimal solution x∗ is randomly generated with k = 60
non-zeros drawn from standard Gaussian distribution; and then b is set as b = Ax∗+n, where
n N(0, σ2I) is Gaussian noise with zero mean. Two cases are tested, i.e. the noise-free case
(σ = 0) and the noisy case (σ = 10−3). The problem is partitioned equally into 1000 blocks
for Corr-JADMM, and 100 blocks for the other algorithms. Again, the initial parameters for
EPCPM are set to be the same as Prox-JADMM.

Results

For both examples, 100 random instances are generated according to [30] and all algorithms
are set to ran for at most 100 and 500 iterations respectively. While the benchmark algo-
rithms performed similarly as in the literature, the green curves are those corresponding to
Strategy 2. Below we compare the average performance over the 100 random trials.
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Figure 4.1: Exchange problem (N = 100, p = 80).
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(b) Noise added in data generation.

Figure 4.2: l1 minimization problem.

Figure 4.1 shows the comparison of objective value and primal residual trajectories among
all Algorithms. Same as demonstrated in [30], the Prox-JADMM is clearly the fastest one
among all benchmark algorithms, while the green curves indicate that we can further accel-
erate its convergence significantly by using Strategy 2 to tune the parameters.

As for the l1-minimization problem demonstrated in Figure 4.2, in both cases with or
without noise, despite the slowly convergent VSADMM, all other three algorithms eventually
became stable at similar accuracy level. Again, the utilization Strategy 2 helps us to achieve
faster convergence.

Empirical evidence further shows that Strategy 2 in general requires less iterations to
achieve constant parameters than the original Strategy 1. Moreover, the step to reduce
the parameters is seldom performed. This is because that we use a nonconstant step-size
which incorporates the size of ‖ωk+1 − ωk‖. At the beginning of the algorithm, Pis are
small and the proximal terms penalize the updates of variables little, thus resulting in large
step-size. On the other hand, as Pis grow larger and the current solution approaches the
optimal solution, with Lemma C.1 indicating that ‖ωk+1 − ωk‖ will decrease, the step-size
will decrease consequently. Hence, our new strategy is less likely to reach unnecessarily large
parameters.

4.4 The Inexact Predictor Corrector Proximal

Multiplier Method

In Section 4.3, we considered a decomposition algorithm and assume that all subproblems
can be solved exactly. Many a time, it may be impossible or too time-consuming to find the
exact solutions to all subproblems at each iteration. Thus, we further consider an extension
of EPCPM to the case when oracles are available to approximately solve the subproblems,
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and denote it by inexact predictor corrector proximal multiplier method (IPCPM). We adopt
the notation for approximate minimization from [27].

Definition 4.1. (Inexact Solution [27])

ε- arg minF (u) = {v : F (v) ≤ inf F + ε}, (4.25)

where F (·) is a given objective function and ε ≥ 0.

4.4.1 Algorithm Description

When modify the algorithm to the inexact version, we have to consider a special case when
all Pis are diagonal matrices. In fact, the subproblems for primal updates in IPCPM are the
same as the original PCPM algorithm from [27]. The scheme of IPCPM is described below.

Algorithm 3: IPCPM.

Input: ω0, ρ, γ, Pi for i = 1, 2, . . . ,m.
for k = 1, 2, . . . do

1 Step1. Compute λ̂k+1
p = λ̂k − ρ(Ax̂k − b);

2 Step2. Solve

x̂k+1
i = εki - arg min

xi∈χi

{
L(x̂k1, . . . , xi, . . . , x̂

k
m, λ̂

k+1
p ) +

τi
2
||xi − x̂ki ||2

}
,∀i = 1, 2, . . . ,m;

3 Step3. Update

λ̂k+1 = λ̂k − γρ(Ax̂k+1 − b).

Here, we require τi > 0, ∀i = 1, 2, . . . ,m, and {εki } (i = 1, 2, . . . ,m) are sequences which
satisfy:

(1) εki ≥ 0;

(2) limk→∞ ε
k
i = 0;

(3) {εki } are monotonically non-increasing.

Note that at any iteration, if we set εki = 0, i = 1, 2, . . . ,m, then this IPCPM iteration is
equivalent to an EPCPM iteration with exact minimization. And the contraction analysis
for this iteration from EPCPM holds.
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4.4.2 Convergence Guarantees

To establish the convergence of IPCPM, we leverage the results from our previous analysis of
EPCPM. Let us consider the kth iteration of the algorithm with the sequence {ω̂k} generated
by running IPCPM for the previous k−1 iterations. Now, suppose we can solve this iteration
exactly and define:

λ̂k+1
p = λ̂k − ρ(Ax̂k − b)
x̃k+1
i = arg minxi∈χi

{
L(x̂k1, . . . , xi, . . . , x̂

k
m, λ̂

k+1
p ) + τi

2
||xi − x̂ki ||2

}
,∀i = 1, 2, . . . ,m;

λ̃k+1 = λ̂k − γρ(Ax̃k+1 − b).
(4.26)

This is essentially performing EPCPM for a single iteration with an initial solution of ω̂k, and
the original analysis on EPCPM holds on this iteration. And by leveraging the analysis from
[27], the convergence of IPCPM can be established by constructing a fundamental estimate
between the exact and the inexact iterates from an optimal solution.

Theorem 4.7. Suppose that the solution set of the convex optimization problem (P ) is
nonempty, and the sequence {ω̂k} is generated by Algorithm 3. Specifically, one can choose
γ ∈ (0, 2) and some ρ > 0 such that the other parameters τi and epsilonki satisfy the following
conditions:

i) εki ≥ 0, ∀i, ∀k,

ii) limk→∞ ε
k
i = 0,

iii) τiIni �
mρ
2−γA

T
i Ai,

Then, the sequence limk→∞ ‖ω̂k‖ = limk→∞ ‖ω̃k‖ = ω∗, where ω∗ is an optimal solution to
(P ).

Again, same as the EPCPM case, the conditions listed in Theorem 4.7 are sufficient but
not necessary, τi can be adaptively tuned following same strategies in practice and conditions
for εki can be relaxed as long as it still holds that limk→∞ ‖ω̂k − ω̃k‖ = 0.

4.5 Conclusion

When applying machine learning and distributionally robust optimization techniques to as-
sist inventory management decision making in a data-driven environment, we eventually
need to solve a minimization problem whose value is evaluated at all data points. The grow-
ing availability of data, on the one hand improves the accuracy in forecasting and results
in decisions closer to optimal, on the other hand increases the difficulty in solving the op-
timization problems. Thus, due to the dramatically increasing need for dealing with big
data, distributed algorithms which can be implemented in parallel and take advantage of the
arising high performance computing infrastructures are of great interest.
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In this chapter, we consider a group of convex optimization problems which can cover a
lot of machine learning and data-driven optimization applications. The problem we explore
has a special structure where the objective function is decomposable and the different blocks
of decision variables are coupled together by only linear constraints. Inspired by ADMM,
an algorithm based on the augmented Lagrangian function and designed specifically for the
problem setup, we consider another framework with more flexible quadratic terms. This
framework also enjoys the convenience of strongly convex subproblems, while having advan-
tages over ADMM in the sense that each block of primal variables can be updated in parallel
and its global convergence can be guaranteed in multi-block case. While we got our inspira-
tion from the PCPM algorithm proposed in [27], the method turns out to be a special case
of a Jacobi-ADMM algorithm introduced in [30]. We modified an adaptive parameter tuning
strategy to improve the performance of this algorithm in practice, and we further allow the
subproblems to be solved only approximately in some special cases while still ensure the
convergence.
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Chapter 5

