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ARTICLE

Let-7 microRNA-dependent control of leukotriene
signaling regulates the transition of hematopoietic
niche in mice
Xuan Jiang1, John S. Hawkins1, Jerry Lee1, Carlos O. Lizama1, Frank L. Bos1, Joan P. Zape1, Prajakta Ghatpande1,

Yongbo Peng1, Justin Louie1, Giorgio Lagna1, Ann C. Zovein 1,2 & Akiko Hata 1

Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal

aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we

report that vascular endothelium-specific deletion of mouse Drosha (DroshacKO), an enzyme

essential for microRNA biogenesis, leads to anemia and death. A similar number of hema-

topoietic stem and progenitor cells emerge from Drosha-deficient and control vascular

endothelium, but DroshacKO-derived hematopoietic stem and progenitor cells accumulate in

the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs

is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and

induction of the α4β1 integrin cell adhesion complex in hematopoietic stem and progenitor

cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of DroshacKO

hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in

wild-type animals. Our study uncovers a previously undefined role of innate leukotriene

B4 signaling as a gatekeeper of the hematopoietic niche transition.

DOI: 10.1038/s41467-017-00137-y OPEN

1 Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA. 2 Department of Pediatrics, Division of
Neonatology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA. Correspondence and requests for materials should be
addressed to A.H. (email: akiko.hata@ucsf.edu)

NATURE COMMUNICATIONS |8:  128 |DOI: 10.1038/s41467-017-00137-y |www.nature.com/naturecommunications 1

http://orcid.org/0000-0003-3298-7308
http://orcid.org/0000-0003-3298-7308
http://orcid.org/0000-0003-3298-7308
http://orcid.org/0000-0003-3298-7308
http://orcid.org/0000-0003-3298-7308
http://orcid.org/0000-0003-3784-1738
http://orcid.org/0000-0003-3784-1738
http://orcid.org/0000-0003-3784-1738
http://orcid.org/0000-0003-3784-1738
http://orcid.org/0000-0003-3784-1738
mailto:akiko.hata@ucsf.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hematopoietic progenitors first arise in the yolk sac (YS),
initially as primitive erythrocytes and megakaryocytes at
embryonic day (E) 7.25, followed by transient definitive

erythroid/myeloid progenitors at E8.251–3. During a limited
developmental window, definitive hematopoietic stem and pro-
genitor cells (HSPCs) emerge as clusters from the dorsal aorta
(DA) in the aorta/gonad/mesonephros (AGM) and in the vitelline
and the umbilical arteries (VA + UA),1–3. A complex and finely
tuned process choreographs the emergence of HSPCs from the
vascular bed. First, specialized endothelial cells (ECs), designated
hemogenic endothelium (HE), undergo an endothelial-to-
hematopoietic transition (EHT) and generate HSPCs. HSPCs
are assembled as clusters attached to the arterial lumen, and
remain attached until an unknown signal instructs them to detach
from the vascular bed, enter the circulation, and migrate to the
fetal liver (FL)4–8. By E13.5 the FL becomes the dominant
hematopoietic organ in the embryo2. Recent studies have eluci-
dated the involvement of various signals, including innate
inflammatory signals, such as interferons and tumor necrosis
factorα, in the early steps of de novo HSPC production from the
HE in mouse and zebrafish9–12. However, the molecular and
biochemical pathways that control subsequent events, such as
HSPC maturation, release into circulation, and migration to the
FL, are poorly understood due to lack of reported mutant
abnormalities at stages that follow HSPC emergence.

Small non-coding microRNAs (miRNAs) mediate post-
transcriptional gene regulation and are indispensable for nor-
mal embryogenesis and maintenance of homeostasis in every

organ13–16. Although a number of miRNAs have been shown to
be critical for hematopoiesis16, little is known about the role of
miRNAs in early embryonic HSPC generation. miRNA biogenesis
requires the essential enzyme Drosha for cleavage of primary
miRNA transcripts (pri-miRNAs) and generation of precursor
miRNAs (pre-miRNAs) in the nucleus13, 17. Thus, deletion of
Drosha leads to the depletion of nearly the entire miRNA
population, thus enabling an assessment of the function of global
miRNA-dependent gene regulation13. In this study we generated
mice in which Drosha is conditionally deleted (DroshacKO) in the
vascular endothelium (VE). We report that DroshacKO mice die
prematurely due to a complete failure of definitive hematopoiesis,
despite normal specification of HE and emergence of HSPC
clusters. We link this phenotype in part to the elevated produc-
tion of leukotriene B4 (LTB4) in HSPC clusters leading to
increased adhesion to the VE and failure to migrate to the FL.
Our study demonstrates the innate LTB4 signaling as determi-
nants of spatiotemporal control in the transition process of
HSPCs from the AGM to the FL.

Results
Loss of endothelial drosha leads to hematopoietic defects. To
elucidate the physiological function of miRNAs in definitive
hematopoiesis, a VE-specific Drosha knockout mouse (Droshafl/fl;
Cdh5-Cre+, hereafter referred to as cKO) was generated by
crossing Droshafl/fl mice18 to a Cdh5-Cre transgenic mouse line19.
Cdh5-Cre drives the expression of Cre recombinase in ECs at E8,
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Fig. 1 Hematopoietic defects in endothelial-specific deletion of Drosha. a Representative images of E13.5 WT, Het and cKO embryos indicate subcutaneous
hemorrhage (arrows) and FL (circles) anemia in cKO embryos. Scale bars: 2 mm. b The cellularity of fetal liver from E13.5 WT, Het or cKO embryos was
analyzed. Total number of DAPI− live cells in the fetal liver was counted by flow cytometry. The number of cells in WT liver was set at 100% and the
relative number in Het or cKO liver was shown as Mean± SEM; p values were generated by unpaired Student’s t test . NS, not significant. n=WT: 4
embryos, Het: 3 embryos, cKO: 4 embryos. 3 litters. c The fraction (0.13%) of cells from the FL of E13.5 WT (Droshafl/+ or Droshafl/fl), Het (Droshafl/+;Cdh5-
Cre+), or cKO (Droshafl/fl;Cdh5-Cre+) embryos was subjected to CFU assay. The experiments were performed in duplicates. Colony counts of three
progenitors (BFU-E, CFU-GM, and CFU-GEMM) were plotted as Mean± SEM; p values were generated by unpaired Student’s t test . n=WT: 8 embryos,
Het: 4 embryos, cKO: 4 embryos. 2 litters. d 50% of cells from E10.5 AGM from WT, Het, or cKO embryos were subjected to CFU assay. Results of
duplicate experiments were shown as Mean± SEM; p values were generated by unpaired Student’s t test . n=WT: 10 embryos, Het: 2 embryos, cKO: 4
embryos. 3 litters
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thus Drosha is expected to be depleted from both embryonic and
extraembryonic hemogenic tissues in cKO animals19. The EC-
specific Cre recombinase activity was confirmed by using a Cre-
reporter (Rosa26mT/mG) mouse in which GFP (green) is expressed
upon Cre recombination, and tdTomato (red) is expressed in
non-recombined tissues20. At E10.5, ECs along the DA in the
AGM were GFP-positive, a sign of successful Cre excision
(Supplementary Fig. 1a). Quantitative-RT-PCR (qRT-PCR) ana-
lysis confirmed an ~70% reduction of Drosha mRNA in EC
populations (CD31+CD45−Kit−) in cKO compared to control

