
UC Irvine
ICS Technical Reports

Title
Design exploration for pipelined IDCT

Permalink
https://escholarship.org/uc/item/22c156f2

Authors
Gajski, Daniel D.
Grun, Peter
Pan, Wenwei
et al.

Publication Date
1996-09-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22c156f2
https://escholarship.org/uc/item/22c156f2#author
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protectecl
by Copyright Law
(Title 17 U.S.C.)

Design Exploration for Pipelined IDCT

Daniel D. Gajski
Peter Grun

Wenwei Pan

Smita Bakshi

Technical Report #96-41
September 12, 1996

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

(714) 824-7063

gajski@ics.uci.edu
pgrun@ics .uci.edu
wpan @ics.uci.edu

sbakshi@ics.uci.edu

Abstract

R

ASICs for video compression systems have stringent timing requirements. For example,
according to the MPEG standard, the throughput of the MPEG decoder is 30 frames per second.
This performance cannot be achieved without efficient pipelining. In this report, we explore the
pipelined designs for the Inverse Discrete Cosine Transform (IDCT) which is a critical part of the
MPEG decoder. We also transform the algorithm to minimize the memory requirement. We have
implemented both the original and memory-optimized algorithms at the RT level, using our realis
tic library.

airlT ;ooiloM

b9!DohjiLi 9d Yi^rn
wbJ IrlQhYqoO vd
{.0.8.U \r oiJiT)

Contents

1 Introduction 3

2 Example Description 3
3 Library Components 4
4 Memory Optimization 5
5 Pipelining Exploration 6

5.1 Pipelining Levels 7
5.1.1 Original Algorithm 7

5.1.1.1 Process Pipelining 7
5.1.1.2 Loop Body Pipelining 7
5.1.1.3 Functional Unit Pipelining 8

5.1.2 Memory-Optimized Algorithm 8
5.1.2.1 First Loop Body Pipelining 9
5.1.2.2 Second Loop Body Pipelining 9
5.1.2.3 Functional Unit Pipelining 9

5.2. Performance Comparison 9
6 VHDL Model Hierarchy 10
7 Design Example 10

7.1 Loop Body Datapath 12
7.2 IDCT Block Diagram 12

8 Conclusions 13

9 References 13

10 Appendix 13
10.1 IDCT System 13
10.2 IDCT with RAM 14

10.3 IDCT Computation 15

List of Figures

1 IDCT algorithm 4
2 Memory optimization technique 6
3 Process pipelining 7
4 Loop pipelining 7
5 Functional unit pipelining .8
6 First loop pipelining 8
7 Second loop pipelining 9
8 Functional unit pipelining 9
9 Pipelining exploration 10
10 VHDL description hierarchy. 11
11 Loop body datapath 12
12 Block diagram of IDCT chip 12

Listoflbbles

1 Components library 4
2 Original algorithm pipelining 9
3 Optimized algorithm pipelining 10

Design Exploration for Pipelined IDCT

Daniel D. Gajski, Peter Grun, Wenwei Pan, Smita Bakshi
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

Abstract

ASICs for video compression systems have
stringent timing requirements. For example,
according to the MPEG standard, the through
put of the MPEG decoder is 30 frames per sec
ond. This performance cannot be achieved
without efficient pipelining. In this report, we
explore the pipelined designs for the Inverse
Discrete Cosine Transform (IDCT) which is a
critical part of the MPEG decoder. We also
transform the algorithm to minimize the mem
ory requirement. We have implemented both
the original and memory-optimized algorithms
at the RT level, using our realistic library.

1 Introduction

In this report, we give a detailed example
showing how to design pipelined digital sys
tems from behavioral description. The exam
ple is a custom ASIC for Inverse Discrete
Cosine Transform (IDCT), which is used in the
MPEG decoder. Details of the design as well
as the source listing of VHDL code are given
in the following sections.

According to [5], the MPEG chip has to
decode 30 frames/second, where one frame
consists of 720 X480 pixels. A macroblock is
said to cover 16 X 16 pixels, hence there are
1350 macroblocks/frame. Since one macrob

lock contains 6 blocks, we can derive the
throughput of 4115.2 ns/block, where a block
is the basic data unit computed in IDCT.
Keeping this in mind, we give designs for two
different algorithms : the first one is an original
algorithm consisting of two loops, the second
one is a transformed algorithm in which the
two loops in the first algorithm are merged

aiming at memory size optimization. By pipe
lining the designs for these two different algo
rithms in different ways, we obtain a variety of
cost/performance trade-offs.

Section 2 presents the specification of the
IDCT example, section 3 describes the library
components needed. In section 4 we show the
memory optimization, and in section 5 we
present the pipelining exploration, by compar
ing several design alternatives. After the con
clusions in section 6, in the appendix we give
the VHDL code for our fastest pipelined
designs.

2 Example Description

IDCT is often a critical part in both still and
motion picture compression. It takes as input
an N XN image block, and creates an output
matrix which is subsequently used in the next
stages of the computation.

The definition of IDCT for a block of N X N

image is:

0[u,v] = — /[m.n] cos
(2m + \)uK

(2n +1) vJt

2N

where:

u, V = discrete frequency variables
0<u,v<N- 1.
I[m,n] = input, representing the gray level of a
pixel at position (m,n) of the N X N image
0<m,n<N-\.
0[u,v] = output, representing the coefficient of
point(u,v) in spatial frequency domain.

The mathematical definition for IDCT can be

thought of as a pair of matrix multiplications. I
is the input matrix, COS is a coefficient matrix,
and O is the output matrix.

No
——Ck=0>——

Suni;sl(iJ()*COS(j.k) Sum:sSuim-I(i.k)*COS(j.k)

Tempdj) ;s Sum

.»< |Sum:=COS(i,k)"Temp(kg) Sum:=Sum+COS(i.k)*Temp<kj)

O(i.j) :s Sum I

I i I

Yes

Figure 1; flow graph for IDCT algorithm.

In the floating point domain, we define a coef
ficients matrix C as:

I i2n+l)uKC[«.v] =-cos^^

Based on C, we define the integer coefficients
matrix COS as:

COS = roundifactor * C)

and COS^ as its transposed matrix.

Let I be the N XN input block of image, and O
be the output N XN matrix. Then,

O = COS XIX cos'^
Or,

Temp = IX COS^
O = COS XTemp

In the MPEG standard, N is 8.

Figure 1 Shows the flow graph of the IDCT
algorithm.

3 Library Components

During design space exploration, we use dif
ferent components to implement the operations
and storage elements from the IDCT algo
rithm, to obtain a variety of cost/performance
trade-offs. In Table 1 we show the component
library used.

No Component
Delay
(ns)

Cost

(trans.)

1 16 bit selector 0.4 224

2 32 bit selector 0.4 448

3 16 bit CLA

adder

2.1 1074

1
32 bit CLA

adder

2.9 2148

Delay
(ns)

Cost

(trans.)

11220

4210

For the pipelined components, the delay repre
sents the delay of the longest stage. For the
storage components it represents the average
between the reading and writing time.

In column four we show the cost of each com

ponent. We use the same estimation with [3]
for the basic gates {nand, nor, inverter), which
we use subsequently in the computation of the
cost of the rest of components, in a bottom-up
fashion.

Component

8 bit booth

multiplier

16 bit booth

multiplier

8 bit booth

multiplier
(2 stage pipe)

16 bit booth

multiplier
(2 stage pipe)

8 bit booth

multiplier

12624 4 Memory Optimization

(4 stage pipe)

10 16 bit booth

multiplier
(4 stage pipe)

3.5 15036

11 8 bit register 0.4 256

12 9 bit register 0.4 272

13 16 bit register 0.4 512

14 32 bit register 0.4 1024

15 9 bit counter 2.5 414

16 64X16 RAM 3.5 6144

17 64x8 ROM 3.5 2048

Table 1: Components library.

The components used in our design are from
[3]. Due to technology improvement [6], the
delay of an inverter is 0.1 ns which is 10% of
the nominal delay of 1 ns of the inverter from
[3]. Therefore, we scaled down the delays for
all the components by a factor of 10. In col
umn three we show the delays of the compo
nents after this consideration. We use the

worse case delays for single signal change
from any input to any output.