Concluding Remarks and Future
Work

Motivated by the rising popularity of big data in assisting decision making, we explore how to
make optimal inventory management decisions using data-driven approaches from different
perspectives in this thesis:

We first introduce a special neural network structure for modelling demand time series.
Compared with traditional parametric time series analysis models, neural network works
as a universal approximator and thus, is much more flexible and can capture a wide range
of continuous demand functions. Specifically, the linear shortcuts in our model enables it
to treat nonstationary time series in the same way as the stationary ones, while current
methods in literature require additional parametric assumptions to capture components like
trend and seasonality. Thus, we contribute to the current literature by proposing a model
that deals with nonstationary time series without signal decomposition. Furthermore, by
adopting quantile loss function, we allow the network to output the desired inventory level
directly without generating an explicit demand forecast. With both theoretical and numerical
studies, we demonstrate that our method can serve as data-driven solutions to the classical
newsvendor problem and its multi-period extension.

In Chapter 3, we address the data-driven newsvendor problem from a different angle with
the focus on getting robust data-driven solutions with theoretical performance guarantees.
Moreover, we incorporate information from covariates in addition to time series data. How-
ever, in order to obtain the desired tractable formulation and theoretical results, we limit
our analysis to consider a linear demand model. In contrast to the existing literature which
consider the covariates as a random vector, we deploy a deterministic interpretation, reck-
oning that this fixed design better fits the real-world applications. A two-step framework is
proposed by leveraging the techniques of ordinary least squares estimator and distribution-
ally robust optimization. Specifically, the Wasserstein metric is chosen for constructing an
ambiguity set in order to achieve nice out-of-sample performance guarantees and a tractable
reformulation. As a matter of fact, we demonstrate that our data-driven solution can be
obtained in polynomial time with linear regression and then sorting. Furthermore, with any
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desired high probability we can bound the out-of-sample expected cost with finite sample
points, and our robust solution converges to the real optimal solution when sample size
grows to infinity. Moreover, while we conducted all analysis for these two projects in the
newsvendor setting, our methods can be used naturally for solving a more general problem
of quantile forecasting. To the best of our knowledge, this is the first work in the field of
data-driven distributionally robust optimization that does not require an i.i.d. sample of the
random component.

Finally, in Chapter 4, we investigate a class of decomposition algorithms to solve multi-
block convex optimization problems with linear constraints, which can be used to tackle a
wide range of problems in the field of machine learning and data-driven optimizations [14].
The algorithm we consider is a special case of the so-called proximal ADMM algorithms. It
enjoys the convenience of global linear convergence under multi-block case without strongly
convex objective functions, and all its primal subproblems can be solved in parallel such
that modern distributed computing system can be used. However, parameters chosen ac-
cording to the derived sufficient conditions to guarantee convergence are rather conservative
in practice. Inspired by the adaptive parameter tuning scheme proposed in [30], we provide
a modification with more flexible step-sizes and two-directional adjustments. Furthermore,
we prove that, for a special case of such algorithms, convergence can also be established even
if the subproblems are only solved approximately.

All together, the aforementioned three chapters work towards achieving the same goal,
that is to provide more efficient and practical data-driven approaches for inventory manage-
ment in the Big Data Era. With the purpose of extending the current research, possible
future work includes:

− Dealing with censored data. Up till now, we have assumed that historical demand
or covariates are fully observable. In reality, not only lost sales can not be tracked, there
will also be some missing values. To cope with censored demand, the pattern-fitting
method proposed by [96], which assumes demand occurs following the same pattern
during each time period, can also be useful under our setting. For example, if decision
is made on daily basis, Sachs et al. assume that the demand occurred during any hour
is a fixed ratio of the total daily demand. Thus, if a product is sold out during the
first few hours in a day, the demand in the remaining hours can be estimated by the
previous hourly demands and ratios learned from other days. If, again, the demand
is a time-correlated process, we can take account the autocorrelation to achieve more
accurate estimation. For example, we may regard the hourly demand observations as
a more frequently sampled time series. Based on which, we can come up with another
way to estimate the real daily demand. Similarly, when missing value occurred, we
may use techniques such as imputation and account for patterns over time to estimate
the missing values. Especially, instead of using a two-step framework where we first
estimate the real demand and missing values and then solve an optimization problem
with the estimations, we might think about dealing with the censored data directly in
the inventory management decision making models.
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− Integrating time series with covariates information. While time series data help
us to capture the internal structure of a random process over time, adding external
signal as features can be especially useful when plan inventory for fast-fashion products.
Retailers like Zara frequently introduces new products; e-commercial websites like Rue
La La and VIP.com offer time-limited discounts. Under both circumstances, they
need to make inventory decision without historical observations. It is crucial to make
use of the information of similar products to make informative data-driven decisions.
As demonstrated in [36], a study into this problem will be more data-oriented. While
Chapter 2 and Chapter 3 each considers time series and covariates data respectively, we
may consider models that account for both. Our goal is to propose a more theoretically
and intuitively comprehensible framework to assist the decision-making procedure,
rather than just try and compare different machine learning techniques.

− Trading off the flexibility and robustness. The two approaches we proposed in
Chapter 2 and Chapter 3 address the newsvendor problem with two very different goals,
and both have their own strengths and weaknesses. On the one hand, the DPFNN-QAR
method works empirically well with little assumptions but lacks a theoretical guarantee
for supporting the robustness of such approach; on the other hand, the distributionally
robust optimization approach is easily solvable and attains elegant finite-sample and
asymptotic performance guarantees, however, requires a very restrictive linear demand
model. In practice, what is most desirable is probably something in between, a model
that is more flexible than linear but still with some practical assumptions that enable
theoretical results to be established. If we follow a similar distributionally robust
optimization scheme as described in Chapter 3, the resulting reformulation will not be
as simple as the one we have for linear model. However, it is likely that we will still
need to solve a finite-dimensional problem with problem size growing as more data
points are considered [34]. This is when decomposition algorithms, such as the one
describe in Chapter 4, can be helpful.

− Decomposition algorithms for more general problems. Currently, popular de-
composition algorithms based on augmented Lagrangian relaxation, such as ADMM
and its variations as we discussed in Chapter 4, only work with convex optimization
with linear constraints. In practice, however, there are may large-scale problems vi-
olating these assumptions. For example, the neural network based methods are not
convex, and many other applications involve nonlinear constraints. Thus, it is desir-
able to extend them to solve more general formulations. Some empirical studies and
special cases have been explored in this direction (e.g., [112, 110, 118] and etc.), but
there still lacks more general and theoretical results. Hence, this leads to a potential
future research direction that worth exploring.

− More complicated inventory models. In both Chapter 2 and Chapter 3, we
have restricted our analysis in the environment of the newsvendor problem and its
multi-period extension. These problem settings enjoy the convenience that the so-
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called critical quantile is available as a closed-from optimal solution. Consequently,
the inventory management problem eventually boils down to the forecasting of this
quantile, and requires us to solve an unconstrained convex optimization formulation.
Many a time, more complex problem setting is required in real-world applications.
For instance, the limited resources is available and thus, our inventory control models
should be constrained. It is of interest if we can propose new data-driven approaches
and take into account of these additional constraints based on machine learning or
distributionally robust optimization techniques.

