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1 Introduction

Experiments at the Large Hadron Collider are now probing the structure of matter at

scales comparable with, and even beyond, the characteristic scale of electroweak symmetry

breaking. So far, no evidence has been found for a breakdown of the Standard Model (SM)

in particle collisions. Indeed, there is a logical possibility that the SM remains a good

description of hard scattering processes up to scales far beyond those of any conceivable

particle colliders. It is therefore of interest to examine the features predicted by the SM

for collider events well above the electroweak scale. For this purpose, Monte Carlo event
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generators including all the SM interactions on an equal footing are necessary. Such gener-

ators would be useful for investigating the limits of LHC searches, the potential of possible

future colliders and cosmic processes at ultrahigh energies.

To construct a general-purpose SM event generator,1 the three phases of a hard colli-

sion, namely initial-state parton showering, parton-parton collision and final-state shower-

ing, need to be simulated including all SM particles and interactions. For the initial-state

showering, parton distribution functions (PDFs) for all the SM fermions and bosons need

to be computed and tabulated beforehand, so that showering can be generated backwards

from the hard process, guided by the scale dependence of the PDFs [2, 3].

Recently, a final-state parton shower including emissions from all interactions in the

Standard Model was developed [4], which illustrated the importance of electroweak split-

tings at high energies. For initial-state radiation the generalization of the DGLAP [5–7]

evolution equations using all the Standard Model interactions has been worked out in [8],

but so far no numerical implementation of these results has been published.

As already mentioned, understanding the DGLAP evolution of PDFs using all interac-

tions of the SM is a required first step in developing a complete initial state parton shower.

Moreover, it already allows us to study many new qualitative features of very high-energy

processes, such as lepton-initiated processes in hadron collisions and the polarization in-

duced by electroweak PDF evolution.

The inclusion of QED corrections into parton distributions is a well established pro-

cedure [9–16]. However, above the electroweak scale around 100 GeV, the contributions of

other electroweak bosons become non-negligible and new effects appear [8, 17–30]. PDFs

of leptons, vector and scalar bosons are generated dynamically, and left- and right-handed

fermions evolve differently. There are also comparable effects in the third generation of

quarks due to their Yukawa interactions. Some effects of the SU(2) interaction are double-

logarithmically enhanced, due to the non-singlet nature of the incoming states.

The PDF evolution equations for the full Standard Model have been presented in

ref. [8]. In the present paper we recast those equations in a form suitable for event gener-

ation and solve them numerically for a given set of input distributions at the electroweak

scale. The resulting PDF set extends through the region of interest for future colliders and

well beyond, so that we can study the onset of the regime where all the SM interactions

start to become comparable.

Our solutions to the SM evolution equations are obtained in the approximation of

exact SU(3)×SU(2)×U(1) symmetry. That is, we neglect fermion and Higgs masses and

the Higgs vacuum expectation value, the effects of these being power-suppressed at high

scales. We impose an infra-red cutoff mV on interactions that involve the emission of

an electroweak vector boson, V = W i for SU(2) or B for U(1). Leading-order evolution

kernels and one-loop running couplings are used. All the electroweak PDFs are generated

dynamically from the QCD plus photon PDFs, starting from a matching scale q0 ∼ mV .

In practice we take q0 = mV = 100 GeV. In section 4 we show some effects of varying

these parameters, to provide an indication of uncertainties due to subleading logarithms

and power-suppressed terms.

1For a review of existing generators, see ref. [1].
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For the evolution of the photon, we decompose its PDF into W 3, B and mixed B/W 3

components at the input scale, evolve these components, and reconstruct the photon PDF

from them at higher scales using the running SU(2) and U(1) couplings. For the top quark,

we set the PDF to zero below the top mass scale and then use the leading-order massless

evolution kernels, as for other fermions. This treatment of the transition region around

the electroweak scale is clearly over-simplified but it should give a reliable indication of the

magnitude of electroweak effects at higher energies.