As previously mentioned, the IDCT algorithm
consists of two consecutive matrix multiplica
tions. A new input sample of 64 bytes arrives
every 4115 ns. The input is stored in a 64x8
input RAM. After computation, the output is
stored in a 64x8 output RAM. Our goal is:
given a component library, to design an IDCT
chip which has the lowest area, while still sat
isfying the time constraint.

Experiments have shown that in most video
and speech processing applications, more than
50% of the chip area is occupied by memory
units [4]. Therefore, by minimizing the storage
requirements, we can obtain more area
improvement than by other datapath compo
nents optimization. Hence, to drasticdly
decrease the cost of the chip, we need to start
by optimizing the memory usage.

Starting from the initial behavioral description
of the IDCT (see appendix), we show how to
transform the algorithm in order to lower the
memory requirements.

As shown in section 2, the algorithm first mul
tiplies the input matrix with the transposed
cosine matrix generating a temporary matrix,
and then multiplies the cosine matrix with the
temporary to obtain the final result. Therefore,
for this behavioral description, besides the
input and output memories, we need another

Temp = I XCOS^
O = COS XTemp

One way to reduce the memory requirements
is to eliminate the temporary memory from the
computation. In order to do this, the order in
which the operations in the algorithm are done
has to be changed.

In the initial description, the first matrix multi
plication computes all the elements of the tem
porary matrix, and the second matrix
multiplication uses them to create the output
matrix. If we could schedule all the uses of

each element from the temporary matrix
immediately after they are created, we would
need only one word as temporary storage
instead of the whole matrix.

In the initial algorithm, the creations and uses
of the elements of Temp are interleaved, which
implies that their lifetimes overlap. Thus, they
cannot use the same memory location. On the
other hand, if we manage to transform the
algorithm so that the creations and uses of
these elements are not interleaved, their life
times will not overlap, and only one memory
location will be needed.

cosi Temp O I

Figure 2; Memory minimization technique a) original
algorithm; b) optimized algorithm.

Instead of creating the whole Temp matrix, and
then using it, we create one element at a time,
and use it wherever it is needed before creating
a new element. Therefore the new element can

share the same memory location with the pre
vious one, and instead of the whole Temp
matrix we only need one storage location.

In Figure 2 a) we show the matrix multiplica
tions for the original algorithm. Here we first
compute all the elements from the Temp
matrix, and then use them column by column
in the second matrix multiplication. In Figure
2 b) we show the optimized version of the
algorithm. Here we first compute one element
of the Temp matrix, and then use it immedi
ately in the second matrix multiplication to
accumulate the partial sums for the corre
sponding column from the O matrix.

In the appendix we show the behavioral
VHDL description of both the original and the
optimized algorithms.

These two algorithms represent the starting
point in our design process. In the next sec
tions we show several pipelined implementa
tions of these algorithms, generating different
cost/performance trade-offs.

5 Pipelining exploration

Most digital circuits today operate under cer
tain timing constraints. For example, accord
ing to the MPEG standard, the IE)CT stage
should be done within 4115 ns.

Pipelining is an efficient way to greatly
improve the perfonnance of a digital system,
without significantly increasing the cost.

To explore a large variety of cost/performance
trade-offs, different levels of pipelining can be

used. Intuitively, if the design is more pipe
lined, a performance gain is obtained, against
an increase in complexity and a small degrada
tion of the cost of the design.

Any computation composed of a set of tasks
which operate in a sequential order on data
arriving repetitively, can be pipelined by con
sidering each task a different stage. Depending
on what we consider as the computation and
it's constituent tasks, we obtain pipelining at
different levels.

The original IDCT algorithm is composed of
two loops representing the two matrix multi
plications. The memory-optimized algorithm
is composed of a single loop consisting of two
inner loops. In the following we present the
different levels of pipelining for each of these
algorithms.

fori:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop

A := I(i,k); B ;= COS(j.k);

P:=A*B;

SUM := SUM + P;

Temp(iJ) ;= SUM;
end loop;

end loop;
end loop; j

fori:=0 to7 loop stage 2
for j:=0 to 7 loop

for k:=0 to 7 loop

A := COS(i,k); B := Temp(kJ);

P:=A*B;

SUM := SUM + P;

0(1 j) := SUM;
end loop;

end loop;
end loop;

Figure 3: Process pipelining

5.1 Pipelining Levels.

5.1.1 Original algorithm.

5.1.1.1 Process pipelining

If we consider the whole IDCT algorithm as a
computation, and the two matrix multiplica
tions as the constituent tasks, we obtain the
first level of pipelining. We call this process
pipelining. The two matrix multiplications rep
resent the two stages of the pipeline, as shown
in Figure 3.

5.1.1.2 Loop body pipelining

Each matrix multiplication consists of a loop.
If we consider the body of this loop as a com
putation, and the different operations (such as

for i:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop

A := I(i,k); B := COS(j.k); stage 1

P;=A*B;

SUM := SUM + P;

Teinp(iJ) := SUM;

end loop;
end loop;

end loop;
(a)

stage 2

stage 3

stage 4

for i:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop

A := COS(i,k); B := Temp(kj); stage 1

P:=A*B;

SUM := SUM + P;

0(ij):= SUM;
end loop;

end loop;
end loop;

(b)

stage 2

stage 3

staged

Figure 4: Loop body pipelining for a) thefirst matrix
multiplication and b) the second matrix multiplication

the memory read, memory write, multiplica
tion and addition) as it*s constituent tasks, we
obtain the second level pipelining. We call this
loop body pipelining.

Figure 4 shows the pipe stages in the loop
body pipelining.

5.1.1.3 Functional unit pipelining

If we consider only one operation, such as the
multiplication, as a computation, we can
divide it into different tasks, and consider each
task as a different pipe stage. This results in the
third level pipelining, which we call functional
unit pipelining.

for i:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop

A := I(i,k); B := COS(j,k):

SUM = SUM + P;

Temp(iJ) := SUM;
end loop;

end loop;
end loop;

(a)

for i:=0 to 7 loop
for j:sO to 7 loop

for k:=0 to 7 loop

A := COS(i,k); B Temp(kJ);

SUM := SUM + P;

OCi,j) := SUM;
end loop;

end loop;
end loop; ,

(d)

Figure 5: Functionalunit pipeliningfor a) firstmatri;
multiplicationand b) second matrix multiplication

Figure 5 shows the functional unit pipelin
ing. In this case the multiplier is divided into 4
stages, while the other operations are non-
pipelined.

5.1.2 Memory-optimized algorithm.

The memory-optimized algorithm is com
prised of an outer loop, which in turn consists
of two inner loops.

If we consider the whole algorithm as a com
putation, we should divide it into smaller tasks.
Since there is only one outer loop in the algo
rithm, we cannot split it into different parts
without changing the specification. Therefore,
we cannot pipeline it at the process level.

On the other hand, if we consider the body of
this loop as a computation and the two inner
loops as the constituent tasks, we obtain a first
loop body pipelining.

By considering the body of each of the inner
most loops as a computation comprised of the
tasks of memory read, multiplication, addition
and memory write, a second loop body pipe
lining is obtained.

As in the case of the original algorithm, each
operation, such as multiplication, can be con

fer i:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop

end loop;
Stage 1

end loop;
end loop;

end loop;

Figure 6: First loop body pipelining.

sidered as a computation consisting of several
parts. Each part is a different task, representing
the stages of the pipeline.

5.1.2.1 First loop body pipelining.

By pipelining the body of the j loop we obtain
a two-stage pipeline, as shown in Figure 6. In
this case, each stage consists of an inner loop
executing 8 times.

5.1.2.2 Second loop body pipelining.

for i:=0 to 7 loop
for j:=0 to 7 loop

for k:=0 to 7 loop
A !=I(i,k); B := COS(j,k); stage 1

P;=A*B; stage 2

Stage 3SUM := SUM + P; stage 3
end loop;
Temp := Sum;

for k:=0 to 7 loop
C := 0(kj); D := COS(k,i); stage 1

P :=D * Temp; stage2
SUM := C + P; stage 3

0(kj) := SUM;
end loop;

end loop;
end loop;

stage 4

Figure 7; Second loop body pipelining for the
two innermost loops.

Figure 7 shows the innermost loop pipelining.
Here we consider the body of the k loops as the
computation to be pipelined, and the memory
read, multiplication, addition and memory
write tasks represent the pipe stages.