mice (hereafter referred to as Ctr), which include Het (Drosha fl/+;
Cdh5-Cre+), and WT (Droshafl/+ or Droshafl/fl) (Supplementary
Fig. 1b). At E13.5, FL in cKO embryos appeared smaller and paler
compared to Ctr (Fig. 1a and Supplementary Fig. 1c, yellow circle).
The total number of liver cells in cKO was only 9% of Ctr
(Fig. 1b), confirming the smaller cKO liver size (Fig. 1a and
Supplementary Fig. 1c). Because the liver is the predominant site
of erythroid development at E13.51–3, the liver phenotype in cKO
suggested a hematopoietic defect. Therefore, we evaluated the
number of Ter119+ cells, which include mature erythroid cells
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Fig. 2 Normal emergence of intra-aortic HSPC clusters in Drosha cKO embryos. a Endothelial cells (CD31+), HSPC clusters (CD31+Kit+CD45−) and
maturing HSPCs (CD31+Kit+CD45+) derived from AGMs of E10.5 Ctr or cKO embryos were quantitated by flow cytometry and shown as a frequency (%)
of ECs among DAPI− cells, CD31+Kit+CD45- among CD31+ (g), and CD31+Kit+CD45+ among CD31+ cells (h) (Mean± SEM); p values were generated by
unpaired Student’s t test . Scale bars: 10 µm. n=Ctr: 10 embryos, cKO: 5 embryos. 3 litters. b Whole-mount IF staining AGMs from E10.5 Ctr or cKO
embryos with anti-Runx1 (green) and anti-CD31 (red) antibodies. Yellow arrows: cluster cells. D, V indicate dorsoventral axis. Scale bars: 50 µm. c
Representative scanning electron microscopy images of intra-aortic cluster cells in E10.5 AGM from Ctr or cKO embryos (top). Arrows: cluster cells. The
cluster frequency panel (bottom left) indicates the number of cluster per 1000 ECs (Mean± SEM). In the cluster size panel (bottom right), the number of
cluster with different sizes per 1000 ECs was plotted (Mean± SEM); p values were generated by unpaired Student’s t test . Five images per embryo were
taken and counted. Scale bars: 10 µm. n= Ctr: 5 embryos, cKO: 5 embryos. 3 litters. d A representative image of transverse section from E10.5 AGM of
Drosha cKO with Cre recombinase reporter (GFP) allele (Droshafl/fl;Cdh5-cre+;Rosa26m/+, left panel) (left). Arrow: cluster cells (left). The fraction (%) of
Cre active (GFP+) cells among ECs (CD31+) was plotted as Mean± SEM (middle); p values were generated by unpaired Student’s t test . Right panel: Six
images were taken from each embryo. n= cKO: 2 embryos. 1 litter. qRT-PCR analysis of Drosha mRNAs relative to GAPDH mRNAs in HSPC clusters (CD31
+Kit+CD45−) sorted from E11.5 Ctr or cKO embryos (Mean± SEM); p values were generated by unpaired Student’s t test . Scale bars: 10 µm. n=Ctr: 12
embryos. cKO: 6 embryos. 3 litters. e Endothelial (CD31+) cells sorted from E10.5 AGM from Ctr or cKO embryos were co-cultured with OP9-DL1 cells for
7 days. Representative images of cluster cells that emerged from ECs at day 5 are shown (top). Number of clusters per view under ×20 objective on day 7
were quantitated and shown as Mean± SEM (bottom left). At day 7, all HSPC clusters from the co-culture were harvested and subjected to CFU assay. Total
colony counts were presented as Mean± SEM (bottom right); p values were generated by unpaired Student’s t test . NS, not significant. Scale bars: 50 µm
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and erythroid precursors21, in the FL by flow cytometry. The cKO
livers contained only half the number of Ter119+ cells as com-
pared to controls (Supplementary Fig. 1d), confirming defective
erythropoiesis in cKO, as is consistent with the pale coloration of
the cKO livers (Fig. 1a and Supplementary Fig. 1c). To evaluate
the functional ability of cKO livers, colony formation unit assays
(CFU assays) were performed and compared to Ctr (Het or WT)
at E13.5 (Fig. 1c). The number of colonies of three lineages (CFU-
GM, BFU-E, and CFU-GEMM) from cKO-livers was reduced to
44, 10, and 17% of WT-livers, respectively, indicating a broad
decrease of HSPCs in cKO FLs (Fig. 1c). There were no differ-
ences noted between WT and Het (Fig. 1c, WT vs. Het).

De novo production of HSPCs in the embryo occurs within
various hematopoietic sites, including the DA of the AGM, and
extraembryonic sites, such as the YS, the placenta, and the VA +
UA1–3. Since all the aforementioned hematopoietic sites19 express
Cdh5-Cre recombinase, the extent of HSPC defects due to Drosha
depletion in each site was evaluated by CFU assay (Fig. 1d and
Supplementary Fig. 2a). At E10.5, the number of colonies was
significantly reduced in the AGM in cKO ((45% (CFU-GMs),
19% (BFU-Es), and 32% (CFU-GEMMs) of Ctr) (Fig. 1d).
Furthermore, genomic DNA analysis ascertained that all the cKO
AGM colonies (Fig. 1d) retained at least one intact Drosha allele
(Supplementary Table 1), implying that Drosha-null HSPCs in
the AGM are nonfunctional or undergo premature cell death.
Reduction of HSPCs was also observed in the cKO extraem-
bryonic hematopoietic sites as early as E9.5 (Supplementary
Fig. 2a). Thus, Drosha depletion impairs the production of
HSPCs from the HE.

Although at E12.5 there was no discernible developmental
abnormalities, by E13.5 about half of the cKO embryos exhibited
subcutaneous hemorrhages (Fig. 1a, yellow arrow). All cKO
embryos died between E14.5 and E15.5 (Supplementary Table 2).
Immunostaining analysis of CD31, an endothelial marker, of the
YS vasculature of E13.5 cKO embryos revealed an ~20%
reduction in blood vessel branching compared to Ctr (Supple-
mentary Fig. 2b), suggesting that late endothelial patterning is
mildly affected by the deletion of Drosha. At E14.5, 90% of cKO
embryos presented both edema (Supplementary Fig. 1e, red
arrow) and bilateral hemorrhages characteristic of lymphatic-vein

fusion defects22 (Supplementary Fig. 1e, blue arrow). Histological
analysis of cKO embryos verified blood accumulation in dilated
jugular lymph sacs (Supplementary Fig. 2c) and the fusion of
jugular lymph sac and internal jugular vein (Supplementary
Fig. 2c, red asterisk). This phenotype is likely due to a lack of
intact platelet function, which is required for proper separation of
blood and lymphatic circulatory systems23, and is commonly
found in mouse models with hematopoietic defects, including
Gata224, Runx125 and Chd126 mutant mice. On the other hand,
heart rate (Supplementary Movie 1 for Ctr and 2 for cKO),
circulation (Supplementary Movie 3 for Ctr and 4 for cKO), and
overall size and morphology of the heart were indistinguishable
between cKO and Ctr, with the exception of a thinner compact
layer of the left ventricle in cKO embryos (Supplementary
Fig. 2d). Thus, we conclude that the primary cause of lethality of
cKO embryos is due to a hematopoietic defect.