The accuracy of our resulting PDFs is leading logarithmic, with subleading logarithmic

effects included where possible, but not in a complete way. Contributions to the evolution

from the U(1), SU(3) and Yukawa interactions are therefore correct at the single logarithmic

level. However, as mentioned above, the SU(2) interactions give rise to double logarithmic

effects in the PDF evolution, such that single logarithmic effects in SU(2) non-singlet

quantities are not fully under control.

The organization of the paper is as follows. In section 2 we define the relevant parton

distribution functions for unpolarized proton beams and the general form of their evolution

equations, paying particular attention to the conservation of momentum in the presence

of the cutoff mV for vector boson emission. After specifying all the necessary splitting

functions and running couplings, we write the explicit evolution equations associated with

the five interactions: SU(3), U(1), SU(2), Yukawa and mixed U(1)×SU(2), for all the

SM partons in a flavor basis. As usual for DGLAP evolution, we do not include 4 point

interactions which are suppressed at high energies.

For a numerical implementation, as described in section 3, the flavor basis is not con-

venient, as too many coupled equations are involved. Instead we use the basis of conserved

quantum numbers introduced in ref. [8]. As shown there, the double-logarithmic evolution

of SU(2) non-singlet PDFs can then be factored out, which stabilizes and accelerates the

solution of the equations. In this way we are able to evolve all the SM PDFs to arbitrarily

high scales with satisfactory speed and precision. In practice we evolve up to 108 GeV,

where the approach to asymptotic behavior is well established.

In section 4, we present a selection of results that illustrate the extent to which elec-

troweak effects change the behavior of the various PDFs. In particular, we show changes

in the PDFs of strongly interacting particles relative to pure QCD evolution, and show

the size of the PDFs for electroweak gauge bosons relative to the gluon PDF. Finally, we

present results of the associated changes in parton-parton luminosities at a 100 TeV pp

collider and show the sensitivity of our results to changes of the input values of mV and q0.

Our conclusions are presented in section 5.

2 The evolution of parton distributions in the full Standard Model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left- and
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right-handed. Thus, each fermion has only one possible spin determined by its helicity and

the sign of its momentum

fi(x, µ) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣ ψ̄(i)(y) n̄/ ψ(i)(−y)

∣∣p〉 , (2.1)

fī(x, µ) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣ψ(i)(y) n̄/ ψ̄(i)(−y)

∣∣p〉 , (2.2)

where µ is the renormalization scale. Since we have separate left- and right-handed PDFs,

for each generation there are a total of 8 quark PDFs and 6 lepton PDFs to consider, giving

a total of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x, µ) =
2

n̄·p

∫
dy

2π
e−i 2xn̄·p y n̄µn̄

ν
〈
p
∣∣V µλ(y)Vλν(−y)

∣∣p〉∣∣∣
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⊗ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W− boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W3, however, one needs to be more careful to take the mixed

contributions of these two bosons into account. Such contributions arise from the fact that

the left-handed fermions and Higgs carry both isospin and hypercharge. This implies that

besides B and W3 PDFs one needs to include a mixed PDF, which is given by2

fBW (x) =
2

n̄·p

∫
dy

2π
e−i 2xn̄·p y n̄µn̄ν

〈
p
∣∣Bµλ(y)W λν

3 (−y)
∣∣p〉∣∣∣

spin avg.
+ h.c. . (2.4)

From these PDFs one can then construct the PDF for the photon, the transversely-polarized

Z0 and their mixed state as a transformation of the PDF for the B, the W3 and their mixed

state. Using A = cWB + sWW3 and Z0 = −sWB + cWW3 one finds fγ
fZ
fγZ

 =

 c2
W s2

W cW sW
s2
W c2

W −cW sW
−2cW sW 2cW sW c2

W − s2
W


 fB
fW3

fBW

 , (2.5)

and thus  fB
fW3

fBW

 =

 c2
W s2

W −cW sW
s2
W c2

W cW sW
2cW sW −2cW sW c2

W − s2
W


 fγ
fZ
fγZ

 . (2.6)

