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Abstract 
Recall of objects in natural scenes can be influenced not only 
by episodic but also by semantic memory. To model the 
statistical regularities that might be encoded in semantic 
memory, we applied a topic model to a large database of 
labeled images. We then incorporated the learned topics in a 
dual route topic model for recall that explains how and why 
episodic memories are combined with semantic memories. 
The dual route model was applied to an empirical study in 
which people recall objects from scenes under varying 
amounts of study time. The dual route model explains how 
the trade-off between episodic and semantic memory is 
affected by study time, output position, and also congruity of 
the object with the scene context.  

Keywords: Episodic Memory; Semantic Memory; Natural 
Scenes; Bayesian models; Reconstructive memory 

Introduction 
Semantic knowledge can exert strong influences on 

episodic recall. In the verbal domain, the use of highly 
related words on a study list can lead to intrusions of related 
words in free recall (Roediger & McDermott, 1995). 
Similarly, expectations about objects in scenes can lead to 
recall of objects that were not present in the scene. For 
example, people can recall seeing books in an office where 
there were no books present (Brewer & Treyens, 1981). 
These intrusions demonstrate the influence of semantic 
knowledge on recall. Some researchers have viewed such 
intrusions as demonstrations of shortcomings of the memory 
system. However, semantic knowledge can also serve as an 
aid to episodic memory and lead to improvements in recall 
performance (e.g. Hemmer & Steyvers, 2009; Konkle & 
Oliva, 2007; Huttenlocher et al. 1991).  

Dual retrieval accounts of memory propose that 
reconstruction from memory requires accessing either the 
verbatim memory trace or semantic information relevant to 
the event (Brainerd et al., 2002). The verbatim – or episodic 
memory – trace is a representation close to the original 
event, while the semantic information is an abstraction of 
the event, often referred to as ‘gist’ or ‘schema’. Previous 
dual route models have not explained in detail how the 
semantic information is represented (or extracted from the 
environment) and have not fully described the detailed 
mechanisms for the interaction between episodic and 
semantic information. 

In this research, we build on the framework of rational 
memory models that assume that the memory system is 
exploiting environmental regularities when recalling 
information about past events (Anderson, 1990; Steyvers & 
Griffiths, 2008). We develop a dual route memory model 
and apply it to the problem of recalling objects from natural 
scenes. We assume that an observer is presented with a 
scene during study and is instructed to retrieve from 
memory objects that occurred in the scene. The goal for the 
observer is to reconstruct the objects from the scene 
optimally combining the available information. We assume 
that the available information is based on noisy episodic 
memories and also on encoding based on the semantic 
context. Previous research has shown that people are 
sensitive to the contextual information in scenes and can 
quickly extract a high-level semantic representation of a 
scene (Potter et al., 2002).  

In this paper, we will first present an empirical study on 
scene recall and investigate how recall accuracy varies as a 
function of study time and what the accuracy is if there is no 
episodic information at all and recall is based on semantic 
information only. The experimental data allow us to assess 
how people trade off between episodic and semantic 
memory. We then present a topic modeling analysis 
(Griffiths & Steyvers, 2004; Griffiths, Steyvers & 
Tenenbaum, 2007) for a large database of labeled images. 
The extracted topics serve as approximations to the kinds of 
statistical regularities that people might have encoded in 
semantic memory. Lastly, we will show how a dual route 
topic model (Steyvers & Griffiths, 2008) that mixes 
episodic and semantic information during encoding can 
account for the empirical findings. We also show how the 
model can explain the Von Restorff effect, where people 
have better memory for objects that are incongruous with 
the scene context.  