− Besides aforementioned, there are other interesting areas to explore in the future, say
inventory management for multiple products with substitutions, with non-zero fixed
ordering costs, with non-zero or even random lead times, etc. In general, our goal for
future research is to solve more complicated inventory problems and gain theoretical
insights under more realistic assumptions, with the help of abundant data resources,
powerful computing infrastructures and ever-evolving techniques in the field of machine
learning and robust optimization, etc.
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Appendix A

Supporting Results for Chapter 2

A.1 Proof of Theorem 2.2

The proof is inspired by [28] and uses results of [87] and [51]. We quote the useful lemma
and theorem in the following:

Theorem A.1 (Theorem 2.1 of [87]). If there is a function Q0(θ) such that (i) Q0(θ) is
uniquely maximized at θ0; (ii) Θ is compact; (iii) Q0(θ) is continuous; (iv) QN(θ) converges

uniformly in probability to Q0(θ) (supθ∈Θ |QN(θ) − Q0(θ)| p→ 0), then θ̂N
p→ θ0 where θ̂N

maximizes QN(θ)

Lemma A.2 (Lemma 7.2 of [51]). Uniform law of large numbers: Let {wt} be an ergodic
stationary process. Suppose that (i) the set Θ is compact; (ii) m(wt; θ) is continuous in θ for
all wt; (iii) m(wt; θ) is measurable in wt for all θ ∈ Θ; and (iv) E[supθ∈Θ |m(wt; θ)|] < ∞.
Then 1

n

∑n
t=1m(wt; ·) converges uniformly in probability to E[m(wt; ·)] over Θ. Moreover,

E[m(wt; θ)] is a continuous function of θ.

With the above theoretical support and assumptions, we are able to establish the con-
sistency. Denote

hθ(xt) = H(xt; θ)−H(xt; θ0) (A.1)

and define

LN(θ) =
1

N − p

N∑
t=p+1

[ρτ (ut − hθ(xt))− ρτ (ut)]

=
1

N − p

N∑
t=p+1

qτ (dt, xt, θ),

(A.2)

where
qτ (dt, xt, θ) = ρτ (ut − hθ(xt))− ρτ (ut). (A.3)
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With (2.21) and (2.22), it is easy to see that

θ̂N = arg min
θ∈Θ

LN(θ). (A.4)

Under Assumption (ii) and since τ ∈ [0, 1],

E[sup
θ∈Θ
|qτ (Dt, Xt, θ)|] = E[sup

θ∈Θ
|ρτ (Dt −H(Xt; θ))− ρτ (Dt −H(Xt; θ0))|]

≤ E[sup
θ∈Θ
|H(Xt; θ)−H(Xt; θ0)|]

<∞.

(A.5)

Since Assumption (i) directly assumes the compactness of Θ, qτ (Dt, Xt, θ) is continuous
in both (Dt, Xt) and θ by construction, thus measurable in (Dt, Xt) for all θ ∈ Θ. All
conditions in Lemma A.2 are satisfied. Thus, by applying the uniform law of large numbers
for stationary ergodic processes, we verify that LN(θ) converges uniformly in probability to
E[LN(θ)], and the later is continuous in θ. Finally, it remains to verify that H(·, θ0) is the
unique minimizer of E[LN(θ)]. With Knight’s Identity from [71] we have

ρτ (u− v)− ρτ (u) = −v(τ − 1(u < 0)) +

∫ v

0

{1(u ≤ s)− 1(u ≤ 0)}ds. (A.6)

Then, by the property of conditional expectation, and recall that Fu(0) = τ , we have

E[qτ (Dt, Xt, θ)] = E[E[qτ (Dt, Xt, θ)|Xt]]

= E[E[ρτ (ut − hθ(Xt))− ρτ (ut)|Xt]]

= E[E[−hθ(Xt)(τ − 1(ut < 0))|Xt]]

+ E[E[

∫ hθ(Xt)

0

{1(ut ≤ s)− 1(ut ≤ 0)}ds|Xt]]

= E[−hθ(Xt)(τ − E[1(ut < 0)|Xt]])

+ E[

∫ hθ(Xt)

0

E[{1(ut ≤ s)− 1(ut ≤ 0)}ds|Xt]]

= E[−hθ(Xt)(τ − Fu(0))] + E[

∫ hθ(Xt)

0

(Fu(s)− Fu(0))ds]

= E[

∫ hθ(Xt)

0

(Fu(s)− Fu(0))ds].

(A.7)

Under Assumption (iii), we know that Fu(u) is a strictly increasing function on [−ε, ε].
If hθ(xt) > 0, ∫ hθ(xt)

0

(Fu(s)− Fu(0))ds ≥
∫ min(ε,hθ(xt))

0

(Fu(s)− Fu(0))ds > 0. (A.8)



APPENDIX A. SUPPORTING RESULTS FOR CHAPTER 2 72

Similarly, in the case of hθ(xt) < 0,∫ hθ(xt)

0

(Fu(s)− Fu(0))ds ≥
∫ 0

max(−ε,hθ(xt))

(Fu(0)− Fu(s))ds > 0. (A.9)

Thus, for any xt, E[qτ (Yt, Xt, θ)] = 0 only if hθ(Xt) = 0. With

E[LN(θ)] =
1

N − p

N∑
t=p+1

E[qτ (Dt, Xt, θ)], (A.10)

the minimum of E[LN(θ)] is achieved only if H(Xt; θ) = H(Xt; θ0). However, the neural
network model is unidentifiable, as there can be multiple θ0 leading towards the same output.
And we can not achieve the consistency of the parameters.

A.2 Proof of Theorem 2.3

Let
W (St, Dt) = cSt + g(St, Dt)− γc(St −Dt). (A.11)

Then

fT (S̄) = E{
T∑
t=1

γt−1W (St, Dt)}

=
T∑
t=1

γt−1E{EDt|Ht [W (St, Dt)]}.

(A.12)

And our goal is to find S̄∗ = arg min fT (S̄).
Now, we can establish the optimality of a myopic policy by adapting the Theorem 6.1

from [106]:

Theorem A.3 (Theorem 6.1 from [106]). if

a) For any fixed Ht, S̃t = arg minEDt|Ht [W (St, Dt)];

b) Under this policy, it is always true that xt ≤ S̃t t = 1, 2, ..., T − 1;

then, S̄∗ = (S̃1, S̃2, ..., S̃T ).