For the electroweak input at scale µ=q0 we have fγ(x, q0) 6=0 and fZ(x, q0)=fγZ(x, q0)=0,

so the input conditions at that scale are

fB = c2
W fγ , fW3 = s2

W fγ , fBW = 2cW sW fγ . (2.7)

2Note that our definition of the mixed PDF fBW is the sum of BW3 and W3B contributions, and

similarly for the mixed PDF fγZ .
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where sW and cW depend on the value of q of the PDFs

sW ≡ sW (q) =

√
α1(q)

α1(q) + α2(q)

cW ≡ cW (q) =

√
α2(q)

α1(q) + α2(q)
. (2.8)

Thus, when relating the PDFs at the input scale µ = q0 in eq. (2.7), one chooses sW ≡
sW (q0) and cW ≡ cW (q0). After evolving these three unbroken PDFs to a higher scale

q, the physical photon and Z0 PDFs are reconstructed using the corresponding running

values of cW (q) and sW (q).

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣Φ(y)Φ(−y)

∣∣p〉 , (2.9)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H− are included. The relationship

to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge

bosons is as follows: the H± PDFs correspond to those of the longitudinally polarized W±.

In the notation of ref. [8], the neutral Higgs fields are

H0 =
(h− iZL)√

2
, H̄0 =

(h+ iZL)√
2

, (2.10)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding PDFs are

fH0 =
1

2
[fh + fZL + i (fhZL − fZLh)] , (2.11)

fH̄0 =
1

2
[fh + fZL − i (fhZL − fZLh)] , (2.12)

and one can also define the mixed PDFs

fH0H̄0 =
1

2
[fh − fZL − i (fhZL + fZLh)] , (2.13)

fH̄0H0 =
1

2
[fh − fZL + i (fhZL + fZLh)] . (2.14)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by

the DGLAP evolution in the unbroken gauge theory as considered in this paper.3 Thus,

one immediately finds

fh − fZL = fhZL + fZLh = 0 , (2.15)

and

fh = fZL =
1

2
(fH0 + fH̄0) , fhZL = −fZLh = − i

2
(fH0 − fH̄0) . (2.16)

3They are only produced through insertions of the Higgs vacuum.
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In summary, there are a total of 52 parton distribution functions that need to be

considered. Apart from the QCD quark and gluon distributions, the charged leptons, and

the neutral electroweak boson PDFs (2.7), all the other SM PDFs are set to zero at scale

q0 and evolve according to the generalized DGLAP equations presented below.

For the input used here, and because fermion masses and Yukawa couplings are ne-

glected except for the top quark, several fermion PDFs are identical. The lepton PDFs

are independent of generation. Also the right-handed fermion and antifermion PFDs are

identical, apart from the top quark, unless they are different at the matching scale q0.

This is the case only for the up and down quarks. The right-handed top and anti-top are

slightly different, since they interact through the Yukawa coupling with H+ H−, respec-

tively. Thus the number of distinct right-handed quark PDFs is reduced from 12 to 9, the

left-handed leptons from 12 to 4, and the right-handed leptons from 6 to 1, making a total

of 36 non-identical PDFs.

2.2 General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,

fi(x, q). In general they satisfy evolution equations of the following forms:

q
∂

∂q
fi(x, q) =

∑
I

αI(q)

π

P Vi,I(q) fi(x, q) +
∑
j

Cij,I

∫ zij,Imax(q)

x
dz PRij,I(z)fj(x/z, q)


≡
∑
I

[
q
∂

∂q
fi(x, q)

]
I

. (2.17)

Here, the sum over I goes over the different interactions in the Standard Model and the

notation [q ∂/∂qfi(x, q)]I implies that we only keep the terms proportional to the coupling