Empirical Study on Scene Recall 
We conducted a series of behavioral experiments using 

natural scenes such as kitchens and offices to quantify the 
relative contribution of semantic knowledge on recall. In a 
memory experiment, we showed images of natural scenes 
for varying amount of study time. We expected that by 
decreasing the amount of study time, recall would be based 
more on semantic memory and would lead to a larger 
number of errors. To assess the prior knowledge people 
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have about certain types of scenes, we also conducted a 
norming study where we asked participants to name the 
objects they expected to appear in certain types of natural 
scenes, without actually showing them any image. Finally, 
we ran a perception experiment, using the same images as 
used in the memory experiment, where participants were 
asked to name all the objects that they perceived in the 
image. This perception experiment allowed us to assess the 
ground truth of which objects were perceived to be present 
in each image, which can be used to score the accuracy of 
responses in the memory experiment. 

Methods 
Participants were undergraduate students at the University 

of California, Irvine. There were 22 participants in the prior 
knowledge experiment, 25 participants in the perception 
experiment, and 49 participants in the memory experiment. 
Materials. We sampled 10 images from the LabelMe 
database (Russel & Torralba, 2008) where we chose 2 
images each of 5 different scene types. The scene types 
correspond to kitchen, dining, office, hotel room, and urban 
scenes.   
Prior Knowledge Experiment. To assess prior (semantic) 
knowledge about specific scenes, we asked participants to 
list objects that they would expect to occur in a given scene 
type (which was described by the verbal label). Participants 
entered their responses on a computer screen and were 
required to make responses for a minimum of 60 seconds 
before continuing to the next question.  
Perception Experiment. In this experiment, we assessed 
the ground truth for the occurrence of objects in each of the 
10 images. Materials were presented on two computer 
screens. The image was presented on the left screen while 

response instructions and a response box were presented on 
the right screen. Participants were asked to list the objects 
present in each image and were required to make responses 
for a minimum of 6o seconds. They received feedback 
based on matching their responses to those of previous 
participants. Images were presented in random order 
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Figure 1. Cumulative accuracy as a function of study time and 
output position. The figure also shows the simulated 
performance when one treats the responses from the prior 
knowledge experiment as responses in the memory experiment  
 

Memory Experiment. For the memory experiment, 
participants studied an image for either 2 or 10 seconds. 
After completing a short distracter task, participants were 
asked to list all the objects they recalled seeing in the 
presented image. Study images were presented in random 
order. Each participant only saw 5 images, one from each 
scene type, to avoid carryover effects where the memory 
from one scene type affects recall of another image of the 
same type. 
Response Normalization. Responses for all experiments 
were corrected for spelling, plurals, and qualifiers (e.g., 
numbers, color, size and location). For example, “chair” and 
“chairs” were mapped to the single entry “chair”, and 
“silver car” was mapped as “car”.  

Results and Discussion 
To measure performance in the memory experiment, we 

checked whether a given recalled object was part of any of 
the responses that were given by participants in the 
perception experiment. If it was, it was scored as a correct 
response. If it was not, we manually checked whether the 
recalled object could still be considered as a description of 
an object that was part of the image. Only if it was not, the 
response was scored as incorrect. We calculated cumulative 
accuracy in the memory experiment as a function of the 
output position. In other words, we calculated the mean 
accuracy for the first item recalled, first two items recalled, 
etc.  Figure 1 shows the cumulative accuracy as a function 
of output position and study time. Overall, cumulative 
accuracy decreases as a function of output position. 
Therefore, more intrusions are made later in recall, a finding 
compatible with results from the verbal memory domain 
(Roediger & McDermott, 1995). Cumulative accuracy was 
highest for the short study time condition for the first five 
output positions. After the sixth output position, the 
cumulative accuracy was best for the long study time 
conditions. Therefore, the somewhat counterintuitive 
finding here is that shorter study times do not necessarily 
lead to worse performance – the first few items remembered 
are more likely to be correct compared to a condition with 
longer study times (however, the total number of correct 
responses is greater with longer study times; for 2 and 10 
second conditions, there were an average of 7 and 9 correct 
responses respectively per subjects per image).  