We first solve for S̃t as below

EDt|Ht [W (St, Dt)] = EDt|Ht [cSt + g(St, Dt)− γc(St −Dt)]

= EDt|Ht [(h+ (1− γ)c) max(St −Dt, 0) + (b− (1− γ)c) max(Dt − St, 0)]

+ EDt|Ht [cDt]

= EDt|Ht [(h+ (1− γ)c) max(St −Dt, 0) + (b− (1− γ)c) max(Dt − St, 0)]

+ g(dt−1, ..., dt−p),

(A.13)
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which is similar to the single period model with a constant term. The minimum is

S̃t = F−1
t (

b− (1− γ)c

h+ b
|lt) = g(dt−1, ..., dt−p) + Zτ , (A.14)

with τ = b−(1−γ)c
h+b

. Finally, it remains to verify condition (b) to show that this myopic policy
is optimal. And since demand is always nonnegative, it is obviously true when t = 1, and
for t = 2, 3, ...., T − 1

xt = S̃t−1 −Dt−1

= g(dt−2, ..., dt−p−1) + Zτ − g(dt−2, ..., dt−p−1)− εt−1

= Zτ − εt−1

≤ Zτ + g(dt−1, ..., dt−p)

= S̃t

(A.15)

The inequality holds since demand is always nonnegative and εt are i.i.d.. This theorem also
works when T =∞. Thus, the myopic policy is optimal in the multiperiod scenario.
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Appendix B

Supporting Results for Chapter 3

B.1 Proof of Lemma 3.6

In order to prove Lemma 3.6, let us first introduce the following intermediate results:

Lemma B.1. For any sequence of random variables Vi, i = 1, 2, . . . , N , we have

V ar(
1

N

N∑
i=1

|Vi|) ≤
1

N

N∑
i=1

V ar(|Vi|) ≤
1

N

N∑
i=1

V ar(Vi)

Proof. Consider Ui = |Vi| − E|Vi|, we have

V ar(
N∑
i=1

Ui) = E[(
N∑
i=1

Ui)
2].

Note that

(
N∑
i=1

Ui)
2 =

N∑
i=1

U2
i +

∑
i 6=j,i,j=1,...N

UiUj

≤
N∑
i=1

U2
i +

∑
i 6=j,i,j=1,...N

U2
i + U2

j

2

=
N∑
i=1

NU2
i .

(B.1)

Hence, V ar(
∑N

i=1 Ui) ≤ N
∑N

i=1 V ar(Ui), and the desired result follows directly.
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Consequently, to prove Lemma 3.6, let us consider

dW (PN(β0),PN(β̂NOLS))

= sup
f∈L
{ 1

N

N∑
i=1

f(εi)− f(εOLSi )}

≤ 1

N

N∑
i=1

|εi − εOLSi |

=
1

N

N∑
i=1

|(β̂OLSN − β0)Txi|

=
1

N

N∑
i=1

|xTi (XTX)−1XTε|,

(B.2)

where εOLSi denotes the linear regression residual of the ith data point.
The first equality follows from the dual representation of the Wasserstein metric [66], and

the following inequality is justified by f being Lipschitz functions. Note that this distance
and the residuals are random due to the randomness of the noise term in each of the data
point, and we stack the random noises in all data points in vector ε.

To simplify the notation and apply Lemma B.1, let us set Vi = xTi (XTX)−1XTε. Then,
with X being fixed and independent of ε, we have

E(Vi) = xTi (XTX)−1XTE(ε) = 0

and
V ar(Vi) = xTi (XTX)−1XTV ar(ε)X(XTX)−1xi

= xTi (XTX)−1XT (σ2)INX(XTX)−1xi

= σ2xTi (XTX)−1xi

≤Mhii,

where hii = xTi (XTX)−1xi is the leverage of the the ith data point in linear regression as
defined in Section 3.3.2. It follows that the left-hand-side of inequality (B.2) is bounded
from below with probability

P(
1

N

N∑
i=1

|Vi| > r2
N) ≤

V ar( 1
N

∑N
i=1 |Vi|)

(r2
N)2

≤ 1

N

∑N
i=1 V ar(Vi)

(rN)2

≤ 1

N

N∑
i=1

Mhii
(r2
N)2

=
1

N

pM

(r2
N)2

(B.3)
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The first inequality follows from the Chernoff’s inequality, while the second inequality from
Lemma B.1. And finally applying Lemma 3.3 as given in Section 3.3.2, the last equality
holds. With (B.2), we have

Pε{dW (P̂N(β0), P̂N(β̂NOLS)) ≥ r2
N} ≤ P(

1

N

N∑
i=1

|Vi| > r2
N)

≤ 1

N

pM

(r2
N)2

.

(B.4)

Hence, with r2
N =

√
pM
Nη′

, we can bound the distance with any desired probability (1− η′) ∈
(0, 1). And for any given value of η′ since both p and M are finite constant, we have r2

N → 0
as N →∞.

B.2 Proof of Lemma 3.7

Noting the fact that ε′ is just the random variable ε shifted by a constant, we show that the
following result holds for general case.

Lemma B.2. Let µ and ν denote two probability measures supported on R. Suppose dν(y) =
dµ(x) for all x ∈ R, y = x+ t, where t is a constant. Then it holds that

dW (µ, ν) = |t|

Proof. Due to the symmetry of this problem, without loss of generality, we may assume
t ≥ 0. Suppose the joint density function is f(x, y), since µY (x+ t) = µX(x),∫

f(y, x+ t)dy =

∫
f(x, y)dy := g(x).

Hence, ∫
|x− y|f(x, y)dxdy ≥

∫
(y − x)f(x, y)dxdy

=

∫
yf(x, y)dxdy −

∫
xf(x, y)dxdy

=

∫
yg(y − t)dy −

∫
xg(x)dx

=

∫
(y + t)g(y)dy −

∫
yg(y)dy

= t.
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Thus, by applying Lemma B.2 to the left-hand-side of (3.27), we get the Wasserstein
distance between Pε and Pε′ is

dW (Pε,Pε′) = |(β0 − βNOLS)T c|.

Then, by Chernoff’s Inequality, we have

PN(|(β0 − β̂NOLS)T c| > r3
N) ≤ V ar(|(β0 − β̂NOLS)T c)|)

(r3
N)2

≤ V ar((β0 − β̂NOLS)T c))

(r3
N)2

=
V ar(((XTX)−1XTε)T c)

(r3
N)2

=
σ2cT (XTX)−1c

(r3
N)2

≤ M

(r3
N)2

(cT (XTX)−1c).

(B.5)

Thus, it suffices to select r3
N =

√
McT (XTX)−1c

η′
so that the above probability if bounded by

η′, and with Assumption 3.3 it converges to 0 as N goes to ∞.

B.3 Proof of Theorem 3.8

With DRO solution being feasible to the original stochastic program (3.18), we always have
J∗ ≤ JOOS. Then, for any sequence of ηN ∈ (0, 1), we can choose rN(ηN) based on the
conditions derived in Lemma 3.5-3.7, such that

PN{J∗ ≤ ĴN} ≥ PN{JOOS ≤ ĴN} ≥ 1− ηN , ∀N ∈ N (B.6)

Then, by applying the Borel-Cantelli Lemma ([68], Theorem 2.18), we have

P∞{J∗ ≤ ĴN , ∀ sufficiently large N} = 1. (B.7)

By similar arguments, it also holds that

P∞{JOOS ≤ ĴN , ∀ sufficiently large N} = 1. (B.8)

Then, it remains to show that

P∞{lim sup
N→∞

ĴN ≤ J∗} = 1. (B.9)
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Note that ρτ (ε− s) is a 1-Lipschitz function with respect to ε. Hence, for any δ > 0, we may
choose a δ-optimal solution sδ of mins EPε [ρτ (ε− s)], that is,

EPε [ρτ (ε− sδ)] ≤ J∗ + δ. (B.10)

Consequently, we can always choose a sequence {QN} where QN ∈ P ,∀N ∈ N which
satisfies

sup
Q∈P

EQ[ρτ (ε− sδ)] ≤ EQN [ρτ (ε− sδ)] + δ. (B.11)

Note that ε′ = ε + (β0 − β̂NOLS)T c → ε almost surely due to the strongly consistency of the
OLD estimator. Therefore,

lim sup
N→∞

ĴN ≤ lim sup
N→∞

sup
Q∈P

EQ[ρτ (ε− sδ)]

≤ lim sup
N→∞

EQN [ρτ (ε− sδ)] + δ

≤ lim sup
N→∞

EPε [ρτ (ε− sδ)] + dw(Pε′ ,QN) + dw(Pε,Pε′) + δ

=EPε [ρτ (ε− sδ)] + δ, P∞ − almost surely

≤J∗ + 2δ

(B.12)

where the first inequality follows from the optimality of ĴN to (3.19); the second is based
on inequality (B.11); followed by applying the dual representation of Wasserstein distance
as defined in Lemma 3.1 and the fact that ρτ is 1-Lipschitz and finally with Lemma 3.9 to
reach the second last equation.