5.1.2.3 Functional unit pipelining.

The functional units implementing operations
from the algorithm can be also pipelined. The
computation can be divided in several tasks,
each task to represent a pipe stage, as shown in
Figure 8.

for i:=0 to 7 loop
forj:=0 to? loop

for k:=0 to 7 loop
A := I(i,k); B := COSQ.k);

SUM := SUM + P;

end loop;
Temp Sum;

for k:=0 to 7 loop
C := 0(kj); D := COS(k.i);

SUM := C + P;
0(kj) := SUM;

end loop;
end loop;

end loop;

Figure 8: Functional unit pipelining.

5.2 Performance Comparison.

In a time constrained design flow, the goal is to
obtain the lowest cost implementation while
still satisfying the time constraint. In the IDCT
example the computation has to be executed in
4115 ns.

By pipelining the design, we can increase the
performance, without a significant impact on
the cost. In the previous section we presented
the different pipelining options we have for the
IDCT algorithm. In the final design, these
options can be combined in any way, to obtain
different cost/performance trade-offs. For
example, we show a comparison between sev
eral alternatives.

No Pipelining

1.1 non-pipelined

1.2 functional unit

pipelining

Throughput
(ns)

36044.8

25088

Cost

(trans.)

22198

26014

Table 2: Original algorithm pipelining

No Pipelining

1.3 process
pipelining

1.4 loop body pipe
lining

1.5 process + loop+
functional unit

pipelining

Throughput Cost
(ns) (trans.)

18022.4 41486

24550

53822

Table 2: Original algorithm pipelining

timing
constraint

.. . Throughput CostNo Pipelining . \ ^ .
(ns) (trans.)

2.1 non-pipelined 40550 16054

2.2 functional unit 23296 19870

pipelining

2.3 first loop body 18022 29646
pipelining

2.4 second loop 11827 17590
body pipelining

2.5 first loop + 1844 42350
second loop +
functional unit

pipelining

Table 3: Optimized algorithm pipelining

original algorithm
I memory-optimized algorithm

_2-3\ 1.2

Throughput [ns]

iO' 10000 20000 30000 40000

Figure 9: Pipelining exploration.

Tables 2 and 3 show the performance and cost
of different implementations using the two
algorithms for different combinations of pipe
lining. We present the non-pipelined (1.1, 2.1),
partially pipelined (1.2, 1.3, 1.4, 2.2, 2.3, 2.4)
and completely pipelined (1.5, 2.5) designs.

In Figure 9 we present the design alternatives
in the cost/throughput space. The points
denoted 1.1-1.5 represent different implemen
tations of the original algorithm, whereas the
points 2.1-2.5 represent implementations of
the memory-optimized algorithm.

By comparing the points on each curve, we see
that the more pipelined the design, the higher
the performance. The points 1.5 and 2.5 repre
sent the most highly pipelined versions, com
bining all the three pipelining levels. As
expected, they have the highest performance
and highest cost. The position of the points
1.2, 1.3, 1.4 shows the relationship between
the different pipelining alternatives. The most
performance gain is obtained by the loop body
pipelining, whereas the lowest gain is gener
ated by the functional unit pipelining. The rea
son that the point 1.4 has lower throughput but
lower cost than 1.3 is because in design 1.4
there is no processing pipelining which means
sharing the same datapath for the inner loop
body is obvious and considered in the estima
tion. A similar relationship is obtained for the
memory-optimized algorithm.

By comparing the two curves representing the
original and the memory-optimized algorithm,
we see that the overall cost of the optimized
algorithm is generally lower than the cost of
the original one.

6 VHDL Models Hierarchy,

All the VHDL models are developed hierarchi
cally in a bottom up fashion, as shown in Fig
ure 10.

IDCT SYSTEM

TCSTBENCH) C IDCT withRAMs
MEMORY

L64 X 8 RAM

[64x32 RAM

CONTROLLER) (DATAPATH
.64x 16 RAM

64 X 8 ROM

it MULTIPLIER [8 bit MULTIPLEF , 9 bit COl

PER))^16bit ADDER)06bAMUX") (9 bit REGISTER) Cl6 bit REGISTER

[FULL ADDER

DFF AND OR INV MUX2I MUX41 XOR,

Figure 10: VHDL modeling hierarchy

(1). The 1st level of hierarchy consists of the
basic gates, muxes and flip flops. All the
VHDL models in this level have only behav
ioral description. All the higher level compo
nents are composed of these basic entities.

The delay information for these gates and flip
flops are obtained from [3] and scaled down by
10. This is because in [3] we use a calibrated
method by which we assume the delay of
inverter is 1 ns while all other gates and flip
flops are correlated to this delay. For here, we
have assumed the delay of inverter is 0.1 ns
due to current technology in order to satisfy
the time constraint of the MPEG decoder.

Therefore, all the delays in this report are
scaled down by 10.

(2). The 2nd level of hierarchy consists of the
16-bit and 32-bit adders, selectors, multipliers,
and registers. They appear as RT level compo
nents in the datapath. All the VHDL models in
this level have both the behavioral and struc

tural description.

(3). Another level of hierarchy is the memory.
The 64X8 ROM is used for storing the COS
matrix. The 64x8 RAM and 64x32 RAM are

used as input and output buffers for the EDCT
as interface with other stages in the MPEG
decoder. In the implementation of the original
algorithm, 64x16 RAM is also used as a buffer
between the two matrix multiplications.

(4). The 4th level of hierarchy consists of the
datapath and controller. The datapath model is
an RT level structural model. The controller is

behavioral model consisting of next-state
logic, output logic and state registers.

(5). The 5th level of hierarchy comprises the
DDCT computation along with the input and
output memories (the IDCT with RAM entity).
It also includes the Test Bench entity,

(6). The 6th level of hierarchy simply incorpo
rates the IDCT with RAM model and the test-

bench to be simulated.

7 Design Example.

In this section, we present a design example

for original IDCT algorithm using process

pipelining, loop body pipelining and func

tional unit pipelining together. Figure 3, 4, 5

shows the VHDL code for each of these pipe

lining techniques.

7.1 Loop body datapath

Read A,B

Sum = Sum + P

Write Sum

Figure11: Loop body datapath

Figure 11 shows the datapath design for the
loop body of matrix multiplication. It is obvi
ous from Figure 4 that the two matrix multipli
cations in IDCT have the same datapath
structure.

7.2 IDCT Block Diagram

matrix

multiplication 1
controller

counter11

In RAM

ROM ^ RAM2H RAMIK

counter2

multiplication 2
controller

Out RAM
mem swap

logic

Figurel2: Block Diagram of IDCT chip

Figure 12 shows the block diagram of the
IDCT chip working in a pipelined MPEG
decoder. The In_RAM and the Out_RAM are
used as interface with other stages of pipelin-

ing in MPEG decoder. Both the loopl datapath
and Ioop2 datapath can use the loop body data
path in Figure 11. The controllers for the two
matrix multiplications are designed to be the
same for simplicity. The ROM stores the COS
matrix. The RAMl and RAM2 are used to

store the Temp matrix. In the operation mode
of process pipelining, they alternate the read/
write functionality. The Mem-swap logic is
used to achieve this. The counter! and

counter2 and their associated logic are used to
control the precise memory addressing.

8 Conclusions.

This report presents techniques for pipelining
exploration and memory optimization. We first
lower the total cost of the design by transform
ing the algorithm. Given a timing constraint,
we traverse the design space by using different
pipelining alternatives. Finally we compare the
different designs created, and show what are
the implications of the early design decisions
on the final implementation.

We obtain a large spectrum of cost/perfor
mance trade-offs, providing a good starting
point for the next levels of synthesis.

9 References.

fl] D. D. Gajski, "Principles of Digital
Design", Prentice Hall 1996.

12] D. D. Gajski, N. Dutt, A. Wu, and S. Lin,
"High Level Synthesis: Introduction to
Chip and System Design", Kluwer Aca
demic Publishers, 1992.

[3] W. Pan, P. Grun, D.D. Gajski, "Behavioral
Exploration with RTL Library", Technical
Report, UCI ICS #96-34, July 29, 1996.

[4] F. Catthoor, W. Geurts, H. De Man, "Loop
Transformation Methodology for Fixed

Rate Video, Image and Telecom Process
ing Applications", Proc. Int. Conf. on
Applic. Spec. Array Processors, San Fran
cisco, CA, Aug. 1994.