We can explain this finding as an effect of the trade-off 
between episodic memory and semantic knowledge. For 
short study times, only a few objects might have been 
observed. Some of these objects can be encoded 
episodically without running into interference or capacity 
constraints. These few objects can subsequently be output 
with fairly high accuracy. On the other hand, if a scene is 
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studied for a longer period, more objects overall are noticed 
and will need to be encoded. This longer list might not be 
encoded entirely by episodic means and part of the encoding 
might be based on generalized semantic knowledge. This 
will lead to lower accuracy for the first few items recalled 
but to higher accuracy at later output positions because of 
the enhanced semantic encoding.  

Figure 1 also shows the performance one can expect from 
prior knowledge in the absence of any episodic information. 
This is the case where the image was not studied at all 
(corresponding to zero second study time). Even though we 
did not actually run this in the memory experiment, we can 
consider the responses from the prior knowledge experiment 
as reasonable guesses to the objects of an image in a 
particular scene. We ran an analysis where we treated the 
prior knowledge responses for each scene type as memory 
responses for the image (for the same type), preserving the 
order of the responses. Figure 1 shows that the performance 
of this condition is fairly high. The first item guessed in the 
prior knowledge experiment leads to 85% accuracy in the 
memory experiment, even though the response is not 
associated with any episodic knowledge of the task. For 
later responses, accuracy does decrease but cumulative 
accuracy is still higher than 55% even after guessing 16 
items. The difference between the performance from prior 
knowledge and actual recall reveals the contribution of 
episodic memory, which might be smaller than one might 
expect. These results demonstrate that general knowledge of 
scenes can greatly contribute to the accuracy of recalling 
objects from natural scenes. 

A Model for Object Recall in Natural Scenes 
One conclusion from our empirical study is that semantic 

knowledge can lead to good baseline performance in scene 
memory. When recalling objects from a kitchen that has 
never been seen before, recall can be reasonably good if the 
guesses are based on general knowledge of kitchen scenes 
(e.g., guesses such as “refrigerator”, and “sink”). Of course, 
performance improves when actual episodic memories of 
the particular image can be retrieved. This raises the 
question of how the interaction between episodic and 
semantic memory can be modeled. We will first discuss a 
topic model for scenes that approximates the semantic 
knowledge people might have about objects in scenes and 
then develop a dual route topic model that integrates both 
episodic as well as semantic memory information.  

A Topic Model for Scenes 
Probabilistic topic models have been developed as a 

method to automatically learn semantic representations for 
documents by analyzing the statistical relationships between 
words and the documents they occur in (e.g. Griffiths & 
Steyvers, 2004; Griffiths, Steyvers & Tenenbaum, 2007). In 
the topic model, each document is expressed as a mixture of 
topics that can be thought of as the gist of a document, and 
each topic represents a probability distribution over words.  
Here, we apply the topic model to a subset of 13,572 images 

of the LabelMe database (Russel & Torralba, 2008). These 
images were annotated by volunteers resulting in a total of 
87,152 labels and 3782 unique types. The subset contains 
images of natural scenes, such as urban street scenes and 
indoor scenes of kitchens and offices.  
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Figure 2. The graphical model representation for A) the standard 
topic model and B) the dual route topic model. 
 

We treat each scene from the database as a mixture of topics 
and each topic as a distribution over image objects. This 
specifies a generative model in which objects in a scene are 
selected by first sampling a topic from the topic distribution 
associated with the scene and then sampling an object from 
the topic. Specifically, the conditional distribution of an 
object o in a scene s is given by, 

               (1) ( ) ( ) ( stzPtzoPsoP
T

t

|||
1

===∑
=

)

where p(o| z=t) is the multinomial distribution over objects 
given topic t and indicates which objects are important to a 
topic, and p(z=t| s) is the multinomial distribution over 
topics given scene s and indicates which topics are 
important to a particular scene. 
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Figure 3. Model predictions for three scene types: kitchen, 
office and urban. The bar graphs show the distribution over 50 
topics for a scene with topic indices for the two most likely 
topics. The rank-ordered object distributions corresponding to 
these topics are shown below. Objects labeled in bold were 
part of the original image annotations. 
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Figure 2, panel A shows a graphical model representation 
of the topic model. Shaded nodes represent observed 
variables while nodes without shading represent unobserved 
variables. The arrows indicate the conditional dependencies 
between the variables, and the plates show the replications 
of sampling steps. There are S scenes and each scene has Ns 
objects. The variable θ is the scene-topic multinomial and φ 
is the topic-object multinomial. The priors on the 
multinomials are Dirichlet distributed with hyperparameters 
α and β. We treat α and β as constants in the model (we set 
α = 0.1 and β = 0.01).  