Observing the equivalent reformulation of DRO in Section 3.5, we come up with an
alternative proof of lim supĴN ≤ J∗: Noting the fact that

lim sup
N→∞

ĴN = lim sup
N→∞

rN max{τ, 1− τ}+ min
s

EP̂N (β̂NOLS)(ρτ (ε− s))

≤ lim sup
N→∞

rN max{τ, 1− τ}+ EP̂N (β̂NOLS)(ρτ (ε− sδ))

≤ lim sup
N→∞

rN max{τ, 1− τ}+ EPε(ρτ (ε− sδ)) + dw(Pε,Pε′) + dw(Pε′ , P̂N(β̂NOLS))

=EPε(ρτ (ε− sδ)) P∞-almost surely

=J∗ + δ,
(B.13)

where the first inequality follows from the feasibility of sδ, and the second inequality holds
due to the dual representation of Wasserstein distance as defined in Lemma 3.1 and the fact
that ρτ is 1-Lipschitz. Further notice the fact that, dw(Pε,Pε′)→ 0 P∞− almost surely due
to the almost surely convergence of β̂NOLS and dw(P̂N(β̂NOLS)). This implies the second last
equality together with the fact that rN → 0 and the fact that Pε′ → Pε, P∞− almost surely
by Lemma 3.9.



APPENDIX B. SUPPORTING RESULTS FOR CHAPTER 3 79

Finally, since the above result holds for any arbitrarily small δ > 0, thus the claim
lim supN→∞ ĴN ≤ J∗ follows and leads to the conclusion that ĴN ↓ J∗.

Now we aim at showing that any limit point of (ŝN , β̂
N
OLS), if exists, is an optimal solution

of J∗. In fact, as a quantile of a random variable minimizes its expected quantile loss, we
know that sτ , β0 is the minimizer to (3.18) and that it is unique when the quantile function
is identifiable. Due to the strongly consistency of β̂NOLS from Lemma 3.2, i.e. β̂NOLS → β0

−P∞ almost surely, it remains to show that s̄, any limit point of ŝN , if exists, is sτ .
Starting from J∗ being the optimal object value and combining the previous results (B.8)

and that J∗ = limN→∞ ĴN , we have

J∗ ≤ EPε [ρτ (ε− s̄)]
= EPε [ lim

N→∞
ρτ (ε− ŝN)]

≤ lim inf
N→∞

EPε [ρτ (ε− ŝN)]

= lim inf
N→∞

EPε′ [ρτ (ε
′ − ŝN)]

≤ lim
N→∞

ĴN

= J∗.

(B.14)

The second inequality follows by applying Fatou’s Lemma. Hence, we complete the proof of
Theorem 3.8.

B.4 Proof of Theorem 3.10

min
s

sup
Qε′∈BrN (P̂N (β̂NOLS))

EQε′ [ρτ (ε
′ − s)]

=

{
mins supQε′∈M(E) EQε′ [ρτ (ε

′ − s)]
s.t. dw(Qε′ , P̂N(β̂NOLS)) ≤ rN

=


mins supΠ,Qε′

∫
E
ρτ (ε

′ − s)Qε′(dε
′)

s.t.
∫
E×E |ε

′ − ξ|Π(dε′, dξ) ≤ rN

where ε′ ∼ Qε′ , ξ ∼ P̂N(β̂NOLS), and ε′, ξ has joint distribution Π

(B.15)

The first and second inequality holds due to the the definition of Wasserstein distance and
our DRO formulation. Then let Qi denote the conditional distributions of ε′ given ξ = εOLSi ,
∀i = 1, . . . , N , i.e. Π = 1

N

∑N
i=1 δεOLSi

⊗Qi. Hence (B.15) can be further reformulated as:
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(B.15) =

{
mins supQi∈M(E)

1
N

∑N
i=1

∫
E
ρτ (ε

′ − s)Qi(dε′)

s.t. 1
N

∑N
i=1

∫
E
‖ε′, εOLSi ‖Qi(dε′) ≤ rN

(B.16)

= min
s

sup
Qi∈M(E)

inf
λ

1

N

N∑
i=1

∫
E

ρτ (ε
′ − s)Qi(dε′) + λ(rN −

N∑
i=1

∫
E

‖ε′ − εOLSi ‖Qi(dε′))

(B.17)

≤ inf
s,λ≥0

sup
Qi

λrN +
1

N

N∑
i=1

∫
E

(ρτ (ε
′ − s)− λ|ε′ − εOLSi |)Qi(dε′) (B.18)

= min
s,λ≥0

λrN +
1

N

N∑
i=1

{
ρτ (ε

OLS
i − s) if λ ≥ τ and λ ≥ 1− τ

∞ o.w.
(B.19)

= min
s,λ≥max{τ,1−τ}

λrN +
1

N

N∑
i=1

ρτ (ε
OLS
i − s) (B.20)

(B.17) follows from (B.16) by adding a dual multiplier λ. And the inequality (B.18) reduces
to equality by strong duality which is guaranteed by Theorem 1 of [40].

Moreover, the Qi that solves

sup
Qi

1

N

N∑
i=1

∫
E

(ρτ (ε
′ − s)− λ|ε′ − εOLSi |)Qi(dε′) (B.21)

is the Dirac distribution Qi = δε∗i , where ε∗i solves

sup
ε′∈R

ρτ (ε
′ − s)− λ|ε′ − εOLSi |. (B.22)

As aforementioned, both ρτ (·) and ‖·‖ are piece-wise linear functions, only their slops, i.e. τ ,
τ−1 and λ, play any role in determining the supremum of the function value. It can be easily
shown that ε∗i = εOLSi if λ ≥ 1− τ and λ ≥ τ . Otherwise, supε ρτ (ε

′− s)− λ|ε′− εOLSi | =∞.
Meanwhile, since this is an minimization problem and we can easily identify a feasible value
(e.g. λ = 1) so that the objective value will be finite, the∞ will never be achieved at optimal
value.
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Appendix C

Supporting Results for Chapter 4

C.1 Proof of Theorem 4.4

The justification of Theorem 4.4 depends on the following technical lemma.