Normal endothelial to hematopoietic transition in Drosha
mutants. HSPCs emerge from the HE as hematopoietic clusters
through EHT7. The appearance of clusters coincides with the
acquisition of cell surface markers Kit (CD117)27–30 and CD4129, 31

in addition to the pan-EC marker CD31. Therefore, cell surface
marker phenotypes (CD31+Kit+CD45− and CD31+CD41+CD45−)
are commonly used to define HSPC cluster populations32. To our
surprise, flow cytometric analysis showed no change of HSPC
cluster populations (CD31+Kit+CD45−) and endothelial popula-
tions (CD31+) in the cKO AGM at E10.5 (Fig. 2a, f, g) and E11.5
(Supplementary Fig. 3a, c). HSPC cluster populations defined by the
markers CD31+CD41+CD45− also demonstrated no differences
between cKO and Ctr at E10.5 (Supplementary Fig. 3b, e)27, 28.
Unlike early HSPC population, a more mature HSPC population
(CD31+Kit+CD45+)32 demonstrated a significant decrease in cKO
at both E10.5 and E11.5 (Fig. 2a, h, 0.8% in cKO vs. 1.4% in Ctr and
Supplementary Fig. 3a, d), suggesting that the maturation of HSPC
clusters towards a hematopoietic (CD45+) identity is compromised
in cKO. Previous studies suggest that changes in the expression of
Runx1, a transcription factor critical for EHT at E10.5 AGM19, 32,
could explain this phenotype. However, immunofluorescence (IF)
staining revealed that HSPC clusters from cKO AGM express both
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Runx1 (green) and CD31 (red) and are morphologically indis-
tinguishable from Ctr (Fig. 2b). Furthermore, scanning electron
microscopy images of the AGM (Fig. 2c, top) and quantitation of
cluster cells (Fig. 2c, bottom) demonstrate that the size and the
frequency of HSPC clusters are indistinguishable between cKO and
Ctr. When the cKO mouse was crossed to the Rosa26mTmG Cre
reporter mouse20 to estimate Cre recombination rate, we found
~90% of ECs and cluster cells underwent successful recombination
reported by GFP expression (Fig. 2d, middle, arrow). Furthermore,
qRT-PCR analysis showed 94% reduction of Drosha mRNA in
HSPC clusters (CD31+Kit+CD45−) (Fig. 2d, right). Therefore, nor-
mal morphology and quantity of cluster cells found in cKO AGMs
is not due to incomplete excision of Drosha loci.

When ECs sorted from E10.5 AGM are co-cultured with
mouse stromal OP9-DL1 cells, a fraction of ECs undergo EHT to
generate HSPC clusters in vitro33, 34. Using this OP9 co-culture
system33, 34, we compared the ability of ECs (CD31+) from cKO
or Ctr to produce HSPC clusters. As observed in vivo (Fig. 2c),
the morphology (Fig. 2e, top) and the number of clusters (Fig. 2e,
bottom left) derived from cKO-ECs were indistinguishable from
the clusters from Ctr-ECs. However, when the clusters were
subjected to CFU assays, cKO ECs-derived clusters gave rise to

fewer colonies as compared to the clusters from Ctr-ECs (14 vs.
79, Fig. 2e, bottom right). These findings indicate that HSPC
clusters emerge normally from cKO AGMs, however, they are
functionally defective. Taken together, these data support that
Drosha activity is dispensable for the specification of HE and
EHT, but is required at a later stage of HSPC maturation.

Defects of HSPC maturation in Drosha mutants. To examine
the maturation defect of HSPC clusters in cKO at later devel-
opmental stage, cells from E11.5 AGM were subjected to flow
cytometric analysis. CD45+ hematopoietic populations were
reduced in cKO AGMs at E11.5 (CD31+CD45+ (Fig. 3a, d, 0.94%
in cKO vs. 2.11% in Ctr; and Supplementary Fig. 4a, d) or Kit+

CD45+ (Fig. 3a, f, 2.90% in cKO vs. 6.64% in Ctr)), and non-
cluster hematopoietic populations (CD31−CD45+) were also
depleted in cKO at E11.5 (Fig. 3a, e, 0.4% in cKO vs. 2.0% in Ctr,
Supplementary Fig. 4a, e). To evaluate the function of the
hematopoietic populations, the same number of CD45+ cells was
isolated from E11.5 AGM or FL of Ctr or cKO and subjected to
CFU assays. The number of colonies from cKO AGM and FL
were ~7-fold and 10-fold smaller than Ctr, respectively (Fig. 3b).
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plotted. n= Ctr: 18 embryos, cKO: 5 embryos. 3 litters. b Whole-mount IF images of HSPC cluster cells in AGMs from E12.0 Ctr or cKO embryos were
shown. Runx1 (green) and CD31 (red). Arrows indicate HSPC clusters. Areas shown with a dotted box in left panels were magnified and presented in right.
Scale bars: 50 µm. n= Ctr: 3 embryos, cKO: 2 embryos. 1 litter. NS, not significant
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Furthermore, genomic DNA analysis confirmed that all the
colonies derived from cKO AGM or FL retained at least one
intact Drosha allele (Supplementary Table 3), indicating that
Drosha-null CD45+ cells are unable to produce hematopoietic
colonies. Therefore, Drosha activity is essential for the functional
maturation of HSPCs.

Immobilization of HSPC clusters in the mutant AGM. A
smaller number of maturing HSPCs and hematopoietic cells in
cKO could arise from abnormal survival or proliferation of HSPC
clusters26, 35. However, no evidence of premature cell death
(Supplementary Fig. 5a–c) or a proliferation defect (Supplemen-
tary Fig. 5d, e) of HSPC clusters in cKO was found. Thus, we
shifted the attention to HSPC clusters towards the end of the HE
time window, E12. To our surprise, there existed approximately a
2-fold increase in HSPC cluster populations (CD31+Kit+CD45−)
in the cKO AGMs compared to Ctr (Fig. 4a, f) at E12. However
the maturing HSPC (CD31+CD45+) (Fig. 4a, d) and hemato-
poietic populations (CD31−CD45+) (Fig. 4a, e) were significantly
reduced in the cKO AGMs to 65 and 12% of Ctr, respectively.
This result suggests an attenuation of the maturation toward
CD45+ cells in cKO HSPC clusters. Furthermore, IF analysis of
cluster cells detected large HSPC clusters in the caudal region of
E12 cKO AGMs (Fig. 4b, yellow arrows). No clusters were
detected in Ctr at E12 (Fig. 4b). These data indicate that HSPC

clusters are immobilized in the AGM of cKO, with a failure of
maturation and inability to migrate to the FL.