αI when taking the derivative.4 For the rest of the section, we will show the evolution of

each fi(x, q). We choose I = 1, 2, 3 for the pure U(1), SU(2) and SU(3) gauge interactions,

I = Y for Yukawa interactions, and I = M for the mixed interaction proportional to

αM (q) =
√
α1(q)α2(q) . (2.18)

The first contribution, proportional to P Vi,I , denotes the virtual contribution to the PDF

evolution (the disappearance of a flavor i), while the second contribution is the real con-

tribution (the appearance of flavor i due to the splitting of a flavor j). The maximum

value of z in the integration of the real contribution depends on the type of splitting and

interaction, and we choose

zij,Imax(q) =

{
1− mV

q for I = 1, 2, and i, j /∈ V or i, j ∈ V
1 otherwise

, (2.19)

that is, we apply an infrared cutoff mV , of the order of the electroweak scale, when a B or W

boson is emitted. This regulates the divergence of the splitting function for those emissions

4Note that [. . .]I is only introduced for notational convenience and should not be interpreted as setting

all other couplings to zero. In particular, the PDFs appearing on the right-hand side of eq. (2.17) still

depend on the value of all coupling constants.
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{T,CP} fields

{0,+} 2ng × qR , ng × `R , ng × qL , ng × `L , g ,W ,B ,H

{0,−} 2ng × qR , ng × `R , ng × qL , ng × `L , H
{1,+} ng × qL , ng × `L , BW,H
{1,−} ng × qL , ng × `L ,W,H
{2,+} W

Table 1. The 52 PDFs required for the SM evolution can written in a basis with definite conserved

quantum numbers. (5ng +4) PDFs contribute to the {0,+} state, (5ng +1) to the {0,−}, (2ng +2)

to each to the {1,+} and {1,−} and 1 to the {2,+}, where ng = 3 stands for number of generations.

as z → 1. Such a cutoff is mandatory for I = 2 because there are PDF contributions that

are SU(2) non-singlets. The evolution equations for SU(3) are regular in the absence of a

cutoff, as hadron PDFs are color singlets. Similarly for U(1), the unpolarized PDFs have

zero hypercharge,5 but we include the same cutoff for I = 1, since the B and W3 are mixed

in the physical Z and γ states.

Note that the precise choice of the cutoff is somewhat arbitrary, and as already men-

tioned, we choose mV = 100 GeV in this paper. Changing this value changes our results

by subleading logarithmic effect, at the same level as other effects not included. However,

given that the SU(2) evolution is double logarithmic, this implies that the ambiguity is

single logarithmic for the SU(2) coupling. By matching our results to fixed order, one

would account for these term at first order in α2. This is beyond the scope of this paper.

While the flavor basis chosen above is the most intuitive basis, the fact that all 52

PDFs are coupled to one another makes it quite difficult to solve the evolution equations.

To decouple some of the equations, it helps to change the basis such that the ingredients

have quantum numbers that are conserved in the Standard Model. Choosing the total

isospin T and CP as the quantum numbers, the PDFs for each set of quantum numbers

required are shown in table 1.

Note that in general there can be additional mixed PDFs, which however are zero in

our initial conditions and which are not generated in the evolution. In particular, there

can be states mixing left-and right-handed fermions, but they are not present in the initial

condition when only considering unpolarized beams because those states are not Lorentz

scalar. Thus, we can drop these states from our evolution.

The sum of momenta of all non-mixed PDFs in the particle basis is conserved, since it

is the momentum of the proton. Momentum conservation applies independently for each

interaction since physics would still be coherent if we removed one interaction from the

Standard Model.

∑
i 6=BW

∫ 1

0
dx

[
q
∂

∂q
fi(x, q)

]
I

= 0 for I = 1, 2, 3, Y,M . (2.20)

5Although there can be contributions with non-zero hypercharge for transversely polarized beams [8].
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This is equivalent to the sum over all T = 0, CP = + PDFs in the isospin and CP basis

because only these states contribute to a sum over the PDFs in the particle basis. For the

other values of T and CP, the PDFs correspond to differences of PDFs in the particle basis.