We applied the topic model with T=50 topics to the 
LabelMe image database and used Gibbs sampling to infer 
both p(o| z=t) and p(z=t| s).  Several examples of topic 
distributions are illustrated in figure 3. The figure shows 
images from three different scene types: kitchen, office, and 
urban with the inferred topic distribution for that image. For 
example, topic 12 is the most likely topic for the particular 
kitchen image and topic 27 is the most likely topic for the 
particular office image. Some of the likely topics are 
illustrated in at the bottom of figure 3. This shows the list of 
most likely objects associated with each topic. Overall, the 
model shows that the topics for each image qualitatively 
capture the semantic context of the image. The likely 
objects in the topics associated with scenes are objects that 
can reasonably be found in the respective scenes, and seem 
o describe the ‘gist’ of the scene.  t 

A Dual Route Model for Object Recall 
The topic model itself cannot be a complete model for 

reconstructive memory. The topic distribution for a scene 
provides a generalized representation for the occurrence of 
objects in scenes (e.g., offices), which is useful to 
characterize the “gist” of a scene. However, the distribution 
over topics is insufficient to represent the exact set of 
objects present in an image. In human memory, recall can 
be quite accurate, if given enough study time. Therefore, to 
give a more complete account of human memory, we need 
to expand the topic model with an additional component that 
allows the model to reconstruct the specific objects present 
in a scene.   

 We will now describe an extension to the standard topic 
model called the dual route topic model introduced by 
Steyvers and Griffith (2008). We will apply the model to the 
problem of scene recall. In the model, recall of objects in a 
scene is a result of two processes: episodic recall and recall 
based on the semantic context. The semantic information is 
an abstraction based on the statistical regularities of the 
collection of scenes. For each image, the semantic context is 
encoded by a probability distribution over topics. The 
episodic information is based on a noisy encoding of the 
actual list of objects present in the image to be remembered. 
In the model, we will implement episodic noise by a simple 
sampling process. We assume that the episodic sampling 
process is based on a multinomial distribution over objects 
with a symmetric Dirichlet prior, 

| ~ Mult( )
~ Dirichlet( )E

o ψ ψ

ψ β
 

where  βE is the hyperparameter that controls the amount of 
smoothing. Note that this process is not just defined over the 
observed objects in the image, but over all object types (i.e., 
the object vocabulary). In this process, it is possible to give 
high probability to a variety of objects, making them likely 
to be retrieved from the episodic route. However, with the 
Dirichlet prior, a capacity constraint can be built in. With 
small values of βE, it is unlikely, a priori, that the probability 
over objects is distributed over a large number of objects, 
therefore encouraging a sparse representation of objects. 
Therefore, the smoothing parameter determines how much 
of the retrieval process focuses on the observed objects 
versus other objects in the vocabulary.  

               
                (2) 
                (3) 

If recall is based strictly on this episodic component, 
performance should be accurate, at least for a subset of 
items on the list, but it could potentially fail to fully retrieve 
the whole list. If recall is based strictly on semantic 
information performance might not be as accurate but the 
topic distribution allows retrieval of a larger number of 
items. The dual route topic model allows recall to be a 
mixture of these two extremes. The weighting is such that 
recall is neither too specific nor too general. In the model a 
mixing process determines if an object is generated using 
the episodic route or using semantic information. An 
indicator variable x, acts as a switch such that if x=1, the 
object is sampled from the semantic route, and if x=0, the 
object is sampled from the episodic route. We assume that 
the probability of a route assignment is distributed Bernoulli 
with a symmetric Beta prior: 

| ~ Bernoulli( )
~ Beta( )

x λ λ
λ γ

 