Aberrant activation of the LT biosynthesis pathway in Drosha
mutants. To identify the molecule(s) involved in the maturation
defect of cKO HSPCs, we performed a comparative transcriptome
analysis using ECs (CD31+Kit−CD45−) and HSPC clusters (CD31
+Kit+CD45−) sorted from 8 WT (Droshafl/+ or Droshafl/fl), 5 Het
(Cdh5-Cre+; Droshafl/+) and 5 cKO (Cdh5−Cre+; Droshafl/fl) at
E11.5 (Supplementary Fig. 4b). As global depletion of miRNAs
leads to a de-repression of their targets, we noted that the
majority of genes expressed in ECs and HSPCs were increased in
cKO compared to Ctr. The amounts of various EC markers in
ECs and HSPCs from cKO were similar or slightly higher than
Ctr (Supplementary Data 1), further demonstrating that EC
identity is intact in cKO. Similarly, the amounts of critical factors
regulating EHT, such as Runx1 and GATA2, were mildly
increased in cKO (Supplementary Data 1). qRT-PCR analysis
confirmed the RNAseq data, indicating that Gata2 and Runx1
mRNAs were increased 1.5-fold and 2.7-fold in cKO HSPCs
compared to Ctr HSPCs, respectively (Fig. 5a). Reduction of
Gata2 gene dosage36 in the cKO mice (Droshafl/fl;Gata2fl/+;Cdh5-
Cre+) did not ameliorate hematopoietic defects (Supplementary
Fig. 6), suggesting that the elevation of GATA2 is not a primary
cause of the cKO phenotype.
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To identify other factors possibly responsible for the cKO
phenotype, we screened the RNAseq data for transcripts
detectable in both cKO and Ctr ((>5 reads per kilobase per
million reads (RPKM)) but differentially expressed in the two
samples (p< 0.001). This group included three genes involved in
the arachidonic acid metabolic pathway: phospholipase A2 group
VI (Pla2g6), Alox5, and its cofactor Alox5-activating protein
(Alox5-AP) (Supplementary Data 1). Pla2g6 mRNA, which
encodes an enzyme that releases arachidonic acid from
phospholipids37, was increased ~3-fold in cKO (Supplementary
Data 1). The Alox5/Alox5-AP is a key enzyme complex in
leukotriene (LT) biosynthesis that catalyzes the conversion of
arachidonic acid to the unstable intermediate product LTA4,
which is further metabolized to more stable LTs (LTB4, LTC4,
LTD4, and LTE4)38, 39. qRT-PCR confirmed higher amounts
of Alox5 mRNA in cKO ECs (CD31+CD45−) and HSPCs
(CD31+Kit+CD45−) (Fig. 5b). Thus, we hypothesized that
augmented production of LTs, the products of Alox5, in cKO
HSPCs might be responsible for the observed hematopoietic
defects. To test this hypothesis, AGM explants from E9.5, E10.5
cKO or Ctr were treated with a pharmacological inhibitor of
Alox5, zileuton (A-64077), followed by CFU assays40, 41. Zileuton
is a clinically approved drug to treat asthma that inhibits LT
production by eosinophils42, 43. Vehicle-treated E9.5 AGMs from
cKO produced on average 6 colonies, while zileuton treatment
increased colony formation 4.5-fold, to 27 colonies (Fig. 5c and

Supplementary Fig. 7a). Similarly, zileuton treatment of E10.5
AGMs increased the number of HSPCs 2.4-fold, from 33 colonies
to 80 colonies (Fig. 5c and Supplementary Fig. 7b). Thus,
pharmacological inhibition of Alox5 at E9.5 or E10.5 rescues
hematopoietic defects in cKO AGMs. Next we tested the rescue
effect of zileuton in vivo. Zileuton or vehicle was injected into
pregnant mice at E9.5 and E10.5. At E11.5, AGMs and FLs were
isolated from the embryos and subjected to CFU assays. AGMs
and FLs from cKO treated in vivo with zileuton contained 1.7-
fold and 2.8-fold more colonies, respectively, compared to
vehicle-treated cKO tissues (Fig. 5d and Supplementary Fig. 7c,
d). Furthermore, the size of the liver became significantly
increased by zileuton treatment in cKO (Supplementary Fig. 7e).
Therefore, inhibition of the Alox5-LT pathway partially rescues
the hematopoietic defects in cKO. Zileuton treatment of Ctr
animals resulted in mild reduction of HSPC numbers in the AGM
and the FL compared to vehicle treatment (Fig. 5d), and a similar
trend was observed when E10.5 AGMs were treated with zileuton
ex vivo (Fig. 5c, bottom right). These results suggest that tight
controls of LT levels are prerequisite for normal hematopoiesis in
wild-type mice. To exclude the possibility of off-target effects by
zileuton, cKO mice were crossed with Alox5 heterozygous null
(Het) mice to generate Drosha:cKO/Alox5:Het mice, in which the
amount of Alox5 mRNA was reduced by ~50% (Supplementary
Fig. 7f, left). Consistent with the results of zileuton treatment
(Fig. 5d), cKO with reduced Alox5 gene dosage exhibited 2.3-fold
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more HSPCs than cKO with two Alox5 loci (Drosha:cKO/Alox5:
WT) (Fig. 5e, and Supplementary Fig. 7g). Thus, aberrant
activation of the Alox5-LT pathway in cKO embryos appears to
hamper the maturation of HSPCs, which can be rescued by either
pharmacological or genetic intervention of Alox5 dosage.

Increased LTB4 impairs the release of HSPC clusters. As a step
toward identifying which LT is responsible for the hematopoietic
defect in cKO, we examined the transcripts of BLT1, a high-
affinity receptor for LTB4; BLT2, a low-affinity receptor for LTB4;
and Cysltr1 and Cysltr2, receptors for cysteinyl LTs (LTC4,
LTD4, and LTE4)44 in HSPCs. BLT1 mRNA was abundant in
HSPCs and ECs, and ~2-fold higher in cKO as compared to Ctr
(Fig. 6a). BLT2, Cysltr1 and Cysltr2 mRNAs were less abundant
compared to BLT1 (Fig. 6a). Next, we quantitated the intracellular
LTB4 in HSPCs from E10.5 AGMs by an enzyme-linked
immunosorbent assay (ELISA), to find a concentration of LTB4
of 52 pM in cKO and 23 pM in Ctr (Fig. 6b). This result demon-
strates that LTB4 production is augmented in cKO HSPCs, which
is in agreement with the increased amount of Alox5 detected in
cKO (Fig. 5b). To test the effect of LTB4 on HSPCs, E9.5 AGMs
from wild-type (WT) embryos were treated with increasing
concentrations of LTB4, and subjected to CFU assays (Fig. 6c,
upper panel). The treatment of WT AGMs with 1 nM LTB4
augmented the number of colonies by 2.7-fold compared to
vehicle-treatment (Fig. 6c). On the contrary, 100 nM LTB4
reduced the number of colonies to 25% of vehicle-treated control
(Fig. 6c). Consistent with the result of CFU assays, flow cyto-
metric analysis of HSPC (CD31+Kit+CD45−) populations
revealed a 70% increase upon 1 nM LTB4 (Fig. 6d, left), and 68%
decrease upon 100 nM LTB4 treatment (Fig. 6d, right panel).
Thus, the effect of LTB4 on AGMs is dose-dependent. Next, the
in vivo effects of LTB4 were tested by administering LTB4 or
vehicle by intraperitoneal injection to WT pregnant female mice
between E8.5 and E10.5. E11.5 AGMs and FLs were isolated from
the embryos and tested in CFU assays. Compared to vehicle-

treated WT, LTB4-treated WT produced 20% less colonies from
the AGM (Fig. 6e), and even less (40% reduction) from the FL
(Fig. 6e). These results indicate that exposure to increased
amounts of LTB4 causes impairment of colony forming ability
and a reduction of HSPCs, which together indicate a significant
role for LTB4 biosynthesis and homeostasis during develop-
mental hematopoiesis. To ameliorate the effect of aberrant
intracellular LTB4 signaling in cKO HSPCs, E10.5 AGMs were
treated with a small molecule inhibitor of the BLT1 receptor,
U7530245, and subjected to CFU assays. U75302 treatment
increased the colony number 3.4-fold (from 23 to 79) in cKO
(Fig. 6f and Supplementary Fig. 7h). Therefore, Drosha activity is
essential to restrain the intracellular LTB4 signaling pathway in
HSPCs during development.