For example an isospin 1 PDF is added in PDF of an up-type fermion, but subtracted in

the down-type PDF, thus it has no effect on the sum.

Combining eqs. (2.17) and (2.20) gives

0 =
∑
i 6=BW

P Vi,I

∫ 1

0
dx fi(x, q) +

∑
i,j

Cij,I

∫ 1

0
dx

∫ zij,Imax(q)

x
dz PRij,I(z) fj(x/z, q)

=
∑
i 6=BW

P Vi,I

∫ 1

0
dx fi(x, q) +

∑
i,j

Cij,I

∫ zij,Imax(q)

0
dz PRij,I(z)

∫ z

0
dxfj(x/z, q)

=
∑
i 6=BW

P Vi,I 〈fi(q)〉+
∑
i,j

Cij,I

∫ zij,Imax(q)

0
z dz PRij,I(z)〈fj(q)〉 , (2.21)

where we have defined the momentum averaged PDF

〈fi(q)〉 ≡
∫ 1

0
dx fi(x, q) . (2.22)

Solving the equation for each of the 〈fi(q)〉, since all the input particle PDFs can be set

independently, we get

P Vi,I(q) = −
∑
j

Cji,I

∫ zji,Imax(q)

0
z dz PRji,I(z) for i 6= BW . (2.23)

Thus, momentum conservation determines the factor P Vi,I for all non-mixed fields in the

particle basis.

Note that the result from momentum conservation agrees up to power corrections with

the more traditional definition of the virtual corrections as loop insertions on the fields of

the PDF, which we denote by P̃ Vi,I . Summing over possible loops, one has

P̃ Vfi,I(q) = −Cff,i,I
∫ zff,Imax (q)

0
dz PRff,I(z)

P̃ VVi,I(q) = −
CV V,i,I

2

∫ zV V,Imax (q)

0
dz PRV V,I(z)−

∑
j∈f,h

CjVi,I

∫ 1

0
dz PRjV,I(z)

P̃ VHi,I(q) = −CHH,i,I
∫ zHH,Imax (q)

0
dz PRHH,I(z)−

∑
j∈f

CjHi,I

∫ 1

0
dz PRfH,I(z) , (2.24)

where
∑

j∈f,h is a sum over all fermions and Higgs bosons which are not antiparticles, and

Cff,i,I =
∑
j

Cfjfi,I (2.25)
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and similarly for CV V,i,I and CHH,i,I . To see that eqs. (2.23) and (2.24) agree with each

other, we will work it out explicitly for the virtual contribution to a fermion. One uses for

the fermions that PRV f,I(z) = PRff,I(1− z) and Cff,I = CV f,I to obtain the correct relation:

P Vf,I(q) = −Cff,I
[∫ zmax

0
z dz PRff,I(z) +

∫ 1

0
z dz PRV f,I(z)

]
= −Cff,I

[∫ zmax

0
z dz PRff,I(z) +

∫ 1

0
(1− z) dz PRff,I(z)

]
= P̃ Vf,I(q) + . . . , (2.26)

where . . . denotes power corrections in 1 − zmax. The argument is exactly the same for

P VH,I(q), while for P VV,I(q) one simply uses that PRV V,I(z) and PRfV,I(z), and PRhV,I(z) and

PRfH,I(z), are symmetric in z ↔ 1−z to write
∫
z dz =

∫
dz/2. In our implementation of the

evolution equations, we use eq. (2.23), to ensure exact momentum conservation without

explicit power corrections.

