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Abstract

Combining Multivariate Stochastic Process Models with Filter Methods for

Constrained Optimization

by

Tony Pourmohamad

Expensive black box systems arise in many engineering applications but can be difficult

to optimize because their output functions may be complex, multi-modal, and difficult to

understand. The task becomes even more challenging when the optimization is subject

to constraints and no derivative information is available. In this dissertation, we combine

response surface modeling, sequential Monte Carlo, and filter methods in order to solve

problems of this nature. Furthermore, we propose a new model for correlated outputs of

mixed type. Our modeling framework extends Gaussian process methodology for modeling

of continuous multivariate spatial outputs by adding a latent process structure that allows

for joint modeling of a variety of types of correlated outputs. In addition, we implement

fully Bayesian inference using particle learning, which allows us to conduct fast sequential

inference. By employing a filter algorithm for solving constrained optimization problems,

we also establish two novel probabilistic metrics for guiding the filter. We extend these ideas

to a multidimensional filter that outperforms the traditional filter method. Overall, this

hybridization of statistical modeling and nonlinear programming efficiently utilizes both

global and local search in order to converge to a global solution to the constrained opti-

mization problem. To demonstrate the effectiveness of the proposed methods, we perform

xii



numerical tests on both synthetic examples and real-world hydrology computer experiment

optimization problems.
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Chapter 1

Introduction

Computer models have become a ubiquitous tool for the study of complex scientific

phenomena. A computer model (or code) is a mathematical model that simulates the com-

plex phenomena, or system, under study via a computer program. Controlled experiments,

once considered to be a de facto standard in statistics, are not a viable means for study-

ing complex phenomena when the systems under study are either too expensive, too time

consuming, or physical experimentation is simply not possible. For example, weather phe-

nomena, such as hurricanes or global warming, are not reproducible physical experiments,

therefore, computer models based on climatology are used to study these events. Thus,

researchers hoping to better understand and model complex phenomena should consider

computer modeling as a possible solution.

Computer models have enjoyed a wide range of use, spanning disciplines such as

physics, astrophysics, climatology, chemistry, biology, and engineering. At its simplest, a
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computer model is a mathematical model of the form

y = f(x1, . . . , xd) = f(x), x = (x1, . . . , xd)
T ∈ X , (1.1)

where x is an input variable to the computer model, y is a (possibly multivariate) output

from the computer model, and X is the domain of the input variable. Here, f may or may

not have a known analytical representation, and thus the computer model describing the

complex system under study may itself also be very complex. Therefore, understanding

the computer model can be as challenging of a task as understanding the original physical

system it represents. Although possibly stochastic, in this dissertation we focus on the case

of deterministic computer models where running the computer model for the same input

yields the same output always. Much like the design of controlled experiments, one can

also construct designed experiments in order to better understand computer models. These

experiments, or computer experiments, consist of running the computer model at different

input configurations in order to build up an understanding of the possible outcomes of the

computer model.

For example, there is an area in Billings, Montana, near the Yellowstone river,

called the Lockwood site, where two plumes of contaminated groundwater have developed

in the area due to industrial practices. The two plumes (plume A and B) are slowly

migrating towards the Yellowstone river and of primary concern is keeping the chlorinated

contaminants from leaking into the river (Figure 1.1). In order to prevent the flow of the

contaminants into the river, a pump-and-treat remediation is proposed, in which wells are

placed to pump out contaminated water, purify it, and then return the treated water, at

six locations (A1, A2, B1, B2, B3 and B4).
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Figure 1.1: Lockwood site and its contaminant plumes located near Billings, Montana.

A1, A2, B1, B2, B3 and B4 are the locations of the six proposed remediation wells (Lindberg & Lee,

2015a).

Of course the naive scientist could go out to the Lockwood site, turn on the pumps,

adjust the respective pumping rates, and wait to see if any of the contaminants leak into the

Yellowstone river. However, this would be a terrible experiment since, as one could imagine,

the scientist either would be contaminating or not contaminating the river and thus would

have to learn about the complex physical system through their mistakes, and, worst of all,

at the expense of the environment. Instead, the savvy scientist could construct a computer

model of this physical process in order to understand the dynamics of this complex system.

Here the scientist could run a computer experiment, where the inputs to the computer

model would be the associated pumping rates for the six pumps, and the output(s) could

be the cost of running the pumps or the status of whether or not the contaminants leaked

into the Yellowstone river, or both.

A common feature of high fidelity computer models is that they tend to be compu-

3



tationally expensive. Computer models can be extremely complex mathematical programs,

and the evaluation of different input configurations may take, minutes, hours or even days

to calculate a single output. This computational expense makes it prohibitive to try and run

the computer experiment at every possible input configuration in order to understand the

system. Thus, a common theme of computer experiments is to try to find an appropriate

“cheap-to-compute” model, or surrogate model, that resembles the true computer model

very closely but is much faster to run (Figure 1.2).

System: y = f(x)Inputs: x = (x1, ..., xd) Output: y

Surrogate Model: ŷ = g(x)

Figure 1.2: The framework for surrogate modeling for computer experiments.

Traditionally, the canonical choice for modeling computer experiments has been

the Gaussian process (GP) (Sacks et al., 1989; Santner et al., 2003). Gaussian processes

are distributions over functions such that the joint distribution at any finite set of points

is a multivariate Gaussian distribution. Gaussian processes make for convenient surrogate

models because they are conceptually straightforward (a form of nonparametric regression).

Gaussian processes have a number of desirable properties such as being flexible, being able

to closely approximate most functions, and often being much cheaper/faster to evaluate

than the actual computer model. More importantly, using Gaussian processes for surrogate

modeling allows for uncertainty quantification of computer outputs at untried (or unob-

served) inputs, and also provides a statistical framework for efficient design and analysis
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of computer experiments (Santner et al., 2003). It is for these reasons that all of the work

done in this dissertation will be built upon the foundations of Gaussian process modeling.

1.1 Objectives and Contributions

This dissertation consists of four chapters spanning topics in statistics, stochastic

modeling, and optimization. As a natural progression, each chapter builds upon the previous

chapter’s work, with the overarching goal of building an efficient framework for constrained

optimization of computer experiments.

Consider again the pump-and-treat hydrology problem at the Lockwood site (Fig-

ure 1.1). This problem can be thought of as the entire motivation for this dissertation.

There is a physical process that needs to be studied, but environmental standards do not

allow for physical experiments. Thus a computer model is built, and computer experiments

can be conducted to better understand the physical system. Now, recall that the inputs

to the Lockwood computer model are the pumping rates and the outputs are the cost of

running the pumps and the contamination status. A natural question that arises is can

we minimize the cost of running the pumps while also containing the contaminants from

leaking into the river? Thus, using the computer model can be seen as an exercise in con-

strained optimization. Here, the objective function we wish to minimize describes the cost

of running the pumps, subject to the constraint that we do not allow contaminants into the

Yellowstone river. But how can we find the optimal configuration of pumping rates that

solves this constrained optimization problem? The solution to this question will be found

through computer modeling and is the overarching goal of this dissertation.
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In this dissertation, we introduce a new methodology that combines statistical

modeling and filter methods (Chapter 3) for solving nonlinear optimization problems of the

form

min
x

f(x)

subject to c(x) ≤ 0 (1.2)

x ∈ X ,

where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued

objective function and c : X → Rm denotes a vector of m constraint functions. We further

complicate the problem by assuming that (1.2) is an expensive black box optimization

problem where both the objective, f , and constraint, c, require black box simulation (i.e.,

running a computer model revealing little about the functional form of the objective and

constraints). Furthermore, we focus on the derivative-free situation where no information

about the derivatives of the objective and constraint functions is available (Conn et al.,

2009).

Traditionally, methods for solving (1.2) have been based on Newton’s methods

and are iterative (Fletcher et al., 2006). Typically one starts with an initial estimate xk

that is reasonably close to the true solution, then a linear or quadratic approximation of

(1.2) is locally solved for a new xk+1. The method iterates successively in this fashion until

convergence is achieved. Local convergence is almost guaranteed with such algorithms,

unfortunately, these algorithms may not be convergent from an arbitrary starting point

xk. To remedy this downfall, penalty functions are often used to ensure global convergence

properties, meaning convergence to a local optimum for every possible starting point xk. For
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example, a linear combination of the objective function and a constraint violation function,

say h(x) = ||max{0, c(x)}|| for some norm, can define the penalty function

p(x;π) = f(x) + πh(x), (1.3)

where π > 0 is the penalty parameter. The new penalized objective function (1.3) trans-

forms the constrained problem in (1.2) into an unconstrained optimization problem. Some

of the main drawbacks to the unconstrained optimization of (1.3) is that the rate of con-

vergence is dependent upon a suitable choice of π, and that the unconstrained optimization

cannot distinguish infeasible points (where h(x) > 0) from feasible points. Furthermore,

from a statistical point of view, there is a substantial amount of valuable information lost

in compressing the constraint values c(x) into a single scalar h(x).

Unfortunately, traditional methods based on Newton’s method that leverage in-

formation about the derivatives of the objective and/or constraint functions are of no use

to us in the derivative-free scenario. However, a considerable amount of effort has been

put forth by the optimization community for solving constrained problems like (1.2) when

no derivative information is available (Conn et al., 2009). The class of local derivative-

free optimization algorithms can be loosely partitioned into two classes of derivative free

methodologies: direct-search and model-based methods. Direct-search methods are meth-

ods that sample the objective function at a finite number of points at each iteration and

decide which actions to take next solely based on those function values and without any

explicit or implicit derivative approximation or model building (Conn et al., 2009). For

example, the mesh adaptive direct search algorithm (Audet & Dennis, 2006) generates trial

points on a spatial discretization, called a mesh, and then decides which actions to take
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based on the function values evaluated on the mesh. On the other hand, model-based meth-

ods are more akin to the traditional response surface modeling of statistics (Box & Draper,

1987). For example, model-based methods based on nonlinear kernels such as radial basis

functions in trust regions (Wild et al., 2008) or based on local polynomials (Conn et al.,

2009) are directly relatable to Gaussian processes.

Additionally, model-based methods have become increasingly popular in the sta-

tistical literature for solving constrained optimization problems. Primarily, model-based

methods have utilized Gaussian processes as a means of building surrogate models for the

black box simulators (computer models) that are being optimized and have relied upon

heuristics for handling constraints. For example, Wilson et al. (2001) proposed exploring

the Pareto frontier using surrogate approximations in order to solve a biobjective optimiza-

tion problem, and following the same suit, Parr et al. (2012) took it a step further by

incorporating constrained expected improvement into building the Pareto frontier. Follow-

ing the earlier works of Jones et al. (1998), Svenson & Santner (2012) extended the idea

of expected improvement to the multiobjective optimization case by exploring Gaussian

process surrogate modeling and Pareto frontiers as well. Sasensa et al. (2002) used surro-

gate models based on Gaussian processes and handled the constraints by transforming the

problem into an unconstrained problem by use of a penalty function. Similarly, Gramacy

et al. (2015) used a penalty function approach based on augmented Lagrangians to handle

the constraints and searched the objective space using particle learning Gaussian process

methods with expected improvement techniques. Lee et al. (2011) and Lindberg & Lee

(2015b) solved black box optimization problems using constrained expected improvement;
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the former made use of calculations of the probability of satisfying the constraint and the

latter used asymmetric entropy as a guiding measure of satisfying the constraints.

Although the aforementioned authors have made significant contributions to solv-

ing problems such as (1.2), there are still avenues of research for improvement, some of

which we aim to address in this dissertation. Similarly to the work described above, we

advocate the use of model-based methods to solve constrained optimization problems of the

same variety. In particular, in Chapter 3, we rely on an established nonlinear optimization

technique, known as a filter method, and combine the method with statistical surrogate

modeling. Combining these two techniques in an innovative fashion results in an efficient

algorithm to solve problems like (1.2). Like many of the prior model-based methods, we

utilize Gaussian processes to develop our surrogate models. The current methodology in

surrogate modeling makes the simplification of modeling the objective and constraint func-

tion independently. While this approach has proven fruitful, it may be advantageous to

model them jointly; in Chapter 2, we employ Gaussian processes to develop this methodol-

ogy. As a result of this idea, we explore the problem of developing a multivariate modeling

framework for fast sequential inference for computer experiments. The fact that black box

models are often costly to evaluate calls for the development of an efficient methodology

for these problems. Gramacy & Polson (2011) developed a methodology based on sequen-

tial Monte Carlo methods to tackle this problem in the univariate case. In this setting we

propose to extend their work to the multivariate setting.

The remainder of this dissertation is organized as follows. We first review Gaussian

process modeling and the necessary theoretical foundations for understanding the rest of
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this dissertation. Chapter 2 develops a novel methodology for modeling correlated outputs

of different types (e.g., continuous, binary, categorical). For example, in the motivating

Lockwood problem, one could think of the cost of running the pumps as a continuous output

and the contamination status as a binary output and that these outputs are correlated with

one another. It is problems like these that motivate the need for a model that can handle

joint modeling of correlated outputs of different types, and so, we introduce a new stochastic

model capable of joint inference and prediction for correlated outputs of different types.

We build the modeling framework with expensive computer models in mind, and thus we

develop a technique for fast sequential inference for this model. Through the application

of our methodology on both synthetic and real-world computer models we show that joint

modeling of outputs leads to much better results than independent modeling.

Chapter 3 combines filter methods with the statistical models of Chapter 2 for

solving constrained optimization problems in computer experiments. We develop two novel

metrics for guiding the sequential search for a global minimum of (1.2) and validate our new

methodology on a suite of synthetic test problems as well as the real-world pump and treat

hydrology problem. Furthermore, we compare our methodology to existing methods and

show our method to be superior to the comparators. Chapter 4 extends the methodology

of Chapter 3 to accommodate higher fidelity solutions that outperform the current two

dimensional filter method for constrained optimization. Chapter 5 establishes arguments

for proving global convergence of the methods in Chapter 3. Lastly, Chapter 6 concludes

with some discussions and conclusions about the work of this dissertation, as well as future

avenues for further research.

10



1.2 Background

The foundations of this dissertation are based on stochastic modeling, and in

particular, on the use of Gaussian processes (GPs) as efficient surrogate models. Readers

familiar with the concepts of modeling, inference, and prediction for Gaussian processes are

encouraged to skip ahead to Chapter 2.

1.2.1 Gaussian Process Models

Traditionally, the canonical choice for modeling computer experiments has been

the Gaussian process (Sacks et al., 1989; Santner et al., 2003). Gaussian processes are

commonly used in probabilistic modeling when priors over functions, without reference to

an underlying parametric representation, are needed. Gaussian processes are distributions

over functions such that the joint distribution at any finite set of points is a multivariate

Gaussian distribution.

More rigorously, for any index set X , the real-valued stochastic process {Y (x),x ∈

X}, is a Gaussian process if all the finite-dimensional distributions, say, F (x1, . . . ,xn), are

multivariate normal distributions, for any choice of n ≥ 1 and x1, . . . ,xn ∈ X . The fun-

damental characterization of a Gaussian process thus requires a specification of a mean func-

tion, m(x) = E(Y (x)), ∀x ∈ X , and a covariance function, C(x,x′) = Cov(Y (x), Y (x′)), ∀x,x′ ∈

X . There are no restrictions on the functional form of m(x) other than that E(Y (x)) exist

and is finite for all x ∈ X . However, in order for a valid covariance function to exist, C(x,x′)

must satisfy
n∑
i=1

n∑
j=1

cicjC(xi,xj) ≥ 0
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for all integer n ≥ 1, all x1, . . . ,xn ∈ X and all real numbers c1, . . . , cn. Any covariance

function satisfying the above property is said to be positive semidefinite. Covariance ma-

trices need only be positive semidefinite, however, for all of the calculations that follow in

this chapter, and subsequent chapters, we assume the form of the covariance matrix to be

positive definite. This positive definite assumption is typically imposed by the specification

of the form of the kernel of the covariance matrix, and is critical in allowing us to be able

to calculate and invert inverse matrices that will arise in many calculations.

Stationarity and Isotropy

Although not a necessary condition, a simplifying condition is to assume station-

arity of the Gaussian process. Assuming stationarity is akin to assuming that the proba-

bilistic structure of the Gaussian process, in some sense, looks similar in different parts of

X (Stein, 1999). More formally, the Gaussian process is said to be strongly stationary pro-

vided that for any finite collection of x1, . . . ,xn ∈ X and u ∈ X , the joint distributions of

(Y (x1), . . . , Y (xn)) and (Y (x1+u), .., Y (xn+u)) are the same. Thus, strong stationarity re-

quires that arbitrary translations do not change the distribution of the process. The strongly

stationary condition can be weakened by requiring that only the mean and covariance func-

tions be invariant under translations, i.e., m(x) = m,∀x ∈ X and C(x,x′ + u) = C(u).

This type of stationarity is usually referred to as being weakly stationary (Cressie, 1993).

Conveniently, in the case of the Gaussian process, weak stationarity will also imply strong

stationarity. Another simplifying condition is to assume that the Gaussian process is invari-

ant under rotations, a property called isotropy. A stationary Gaussian process can be shown

to be isotropic if the covariance function depends on distance alone, i.e., C(x,x′) = C(τ)

12



where τ = ||x − x′|| is Euclidean distance. This is a very strong condition on the radial

symmetry of the covariance function.

Correlation Function

In most applications of Gaussian processes, it is often more convenient to sep-

arately model the process variance σ2(x) = C(x,x) and the process correlation function

ρ(·, ·). The correlation function is defined as

ρ(x,x′) =
C(x,x′)√

C(x,x)C(x′,x′)
(1.4)

for x,x′ ∈ X . The correlation function plays a key role in determining the dependence

structure and smoothness of the Gaussian process (Figure 1.3), and thus, much care is

needed when specifying it. Many families of parametric forms exist for the correlation
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Figure 1.3: Realizations of Gaussian processes under three different correlation functions. Different

correlation functions can produce drastically different processes.

function, such as the powered exponential or Matérn for example, and thus specifying

the parametric form of the correlation function is not a trivial task (Abrahamsen, 1997).
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However, restricting to the space of all stationary and isotropic Gaussian processes, the

correlation function simplifies to

ρ(τ) = C(τ)/σ2 (1.5)

where σ2 = C(0) for all x ∈ X . More intuitively now, requiring that a Gaussian process be

stationary and isotropic is equivalent to requiring that the correlation between any x and

x′ be measured identically throughout X and that the correlation should depend only on a

function of the Euclidean distance between x and x′.

The Nugget

The nugget was first introduced by Matheron (1962) in the geostatistics literature.

The nugget is considered as random noise and typically represents measurement error or

short scale variability (Cressie (1993), Diggle & Ribeiro Jr. (2007)) in the Gaussian process.

Thus, the nugget provides a mechanism for introducing measurement error into the Gaussian

process. The nugget, termed jitter in the machine learning literature (Neal, 1997), also

serves the practical purpose of preventing the correlation matrix from becoming numerically

singular. Lastly, inclusion of a nugget parameter in the Gaussian process can also lead to

models with better statistical properties, such as predictive accuracy and coverage (Gramacy

& Lee, 2012).

More formally, considering the covariance function C(xj ,xk) = σ2ρ(xj ,xk), the

nugget term η is introduced into the model by extending the new covariance function to be

C(xj ,xk) = σ2ρ∗(xj ,xk) = σ2[ρ(xj ,xk) + ηδj,k] (1.6)
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where δ·,· is the Kronecker delta function and η > 0. For example, considering the squared

exponential covariance function with nugget leads to a covariance function of the following

form

C(xj ,xk) = σ2ρ∗(xj ,xk) = σ2

[
exp

(
−

p∑
i=1

|xij − xik|2

φi

)
+ ηδj,k

]
. (1.7)

As an illustrating example, consider the deterministic function f(x) = e−1.4x cos
(
7πx
2

)
where

for the nine inputs {x1, . . . , x9} ∈ (0, 1) we have data of the nine deterministic outputs

f(x1), . . . , f(x9). Modeling the data using a Gaussian process (as will be shown in sub-

sequent sections) with and without a nugget leads to the following posterior predictive

inference shown in Figure 1.4. The main feature to take away from Figure 1.4 is that the
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Figure 1.4: Models with (right) and without (left) the nugget term. Models without a nugget lead

to interpolation while those with a nugget result in smoothing.

posterior predictive distribution under the model with no nugget will interpolate the data

while the model with no nugget will not. In fact, under the model with no nugget, the
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prediction variance at observed points is exactly zero and increases away from zero as the

distance from the predicted points increases from the observed points. On the other hand,

the model with nugget displays the same trend as the model with no nugget except that

the prediction variance will be equal to σ2η at observed points rather than zero.

Model Building

A popular approach, especially in the computer modeling literature, is to allow

the mean function of the stochastic process Y (x) to be a function of x in the usual regres-

sion framework while assuming the process residual variation follows a stationary Gaussian

process. Modeling the stochastic process Y (x) this way leads to models of the form

Y (x) =

p∑
j=1

fj(x)βj + Z(x) (1.8)

where f1(·), . . . , fp(·) are known regression functions, β = (β1, . . . , βp)
T is a vector of un-

known regression coefficients, and Z(·) is a zero mean stationary Gaussian process over X

(Santner et al., 2003). Restricting attention to the class of stationary isotropic processes

greatly reduces the possible model space, however, the stationarity assumption may be too

restrictive. In particular, when the underlying true stochastic process Y (x) is indeed nonsta-

tionary, other more flexible approaches may be needed to model Y (x). Several approaches

exist in order to model nonstationarities in Y (x). For example, Higdon et al. (1999) used

a process convolution approach convolving a common latent white noise Gaussian process

with a smoothing kernel to arrive at a nonstationary process. Likewise, Gramacy & Lee

(2008) developed treed Gaussian processes to model nonstationary processes by modeling

smaller partitions of the space with stationary processes. Of course, models of the form
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(1.8) can also be nonstationary.

Estimation

The parameters in the model (1.8) can be estimated through both frequentist and

Bayesian methods, here we focus on the latter. From a Bayesian perspective, the standard

linear model priors (Gelman et al., 2013) can be placed on β and σ2. Placing a diffuse

prior for β, p(β) ∝ 1, and a conjugate inverse-gamma prior, for σ2, allows Gibbs samples

to be obtained for these parameters. Priors must also be placed on the parameters of

the correlation matrix R, unfortunately for these parameters, Gibbs samples will not be

available.

Now, for clarification, let Y = (Y (x1), . . . , Y (xn))T where x ∈ X ⊂ Rp and

R(ψ) be a correlation matrix based on correlation parameters ψ = (φ, η) where φ =

(φ1, . . . , φp) and nugget η. Also, define F as the traditional n × p linear model design

matrix corresponding to (1.8). Placing the following priors

p(β) ∝ 1 and σ2 ∼ IG(a/2, b/2)

leads to the following posterior distribution

p(β, σ2,ψ|Y) ∝ |σ2R(ψ)|−1/2 exp

(
− 1

2σ2
(Y − Fβ)TR(ψ)−1(Y − Fβ)

)
(1.9)

× (σ2)−(a/2+1) exp

(
− b

2σ2

)
p(φ)p(η).

Furthermore, accounting for normalizing constants and integrating over β and σ2 in (1.9),
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the marginal posterior distribution for ψ is available in closed form:

p(ψ|Y) =

(
|FTR(ψ)F|
|R(ψ)|

)1/2
(b/2)a/2Γ((n− p+ a)/2)

(2π)(n−p)/2Γ(a/2)

(
b+ S(ψ)

2

)−(n−p+a)/2
p(ψ),

(1.10)

where

S(ψ) = YTR(ψ)−1Y − β̂Vββ̂, β̂ = Vβ(FTR(ψ)−1Y), Vβ = (FTR(ψ)−1F)−1,

and Γ(·) is the standard gamma function defined as Γ(t) =
∫∞
0 xt−1e−xdx. A caveat is that

proper priors must be placed on the correlation parameters φ and nugget η in order to ensure

a proper marginal posterior distribution. Working with the integrated likelihood, Berger

et al. (2000) showed that a reference prior for φ could be derived. In either case, Markov

Chain Monte Carlo methods will need to be used in order to obtain posterior samples of φ

and η.

Prediction

Spatial prediction under the Gaussian process, also known as kriging (Matheron,

1963) in the geostatistics literature in honor of the pioneering geostatistican D. G. Krige

(Krige, 1951), is a direct application of standard multivariate Normal conditioning rules

(Omre (1987), Omre et al. (1989), Omre & Halvorsen (1989), Hjort & Omre (1994)).

Working with the marginal posterior (1.10), the predictive distribution at new data points

Ỹ = (Y (x̃1), . . . , Y (x̃m)), conditional on previous data Y, is a multivariate t-distribution

with ν = n− p− 1 degrees of freedom, mean

E(Ỹ|Y,ψ) = f(X̃)T β̂ + rT
X,X̃

r−1X,X(Y − Fβ̂), (1.11)
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and scale matrix

V(Ỹ|Y,ψ) =
[b+ S(ψ)]

(
rX̃,X̃ − rT

X,X̃
r−1X,XrX,X̃

)
a+ ν

(1.12)

where rX,X̃ = R(X, X̃;ψ) is the m × n correlation matrix and f(X̃) = (f(x̃1), . . . , f(x̃m)).