Therefore, the conditional distribution of an object o 
given a scene s, is given by:  

( ) ( ) ( ) ( ) ( ) ( )sopsxpstzptzopsxpsop
T

t
|'|0|||1|

1
=+==== ∑

=

  

where the first term is the distribution over objects predicted 
by the topic model weighted by the probability of a route 
assignment in favor of a semantic encoding. The second 
term is the object distribution p’(o| s), predicted by the 
episodic route weighted by the probability of a route 
assignment in favor of an episodic encoding.  

Note that this model specifies a generative procedure for 
producing objects in a given scene. Figure 2B shows a 
graphical representation of the complete model. Note that 
we assume that the distribution over objects in each topic, 
φS, is observed and estimated by the topic model in a prior 
learning phase. 

The main use of the model is as an encoding model where 
the goal is to infer the encoding parameters conditional on 
the observed set of objects in an image. In other words, the 
goal is to find an encoding such that during retrieval, the 
model is likely to reconstruct the observed set of objects in 
an image, taking into account the probabilistic constraints of 
the model – the built in capacity constraint for the episodic 

               
                (4) 
                (5) 

               
               (6)
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route and the overgeneralization of the semantic route. 
Because the model assumes that each object originates from 
a single memory route, the goal of encoding is to infer 
which objects can be encoded via the episodic route and 
which objects can be reconstructed by a probability 
distribution over topics (specific for the image studied).  

The latent variables z and x can be inferred using Gibbs 
sampling (the remaining latent variables can be integrated 
out). The topic and route assignment for the i-th object can 
be jointly determined conditional on all other assignments: 
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where M is the number of unique objects labels in the 
LabelMe database, n0,-i is the number of time the episodic 
route is assigned, n1,-i is the number of times the semantic 
route is assigned, and no,-i is the number of times a specific 
object o is assigned to the episodic route. The subscript –i 
indicates that the assignment for the i-th object is not 
included in the counts.  We treated the hyperparameters α, 
βE and γ as constants in the model (we set α= 0.1, βE= 
0.000001, and γ=0.3). 

We applied the dual route topic model to a small number 
of images from the LabelMe image set. We selected a set of 
10 images to correspond with the 10 images used in the 
memory experiment. The images used in the simulation 
were selected based on having a relatively large number of 
annotations (30-60).  

Up to this point, the model specifies a retrieval 
probability  for each object i. Ideally, one 
would recall objects from this distribution strictly in order 
of decreasing probability. However, we assume that people 
cannot determine the strict order of probabilities. Therefore, 
we incorporate noise in the recall sampling process by 
letting the actual recall probability be based on a soft-max 
sampling process: 

( | )retrieve
ip p o=

            
1 1exp( ) exp( )recall retrieve retrieve

i i j
p p p

τ τ
= ∑ j

         (8)  

where τ is the parameter that controls the sampling noise. 
We set τ =0.008. In the experiment, participants were not 
allowed to repeat previous answers. To simulate this with 
the model, we sampled objects without replacement from 
the recall distribution. 

To simulate the effect of study time we selected two 
subsets of the annotation word list for the images: a set of 
80% of the annotations and a set of 20 % of the annotations. 
This corresponds to the idea that when studying an image 
for a restricted period of time not all the objects in the image 
are noticed. Subsets were created by drawing a random 
sample of objects from the full object set. Figure 4 shows 
the model predictions plotted in the same way as the results 
of our empirical study. The results show a qualitative fit to 
the experimental data. Objects from the smaller subset, 
corresponding to short study times, have initial higher 