Since the mixed PDF fBW is a pure T = 1 state, it does not contribute to the

momentum sum. This implies that one cannot derive its associated virtual contribution

from momentum conservation. However, using the traditional definition in terms of loops,

one sees that in this case the U(1) and SU(2) virtual corrections each apply to only one of

the two fields involved, and therefore

P̃ VBW,1(q) =
1

2
P VB,1(q) , P̃ VBW,2(q) =

1

2
P VW,2(q) , (2.27)

while the virtual contribution is zero for the other interactions.

One can simplify the general evolution equations in eq. (2.17) by defining a full Sudakov

factor

∆i(q) = exp

[∑
I

∫ q

q0

dq′

q′
αI(q

′)

π
P Vi,I(q

′)

]
, (2.28)

as well as a partial Sudakov factor for each interaction

∆i,I(q) = exp

[∫ q

q0

dq′

q′
αI(q

′)

π
P Vi,I(q

′)

]
, (2.29)

where q0 is an arbitrary cutoff, which for convenience we set equal to mV . This allows us

to write [
∆i,I(q) q

∂

∂q

fi(x, q)

∆i,I(q)

]
I

=
αI(q)

π

∑
j

Cij,IP
R
ij,I ⊗ fj , (2.30)

where again the notation [. . .]I implies that only terms from the interaction I are kept.

This gives

∆i(q) q
∂

∂q

[
fi(x, q)

∆i(q)

]
=
∑
I

[
∆i,I(q) q

∂

∂q

fi(x, q)

∆i,I(q)

]
I

=
∑
I

αI(q)

π

∑
j

Cij,IP
R
ij,I ⊗ fj , (2.31)

where

PRij,I ⊗ fj ≡
∫ zij,Imax(q)

x
dz PRij,I(z)fj(x/z, q) . (2.32)
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2.3 Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model

are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as

spin 0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G,

the splitting functions involving gauge bosons are given by

PRff,G(z) =
1 + z2

1− z
, (2.33)

PRV f,G(z) = Pff,G(1− z) , (2.34)

PRfV,G(z) =
1

2

[
z2 + (1− z)2

]
, (2.35)

PRV V,G(z) = 2

[
z

1− z
+

1− z
z

+ z(1− z)

]
(2.36)

PRHH,G(z) =
2z

1− z
, (2.37)

PRVH,G(z) = PRHH,G(1− z) , (2.38)

PRHV,G(z) = z(1− z) . (2.39)

The factor of 1/2 in PfV has to be included since we are considering fermions with definite

chirality. For the Yukawa interaction (Y ), one obtains

PRff,Y (z) =
1− z

2
, (2.40)

PRHf,Y (z) = PRff,Y (1− z) , (2.41)

PRfH,Y (z) =
1

2
. (2.42)

2.4 Running couplings

The one-loop running of the gauge couplings αI (I = 1, 2, 3) is given by

2π

αI(q2)
=

2π

αI(q1)
+ βI ln

q2

q1
, (2.43)

where, for ng generations and nH Higgs doublets,

β1 = −1

3
ρ1 = −20

9
ng −

1

6
nH = −41

6
, (2.44)

β2 =
2

3
(11− ρV 2) =

22

3
− 4

3
ng −

1

6
nH =

19

6
, (2.45)

β3 = 11− ρ3 = 11− 4

3
ng = 7 . (2.46)

At scale MZ = 91.2 GeV we take

sin2 θW =
α1

α1 + α2
= 0.23 , α = α2 sin2 θW =

1

128
, α3 = 0.118 , (2.47)
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which gives

α1(MZ) = 0.0101 α2(MZ) = 0.0340 α3(MZ) = 0.118 . (2.48)

We set all Yukawa couplings to zero, except for the top Yukawa coupling αY = y2
t /4π.

Its running receives significant Yukawa and QCD contributions:

q
∂αY
∂q

=
αY
2π

(βY αY − βSα3) , (2.49)

where βY = 9/2 and βS = 8. The solution is

1

αY (q2)
=

δ

α3(q2)
−
[

δ

α3(q1)
− 1

αY (q1)

] [
α3(q1)

α3(q2)

]γ
, (2.50)

where

γ =
βS
β3

=
24

33− 4ng
=

8

7
, (2.51)

δ =
βY

βS − β3
=

27

8ng − 18
=

9

2
. (2.52)

We take mt(mt) = 163 GeV, which implies αY (mt) = 0.0349, and α3(mt) = 0.109.