Lemma C.1. For any k ≥ 1, and {δi > 0} such that
∑m

i=1 δi < 2− γ, we have

‖ωk − ω∗‖2
R ≥ ‖ωk+1 − ω∗‖2

R + ‖ωk+1 − ωk‖2
Q. (C.1)

Proof. By substituting the explicit expression of λk+1
p into Step 2 and considering the PPA

interpretation of the dual update, the kth iteration of Algorithm 1 is equivalent to{
xk+1 = arg minx

(
φ(x)−

〈
Ax, λk − ρ(Axk − b)

〉
+ 1

2

∑m
i=1 ‖xi − xki ‖2

Pi

)
,

λk+1 = arg minλ
(〈
Axk+1 − b, λ

〉
+ 1

2γρ
‖λ− λk‖2

)
.

(C.2)

Then, according to Lemma 4.2, we can transform the optimization problems into the follow-
ing variational inequality system{

φ(x)− φ(xk+1) +
∑m

i=1(xi − xk+1
i )T

[
− ATi λk + ρATi (Axk − b) + Pi(x

k+1
i − xki )

]
≥ 0,

(λ− λk+1)T
[
(Axk+1 − b) + 1

γρ
(λk+1 − λk)

]
≥ 0.

(C.3)
Then, by substituting λk = λk+1 + γρ(Axk+1 − b) into the first inequality results in

φ(x)− φ(xk+1) +
∑m

i=1(xi − xk+1
i )T

[
− ATi λk+1 − ρATi A(xk+1 − xk)

−1−γ
γ
ATi (λk+1 − λk) + Pi(x

k+1
i − xki )

]
≥ 0,

(λ− λk+1)T
[
(Axk+1 − b) + 1

γρ
(λk+1 − λk)

]
≥ 0.

(C.4)

By summing up these inequalities and rewrite in matrix form, it implies that

φ(x)− φ(xk+1) +
〈
ω − ωk+1, F (ωk+1) + (R−G)(ωk+1 − ωk)

〉
≥ 0, (C.5)
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which holds for all ω ∈ Ω. Thus, it is also true when we take ω = ω∗, i.e.

φ(x∗)− φ(xk+1) +
〈
ω∗ − ωk+1, F (ωk+1) + (R−G)(ωk+1 − ωk)

〉
≥ 0. (C.6)

On the other hand, let us reconsider (4.16) from Lemma 4.2 and evaluate it at ω = ωk+1. It
gives that

φ(xk+1)− φ(x∗) + (ωk+1 − ω∗)TF (ω) ≥ 0. (C.7)

Adding the above two inequalities, we obtain〈
ω∗ − ωk+1, R(ωk+1 − ωk)

〉
≥
〈
ωk+1 − ω∗, G(ωk − ωk+1)

〉
. (C.8)

Since, x∗ is feasible to (P ), it is always true that Ax∗ = b and hence, λk+1 = λk−γρA(xk+1−
x∗). Thus, plug in the definition of G into the right-hand-side of the above inequality, we
have〈
ω∗ − ωk+1, R(ωk+1 − ωk)

〉
≥ ρ(xk+1 − x∗)TATA(xk − xk+1) +

1− γ
γ2ρ
‖λk+1 − λk‖2

=
m∑
i=1

[1

γ
(λk+1 − λk)Ai(xk+1

i − xki )
]

+
1− γ
γ2ρ
‖λk+1 − λk‖2

≥ −1

2

m∑
i=1

[ δi
γ2ρ
‖λk+1 − λk‖2 +

ρ

δi
‖Ai(xk+1

i − xki )‖2
]

+
1− γ
γ2ρ
‖λk+1 − λk‖2

(C.9)

where the second inequality follows from the triangle inequality. And hence, the claim in
Lemma C.1 holds as

‖ωk − ω∗‖2
R = ‖ωk+1 − ωk‖2

R + ‖ωk+1 − ω∗‖2
R + 2〈ωk+1 − ω∗, R(ωk − ωk+1)〉

≥ ‖ωk+1 − ωk‖2
R + ‖ωk+1 − ω∗‖2

R +
2(1− γ)−

∑m
i=1 δi

γ2ρ
‖λk+1 − λk‖2

− ρ
m∑
i=1

(
1

δi
‖xk+1

i − xki ‖2
ATi Ai

)

= ‖ωk+1 − ω∗‖2
R +

m∑
i=1

‖xk+1
i − xki ‖2

(Pi− ρ
δi
ATi Ai)

+
2− γ −

∑m
i=1 δi

γ2ρ
‖λk+1 − λk‖2

= ‖ωk+1 − ω∗‖2
R + ‖ωk+1 − ωk‖2

Q +
2− γ −

∑m
i=1 δi

γ2ρ
‖λk+1 − λk‖2,

(C.10)
where last term is positive when

∑m
i=1 δi < 2− γ.

Finally, when the condition of Theorem 4.4 holds, i.e. Pi � ρ
δi
ATi Ai, it is easy to verify

that Q � 0 and R � 0. Thus, Lemma C.1 implies that

‖ωk+1 − ω∗‖2
R ≤ ‖ωk − ω∗‖2

R, (C.11)
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meaning that the sequence {‖ωk − ω∗‖2
R} is monotonically non-increasing. Furthermore,

{ωk} is bounded and has at least one convergent subsequence (Bolzano-Weierstrass theorem).
Hence, we complete the proof for Theorem 4.4.

C.2 Proof of Lemma 4.5

i) Similar to (C.3), let us consider the optimality condition for updating each block of xi
at the two successive iterations, the k − 1th and kth iterations, we have

θi(xi)− θi(xki ) + (xi− xki )T
[
−ATi λk−1 + ρATi (Axk−1− b) +Pi(x

k
i − xk−1

i )
]
≥ 0 (C.12)

and

θi(xi)− θi(xk+1
i ) + (xi−xk+1

i )T
[
−ATi λk + ρATi (Axk− b) +Pi(x

k+1
i −xki )

]
≥ 0, (C.13)

for all ω ∈ Ω. By Evaluating these two inequalities as ω = ωk+1 and ω = ωk respectively
and summing them together, we derive that

(∆xk+1
i )T [ATi ∆λk − ρATi A∆xk + Pi(∆x

k
i −∆xk+1

i )] ≥ 0, (C.14)

where ∆ωk+1 := ωk − ωk+1. Then, summing up over all i and rearranging the terms
leads to

〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖2
P − (∆xk)T (P − ρATA)∆xk+1, (C.15)

where

P =

P1 · · · 0
...

. . .
...

0 · · · Pm

 . (C.16)

Since Q � 0, it follows that Px := P − ρATA � 0, we have

2(∆xk)TPx∆x
k+1 ≤ ‖∆xk‖2

Px + ‖∆xk+1‖2
Px (C.17)

by triangular inequality and thus,

2〈A∆xk+1,∆λk〉 ≥ ‖∆xk+1‖2
P+ρATA − ‖∆x

k‖2
Px . (C.18)

Note that ∆λk+1 = ∆λk − γρA∆xk+1, it follows that

1

γρ
(‖∆λk‖2 − ‖∆λk+1‖2) = 2〈A∆xk+1,∆λk〉 − γρ‖A∆xk+1‖2

≥ ‖∆xk+1‖2
(Px+(2−γ)ρATA) − ‖∆x

k‖2
Px .

(C.19)

Hence,

(‖∆xk‖2
Px +

1

γρ
‖∆λk‖2)− (‖∆xk+1‖2

Px +
1

γρ
(‖∆λk+1‖2) ≥ ‖∆xk+1‖2

(2−γ)ρATA ≥ 0.