[5] A.B. Thordarson, "Comparison of Manual
and Automatic Behavioral Synthesis on
MPEG algorithm", M.S. thesis, UCI-ICS,
1995.

[6] LCB 500K, Preliminary Design Manual,
LSI Logic, June 1995

10 Appendix.

10.1 IDCT System.

~ represents the whole system which includes
- the test bench, the input and output memory,
—and the IDCT computation.

library ieee;
use ieee.sld_logic_I164.all:
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;

entity idcl_system is
end idct_system;

architecture test of idct_system is
component idct_with_ram

port (elk : in stdjogic;
rd_addr: in std_logic_vector(5 downto 0);

start: in std_logic;
wr_addr: in std_logic_vector(5 downto 0);
wr_data: in std_logic_vector(7 downto 0);

done : out std_logic;
rd_data : out std_logic_vcclor(31 downto

0));
end component;

signal elk, start, done : std.logic;
signal wr_addr,rd_addr;

std_logic_vector(5 downto 0);
signal wr_data : std_logic_vector(7 downto 0);
signal rd_data : sld_logic_vector(31 downto 0);

begin

ul : idci_with_ram port map(clk,rd_addr,start,

wr_addr,wr_data,done,rd_data);

process

variable clk_value : std_logic := T;
begin

clk_value := not clk_value;
elk <= clk_value:

wait for 2 ns;

end process;

start <s= *0' after 0 ns,

'r after 5 ns,

'0' after 10 ns;

process

type rf is array (0 to 7.0 to 7) of integer;

variable result: rf := (
(88710930, -18305430, 22913790. -1664130.

14721150,3968310, 10368810, 7296570),
(-5478165, 1130415. -1414995,102765. -

909075, -245055, -640305, -450585),
(68742135, -14184885, 17755905,-1289535,

11407425, 3075045, 8034795, 5654115),
(-5654880, 1166880. -1460640. 106080,-

938400, -252960,-660960,-465120),
(-7422030,1531530, -1917090, 139230,-

1231650, -332010, -867510, -610470).
(-530145, 109395, -136935, 9945, -

87975,-23715, -61965, -43605),
(25623675, -5287425, 6618525, -480675,

4252125, 1146225,2994975,2107575),
(12723480, -2625480.3286440. -238680,

2111400,569160,1487160, 1046520)
);

variable data: integer;
begin

feed data —sandwich case

for i in 0 to 23 loop
wr_addr <=conv_stdJogic_vector(i,6);
wr_data <= conv_std_logic_vector(255,8);
wait for 0 ns;

end loop;

for i in 24 to 39 loop
wr_addr <=conv_std_logic_veclor(i,6);
wr_data <= conv_sld_logic_vector(0,8);

wait for 0 ns;

end loop;

for i in 40 to 63 loop
wr_addr <=conv_std_logic_vector(i,6);
wr_data <= conv_stdjogic_vector(255,8);

wait for 0 ns;

end loop;

handshaking

wait until starts 'T;

handshaking

wait until dones 'T;
wait until elks '1';

for i in 0 to 7 loop
for j in 0 to 7 loop

rd_addr <s conv_std_logic_vector(i,3) &
conv_std_logic_vector(j,3);

wait for 4 ns;
data :s conv_integer(signed(rd_data));
assert (data s result(i, j)) report "error"

severity warning;
end loop;
end loop;

end process;

end test;

configuration cfgjdct_system of idct_system is
for test

end for;

end cfg_idct_system;

10.2 IDCT with RAM.

~ includes the IDCT computation and the
—input and output memories.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_inisc.all;

use ieee.stdJogic_arith.all;
use ieee.std_logic_components.all;

entity idct_with_ram is
port (elk : in stdjogic;

rd_addr : in std_logic_vcctor(5 downto 0);
start: in stdjogic;

wr_addr: in sld_logic_vector(5 downto 0);
wr_data : in sldJogic_vector(7 downto 0);

done : out stdjogic;
rd_data : out std_logic_vector(31 downto 0));

end idct_with_rajn;

architecture schematic of idct with ram is

signal data3
signal addr3
signal data2
signal datal
signal addr2
signal addrl

stdJogic_vector(31 downto 0);
stdJogic_vector(5 downto 0);
std_logic_vector(31 downto 0);
stdJogic_vector(15 downto 0);
std_logic_vector(5 downto 0);
std_logic_vector(5 downto 0);

component ram2
port (rd_addr: in std_logic_vector(5 downto 0);

rd_addr2 : in std_logic_vector(5 downto 0);
wr_addr: in std_logic_veclor(5 downto 0);
wr_data : in std_logic_vector(31 downto 0);
rd_data : out std_logic_vector(31 downto 0);
rd_data2 : out stdJogic_veclor(31 downto 0)

end component;

component ram

port (rd_addr : in std_logic_vector(5 downto 0);
wr_addr : in stdjogic_vector(5 downto 0);
wr_data : in stdJogic_vector{7 downto 0);

rd_data : out stdJogic_vector(15 downto 0)

end component;

component idct
port (elk : in stdjogic;

rd_dala : in std_[ogic_vcctor(15 downto 0);
rd_data2 : in std_logic_vector(31 downto 0);

start: in stdjogic;
done : out stdjogic;

rd_addr; out std_logic_vector(5 downto 0);
rd_addr2 : out std_logic_vector{5 downto 0);
wr_addr : out std_logic_vector(5 downto 0);
wr_daia : out stdJogic_vector(31 downto 0));

end component;
for all: idct use entity work.idct(schematic);

m2 : ram2

port map (rd_addr=>rd_addr, rd_addr2=>addr3,

wr_addr=>addr2,wr_data=>data2,
rd_data=>rd_data, rd_data2=>data3);

ml : ram

port map (rd_addr=>addr1. wr_addr=>wr_addr,
wr_data=>wr_data, rd_data=>datal);

idct_i: idct

port map (clk=>clk, rd_data=>datal, rd_data2=>
daia3, start=>stail, done=>done,
rd_addr=>addrl, rd_addr2=>addr3,
wr_addr=>addr2, wr_data=>data2);

end schematic;

10.3 IDCT computation.

—includes the IDCT computation

10.3.1 IDCT original algorithm
behavior.

library ieee;
use ieec.std_logic_n64.all;
use ieee.stdJogic_misc.all;
use ieee.stdJogic_arith.all;
use ieee.sid_logic_components.all;

entity idct is
port (elk:

rd_data:
rd_data2:

start:

done :

rd_addr:

rd_addr2 :
wr_addr:
wr_dala

end idct;

in stdjogic;
: in std_logic_vector(15 downto 0);
; in std_logic_vector(31 downto 0);
: in stdjogic;
out stdjogic;

: out std_logic_vector(5 downto 0);
: out stdJogic_vector(5 downto 0);
: out std_logic_vcctor(5 downto 0);
: out std_logic_vector(31 downto 0));

architecture behaviorall of idct is

begin
process

type rf is array (0 to 7,0 to 7) of integer;
variable cosblock: rf;
variable tempblock: rf;
variable a, b, p, sum: integer;

—intialize parameter matrix

cosblock := (
(125,122, 115, 103, 88, 69, 47, 24),

(125, 103, 47. -24, -88, -122, -115, -69),
(125,69, -47, -122, -88, 24, 115, 103),
(125, 24, -115,-69, 88, 103, -47, -122),
(125,-24, -115, 69, 88, -103, -47, 122),
(125,-69, -47, 122, -88, -24, 115, -103),
(125,-103, 47, 24, -88, 122, -115, 69),
(125,-122, 115, -103, 88, -69, 47, -24)

—handshaking

wait until starts T;
done<= *0';

-matrix multiplication 1

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
—a := ml(i,k);

rd.addr <= conv_stdJogic_vecior(i,3) &
conv_std_logic_vector(k,3);
wait for 4 ns;

a := convJnteger(unsigned(rd_data));
b := cosblock(j, k);
p := a * b;

if(k = 0) then

sum := p;

else

sum := sum + p;

end if;

if(k = 7) then
tempblock(i, j) := sum;

end if;

end loop;
end loop;
end loop;