Interestingly, prediction under (1.11) and (1.12) leads to interpolation at prediction points

X̃ = X when η = 0.

19



Chapter 2

Multivariate Stochastic Process

Models for Correlated Responses

of Mixed Type

The problems of regression and classification are both well-studied individually, but

there has been limited work on the problem of combined regression and classification when

these outputs are correlated, particularly in the nonparametric setting. Only recently has

the literature moved beyond traditional parametric assumptions. We are motivated by the

problem of constrained optimization where both the objective function and the constraints

are unknown and potentially expensive to evaluate. Thus we seek an efficient statistical

model to serve as a fast approximation to the true objective function and constraints, which

in our applications are computer simulation experiments. In the case that the simulator only

returns whether a constraint is satisfied, and not any measure of distance to satisfaction, we
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need to jointly model a continuous objective function and one or more binary constraints.

Constrained optimization is typically difficult because at least one of the constraints operates

in opposition to the objective function, i.e., they are negatively correlated. We propose here

a nonparametric model to jointly model continuous and binary outputs, and the framework

is flexible enough to include a wide variety of other types of outputs. Our approach builds

upon the standard computer emulation approach in the literature of using Gaussian process

(GP) models (Santner et al., 2003).

Joint modeling of outputs of different types, also called multiway or mixed type

responses, can be a difficult task. When the outputs are known or suspected to be correlated,

it is common practice to use latent processes to induce correlation between them (Sammel

et al., 1997; Moustaki & Knott, 2000). However, most of these latent methods rely on either

simple linear models or restrictive parametric assumptions. Recent papers have started to

utilize more robust nonparametric models, such as infinite mixtures of linear models (Zhe

et al., 2015). Typically in computer simulation experiments, constrained optimization is

very challenging because the outputs of the simulators arise from highly nonlinear functions.

This lack of linearity is what makes nonparametric methods so desirable.

An active area of research in machine learning, multi-task learning builds predictive

models based on the learning of multiple tasks, in our case learning mixed type outputs,

at the same time. The performance of multi-task learning methods is highly dependent

upon the sharing of information, or induced correlation, across each task. A nonparametric

extension, Yu et al. (2005), used multi-task GPs for sharing information across multiple

tasks of the same type. However, the growing literature on multi-task GPs (Bonilla et al.,
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2008; Hayashi et al., 2012) does not seem to suggest that the model can facilitate the

modeling of outputs of mixed types. Similar to the approach we will take in this chapter,

Liu et al. (2013) makes an attempt to address this problem, however, a major limitation of

that work is that they only consider the case of two correlated outputs.

We propose here a flexible nonparametric model capable of handling p ≥ 2 cor-

related outputs to address this gap. The Gaussian process framework has proved to be

an effective tool for modeling both regression and classification (Neal, 1999). Multivariate

regression GPs (Wackernagel, 2003) provide a basis for modeling correlated outputs. We

build upon these ideas to create a new GP-based model for correlated outputs of mixed type,

where each output uses a transformation function to map back to the regression setting.

Chan (2013) explored this same idea, but was limited by only considering correlated outputs

of the same type and by assuming that the likelihood function takes the generic form of

the multivariate exponential family distribution. We bypass these limitations by allowing

for a more general likelihood function and create a fully generalized family of models that

utilize standard link functions, including but not limited to the identity for regression and

the logistic for classification, but more general links also fit into our framework. Similar

approaches, Xu et al. (2012) and Zhe et al. (2013), utilize latent tensor-valued Gaussian

process models to model mixed type outputs from a Bayesian point of view, however, both

works employed only variational techniques for inference. Another key innovation of our

work is fully Bayesian inference, through particle learning, whereas Liu et al. (2013), Xu

et al. (2012), Chan (2013) and Zhe et al. (2013) provide for only approximate Bayesian

inference.
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We take a fully Bayesian approach, which can require significant computational

effort. To address this concern, we build upon recent work on sequential Monte Carlo

methods for GPs (Gramacy & Polson, 2011; Montagna & Tokdar, 2013). Particle learning

allows for fast inference, and also allows for sequential inference when the data arrive over

time, as is the case in computer experiments. As a special case, we believe this is the first

implementation of particle learning for a multivariate regression GP.

The remainder of this chapter is organized as follows. In the next section, we

review the separable multivariate Gaussian process and set up the necessary modeling

framework for the rest of the chapter. Section 2.2 introduces our novel joint regression

and classification model. We review the sequential Monte Carlo technique, particle learn-

ing, in Section 2.3, and explain how fast sequential inference can be conducted on our joint

regression and classification model with an extension to a similar stochastic process model.

Section 2.4 demonstrates the applicability of the models presented with a number of illus-

trative examples and comparisons with previous work. Section 2.5 concludes with some

discussion.

2.1 Multivariate Gaussian Process

We consider a stochastic process returning a p-dimensional output y ∈ Rp for a

given d-dimensional input x ∈ X ⊂ Rd. We think of the stochastic process as a function

f : X → Rp for some (possibly high dimensional) input space X . Similar to Conti &

O’Hagan (2010) and Fricker et al. (2013), from a Bayesian perspective, we regard f(·) as

an unknown function and represent the uncertainty surrounding it through the use of the
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p-dimensional multivariate Gaussian process

f(·) ∼ GPp (µ(·),C(·, ·)) , (2.1)

where µ is a mean function and C is a covariance function. The existence of the multivariate

Gaussian process depends on the specification of a valid cross-covariance function C(x,x′) =

Cov(f(x), f(x′)) for x,x′ ∈ X (Wackernagel, 2003). Generating valid, as well as tractable,

cross-covariance functions is not a simple task. Many methods have been proposed, such

as: separable models (Mardia & Goodall, 1993; Banerjee & Gelfand, 2002), convolution of

covariance functions (Gaspari & Cohn, 1999; Majumdar & Gelfand, 2007), and the linear

model of coregionalization (Goulard & Voltz, 1992; Wackernagel, 2003; Gelfand et al., 2004).

The approaches in this chapter work for more general covariance structures beyond the

separable model; for example, we have tried them with the linear model of coregionalization,

but we focus on the separable model as we find it works well in practical applications,

providing sufficient flexibility without too much additional computational expense. In the

section that follows, we briefly discuss separable models.

2.1.1 Separable Model

One of the simplest ways of achieving a valid cross-covariance function is to take a

valid univariate correlation function ρ(x,x′) and a valid p× p positive semidefinite matrix

T so that

C(x,x′) = ρ(x,x′)T. (2.2)

The cross covariance function in (2.2) is said to be a separable model. Letting X =

(x1, . . . ,xn) be the collection of all inputs observed so far in X , the resulting np × np
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covariance matrix for YT = (yT1 , . . . ,y
T
n ), where yTi = (fi(x1), . . . , fi(xn)), is

C(X,X) = R⊗T =


ρ(x1,x1)T · · · ρ(x1,xn)T

...
...

...

ρ(xn,x1)T · · · ρ(xn,xn)T

 , (2.3)

where we denote Σ = C(X,X) and R is the n× n correlation matrix with Rij = ρ(xi,xj).

Clearly, Σ is positive semidefinite since R and T are. There are some clear advantages

to using a separable model, for instance, |Σ| = |R|p|T|n and Σ−1 = R−1 ⊗ T−1 which

means that working with Σ requires working with a p × p and n × n matrix instead of a

np× np matrix. Additionally, from a Bayesian perspective, using a separable model allows

for placing a conjugate prior on Σ (Banerjee et al., 2004). Conti & O’Hagan (2010) placed

an improper inverse-Wishart prior on Σ, which leads to a proper inverse-Wishart posterior

for Σ and allows for Σ to be analytically integrated out of the posterior predictive process.

2.1.2 Model Building and Prediction

We treat the unknown function f(·) as a multivariate stochastic process and model

f(·) as

f(·) = µ(·) + ω(·)

µ(·) = (Ip ⊗H) vec(B) (2.4)

ω(·)|T,φ, η ∼ GPp(0,C(·, ·)),

where vec(·) is the “vec” operator that stacks the columns of its matrix argument from

left to right into a single vector. Here, Ip denotes the p × p identity matrix, HT =

[h(x1) · · ·h(xn)] ∈ Rq×n is a matrix of regression functions, B = [β1 · · ·βp] ∈ Rq×p is a
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matrix of regression coefficients and the matrix valued covariance function, C(·, ·), depends

on covariance parameters T and ψ = {φ, η} where ψ represents parameters governing the

correlation function ρ, which we take in this chapter to be the length-scale parameter φ

and nugget parameter η. The length-scale parameter, φ, plays the role of determining

how fast the spatial correlation decays throughout the input space, while the nugget, η,

is considered as random noise and typically represents measurement error or short scale

variability (Cressie, 1993; Diggle & Ribeiro Jr., 2007) in the Gaussian process. Thus, the

nugget provides a mechanism for introducing measurement error into the Gaussian process.

Assuming separability of the covariance function in (2.4) allows us to write the likelihood

for the data as the following matrix Normal distribution

D|B,T,φ, η ∼ Nn,p (HB,R,T) , (2.5)

(Rowe, 2003) where we arrange the data vector Y into the output matrix D such that

vec(D) = Y. From a Bayesian point of view, all that is left is to place prior distributions

on the unknown parameters of the model and to update the posterior distribution of the

unknown parameters via Bayes’ theorem. Lacking strong prior information for B and T,

we follow Conti & O’Hagan (2010) and place the following joint improper prior for B and

T

p(B,T|ψ) ∝ |T|−(p+1)/2. (2.6)

Specifying an arbitrary choice of prior p(ψ) for ψ we obtain the posterior distribution

p(B,T,ψ|D) ∝ |R|−p/2|T|−(n−q+p+1)/2p(ψ) (2.7)

× exp

{
−1

2

[
tr
(
DTGDT−1

)
+ tr

((
B− B̂

)T (
HTR−1H

) (
B− B̂

)
T−1

)]}
,
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where G = R−1 −R−1H
(
HTR−1H

)−1
HTR−1 and B̂ =

(
HTR−1H

)−1
HTR−1D is the

generalized least squares estimator of B. Our choice of prior in (2.6) allows us to integrate

out B and T from the above posterior distribution (2.7) resulting in the marginal posterior

distribution

p(ψ|D) ∝ |R|−p/2|HTR−1H|−p/2|DTGD|−(n−q)/2p(ψ). (2.8)

Eliciting prior distributions for the correlation parameters ψ is, in general, a difficult task.

We enforce the caveat that proper priors must be placed on the correlation parameters φ

and nugget η in order to ensure a proper marginal posterior distribution. In either case,

Monte Carlo methods will need to be used in order to obtain posterior samples of ψ.

Of main concern is deriving the posterior distribution of f(·) given the output data

D since this distribution will allow us to make predictions, and quantify our uncertainties,

for outputs at new inputs X̃ = (x̃1, . . . , x̃m). Conditional on B,T,ψ, and D, the posterior

distribution of f(·) is

f(·)|B,T,ψ,D ∼ GPmp (vec(µ∗(·)),T⊗C∗(·, ·)) (2.9)

where for X̃ = (x̃1, . . . , x̃m) ∈ X

µ∗(X̃) = H̃B + FR−1
(
D−HB̂

)
, (2.10)

C∗(X̃, X̃) = C(X̃, X̃)− FR−1FT , (2.11)

and H̃T = [h(x̃1), . . . ,h(x̃m)] ∈ Rq×m is a matrix of regression functions and F = ρ(X̃,X) ∈

Rm×n. Typically, integrating the correlation parameters ψ out of (2.9) cannot be done

analytically and so one instead works with the posterior distribution of f(·) conditional on
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the output data D and correlation parameters ψ. Integrating B and T out of (2.9) yields

the multivariate T process (Gupta & Nagar, 2000)

f(·)|ψ,D ∼ Tmp
(

vec(µ∗(·)), T̂⊗C∗(·, ·), n− q
)

(2.12)

with n− q degrees of freedom, where for X̃ = (x̃1, . . . , x̃m) ∈ X

µ∗(X̃) = H̃B̂ + FR−1
(
D−HB̂

)
, (2.13)

C∗(X̃, X̃) = C(X̃, X̃)− FR−1FT (2.14)

+
(
H̃− FR−1H

) (
HTR−1H

)−1 (
H̃− FR−1H

)T
,

and T̂ = (n− q)−1
(
D−HB̂

)T
R−1

(
D−HB̂

)
denotes the generalized least squares esti-

mator of T. A fully Bayesian approach can proceed by sampling from p(ψ|D) in order to

average the conditional posterior in (2.12) with respect to ψ.

2.1.3 Linear Model of Coregionalization

An alternative to separable modeling, in the field of geostatistics, the linear model

of coregionalization (LMC) was developed as a tool to model multivariate spatial processes

(Journel & Huijbregts (1978), Goulard & Voltz (1992), Wackernagel (2003), Gelfand et al.

(2004)). Recently, Fricker et al. (2013) applied the LMC to multivariate emulators in the

computer modeling literature. The idea behind the LMC is to construct output processes,

z(·), as linear combinations of a number of building-block processes w(·). That is, dependent

multivariate processes, z(·), are obtained through a linear transformation of independent

processes w(·). The LMC is written as

z(·) = Aw(·),

28



where the p components of w(·) are independent stationary Gaussian processes with mean

µj , variance 1, and correlation function ρ(x,x′;φj , η), for j = 1, ..., p. The p × p full-rank

matrix A completely defines the linear transformation of w(·) to z(·). The associated mean

and covariance function for z(·) are E(z(·)) = µ and

Cz(x,x′) = A[diag{ρ1(x,x′;φ1, η), ..., ρp(x,x
′;φp, η)}]AT

=

p∑
j=1

aja
T
j ρj(x,x

′;φj , η),

where aj represents the jth column of A. Thus, the covariance function can be interpreted as

a weighted sum of the individual correlation functions and z(·) is a stationary nonseparable

process.

The multivariate output Y can be considered as a realization from the multivariate

stochastic process f(·), and modeled, using the LMC, as

f(·) = µ(·) + z(·)

µ(·) = (Ip ⊗H) vec(B) (2.15)

z(·)|A,φ, η ∼ GPp (0,C(·, ·))

where all of the parameters of the model, with the exception of A, are the same as the

parameters of the model in (2.4). Here, C(·, ·) is a matrix valued covariance function that

depends on parameters A, φ = (φ1, ..., φp), and nugget η. Letting X = (x1, ...,xn) ∈ X

be the collection of all inputs observed so far, the covariance structure of the multivariate
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Gaussian process is given by

C(X,X) =



AAT AQ1,2A
T · · · AQ1,mAT

AQ2,1A
T AAT · · · AQ2,mAT

...
...

. . .
...

AQm,1A
T AQm,2A

T · · · AAT


=

p∑
j=1

R(φj , η)⊗ aja
T
j , (2.16)

which we denote by Σ = C(X,X). Also, note that Q is a p × p diagonal matrix with

elements ρ(x,x′;φj , η) and that R(φj) is an m×m matrix with [R(φj)]ii′ = ρ(xi,xi′ ;φj , η).

Now, under the model in (2.15), if we let Θ = (B,A,φ, η) then the likelihood

for the data is Y|Θ ∼ N(µ,Σ). Under a Bayesian framework we need to assign prior

distributions to all of the parameters of Θ in order to continue with posterior inference. As

a typical choice, we place a diffuse prior, p(B) ∝ 1, on the mean function of the multivariate

Gaussian process. Placing a diffuse prior on B is convenient from the point of view of Gibbs

sampling, however, it also allows for B to be numerically integrated out of the posterior

distribution. We found it simpler to let T = AAT and to then place a prior distribution on

T rather than A; a similar approach is taken in Schmidt & Gelfand (2003). Realizing that

T is a valid covariance matrix, we place an inverse Wishart prior on T with low precision

and mean, and relate A to T through a suitable transformation.

Recall that we allow T = AAT , however, matrix square roots are not unique,

i.e., T and A are not one-to-one, and different choices of A can lead to multiple models

with the same T. To ameliorate this problem, we need to specify a particular square root

decomposition of T to obtain A. Due to the computational convenience of working with

lower triangular matrices, the Cholesky decomposition is a popular choice of square root de-

composition (Gelfand et al., 2004). However, the lower triangular structure of the Cholesky
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decomposition induces an ordering on the outputs Y and may be inappropriate when no

such appropriate ordering exists. Instead, as proposed by Fricker et al. (2013), we use the

eignendecomposition of T as an alternative to the Cholesky decomposition. The eigende-

composition is A = Λ
√

EΛT where Λ is the orthogonal matrix of normalized eigenvectors

of T and
√

E is the diagonal matrix of square roots of the eigenvalues of T. One appeal to

the eigendecomposition is that the decomposition preserves matrix permutations between

T and A, i.e., permuting the rows or columns of T will also permute the corresponding rows

or columns of A. Thus, the ordering of the outputs Y does not matter for the structure

of the model. Lastly, proper priors for the correlation functions, ρj(x,x
′;φj , η), need to be

placed for each φj and nugget η. Then, the posterior distribution for Θ becomes

p(Θ|Y) ∝ |Σ|−1/2 exp

(
−1

2
(Y − µ)TΣ−1(Y − µ)

)
p(T)p(φ1) · · · p(φp)p(η). (2.17)

Posterior inference for the parameters of (2.17) can be carried out using MCMC methods

(see Gelfand et al. (2004) and Banerjee et al. (2004) for further discussion) through a

series of Gibbs sampling and Metropolis-Hastings steps. Fortunately, the full conditional

distribution of B is obtainable in closed form as

p(vec(B)|T,φ, η,Y) ∼ N
(

vec(B̂),HTΣH
)
, (2.18)

where B̂ = (HTΣH)−1HTΣ−1Y. Thus, posterior samples of B can be obtained through

a Gibbs sampler. Unfortunately, the full conditional distributions for T, φ, and η are

intractable and so posterior samples of these parameters must be obtained through some

other MCMC sampling strategy. Prediction under the LMC proceeds in a similar fashion

to the predictive model of Section 2.1.2 with the caveat that we cannot integrate out T

from the predictive process.
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In practice we found no appreciable difference between using separable models

versus the linear model of coregionalization. In the case of building surrogate models, each

method provided us with models that had excellent predictive performance. Thus, we chose

to use the simpler structure provided by the separable model for the rest of the theory and

methodology developed in this dissertation.

2.2 Joint Modeling of Correlated Responses

Building upon the modeling framework of Section 2.1, we introduce a novel method-

ology for joint modeling of correlated outputs. We are particularly interested in the case of

jointly modeling continuous and binary outputs that are correlated, but our framework is

more general. Again denote the process of interest as f(·), but we now allow its outputs to

be of arbitrary form, which could include continuous, binary, categorical, ordinal, or other

types of output.

Let G(·) be a multivariate function that acts analogous to a link function for gen-

eralized linear models. The function G(·) is a deterministic function that takes continuous

inputs on the real line and maps them to the range of f(·). We allow for G(·) to be flex-

ible in its specification and thus only impose the restriction that G(·) be a function that

preserves the range of f(·). Where the domain and range of f(·) are identical, it makes

sense for G(·) to be a one-to-one function. Our framework allows for quite general G(·),

however, it is often convenient to decompose G into r ≤ p independent transformations, i.e.,

GT (·) = (GT1 (·), . . . ,GTr (·)). Although G(·) could be any arbitrarily complex multivariate

function, we typically use a G(·) that can be decomposed into r independent transforma-
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tions such that r is equal to the number of unique output types. Thus, for i = 1, .., r, each

Gi(·) is a transformation of the inputs to a unique output space. When the outputs do not

have the same form for all i we refer to the outputs as mixed type; for example, G1 might be

regression outputs and G2 might be classification outputs. This rule of thumb is suggested

in order to facilitate ease in specifying appropriate transformations that preserve the range

of f(·), as well as for model tractability in specifying the posterior distributions and the

calculations that follow.

Following the model formulation in (2.4), we define H as before but now let

B = [B1 · · ·Br] ∈ Rq×p, where Bi ∈ Rq×pi is a subset of B, and similarly ω(·) =

vec(ω1(·), . . . ,ωr(·)), where ωi(·) ∈ Rpi is a subset of ω(·), for i = 1, . . . , r, and p =

p1 + . . . + pr. Now, under our proposed modeling framework, at any collection of inputs

X = (x1, . . . ,xn) ∈ X ⊂ Rd, we model the output with the following general likelihood

L(B,T,ψ; Y) =
n∏
i=1

p(Y|G(µ(xi) + ω(xi))), (2.19)

where we can write the full model as follows:

f(X) = G(µ(X) + ω(X))

µ(X) = (Ip ⊗H) vec(B) (2.20)

ω(X)|T,φ, η ∼ GPp(0,C(X,X)) .

When we can decompose G into independent transformations, we can rewrite the component-

33



wise model as follows:

f1(X) = G1((Ip1 ⊗H)vec(B1) + ω1(X))

... (2.21)

fr(X) = Gr((Ipr ⊗H)vec(Br) + ωr(X)),

where fT (X) = (fT1 (X), . . . , fTr (X)) and

ω(X) =


ω1(X)

...

ωr(X)

 ∼ GPp

(
0,C(X,X)

)
. (2.22)

Clearly, under the models in (2.20) and (2.21), we have induced a correlation

structure between outputs by allowing ω(X) to be modeled as a joint multivariate Gaussian

process. Similar to Albert & Chib (1993), we introduce a latent process structure, `i =

(Ipi ⊗H)vec(Bi) +ωi(X), by augmenting the model with the unobservable output `i ∈ Rpi

that allows for a mapping between fi(X) and `i. Here GT (`) = (GT1 (`1), . . . ,GTr (`r)) is a set

of transformations that govern the mapping between the observed outputs and the latent

parameters. Formulating our model this way allows for a lot of theoretical carry-over from

Section 2.1 as well as model tractability. Clearly, when we allow all of the Gi(`i) = `i for

i = 1, . . . , p, akin to an identity link, we recover the multivariate Gaussian process model

of Section 2.1.2. Thus, when Gi(`i) is the identity link, we obtain regression models, and

likewise, when Gi(`i) involves the logistic or probit link, we obtain classification models.

For the applications in this chapter, we are interested in jointly modeling a multi-

variate continuous output and a binary output under our new modeling framework, and so,

we let fT (X) = (GT1 (`1),GT2 (`2)) be a multivariate stochastic process where G1(`1) ∈ Rp−1
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represents a real continuous output and G2(`2) ∈ {0, 1} be a binary output. Now at any

collection of inputs X = (x1, . . . ,xn) ∈ X ⊂ Rd, we model the mixed type output as follows:

f1(X) = G1(`1) (2.23)

f2(X) = G2(`2), (2.24)

where ω1(X)

ω2(X)

 ∼ GPp

(
0,C(X,X)

)
(2.25)

and G1(`1) = `1 and

G2(`2,i) =


1 if `2,i > 0

0 if `2,i ≤ 0

(2.26)

where `2,i is the ith element of `2. We define data and latent parameter matrices D and L,

respectively, such that vec(D) = Y and vec(L) = (`T1 , `
T
2 )T , and paralleling the model in

Section 2.1.2, we use the same joint prior in (2.6) for B and T, and arrive at the following

joint posterior density of our model:

p(`1, `2,B,T,ψ|Y) ∝ |R|−p/2|T|−(n−q+p+1)/2p(ψ)

exp

{
−1

2

[
tr
(
LTGLT−1

)
+ tr

((
B− B̂

)T (
HTR−1H

) (
B− B̂

)
T−1

)]}
(2.27)

×
n(p−1)∏
i=1

1(Y1,i = `1,i)

n∏
i=1

[1(`2,i > 0)1(Y2,i = 1) + 1(`2,i ≤ 0)1(Y2,i = 0)] ,

where Y1 corresponds to the vector of n(p− 1) continuous outputs, Y2 corresponds to the

vector of n binary outputs, 1(·) is an indicator function and p(ψ) is an arbitrary proper

prior distribution for the correlation parameters in (2.25). Working with the joint posterior
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density in (2.27) is no simple feat, however, inference methods can be devised in order to

obtain samples of all of the unknown parameters of the joint posterior density (see Section

2.3.2). Conveniently, integrating out B and T from our model is possible and thus we can

derive the joint posterior predictive distribution of (˜̀1, ˜̀2), conditional on `1, `2,ψ, and Y

as the following multivariate T process˜̀
1

˜̀
2

∣∣∣∣`1, `2,ψ,Y ∼ Tmp (µ∗(·), T̂⊗C∗(·, ·), n− q
)

(2.28)

where for X̃ = (x̃1, . . . , x̃m) ∈ X we have that µ∗(X) and C∗(X,X) are the same as

(2.13) and (2.14). Obtaining samples of ˜̀
1 and ˜̀

2 from (2.28) proceeds immediately and

allows us to quantify our uncertainty at unobserved inputs for new latent parameters.

Likewise, predicting the binary value of G2(˜̀2) proceeds by evaluating the following integral

(Rasmussen & Williams, 2006)

p(f2(X̃) = 1|`1, `2,ψ,Y) =

∫ ∫
p(f2(X̃) = 1|˜̀1, ˜̀2)p(˜̀1, ˜̀2|`1, `2,ψ,Y)d˜̀1d˜̀2. (2.29)

The integral in (2.29) is analytically intractable and so we calculate the integral through

Monte Carlo integration by first taking many samples of ˜̀
1 and ˜̀

2 from the multivariate T

process in (2.28) and then passing those samples through the sigmoid function p(f2(X̃) =

1|˜̀1, ˜̀2), which in our case is a probit function, and then averaging over those values.