(C.20)
The assertion i), thus, follows immediately by rearranging terms.
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ii) By Lemma C.1, there exists some η > 0 such that

‖ωk − ω∗‖2
R − ‖ωk+1 − ω∗‖2

R ≥ ‖ωk+1 − ωk‖2
Q ≥ η‖ωk+1 − ωk‖2

W . (C.21)

Summing over all iterations gives that
∑∞

k=1 ‖ωk+1 − ωk‖2
W <∞. On the other hand,

the sequence {‖ωk+1 − ωk‖2
W} is monotonically non-increasing. Thus, by Lemma 4.3,

we have ‖ωk+1 − ωk‖2
W = o(1/k) and conclude that EPCPM is convergent with rate

o(1/k) in a non-ergodic sense.

C.3 Proof of Theorem 4.6

The conditions proposed in Theorem 4.6 are based on the following two technical lemmas.

Lemma C.2. (from [27]) Let F (·) be a closed proper convex function and

uk+1 = arg min
u
{F (u) +

τ

2
‖u− uk‖2}. (C.22)

Then, for all k ≥ 0, we have

F (uk+1)− F (u) ≤ τ

2

(
‖uk − u‖2 − ‖uk+1 − u‖2 − ‖uk+1 − uk‖2

)
, ∀u. (C.23)

Lemma C.3. If the sequences {ωk} and {λk+1
p } are generated from SPCPM, then for all

k ≥ 0, we have

i)

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 +
2

τ
〈λk+1

p − λ∗, Axk+1 − b〉; (C.24)

ii)

‖λk+1 − λ∗‖2 ≤‖λk − λ∗‖2 − {‖λk+1
p − λk+1‖2 + ‖λk+1

p − λk‖2}

+
2

τ
{〈λk+1 − λk+1

p , Axk − b〉+ 〈λ∗ − λk+1, Axk+1 − b〉}.
(C.25)

Proof. Observing that Step 2 of SPCPM is essentially the application of PPA to Lagrangian
function, L(x, λk+1

p ), we can apply Lemma C.2 and evaluate it at x = x∗. Then, we obtain

L(xk+1, λk+1
p )− L(x∗, λk+1

p ) ≤ 2

τ
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2 − ‖xk+1 − xk‖2). (C.26)

On the other hand, since ω∗ is a stationary point for L(x, λ), we also have

L(x∗, λk+1
p )− L(xk+1, λ∗) ≤ 0. (C.27)

Assertion i) holds by summing up the above two inequalities and rearranging terms.
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To prove assertion ii), we start with the PPA interpretation of the dual updates, i.e.
Step 1 and Step 3 of SPCPM are equivalent to solving

λk+1
p = arg min

λ
{−L(xk, λ) +

τ

2
‖λ− λk‖2} (C.28)

λk+1 = arg min
λ
{−L(xk+1, λ) +

τ

2
‖λ− λk‖2} (C.29)

Then, if we apply Lemma C.2 with F (λ) = −L(xk, λ) and F (λ) = −L(xk+1, λ), and further
evaluate the inequalities at λk+1 and λ∗ respectively, it holds that

2

τ
[L(xk, λk+1)− L(xk, λk+1

p )] ≤ ‖λk − λk+1‖2 − ‖λk+1
p − λk+1‖2 − ‖λk+1

p − λk‖2 (C.30)

and

2

τ
[L(xk+1, λ∗)− L(xk+1, λk+1)] ≤ ‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2 − ‖λk+1 − λk‖2. (C.31)

Summing the above two inequalities gives that

2

τ
[L(xk, λk+1)− L(xk, λk+1

p ) + L(xk+1, λ∗)− L(xk+1, λk+1)]

≤‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2 − ‖λk+1
p − λk+1‖2 − ‖λk+1

p − λk‖2.
(C.32)

At the same time, recall operations at Step 1 and Step 3, which leads to

L(xk, λk+1)− L(xk, λk+1
p ) + L(xk+1, λ∗)− L(xk+1, λk+1)

=〈λk+1 − λk+1
p , Axk − b〉+ 〈λ∗ − λk+1, Axk+1 − b〉.

(C.33)

The proof of assertion ii) holds by substituting (C.33) into (C.32) and rearranging terms.

To complete the proof of Theorem 4.6, let us define

∆ = −2

τ
〈λk+1 − λk+1

p , A(xk+1 − xk)〉

=
2

τ
‖A(xk+1 − xk)‖2

≤ 2
(1

τ
‖A‖

)
‖xk+1 − xk‖2,

(C.34)

where the last equation follows by Cauchy–Schwarz inequality. Finally, adding the two
inequalities in Lemma C.3 results in

‖ωk+1 − ω∗‖2 ≤ ‖ωk − ω∗‖2 − ‖xk+1 − xk‖2 − {‖λk+1
p − λk+1‖2 + ‖λk+1

p − λk‖2}+ ∆

≤ ‖ωk − ω∗‖2 −
[
1− 2(

1

τ
‖A‖)2

]
‖xk+1 − xk‖2

− {‖λk+1
p − λk+1‖2 + ‖λk+1

p − λk‖2}.
(C.35)
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Hence, to ensure that SPCPM is convergent, it suffices to have the coefficient

1− 2(
1

τ
‖A‖)2 ≥ 0

⇔ τ ≥
√

2‖A‖.
(C.36)

And in many cases, we have
√

2‖A‖ < maxi{
√
m‖Ai‖}, leading to faster convergence than

parameters chosen according to Theorem 4.4.

C.4 Proof of Theorem 4.7

We first show the following lemma as some intermediate result that can be used to prove
this statement in Theorem 4.7.

Lemma C.4. For any k ≥ 0,

‖ω̂k+1 − ω̃k+1‖ ≤

√√√√β
m∑
i=1

εki
τi
, (C.37)

where β = 2[1 + (γρ‖A‖)2].

Proof. For any k ≥ 0, we define the subproblems for primal updates as

Ψk(xi) = θi(xi)− (λ̂k+1
p )TAixi +

τi
2
‖xi − x̂ki ‖2, ∀i. (C.38)

Then, by the definition of x̃k+1
i , we have 0 ∈ ∂Ψk(x̃

k+1
i ). While by the definition of ε-

optimality, we have
0 ≤ Ψk(x̂

k+1
i )−Ψk(x̃

k+1
i ) ≤ εki , ∀i. (C.39)

Moreover, Ψk(xi) is strongly convex with modulus τi (see [95], Proposition 6). Hence,

Ψk(x̂
k+1
i )−Ψk(x̃

k+1
i ) ≥ τi

2
‖x̂k+1

i − x̃k+1
i ‖2. (C.40)

Therefore,

‖x̂k+1
i − x̃k+1

i ‖2 ≤ 2εki
τi
. (C.41)

Meanwhile, observing Step 3 of Algorithm 3, we have

‖λ̂k+1 − λ̃k+1‖2 = ‖γρA(x̂k+1 − x̃k+1)‖2 ≤ (γρ‖A‖)2‖x̂k+1 − x̃k+1‖2, (C.42)
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by Cauchy–Schwarz inequality. Finally,

‖ω̂k+1 − ω̃k+1‖2 = ‖x̂k+1 − x̃k+1‖2 + ‖λ̂k+1 − λ̃k+1‖2

≤ [1 + (γρ‖A‖)2]
m∑
i=1

‖x̂k+1
i − x̃k+1

i ‖2

≤ 2[1 + (γρ‖A‖)2]
m∑
i=1

εki
τi
.