—matrix multiplication 2

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

a := tempblock(k, j);

b :s cosbIock(i, k);

p := a ♦ b;

if(k = 0) then
sum ;= p;

else

sum := sum + p;

end if;

if(k s 7) then
—m2(ij) := sum;
wr_addr <= conv_std_logic_vector(i,3) &
conv_std_logic_vector(j,3);

wr_data <= conv_std_logic_vector(sum,32);
wait for 0 ns;

end if;

end loop;
end loop;
end loop;

—handshaking

wait until elks '1';
done <s ' r;

end process;

end behavioral 1;

10.3.2 IDCT Memory-Optimized
Algorithm Behavior.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_misc.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_components.all;

entity idct is
port (elk: in stdjogic;

rd_data : in std_logic_vector(15 downto 0);
rd_data2: in std_logic_veclor(31 downto 0);

start: in stdjogic;
done : out stdjogic;

rd_addr; out std_logic_vector(5 downto 0);
rd_addr2 : out stdJogic_vector(5 downto 0);
wr_addr : out std_logic_vector(5 downto 0);
wr_data : out stdJogic_vector(31 downto 0));

end idct;

architecture behavioral! of idct is

begin
process

type rf is arTay(0to 7,0 to 7) of integer;

variable ij,k: integer;
variable a,b,c,d,p,s,sum,temp: integer;
variable cos: rf;

begin
cos := (

(125, 122, 115, 10
(125, 103, 47, -24.

(125, 69, -47, -12;
(125, 24, -115, -69,
(125, -24, -115, 69.

(125, -69, -47, 122,
(125, -103, 47,

(125,-122, 115,

103, 88,

-24. -88,

-122, -88,

-69, 88,

69, 88,

69, 47, 24),
-122, -115, -69),
24, 115, 103),

103, -47. -122),
-103, -47. 122),
-24, 115, -103),
122, -115, 69),

-103, 88, -69, 47,

—handshaking

wait until start = T;

done <= *0';

— matrix 1 and matrix 2

for i in 0 to 7 loop
forjin0to71oop
for k in 0 to 7 loop

—a := ml(i,k);" reading ml
rd_addr <= conv_std_logic_vector(i,3) &
conv_std_logic_vector(k,3);

wait for 4 ns;

a := conv_integer(unsigned(rd_data));
b := cos(j.k);
p := a * b;
if (k=0) then

s;= p;

else

s :=s + p;

end if;
end loop;
temp := s;

for k in 0 to 7 loop
if (i/=0) then

- c := m2(kj);
rd_addr2 <= conv_std_logic_veclor(k,3) &

conv_std_logic_vecior(j,3);

wait for 4 ns;

c := conv_integer(signed(rd_data2));
end if;

d := cos(k,i);
p := d • temp;
if (i=0) then

sump;

else

sum ;= c + p;

end if;

- m2(kj) := sum;
wr_addr <= conv_std_logic_vector(k,3) &

conv_std_logic_vector(j,3);

wr_data <= conv_std_logic_vector(sum, 32);
wait for 4 ns;

end loop;
end loop;
end loop;

-handshaking

wait until clk = T;
done <= *1*;

end process;
end behavioral!;

10.33 IDCT Original Algorithm
Behavior of Pipelined Design.

library ieee;
use ieee.std_logic_l I64.all;
use ieec.std_logic_misc.alI;
use ieee.std_logic_arith.all;
use ieee.std_logic_components.all;

~ includes the controller and datapath processes for
matrix multiplication 1 and 2.

entity idct is
port (elk: in stdjogic;

rd_data: in std_logic_vector(7 downto 0);
rd_data2: in std_logic_vector(31 downto 0);
start: in stdjogic;
done: out stdjogic;

rd_addr : out stdJogic_vector(5 downto 0);
rd_addr2 : out stdJogic_vector(5 downto 0);

wr_addr: out std_logic_vector(5 downto 0);
wr_data : out std_logic_vector(31 downto 0));

end idct;

architecture behavioral I^ipe 15 of idct is
type rf is array (0 to 7, 0 to 7) of integer;
signal cosblock: rf;
signal tempblockl,teinpblock2; rf;
signal statel, state2: integer:=0;
signal a, b, pl,p2,p3,p4, sum: integer;
signal a_2, b_2. pl_2,p2_2,p3_2,p4_2, sum_2: inte

ger;

signal count, count2 : unsigned (9 downto 0) :=
"0000000000";

signal donel, done2 : std.logic;
signal memswap: std.logic '0';

—intializeparameter matrix

cosblock <= (

(125, 122, 115,
(125, 103, 47. -24.

(125, 69, -47, -122
(125, 24, -115, -69.
(125, -24, -115, 69.
(125, -69, -47, 122,
(125, -103, 47,

(125,-122, 115,

103, 88,
-24. -88,

-122, -88,

69, 47, 24)

-122, -115, -69)
24, 115, 103)

103, -47. -122)
-103, -47, 122)
-24, 115, -103)

122, -115, 69)

-103, 88, -69, 47,

—matrix multiplication 1

—controller process for matrix multiplication 1

process(clk)
variable varcount; unsigned (9 downto 0)

'0000000000";

variable curstatel, nextstatel : integer := 0;
variable vardonel : std_logic;

begin
if (clk=' 1' and clk'evenl) then

case curstatel is

when 0 =>

if start = ' r then

nextstatel := 1;

varcount := "0000000000";

else

nextstatel :=0;

end if;

vardonel := *0';

when 1 =>

nextstatel 2;
when 2 =>

nextstatel := 3;

when 3 =>

nextstatel :=4;

when 4 =>

nextstatel 5;

when 5 =>

nextstatel 6;

when 6 =>

nextstatel := 7;

when 7 =>

if (varcount <512) then
nextstatel := 7;

else

nextstatel :=8;
end if;

when 8 =>

nextstatel := 9;
when 9 =>

nextstatel := 10;
when 10=>

nextstatel 11;

when 11 =>

nextstatel := 12;
when 12=>

nextstatel := 13;

when 13 =>

nextstatel :=0;

vardonel := '1';

when others =>

end case;
statel <= curstatel;

count <= varcount;

if(curstatel > 0) then
varcount := varcount + 1;

end if;

curstatel := nextstatel;

donel <= vardonel;

end if;

end process;

—datapath process for matrix multiplication 1
process

variable si: integer := 0;
variable i, k, j. i2. k2, j2 : integer range 0 to 7;

variable varcount, varcount2 : unsigned (9
downto 0) := "0000000000";

begin

—getting the correct indexes for memory fetch

and memory write

wait until elk event and elk = ' 1';
si statel;

varcount := count;

varcount2 := varcount - 6;

i := conv_integer(varcounl(8 downto 6));
j conv_inieger{ varcount(5 downto 3));
k := conv_integer(varcount{ 2 downto 0));
i2 := conv_integer(varcount2(8 downto 6));
j2 := conv_integer(varcount2(5 downto 3));
k2 := conv_integer(varcount2(2 downto 0))

case si is

when 0 =>

when 1 ->

—executing pipe stages 1
- a :=ml(i,k);

rd_addr <= conv_std_logic_vector(i,3) &
conv_std_logic_vector(k,3);

wait for 4 ns;
a <= conv_integer(unsigned(rd_data));
b<=cosblock(j, k);

when 2 =>

—executing pipe stages 1,2
rd_addr <= conv_stdjogic_vector(i,3) &
conv_std_logic_vector(k,3);

wait for 4 ns;

a <= convJnteger(unsigned(rd_data));
b <= cosblock{ j, k);
pi <5= a * b;

when 3 =>

—executing pipe stages 1,2,3
rd_addr <= conv_std_logic_vector(i,3) &
conv_std_logic_vector(k,3);

wait for 4 ns;

a <= conv_integer(unsigned(rd_data));
b <= cosblock(j, k);
pi <= a * b;
p2 <=pl;

when 4 =>

—executing pipe stages 1,2,3,4
rd_addr <= conv_std_!ogic_vector(i,3) &
conv_std_logic_vector{k,3);

wait for 4 ns;

a <= conv_integer(unsigned(rd_data));
b<= cosblock(j, k);
pi <= a * b;
p2 <=pl;
p3 <= p2;

when 5 =>

" executing pipe stages 1,2,3,4,5
rd_addr <= conv_std_logic_vector(i,3) &
conv_stdjogic_vector(k,3);

wait for 4 ns;

a <= conv_integer(unsigned(rd_daia));
b <= cosblock(j, k);
pi <= a * b;
p2 <=pl;
p3 <= p2;
p4 <= p3;