Classification of the binary outputs can then proceed by classifying outputs as a one if the

posterior predictive probability is greater than 0.5 and otherwise classify the output as a

zero.
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2.3 Sequential Inference via Particle Learning

2.3.1 Particle Learning

Particle learning (PL), as established by Carvalho et al. (2010), is a type of se-

quential Monte Carlo (SMC) algorithm designed for online inference in dynamic models.

SMC algorithms are an advantageous alternative to Markov chain Monte Carlo (MCMC)

algorithms when the data arrive sequentially in time. MCMC algorithms suffer from a com-

putational burden in online inference, due to the algorithm having to be restarted every

time a new data point arrives; in SMC algorithms, this is not the case. SMC relies on

particles, {S(i)
t }Ni=1, containing the sufficient information, St, about the uncertainties given

data zt = (z1, . . . , zt) up to time t, with N denoting the total number of particles. These

particles, at time t, are then used to approximate the posterior distribution, p(St|zt), where

now online posterior inference continues by updating the particle approximation from time

t to time t+1. We want to emphasize that the only thing changing in time here is the accu-

mulation of additional data points; our model itself is not dynamic, in that the underlying

parameter distributions are the same at all time steps, it is only our posterior estimates

that get updated with the arrival of new data points. It can be shown (Gramacy & Polson,

2011) that the PL update to the particles can be derived from the following decomposition

p(St+1|zt+1) =

∫
p(St+1|St, zt+1)dP(St|zt+1)

∝
∫
p(St+1|St, zt+1)p(zt+1|St)dP(St|zt). (2.30)

The decomposition (2.30) suggests that we update the particle approximation in two steps:
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1. Resample: Sample indices ζ(i) ∼ Multinomial(w
(i)
t , N), where each index is given

weight

w
(i)
t ∝ p(zt+1|S(i)

t ) =

∫
p(zt+1|St+1)p(St+1|St)dSt+1, (2.31)

for i = 1, . . . , N .

2. Propagate: Propagate S
ζ(i)
t to S

(i+1)
t with a draw from S

(i)
t+1 ∼ p

(
St+1|Sζ(i)t , zt+1

)
to

obtain a new collection of particles {S(i)
t+1}Ni=1 ∼ p(St+1|zt+1).

Although there exist a plethora of SMC algorithms with components similar to

PL, we choose to explore particle learning based methods due to the convenient form of the

posterior predictive distribution of Gaussian process models and past successes of particle

learning in the univariate Gaussian process setting (Gramacy & Polson, 2011; Liang &

Lee, 2014). A slight modification to the above PL steps, similar to the filter of Storvik

(2002), would be to reverse the order and first propagate and then resample in similar

fashion as above. In the sections that follow, we make use of both the propagate-resample

framework as well as the resample-propagate framework, although both schemes could be

applied in either case. In Section 2.3.2 we choose to use the propagate-resample scheme of

Storvik (2002) in order to avoid lengthy MCMC steps, which we discuss in Section 2.3.2,

for updating the latent parameters. In Section 2.3.3 we use the resample-propagate scheme

that mimics the PL Gaussian process model of Gramacy & Polson (2011).

2.3.2 Particle Learning Joint Regression and Classification

As a first step, identifying the sufficient information, St, is pivotal for any particle

learning algorithm. Recalling the joint regression and classification (JRC) model in Section
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2.2, we have that the sufficient information needed for the JRC model is all of the parameters

of the correlation matrix in (2.3), namely, ψ = {φ, η}. A necessary quantity, we tend

to think of the latent parameters `i as also part of the sufficient information. We are

able to analytically integrate out β and T from the posterior predictive process in (2.28)

and so we do not consider β̂ or T̂ as part of the sufficient information since they can be

directly calculated from ψ. However, for efficient bookkeeping and implementation we do

include the correlation matrix from (2.3) as part of the sufficient information even though

it can be directly calculated from ψ as well. Thus, we define the sufficient information

as St = {ψt,Rt,Lt} where Lt = [`1, `2] is the matrix of latent parameters up until time

t. Similarly, we define Dt as the data matrix of all observed outputs up until time t, and

Lt+1 = [˜̀1, ˜̀2] and Dt+1 as the matrices for new latent parameters and observed outputs,

respectively, at time t+ 1.

Taking a joint improper prior on (B,T) requires initializing the particles condi-

tional on t0 > q+p data points to ensure a proper posterior. Recalling that we can integrate

B and T out of (2.27), we obtain our initial particles using a Metropolis-Hasting scheme to

sample ψ
(i)
t0

, `
(i)
1,t0

, and `
(i)
2,t0

from p(`1, `2,ψ|Dt0). Once sampled, we then deterministically

calculate R
(i)
t0

from ψ
(i)
t0

and thereby obtain S
(i)
t0

. After initialization of the particles, we can

follow the propagate and resample steps for updating particles {S(i)
t }Ni=1 to {S(i)

t+1}Ni=1. We

outline the three steps as the following:

1. Propagate: The first propagate step draws new latent parameters {L(i)
t+1}Ni=1 from

p(Lt+1|S(i)
t ) via sampling from the posterior predictive distribution in (2.28).

2. Resample: The resample step requires sampling indices ζ(i) ∼ Multinomial(w
(i)
t , N)
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where each index is given weight

w
(i)
t ∝ p(Dt+1|L(i)

t+1,S
(i)
t ), (2.32)

for i = 1, . . . , N , which can be factored into a product of a multivariate normal

distribution and a Bernoulli distribution.

3. Propagate: The second propagate step updates each resampled sufficient information

S
ζ(i)
t to S

(i)
t+1 by accounting for the new data output Dt+1. Since the correlation pa-

rameters of the JRC model are not dynamic, we may propagate deterministically each

resampled ψ by copying ψ
ζ(i)
t to ψ

(i)
t+1. A key step in deterministically propagating

components of S
ζ(i)
t to S

(i)
t+1 requires the calculation of the propagated correlation

function Rt+1. Once we have deterministically propagated ψ
ζ(i)
t to ψ

(i)
t+1, we calculate

the propagated correlation matrix as follows

R
(i)
t+1 =

R
(i)
t (F̃(i))T

F̃(i) R̃(i)

 (2.33)

where F̃ = ρ(xt+1,X) and R̃ = ρ(xt+1,xt+1).

As noted in Section 2.3.1, we could instead have implemented a resample-propagate scheme,

similar to Gramacy & Polson (2011) for GP classification models, but this would then make

our propagate step dependent upon sampling the new latent parameters from p(Lt+1|St,Dt+1),

which would need to be done in an MCMC scheme that would require a large number of

Metropolis-Hastings updates to ensure stationarity. This would be done within each par-

ticle, and thus considerably slowing the PL algorithm. Conversely, following a propagate-

resample scheme requires no Metropolis-Hastings updates and hence no concerns over con-

vergence within each propagate step of the latent parameters.
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Like many sequential Monte Carlo algorithms, particle learning is susceptible to

particle degeneracy in future resample steps. Particle degeneracy occurs when, after some

iterations of the algorithm, all but one particle will have weights that are very close to

zero. In particular, deterministically propagating components of S
ζ(i)
t to S

(i)
t+1 almost surely

guarantees particle degeneracy in the future resampling steps. However, deterministic prop-

agation does lead to significant speed gains in computation. In order to take advantage of the

computational speed up of deterministic propagation, and to avoid degeneracy, we include

a rejuvenate step inside of the propagate step that samples from the posterior distribution

in (2.8) via MCMC for the sake of rejuvenating the particles (MacEachern et al., 1999).

Following the lead of Gramacy & Polson (2011), we find a single Metropolis-Hastings step

for the parameters of ψt, for each particle, to be sufficient in avoiding particle degeneracy.

2.3.3 Particle Learning Multivariate Gaussian Process

Recall the fact that when we allow Gi(`i) = `i, akin to an identity link, we recover

the multivariate Gaussian process model of Section 2.1.2. As a special case, utilizing par-

ticle learning for inference in this model parallels the particle learning joint regression and

classification (PLJRC) model, but in far more simplicity. Given the separable multivariate

Gaussian process of Section 2.1.2, the sufficient information needed for this model is the

same as the sufficient information of the JRC model, i.e., St = {ψt,Rt,L
t}. However, given

the form of G(`), we no longer need to worry about Lt as part of the sufficient information,

since we now effectively treat the latent parameters as the true observed data, and so we

set St = {ψt,Rt} and Lt = Dt.

Similarly, taking a joint improper prior on (B,T) requires us to initialize our
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particles conditional on t0 > q + p data points to ensure a proper posterior. We follow

the same Metropolis-Hasting scheme described in Section 2.3.2. After initialization of the

particles, we can follow the two step resample and propagate steps for updating particles

{S(i)
t }Ni=1 to {S(i)

t+1}Ni=1. We argue, as Gramacy & Polson (2011) do, that the multivariate

Gaussian process is not a dynamic model, i.e., its parameters do not change in time, and

so our resample step only requires us to consider Lt+1 conditional on St+1 rather than the

typical integration over p(St+1|St). We outline the two steps as the following:

1. Resample: The resample step requires sampling indices ζ(i) ∼ Multinomial(w
(i)
t , N),

where each index is given weight

w
(i)
t ∝ p(Dt+1|S(i)

t ) =
p(Dt+1|S(i)

t )∑N
i=1 p(Dt+1|S(i)

t )
, (2.34)

for i = 1, . . . , N . Conveniently, p(Dt+1|S(i)
t ) is just the probability of Dt+1 under the

multivariate T process (2.13–2.14) given S
(i)
t .

2. Propagate: The multivariate Gaussian process is not a dynamic model, and so, we may

propagate deterministically each resampled sufficient information by copying S
ζ(i)
t to

S
(i)
t+1. Similar to before in Section 2.3.2, once we have deterministically propagated

ψ
ζ(i)
t to ψ

(i)
t+1, we calculate the propagated correlation matrix following (2.33).

2.4 Illustrating Examples

As a proof of concept, we demonstrate the applicability of the models presented

in Sections 2.3.2 and 2.3.3 with a number of illustrating examples and comparisons with

previous work. Because our motivating example is a computer modeling problem, we follow
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the standard approach in the computer modeling literature (Santner et al., 2003) by using

a Gaussian correlation function with unknown length-scale parameter φ and nugget η for

all of these examples, i.e.,

ρ(xj ,xk;φ, η) = exp

(
−

d∑
i=1

|xij − xik|2

φi

)
+ ηδj,k, (2.35)

where δ·,· is the Kronecker delta function. Our methodology applies to any valid choice of

correlation function, but here we follow the substantial literature in computer modeling. For

the length-scale parameter φ, we use the prior suggested in Gramacy & Lee (2008) and let

φ ∼ 1
2(Gamma(1, 20)+Gamma(10, 10)). The prior for φ encodes our belief that about half of

the particles should represent Gaussian process parameterizations with wavy surfaces while

the other half should represent Gaussian process parameterizations that are quite smooth or

approximately linear. We place a prior on the nugget parameter, η ∼ Exp(10), that allows

for a moderate amount of noise, or provides robustness in fitting (Gramacy & Lee, 2012).

Lastly, we specify our regression matrix H, with regression functions h(x1), . . . ,h(xn), such

that it is equivalent to a linear regression model with an intercept term.

2.4.1 PLMGP Synthetic Data Example

To illustrate the particle learning multivariate Gaussian process (PLMGP) method,

examples based on simulated data are presented. We first consider the one-dimensional

synthetic sinusoidal data used originally by Higdon (2002) and later by Gramacy & Polson

(2011). Now, in the case of the one-dimensional sinusoidal functions we have that

f(x) = sin
(πx

5

)
+

1

5
cos

(
4πx

5

)
and g(x) = sin

(
f(x)

3

)
, (2.36)
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where x ∈ [0, 10]. We simulate data, y(x) = (z(x), g(x)), from (2.36) with noise such that

z(x) ∼ N(f(x), σ = 0.1). We start with an initial sample of five data points from the

model (2.36) that are uniformly spaced throughout the domain of x, see Figure 2.1, and

sequentially sample thirty more data points from a Uniform(0,10) distribution. Using our

PLMGP algorithm with N = 2000 particles, we obtain posterior predictive surfaces for f(x)

and g(x) that capture the true data generating models, without noise, very well (Figure

2.1).

Alternatively, we could ignore the correlation between the outputs of f(x) and

g(x) and use the particle learning Gaussian processes (PLGP) (Gramacy & Polson, 2011)

to model f(x) and g(x) independently. As an additional experiment, we randomly generated

450 data sets from the data generating model in (2.36). Each of the 450 data sets started

with an initial sample of five data points and sequentially added thirty more data points

as seen previously. For all 450 data sets we ran both the PLMGP and PLGP algorithms,

with N = 2000 particles, and compared the performance of the algorithms based on two

separate metrics: mean square error and coverage. When running the PLGP algorithm we

defaulted to using the R plgp package library (Gramacy, 2012).

We calculate the distribution of the mean square errors of the fits under both the

PLMGP and PLGP models (Figure 2.2). On average, the fits under the PLMGP framework

do a better job and lead to smaller mean square error values. Likewise, for the 450 data

sets we calculated the coverage as the percentage of time that the true output, f(x) and

g(x), was covered (pointwise) by the 95% credible intervals. A summary of the numerical

results are found in Figure 2.2. When modeling the data from f(x), the PLMGP method
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Figure 2.1: The true data generating models f(x) and g(x) with five observed data points (left).

Also, posterior predictive surfaces of f(x) (middle) and g(x) (right) with 95% credible intervals.

does slightly better at being centered around the nominal 95% coverage rate while, on

average, the PLGP method seemed to undercover. On the other hand, when modeling g(x)

both methods did a good job at being centered around the nominal 95% coverage rate.

We attribute these facts to higher amount of nonstationarity needed to model f(x) and to

the lower amount of nonstationarity for g(x). Sharing information by modeling data from

f(x) and g(x) jointly is an advantage of the PLMGP that appears to help when modeling

correlated functions that require differing amounts of nonstationary modeling. However, in

both instances, the minimum observed coverage rate was lower for the PLMGP than for

the PLGP.

Given our two metrics (mean square error and coverage), the PLMGP method ap-

pears to outperform the PLGP method when modeling functions that are clearly correlated.

This fact should come as no surprise since the PLMGP is able to take advantage of the

shared information that comes from correlated processes whereas the independent PLGP

cannot. It is worth noting, however, that although the PLMGP method outperformed the
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Figure 2.2: Summary of the mean square errors (left) and of the observed coverage (right) under

both models for 450 repeated designs. The nominal coverage was taken to be 95% (horizontal dashed

line).

PLGP method, the PLGP method still did very well at modeling the true functions.

As a further comparison, we contrasted fitting the model using MCMC versus the

proposed PL scheme. Working under the same scenario as before, we generated 35 data

points from (2.36), but treated the design as static and fixed, and so we started both the

MCMC and PLMGP method with 5 data points and sequentially added 30 more data points

to each. This was repeated 50 times in an R implementation on an Intel Core-i7 2.9GHz CPU

computer. The efficiency of the two approaches was judged based on the average computing

time and average mean square error over the 50 repetitions. Only slightly better, there did

not seem to be a large difference in the prediction error between fitting the model with

MCMC versus PLMGP (Table 2.1). It is worth noting that in theory, MCMC and PLMGP

should achieve the same error rate. We can speculate that PLMGP might be doing slightly

better here because it mixes better in a finite amount of time.
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f(x) g(x)

PLMGP MCMC PLMGP MCMC

Average MSE 0.0056 0.0062 0.0006 0.0007
Std. Deviation MSE 0.0015 0.0026 0.0001 0.0001

Table 2.1: Summary of the mean square errors for 50 repeated designs where the model is either

fit using Markov chain Monte Carlo or particle learning.

There was however a stark contrast in average computing time where it took,

on average, 25 minutes for one repetition based on 100,000 MCMC iterations and only

6 minutes, on average, for the PLMGP method to finish one repetition with N = 4000

particles. Clearly, the computational gain in speed is what sets the PLMGP method apart

from the traditional MCMC methods when data arrives sequentially.

Although many sequential Monte Carlo methods have to account for the problem

of particle depletion, in our application of PLMGP, we had effective sample sizes that were

always above the commonly used threshold of N/2 (Prado & West, 2010).

2.4.2 PLJRC Synthetic Data Example

Now, consider data generated from the following one-dimensional dampened cosine

functions, f(x), used by Santner et al. (2003), g(x), and the step function h(x):

f(x) = exp(−1.4x) cos

(
7πx

2

)
, g(x) = exp(−3x) cos

(
7πx

2

)

and h(x) =


1 if f(x) + g(x) > 0

0 if f(x) + g(x) ≤ 0,

(2.37)

where x ∈ [0, 1]. Clearly, f(x) and g(x) are continuous functions for all x, while h(x) is a

binary function that is highly correlated with f(x) and g(x). We start with an initial sample
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of ten data points from the functions in (2.37), where we sample our inputs x ∈ [0, 1] from

a Latin hypercube design (McKay et al. (1979); Urban & Fricker (2010)) and sequentially

sample ten more inputs in [0,1] from the same Latin hypercube design. Using the particle

learning joint regression and classification (PLJRC) algorithm, with N = 4000 particles,

we initialize our particles and sequentially update our model using the remaining ten data

points. When finished, we obtain posterior predictive surfaces for f(x) and g(x) that do

an excellent job of capturing the true underlying data generating functions (Figure 2.3).

Moreover, we are able to calculate the posterior predicted probability of h(x) = 1 by

evaluating the expression in (2.29) via Monte Carlo integration. We classify h(x) as 1 if the

posterior predicted probability is greater than 0.5 and classify h(x) as 0 otherwise. In this

example (Figure 2.3), this method leads to a very low misclassification rate of 4%.
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Figure 2.3: The posterior predictive surface and 95% credible intervals for f(x) (left), posterior

predictive surface and 95% credible intervals for g(x) (middle), and posterior predictive probability

associated with h(x) (right). When the posterior predicted probability exceeds 0.5 we predict h(x) =

1 and h(x) = 0 otherwise.

In order to compare the performance of including correlation between outputs, we
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can ignore the correlation structure between f(x), g(x), and h(x) and use the PLGP method

of Gramacy & Polson (2011) and model the posterior predictive probability associated with

h(x) = 1 independently of f(x) and g(x). As a test, we randomly generated 450 data sets

from the data generating functions in (2.37) and ran both the PLGP and PLJRC algorithms

in order to compare the mean square error and classifications rates under each model. When

running the PLGP algorithm we again defaulted to using the R plgp package library. Each

of the 450 data sets started with an initial sample of ten data points and sequentially

added ten more. The mean square error was always better for the PLJRC method than the

PLGP (Figure 2.4), and the classification rate was overall better, suggesting the strength

of modeling f(x), g(x), and h(x) jointly when correlated.
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Figure 2.4: Summary of the mean square error (left) and classification rates (right) under both

models for 450 repeated designs for data simulated using (2.37).

As a last comparison, we investigated the difference in fitting the model using

MCMC versus the proposed PLJRC scheme. Working under the same scenario as before,

we generated 20 data points from (2.37), but treated the design as static and fixed, and so we
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started both the MCMC and PLJRC methods with 10 data points and sequentially added

10 more data points to each. This was repeated 50 times in an R implementation on an Intel

Core-i7 2.9GHz CPU computer. The efficiency of the two approaches were judged based on

the average computing time, average mean square error, and average correct classification

rate over the 50 repetitions. As before, we only found slightly better differences in prediction

error between fitting the model with MCMC versus PLJRC (Table 2.2).

f(x) g(x) h(x)

PLJRC MCMC PLJRC MCMC PLJRC MCMC

Average MSE 0.0038 0.0044 0.0034 0.0036 – –
Std. Deviation MSE 0.0023 0.0019 0.0021 0.0026 – –
Correctly Classified – – – – 0.9720 0.9590

Table 2.2: Summary of the mean square errors and classification rates for 50 repeated designs

where the model is either fit using Markov chain Monte Carlo or particle learning on an Intel Core-

i7 2.9GHz CPU computer.

On the other hand, classification was slightly better using MCMC rather than

PLJRC with a misclassification rate of 2.8% versus 4.1%, respectively (Table 2.2). However,

the difference in average computing time between the two methods is large enough to

preclude the use of MCMC over PLJRC. On average, it took 22 minutes for one repetition

based on 100,000 MCMC iterations and only 4 minutes, on average, for the PLMGP method

to finish one repetition with N = 4000 particles. The computational burden of MCMC is

a clear disadvantage in sequential inference as compared to the much quicker sequential

Monte Carlo.

Comparable to Section 2.4.1, in our application of PLJRC, we had effective sample

sizes which were always above the common threshold of N/2 (Prado & West, 2010).
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2.4.3 Hydraulic Capture Problem

A real-world application, the hydraulic capture problem from the community prob-

lems (Mayer et al., 2002) involves a groundwater contamination scenario based on the U.S.

Geological Survey computer simulator MODFLOW (McDonald & Harbaugh, 1996). The

objective of the problem is to contain a plume of contaminated groundwater by installing

up to four wells to control the direction of groundwater movement, and to do so at minimal

cost. The MODFLOW simulator was built to model this physical process where the inputs

to the computer simulator are the coordinates, (x1, x2), of the well and its pumping rate,

x3. We focus, as Lindberg & Lee (2015b) do, on the single well version of the problem and

further constrain ourselves to the same initial conditions as Lindberg & Lee (2015b). Thus

we focus our search of the input space on the region with 235 ≤ x1 ≤ 270, 580 ≤ x2 ≤ 680,

and −0.0064 ≤ x3 ≤ −0.0051, where negative rates indicate extraction. Lindberg & Lee

(2015b) focused their efforts on searching this restricted area of the input space due to the

fact that only about 2% of initial inputs, based on a Latin hypercube design (LHD), will

yield a valid output in the original input space. Narrowing the search to a smaller region

of the input space increases the number of valid outputs to about 5%.

We reformulate this problem in the framework of a constrained optimization prob-

lem as

min
x
{f(x) : g(x) = 1; 235 ≤ x1 ≤ 270; 580 ≤ x2 ≤ 680;−0.0064 ≤ x3 ≤ −0.0051} (2.38)

where the objective f we wish to minimize describes the cost required to install and operate

the wells. The contaminant plume is contained when the binary constraint, g, is met. The

objective f and constraint g are both highly complex and nonlinear functions in which
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outputs from each function can only be obtained from running the computer simulator.

However, worst of all, when the constraint g is not met, the computer simulator only tells

us that the constraint was not met but gives us no information about the output of the

objective function f .

The time it takes to run the computer simulator is nontrivial and so it not feasible

to run the computer simulator at every possible combination of inputs and find the one

that optimizes the problem (2.38). Instead, we proceed by constructing a surrogate model

(Sacks et al., 1989; Santner et al., 2003) sequentially while searching for the minimum of

the response surface (Jones et al., 1998; Taddy et al., 2009). We construct our surrogate

model by modeling both the continuous objective f and the binary constraint g jointly

using our PLJRC model. Modeling f and g as correlated makes sense in this context,

because extracting more fluid is more likely to meet the constraint (contain the plume of

contamination) but will cost more; extracting less fluid will be cheaper but less likely to

meet the constraint. The model is sequentially updated by selecting new candidate inputs,

x∗, that maximize the probability of finding a smaller objective function value f . Our

approach toward this goal is that of expected improvement (Jones et al., 1998). We define

the improvement statistic at a proposed input x to be

I(x) = max{fmin − f(x), 0}, (2.39)

where, after N runs of the simulator, fmin = min{f(x1), . . . , f(xN )} is the current minimum

value observed. Since the proposed input x has not yet been observed, f(x) is unknown and,

conditional on the observed inputs x1, . . . ,xN , the distribution of f(x) can be represented

by using the posterior predictive distribution of the PLJRC. Now that I(x) can be regarded
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as a random variable, we choose new candidate inputs, x∗, by selecting those inputs that

maximize the expected improvement

x∗ ∈ arg max
x∈X

E{I(x)}. (2.40)

Fortunately, conditional on a particular parameterization of the PLJRC, the expected im-

provement is available in closed form as

E{I(x)} = (fmin − µ(x))Φ

(
fmin − µ(x)

σ(x)

)
+ σ(x)φ

(
fmin − µ(x)

σ(x)

)
, (2.41)

where µ(x) and σ(x) are the mean and standard deviation of the posterior predictive dis-

tribution of f(x) and Φ(·) and φ(·) are the standard normal cdf and pdf, respectively. The

equation in (2.41) provides a combined measure of how promising a candidate point is, that

trades off between local search (µ(x) under fmin) and global search (σ(x)). However, in the

presence of constraints, it makes no sense to search for candidate inputs that maximize the

expected improvement yet violate the constraints. Thus, we go one step further and choose

candidate inputs, x∗, by selecting those inputs that maximize the following (Lindberg &

Lee, 2015b)

x∗ ∈ arg max
x∈X

E{I(x)}α1S(x)α2 , (2.42)

where S(x) is the asymmetric entropy defined as

S(x) =
2p(x)(1− p(x))

p(x)− 2wp(x) + w2
(2.43)

and p(x) is the predicted probability that the constraint is satisfied at the input x. Here,

α1, α2, and w are constants that we set equal to the default values suggested in Lindberg &

Lee (2015b), and so, α1 = 1, α2 = 5, and w = 2/3. Thus, maximizing the quantity in (2.42)
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is a trade-off between maximizing the expected improvement and the probability of meeting

the constraints. Calculating the probability that an input x∗ satisfies the constraint, i.e.,

p(x) = Pr(g(x) = 1), is not a trivial task; however, we make use of the posterior predictive

probability calculations for g(x) under our PLJRC model in order to make calculations of

the probability of meeting the constraint. In many constrained minimization problems, the

probability of the constraint being satisfied is correlated with the value of the objective

function, so that the expected improvement is in opposition to the probability of meeting

the constraint; this makes the problem difficult. Our JRC model can handle this correlation,

in contrast to the existing models in the computer experiment literature.