(C.43)

To obtain the results in Theorem 4.7, we first apply the triangle inequality and get

‖ω̂k+1 − ω∗‖ ≤ ‖ω̂k+1 − ω̃k+1‖+ ‖ω̃k+1 − ω∗‖. (C.44)

On the other hand, since ω̃k+1 can be treated as results from a single iteration of EPCPM
with initial solution ω̂k, it follows from Lemma C.1 that the contraction property holds:

‖ω̃k+1 − ω∗‖ ≤ ‖ω̂k − ω∗‖. (C.45)

On that account, and apply Lemma C.4, we have

‖ω̂k+1 − ω∗‖ ≤ ‖ω̂k+1 − ω̃k+1‖+ ‖ω̂k − ω∗‖

≤

√√√√β
m∑
i=1

εki
τi

+ ‖ω̂k − ω∗‖.
(C.46)

When limk→∞ ε
k
i = 0, i = 1, 2, . . . ,m, it is a matter of course that

lim
k→∞

√√√√β

m∑
i=1

εki
τi

= 0. (C.47)

Henceforth, inequality (C.46) implies that sequence {ω̂k} is bounded, and the existence of

lim
k→∞
‖ω̂k+1 − ω∗‖ = µ <∞. (C.48)

Furthermore, it is also implied by Lemma C.4 that

lim
k→∞
‖ω̂k+1 − ω̃k+1‖ = 0, (C.49)

and thus,
lim
k→∞
‖ω̃k+1 − ω∗‖ = µ <∞. (C.50)

Finally, following exactly the same argument as [27] (we omit the duplication here), it can
be seen that sequence {ω̃k} has a unique limit point, which is a solution to problem (P ).
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[11] Dimitris Bertsimas and Aurélie Thiele. A data-driven approach to newsvendor prob-
lems. Tech. rep. Technical report, Massechusetts Institute of Technology, Cambridge,
MA, 2005.



BIBLIOGRAPHY 89

[12] Anna-Lena Beutel and Stefan Minner. “Safety stock planning under causal demand
forecasting”. In: International Journal of Production Economics 140.2 (2012), pp. 637–
645.

[13] Arnab Bisi, Karanjit Kalsi, and Golnaz Abdollahian. “A non-parametric adaptive
algorithm for the censored newsvendor problem”. In: IIE Transactions 47.1 (2015),
pp. 15–34.

[14] Stephen Boyd et al. “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers”. In: Foundations and Trends R© in Machine
Learning 3.1 (2011), pp. 1–122.

[15] Apostolos N Burnetas and Craig E Smith. “Adaptive ordering and pricing for perish-
able products”. In: Operations Research 48.3 (2000), pp. 436–443.

[16] Xingju Cai et al. “A relaxed customized proximal point algorithm for separable convex
programming”. In: Optimization Online (2011).

[17] A Colin Cameron and Pravin K Trivedi. Microeconometrics: methods and applications.
Cambridge university press, 2005.

[18] Alex J Cannon. “Quantile regression neural networks: Implementation in R and ap-
plication to precipitation downscaling”. In: Computers & Geosciences 37.9 (2011),
pp. 1277–1284.

[19] Carla Cardinali. “Observation influence diagnostic of a data assimilation system”. In:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II).
Springer, 2013, pp. 89–110.

[20] Emilio Carrizosa, Alba V Olivares-Nadal, and Pepa Ramı́rez-Cobo. “Robust newsven-
dor problem with autoregressive demand”. In: Computers & Operations Research 68
(2016), pp. 123–133.

[21] Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for con-
vex problems with applications to imaging”. In: Journal of mathematical imaging and
vision 40.1 (2011), pp. 120–145.

[22] Xiaokai Chang et al. “Convergent prediction–correction-based ADMM for multi-block
separable convex programming”. In: Journal of Computational and Applied Mathe-
matics 335 (2018), pp. 270–288.

[23] Miantao Chao and Caozong Cheng. “A note on the convergence of alternating proxi-
mal gradient method”. In: Applied Mathematics and Computation 228 (2014), pp. 258–
263.

[24] Caihua Chen, Yuan Shen, and Yanfei You. “On the convergence analysis of the alter-
nating direction method of multipliers with three blocks”. In: Abstract and Applied
Analysis. Vol. 2013. Hindawi. 2013.



BIBLIOGRAPHY 90

[25] Caihua Chen et al. “The direct extension of ADMM for multi-block convex minimiza-
tion problems is not necessarily convergent”. In: Mathematical Programming 155.1-2
(2016), pp. 57–79.

[26] Colin Chen. “A finite smoothing algorithm for quantile regression”. In: Journal of
Computational and Graphical Statistics 16.1 (2007), pp. 136–164.

[27] Gong Chen and Marc Teboulle. “A proximal-based decomposition method for convex
minimization problems”. In: Mathematical Programming 64.1-3 (1994), pp. 81–101.

[28] Xiaohong Chen, Roger Koenker, and Zhijie Xiao. “Copula-based nonlinear quantile
autoregression”. In: The Econometrics Journal 12.s1 (2009), S50–S67.

[29] Carroll Croarkin, Paul Tobias, and Chelli Zey. Engineering statistics handbook. NIST
iTL, 2002.

[30] Wei Deng et al. “Parallel multi-block ADMM with O (1/k) convergence”. In: Journal
of Scientific Computing 71.2 (2017), pp. 712–736.

[31] Lingxiu Dong and Hau L Lee. “Optimal policies and approximations for a serial
multiechelon inventory system with time-correlated demand”. In: Operations Research
51.6 (2003), pp. 969–980.

[32] Jonathan Eckstein and Dimitri P Bertsekas. “On the Douglas—Rachford splitting
method and the proximal point algorithm for maximal monotone operators”. In:
Mathematical Programming 55.1-3 (1992), pp. 293–318.

[33] Jonathan Eckstein and W Yao. “Augmented Lagrangian and alternating direction
methods for convex optimization: A tutorial and some illustrative computational re-
sults”. In: RUTCOR Research Reports 32 (2012), p. 3.

[34] Peyman Mohajerin Esfahani and Daniel Kuhn. “Data-driven distributionally robust
optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations”. In: Mathematical Programming 171.1-2 (2018), pp. 115–166.

[35] Hadi Fanaee-T and Joao Gama. “Event labeling combining ensemble detectors and
background knowledge”. In: Progress in Artificial Intelligence 2.2-3 (2014), pp. 113–
127.

[36] Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi. “Analytics for
an online retailer: Demand forecasting and price optimization”. In: Manufacturing &
Service Operations Management 18.1 (2015), pp. 69–88.

[37] Nicolas Fournier and Arnaud Guillin. “On the rate of convergence in Wasserstein
distance of the empirical measure”. In: Probability Theory and Related Fields 162.3-4
(2015), pp. 707–738.

[38] Xiaoling Fu et al. Block-wise alternating direction method of multipliers with Gaussian
back substitution for multiple-block convex programming. Tech. rep. Technical Report,
2014.



BIBLIOGRAPHY 91

[39] Daniel Gabay and Bertrand Mercier. “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation”. In: Computers & Mathematics
with Applications 2.1 (1976), pp. 17–40.

[40] Rui Gao and Anton J Kleywegt. “Distributionally robust stochastic optimization with
Wasserstein distance”. In: arXiv preprint arXiv:1604.02199 (2016).
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