accuracy, while a larger subset has initial lower accuracy 
followed by a cross-over. This models the somewhat 
counter-intuitive finding of our empirical study that the first 
few objects recalled for short study times are more likely to 
be correct than for longer study times. The model explains 
this finding because of different weightings of the two 
encoding routes, episodic and semantic.  If a scene is 
studied for a longer period of time more objects are noticed 
and encoded, but it is more difficult to accurately store the 
longer list of object in memory because of the sparsity 
constraint in the episodic memory route. This leads to a 
greater number of objects encoded by the semantic route. 
While this route cannot fully reconstruct the objects present 
in the image, it is able to “guess” a larger number of objects, 
leading to relatively higher cumulative accuracy for later 
output positions. In contrast, seeing a scene for a shorter 
period of time, leads one to notice fewer objects but these 
objects can be encoded more effectively by the episodic 
route. However, the semantic context is not as well encoded 
in this case, leading to poorer performance for later output 
positions. Figure 5 show the probabilities of route 
assignments for three conditions: full set of objects, and the 
80% and 20% subset conditions corresponding to long and 
short study times. Smaller word sets lead to greater episodic 
contributions, while larger word sets lead to almost equal 
contributions of episodic and semantic encoding routes.  
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Figure 4: Model predictions: cumulative accuracy by output 
position when 80% and 20% of the objects have been 
perceptually encoded. The two conditions simulate the effect of 
long and short study times respectively.  

    (7)

The relative contribution of episodic and semantic 
information in recall can also account for other standard 
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Figure 5: Model predictions for the full response set and for 
two sub sets of 80% and 20% of responses respectively. 
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memory phenomena, such as the semantic isolation effect 
(von Restorff, 1933). An object is more likely to be recalled 
when it is part of a list where it violates the semantic context 
than when it is presented in a list where it is congruent with 
the semantic context. This finding can be explained by the 
dual route model because the route assignment to episodic 
and semantic memory routes is dependent on the context. 
Objects consistent with a scene (e.g., typical kitchen objects 
in a kitchen) can be explained by the semantic route, 
whereas an object that is not part of the semantic context of 
the scene (e.g., a ‘tree’ in a kitchen) can be explained by the 
episodic route assignment. 

To simulate the semantic isolation effect we created an 
artificial image where we manually determined the presence 
of objects. We selected an object that had an average recall 
probability within its semantic context – a tree in an urban 
scene (these are the same 10 scenes used in the previous two 
simulations). Figure 6 shows that ‘a tree in an urban scene’ 
is recalled with a slightly lower probability than the mean 
recall probability of all other objects in the scene. We then 
placed the ‘tree’ into a semantic context where it did not fit 
(e.g., a kitchen) by randomly removing an annotation in 
each of 10 kitchen scenes and replacing that annotation with 
‘tree’. The urban and kitchen scenes were equated for the 
number of annotations. We set α= 0.1, βV= 0.01, and γ=0.3 

Figure 6 shows the recall probability for the target object 
‘tree’ and mean recall for all other objects on the list. Recall 
was higher for the target word than for the other objects. 
This is consistent with the finding for semantic isolation 
effects, as well as the idea that objects incongruent with the 
semantic context of a scene are recalled using episodic 
information. 

Conclusion 
We have given an account of reconstructive memory, 

where reconstruction of objects in a scene is based on a mix 
of episodic memory traces and semantic context. Short 
study times lead to recall guided by episodic memory, 
whereas recall after longer study times is more influenced 
by semantic information. This counter-intuitive notion that 
longer study times lead to less reliance on episodic memory, 
is consistent with our empirical data showing that longer 

study times lead to an initially lower performance followed 
by a cross-over in accuracy. Given a dual route topic model 
account of reconstructive memory, where recall probability 
is given by the ability of an encoding route – episodic or 
semantic - to explain the occurrence of an object in a scene, 
this is to be expected. The model can also account for 
semantic isolation effects by favoring episodic encoding for 
objects that are not consistent with the semantic context of a 
scene. 
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Figure 6: Model predictions an object that is either 
incongruent (a tree in a kitchen) or congruent (a tree in an 
urban scene).  
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