To show the advantage of modeling the objective and constraint as correlated, we

followed the same setup as Lindberg & Lee (2015b) and began with an initial sample size

of 65 inputs, based on a LHD, to run the MODFLOW simulator at. The output from

the MODFLOW simulator was then used to fit our PLJRC model where we chose to use

N = 2000 particles. The search for the optimal solution then proceeded by sequentially

selecting 300 more inputs to run the MODFLOW simulator at based on choosing points

that maximized the expected constrained improvement in (2.42). We follow the strategy of

Taddy et al. (2009) and select the candidate set of inputs from a LHD of size 500 times the

input dimension augmented by an additional 10% of the candidate locations taken from a

smaller LHD bounded to within 5% of the domain range of the current best point. This

hybrid space filling design further ensures that our algorithm searches both locally as well

as globally.

The best solution our algorithm found is a cost of $22,952.8 by setting the co-
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ordinates of the pump to (x1, x2) = (258.8451, 638.3419) and the extraction rate to x3 =

−0.005320973. Our solution reached the same cost values found in Lindberg & Lee (2015b)

and Lee et al. (2011). Although under slightly different initial conditions, our optimal cost

found was much better than all eight of the solutions found in Fowler et al. (2008), with the

best solution reported there being $23,421 found using Implicit Filtering for Constrained

Optimization (IFFCO). Likewise, we reran the same analysis 30 times, and the average

value found after 300 runs reached by our algorithm ($22,953.3), see Figure 2.5, was much

lower than the best values found by eight competing optimization algorithms as reported

in Fowler et al. (2008).

We ran the independent PLGP methodology 30 times under the same setup and

conditions as the joint PLJRC methodology and found that both methods lead to compa-

rable optimal solutions. Over those 30 Monte Carlo repetitions, the independent PLGP

models also found an optimal cost of $22,952.8. However, it was clear that using the inde-

pendent PLGP model did not always result in an optimal solution within the 300 sequential

updates, see Figure 2.5, whereas the PLJRC model consistently found the optimal solution

in fewer than 150 sequential updates. Thus, it would seem that the PLJRC model was

able to take advantage of the correlation structure between the objective and constraint

functions that the independent PLGP model was not.

The framework of expected constrained improvement is heavily reliant on the

models behind both the objectives and constraints. Here we demonstrate that our PLJRC

model does a very good job at modeling the objective and constraint surfaces and allows the

constrained expected improvement mechanism to outperform other established solutions. In
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Figure 2.5: After 300 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint (left) and independent (right) models. The plot shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found.
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constrained optimization, the problems are typically difficult because the objective function

and the constraint satisfaction are in opposition, i.e., strongly negatively correlated. Our

model performs better by fully modeling this correlation.

2.5 Discussion

We have established a novel methodological framework for modeling mixed type

outputs with fully Bayesian inference. By introducing latent outputs we are able to jointly

model correlated outputs. In particular, we showed how our framework could be applied

in the case of jointly modeling continuous and binary outputs that were correlated, partic-

ularly for constrained optimization of computer simulation experiments. We combined the

strengths of our joint regression and classification (JRC) model with the speed of sequential

Monte Carlo methods to conduct fast inference. Sequential inference for the JRC model

based on MCMC is inefficient because it requires rerunning the MCMC every time a new

data point arrives. A considerable reduction in computation time is achieved by applying

particle learning methodology to the JRC model. Thus, the marriage of the JRC model

with particle learning (PLJRC) is indeed a powerful new technique. We highlighted the

strengths of the PLJRC over other competing methodologies (such as the PLGP) with sim-

ulated examples and were able to show its practical usefulness in a real-world constrained

optimization problem of a computer simulator.

The introduction of latent parameters for joint modeling underlies the innovation

of our model. By directly allowing the latent parameters to be the observed outputs, in

an identity link fashion, we can recover the multivariate Gaussian process model of Section
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2.1. Furthermore, this also allows us to extend the particle learning algorithm to the model

of Section 2.1, thereby creating a new stochastic modeling technique (PLMGP) comparable

to that of Gramacy & Polson (2011). This framework also provides a novel implementation

of particle learning for multivariate Gaussian processes.

An obvious extension within our framework would be to extend the model to a

richer class of outputs. Using suitable transformations G(·), we can envision an infinite

continuum of correlated data types that could be modeled jointly.

2.5.1 Author Remarks

The work that appears in this chapter of the dissertation was recently accepted

for publication (Pourmohamad & Lee, 2015) in the journal Bayesian Analysis.
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Chapter 3

Statistical Filters

3.1 Filter Methods

Filter methods were introduced by Fletcher & Leyffer (2002) as a means of solving

nonlinear programming problems without the use of a penalty function. Penalty functions

suffer from the drawback of having to specify a suitable penalty parameter that balances

the often-competing aims of minimizing f and h. Instead of combining the objective and

constraint violation into a single function (1.3), filter methods take a biobjective optimiza-

tion approach and try to minimize both f and h simultaneously. However, priority is

placed on minimizing h since a feasible solution only exists when h(x) = 0. Borrowing

concepts from multiobjective optimization, filter methods solve the constrained optimiza-

tion problem in (1.2) by locating the set of all nondominated inputs x ∈ X . A point

xi ∈ X dominates a point xj ∈ X if and only if f(xi) ≤ f(xj) and h(xi) ≤ h(xj) with

(h(xi), f(xi)) 6= (h(xj), f(xj)). Geometrically, xi dominates xj if xi is to the “southwest”

of xj . Fletcher & Leyffer (2002) defined the filter (similar to the Pareto front in the mul-
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tiobjective literature), denoted F , as the set of all pairs (h(xi), f(xi)) such that no pair

dominates another pair. Given the definition of the filter F , we summarize the generic filter

method as follows:

Initialize the filter F ;

while not terminated do

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c(x∗);

if (h(x∗), f(x∗)) is acceptable to F then

Add (h(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h(x∗), f(x∗));

end

Check for termination;

end

Algorithm 1: Generic filter method

Typically termination of the algorithm requires that some tolerance, with respect

to the solution, has been achieved or that all budgetary resources, for example time or

money, have been exhausted. As simple as Algorithm 1 may look, extra care must be

taken to avoid convergence to infeasible points (h(x) > 0) or to feasible points that are not

stationary points of (1.2) (Fletcher et al., 2006). One proposed way to avoid these pitfalls

is an envelope, which is added around the current filter to avoid convergence to infeasible
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points. A candidate point x∗ is acceptable to the filter if

h(x∗) ≤ βh(xi) or f(x∗) ≤ f(xi)− γh(x∗) ∀(h(xi), f(xi)) ∈ F , (3.1)

where β, γ ∈ (0, 1) are constants. The envelope in (3.1) has stronger convergence properties

(Chin & Fletcher, 2003) due to its sloping nature although an axis aligned envelope could

be used if γ is allowed to equal zero. Likewise, an upper bound U may be placed on the

constraint function in order to ensure a practical limit to the largest allowable constraint

violation to the filter. An illustration of a filter with sloping envelope is given in Figure 3.1.

Note that the orange shaded area in Figure 3.1, defined by U , is an upper bound on the

acceptable constraint violation.
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Figure 3.1: A typical filter. All pairs (h(x), f(x)) that are below and to the left of the envelope

(red dashed line), and to the left of U , are acceptable to the filter.

Lastly, it is important to note that Algorithm 1 is a general outline of the filter

method with no explicit explanation of how to obtain a candidate x∗. Evaluating (f(x∗),
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h(x∗)) and updating the filter are relatively simple tasks, however, the main difficulty of

Algorithm 1 is in specifying and solving the subproblem. Many different subproblems have

been proposed within the filter method framework, however, we prefer to think of the

subproblem as a challenge in statistical modeling. In particular, our preferred approach

relies heavily on surrogate modeling via the particle learning multivariate Gaussian process

(PLMGP) model of Section 2.3.3.

3.2 Statistical Methods

We combine the filter methods of Section 3.1 with statistical methods in order to

solve constrained optimization problems of the form (1.2). Consider an expensive black box

computer model with a d-dimensional input x ∈ X ⊂ Rd that produces a p-dimensional

vector of outputs y ∈ Rp where the output y contains the values of the objective function

f and constraint function c at input x. We follow the traditional statistical modeling

techniques from the computer modeling literature (Sacks et al., 1989; Santner et al., 2003;

Conti & O’Hagan, 2010) and build surrogate models based on joint multivariate Gaussian

processes for the objective and constraint functions. Due to the expense of evaluating

our black box model, we use the particle learning methods developed in Section 2.3.3 to

sequentially update our joint multivariate Gaussian processes. As a general guideline, we

follow the rule of thumb put forth by Loeppky et al. (2009), and require that the number of

initial runs (or samples) of the computer model to be about ten times the input dimension,

i.e., n = 10d, in order to achieve reasonable surrogate model fits. Likewise, we sample

inputs for our initial n = 10d runs of the computer model using a Latin Hypercube Design
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(LHD) (McKay et al., 1979; Santner et al., 2003; Fang et al., 2005). In our experience,

we found LHD to be an adequate space-filling design for sampling our initial inputs and

possible future candidate inputs under our PLMGP framework.

In order to combine the filter methodology with the surrogate modeling, it is

important to understand the three different spaces we are working in. Probably the most

important space, we denote the “design space” as the domain of the inputs of the computer

experiment (Figure 3.2).

Being able to understand, and obtain a representative sample of, the design space

is imperative for a good robust optimization algorithm. Furthermore, the design space

directly influences the surrogate building in the other two spaces and can be critical in

their design. The second space, denoted the constraint space, is built from the constraint

function, c(x), and the objective function, f(x), at the inputs from the design space (Figure

3.2). The constraint space is always at minimum two dimensions, i.e., p ≥ 2, but can have

dimension as high as the number of constraints plus one, i.e., p ≥ m + 1, and can thus be

extremely high dimensional. Lastly, the third space, denoted the filter space, is built from

the objective function, f(x), and the measure of feasibility

h(x) = ||max{0, c(x)}||1 =

p−1∑
i=1

max{0, ci(x)} (3.2)

The filter space is always two dimensional since the measure of feasibility, h(x), is an

aggregate measure of the constraint functions (Figure 3.2). Important to note, points will

be distinct in the design space, but may not be so in the other two space, i.e., x1 6= x2 with

c(x1) = c(x2) and/or f(x1) = f(x2).

Moreover, each space also serves its own unique purpose. The design space is
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Figure 3.2: An example of a 2-D design space (top left) where eight points were sampled using

a Latin hypercube design. Notice that no two points occupy the same row or column in the Latin

hypercube design. Also, an example of the constraint space (c(x), f(x)) (top right) and the mapping

to the filter space (h(x), f(x)) (bottom). Points in the constraint space such that c(x) ≤ 0 get

mapped to h(x) = 0 in the filter space.
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responsible for the sampling of inputs and dictates where the optimization algorithm is

able to explore. Bad representative sampling of the inputs in the design space can lead to

poor performance of the optimization algorithm. The constraint space is used solely for the

fitting of the surrogate models. The objective function, f(x), and the constraint functions,

c(x), are modeled in the constraint space and mapped deterministically into the filter space

based on the fitted surrogate models. Once in the filter space, the actual filter methods

of Section 3.1 are applied and new candidate points are searched for until a minimum has

been declared. Updating our generic filter Algorithm 1, we have the following new algorithm:

Sample initial inputs from a LHD;

Initialize the filter F ;

while not terminated do

Fit surrogate models for f(x) and c(x) using the joint PLMGP model;

Map the surrogate model in the constraint space to the filter space;

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c(x∗);

if (h(x∗), f(x∗)) is acceptable to F then

Add (h(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h(x∗), f(x∗));

end

Check for termination;

end

Algorithm 2: Statistical filter method
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Although we have an updated statistical filter method, we still need to solve a

subproblem in order to obtain a new better candidate point x∗. In the following two sections

we address two subproblems for selecting candidate points and test their performance on

many synthetic test problems (Section 3.3) and a real-world hydrology computer experiment

(Section 3.6).

3.2.1 Probability Beyond the Filter

The first subproblem, dubbed “probability beyond the filter” (PBF), selects a new

candidate point, x∗, by maximizing the probability that the candidate point falls beyond

(to the southwest of) the current filter. Stated more formally, we wish to find an x∗ such

that

x∗ = max
x∈X

Pr{(h(x), f(x)) is acceptable to the filter F}, (3.3)

Having fit a joint surrogate model to f(x) and c(x), using our joint PLMGP model, the joint

predictive distribution of (f(x), c(x)) is a multivariate T process with mean and covariance

matrix given by (2.13) and (2.14) at input x. Given this fact, we can obtain a best prediction

for (f(x), c(x)) from (2.13), and quantify the uncertainty around that prediction with a

probability ellipse based on (2.14). For example, Figure 3.3 shows a typical filter, with

envelope, and two candidate points A and B and their respective 95% probability ellipses

based on their multivariate T process. Thus, finding a candidate point x∗ satisfying (3.3)

is equivalent to finding a candidate point with the largest area of its ellipse falling outside

(to the left and below) of the filter’s envelope. Although calculating this area of the ellipse

is a well posed problem, solving for the area analytically is not a trivial task, and so we use

66



Monte Carlo integration to estimate the probability beyond the filter instead.
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Figure 3.3: The probability beyond the filter subproblem. Selecting between candidate points A

and B is determined by finding the area of their respective ellipses to the left of the filter envelope.

3.2.2 Maximum Expected Area

Denote the filter produced by a new candidate point, x∗, as F∗. The second

subproblem, coined “maximum expected area” (MEA), selects a new candidate point, x∗,

by maximizing the area between the current filter’s envelope and the new filter F∗ that

would be created by accepting x∗. Candidate points x∗ are predicted at the mean of the

joint distribution of (f(x∗), c(x∗)), which is given by the mean in (2.13) of the multivariate

T process in Section 2.1 at input x∗. Figure 3.4 gives a geometric representation of the

MEA subproblem where the dark blue polygons correspond to the area created by choosing

candidate point A or B. Clearly, in Figure 3.4 the area is maximized by selecting point A
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over point B.
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Figure 3.4: The maximum expected area subproblem. Candidate point A would be preferable to

candidate point B since its dark blue area is larger.

3.2.3 Joint Modeling of the Objective and Constraints

Constrained optimization is typically difficult because at least one of the constraint

violations operates in opposition to the objective function, i.e., they are negatively corre-

lated. We model the objective and constraint functions jointly because we want to be able

to capture this negative dependency assumption, however, we could also forgo this assump-

tion and model the objective and constraint functions independently using independent

particle learning Gaussian process (PLGP) models instead. There is an increase in the time

and computational burden of joint modeling as compared to independent modeling of the

objective and constraint functions, however, as seen in Chapter 2, there are significant gains
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in predictive accuracy and coverage by use of joint modeling. Given that both the solutions

of the subproblems in Sections 3.2.1 and 3.2.2 rely heavily on the accuracy of the prediction

of new candidate points, it is imperative that we do a good job in modeling the objective

and constraint functions. Furthermore, modeling the objective and constraint functions

independently implicitly assumes that the objective function and constraint functions are

not correlated. Clearly the independence assumption can be violated in real-world applica-

tions (for example the hydraulic capture problem in Section 2.4.3) and typically, a rational

assumption would be to assume that the objective and constraint function are negatively

correlated. Moreover, the benefits of using our PLMGP model in the statistical filter rather

than the independent PLGP model is twofold. First off, the PLMGP model in the statistical

filter could improve our probability beyond the filter (PBF) calculations immensely when

the objective function and constraint functions are correlated. Under the independence

assumption the ellipses in our probability calculations will be always axis aligned which

could lead to an under (or over) statement in our probability calculation. Allowing the

objective and constraint functions to be modeled jointly allows for the ellipses to be angled

and non-axis aligned (Figure 4.1) resulting in more accurate probability calculations when

correlations are present.

Secondly, when the objective and constraint function are correlated, the shared

information in modeling the functions jointly can lead to better model fits, which would

ultimately lead to far fewer function evaluations. Being able to obtain good surrogate

models with few functions evaluations is especially important when modeling expensive

black box functions where the time to evaluate function calls is a limiting factor. Thus,
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Figure 3.5: Modeling the objective and constraint functions jointly (right) versus independelty

(left). Modeling the objective and constraint functions using PLMGP can lead to probability ellipses

that are non-axis aligned.

we choose to implement the PLMGP model as the de facto choice for solving the filter

subproblems instead of the PLGP model. We validate our choice to use joint modeling

instead of independent modeling by exploring their differences in Section 3.3.

3.3 Synthetic Test Problems

We demonstrate the effectiveness of our statistical filter method on a suite of

synthetic test problems. Each test problem was chosen to illustrate the many different

kinds of black box computer models one could expect to encounter in the real-world. For all

the test problems that follow, we employ the standard approach in the computer modeling

literature (Santner et al., 2003) by using a Gaussian correlation function with unknown
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length-scale parameter φ and nugget η for all of the test problems, i.e.,

ρ(xj ,xk;φ, η) = exp

(
−

d∑
i=1

|xij − xik|2

φi

)
+ ηδj,k (3.4)

where δ·,· is the Kronecker delta function. For the length-scale parameter φ, we use the

prior suggested in Gramacy & Lee (2008) and let φ ∼ 1
2(Gamma(1, 20) + Gamma(10, 10)).

The prior for φ encodes our belief that about half of the particles should represent Gaussian

process parameterizations with wavy surfaces while the other half should represent Gaussian

process parameterizations that are quite smooth or approximately linear. We place a prior

on the nugget parameter, η ∼ Exp(10), that allows for a moderate amount of noise, or

provides robustness in fitting (Gramacy & Lee, 2012). Lastly, we specify our regression

matrix H, with regression functions h(x1), . . . ,h(xn), such that it is equivalent to a linear

regression model with an intercept term.

The following test problems, P1–P6, are indicative of some of the types of real-

world black box computer models that exist. The spectrum of problems ranged from those

with single inputs and single constraints, to multiple inputs and multiple constraints, with

a mix of everything in between. The goal of each test problem is to minimize the objective

function f while satisfying the constraint that c(x) ≤ 0. We ran our statistical filter

algorithm (Algorithm 2) on each test problem using both independent PLGP models and

our joint PLMGP model and solving each using the PBF and MEA subproblems. When

solving the PBF subproblem we use a sloping envelope for the filter and let β = 0.95 and

γ = 0.05. For ease of calculation, we chose not to let the envelope be of the sloping form for

the MEA subproblem and thus the parameters for the envelope were set to β = 0.95 and

γ = 0. Furthermore, for each synthetic test problem, we evoked the rule of thumb proposed
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by Loeppky et al. (2009) and started with an initial sample of inputs of size n = 10d and

then sequentially selected, one-at-a-time, an additional amount of candidate points based

on maximizing either the probability beyond the front or the maximum expected area. The

results are as follows:

Problem 1: P1

One of the simpler cases, this test problem, P1, represents the case of a single

input x and single nonlinear constraint c(x). Here, we would like to minimize the objective,

f , while simultaneously satisfying the constraint, c, i.e.,

min
x

f(x) = cos
(πx

5

)
+ 0.2 sin

(
4πx

5

)
(3.5)

s.t. c(x) = sin
(πx

5

)
+ 0.2 cos

(
4πx

5

)
≤ 0 (3.6)

x ∈ [0, 10]. (3.7)

The optimal solution to P1 is f(x) = −0.8671835 and occurs x = 5.25585. Common to

many constrained optimization problems, the solution of P1 lies at the boundary of the

constraint function (Figure 3.6).

Before we delve into the results of applying our statistical filter algorithm, it is

worthwhile to take the extra time to step through the details of the setup of the problem.

In general, all of the problems, P1–P6, have their own unique intricacies, but we shall spend

extra time and care in explaining problem P1, with all the figures and analyses that follow

being generalizable to the rest of the problems (P2–P6).

In Section 3.2, we alluded to the fact that it is very important to understand

the different spaces of the optimization problem. For P1, the input space is the simple to
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●

Figure 3.6: Problem 1: We want to minimize the objective, f , while satisfying the constraint, c.

Values of the objective function (blue) are only feasible when the constraint function (red) is below

the dashed line. The green dot corresponds to the global minimum solution to the problem and is

found to lie along the constraint boundary c(x) = 0.
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understand one dimensional closed interval on 0 to 10, however, the constraint and filter

space are much more complicated and fascinating to look at. Recall that the constraint

space consists of all pairs of points (c(x), f(x)). Interestingly, the constraint space, for P1,

forms the shape of a star (Figure 3.7), while the filter space retains the same star shape but

is truncated to the left at zero.

c(x)

f(
x)

●

●

Constraint Space Function
Global Minimum

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
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1.
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h(x)

f(
x)

●
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Filter Space Function
Global Minimum
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Figure 3.7: The constraint space (left) and filter space (right) for Problem 1.

Surrogate models, based on our PLMGP method, are built in the constraint space

and then the actual filter steps are applied in the filter space. Although there appears to be

no linear correlation between the objective and the constraint, in P1, (Pearson’s correlation

coefficient of r = 0.0009), there is still some structure between the objective and constraint

functions in the constraint space that joint modeling may be able to capture. The constraint

space in Figure 3.7 is mapped to the filter space by use of the feasibility measure h in (3.2).

The filter space is where the filter F is constructed, as well as where we solve our
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Figure 3.8: The true filter space (left) for Problem 1, and an example of a filter built from 1000

random inputs (right) for Problem 1. The red points denote output pairs (h(x), f(x)) not belonging

to the filter F , while green points represent output pairs that are part of the filter.

statistical filter algorithm subproblems. Recalling that filter methods take a biobjective

approach to optimization, the aim of the subproblems is to advance the filter as far “south-

west” as possible while driving the successive iterates towards feasibility, i.e., h(x) = 0.

Clearly, from Figure 3.8, the input x that corresponds to h(x) = 0 in the filter F , and

has the smallest objective function value, is the current best solution to the constrained

optimization problem (1.2).

We successfully solved P1 using our statistical filter algorithm, with respect to both

the probability beyond the filter (PBF) and maximum expected area (MEA) subproblems.

In both instances, we started by initializing our filter F with a sample of 10 points chosen

using a Latin hypercube design on [0, 10]. Here, we place an upper bound on the maximum

allowable constraint violation with U = 2. We then proceed to sequentially select 50
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more points based on maximizing the PBF. For purpose of illustration, we step through

a few iterations of the statistical filter algorithm while solving the PBF subproblem. As

we should expect, from Figure 3.9, we see that as the number of successive iterations

increases, the smaller our uncertainty about the predicted values (blue points) under our

PLMGP surrogate model becomes. After initializing the filter F , our uncertainty about

the predicted values, based on our surrogate model, is at its highest. This large amount

of uncertainty intuitively makes sense since, after initialization of the filter, we are trying

to predict new outputs, at untried inputs, conditional on the smallest amount of data. As

we update our filter, i.e., collect more data, our uncertainty in prediction decreases because

we are conditioning on more knowledge about outputs in the constraint space. A feature

of the Gaussian process, we note that uncertainty in our predictions should also be smaller

when predicting near inputs where there already exists data. Gaussian processes rely on

a correlation matrix that dictates how related inputs are in space, and so, our PLMGP

method assumes that the outputs from inputs near each other should be more related, or

correlated, than the outputs from inputs that are farther away. Hence, in Figure 3.9, we

see that no matter what iteration of updating the filter we are at, the uncertainty around

our predictions tends to be much lower where there already exists outputs than at places

where we do not have much information. Interesting to note, in Figure 3.9 after 50 updates

to the filter, we clearly see that our prediction of the upper left arm of the star shape is

missing. Given the shape of the true filter in Figure 3.8, we should expect that our joint

model would predict points throughout the space. However, the filter gives that region of

the space little priority therefore not selecting any candidate points from this region. This
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ultimately results in the joint model to have lowered predictive accuracy due to the small

amounts of data in areas for the filter space.

A common feature of our statistical filter algorithm, as the number of iterations

of the algorithm increases we see that the uncertainty around pairs of points in the filter

tends to decrease much more rapidly than those outside it. We attribute this feature to

the fact that as we observe more points in the region of the filter, our uncertainty becomes

smaller the closer we are to previously observed points. Our statistical filter algorithm does

a very good job at identifying pairs of points that should be added to the filter and so our

predictive uncertainty tends to be higher around points that do not belong to the filter. This

feature of our method is quite desirable in that it is a constant trade-off between searching

locally where uncertainty is low, and searching globally where uncertainty is high.