- executing pipe stages 1,2,3,4,5,6
when 6 =>

rd.addr <= conv_stdJogic_vector(i,3) &
conv_std_logic_vcclor(k,3);

wait for 4 ns;

a <= conv_integer(unsigned(rd_data));
b <= cosb!ock(j, k);
pi <=a ♦ b;
p2<=pl;
p3 <= p2;
p4 <= p3;
if(k = 5) then

sum <= p4;
else

sum <= sum + p4;
end if;

when 7 =>

- executing pipe stages 1,2,3,4,5,6,7
rd_addr <= conv_std_logic_vector(i,3)

& conv_std_logic_vector(k,3);
wait for 4 ns;

a <= conv_integer(unsigncd(rd_data));
b <= cosblock(j, k);
pi <= a * b;
p2 <= pi;
p3 <= p2;
p4 <= p3;
if(k = 5) then

sum <= p4;
else

sum <= sum -i- p4;
end if;
if(k = 5 and varcount /= 5) then

if(memswap = '0*) then
tempblockl (i2, j2) <= sum;

elsif(memswap = T) then
tempblock2(i2, j2) <= sum;

end if;

end if;

when 8 =>

—executing pipe stages 2,3.4,5,6,7
pi <= a * b;
p2 <=pl;
p3 <= p2;
p4 <= p3;
if(k = 5) then

sum <= p4;
else

sum <= sum + p4;
end if;

if(k = 5 and varcount /= 5) then
if(memswap = '0') then

tempblockI(12,j2) <= sum;
e!sif(memswap = T) then

tempblock2(12,j2) <= sum;
end if;

end if;

when 9 =>

-- executing pipe stages 3,4,5,6,7
p2 <=pl;
p3 <= p2;
p4 <= p3;
lf(k = 5) then

sum <= p4;
else

sum <= sum + p4;
end If;

if(k = 5 and varcount /= 5) then
lf(memswap = '0') then

tempblockl(12,j2) <= sum;
elslf(memswap = T) then

tempblock2(12,j2) <= sum;
end if;

end if;

when 10 =>

—executing pipe stages 4,5,6,7
p3 <= p2;
p4<= p3;
lf(k = 5) then

sum <= p4;

else

sum <= sum + p4;
end if;

lf(k = 5 and varcount /= 5) then
if{memswap = '0') then

tempblock1(12, j2) <= sum
elslf(memswap = T) then

tempblock2(12, j2) <= sum
end If;

end If;

when 11 =>

" executing pipe stages 5,6,7
p4 <= p3;
lf(k = 5) then

sum <= p4;
else

sum <= sum + p4;
end if;

lf(k = 5 and varcount /= 5) then
if(memswap = '0') then

tcmpbIockl(12, j2) <= sum
elslf(memswap = T) then

tempblock2(12, j2) <= sum
end if;

end if;

when 12=>

~ executing pipe stages 6,7
if(k = 5) then

sum <= p4;
else

sum <= sum + p4;
end if;

lf(k = 5 and varcount /= 5) then
if(memswap = *0') then

tempblockl(12, j2) <= sum
elslf(mcmswap = T) then

tempbIock2(12,j2) <= sum
end if;

end if;

when 13 =>

—executing pipe stages 7
lf(k = 5 and varcount 5) then

if(memswap = *0') then
tempblock 1(12, j2) <= sum

elsif(memswap = *1') then
tempblock2(12,j2) <= sum

end If;
end If;
when others =>

end case;

end process;

—process for controlling the temp memory
~ swapping
process

variable countnum : unsigned (9 downto 0)
0000000000";

variable swap : std_loglc := '0';
begin

wait on count;

countnum count;

if (countnum = 518) then

swap ;= not swap;

end if;

memswap <= swap;

end process;

matrix multiplication 2

—controller process for matrix multiplication 2
~ synchronized with matrix multiplication 1 by
—waiting the signal Donel
process(clk)

variable varccunt: unsigned (9 downto 0)
0000000000";

variable curstate2, nextst2Ue2 : integer := 0;
variable vardone2: std_logic;

begin
if (clk=' r and clk'event) then

case curstate2 is

when 0 =>

if donel = *1* then

nextstate2 ;= 1;

varccunt := "0000000000";

vardone2 := '0';

else

nexlstale2 := 0;

end if;

vardone2 := '0';
when 1 =>

nextstate2 := 2;

when 2 =>

nextstale2 := 3;

when 3 =>

nextstate2 ;= 4;

when 4 =>

nextstate2 := 5;

when 5 =>

nextstate2 ;= 6;

when 6 =>

nextstate2 := 7;

when 7 =>

if (varccunt < 512) then
nextstate2 := 7;

else

nextstate2 :== 8;

end if;

when 8 =>

nextslate2 := 9;
when 9 =>

nextstate2 := 10;
when 10 =>

nexistatez := 11;
when 11 =>

nextstate2 := 12;
when 12 =>

nextstate2 := 13;

when 13 =>

nextstate2 0;

vardone2 *1*;

when others =>

end case;

state2 <= curstate2;

count2 <= varccunt;

if(curstate2 > 0) then
varccunt := varccunt + 1;

end if;

curstate2 ;= nextstate2;
dcne2 <= vardone2;

end if;
end process;

—datapath process for matrix multiplication 2
~ pipelining execution is the same as matrix
—multiplication 1

process

variable s 1 : integer ;= 0;
variable i, k, j, i2, k2, j2 : integer range 0 to 7;

variable varccunt, varcount2 : unsigned (9
downto 0) := "0000000000";

begin
wait until clk'event and elk = T;
si := state2;

varccunt count2;

varcount2 := varccunt - 6;
i := conv_integer(varcount(8 downto 6));
j := conv_integer(varcount(5 downto 3));
k conv_integer(varcount(2 downto 0));
i2 := conv_integer(varcount2(8 downto 6));
j2 := conv_integer(varcounl2(5 downto 3));
k2 := conv_integer(varcount2(2 downto 0));

case si IS

when 0 =>

when 1 =>

if (memswap = T) then
a_2 <= tempblockl(k, j);

elsif (memswap = '0') then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosblock(i, k);

when 2 =>

if (memswap = T) then
a_2 <= tempblocklC k, j);

elsif (memswap = '0') then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosblock(i, k);
pl_2 <= a_2 * b_2;

when 3 =>

if (memswap = '1') then
a_2 <= tempblockU k, j);

elsif (memswap = *0*) then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosblock(i, k);
pl_2 <= a_2 ♦ b_2;
p2_2 <= pl_2;

when 4 =>

if (memswap = *1') then
a_2 <= tempblockl(k, j);

elsif (memswap = '0') then
a_2 <= tempblock2(k, j);

end if;
b_2 <= cosblock(i, k);

pl_2 <= a_2 ♦ b_2;
p2_2<=pl_2:
p3_2 <= p2_2;

when 5 =>

if (memswap = T) then
a_2 <= tempblockl(k, j);

elsif (memswap - '0') then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosblock(i, k);
pl_2<=a_2*b_2:
p2_2 <= pl_2;
p3_2 <= p2_2;
p4_2 <= p3_2;

when 6 =>

if (memswap = T) then
a_2 <= tempblockU k, j);

elsif (memswap - '0') then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosblock(i, k);

pl_2 <= a_2 ♦ b_2;
p2_2 <=pl_2;
p3_2 <= p2_2;
p4_2 <= p3_2;
if(k = 5) then

sum_2 <= p4__2;

else

sum_2 <= sum_2 + p4_2;
end if;

when 7 =>

if (memswap = '1') then
a_2 <= tempblockU k, j);

elsif (memswap = *0') then
a_2 <= tempblock2(k, j);

end if;

b_2 <= cosbIock(i, k);
pl_2<=a_2*b_2;
p2_2<=pl_2;
p3_2 <= p2_2:
p4_2 <= p3_2;
if(k = 5) then

sum_2 <= p4_2;
else

sum_2 <= sum_2 + p4_2;
end if;

if(k 5 and varcount /= 5) then
wr_addr <= conv_std_Iogic_vec-

tor(i2,3) & conv_std_logic_vector(j2,3);
wr_data <= conv_std_logic_vector(-

sum_2,32);
wait for 4 ns;