Depletion of Let-7 increases Alox5. To identify the miRNAs that
might be responsible for the induction of Alox5 mRNA, we iso-
lated miRNAs from ECs (CD31+ CD45−Kit−) of E11.0 Ctr or
cKO AGMs (Supplementary Fig. 4b). As expected, ~82% of
miRNAs (261 out of 320 miRNAs) detected in Ctr-ECs were
decreased in cKO AGMs by >1.6-fold in terms of reads per
million (RPM), supporting the essential role of Drosha in miRNA
biosynthesis (Supplementary Data 2). Thirty-one percent of
miRNAs present in Ctr AGMs (81 out of 261) were undetectable
in cKO AGMs, and an additional 21% (54 out of 261) were
reduced more than 50% in cKO AGMs (Supplementary Data 2).
The let-7 family of miRNAs, which shares a common seed
sequence (Fig. 7a), was abundant in Ctr AGMs, and reduced
more than 50% in cKO AGMs (Supplementary Table 4). The 3′-
untranslated region (UTR) of the Alox5 mRNA contains a pre-
dicted let-7 binding sequence (Fig. 7a). When Alox5 3′-UTR was
inserted into the luciferase reporter construct pISO-AL5 (Fig. 7b),
the luciferase activity was significantly reduced upon transfection
of let-7e mimic but not control mimic (miR-142) (Fig. 7c).
Transfection of let-7e mimic but not miR-125 or miR-142 mimic
into RAW 264.7 cells mediated the reduction of Alox5 mRNA
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(Fig. 7d), indicating that Alox5 is a novel target of the let-7 family
of miRNAs. Therefore, we hypothesized that restoration of let-7
might be sufficient to rescue hematopoietic defects in cKO. Let-7e
mimic, miR-9-5p mimic, or control mimic (miR-142) was trans-
fected into E10.5 AGMs from cKO or Ctr, followed by CFU
assays (Fig. 7e, left). miR-9-5p is known to target Runx146 and was
detectable in HSPCs (Supplementary Table 4). The transfection of
miR-9-5p mimic into cKO AGMs did not change colony counts
compared to control mimic-transfected cKO AGMs (Fig. 7e,
right), suggesting that the restoration of miR-9-5p and down-
regulation of Runx1 is not sufficient to rescue HSPC defect in
cKO embryos. When let-7e was transfected, however, the number
of total colonies increased 2.5-fold compared to control,
demonstrating that the restoration of let-7e and downregulation
of Alox5 is sufficient to rescue the functional maturation of
Drosha-depleted HSPCs.

Increased α4β1 integrin expression in Drosha mutant HSPCs.
Comparative transcriptome analyses showed that several mem-
bers of the integrin (Itg) family were upregulated in cKO HSPCs
compared to Ctr HSPCs (Supplementary Data 1). qRT-PCR
analyses confirmed that Itgα4, ItgαV, and Itgβ1 mRNAs were
elevated in cKO HSPCs. In particular, Itgα4 mRNA was
8.4-fold more abundant in cKO than Ctr (Fig. 8a, top left).
Immunofluorescence also confirmed higher amounts of Itgα4
protein in the HE clusters in cKO (Fig. 8a, top right). While flow
cytometric analysis of cell surface expression of Itgα4 in HSPCs
(CD31+Kit+CD45−) did not uncover significant differences
between cKO and Ctr (Supplementary Fig. 8a), maturing HSPC
populations (Kit+CD45+) demonstrated a 1.7-fold higher fraction
of Itgα4 high cells (α4 high cells) in cKO as compared to Ctr
(Fig. 8a, bottom). When WT AGMs were treated with 300 nM
LTB4 ex vivo, a 1.3-fold larger fraction of α4 high cells was
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NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00137-y ARTICLE

NATURE COMMUNICATIONS |8:  128 |DOI: 10.1038/s41467-017-00137-y |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


detected compared to vehicle-treated AGMs, suggesting that
α4 high populations can be induced by exposure to high levels of
LTB4 (Fig. 8b). When E11.5 cKO AGMs were treated with
zileuton to inhibit LTB4 production, the fraction of α4 high cells
was notably reduced from 38% (vehicle) to 30% (zileuton)
(Fig. 8c). Similarly, genetic ablation of Alox5 in cKO also reduced
α4 high cell populations from 37% (Drosha:cKO/Alox5:WT) to
30% (Drosha:cKO/Alox5:KO) (Fig. 8d). It is also notable that
homozygous deletion of Alox5 in mice with wild-type Drosha
alleles (Drosha:Ctr/Alox5:KO) led to a mild reduction of α4 high

cell populations from 22 to 18% (Fig. 8d). Therefore, activation of
the Alox5-LTB4 pathway in HSPCs results in an increase of α4
high cell populations.

Mobilization of HSPC clusters by inactivating α4 integrin.
Integrins function as receptors for various cell surface proteins
and are key players in cell adhesion to other cells and to the
extracellular matrix47. Therefore, we hypothesized that the
overabundance of Itgα4 on the surface of cKO HSPCs might act
to immobilize HSPC clusters by increased adhesion to the vas-
cular wall, preventing release into the circulation and subsequent
colonization of the FL. To test the hypothesis, a neutralizing
antibody against Itgα4 (anti-Itgα4)48 or non-specific (control)
IgG was injected into pregnant mice at E9.5-E11.5, and HSPC

clusters in cKO AGMs were examined at E12.0 (Fig. 9a). As
shown in Fig. 4b, aggregated HSPC clusters were detected in the
DA of E12.0 cKO AGMs treated with control IgG (Fig. 9a,
arrows), while at this time no clusters could be detected in Ctr.
However, these cluster aggregates were absent in cKO AGMs
treated with anti-Itgα4 antibody (Fig. 9a), suggesting a successful
release of cluster cells from the AGM. Genetic depletion of Alox5
in cKO cleared the large clusters from the AGM (Supplementary
Fig. 8b). Concurrently, 1.8-fold and 2.2-fold increases in maturing
HSPCs (CD31+Kit+CD45+) and hematopoietic cells (CD31
−CD45+) were detected in the peripheral blood from anti-Itgα4
antibody-treated cKO compared to control IgG-treated cKO at
E13.5, respectively (Fig. 9b). Thus, inactivation of Itgα4 partially
restores the release of cluster cells into the circulation. Further-
more, FLs from E14.5 cKO exhibited more intense red coloration,
accompanied by a 1.7-fold increase of FL weight, after anti-Itgα4
antibody treatment (Fig. 9c), indicative of improved migration of
HSPCs to the FL. Consistently, anti-Itgα4 antibody treatment in
cKO embryos resulted in increased numbers of CFUs in the
AGM, FL, YS vasculature, UA + VA, and placenta (Supplemen-
tary Fig. 8c), suggesting that the inhibition of Itgα4 restores
lineage commitment of HSPCs concurrent with their mobiliza-
tion from the vascular niche. Although not statistically significant,
a small increase of liver weight in Ctr was observed upon anti-
Itgα4 antibody treatment (Fig. 9c, right). This may suggest that
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inhibition of Itgα4 facilitates mobilization of HSPCs to the FL in
controls, as well. Altogether, our study sheds light on a previously
unappreciated role of miRNA-dependent control of innate
LTB4 signal as a gatekeeper of the transition from the vascular
niche to the FL niche.