Returning to solving P1, we ran our statistical filter algorithm utilizing both the

PBF and MEA subproblem and find our optimal solution for P1 to be f(x) = −0.86718

occurring at x = 5.25588, which matches the true solution. Visually, from Figure 3.10,

we see that the algorithm locks on to the optimal solution quite early, and only tends

to select candidate inputs that would add pairs of points for inclusion to the filter. To

illustrate the robustness of our method, we reran the statistical filter algorithm 30 times

under different initial sample inputs from a LHD on [0, 10]. Table 3.1 shows that, on average,

our statistical filter algorithm, under both the PBF and MEA subproblem, obtained the

true global minimum for P1 after 50 iterations of the algorithm. Empirical convergence

of our method was assessed by the fact that the average best feasible solution, and 95%

credible intervals, converged towards the true solution as the number of updates to the
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Figure 3.9: Progression of the filter space for Problem 1 under the PBF subproblem. Green points

correspond to output pairs (h(x), f(x)) that belong to the filter F , while red points correspond to

output pairs that do not. The blue points and red ellipses are the predicted outputs and associated

95% probability ellipses under our PLGMP surrogate model.
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algorithm increased (Figure 3.11).

In Section 3.2.3 we claim that it is advantageous to utilize the PLMGP model to

build joint surrogate models for the objective and constraint functions rather than building

independent ones based on PLGP models. In order to validate this claim, we also reran the

statistical filter algorithm on P1, under the same conditions as before, but now we instead

used independent surrogate models based on PLGP models rather than the joint models

based on PLMGP. We assessed the performance and impact of independent modeling by

rerunning the statistical filter algorithm 30 times under different initial sample inputs from

a LHD on [0, 10]. We summarize the results of this exercise with Table 3.1 and Figure 3.11.

n 10 30 50

95%

PBF
Independent -0.76094 -0.84575 -0.86717
Joint -0.83574 -0.86432 -0.86717

MEA
Independent -0.71076 -0.85332 -0.86717
Joint -0.83230 -0.86657 -0.86717

Average

PBF
Independent -0.83914 -0.86557 -0.86718
Joint -0.85676 -0.86687 -0.86718

MEA
Independent -0.82160 -0.86157 -0.86718
Joint -0.85784 -0.86710 -0.86718

5%

PBF
Independent -0.86649 -0.86718 -0.86718
Joint -0.86668 -0.86718 -0.86718

MEA
Independent -0.86558 -0.86713 -0.86718
Joint -0.86674 -0.86718 -0.86718

Table 3.1: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P1. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using MEA performs the best for this problem

after 50 additional evaluations.
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Figure 3.10: Progression of the filter space for Problem 1 under the PBF subproblem. Similar

results hold for the MEA subproblem.
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From both Table 3.1 and Figure 3.11 we see that the statistical filter algorithm, on

average, found the optimal solution to P1 after 50 iterations for both joint and independent

modeling. And although both methods found the optimal solution after 50 iterations,

we can see visually from Figure 3.11, joint modeling tended to converge to the optimal

solution much faster than did independent modeling. In practice, the functions that we are

optimizing come from expensive black box computer experiments, and so, it is imperative

that we work with algorithms that are able to seek out an optimal solution with fewer

iterations. In the case of computer experiments, there may even be times when the computer

models simply crash or end abruptly and so obtaining solutions that are much lower in fewer

iterations is a desirable quality we seek.

Minimization Progress for P1
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Figure 3.11: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P1. The figure shows

the average best feasible minimum over the 30 runs.
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In P1, we saw our statistical filter algorithm did a good job of locating the optimal

solution. Not surprisingly, using surrogate models built either from PLMGP or PLGP

models converged to the same optimal solution in the end. However, it was the speed at

which the two algorithms converged that highlights the additional benefit of joint modeling.

Both models did a good job of finding the optimal solution because of the relatively easy

input space and smooth well-behaved functions chosen. In the results that follow, we see

that for simple functions this tended to be the case, although, as the number of constraints

and/or inputs increased, the differences become appreciable.

For the rest of the test problems, P2–P6, we conducted similar analyses as in the

case of P1, but omit the exhaustive illustrative discussion and focus on the performance

and solutions of our statistical filtering algorithm.

Problem 2: P2

The simplest remaining problem we considered, P2, represents the case of a single

input x and a single simple constraint c(x). Here, we would like to minimize the objective,

f , while simultaneously satisfying the constraint, c, i.e.,

min
x

f(x) = 1 + (x− 4)2 (3.8)

s.t. c(x) = 1− 0.5(x− 3)2 ≤ 0 (3.9)

x ∈ [0, 8]. (3.10)

The optimal solution to P2 is f(x) = 1.171522 and occurs at x = 3 +
√

2 (Figure

3.12). Once again, the solution of P2 lies along the boundary of the constraint function. As

before, we ran the statistical filter algorithm solving for both the PBF and MEA subprob-
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Figure 3.12: Problem 2: We want to minimize the objective, f , while satisfying the constraint, c.

Values of the objective function (blue) are only feasible when the constraint function (red) is below

the dashed line. The green dot corresponds to the global minimum solution to the problem and

is found to lie along the constraint boundary. Making the problem more complicated, the feasible

region for P2 is also disconnected.
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lems and did so based on surrogate models built from joint PLMGP model and independent

PLGP model. We first sampled 10 initial inputs from a LHD on [0, 8] and then sequentially

selected 50 candidate points from a LHD on [0, 8] based on the appropriate subproblem.

We reran this analysis 30 times under different initial sample inputs from a LHD on [0, 8]

and recorded the average best feasible solution (Figure 3.13) and 95% posterior intervals

(Table 3.2).

n 10 30 50

95%

PBF
Independent 1.6720 1.1777 1.1716
Joint 1.3552 1.1775 1.1716

MEA
Independent 1.3848 1.1906 1.1716
Joint 1.3552 1.1755 1.1716

Average

PBF
Independent 1.2699 1.1722 1.1715
Joint 1.2101 1.1720 1.1715

MEA
Independent 1.2435 1.1735 1.1715
Joint 1.2033 1.1715 1.1715

5%

PBF
Independent 1.1762 1.1715 1.1715
Joint 1.1722 1.1715 1.1715

MEA
Independent 1.1735 1.1715 1.1715
Joint 1.1726 1.1715 1.1715

Table 3.2: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P1. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using PBF performs the best for this problem

after 50 additional evaluations..

The general trend, as seen in P1, was that at the termination of the algorithm,

all four different scenarios reached the optimal solution to P2. The use of joint surrogate

modeling seemed to do slightly better in converging faster to the optimal solution than did
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Minimization Progress for P2
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Figure 3.13: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P2. The figure shows

the average best feasible minimum over the 30 runs.
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independent modeling, but on a problem as simple as this, the results for all four methods

were almost indistinguishable.

Problem 3: P3

A harder problem (taken from Gramacy et al., 2015), this test problem represents

the case of multiple inputs, x1 and x2, and a single, highly nonlinear constraint c(x). Here,

we would like to minimize the objective, f , while simultaneously satisfying the constraint,

c, i.e.,

min
x

f(x) = x1 + x2 (3.11)

s.t. c(x) = 1.5− x1 − 2x2 − 0.5 sin(2π(x21 − 2x2)) ≤ 0 (3.12)

x1, x2 ∈ [0, 1]. (3.13)

The optimal solution to P3 is f(x) = 0.5998 and occurs at x1 = 0.1954 and x2 = 0.4044.

The solution of P3 lies along the boundary of the highly nonlinear constraint function

(Figure 3.14).

Now that our input space is larger than the two previous problems we need to

sample a larger initial set of inputs, and so, we sample 20 initial inputs from a LHD on

[0, 1]2 and then sequentially selected 60 candidate points from the same LHD based on

the appropriate subproblem. We reran this analysis 30 times under different initial sample

inputs from a LHD on [0, 1]2 and recorded the average best feasible solution (Figure 3.15)

and 95% posterior intervals (Table 3.3).

All four different scenarios reached the optimal solution of P3, with the joint sur-

rogate modeling doing a better job in converging faster to the optimal solution than its
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Figure 3.14: Problem 3: We want to minimize the objective, f , while satisfying the constraint, c.

The objective function is a two-dimensional linear plane represented by the heat map where red and

white corresponds to low and high values, respectively. The black contour curves define the region

of the space where the constraint function is satisfied. Here, the infeasible region is all area to the

left of the black contour curves. The blue dot corresponds to the global minimum of the problem,

and the green dots correspond to two local minima. The global solution, as well as the two local

solutions, to the problem is found to lie along the constraint boundary.

87



n 20 40 60

95%

PBF
Independent 0.73142 0.63272 0.59987
Joint 0.67042 0.59986 0.59984

MEA
Independent 0.82478 0.67151 0.59987
Joint 0.65703 0.59998 0.59982

Average

PBF
Independent 0.62587 0.60820 0.59981
Joint 0.61492 0.59982 0.59980

MEA
Independent 0.64733 0.61345 0.59981
Joint 0.61734 0.59984 0.59980

5%

PBF
Independent 0.60141 0.60087 0.59980
Joint 0.60081 0.59980 0.59980

MEA
Independent 0.60196 0.60089 0.59980
Joint 0.60175 0.59980 0.59980

Table 3.3: After 60 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P3. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using PBF performs the best for this problem

after 60 additional evaluations.
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Minimization Progress for P3
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Figure 3.15: After 60 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P3. The figure shows

the average best feasible minimum over the 30 runs.
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independent counterpart. In the joint case, it appeared that the PBF and MEA subprob-

lems produced nearly indistinguishable results, while in the independent case the MEA

subproblem seemed to do a worse job early on as compared to the PBF subproblem.

Problem 4: P4

This test problem, P4, represents the case of a single input x, and two nonlin-

ear constraints c1(x) and c2(x). Here, we would like to minimize the objective, f , while

simultaneously satisfying the constraints, c1 and c2, i.e.,

min
x

f(x) = cos
(πx

5

)
+ 0.2 sin

(
4πx

5

)
(3.14)

s.t. c1(x) = sin
(πx

5

)
+ 0.2 cos

(
4πx

5

)
≤ 0 (3.15)

c2(x) = cos
(πx

5

)
+ 0.2 cos

(
4πx

5

)
≤ 0 (3.16)

x ∈ [0, 10]. (3.17)

The optimal solution to P4 is f(x) = −0.8671835 and occurs at x = 5.25585 (Figure 3.16).

We reran the prior analysis as before and first sampled 10 initial inputs from a

LHD on [0, 10] and then sequentially selected 50 candidate points from the same LHD based

on the appropriate subproblem. Unsurprisingly, we found that using PBF versus MEA or

joint versus independent did not make much of a difference in the final optimal solution

found at the end of the iterations. All four combinations of the algorithm, on average, found

the true solution (Table 3.4). However, on average, the statistical filter algorithm based

on joint modeling and the MEA subproblem converged the fastest to the optimal solution

(Figure 3.17), followed by the solution found from joint modeling and the PBF subproblem.

Once again joint modeling was preferable to independent modeling.
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Figure 3.16: Problem 4: We want to minimize the objective, f , while satisfying the constraints,

c1 and c2. Values of the objective function (blue) are only feasible when the constraint functions c1

(red) and c2 (pink) are below the dashed line. The green dot corresponds to the global minimum

solution to the problem and is found to lie along the constraint boundary of c1(x) = 0.
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n 10 30 50

95%

PBF
Independent -0.71541 -0.79150 -0.86715
Joint -0.74192 -0.84494 -0.86716

MEA
Independent -0.70536 -0.82981 -0.86715
Joint -0.76704 -0.86434 -0.86717

Average

PBF
Independent -0.80083 -0.84282 -0.86718
Joint -0.83765 -0.86000 -0.86718

MEA
Independent -0.81051 -0.85041 -0.86718
Joint -0.84743 -0.86695 -0.86718

5%

PBF
Independent -0.86558 -0.86558 -0.86718
Joint -0.86546 -0.86653 -0.86718

MEA
Independent -0.86337 -0.86690 -0.86718
Joint -0.86674 -0.86718 -0.86718

Table 3.4: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P4. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using MEA performs the best for this problem

after 50 additional evaluations.
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Minimization Progress for P4
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Figure 3.17: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P4. The figure shows

the average best feasible minimum over the 30 runs.
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Problem 5: P5

A much harder example, this test problem, P5, comes from Floudas & Parda-

los (1990) and represents the case of multiple inputs, x1, x2, x3, x4, and x5, and a single

constraint c(x). Here, we would like to minimize the objective, f , while simultaneously

satisfying the constraint, c, i.e.,

min
x

f(x) = 42x1 + 44x2 + 45x3 + 47x4 + 47.5x5 − 50
5∑
i=1

x2i (3.18)

s.t. c(x) = 20x1 + 12x2 + 11x3 + 7x4 + 4x5 − 40 ≤ 0 (3.19)

x ∈ [0, 1]5. (3.20)

The optimal solution to P5 is f(x) = −17 and occurs at x = (1, 1, 0, 1, 0). This problem was

much harder to solve than P1–P4 because the solution to P5 lies exactly on the edge of the

input space. This is a challenge because we are almost surely guaranteed to never sample

a point exactly on the edge of the input space using a Latin hypercube design. In order to

overcome this obstacle, we allowed ourselves to sample from a LHD that was slightly larger

than the input space of x, say for example xi ∈ [−0.05, 1.05] for i = 1, . . . , 5, and in the

event we sampled a value of xi either less than 0 or greater than 1, we rounded to either

0 or 1 as appropriate. For clarity, if we sampled the input x = (1, 1.02, 0.3,−.01, 0.4) this

would be adjusted to be x = (1, 1, 0.3, 0, 0.4). Sampling our inputs in this modified fashion

allowed us to be able to obtain the edge case where the input x was located exactly on the

edge of the input space.

In order to solve P5, we ran our statistical filter algorithm by first sampling 60

initial inputs from a LHD on the unit hypercube [0, 1]5 and then sequentially selected 150
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candidate points from a LHD on [−0.05, 1.05]5 based on the appropriate subproblem. We

reran this analysis 30 times under different initial sample inputs from a LHD on [0, 1]5 and

recorded the average best feasible solution (Figure 3.18) and 95% posterior intervals (Table

3.5).

n 50 100 150

95%

PBF
Independent 0.9645 -4.2586 -17.0000
Joint -2.4764 -17.0000 -17.0000

MEA
Independent -2.0727 -2.42340 -17.0000
Joint -2.7603 -17.0000 -17.0000

Average

PBF
Independent -6.1547 -7.3275 -17.0000
Joint -8.3218 -17.0000 -17.0000

MEA
Independent -6.6835 -8.2955 -17.0000
Joint -8.1635 -17.0000 -17.0000

5%

PBF
Independent -11.6561 -11.8828 -17.0000
Joint -12.7532 -17.0000 -17.0000

MEA
Independent -12.2849 -14.1332 -17.0000
Joint -14.3213 -17.0000 -17.0000

Table 3.5: After 150 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P5. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using MEA performs the best for this problem

after 150 additional evaluations.

P5 is not only a challenging problem because the solution lies exactly at the edge

of the input space, but moreover, P5 has many feasible solutions at the different edges of

the input space that produce solutions that are near optimal. For example, recall that

the optimal solution of -17 for P5 occurs at x = (1, 1, 0, 1, 0), however, other possible edge

configurations, such as x = (1, 0, 1, 0, 1) or x = (1, 1, 0, 0, 1), produce feasible solutions that
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Minimization Progress for P5
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Figure 3.18: After 150 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P5. The figure shows

the average best feasible minimum over the 30 runs.
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are close to the optimal solution, i.e., f(1, 0, 1, 0, 1) = −15.5 and f(1, 1, 0, 0, 1) = −16.5

respectively. Graphically, we cannot visualize the 5-dimensional input space but we can

envision that these different feasible input configurations are along the edges and corners

of a 5-dimensional hypercube that may be on opposite sides of the hypercube or not close

to each other in the Euclidean sense. Thus, a method for solving P5 needs to be able to

locate the edge solution while not getting stuck in local minima that may be far from the

global minimum solution.

All four optimization scenarios, PBF independent/joint and MEA independent/joint,

were able to find the global solution to P5. However, from Figure 3.18, it was clear that

the algorithm that utilized the joint surrogate modeling framework performed much better

than the independent models. In fact, the algorithm based on the joint models was able to

converge to the global minimum before the 100th iteration of the algorithm, whereas the

independent model took substantially longer. In both instances, joint and independent, the

statistical filter algorithms that solved the MEA subproblem appeared to converge to the

global minimum much faster as compared to solving the PBF subproblem.

Problem 6: P6

The hardest synthetic problem we present in this chapter, test problem P6, repre-

sents the case of multiple inputs, x1, x2, x3, x4, x5, x6, x7, and x8, and two highly nonlinear

constraints c1(x) and c2(x). Here, we would like to minimize the objective, f , while simul-
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taneously satisfying the constraints, c1 and c2, i.e.,

min
x

f(x) = cos(π(x1 + x2x3 + x4)) + 0.2 sin

(
4π(x5x6 + x7)

x8 + 1

)
(3.21)

s.t. c1(x) = sin(π(x1 + x2x3 + x4)) + 0.2 cos

(
4π(x5x6 + x7)

x8 + 1

)
≤ 0 (3.22)

c2(x) = − cos(π(x1 + x2x3 + x4)) + 0.2 cos

(
4π(x5x6 + x7)

x8 + 1

)
≤ 0 (3.23)

x ∈ [0, 1]8. (3.24)

The optimal solution to P6 is f(x) = −0.2828427, which occurs at x = (0.7909, 0.2670, 0.0798,

0.6426, 0.9161, 0.9377, 0.9645, 0.3893).

We ran the statistical filter algorithm solving for both the PBF and MEA sub-

problems and did so based on surrogate models built from both a joint PLMGP model and

an independent PLGP model. We first sampled 80 initial inputs from a LHD on [0, 1]8 and

then sequentially selected 220 candidate points from a LHD on [0, 1]8 based on the appro-

priate subproblem. We reran this analysis 30 times under different initial sample inputs

from a LHD on [0, 1]8 and recorded the average best feasible solution (Figure 3.19) and 95%

posterior intervals (Table 3.6).

P6 was the most challenging synthetic problem due to the multiple constraints and

large input space. As the number of inputs to the computer model increases, the harder

the search for the optimal solution to the problem becomes. Both the PBF and MEA

subproblems, under the joint surrogate model, were able find near optimal solutions to P6

while the independent models did not. Although trending towards the optimal solution of

P6 (Figure 3.19), both independent models, on average, did not converge to the optimal

solution for the total number of function evaluations allotted. P6 highlights the benefits

98



n 50 150 220

95%

PBF
Independent -0.091881 -0.097320 -0.107861
Joint -0.19613 -0.28055 -0.28208

MEA
Independent -0.19082 -0.21673 -0.23412
Joint -0.10378 -0.28103 -0.28201

Average

PBF
Independent -0.22548 -0.24420 -0.24924
Joint -0.24677 -0.28209 -0.28283

MEA
Independent -0.23759 -0.25671 -0.26254
Joint -0.23837 -0.28230 -0.28284

5%

PBF
Independent -0.27413 -0.28070 -0.28071
Joint -0.27765 -0.28282 -0.28284

MEA
Independent -0.26902 -0.27647 -0.27670
Joint -0.27830 -0.28278 -0.28284

Table 3.6: After 220 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for P6. The table shows the

average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

minima found. On average, the joint model using MEA performs the best for this problem after 150

additional evaluations.
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Minimization Progress for P6
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Figure 3.19: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for P6. The figure shows

the average best feasible minimum over the 30 runs.
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of joint modeling in that joint modeling tends to do a better job of predicting the outputs

for the objective and constraint functions when the functions are complex and there is far

fewer data available.

All six of the synthetic test problems showcased the fact that joint modeling of

the objective and constraint functions lead to better results, as compared to independent

modeling, in solving constrained optimization problems. The predictive accuracy of the

joint models was usually much higher with fewer data points than the independent models

and was ultimately the reason the joint models lead to faster convergence to the optimal

solutions of the problems. As further evidence of the superiority of joint modeling over

independent modeling, we summarize our findings for the synthetic test problems in Table

3.7. For each test problem we partition the number of additional function evaluations into

three time points: beginning, middle, and end, based on the first, second, and third time

point recorded in each problem’s table of results. We note that in each test problem, the

joint models always did better in the beginning and middle of running the statistical filter

algorithm than did the independent models. Moreover, the joint models also did better more

times than the independent models at the end time points as well for all test problems. The

more interesting point however is that there appeared to be no clear cut joint model that did

better when solving the two different subproblems. In most cases it appeared that the joint

model solving the MEA subproblem tended to do better than the joint model solving the

PBF subproblem (14 best iterative solutions found by the MEA subproblem as compared

to 10 best iterative solutions found by the PBF subproblem), however, the reason for this

still needs further investigation.
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Beginning Middle End Total

Problem 1

PBF
Independent – – X 1
Joint – – X 1

MEA
Independent – – X 1
Joint X X X 3

Problem 2

PBF
Independent – – X 1
Joint – – X 1

MEA
Independent – – X 1
Joint X X X 3

Problem 3

PBF
Independent – – – 0
Joint X X X 3

MEA
Independent – – – 0
Joint – – X 1

Problem 4

PBF
Independent – – X 1
Joint – – X 1

MEA
Independent – – X 1
Joint X X X 3

Problem 5

PBF
Independent – – X 1
Joint X X X 3

MEA
Independent – – X 1
Joint – X X 2

Problem 6

PBF
Independent – – – 0
Joint X – – 1

MEA
Independent – – – 0
Joint – X X 2

Table 3.7: A summary, for all of the test problems, of the best iterative solution found based on

choice of surrograte model and subproblem solved. Here, beginning, middle and end correspond to

first, second, and third time point recorded in each problem’s table of results. A check mark denotes

which method, on average, found the smallest feasible value of the objective function at each time

point.
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3.4 Welded Beam Problem

A less artificial example, the welded beam problem (Coello Coello & Montes (2002);

Hedar (2004)) has four inputs x1, x2, x3, and x4, and six constraints c1(x), . . . , c6(x). The

objective function, f , is the cost associated to construct a welded beam subject to con-

straints on sheer stress (c1(x), t), bending stress in the beam (c2(x), s), buckling load

on the bar (c6(x), Pc), end deflection of the beam (c5(x), d), and side constraints (c3(x),

c4(x)). Here, we would like to minimize the objective, f , while simultaneously satisfying
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the constraints, c1, . . . , c6, i.e.,

min
x

f(x) = 1.10471x21x2 + 0.04811x3x4(14.0 + x2) (3.25)

s.t. (3.26)

P = 6000, L = 14, E = 30× 106, G = 12× 106 (3.27)

tmax = 13600, smax = 30000, xmax = 10, dmax = 0.25 (3.28)

M = P (L+ x2/2), R =
√

0.25(x22 + (x1 + x3)2) (3.29)

J =
√

2x1x2(x
2
2/12 + 0.25(x1 + x3)

2) (3.30)

Pc =
4.013E

6L2
x3x

3
4

(
1− 0.25x3

√
E/G

L

)
(3.31)

t1 = P/(
√

2x1x2), t2 = MR/J (3.32)

t =
√
t21 + t1t2x2/R+ t22 (3.33)

s = 6PL/(x4x
2
3) (3.34)

d = 4PL3/(Ex4x
3
3) (3.35)

c1(x) = (t− tmax)/tmax ≤ 0 (3.36)

c2(x) = (s− smax)/smax ≤ 0 (3.37)

c3(x) = (x1 − x4)/xmax ≤ 0 (3.38)

c4(x) = (0.10471x21 + 0.04811x3x4(14.0 + x2)− 5.0)/5.0 ≤ 0 (3.39)

c5(x) = (d− dmax)/dmax ≤ 0 (3.40)

c6(x) = (P − Pc)/P ≤ 0 (3.41)

0.125 ≤ x1 ≤ 10, 0.1 ≤ xi ≤ 10 for i = 2, 3, 4 (3.42)

The optimal solution to the welded beam problem (WB), as reported by Hedar

104



(2004), is f(x) = 1.7250022, which occurs at x = (0.2056, 3.4726, 9.0366, 0.2057).

One of the toughest parts of the welded beam problem is that the set of possible

feasible points is very small as compared to the entire input space. Taking a Latin Hyper-

cube sample (LHS) of size 1,000,000 yields only 972 feasible points, or rather, only 0.0972%

of the design points in a LHD will be feasible for the welded beam problem. Having fewer

than 1% of the initial set of inputs be feasible means that our PLMGP model needs to

do a good job at prediction and uncertainty quantification of the predictions so that the

filter method can direct the search towards areas where the chance of encountering feasible

points is high.