end if;

when 8 =>

pl_2 <= a_2 * b_2;
p2_2<=pl_2;
p3_2 <= p2_2;
p4_2 <= p3_2;
if(k = 5) then

sum_2 <= p4_2;
else

sum_2 <= sum_2 + p4_2;
end if;

if(k = 5 and varcount /= 5) then
wr_addr <= conv_std_logic_vec-

tor(i2,3) & conv_std_logic_vector(j2.3);
wr_data <= conv_std_logic_vector(-

sum_2,32);
wait for 4 ns;

end if;

when 9 =>

p2_2 <=pl_2;
p3_2 <= p2_2;
p4_2 <= p3_2;
if(k = 5) then

sum_2 <= p4_2;
else

sum_2 <= suin_2 + p4^;

end if;
if(k = 5 and varcount /= 5) then

wr_addr <= conv_std_logic_vec-
tor(i2,3) & conv_std_logic_vector(j2,3);

wr_data <= conv_std_logic_vector(-
sum_2,32);

wait for4 ns;

end if;

when 10 =>

p3_2 <= p2_2:
p4_2 <= p3_2;
if(k = 5) then

suni_2 <= p4_2;
else

sum_2 <= suin_2 + p4_2;
end if;
if(k = 5 and varcount 5) then

wr_addr <= conv_std_logic_vec-

tor(i2,3) & conv_std_logic_vector(j2,3);
wr_data <= conv_std_logic_vector(-

sum_2,32);
wait for 4 ns;

end if;

when 11 =>

p4_2 <= p3_2;
if(k = 5) then

sum_2 <= p4_2;
else

sum_2 <= sum_2 + p4_2;
end if;

if(k = 5 and varcount /= 5) then
wr_addr <= conv_std_logic_vec-

lor(i2,3) & conv_std_logic_vector(j2,3);
wr_data <= conv_std_logic_vector(-

sum_2,32);

wait for 4 ns;
end if;

when 12 =>

if(k = 5) then
sum_2 <= p4_2;

else

sum_2 <= sum_2 + p4_2;
end if;

if(k = 5 and varcount /= 5) then
wr_addr <= conv_sid_logic_vec-

tor(i2,3) & conv_stdJogic_vector(j2,3);
wr_data <= conv_std_logic_vector(-

sum_2,32);
wait for 4 ns;

end if;

when 13 =>

if(k = 5 and varcount /= 5) then
wr_addr <= conv_std_logic_vec-

tor(i2,3) & conv_std_logic_vector(j2,3);
wr_daia <= conv_std_logic_vector(-

suni_2,32);
wait for 4 ns;

end if;

when others =>

end case;

end process;

done <s done2;

end behaviorall^ipel5;

10.3.4 n)CT Optimized Algorithm
Behavior of Pipelined Design.

library ieee;
use ieee.std_logic_1164.aII;
use ieee.sld_logic_inisc.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_components.all;

entity idct is
port (elk : in

rd_data: in

rd data2: in

(elk : in stdjogic;
rd_data: in stdJogic_vector(I5 downto 0);
rd_daia2 : in std_logic_vector(31 downto 0);

start: in stdjogic;
done: out stdjogic;

rd_addr : out stdJogic_vector(5 downto 0);
rd_addr2 : out std_logic_vector(5 downto 0);
wr_addr: out std_logic_vector(5 downto 0);
wr_data: out std_logic_vector(31 downto 0));

end idct;

architecture behavioral2_pipe2 of idct is
type if is arrayfO to 7,0 to 7) of integer,

signal a,b,c,cl,c2,c3,c4,d,pl,p2,p3,p4,p5,p6,p7,p8,
s,sum,temp,tempi: integerssO;

signal i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11 ,il2,i 13,
jlj2J3J4j5J6J7J8J9olOJllJ12J13,

kl.k2,k3,k4,k5,k6,k7,k8,k9,klO,kll,kl2,kl3:

integer;

std_!ogic_vector(Oto

signal cos : if;
constant period; time := 4 ns;

signal en: stdj
12):=:"000000000(XXK)";

signal startl,start2: sldjogic := '0';
signal statel,state2,state: integen^O;

begin
cos <= (

(125.122, 115,

(125, 103, 47.
(125, 69. -47.
(125,24, -115,

103, 88, 69, 47, 24),
-24, -88. -122, -115, -69),

-47. -122, -88, 24, 115, 103),
-115, -69, 88, 103, -47, -122),

24, 115, 103),
103, -47, -122),
-103, -47, 122),
-24, 115, -103),
122, -115, 69),
-69. 47, -24)

(125, -24, -115, 69,
(125, -69, -47, 122
(125, -103, 47, 24,

69, 88. -103,
122, -88, -24,

24, -88, 122,
(125, -122, 115, -103, 88,

—top level controller (controlling the two pipeline
—controllers)

process(clk)
variable l:integcr:=0;

begin
if clk='r then

case state is

when 0 =>

if start='r then

stale <= 1;

startl <=V\

start2 <='0';

! := 1;

else

startl <= '0';
startl <= '0*;

I := 0;

end if;

when 1 =>

if 1<13 then

startl <= '0*;

start2 <= '0';

1:=I+1;

else

startl <='0';

start2 <='!';

state <= 0;

end if;

when others =>

end case;

end if;

end process;

—pipeline contrller I
process{clk)

variable 1: integer := 0;
begin

ifclk='r then

case state! is

when 0 =>

if start! = '!' then

state! <= 1;

en(5) <5= en(4) after period;
en(4) <= en{3) after period;
en(3) <= en(2) after period;
en(2) <= en(!) after period;
en(l) <= en(0) after period;
cn(0) <= *1*after period;
i! <=! / 64 after period;
j 1 <= (1 mod 64) / 8 after period;
kl <= I mod 8 after period;
!:= 1+1;

else

en(5) <= en(4) after period;
en(4) <= en(3) after period;
en(3) <= en(2) after period;
en(2) <= en(!) after period;
en(l) <= en(0) after period;
cn(0) <= '0' after period;
1:=0;

i! <= 1/ 64 after period;
j 1 <= (1 mod 64) / 8 after period;
k! <= 1mod 8 after period;
end if;

when 1 =>

ifl<512 then

en(5) <= en(4) after period;
en(4) <=5 en(3) after period;
en(3) <= en(2) after period;
en(2) <5= en(l) after period;
en(l) <= en(0) after period;
en(0) <= ' r after period;
i1 <=1/64 after period;
jl <= (1 mod 64) / 8 after period;
kl <= 1mod 8 after period;
!:= 1+1;

else

en(5) <= en(4) after period;
en(4) <= en(3) after period;
en(3) <= en(2) after period;
en(2) <= en(l) after period;
en(l) <= en(0) after period;
en(0) <= '0' after period;
1:=0;

il <= 1/ 64 after period;

jl <= (1 mod 64) / 8 after period;
kl <= 1mod 8 after period;
state! <= 0;

end if;

when others =>

end case;

end if;

end process;

—pipeline controller 2
process(clk)

variable 1; integer := 0;
begin

if elk = '1' then

case state2 is

when 0 =>

if start2 = T then

state2 <= 1;
en(12) <= en(ll) after period;
en(11) <= en(10) after period;
en(lO) <= en(9) after period;
en(9) <= en(8) after period;
en(8) <= en(7) after period;
en(7) <= en(6) after period;
en(6) <= *r after period;
i7 <= 1/ 64 after period;
j7 <= (1 mod 64) / 8 after period;
k7 <= 1mod 8 after period;
1:= 1+1;

else

en(12) <= en(ll) after period;
en(ll) <= en(lO) after period;
en(lO) <= en(9) after period;
cn(9) <= en(8) after period;
en(8) <= en(7) after period;
en(7) <= en(6) after period;
en(6) <= '0' after period;
1:=0;
i7 <= 1/ 64 after period;
j7 <= (1 mod 64) / 8 after period;
k7 <= 1mod 8 after period;

end if;

when 1 =>

ifl<512then

en(12) <= en(ll) after period;
en(11) <= en(10) after period;
en(10) <= en(9) after period;
en(9) <= en(8) after period;
en(8) <= en(7) after period;
en(7) <= en(6) after period;
en(6) <= ' 1' after period;
17 <= 1/ 64 after period;
j7 <= (1 mod 64) / 8 after period;

k7 <= 1 mod 8 after penod;
1:= 1+1;

en(12) <= en(ll) after penod;
en(ll) <= en(lO) after period;
en(!0) <= en(9) after period;
en(9) <= en(8) after period;
en(8) <= en(7) after period;
en(7) <= en(6) after period;
en(6) <= *0' after period;
1:= 0;

i7 <= 1/ 64 after period;
j7 <= (1 mod 64) / 8 after period
k7 <= 1mod 8 after period;
state2 <= 0;

end if;

when others =>

end case;

end if;
end process;