Discussion
MiRNAs have been implicated in different aspects of hemato-
poiesis, including maintenance of adult bone marrow HSC self-
renewal and terminal differentiation of adult progenitors into
various lineages49. Outside the context of in vitro culture systems
or adult hematopoiesis49, however, little is known about the roles
of miRNAs in the hematopoietic system, especially during its
early development. Our study of conditional Drosha knockout
mice uncovers a role for let-7 miRNAs in developmental hema-
topoiesis, within a newly discovered stage that occurs after the
emergence of HSPC clusters but prior to their mobilization to the
FL. Furthermore, our study sheds light on the physiological
requirement of a fine-tuned LTB4 signaling pathway for the
maturation of HSPCs, and control of their release from the AGM
microenvironment.

Critical roles of miRNAs in adult hematopoiesis, such as
contributing to the proper formation of the HSC niche in bone
marrow, have been gleaned from an osteoprogenitor-specific
Dicer deletion, which presents with peripheral blood cytopenia
and myelodysplasia50. Reduced amount of Dicer and Drosha have
also been reported in mesenchymal stromal cells from human
patients with myelodysplastic syndrome (MDS)51, suggesting that
global dysregulation of miRNAs may cause hematopoietic dis-
eases like MDS. Thus, it appears that Drosha activity and proper
production of miRNAs in HSCs are important for both
embryonic and adult hematopoiesis. Let-7 miRNAs have been
implicated in the lineage commitment to natural killer T (NKT)
cells and fetal B lymphocytes by targeting key transcription fac-
tors PLZF52 and Arid3a53, respectively. It has also been shown
that Lin28b-dependent regulation of let-7 controls the self-
renewal potential of fetal and adult HSCs by modulating its target
Hmga254. The abundance of Hmga2 mRNAs in HSPCs from
cKO was only moderately increased unlike Alox5 mRNAs (Sup-
plementary Data 1).

Previous studies have implicated the roles of other arachidonic
acid metabolites, such as prostaglandins (PGs) and epoxyecosa-
trienoic acids (EETs) during embryonic hematopoiesis. PGE2,
which is synthesized by enzymes COX1 and COX2, was identified
as a mediator of HSC expansion in zebrafish and mouse55. 11,12-
EET, which is synthesized by enzymes CYP2C and CYP2J, is
known to promote a unique activator protein 1 (AP-1) and
Runx1 transcription program to orchestrate cellular processes,
such as migration, that ultimately facilitate HSPC engraftment in
both zebrafish and mouse56. Our study adds a member of another
class of arachidonic acid metabolites, LTB4, to the list of mod-
ulators of HSPC development, with one critical difference: unlike
PGE2 and 11,12-EET, which are stimulatory to HSPC develop-
ment, the effect of LTB4 at a high dose is inhibitory to HSPC
development. Currently, no molecular mechanisms downstream
of PGE2 or 11,12-EET in the context of HSPC development have
been identified. The mechanism underlying the intricate network
of different classes of arachidonic acid metabolites (LTB4, PGE2,
and 11,12-EET) regulating HSPC biology, and especially the
crosstalk of their downstream signaling pathways, needs to be
elucidated in the future.

LTB4 has been implicated in a wide range of inflammatory
conditions, including vascular disorders, such as atherosclerosis
and pulmonary artery hypertension39, 44. LTB4 plays a binary
role in inflammatory responses, partly as a potent

chemoattractant of leukocytes and partly as a signaling molecule
that binds G-protein coupled BLT1 and BLT2 receptors and
triggers intracellular effects44. LTB4 is typically released from the
cell into the extracellular milieu and acts non-cell autonomously,
but it can also act cell-autonomously in the nucleus as a mod-
ulator of transcription57. Here we uncover the dose-dependent
effect of the LTB4-BLT1 signaling pathway in HSPCs during
developmental hematopoiesis. Our results demonstrate that
HSPC clusters increase their adhesion to the vascular wall
through induction of α4β1 Itg in response to LTB4. This is
analogous to the inflammatory process by which leukocytes
secreting LTB4 increase their adhesion to the vascular wall39, 45,
58–61. Therapies to block adhesion molecules, such as α4 Itg, are
found to be effective for various inflammatory conditions, such as
asthma, multiple sclerosis, and inflammatory bowel disease48, 62,
63.

Previous studies demonstrate the essential role of Itgα4β1 in
HSCs for homing into the FL, spleen, and bone marrow64.
Indeed, we terminated the anti-Itgα4 antibody treatment at E11.5
to avoid a prolonged blockade of Itgα4 possibly disrupting liver
homing of HSPCs. We speculate that the amount of α4β1 Itg on
the surface of HSPCs is dynamic during maturation and likely
being precisely controlled by multiple mechanisms, one of which
is the Alox5-LTB4-BLT1 pathway. Besides the role as cell adhe-
sion molecules, Itgs can also play a role in activating growth
factor signaling, including transforming growth factor-β65. Thus,
the regulation of α4β1 Itg is crucial not only for the interaction of
HSPCs with the vascular microenvironment through cell adhe-
sion, but may also play an important role in HSPC maturation
through signaling. In conclusion, our study uncovers a previously
unappreciated role of innate LTB4 signaling, and the mechanism
by which miRNAs regulate Alox5, which in turn modulates LTB4
production, to tightly control Itg-mediated HSPC adhesion. This
finely tuned regulation allows for HSPC maturation and eventual
release from the vascular bed with subsequent migration to the
FL.

Methods
Animal care and use. All animal experiments were conducted in accordance with
University of California at San Francisco Laboratory Animal Research Committee
guidelines. Cdh5-Cre19, Droshatm1Litt

floxed line18, Gt(ROSA)26Sortm4(ACTB-tdTo-

mato,-EGFP)Luo line20, and Gata2tm1Sac 36 have been previously described. All the
mice were on the mixed background of 129 and C57BL/6J. Embryos were dated by
the presence of vaginal plug in the female mouse as E0.5. Embryos both genders
were used.

Flow cytometry and cell sorting. FL or AGM was dissected from embryos and
mechanically dissociated by pipetting into single cell suspension in Hank’s
balanced salt solution containing 2% fetal bovine serum (FBS), 1% penicillin/
streptomycin and buffered with 10 mM HEPES, pH7.2 (FACS buffer). Cells were
stained with fluorescein conjugated antibody at 4 °C for 1 h, washed with DAPI
containing FACS buffer and analyzed by FACS Verse (BD Biosciences) or sorted
on a FACS Aria III (BD Biosciences) located at the UCSF FACS core. For flow
analysis of peripheral blood, E13.5 embryos were harvested. Each embryo was bled
in 500 µl FACS buffer. Whole peripheral blood was then stained with fluorescein-
conjugated antibody at 4 °C for 1 h. After staining, red blood cells were lysed with
RBC lysis buffer (Biolegend 420301) following manufacture’s manual. The per-
ipheral blood sample was then washed with DAPI (0.5 µg ml−1) containing FACS
buffer and analyzed by FACS Verse (BD Biosciences). Data were analyzed with
FlowJo v10.0.7. IgG staining was used as a control for gating. Results shown in
figures were normalized with average of Ctr in each litter.

Cellularity analysis. Cellularity of FL was analyzed according to previous study26.
Briefly, E13.5 FL were dissociated into single-cell suspension in FACS buffer by
pipetting and stained with DAPI at 4 °C for 30 min, followed by the analysis of total
number of DAPI−negative (DAPI−) cells by FACS Verse (BD Biosciences). Total
number of DAPI− cells per FL relative to average of total number of DAPI− cells
from WT or control littermates’ FLs are plotted as mean ± SEM.