To solve the WB problem, we start with an initial sample of 40 inputs from a

LHD over the input space and sequentially sample 960 more inputs. Using a LHD to

predict new outputs is an inefficient space filling design in the context of the WB problem,

and so, because our LHD provides us with so few feasible inputs, we decided to follow

the strategy of Taddy et al. (2009) and select the candidate set of inputs from a LHD

of size 500 times the input dimension augmented by an additional 10% of the candidate

locations taken from a smaller LHD bounded to within 5% of the domain range of the

current best feasible point. Using the approach of Taddy et al. (2009) better ensures that

our search should continue to predict at some feasible inputs once we have found at least

one feasible input. Under these conditions, we ran our statistical filter algorithm using the

joint PLMGP model and progressed the search for new inputs by solving both the PBF and

MEA subproblem. Leading to near identical solutions, solving the MEA subproblem led

to an optimal input configuration of x = (0.2057296, 3.470489, 9.036624, 0.2057296), which
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yields a feasible value of 1.7248523. The solution found was only slightly better than the

optimal solution reported in Hedar (2004) of 1.7250022.

We compared the performance of joint surrogate modeling to independent surro-

gate modeling by rerunning the analysis 30 times under different initial sample inputs from

a LHD over the input space. We recorded the average best feasible solution, Figure 3.20,

and its 95% posterior intervals, Table 3.8, for comparison.

n 300 600 960

95%

PBF
Independent 1110.84 1107.9701 1.7385
Joint 1111.61 1.7445 1.7361

MEA
Independent 1134.89 1120.9307 1.7424
Joint 1097.26 1.7450 1.7356

Average

PBF
Independent 844.28 423.5903 1.7314
Joint 455.15 1.7354 1.7309

MEA
Independent 924.97 779.7948 1.7319
Joint 413.64 1.7356 1.7308

5%

PBF
Independent 1.7306 1.7284 1.7250
Joint 4.4548 1.7372 1.7276

MEA
Independent 5.8341 4.5256 1.7249
Joint 1.7334 1.7286 1.7276

Table 3.8: After 960 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for the welded beam problem. The

table shows the average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles

for the best feasible minima found. On average, the joint model using MEA performs the best for

this problem for 960 addtional evaluations.

The joint surrogate models drastically outperformed the independent surrogate

models in converging to the true optimal solution of the welded beam problem (Figure

3.20). Given the small percentage of feasible inputs, both the joint and independent models
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took much longer to converge towards the optimal solution than seen in the prior synthetic

test problems of Section 3.3. However, both models ended up converging (on average) quite

closely to the optimal solution with the joint surrogate model beating the independent

surrogate model by almost 300 iterations (Figure 3.20).

Figure 3.20: After 960 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent surrogate models for the welded beam

problem. The figure shows the average best feasible minimum over the 30 runs.

3.5 Comparators

In Sections 3.3 and 3.4 we compared our statistical filter algorithm under joint and

independent modeling of the objective and constraint functions. In all test problems, we
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found that joint modeling was the better approach, as compared to independent modeling,

where the statistical filter algorithm under the joint model always converged, empirically,

to the optimal solution of the test problems. To further assess the practical usefulness of

our statistical filter, we compared our method to three derivative free optimization (DFO)

algorithms that are capable of handling the constrained optimization case. The three DFO

comparators we used were constrained optimization by linear approximation (COBYLA;

Powell (1994)), method of moving asymptotes (MMA; Svanberg (2002)), and sequential

least squares quadratic programming (SLSQP; Kraft (1988)). COBYLA is an algorithm for

derivative free optimization, with nonlinear inequality and equality constraints, where the

algorithm works by constructing successive linear approximations of the objective function

and constraints via a simplex of n+1 points (in n dimensions), and optimizes these approx-

imations in a trust region at each step. The MMA algorithm works by generating a strictly

convex approximating subproblem in each step of the iterative process. The generation of

these subproblems is controlled by the so-called moving asymptotes, which both stabilize

and speed up the convergence of the general process (Svanberg, 2002). Lastly, the SLSQP

algorithm works by optimizing successive second-order (quadratic/least-squares) approxi-

mations of the objective function (via Broyden-Fletcher-Goldfarb-Shanno updates), with

first-order (affine) approximations of the constraints.

We compared and contrasted our statistical filter algorithm to the three DFO

algorithms by testing each DFO algorithm on all of the synthetic test problems, but for

brevity, we only show the results for P1 and P6 of Section 3.3, and the welded beam

problem. We implemented each of the three DFO algorithms using the R nloptr package

108



library (Ypma, 2014) and used the default hyper parameter values provided in nloptr.

We compared the results of each DFO algorithm to the results already established by our

statistical filter algorithm in Section 3.3 and 3.4. For each of the three comparative DFO

algorithms we set the maximum number of iterative function evaluations (updates) to be the

same number used previously by our statistical filter algorithm for each respective problem.

Each of the DFO comparators required an initial starting input, and so, we always chose

the initial input using a LHD from the appropriate domain of each problem. The initial

starting input for each comparator was allowed to be either feasible or infeasible.

On the spectrum of difficulty of synthetic test problems, P1 was considered to be

an easy test problem as it only contained one nonlinear constraint and one input. We chose

to test the three DFO algorithms on P1 in order to compare how well our algorithm could

stack up against established comparators for the “simple” test case scenario. We ran the

three DFO comparators 30 times under different initial inputs from a LHD on [0, 10] and

recorded the average best feasible solution, Figure 3.21, and its 95% quantiles and posterior

intervals, Table 3.9. In what follows, we simply refer to the statistical filter algorithm using

the joint model, under both the PBF and MEA subproblems, as the PBF and MEA models,

respectively.

Surprisingly, the simple case, P1, was actually much harder for the three compar-

ative DFO algorithms to solve. On average, over the 60 iterations of each DFO algorithm,

none of the comparators were able to converge to the optimal feasible solution of P1. In

fact, all three DFO algorithms, on average, appeared to converge (or asymptote) to a much

higher solution than those found by the statistical filter algorithm (Figure 3.21). This can
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n 20 40 60

95%

PBF -0.83574 -0.86432 -0.86717
MEA -0.83230 -0.86657 -0.86717
COBYLA 0.69001 0.69001 0.69001
MMA 0.06491 0.05957 0.05957
SLSQP 0.69001 0.69001 0.69001

Average

PBF -0.85676 -0.86687 -0.86718
MEA -0.85784 -0.86710 -0.86718
COBYLA -0.72562 -0.72562 -0.72562
MMA -0.71842 -0.71904 -0.71904
SLSQP -0.44908 -0.44908 -0.44908

5%

PBF -0.85676 -0.86687 -0.86718
MEA -0.86674 -0.86718 -0.86718
COBYLA -0.86718 -0.86718 -0.86718
MMA -0.86718 -0.86718 -0.86718
SLSQP -0.86718 -0.86718 -0.86718

Table 3.9: The progress in minimization for 30 Monte Carlo repetitions with random initial condi-

tions using the different statistical filter algorithms for P4. The table shows the average best feasible

minimum over the 30 runs, as well as 5th and 95th percentiles for the best feasible minima found.
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Minimization Progress for P1
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Figure 3.21: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the statistical filter algorithm (PBF and MEA) and the three DFO algorithms

(COBYLA, MMA, and SLSQP) for P1. The figure shows the average best feasible minimum over

the 30 runs.
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be attributed to the fact that the average solution over the 30 runs for the three DFO

comparators is highly susceptible to bad runs that converged to (or near) local minima.

However, as we see by the lower 5% quantiles, Table 3.9, all of the DFO comparators were

able to find the optimal solution to P1 at least once, and each of the DFO comparators

were also able to do it much faster than the statistical filter algorithm.

One of the main disadvantages of the three DFO comparators is that they tend to

get stuck in local minima. Each of the three DFO algorithms is very good at local search

and so when the search begins near a stationary point the algorithms tend to converge

quite quickly to it. However, when the stationary point is only a local minimum, the DFO

algorithms tend to become stuck at that point, often declaring convergence prematurely,

and not exploring the space globally. Thus, convergence to a global minimum is often

contingent upon the comparators being started near the global minimum or far from local

modes. In the feasible area, P1 has one global minimum and two local minima (Figure

3.22) and is responsible for the behavior of the solutions we see in Table 3.9 for the three

comparators.

The values of the solutions for the three comparators in Table 3.9 tend to be

either at a local minimum or averaged in between two local minima. Thus, being able to

search the input space globally, as well as not get stuck in local minima, is a key success

of our algorithm. Statistical surrogate modeling allows us to understand and quantify our

uncertainty about the input space globally, while utilizing filter methods allows us to search

well locally for solutions. The marriage of the two concepts is a powerful tool that the

standard local search methods lack. Furthermore, in all 30 runs of the PBF and MEA
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Figure 3.22: P1 has one global minimum and two local minima in the feasible region.

methods, each run found at least one feasible point over the 60 iterations. On the other

hand, out of the 30 runs, there were 8 COBYLA runs, 11 MMA runs, and 10 SLSQP runs

that did not find any feasible solutions. For a fair comparison we removed these runs from

the prior analysis, however, it is worth noting that they did exist and moreover it highlights

a superior aspect of the statistical filter algorithm in comparison.

Seeing how poorly the three comparators performed on a simple test case problem,

we did not envision the comparators to do much better as the complexity of the problem

increases. Still, comparing and contrasting our method with the comparators on a full range

of different difficulties is an essential task. Testing the comparators on a harder problem,

we applied each of the three DFO algorithms to P6, which was the hardest synthetic test

problem in Section 3.3. P6 represented the case when there was more than one constraint,

and multiple inputs. We ran the three DFO comparators 30 times under different initial
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inputs from a LHD on [0, 1]8 and recorded the average best feasible solution (Figure 3.21)

and 95% quantiles and posterior intervals (Table 3.9).

n 100 200 300

95%

PBF -0.08806 -0.20931 -0.28208
MEA -0.07660 -0.23992 -0.28201
COBYLA 0.55907 0.23932 0.22039
MMA 0.80000 0.80000 0.80000
SLSQP 0.85264 0.53296 0.53296

Average

PBF -0.20790 -0.26479 -0.28283
MEA -0.20154 -0.27330 -0.28284
COBYLA -0.19576 -0.22608 -0.23347
MMA -0.11287 -0.11287 -0.11287
SLSQP -0.04981 -0.11867 -0.11867

5%

PBF -0.27604 -0.28231 -0.28284
MEA -0.26490 -0.28225 -0.28284
COBYLA -0.28280 -0.28284 -0.28284
MMA -0.28284 -0.28284 -0.28284
SLSQP -0.28284 -0.28284 -0.28284

Table 3.10: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the different statistical filter algorithms for P4. The table shows the average best

feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best feasible minima

found.

Not deviating much from the results of P1, on average, the three DFO compara-

tors performed rather poorly as compared to the PBF and MEA methods. In fact, on

average, the PBF and MEA methods converged to the optimal solution of P6 while only

the COBYLA method came close to reaching it. On average, COBYLA seemed to be get-

ting closer to the optimal solution, and may have converged if run for longer, while MMA

and SLSQP seemed to converge earlier to local minima (Figure 3.23). Once again, noting
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Figure 3.23: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the statistical filter algorithm (PBF and MEA) and the three DFO algorithms

(COBYLA, MMA, and SLSQP) for P6. The figure shows the average best feasible minimum over

the 30 runs.

115



the 5% quantiles of Table 3.10, each of the three comparators at least once converged to

the optimal solution, and when they did, they did it at a much faster rate than the PBF

and MEA methods. P6 echoes the fact that when started near a local minimum, the DFO

comparators are quick to find a local minimum and do not explore the space globally. Like-

wise, out of the 30 runs of the DFO comparators, COBYLA had 6, MMA had 10, and SQP

had 13 runs in which the entire run failed to find any feasible points. The fact that our

PBF and MEA methods always find at least one feasible point is a desirable quality that

the DFO comparators lack.

Lastly, we compared the performance of our PBF and MEA method to the DFO

comparators using the welded beam (WB) problem. Recall that the WB problem resembled

a more realistic real-world problem and had the additional challenge of not containing a large

percentage of feasible points. Following the same strategy as before, we ran the three DFO

comparators 30 times under different initial inputs from a LHD over the input space and

recorded the average best feasible solution (Figure 3.24) and 95% quantiles and posterior

intervals (Table 3.11).

Unlike the results for P1 and P6, the DFO comparators do a much better job in

solving the welded beam problem. In fact, of the three comparators, the SLSQP algorithm

clearly outperformed the PBF and MEA methods with all 30 runs of the SLSQP algorithm

finding the optimal solution in fewer than 350 iterations (Table 3.11). In comparison, the

SLSQP algorithm was able to converge to the true solution in more than half the time

it took for the PBF and MEA algorithms to do so. Likewise, COBYLA and MMA also

converged much faster to the optimal solution of WB in fewer than 350 iterations at least
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n 350 700 1000

95%

PBF 1111.61 1.7392 1.7361
MEA 1097.26 1.7381 1.7356
COBYLA 157.85 2.5625 2.2842
MMA 3.7622 3.7622 3.7622
SLSQP 1.7249 1.7249 1.7249

Average

PBF 420.46 1.7340 1.7309
MEA 413.64 1.7339 1.7308
COBYLA 16.5037 1.8170 1.7758
MMA 1.9346 1.9346 1.9346
SLSQP 1.7249 1.7249 1.7249

5%

PBF 1.7306 1.7282 1.7249
MEA 1.7316 1.7276 1.7249
COBYLA 1.7249 1.7249 1.7249
MMA 1.7249 1.7249 1.7249
SLSQP 1.7249 1.7249 1.7249

Table 3.11: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the different statistical filter algorithms for the welded beam problem. The table

shows the average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for

the best feasible minima found.
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Figure 3.24: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the statistical filter algorithm (PBF and MEA) and the three DFO algorithms

(COBYLA, MMA, and SLSQP) for the welded beam problem. The figure shows the average best

feasible minimum over the 30 runs.
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once (Table 3.11), although on average, these two algorithms did more poorly than the PBF

and MEA methods. It would seem that once again premature convergence to possibly local

minima were to blame for the poor average convergence results of the COBYLA and MMA

algorithms. Interestingly, the DFO comparators did not seem to be troubled in this example

by the lack of feasible points and were able to always find at least one feasible point much

quicker than the PBF and MEA methods. The success of the DFO comparators can also

be attributed to the fact that the WB’s objective function is very smooth and unimodal.

The DFO comparators do not rely on sampling the input space and so sequential descent

steps are efficient when there is only one mode. On the other hand, the PBF and MEA

methods rely on Latin hypercube samples as a means of generating sets of inputs to perform

prediction at, and thus, is attributable to the reason why it takes much longer for the PBF

and MEA methods to converge since we can only expect roughly 0.0972% of the points in

our predictive set to be feasible.

In testing the three DFO comparators we have shown that they all possess an

undesirable feature of getting stuck in local minima when a global solution is needed. The

ability of the statistical filter algorithm to combine both global and local search is a powerful

feature that differentiates it from the DFO comparators. Although convergence to a global

minimum may take longer for the PBF and MEA methods when the objective function is

flat or unimodal, as compared to the DFO comparators, the fact that the PBF and MEA

methods consistently found the global minimum offsets this difference. However, perfor-

mance of the statistical filter algorithm was generally better than the DFO comparators,

and so, we feel comfortable in claiming that the statistical filter algorithm is superior to the
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DFO comparators evaluated in regards to converging to the global minimum solution for

constrained optimization problems of the form (1.2). We shall further evaluate this claim

in Section 3.6 by testing the DFO comparators on a real-world computer experiment.

3.6 Pump-and-Treat Hydrology Problem

A real-world application, the pump-and-treat hydrology problem (Matott et al.,

2011) involves a groundwater contamination scenario based on the Lockwood Solvent Ground-

water Plume Site located near Billings Montana. Due to industrial practices in the area,

two plumes (plume A and B) containing chlorinated contaminants have developed near the

Yellowstone river (Figure 1.1). The two plumes are slowly migrating towards the Yellow-

stone river and of primary concern is keeping the chlorinated contaminants from leaking

into the Yellowstone river. A pump-and-treat remediation is proposed, in which wells are

placed to pump out contaminated water, purify it, and then return the treated water, at

six locations (A1, A2, B1, B2, B3 and B4). A computer simulator was built to model this

physical process where the inputs to the simulator are the pumping rates, x1, . . . , x6 (which

can be set between 0 and 20,000), for the six pump-and-treat wells and the output of the

simulator is the cost of running the pump-and-treat wells and whether or not the plumes

have been contained. Thus, the objective of the pump-and-treat hydrology problem is to

minimize the cost of running the pump-and-treat wells while containing both plumes.

We reformulate this problem in the framework of a constrained optimization prob-
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lem as

min
x
{f(x) =

6∑
j=1

xj : c(x) ≤ 0, x ∈ [0, 20 · 104]6}, (3.43)

where the objective f we wish to minimize is linear and describes the cost required to

operate the wells. The two plumes are contained when the constraint, c, is met. The time

it takes to run the computer simulator is nontrivial and so it is not feasible to run the

computer simulator at every possible combination of inputs and find the one that optimizes

the problem (3.43). Instead, we proceed by applying our filter Algorithm 2 to solve for the

optimal solution of the constrained optimization problem in (3.43). We choose to select

candidate points based on solving the maximum expected area (MEA) and probability

beyond the front (PBF) subproblems. Since the dimension of the input space is d = 6, we

use our rule of thumb of n = 10d = 60 starting points to initialize the filter F , from a LHD

in [0, 20000]6. We chose to use a sloping and a non-sloping envelope for the PBF and MEA

subproblems, respectively, where we set β = 0.95 in both cases and let γ = 0.05 for the

sloping envelope and γ = 0 for the non-sloping case. Additionally, we chose (arbitrarily)

to place an upper bound of U = 1, 000 on the constraint violation. We then proceed to

sequentially select 440 more points based on maximizing the PBF and the MEA. At each of

the 440 iterations we fit our joint PLMGP model for the objective and constraint functions

with the PLGMP model using the same priors as Section 3.3 and N = 4000 particles. We

follow the strategy of Taddy et al. (2009) and select the candidate set of inputs from a LHD

of size 500 times the input dimension augmented by an additional 10% of the candidate

locations taken from a smaller LHD bounded to within 5% of the domain range of the

current best point.
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The best solution our algorithm found is a cost of $23,393 by setting the pump-

ing rates to (A1, A2, B1, B2, B3, B4) = (222, 5672, 13490, 2208, 1222, 580). Our solution was

lower than that found in Lindberg & Lee (2015b) and Matott et al. (2011) of $25,612 and

$23,714 respectively. In fact, according to Lindberg & Lee (2015b), of algorithms complet-

ing in 500 runs or less, the optimal cost found was also much higher than our solution at

$27,137. Additionally, rerunning the algorithm 30 times, the average best feasible mini-

mum value found after 500 runs reached by our algorithm ($23,502), Table 3.12, was much

lower than the average best feasible minimum value found by nine competing optimization

algorithms as reported in Gramacy et al. (2015).

We contrasted joint modeling to independent modeling by running the independent

PLGP methodology 30 times under the same setup and conditions as the joint PLMGP

methodology and found that both methods, over the 440 updates, lead to comparable

optimal final solutions. However, it is clear from Figure 3.25 that joint modeling of the

objective and constraint function did indeed lead to solutions that converged faster to an

optimal solution than did independent modeling.

Lastly, we compared the performance of our statistical filter algorithm against the

three derivative free optimization (DFO) comparators of Section 3.5 in solving the pump-

and-treat hydrology problem. We ran the three DFO comparators 30 times under different

initial inputs from a LHD on [0, 20000]6 and recorded the average best feasible solution

(Figure 3.26) and 95% quantiles and posterior intervals (Table 3.13).

Although the pump-and-treat problem has a very simple and flat objective func-

tion, the DFO comparators have a very hard time navigating the highly nonlinear, and
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n 150 300 440

95%

PBF
Independent 33202.91 28269.99 24554.38
Joint 29515.83 26230.13 24506.18

MEA
Independent 32590.12 28500.84 24556.50
Joint 29281.62 25535.59 24554.47

Average

PBF
Independent 31049.37 26749.41 23552.06
Joint 27406.38 24649.97 23502.50

MEA
Independent 30468.24 27017.82 23555.88
Joint 27110.29 23987.08 23552.58

5%

PBF
Independent 29995.04 26016.17 23450.54
Joint 26342.30 23885.85 23400.96

MEA
Independent 29369.42 26215.70 23450.20
Joint 26029.78 23472.18 23450.88

Table 3.12: After 440 updates: The table shows the average best feasible minimum over the 30

Monte Carlo repetitions with random initial conditions, as well as 5th and 95th percentiles for the

best feasible minima found. On average, the joint model using PBF performs the best for this

problem after 440 additional evaluations.
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Figure 3.25: After 440 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the joint and independent models for the pump-and-treat hydrology

problem. The figure shows the average best feasible minimum over the 30 runs.
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n 150 300 500

95%

PBF 31418.14 27408.55 24506.18
MEA 30811.46 26750.99 24554.47
COBYLA 61048.09 32077.11 32052.22
MMA 68969.12 67317.69 67317.69
SLSQP 63365.13 58553.61 31542.80

Average

PBF 29058.67 25621.26 23502.50
MEA 28392.99 24910.76 23552.58
COBYLA 46976.67 28951.85 28838.67
MMA 52458.20 38617.13 38577.82
SLSQP 53657.24 35506.71 27295.09

5%

PBF 27868.03 24756.46 23400.96
MEA 27169.20 24006.54 23450.20
COBYLA 29421.68 27228.17 27218.27
MMA 30568.33 24418.86 24389.37
SLSQP 37068.28 26274.93 24029.45

Table 3.13: The progress in minimization for 30 Monte Carlo repetitions with random initial condi-

tions using the different statistical filter algorithms for the pump-and-treat hydrology problem. The

table shows the average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles

for the best feasible minima found.

125



Minimization Progess

Number of Function Evaluations

M
in

im
um

 F
ea

si
bl

e 
V

al
ue

 F
ou

nd

PBF
MEA
COBYLA
MMA
SLSQP

0 100 200 300 400 500

25
00

0
35

00
0

45
00

0
55

00
0

Figure 3.26: The progress in minimization for 30 Monte Carlo repetitions with random initial

conditions using the statistical filter algorithm (PBF and MEA) and the three DFO algorithms

(COBYLA, MMA, and SLSQP) for the pump-and-treat hydrology problem. The figure shows the

average best feasible minimum over the 30 runs.
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possibly multimodal, constraint surface which can lead to multiple disconnected feasible

regions. The statistical filter method, under both the PBF and MEA subproblem, does a

much better job of finding a lower cost, on average, than does the DFO comparators over

500 runs of the computer model (Figure 3.26). In fact, the entire distribution of solutions,

Table 3.13, is much lower for the statistical filter algorithm as compared to the DFO com-

parators. This real-world computer experiment once again highlights the fact that, if not

started near the global solution, the DFO comparators tend to take longer to converge, or

even become stuck in local modes. Undoubtedly better at converging towards the global

minimum solution, the statistical filter algorithm validated our beliefs in the superiority of

it over the DFO comparators in this real-world hydrology computer experiment.

3.7 Discussion

We have proposed a new approach for constrained optimization based on statistical

models and filter methods. In particular, we have combined the particle learning multivari-

ate Gaussian processes (PLMGP) model of Chapter 2 with flexible filter methods in order

to solve problems in constrained optimization for expensive black box functions. In solving

the filter method subproblem, we introduced two novel metrics, PBF and MEA, that both

performed well in directing the filter to a global optimum. We validated our statistical

filter algorithm on a suite of synthetic test problems as well as showed its applicability to a

real-world computer experiment involving groundwater remediation.

One of the highlights of our statistical filter algorithm is the use of joint modeling

of the objective and constraint functions. Through a series of experiments, we showed that
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the joint model was able to do a much better job of converging to the global minimum

of the constrained optimization problems as compared to independent modeling. It is not

uncommon for the objective and constraint function to be negatively correlated, and the

joint model was able to outperform the independent model by utilizing this fact. Likewise,

as compared to three DFO comparators, the statistical filter method was a more robust

method for finding the global minimum of the solutions. Being able to search globally as

well as locally is a highlight of the statistical filter algorithm and underscores its usefulness

when contrasted with the comparators.

Combining statistical models with filter methods proved to be a powerful tool for

solving constrained optimization problems. In particular, the greatest novelty of Chapter

3 arose from the creation of the new subproblems responsible for selecting new candidate

inputs. And although we did not augment nor change any particular feature of the filter, we

think that there may be further avenues for improvement to it. What follows in Chapter 4

is a detailed exploration of what benefits there may or may not be in relaxing (or changing)

some of the assumptions of the filter method.
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Chapter 4

High Versus Low Dimensional

Filters

From a statistical point of view, there is a substantial amount of valuable infor-

mation lost in compressing the constraint values c(x) into a single nonnegative scalar h(x).

Under our statistical filters framework, we follow the accepted convention that we build our

surrogate models in the constraint space and that we build the filter F in the two dimen-

sional filter space. However, other than the fact that we saw little to no literature in the

optimization community on filter methods that built the filter F in the higher dimensional

constraint space, we see no apparent reason why this should not be explored.

In this chapter, we propose a method for constructing a multidimensional filter for

solving the constrained optimization problem in (1.2). A natural extension of the work of

Fletcher & Leyffer (2002), the multidimensional filter setting has not been readily explored.