2.5 I = 3: SU(3) interactions

We start by considering the well known case of SU(3) interactions. The relevant degrees

of freedom are the gluon, as well as left and right-handed quarks. The coupling constants

are (with CF = 4/3, CA = 3, TR = 1/2)

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA . (2.53)

This gives for the evolution of a quark or gluon6[
∆q,3 q

∂

∂q

fq
∆q,3

]
3

=
α3

π

[
CFP

R
ff,G ⊗ fq + TRP

R
fV,G ⊗ fg

]
, (2.54)

[
∆g,3 q

∂

∂q

fg
∆g,3

]
3

=
α3

π

CAPRV V,G ⊗ fg +
∑
f

CFP
R
V f,G ⊗ fq

 . (2.55)

The Sudakov factor can be obtained from eq. (2.23) using the coupling constants in

eq. (2.53). This gives

P Vq,3(q) = −CF
∫ 1

0
z dz

[
PRff,G(z) + PRV f,G(z)

]
, (2.56)

P Vg,3(q) = −
∫ 1

0
z dz

[
CA P

R
V V,G(z) + 8ng TR P

R
fV,G(z)

]
, (2.57)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per

generation.

6From now on we omit the arguments of functions for brevity.
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Since the gluon is massless, the upper limit in all the z integrations is equal to 1 [see

eq. (2.19)]. This implies that the convolutions PRff,G ⊗ fq and PRV V,G ⊗ fg in eqs. (2.54)

and (2.55) are both divergent. However, at the same time the virtual splitting functions that

enter the Sudakov factors ∆q,3(q) and ∆g,3(q) defined in eq. (2.29) are also divergent, such

that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as

explained in section 3, one obtains evolution equations that are free of any divergences, and

which can be implemented numerically. Alternatively, for parton shower implementation,

one can impose a cutoff of the form eq. (2.19) with mV replaced by a small parameter

mg > ΛQCD.

2.6 I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left- and right-handed fermions (denoted by

the subscript f), as well as the U(1) gauge boson B. The couplings involving fermions and

gauge bosons are

Cff,1 = CBf,1 = Y 2
f , CfB,1 = Nf Y

2
f , CBB,1 = 0 (2.58)

where the hypercharges of the different fermions are given by

YqL =
1

6
, YuR =

2

3
, YdR = −1

3
, Y`L = −1

2
, YeR = −1 , (2.59)

and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving

the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.60)

where h here stands for any of the four Higgs boson PDFs.

Plugging this into the general evolution equation gives[
∆f,1 q

∂

∂q

ff
∆f,1

]
1

=
α1

π
Y 2
i

[
PRff,G ⊗ ff +NfP

R
fV,G ⊗ fB

]
, (2.61)

[
∆B,1 q

∂

∂q

fB
∆B,1

]
1

=
α1

π

∑
f

Y 2
f P

R
V f,G ⊗ ff +

1

4

∑
h

PRVH,G ⊗ fh

 , (2.62)

[
∆H,1 q

∂

∂q

fh
∆H,1

]
1

=
α1

π

1

4

[
PRHH,G ⊗ fh + PRHV,G ⊗ fB

]
. (2.63)

The virtual splitting functions, required for the Sudakov factor are given by

P Vf,1(q) = −Y 2
f

[∫ 1−mV
q

0
z dz PRff,G(z) +

∫ 1

0
z dz PRV f,G(z)

]
, (2.64)

P VB,1(q) = −ng
(

11

9
NC + 3

)∫ 1

0
z dz PRfV,G(z)−

∫ 1

0
z dz PRHV,G(z) , (2.65)

P VH,1(q) = −1

4

[∫ 1−mV
q

0
z dz PRHH,G(z) +

∫ 1

0
z dz PRVH,G(z)

]
, (2.66)
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where we have used in the second line that for each generation there are 4 left-handed quarks

(one needs to count particles and antiparticles separately), 2 right-handed up-type quarks,

2 right-handed down-type quarks, 4 left-handed leptons and 2 right-handed electrons, and

that there are a total of 4 Higgs bosons.