Antibodies. The following antibodies directed against mouse antigens were used:
Percp-CD45 (Biolegend 103130), FITC-CD31 (BD 553372), APC-CD117/Kit (BD
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553356), PE-CD31 (Biolegend 102407), FITC-Ter119 (BD 561032), Percp-IgG2bk
(Biolegend 400336), FITC-IgG2ak (BD 553929), APC-IgG2bk (BD 556924), PE-
IgG (Biolegend 405307), PE-Annexin V (BD560930), DAPI (ThermoFisher
D1306), PE-ItgαV (Biolegend 104106), and PE-Itgα4 (BD 557420). For flow ana-
lysis, antibodies were used at a concentration of 2 µg ml−1.

In vivo anti-Itgα4 antibody treatment. Mice were treated with anti-α4 Integrin
antibody (Millipore, CBL1304, clone PS/2) or control IgG-B (Santa Cruz, sc-2763).
Antibodies (2 mg kg−1 per mouse) were given intraperitoneally at E9.5, E10.5 and
E11.5. E12.0 AGM or E14.5 FL was harvested for subsequent analysis. To collect
peripheral blood, E13.5 embryos were harvested and bled in FACS buffer, followed
by antibody staining. Red blood cells in peripheral blood were then lysed with RBC
lysis buffer (Biolegend 420301), followed by flow analysis.

Cell culture and luciferase assay. Mouse macrophage RAW264.7 cells (a gift
from Dr. R. Swanson at UCSF) or HEK293 cells (ATCC) were cultured in 10%FBS
in high-glucose DMEM with penicillin and streptomycin at 37 °C, 5% CO2. Thirty-
four nucleotide sequence partially complementary to let-7 miRNA found in the
3′UTR of Alox5 mRNA (5′-CAATAAAAAAGCTGGTCTACTACCTCCTCCA
ACG-3′) was cloned at SacI and NheI site of the firefly luciferase miRNA sensor
pISO (Addgene, plasmid #12178)66 (pISO-AL5). pISO, pISO-AL5 (100 ng each),
and renilla luciferase plasmid (1 ng) were transfected with 6 pmol let-7e or control
(miR-142-5p) mimic (mirVana®miRNA mimic, Thermo Fisher Scientific) into one
well of a 24-well plate of HEK293 cells. Total cell lysates were prepared 48 h after
transfection, and subjected to the luciferase assay with Glomax 96 Microplate
Luminometer (Promega) following manufacture’s manual. The firefly luciferase
activity was normalized by the renilla luciferase activity to normalize transfection
efficiency. Results are shown as a ratio of pISO-AL5/pISO after normalization by
renilla luciferase activity.

Next generation sequencing. HSPC cluster cells (CD31+CD45−Kit+) and ECs
(CD31+CD45−Kit−) cells were sorted from five cKO, eight WT, and five Het
embryos. Cells from embryos with the same genotype were pooled for RNA pre-
peration with RNeasy Plus micro kit (Qiagen 74034). The quality of RNAs was
evaluated with 2100 Bioanalyzer Instrument (Agilent Technologies). RNA samples
with RNA integrity number> 8.0 were shipped to Beijin Genome Institute for a
library preparation and sequencing (Illumina HiSeq 2500).

Quantitative RT-PCR analysis. For qRT-PCR analysis, total RNA was prepared in
the same way as next generation RNA-sequencing. 5 ng RNA from HSPC cluster
cells and 50 ng RNA from ECs were amplified and reverse transcribed with a
Nugen ovation picoSL WTA system V2 (Nugen 3312-24). Samples were then 1:100
diluted for qRT-PCR analysis. For qPCR analysis of E10.5 Alox5+/− and Alox5+/+

embryos, E10.5 whole embryos were lysed in TRIzol (Ambion, 15596018) for RNA
extraction and reverse transcriptase reaction was performed using iScriptTM cDNA
Synthesis Kit (BIO-RAD, #1708891). qRT-PCR reactions were performed in tri-
plicates using iQ SYBR Green supermix (Bio-RAD 1708882)67. Primers for qRT-
PCR are listed in Supplementary Table 5.

Genotyping of mouse. Genomic DNAs were isolated from tail tips of postnatal
day 12 mice or conceptus yolk sacs and genotyped using regular PCR. Primers for
genotyping are listed in Supplementary Table 5.

Histology immunofluorescence staining and microscopy. E13.5 embryos were
harvested by cesarean section, rinsed in PBS(-), PH 7.4, fixed in 4% paraf-
ormaldehyde overnight at 4 °C, then embedded in paraffin, sectioned at a thickness
of 7 μm, and stained with hematoxylin and eosin. Sections were imaged with Nikon
E1000 microscope. For IF staining, E9.5 and E10.5 embryos were fixed in 4%
paraformaldehyde solution overnight, dehydrated in 30% sucrose in PBS(-) and
then embedded in Tissue-Tek OCT Compound (Sakura Finetec, 4583). Cryosec-
tions (40 µm) were done with Leica CM1850V. Slides were dried for 2 h at room
temperature and stored at −80 °C before IF staining. Cryosections were warmed to
room temperature, washed in PBS, penetrated with 0.5% Triton-X-100 in PBS(-)
for 10 min and then blocked using 3% BSA 0.05%/Triton-X-100 in PBS(-) for 1 h at
room temperature. Slides were incubated with primary antibodies at 4 °C over-
night, followed by PBS wash and secondary antibody incubation for 1–2 h at room
temperature. Images were taken with Leica SPE Confocal Microscope and com-
plied with ImageJ software. All the experiments were performed with three bio-
logical replicates. For whole-mount IF staining, AGM of E10.5 embryos were
dissected and fixed in 4% paraformaldehyde solution overnight, dehydrated in
series of methanol/PBS, and stored at −20 °C before the experiment. AGMs were
rehydrated through a series of methanol (25, 50, and 75%)/PBS(-) solution, blocked
using 3% milk/0.1%Tween in PBS(-) for 2 h at room temperature, then incubated
with primary antibody for 48 h at 4 °C. AGMs were then washed with 3% milk/
0.1%Tween in PBS(-) for 5 times, 1 h each time, and the last wash was overnight at
4 °C. Secondary antibody was incubated for 48 h at 4 °C. AGMs were then dehy-
drated through a series of methanol/PBS, cleared and mounted with BABB solution
(benzyl alcohol: benzyl benzoate). Images were taken with Leica SPE Confocal

Microscope and complied with ImageJ software. The following antibodies directed
against mouse antigens were used: CD31 (BD pharmaceuticals, 550274), Runx1
(Abcam, ab92336), Sox17 (Abcam, ab155402), anti-rat IgG 594 (ThermoFisher, A-
21209), and anti-mouse IgG 488 (ThermoFisher, A-21202). All the experiments
were performed with three biological replicates. Primary antibodies were used at a
concentration of 500 ng ml−1. Secondary antibodies were used at a concentration of
5 µg ml−1.

Scanning electron microscopy. E10.5 embryos were harvested by cesarean sec-
tion, fixed in 2% paraformaldehyde solution at 4 °C overnight, washed in PBS(-),
embedded in 4% low melting point agarose68. The embryos were then sectioned
sagittally on a vibratome (Leica VT 100P) at 100–300 μm, peeled out of the agarose
and refixed in 0.1 M sodium cacodylate, followed by dehydration in a series of
ethanol washes (30, 50, 70, 90, and 100%). Samples can be stored at 4 °C for up to
1 week in 100% ethanol. Samples were dried in a critical point dryer, coated with 8
nm of iridium labeling prior to image acquisition on a Zeiss Ultra55 FE-scanning
electron microscope. Imaging was performed with five biological replicates for
every genotype. More than 20 images were taken for each embryo and 10 images
were used for quantitative analysis.