Gould et al. (2005a) and Gould et al. (2005b) investigate the use of a multidimensional
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filter for solving systems of linear equations of the form c(x) = 0. However, finding solu-

tions to these equations were of the utmost importance to the authors and the constrained

optimization aspect of the filter method secondary. On the other hand, Shen et al. (2009)

built a three dimensional filter for solving constrained optimization problems of the form

min
x

f(x)

s.t. cε(x) = 0 (4.1)

cI(x) ≤ 0

x ∈ X ,

where each component f(x), and the feasibility measures hε(x) and hI(x) for cε(x) and

cI(x), respectively, contributed to one of the dimensions of the three dimensional filter.

Although there is additional benefit in extending the two dimensional filter to three di-

mensions, Shen et al. (2009) did not take potential advantage of building an even larger

dimensional filter. It is here that we hope to extend and further explore the advantages of

a higher multidimensional filter.

Clearly building a multidimensional filter F in the constraint space may break

some already established convergence techniques, such as the envelope (Chin & Fletcher,

2003), since there will no longer be a guarantee that the current filter will avoid convergence

to infeasible points, i.e., h(x) > 0. However, there may be additional benefits yet to be

discovered by building the filter F in the constraint space. On the other hand, we also

argue that there may be additional benefits to building our surrogate models in the two

dimensional filter space rather than the constraint space. For example, it would be much

quicker/easier to build a single surrogate model for the feasibility measure h(x) rather than
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multiple constraint functions for c(x). Thus, for this chapter, we wish to explore the ad-

vantages (and disadvantages) of modeling c(x) versus h(x) and the subsequent implications

this will have on building the filter F .

4.1 High Dimensional Filters

Introduced by Fletcher & Leyffer (2002), filter methods solve the constrained op-

timization problem (1.2) by taking a biobjective approach to optimization. Through the

use of the aggregate constraint measure of feasibility

h(x) = ||max{0, c(x)}||1 =

p−1∑
i=1

max{0, ci(x)} (4.2)

the filter method transforms the original problem in (1.2) into the newly stated problem

min
x

f(x)

s.t. h(x) = 0 (4.3)

x ∈ X .

The goal of the filter method is still to minimize the objective function f in (4.3), but

now, emphasis is placed on satisfying the feasibility measure h rather than the constraint

functions c. Following the general filter algorithm in Section 3.1, Fletcher & Leyffer (2002)

showed that global convergence results for the filter method could be established by solving a

subproblem based on trust regions and sequential quadratic programming (SQP). Clearly,

from an applied standpoint, filter methods have merit as a tool for solving constrained

optimization problems. However, from a statistical point of view there is a loss in fidelity

in the amount of information that is being processed by use of the feasibility measure h.
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Akin to an identifiability issue in statistics, the feasibility measure h does not

differentiate between which constraints are satisfied and which are not. The feasibility

measure h is an aggregate statistic of constraint violation and so each constraint function

contributes to building h but the feasibility measure h does not give us any indication of

how much of a contribution each constraint contributes. For example, consider the case of

the following constraint function, c(·), where for some arbitrary inputs, x1,x2,x3 ∈ X , we

have that c(x1) = (1, 0, 0), c(x2) = (0, 0, 1) and c(x3) = (0, 0.5, 0.5). The identifiability

issue becomes abundantly clear when calculating the feasibility measure h for each of the

constraint functions. Here, h(x1) = h(x2) = h(x3) = 1, which tells us that at least one of the

constraints were violated, but this feasibility measure h does not tell us which or how many

constraints were violated, and it does not tell us by how much each of the constraints were

violated or whether (and by how much) any constraint was satisfied. Clearly, in the example,

x1,x2, and x3 each violate the constraint function in a different way and by a different

amount, but to the feasibility measure h, each input has produced the same constraint

violation in measuring feasibility. Intuitively, aggregating all of the constraint violation

information into a single statistic seems like a waste of potentially useful information. And

so, rather than compress all of the constraint violation information into a single feasibility

measure h to build the filter with, we instead propose to construct one feasibility measure

for each constraint function, i.e.,

hi(x) = ||max{0, ci(x)}||1 = max{0, ci(x)} (4.4)

for i = 1, . . . , p− 1, and then proceed to build a new “higher-dimensional” filter based on f

and the multiple feasibility measures hi. The original filter algorithm of Fletcher & Leyffer
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(2002) proposed solving the biobjective problem in (4.3), but we extend this approach to

solving the following multiobjective problem

min
x

f(x)

s.t. hi(x) = 0 for all i = 1, . . . , p− 1 (4.5)

x ∈ X .

In order to solve (4.5), using the filter approach, we need to redefine the concept

of dominance. We borrow from the multiobjective optimization literature and say that

a point xi ∈ X dominates a point xj ∈ X if and only if f(xk) ≤ f(xj) and hi(xk) ≤

hi(xj), with (f(xk), hi(xk)) 6= (f(xj), hi(xj)), for all i = 1, . . . , p − 1. Aligning with the

original definition of the filter, we define the filter, denoted F , as the set of all p-tuples

(h1(xi), . . . , hp−1(xi), f(xi)) such that no p-tuple dominates another p-tuple. The rest of

the filter algorithm would then proceed in the same fashion as Algorithm 1, but we state

the newly updated filter algorithm in Algorithm 3 for clarity. Clearly when p = 2, i.e., the

case of only one constraint, we are back in the original filter problem of Fletcher & Leyffer

(2002) and so for the rest of this chapter we assume that we are dealing with constrained

optimization problems where p > 2.
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Initialize the filter F ;

while not terminated do

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c1(x∗), . . . , cp−1(x∗);

if (h1(x∗), . . . , hp−1(x∗), f(x∗)) is acceptable to F then

Add (h1(x∗), . . . , hp−1(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h1(x∗), . . . , hp−1(x∗), f(x∗));

end

Check for termination;

end

Algorithm 3: Upated generic filter method

Similar to our method, Shen et al. (2009) realized early on that each constraint

may have its own behavior. For example, some constraints may be highly nonlinear, while

some others are nearly linear. And so, Shen et al. (2009) proposed a new filter line search

SQP method in which the violations of equality and inequality constraints were considered

separately. Here, they constructed a three dimensional filter composed of all non-dominated

triplets (f(x), hε(x), hI(x)), where

hε(x) =
k∑
i=1

|ci(x)|, and hI(x) =

p−1∑
j=k+1

max{0, ci(x)}. (4.6)

However, Shen et al. (2009) was still severely limited in their analysis in that they still

compressed a lot of valuable information about each individual constraint into only two

feasibility measures.

From an algorithmic point of view, understanding the difference between Algo-
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rithm 1 and Algorithm 3 is not very difficult nor is the implementation. However, concep-

tually the difference between Algorithm 1 and Algorithm 3 is best conveyed visually (Figure

4.1).
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Figure 4.1: The filter space based on the original filter Algorithm 1 (left) and the newly updated

filter Algorithm 3 (right). Green circles correspond to points in the filter while red circles correspond

to points that are not.

Figure 4.1 represents the old and new filter space for synthetic test problem four

(P4) of Section 3.3 based on Algorithm 1 and Algorithm 3, respectively. Important to note,

in adapting the filter algorithm to have multiple feasibility measures we have not affected

the input space at all and thus there are no new concerns over obtaining good space filling

designs for the inputs. The added complexity of introducing multiple feasibility measures

only shows up in the filter space where we must now solve a harder subproblem than

before. We will still use the probability beyond the filter (PBF) subproblem for picking

new candidate points x∗, but first amend it to reflect the fact that we now utilize multiple
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feasibility measures. Thus, we define the updated PBF criteria as selecting a x∗ such that

x∗ = max
x∈X

Pr{(h1(x), . . . , hp−1(x), f(x)) is acceptable to the filter F}. (4.7)

The added complexity in using (4.7) as compared to (3.3) is that the probability calculation

no longer corresponds to calculating the area of an ellipse, but instead, we are now calculat-

ing the volume of a p-dimensional ellipsoid. This p-dimensional ellipsoid arises from the fact

we can obtain a best prediction for (f(x), c(x)) from (2.13), and quantify the uncertainty

around that prediction with a probability ellipsoid based on (2.14). Solving the integral

associated with (4.7) in two dimensions analytically is not a simple problem, and as the

dimension of p increases, the problem becomes quite intractable. However, as before, we

can simply use Monte Carlo integration to approximate the probability in (4.7).

We present here the newly updated statistical filter algorithm and discuss some of

the limitations of it:
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Sample initial inputs from a LHD;

Initialize the filter F ;

while not terminated do

Fit surrogate models for f(x) and c(x) using the joint PLMGP model;

Map the surrogate model in the constraint space to the filter space;

Solve the PBF subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and c(x∗);

if (h1(x∗), . . . , hp−1(x∗), f(x∗)) is acceptable to F then

Add (h1(x∗), . . . , hp−1(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h1(x∗), . . . , hp−1(x∗), f(x∗));

end

Check for termination;

end

Algorithm 4: Updated statistical filter method

In our algorithm 4 we explicitly state to the solve the PBF subproblem and do

not suggest solving the MEA subproblem. Although possible to solve, the metric associated

with the MEA subproblem is much harder to calculate in higher dimensions as well as to

conceptualize. The MEA subproblem in two dimensions was very simple to calculate because

in two dimensions the problem came down to summing up the area of many rectangles

where as in the higher dimensional case it would amount to summing up the volumes of

many different types of polygons. Along the same lines as the MEA subproblem, we no

longer have an envelope to calculate as we did in the original filter algorithm due to the
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difficulty in specifying a well posed solution to what the envelope should look like in higher

dimensions. Gould et al. (2005a), Gould et al. (2005b) and Shen et al. (2009) each had

their own criteria for what an envelope should look like in higher dimensions. However,

none of these options were appealing choices to us given the nature of our new statistical

filter algorithm. This lack of an envelope is indeed a limitation of the new Algorithm 4

because we are no longer guaranteed to not get stuck selecting candidate points that are

arbitrarily close to the current filter. We can however place upper bounds, Ui, on the each

of the feasibility measures hi that act as intersecting hyperplanes in the filter space.

4.2 Low Dimensional Filters

In opposition to Section 4.1, we explore the potential benefit of getting rid of the

constraint space and only dealing with the original filter space of Fletcher & Leyffer (2002).

A simpler idea, we propose to solve the constrained optimization problem

min
x

f(x)

s.t. h(x) = 0 (4.8)

x ∈ X .

using the original constraint measure of feasibility

h(x) = ||max{0, c(x)}||1 =
m∑
i=1

max{0, ci(x)}, (4.9)

however, we fit our joint PLMGP model to (h(x), f(x)) in the filter space rather than to

(c(x), f(x)) in the constraint space. We do not actually envision this to be a successful

endeavor, however, we still undertake this experiment to gain empirical evidence of the
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potential advantages and disadvantages of the idea. Important to note, once again, when

p = 2, i.e., the case of only one constraint, we are back in the original filter problem of

Fletcher & Leyffer (2002) and so for the rest of this chapter we assume that we are dealing

with constrained optimization problems where p > 2.

Some of the potential benefits are easy to see right away in that joint surrogate

modeling only consists of fitting the joint PLMGP model to the two dimensional outputs

from (h(x), f(x)), rather than fitting the model to the, possibly high, p dimensional output

(c(x), f(x)). Thus model fitting becomes a much simpler and faster task under the proposed

framework. A potential downside though is a loss in predictive accuracy due to the fact

that we are compressing the constraint functions into a single feasibility measure h and

then fitting a model to this lower fidelity output. Even worse, the PLMGP model, which

places support on the entire real line for the feasibility measure h, would be inappropriate for

modeling h at the boundary (i.e., h(x) = 0) which is the area of interest where the feasibility

measure, and ultimately the constraint, is met. However, with all this in mind, we are still

able to adapt our statistical filter algorithm to model the feasibility measure rather than

the constraints and thus summarize our new statistical filter algorithm as follows:
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Sample initial inputs from a LHD;

Initialize the filter F ;

while not terminated do

Fit surrogate models for f(x) and h(x) using the joint PLMGP model;

Solve a subproblem to obtain a candidate point x∗;

Evaluate f(x∗) and h(x∗);

if (h(x∗), f(x∗)) is acceptable to F then

Add (h(x∗), f(x∗)) to F ;

Remove any entries in F dominated by (h(x∗), f(x∗));

end

Check for termination;

end

Algorithm 5: Updated statistical filter method

A key advantage of Algorithm 5 is that it still retains the capability to solve both

PBF and MEA subproblems as before as well as all of the additional properties of the filter

method, such as the envelope. In practical application we saw no difference between using

the PBF and MEA subproblems for Algorithm 5, and so, for the rest of Chapter 4 we only

use Algorithm 5 with the PBF subproblem.

4.3 Synthetic Test Problems

In order to test the new statistical filter algorithms in Sections 4.1 and 4.2, we

use the synthetic test problems of Chapter 3 where p > 2. Thus, we examine Algorithms
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4 and 5 on synthetic test problems P4 and P6. Where appropriate we use the exact same

correlation function, priors, and starting parameters as detailed in Section 3.3.

Recall the fourth test problem, P4, in Chapter 3. P4, represents the case of a

single input x, and multiple nonlinear constraints c1(x) and c2(x). Here, we would like to

minimize the objective, f , while simultaneously satisfying the constraints, c1 and c2, i.e.,

min
x

f(x) = cos
(πx

5

)
+ 0.2 sin

(
4πx

5

)
(4.10)

s.t. c1(x) = sin
(πx

5

)
+ 0.2 cos

(
4πx

5

)
≤ 0 (4.11)

c2(x) = cos
(πx

5

)
+ 0.2 cos

(
4πx

5

)
≤ 0 (4.12)

x ∈ [0, 10]. (4.13)

The optimal solution to P4 is f(x) = −0.8671835 and is obtained at x = 5.25585.

We first sampled 10 initial inputs from a LHD on [0, 10] and then sequentially

selected 50 candidate points from the same LHD based on Algorithm 2, 4, or 5 and the

appropriate subproblem. To distinguish the results of running each different algorithm, we

denote the results corresponding to the original Algorithm 2 as PBF and MEA, under the

PBF and MEA subproblems respectively, and the results of running Algorithm 4 as “HDF”

(high dimensional filter) and the results of running Algorithm 5 as “LDF” (low dimensional

filter). As somewhat expected, the filter algorithm associated with LDF did not converge to

the true solution although the algorithm does come close to it. We attribute the fact that

LDF stayed the same (on average) from iteration 30 to 50 (Table 4.1) due to the PLMGP

model having a hard time predicting values where the feasibility measure is zero since the

PLMGP model places positive support on the entire real line. Additionally, there should
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be a loss in fidelity in the predictive accuracy of LDF due to the extra lost information in

not modeling c1 and c2. Interestingly, HDF (on average) did just as well as MEA and PBF

at finding the optimal solution (Figure 4.2), with HDF doing slightly better than PBF and

MEA at the beginning iteration of the search.

n 10 30 50

95%

PBF -0.74192 -0.84494 -0.86716
MEA -0.76704 -0.86434 -0.86717
HDF -0.86193 -0.86604 -0.86640
LDF -0.70791 -0.82314 -0.83796

Average

PBF -0.83765 -0.86000 -0.86718
MEA -0.84743 -0.86695 -0.86718
HDF -0.86515 -0.86677 -0.86718
LDF -0.80861 -0.85087 -0.85807

5%

PBF -0.86546 -0.86653 -0.86718
MEA -0.86674 -0.86718 -0.86718
HDF -0.86710 -0.86718 -0.86718
LDF -0.86378 -0.86691 -0.86691

Table 4.1: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for P4. The table shows

the average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found.

Recall the sixth test problem, P6, in Chapter 3. P6, represents the case of multiple

inputs, x1, x2, x3, x4, x5, x6, x7, and x8, and multiple highly nonlinear constraints c1(x) and

c2(x). Here, we would like to minimize the objective, f , while simultaneously satisfying the
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Minimization Progress for P4
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Figure 4.2: After 50 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for P4. The figure shows

the average best feasible minimum over the 30 runs.
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constraints, c1 and c2, i.e.,

min
x

f(x) = cos(π(x1 + x2x3 + x4)) + 0.2 sin

(
4π(x5x6 + x7)

x8 + 1

)
(4.14)

s.t. c1(x) = sin(π(x1 + x2x3 + x4)) + 0.2 cos

(
4π(x5x6 + x7)

x8 + 1

)
≤ 0 (4.15)

c2(x) = − cos(π(x1 + x2x3 + x4)) + 0.2 cos

(
4π(x5x6 + x7)

x8 + 1

)
≤ 0 (4.16)

x ∈ [0, 1]8. (4.17)

The optimal solution to P6 is f(x) = −0.2828427 which occurs at x = (0.7909, 0.2670, 0.0798,

0.6426, 0.9161, 0.9377, 0.9645, 0.3893).

We ran the statistical filter algorithms fitting the joint PLGMP models and solving

the subproblems associated with PBF, MEA, HDF, and LDF. We first sampled 80 initial

inputs from a LHD on [0, 1]8 and then sequentially selected 220 candidate points from a

LHD on [0, 1]8 based on the appropriate subproblem. We reran this analysis 30 times under

different initial sample inputs from a LHD on [0, 1]8 and recorded the average best feasible

solution, Figure 4.3, and its 95% posterior intervals, Table 4.2.

On a much harder problem, as compared to P4, the results of running the statistical

filter algorithm corresponding to HDF were far better than expected. Although PBF, MEA,

and LDF all eventually converged to the optimal solution to P6, it was the rate at which

HDF did it that was quite astounding. For over 100 iterations, HDF was far superior

at the rate in which it converged towards to the true solution as compared to the other

three competing metrics. In modeling multiple feasibility measures, HDF seems capable of

creating a higher fidelity filter that is able to identify better candidate points much more

quickly than the other algorithms. On the opposite end of the performance spectrum, not
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n 50 150 220

95%

PBF -0.19613 -0.28055 -0.28208
MEA -0.10378 -0.28103 -0.28201
HDF -0.27281 -0.28110 -0.28277
LDF -0.079650 -0.215598 -0.257502

Average

PBF -0.24677 -0.28209 -0.28283
MEA -0.23837 -0.28230 -0.28284
HDF -0.27919 -0.28213 -0.28284
LDF -0.16587 -0.26503 -0.27609

5%

PBF -0.27765 -0.28282 -0.28284
MEA -0.27830 -0.28278 -0.28284
HDF -0.28233 -0.28283 -0.28284
LDF -0.28035 -0.28124 -0.28214

Table 4.2: After 220 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for P6. The table shows

the average best feasible minimum over the 30 runs, as well as 5th and 95th percentiles for the best

feasible minima found. On average, the joint model using HDF performs the best for this problem

after 220 additional evaluations.
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Minimization Progress for P6
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Figure 4.3: After 220 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for P6. The figure shows

the average best feasible minimum over the 30 runs.
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surprisingly, LDF did a terrible job of converging to the true solution, as compared to

the other algorithms. In fact, LDF was significantly higher at all successive iterations of

the search as compared to the other three metrics, and LDF did not converge to the true

solution even after 220 updates.

4.4 Welded Beam Problem (WB)

Recall the pseudo black box computer model based on the fairly realistic real-

world welded beam (WB) problem (Coello Coello & Montes (2002); Hedar (2004)). The

WB problem has four inputs x1, x2, x3, and x4, and multiple constraints g1(x), . . . , g6(x).

The objective function, f , is the cost associated to construct a welded beam subject to

constraints on sheer stress (g1(x), t), bending stress in the beam (g2(x), s), buckling load

on the bar (g6(x), Pc), end deflection of the beam (g5(x), d), and side constraints (g3(x),

g4(x)). Here we would like to minimize the cost associated with constructing the welded

beam, while also simultaneously satisfying the six physical constraint functions.

One of the main challenges of the welded beam problem is that the entire input

space contains only a very tiny percentage (0.0972%) of feasible inputs. This scarcity of

feasible points in the input space led our statistical filter algorithm, from Chapter 3, to

converge at a much slower rate to the optimal solution. Thus, it is the hope that there will

be a significant speed gain in convergence by applying either Algorithm 4 or 5 to the welded

beam problem than seen before. We first sampled 40 initial inputs from a LHD over the

appropriate input domain, and then sequentially selected 960 more candidate points from

the same LHD based on the PBF, MEA, HDF and LDF methods. We reran this analysis
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30 times under different initial sample inputs from the same LHD and recorded the average

best feasible solution, Figure 4.4, and its 95% posterior intervals, Table 4.3.

n 300 600 960

95%

PBF 1111.61 1.7445 1.7361
MEA 1097.26 1.7450 1.7356
HDF 1072.92 1.7334 1.7334
LDF 1121.13 1121.13 1121.13

Average

PBF 455.15 1.7354 1.7309
MEA 413.64 1.7356 1.7308
HDF 209.59 1.7304 1.7304
LDF 862.72 613.83 471.53

5%

PBF 1.7306 1.7284 1.7250
MEA 1.7334 1.7286 1.7249
HDF 1.7309 1.7276 1.7249
LDF 4.1510 3.1659 3.1086

Table 4.3: After 960 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for the welded beam prob-

lem. The table shows the average best feasible minimum over the 30 runs, as well as 5th and 95th

percentiles for the best feasible minima found.

Much like the prior analyses in Section 4.3, we see that HDF and LDF exhibit

the same general tendencies in converging to the global minimum solution as seen before.

HDF converged, on average, to the global minimum much quicker than PBF, MEA, while

LDF did not come close to converging to the global minimum over the 960 updates to the

filter (Figure 4.4). In fact, none of the runs of LDF came even close to converging to the

global minimum solution of the WB problem (Table 4.3). A breakthrough, the rate at

which HDF appears to converge to the global minimum, as compared to PBF and MEA, is
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Figure 4.4: After 960 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for the welded beam problem.

The figure shows the average best feasible minimum over the 30 runs.
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a clear advantage of the HDF method when the percentage of feasible points is very small

over the entire input space since PBF and MEA will tend to converge slower under this

scenario. And although HDF, PBF, and MEA all eventually converge to the solution of the

WB problem, the results of this experiment provide more empirical evidence in supporting

the use of Algorithm 4, as well as more empirical evidence in opposition to using Algorithm

5.

4.5 Pump-and-Treat Hydrology Problem

We revisit the real-world hydrology computer model of Section 3.6, and test our

newly proposed statistical filter algorithms, based on Algorithm 4 and 5, on it. Recall the

formulation of the pump-and-treat hydrology problem as

min
x
{f(x) =

6∑
j=1

xj : c(x) ≤ 0, x ∈ [0, 20 · 104]6} (4.18)

where the objective f we wish to minimize is linear and describes the cost required to

operate the wells. The two plumes are contained when the constraint, c, is met. Here, c is a

function of two constraints functions, cA(x) and cB(x), that describe when the contaminants

in plume A and B have been contained, respectively. Collectively there are two constraints

to the pump-and-treat hydrology problem, i.e., p > 2, and so Algorithm 4 and 5 are clearly

applicable to use to solve this problem. Mirroring the problem setup in Section 3.6, we

start with an initial sample of 60 inputs from a LHD in [0, 20000]6 to initialize the filter

F . We then proceed to sequentially select 440 more points based on using Algorithms 2,

4, and 5. At each of the 440 iterations we fit our joint PLMGP model for the objective

and constraint functions with the PLGMP model using the same priors as Section 3.3 and

150



N = 4000 particles. We follow the strategy of Taddy et al. (2009) and select the candidate

set of inputs from a LHD of size 500 times the input dimension augmented by an additional

10% of the candidate locations taken from a smaller LHD bounded to within 5% of the

domain range of the current best point. We reran this analysis 30 times under different

initial sample inputs from a LHD on [0, 20000]6 and recorded the average best feasible

solution, Figure 4.5, and its 95% posterior intervals, Table 4.4.

n 150 300 440

95%

PBF 29515.83 26230.13 24506.18
MEA 29281.62 25535.59 24554.47
HDF 28751.23 25365.94 24588.09
LDF 35203.67 31453.68 29643.20

Average

PBF 27406.38 24649.97 23502.50
MEA 27110.29 23987.08 23552.58
HDF 26361.48 24581.32 23572.74
LDF 32844.21 29666.39 28396.38

5%

PBF 26342.30 23885.85 23400.96
MEA 26029.78 23472.18 23450.88
HDF 25167.88 23639.61 23497.53
LDF 31653.56 28801.58 27768.41

Table 4.4: After 440 updates: The progress in minimization for 30 Monte Carlo repetitions with

random initial conditions using the different statistical filter algorithms for the pump-and-treat

hydrology problem. The table shows the average best feasible minimum over the 30 runs, as well as

5th and 95th percentiles for the best feasible minima found. On average, the joint model using HDF

performs the best for this problem after 440 additional evaluations.

Comparing the results of running PBF, MEA, HDF and LDF, we see that on

average HDF does a better job than the other filter methods at converging towards an

optimal solution to the pump-and-treat hydrology problem. Overall, the PBF method was
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Figure 4.5: After 440 updates: The progress in minimization for 30 Monte Carlo repetitions

with random initial conditions using the different statistical filter algorithms for the pump-and-treat

hydrology problem. The figure shows the average best feasible minimum over the 30 runs.
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still able to locate the best input configuration of pumping rates to minimize the constrained

problem after 440 updates to the filter, however, HDF did a much better job at decreasing

the objective function over a shorter span of iterations. Similar to Sections 4.3 and 4.4,

we observed Algorithm 5 performing the worst in solving the pump-and-treat hydrology

problem compared to the other two competing algorithms. In fact, LDF was the only

method that did not come close to converging to the optimal solutions reported in the prior

literature.