— matnx 1

process

begin
wait on elk;

if (clk=' 1') and (en(0) 1') then
i2 <= il after period;
j2 <= j 1 after period;
k2 <= kl after period;
b <= cos(j 1,kl) after period;
- a <= ml(i,k);-- reading ml
rd_addr <= conv_std_logic.veclor(il,3) &

conv_std_logic_vector(kl ,3);

wait for penod;
a <= conv_integer(unsigned(rd_data));

end if;

end process;

process(clk)
begin

if (clk=*r) and (en(l) ='r)then
pi <ssa ♦ b after period;
i3 <= i2 after period;
j3 <= j2 after period;
k3 <= k2 after period;

end if;

end process;

process(clk)
begin

if (clk=' I *)and (en(2) =' 1') then
p2 <= pi after period:
i4 <= i3 after period;
j4 <= j3 after period;
k4 <= k3 after period;

end if;

end process;

process(clk)
begin

if (clk=' 1') and (en(3) =' 1') then
p3 <= p2 after period;
i5 <= i4 after period;
j5 <= j4 after period;
k5 <= k4 after period;

end if;
end process;

process(clk)
begin

if (clk=' 1') and (en(4) =' 1') then
p4 <= p3 after period;
i6 <= i5 after period;
j6 <= j5 after period;
k6 <= k5 after period;

end if;
end process;

process(clk)
begin

if(clk='r)and (en(5) =*1') then
if Ck6=0) then

s <= p4 after period;
else

s <= s + p4 after period;
if(k6=7) then

temp <= s + p4 after period;
end if;

end if;

end if;

end process;

— matrix 2

process

begin
wait on elk;

if (clk=' 1') and {en(6) =' 1') then
i8 <= i7 after period;
j8 <= j7 after period;

k8 <= k7 after period;
tempi <= temp after period;
d <= cos(k7,i7) after period;
if (i7/=0) then

-- c <= m2(kj);
rd_addr2<= conv_stdJogic_vector(k7,3)

conv_sld_logic_veclor(i7,3);

wait for period;
c <= conv_integer(signed(rd_data2));

end if;
end if;

end process;

process(clk)
begin

if (clk=' 1*)and (en(7) =*1') then
p5 <= d * tempi after period;
i9 <= i8 after period;
j9<=j8 after period;
k9 <= k8 after period;
cl <= c after period;

end if;

end process;

process(clk)
begin

if (clk='r) and (en(8) ='1') then
p6 <= p5 after period;
ilO <= i9 after period;
j 10 <= j9 after period;
klO <= k9 after period;
c2 <= cl after period;

end if;
end process;

process(clk)
begin

if (clk=' 1*)and (en(9) =*T) then
p7 <ss p6 after period;
ill <= i10 after period;
jll <=jIOafterperiod;
k11 <= k10 after p>eriod;
c3 <= c2 after period;

end if;

end process;

process(clk)
begin

if (clk=' 1') and (en(10) =' 1*) then
p8 <= p7 after period;
i12 <= i11 after period;
jl2<=jll after period;
kl2 <= kll after period;

c4 <= c3 after period;
end if;

end process;

process(clk)
begin

if (clk='r) and (en(ll) ='!') then
if (i 12=0) then

sum <= p8 after period;
else

sum <= c4 + p8 after period;
end if;

il3 <= il2 after period;
j 13 <= j 12 after period;
kl3 <= kl2 after period;

end if;

end process;

process(clk)
begin

if (clk='r) and (start='r) then done <= '0';
end if;
if (clk=* 1') and (en(12) =' 1') then

- m2(kj) <= sum;
wr_addr <= conv_sld_logic_vector(kl3,3) &

conv_std_logic_vector(jl3,3) after period;

wr_data <= conv_std_logic_vector(sum, 32)
after period;

if (i 13=7) and 013=7) and (k 13=7) then
done <='r after 2*period, '0' after 3 •

period;
end if;

end if;

end process;
end behavioraI2_4>ipe2;

Mail for Christina Crandai! Thu, 19 Sep 1996 14:06:39 --0700

From: "J. DeWayne Green" <dgreen@binky.ICS.UCI.EDU>
To: christy@binky.ICS.UCI.EDU
Cc: dgreen@binky.ICS.UCI.EDU, pazzani@binky.ICS.UCI.EDU
Subject: New Conference Room
Date: Thu. 19 Sep 1996 14:06:39 -0700

Christy,
Juancho and I just made a new conference room {CS 430 C)
which you can now begin to schedule as needed. Check
it out for size, seating, etc.

Let me know if you have any questions.

J. DeWayne Green
Administrative Officer
Information and Computer Science
University of California, Irvine

Phone: {714) 824-7403
Fax: (714) 824-3976
E-mail: jdgreen@uci.edu
URL: www.ics.uci.edu/-dgreen

New Conference Room

Mail for Christina Crandaii Thu, 19 Sep 1996 07:49:42 -0700

From: Padhraic Smyth <smyth@galway.ICS.UCI.EDU>
To: Christina Crandaii <christy@binky.lCS.UCI.EDU>
Subject: Re; visitor on Oct. 25th
Date: Thu. 19 Sep 1996 07:49:42 -0700

In email message <9609181346.aa26729@paris.ics.uci.edu>, Christina Crandaii
wrote:

>Hi,

>I'm sorry that it took so long for me to
>reply to your email regarding your visitor
>on the 25th of October. I have been out

>of the office for about the last week and
>a half.

no problem

>The 432 & 438 conference room has already
>been reserved for you (I believe that
>Bernie took care of that),

for 10:30 ?

> I will be happy
>to make up an announcement of the talk and
>to distribute it. I will also make a schedule
>sign-up sheet for people to meet with your
>visitor.

thsmks

>Would you like refreshments to be served
>before the talk? If so please let me know.

Yes, just coffee would be fine.

>Also, does Carla Brodley need a parking permit
>for the 25th?

Yes. Do you want her mailing address to send it to her?

Padhraic

Re: visitor on Oct. 25th

Mailfor Christina Crandail

From: "Isaac D. Scherson" <isaac@mars.ICS.UCI.EDU>
To: ICS Front Office <foffice@binky.ICS.UCI.EDU>
Cc: christy@binky.ICS.UCI.EDU
Subject: Re; Books published in 1995 or 1996
Date: Wed, 21 Aug 1996 13:11:56-0700

Wed, 21 Aug 1996 13:11:56 -0700

In message <9608200940.aal33840paris.ics.uci.edu> you write:

> Has anyone besides Lubomir Bic, Jonathem Grudin,
> Rick Selby, or Padraic Smyth authored a book
> published in 1995 or 1996? If you have please
> let me know. We would like to include a paragraph
> on the books published within that time frame in
> the Coit5>uting Research Review.

> Thank you,
> Christy

My IEEE book (on display by the business office) is in its second edition
and was published within the period you request.

Isaac

Re: Books pubiished in 1995 or 1996

Man for Christina Crandall Wed, 04 Sep 1996 11:02:33 -0700

From: "J. Chris Leiker" <chris@concorde.ICS.UCl.EDU>
To: Christina Crandall <chrisiy@binky.ICS.UCl.EDU>
Subject: Re: emergency phone list
Date: Wed, 04 Sep 1996 11:02:33 -0700

Hi Christy:

Sorry for the delay on this, but here's the info you requested.

Name: Chris Leiker
address: 4 Willowood

Laguna Hills, CA 92656
(714) 362-4636

Emergency contact: Dennis Leiker, husband, (619) 536-3873/pager
It is ok to release this info to ICS faculty & staff ONLY in case
of emergency. I would not like this released to other UCI employees,
though.

Thanks,
Chris

Re: emergency phone list