In vivo treatment of mice with antagonists. 5 mg kg−1 zileuton (Cayman
#10006967) or 0.5 mg kg−1 U75302 (Cayman #70705) was injected intraper-
itoneally in pregnant female mice at E9.5 and E10.5. Embryos were harvested on
E11.5. AGM and FL were dissected and subjected to CFU assay.

In vivo treatment of mice with LTB4. LTB4 (Cayman #20110) was diluted with
normal saline. Because LTB4 is dissovled in ethanol, the same volume ethanol was
diluted with normal saline and used as control reagent. 750 ng LTB4 or control
reagent was injected intraperitoneally into pregnant female mice daily from E8.5-
E10.5. At E11.5, embryos were dissected, FL and AGMs were taken and subjected
to CFU assay.

Enzyme-Linked Immunosorbent Assay. HSPC (CD31+CD45−Kit+) and EC
(CD31+CD45−Kit+) populations from E11.5 Ctr or cKO AGM were sorted by
FACS Aria III (BD Biosciences) into 7% BSA in FACS buffer. Cells were pre-
cipitated by centrifugation at 2500 RPM, 5 min, 4 °C. Cells were lysed in PBS(-) by
freeze-and-thaw for three times using liquid nitrogen and 37 °C water bath. Cells
were then stored at −80 °C prior to ELISA. ECs from two embryos of the same
genotype and early HSPCs from five embryos of the same genotype were pooled
and the level of LTB4 was measured using LTB4 Parameter Assay kit (R&D
KGE006B) according to manufacturer’s instructions.

In vivo cell proliferation analysis. The rate of cell proliferation in vivo was
measured by 5′-ethynyl-2′-deoxyuridine (EdU) incorporation into DNA followed
by image analysis using the Click-iTTMEdU Alexa Fluor Imaging Kit (Invitrogen/
Molecular Probes C10337) or flow analysis with Click-iT EdU Alexa Flour 488
Flow Cytometry Assay Kit (Invitrogen/Molecular Probes C10425). For imaging
analysis, E10.5 pregnant female mice were injected with EdU at a dose of 50 mg kg−1

2 h prior to euthanization and embryos were harvested. Embryos were fixed in 4%
paraformaldehyde solution at 4 °C overnight, and cryosectioned at a thickness of
50μm. Sections were then washed with PBS(-) and permeabilized with 0.5% Triton
X-100 in PBS(-) for 20 min, incubated with a Click-iTTM reaction cocktail for 1 h
for EdU staining, followed by immunostaining with CD31 antibody and imaging
with Leica SPE confocal microscope. The image EdU analysis was performed with
biological duplicates and technical triplicates. For flow analysis, E10.5 pregnant
female mice were injected with EdU at a dose of 50 mg kg−1 1 h prior to be
euthanized and embryos were harvested in FACS buffer. AGM was pipetted into
single-cell suspension, washed with PBS(-) and stained with Fixable Viability Dye
eFluor 450 (eBioscience, 65-0863-14). Cells were then fixed, permeabilized, stained
with Click-iT EdU reaction cocktail, followed by wash and cell surface marker
staining, and flow analysis. Ten control embryos and five cKO embryos from two
litters were subjected to EdU flow analysis.

OP9-DL1 co-culture. Murine bone marrow-derived stromal cell line OP9-DL169

were cultured in 20% FBS in αMEM supplemented with 5 ng ml−1 recombinant
human Flt-3L (R&D Systems, 308-FK), 1 ng ml−1 recombinant murine IL-7
(Peprotech, 217-17), and penicillin-streptomycin1. CD31+ cells (1,500 cells) were
sorted onto OP9-DL1 monolayers and cultured for 7 days. The HSPC clusters were
then mechanically scraped and flushed out, followed by for CFU assay.

Explant culture of AGM and colony formation unit assay. AGMs of E10.5
embryos were dissected and cultured at 37 °C for 20 h on 40 μm filters at an air-
liquid interface in myelocult medium (Stem Cell Technologies M5300) supple-
mented with 10 μM hydrocortisone. AGMs from E9.5 embryos were cultured under
the same conditions with additional supplements, such as 100 ng ml−1 SCF
(PeproTech), 10 ng ml−1 murine Oncostatin M (R&D) and 1 ng ml−1 basic FGF
(R&D). Then, 50 μM zileuton (Cayman 10006967), 2 μM U75302 (Cayman #70705)
or 1–100 nM LTB4 (Cayman #20110) were added as indicated. Zileuton was
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dissovled in 50% DMSO/50% PBS(-). After the culture, AGMs were then pipetted
into single-cell suspension and seeded into methocult medium (Stem Cell Tech-
nologies #M3434). The number of CFU-GM, BFU-E and CFU-GEMM were
counted after 7–10 days culture. For CFU assay, E13.5 FL or E10.5 AGM was
harvested and dissociated into single-cell suspension. Then, 0.13% of E13.5 FL
suspension, 50% of E10.5 AGM or 10% of E11.5 AGM or FL suspension was
seeded into methocult medium (Stem Cell Technologies M3434) and cultured for
7–10 days prior to counting the number of CFU-GM, BFU-E and CFU-GEMM
colonies. For transfection of let-7e mimic or control mimic (miR-142-5p), 18 nM
miRNA mimics were transfected into cultured E10.5 AGM with Lipofectamine
RNAiMAX (Thermo Fisher Scientific) following manufacturer’s instructions.

TUNEL assay. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End
Labeling (TUNEL) assay was performed with E10.5 AGM cryosection according to
manufacturer’s instructions (In Situ Cell Death Detection Kit, Fluorescein, Roche,
11684795910). Cryosections were washed with PBS(-), permeabilized with 0.2%
Triton X-100 in PBS for 10 min at room temperature, blocked using 3%BSA 0.02%
Triton X-100 in PBS for 1 h at room temperature, and incubated with rat anti-
CD31antibody(BD pharmaceuticals, 550274) overnight at 4 °C. Anti-rat Alexa
Fluor 594 secondary antibodies (Molecular Probes) were added to the TUNEL
reaction mix, which was prepared by diluting 1 part of enzyme solution in 9 parts
of label solution from the kit (Roche, 11684795910). The sections were incubated
with the secondary antibody/TUNEL reaction mix for 1 h at 37 °C, washed in PBS
three times, incubated with DAPI for 5 min, and mounted in Vectashield (Vector
Laboratories) for microscopy. The experiment was performed for five times with
biological triplicates of each genotype.

Statistical analysis. Graphs were generated with GraphPad PRISM software.
Statistical significance was calculated in R version 3.2.3 by Student’s t test. All data
sets were considered paired. The null hypothesis of the medians/means being equal
was rejected at α= 0.05 and p values were generated by unpaired Student’s t test
and presented in figures. The sample size is presented in the figure legend. For
animal analysis, at least three individual animals were used in each experiment and
all experiments were completed in gender- and genotype-blind manner. No ani-
mals were excluded. The investigators were blinded during experiments, because
genotyping was done after experiments. Experiments were not randomized.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon reasonable request. Sequencing data have
been deposited in the NCBI-SRA database under accession codes (SRA 3644408-
3644422).
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