4.6 Discussion

In this chapter we proposed two different approaches for augmenting the original

filter algorithm of Fletcher & Leyffer (2002). The two approaches relied on working with

either a high dimensional filter (HDF) or a low dimensional filter (LDF). An exhaustive re-

view of the constrained optimization literature has led us to believe that we are the first to

explore using a filter with multiple feasibility measures for constrained optimization under

the derivative free setting, and especially in the context of black box computer experiments.

We hypothesized that using a higher dimensional filter would improve the original filter algo-

rithm when there are multiple constraints to satisfy. We verified this hypothesis empirically

by testing Algorithm 4 on a suite of synthetic and real-world computer experiment prob-

lems. In every case, the HDF method performed as well, if not better, than all of the other

filter algorithms tested. It is here that the novelty and importance of the HDF method is so

abundantly clear. On the other hand, as we also hypothesized, the LDF method performed

terribly, as compared to the other filter algorithms, on all of the problems that we tested it
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on. The LDF method was typically much slower to converge to the optimal solution, and

in some cases, did not ever converge to the optimal solution under the allotted computing

time.

The results of Chapter 4 highlight the need for higher fidelity algorithms. The com-

pression of the constraint functions into a single feasibility measure was a clear disadvantage

of the PBF, MEA, and LDF methods as compared to the HDF method. Compressing the

constraints into a single feasibility measure implicitly weights vastly different constraint

violations as being the same. This was not a problem for the HDF method as all con-

straints functions were viewed individually rather than as an aggregate measure. And thus,

the higher resolution modeling of the HDF method led to much better solutions than its

counterparts.

However, not everything about the HDF method was desirable. In particular,

there is an added complexity in solving the subproblem in (4.7) that did not exist in (3.3).

Although not insurmountable, a larger number of Monte Carlo iterations must be used

in order to accurately calculate the volume of the ellipsoid as compared to the area of

the ellipse. These extra iterations are not prohibitive, however, they do add additional

computational cost to an already expensive problem. Secondly, the lack of an envelope used

in the problems did not hinder the HDF method but is cause for concern. The envelope

was introduced as a means to avoid convergence to infeasible points, and without it, we

believe that provable convergence cannot be guaranteed for all problems. However, we think

the creation of a “higher dimensional envelope” is an interesting and necessary problem to

solve, and a definite avenue for future research.
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Overall the HDF method showed great promise. On the problems considered, the

HDF method was the clear best method, while the LDF method fared quite poorly and

would not be recommended for use.
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Chapter 5

Convergence of the Statistical

Filter

Provable convergence is the hallmark of any good optimization method. Most

optimization methods focus on proving global convergence, which is convergence to a local

optimum given any arbitrary starting point. Demonstrating that an optimization method

converges to a global optimum rather than a local one is a much harder problem. Tradition-

ally, methods for optimization, both constrained and unconstrained, have relied on gradient

information to ensure global convergence. Proving global convergence in the derivative free

optimization (DFO) setting, i.e., no gradient information, is typically much harder.

As is often the case in practice, little to no derivative information may be available

in a given optimization problem. There has been much work done in the field of derivative

free optimization (see Conn et al. (2009) for a comprehensive list) when the problem is

unconstrained. However, less focus has been given to the constrained DFO case.
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Outside of derivative free optimization, there have been many algorithms and

proofs for constructing a globally convergent filter algorithm. To name a few, Fletcher

et al. (1998) and Fletcher et al. (2002) proved global convergence of a filter algorithm

under sequential linear programming and sequential quadratic programming, respectively.

Likewise, Ribiero et al. (2008) propose a globally convergent framework for filter methods

based on step computations that are efficient, in the sense that, near a feasible nonstationary

point, the reduction of the objective function is “large”. On the other hand, Audet &

Dennis (2006) incorporated a filter algorithm into a pattern-search method for derivative

free optimization that was shown to be globally convergent. Here the authors were able

to extend the usual pattern-search convergence results to the filter method. In similar

vein, Ferreira et al. (2015) extended the work of Ribiero et al. (2008) to handle the case of

derivative free optimization by utilizing an inexact restoration filter that was shown to be

globally convergent.

A limitation of derivative free optimization is that convergence is typically rather

slow (Conn et al., 2009). Even for a very large number of iterates, global convergence cannot

always be assured. Empirical evidence, based on running the statistical filter algorithm of

Chapter 3, from synthetic and real-world problems with known solutions seem to suggest

that our algorithm is globally convergent. However, empirical evidence is not enough to

confirm this belief. Thus, the aim of this chapter is to provide a proof of convergence for

our statistical filter algorithm.
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5.1 Necessary Conditions

For the remainder of this chapter, we shall simplify the notation, when appropriate,

by using (hk, fk) to represent (h(xk), f(xk)). Now we shall state the necessary assumptions

for the global convergence analysis of Algorithm 2.

A1. Algorithm 2 generates an infinite sequence of iterates, (xk)k∈N, that remains in a

compact domain X ⊂ Rd.

A2. For some α > 0, the objective function f and constraint functions c lie in the Hölder

space of α-smooth functions, i.e., f, c ∈ Cα[0, 1]d where Cα[0, 1]d is the Hölder space

of α-smooth functions.

A1 is an assumption on the sequence generated by the algorithm that is typically

enforced by including a bounded box into the problem constraints. However, A1 will always

be true under our Algorithm 2 since the possible set of candidate points arise from a Latin

hypercube design on X . Even though we work under the derivative free optimization setting,

we assume in A2 that the derivatives of the objective and constraint functions are not

available to us but do exist. In other words, A2 is an assumption that the functions we are

dealing with are smooth and well-behaved. Our statistical filter algorithm works well under

far more general assumptions, however, A1 and A2, with α = 2, i.e., working with twice

continuously differentiable functions, are the standard assumptions, in the filter literature

(Fletcher et al., 1998, 2002; Audet & Dennis, 2006; Ribiero et al., 2008; Ferreira et al.,

2015), necessary for proving global convergence.
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We now state the key theorem for proving global convergence of our statistical

filter algorithm.

Theorem. As the number of iterations k gets arbitrarily large, the sequence of

points, (xk)k∈N, that are accepted into the filter under Algorithm 2 converges almost surely

to a local feasible solution for any choice of starting point.

We defer proof of this theorem until the end of the chapter after we have introduced and

proved the necessary lemmas (1–7) that will be essential for proving the key theorem.

Recall that we conduct model based optimization by building surrogate models to

approximate the true objective and constraint functions. Once built, these surrogate models

can be used to predict values of the objective and constraint functions. Such approaches,

however, are likely to require dense sampling to produce meaningful predictions and results.

In order to achieve dense sampling, we use Latin hypercube designs for selecting points at

which to make predictions. Latin hypercube designs are supposed to spread well the points

in the sampling space by typically placing them at hypercube-type vertices (McKay et al.,

1979). Furthermore, as we let the number of iterations k go to infinity, the method will

explore the entire input space well.

Lemma 1. For any region R0 of the input space with volume ε > 0, there will be

an infinite number of iterations where a candidate point is in R0 with probability one.

Proof. By Assumption A1, the input domain is bounded, so its volume can be

bounded above by some constant V := vol(X ). At each iteration, n candidate points are

chosen via a Latin hypercube. Assuming ε is small relative to n, no more than one point

could be chosen in R0 from a particular Latin hypercube, and the probability of choosing a
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point is bounded by nε/V . If R0 is not sufficiently small, then this is a lower bound on the

probability. Each iteration uses an independent Latin hypercube. Thus the probability of

not choosing a point in R0 in m iterations is (1− nε/V )m. For any given iteration mi, the

probability that there will never be another sample in R0 goes to 0, thus with probability 1

there will be a future iteration mi′ that contains a candidate point in R0. This statement

is true again for iteration mi′ , thus with probability 1 there will be an infinite number of

interactions with a candidate point in R0. �

Our argument for provable convergence of the statistical filter algorithm revolves

around the use of asymptotics as the number of iterates, or sample size, k tends to infinity.

Therefore, it is important to recognize the kind of asymptotics we are dealing with. In our

case, the asymptotics we deal with are based on observations that get increasingly dense in

some fixed and bounded region as their number increases. In other words, if one views X ⊂

Rd as a bounded domain, an obvious way to increase k is to take observations at locations

between the existing ones. Asymptotics of this type, where k → ∞ but 0 < |X | < ∞, are

known as fixed-domain asymptotics (Stein, 1999) or infill asymptotics (Cressie, 1993). If we

define the quantity λ = maxxi minxj ||xi − xj ||, for all xi,xj ∈ X , as the distance between

any two points in the input space, then, as a result under infill asymptotics, the minimum

distance λ between all points in the input space tends to zero as the number of iterates,

k, tends to infinity. Infill asymptotics, where more data are collected by sampling more

densely in a fixed domain, will play a key role in helping us develop an argument for provable

convergence of the statistical filter algorithm. In particular, infill asymptotics have been

used to provide posterior consistency results for Gaussian processes (Stein (1999),Cressie
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(1993)).

Lemma 2. Assume condition A1 holds, then as the sample size k → ∞, our

posterior predictive distribution converges in probability to the true underlying process.

Proof. Van Der Vaart & Van Zanten (2009) show that under infill asymptotics,

the resulting posterior distribution converges in probability to the true distribution of the

underlying process, w0, as long as w0 ∈ Cα[0, 1]d, for some α > 0, where Cα[0, 1]d is

the Hölder space of α-smooth functions. Assumption A2 guarantees that our objective

and constraint functions will lie in the Hölder space of α-smooth functions, and thus, our

posterior predictive distributions for the objective and constraint functions will converge in

probability to the true functions. See Van Der Vaart & Van Zanten (2009) for theorems,

proofs, and discussion. �

Lemma 3. Assume condition A1 holds, then as the sample size k →∞, the area

of our 95% posterior predictive probability contours converges in probability to 0.

Proof. This is a direct consequence of Lemma 2. Recall that our posterior predic-

tive distribution, under the PLMGP, is a multivariate T process. As the resulting posterior

predictive distribution converges in probability towards the true data generating process,

by Lemma 2, our posterior predictive variances must converge in probability to 0 under

infill asymptotics. Thus, as the posterior predictive variances converge in probability to 0,

so must the area of our posterior predictive probability contours. �

Lemma 4. Consider an infinite sequence of iterations on which (hk, fk) is entered

into the filter, and {fk} is bounded below. It follows that hk → 0.
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Proof. We cite the proof of Lemma 1 of Chin & Fletcher (2003). The envelope

in (3.1) provides an important inclusion property that if a new pair is added to the filter,

then the set of unacceptable points for the new filter always includes the set of unacceptable

points for the old filter.

If hk+1 ≤ βhk for all k sufficiently large, then hk → 0. Otherwise we define a

subsequence S as follows. The initial index in S is the first iteration k on which hk+1 > βhk.

For any k ∈ S, its successor k+ ∈ S is the least j > k such that hj > βhk. It is a consequence

of the inclusion property that (hk+ , fk+) is acceptable to (hk, fk), even if the latter pair has

been deleted from the filter on an intermediate iteration. Hence fk − fk+ ≥ γhk+ > 0.

Thus fk is monotonically decreasing for k ∈ S and, because fk is bounded below, it follows

that
∑

k∈S hk is bounded above, and hence that hk → 0 for k ∈ S. Moreover, intermediate

iterations j such that k < j < k+ have the property that hj ≤ βhk, so it follows that hk → 0

on the main sequence. �

Lemma 5. For infeasible points, the minimum vertical distance between the

envelope and filter is positive.

Proof. Consider a candidate point x∗. If h(x∗) > 0, i.e., the point is infeasible,

then the minimum vertical distance between the envelope and the filter is

min
i
{f(xi)− (f(xi)− γh(x∗))} = γh(x∗) > 0 (5.1)

since, by definition of the envelope, γ ∈ (0, 1). �

Lemma 6. For feasible points, the minimum vertical distance between the enve-

lope and filter is zero.
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Proof. Consider a candidate point x∗. If h(x∗) = 0, i.e., a feasible point, then the

minimum vertical distance between the envelope and the filter is

min
i
{f(xi)− (f(xi)− γh(x∗))}min

i
{f(xi)− (f(xi)− 0)} = 0. (5.2)

�

Lemmas 1–6 lay the necessary foundations for ensuring that our statistical filter

algorithm is globally convergent. In what follows, we make use of all of the lemmas to build

our argument for global convergence.

5.2 Subproblems

In this section, we contend that global convergence can be obtained by our statisti-

cal filter algorithm by solving either the probability beyond the filter (PBF) (Section 3.2.1)

or the maximum expected area (MEA) (Section 3.2.2) subproblem. Before delving into the

specifics of either subproblems use, we first give the intuition for why we must obtain global

convergence in general. Typically, it is enough to show that if assumptions A1 and A2 are

true, when α = 2, then an assumption that successive iterates produce a sufficient reduction

in the objective function is enough to conclude global convergence of the filter algorithm

(Fletcher & Leyffer, 2002; Chin & Fletcher, 2003; Ribiero et al., 2008). Typically the en-

velope is used to ensure sufficient reduction of the objective function (Chin & Fletcher,

2003). In our case, the envelope coupled with Lemmas 1–6 ensure global convergence of our

Algorithm 2.

In general, consider the case of an infinite sequence of iterates (xk). Under Lemma

4, we have that hk → 0 and so at least one feasible point must be obtained. Given that a
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feasible point is obtained, Lemmas 5 and 6 define the minimum vertical distance between

the envelope and the filter. Important to note, wherever a point is infeasible, the mini-

mum vertical distance has to be positive, and zero otherwise. The fact that there will be

positive distance between the filter and the envelope will be critical in establishing global

convergence. Now, Lemmas 2 and 3 provide us with the fact that as the number of suc-

cessive iterates (xk) increases, the posterior predictive process, under our surrogate model,

converges arbitrarily close, in probability, to the true data generating process. Thus, as

the number of observed points tends to infinity, we can essentially regard the posterior

predictive process as the true data generating process.

Now, with regard to the two subproblems, we claim that the envelope will ensure

global convergence of our statistical filter algorithm. Consider again that Lemmas 2 and 3

guarantee arbitrarily accurate prediction of the objective function and feasibility measure.

Thus, any candidate point that is predicted to be infeasible must be predicted to fall to

the right, or to the northeast, of the current envelope. However, both the PBF and MEA

metric selects candidate points based on finding a maximum positive quantity representing

the distance to the left, or to the southwest, of the envelope. Since, by Lemma 5, there

will always be positive area between the filter and the envelope for infeasible points, and,

because of our accurate predictions, we can never pick candidate points that are infeasible,

as k tends to infinity, based on PBF and MEA. Thus, the only way to select a candidate

point, based on PBF and MEA, is to select one where h(x∗) = 0 and f(x∗) < f(xj) for

all j ∈ F . As the final necessary component for ensuring global convergence, we state this

property as a lemma.
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Lemma 7. As k →∞ the only way to select a new candidate point x∗, based on

either PBF or MEA, is to select one where h(x∗) = 0 and f(x∗) < f(xj) for all j ∈ Fk,

where Fk is the current filter at iteration k.

Proof. We first deal with the case of using the PBF subproblem. Consider an

infinite sequence of iterations (xk). As k grows large, we have that, by Lemmas 2–4, our

predictions of the objective functions and infeasibility measure become highly accurate, and

we have that hk → 0. Now, recall that the PBF subproblem selects candidate points that

maximize the probability of being to the left of the envelope. By Lemma 5, all predictions

of infeasible points will be to the right of the envelope. Furthermore, Lemma 3 also ensures

that as the area of the posterior predictive probability contours shrink to zero, we will

always have that the probability of infeasible points being selected tends to 0 since their

respective posterior predictive probability contours will always have an area falling beyond

(to the left of) the envelope of zero. Thus, we must consider the case when h(x∗) = 0, i.e.,

a feasible point.

Now, given that a candidate point x∗ is predicted to be feasible, there are two

possible scenarios. Either the point is feasible and does not reduce the objective function,

i.e., f(x∗) > f(xj), or the point is feasible and does reduce the objective function, i.e.,

f(x∗) < f(xj), for all j in the current filter Fk. Recall the definition of the envelope in

(3.1). Clearly, when h(x∗) = 0 the only way for a candidate point to be acceptable to the

filter is for f(x∗) < f(xj). But once again, by Lemma 3, the posterior predictive probability

contour associated with the candidate point x∗ essentially has area of 0 and so the PBF

metric will never have a probability greater than 0 of selecting a candidate point that does
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not reduce the objective function. Thus, the only way for a candidate point to be selected

by the PBF metric is to have it be feasible and below the current best minimum objective

value. Thus, as k → ∞, the PBF subproblem will only choose candidate points such that

h(x∗) = 0 and f(x∗) < f(xj) for all j ∈ Fk.

Now, consider the case of using the MEA subproblem. Consider again an infinite

sequence of iterations (xk). As k grows large, we have that, by Lemmas 2–4, our predictions

of the objective function and infeasibility measure become highly accurate, and we have that

hk → 0. Now, recall that the MEA subproblem selects candidate points that maximize the

expected area of being to the left of the envelope. Similar as before, by Lemma 5, all

predictions of infeasible points will be to the right of the envelope and thus, by definition

of the MEA metric, all points predicted to the right of the envelope will have maximum

expected areas of 0. Thus, we must consider the case when h(x∗) = 0, i.e., a feasible point.

Now, given that a candidate point x∗ is predicted to be feasible, there are two

possible scenarios. Either the point is feasible and does not reduce the objective function,

i.e., f(x∗) > f(xj), or the point is feasible and does reduce the objective function, i.e.,

f(x∗) < f(xj), for all j in the current filter Fk. Recall the definition of the envelope in

(3.1). Clearly, when h(x∗) = 0 the only way for a candidate point to be acceptable to

the filter is for f(x∗) < f(xj). This occurs because, if a feasible point is predicted such

that f(x∗) > f(xj) then the MEA metric associated with that point will always be 0 and

thus never selected. Therefore, the only way for a candidate point to be selected by the

MEA metric is to have it be feasible and below the current best minimum objective value

because that is the only way for it to have positive area under the MEA metric. Thus, as
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k → ∞, the MEA subproblem will only choose candidate points such that h(x∗) = 0 and

f(x∗) < f(xj) for all j ∈ Fk. �

Now that we have outlined and discussed our seven lemmas, we return to proving

the key theorem of this chapter for establishing global convergence.

Proof of Theorem. In order to prove this theorem, we must consider the following

two cases: (i) there are only a finite number of points accepted into the filter and this finite

sequence converges almost surely to a local feasible solution, or (ii) the infinite sequence

converges almost surely to a local feasible solution. First we consider case (i). Here we

will demonstrate that this case (i) holds by contradiction. Assume that there are only a

finite number of points accepted into the filter and the finite sequence does not converge

to a local feasible solution. We assume that k is large and so, by Lemmas 1, 2, and 3, our

predictions of the objective function and feasibility measure become arbitrarily good as k

grows large. However, by Lemma 4, as k grows large we must have that hk → 0, and so

finally, by Lemma 7, there must be some positive probability at each iteration that we will

find a better point to accept into the filter that would create a decrease in the objective

function. Thus, an infinite sequence of iterations would find another point, with probability

one, which would be acceptable to the filter. But this is a contradiction to our assumption

that we have a finite number of points accepted into the filter. Thus, if we do have a finite

number of points then this finite sequence must have converged almost surely to a local

feasible solution.

Next consider case (ii). By Lemma 7, given an infinite sequence of iterates (xk), for

k large, the only way that the MEA and PBF subproblems can pick new candidate points is
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to select those points that will be feasible and obtain a reduction in the objective function,

i.e., h(x∗) = 0 and f(x∗) < f(xj), for all j in the current filter Fk. Thus, Lemma 7 can

be seen as a way of imposing a sufficient reduction criteria. Moreover, given assumption

A1 that the sequence remains in a compact bounded domain, we have that the infinite

sequence must converge almost surely to a local feasible solution as the algorithm can only

chose points, with probability one, that are feasible and that reduce the objective function.

Equivalently, once feasible, i.e., hk → 0, the global minimum acts as a lower bound on the

infinite sequence and since this infinite sequence only decreases, by Lemma 7, we must have

that it converges almost surely to a local feasible solution.

We have proven that either case (i) or case (ii) must hold, and thus our statistical

filter algorithm satisfies all of the necessary assumptions for global convergence and should

be deemed globally convergent. �

5.3 Discussion

In this chapter we considered the problem of proving global convergence of the

statistical filter algorithm of Chapter 3. Under some standard assumptions, we provide an

argument for the global convergence of the statistical algorithm under both the PBF and

MEA subproblems. This global convergence proof comes from that the fact that as the

number of iterates tends to infinity, selection of candidate points, under the PBF and MEA

subproblems cannot be done in a way that does not guarantee selecting feasible points that

will decrease the objective function. We view this condition as being comparable to the

typical sufficient decrease criteria and conclude that the statistical filter algorithm must be
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globally convergent.

Although we have shown that our statistical filter possess global convergence prop-

erties, we do not give any indication as to how large the number of iterates k has to be.

Recalling that convergence is typically rather slow for derivative free optimization algo-

rithms (Conn et al., 2009), it would be a nice feature to have some sort of bound on the

number of iterations or the rate of convergence of our statistical filter algorithm. Cartis &

Scheinberg (2015) recently developed a method based on probabilistic models for proving

global convergence of unconstrained optimization problems. Cartis & Scheinberg (2015)

method not only proved global convergence but also provided a bound on the expected

number of iterations that the algorithms take before they achieve a desired level of accu-

racy. The analysis was based on stochastic processes and submartingale properties and thus

would seem like a nice extension to apply to the statistical filter algorithm given its roots in

stochastic processes. Unfortunately, the analysis by Cartis & Scheinberg (2015) was for the

unconstrained case and would need to be adapted to fit into the constrained optimization

case.

Lastly, although we did not attempt a convergence analysis of the filter methods

in Chapter 4, we think it would be a fruitful endeavor as well, and definitely part of future

research.
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Chapter 6

Conclusions

Many complex phenomena in the world cannot be studied physically and so there

is an ever growing need for computer models to study these complicated systems. As

science evolves and questions become more complex and expensive, the need for efficient

computer models, and surrogate models, becomes even more abundant. An important topic,

constrained optimization of computer experiments is a very challenging problem. Computer

models may be difficult to optimize because their output functions may be complex, multi-

modal, and difficult to understand. The novelty of the work presented in this dissertation is

in proposing a new methodology for solving constrained optimization problems by combining

statistical modeling and nonlinear programming. The marriage of stochastic process models

with filter methods is a powerful combination for understanding and optimizing black box

computer models.

In this dissertation we developed novel methodology for modeling of correlated

outputs of different types. Although motivated by applications in computer experiments,
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this new methodology presents a general purpose modeling framework for modeling corre-

lated outputs that need not arise solely from computer models. However, with computer

models in mind, this new joint stochastic process model proved to be an efficient surrogate

model for emulating computer experiments. The joint stochastic process model utilized the

sequential Monte Carlo method, particle learning, and was able to conduct fast sequen-

tial inference to help alleviate the computational burden that comes from working with

computer models that are prohibitively expensive to run a large number of times.

In order to solve constrained optimization problems of expensive black box com-

puter experiments we embedded the joint stochastic process model within a filter algorithm

that outperformed many of the established comparators. By building a joint surrogate

model for the objective and constraint functions we were able to establish two novel sta-

tistical metrics for guiding the filter efficiently. We demonstrated the success of our new

statistical filter algorithm on a suite of synthetic examples and a real world hydrology com-

puter optimization problem. Our newly designed statistical filter algorithm showed much

promise as a globally convergent algorithm. We took our statistical filter algorithm one step

further and extended it to allow for the incorporation of more information through what we

describe as a multidimensional filter algorithm. This multidimensional filter algorithm cap-

italized on the inherent weaknesses of the original filter algorithm and was able to produce

a better solution to the constrained optimization problem.

Although we conclude the dissertation here, there are always avenues for future

work. In general, we hypothesize that we may be able to gain faster convergence to a global

solution by incorporating a time dependent upper bound Uk on the constraint function that
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shrinks (or slides) over time. Currently within the statistical filter algorithms we use an

upper bound U on the constraint functions that is set arbitrarily large or by some real-word

physical property of the problem. In applications, setting the upper bound U this way

works well, however, we think that by allowing U to shrink over time towards h(x) = 0 we

may be able to force the filter to find feasible solutions more rapidly.

The multidimensional filter worked exceedingly well but in creating it we lost

some of the desirable convergence properties that the envelope afforded us. With as much

promise as the multidimensional filter showed, we think it a very important task to establish

a multidimensional envelope equivalent that may even help facilitate faster convergence to

a solution of the constrained optimization problem as well as allow for provable convergence

results of the method to hold.

Lastly, and most importantly a personal goal, we would like to create an R package

based on the joint stochastic model of Chapter 2 to disseminate to the statistics community

at large.
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