2.7 I = 2: SU(2) interactions

The SU(2) interactions are more complicated, since the emission of W± bosons changes the

flavor of the emitting particle. This, combined with the SU(2) breaking in the input hadron

PDFs, leads to double-logarithmic scale dependence in the DGLAP evolution, rather than

only single-logarithmic dependence as in the evolution based on U(1) and SU(3).

The relevant coupling constants are (where uL and dL denote any up- and down-type

left-handed fermion)

CuLdL,2 = CdLuL,2 = CW+uL,2 = CW−dL,2 =
1

2
, (2.67)

CuLuL,2 = CW3uL,2 = CdLdL,2 = CW3dL,2 =
1

4
, (2.68)

CuLW+,2 = CdLW−,2 = Nf
1

2
, (2.69)

CuLW3,2 = CdLW3,2 = Nf
1

4
, (2.70)

CW±W±,2 = CW±W3,2 = CW3W±,2 = 1 , (2.71)

where as before the color factor Nf = 3 for quarks, 1 for leptons. The couplings of the W3

state to the Higgs are given by

Chh,2 = CW3h,2 = ChW3,2 =
1

4
, (2.72)

where again h stands for any of the 4 Higgs bosons, while those of the charged W states

are given by

CH+H0,2 = CH0H+,2 = CH+W+,2 = CW+H+,2

= CH0W−,2 = CW−H0,2 =
1

2
. (2.73)

The couplings for the charge-conjugate states are the same.

This gives for the evolution of the fermions[
∆fL,2 q

∂

∂q

fuL
∆fL,2

]
2

=
α2

π

{
PRff,G ⊗

[
fdL
2

+
fuL
4

]
+NfPfV,G ⊗

[
fW+

2
+
fW3

4

]}
, (2.74)[

∆fL,2 q
∂

∂q

fdL
∆fL,2

]
2

=
α2

π

{
PRff,G ⊗

[
fuL
2

+
fdL
4

]
+NfPfV,G ⊗

[
fW−

2
+
fW3

4

]}
. (2.75)
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For the W+ and W3 bosons we have[
∆W,2 q

∂

∂q

fW+

∆W,2

]
2

=
α2

π

{
PRV V,G ⊗ [fW+ + fW3 ] +

1

2
PRVH,G ⊗ [fH+ + fH̄0 ]

+
∑
gen

1

2
PV f,G ⊗

[
fuL + fd̄L + fνL + f¯̀

L

]}
, (2.76)

[
∆W,2 q

∂

∂q

fW3

∆W,2

]
2

=
α2

π

{
PRV V,G ⊗ [fW+ + fW− ] +

1

4
PRVH,G ⊗

∑
h

fh

+
1

4

∑
fL

PRV f,G ⊗ ffL

}
, (2.77)

where the sum in the last line is over all left-handed fermions and anti-fermions. The

equation for the W− can be obtained from that of the W+ by charge conjugation.

Finally, for the Higgs bosons we have[
∆H,2 q

∂

∂q

fH+

∆H,2

]
2

=
α2

π

{
PRHH,G ⊗

[
fH0

2
+
fH+

4

]
+ PHV,G ⊗

[
fW+

2
+
fW3

4

]}
, (2.78)[

∆H,2 q
∂

∂q

fH0

∆H,2

]
2

=
α2

π

{
PRHH,G ⊗

[
fH+

2
+
fH0

4

]
+ PHV,G ⊗

[
fW−

2
+
fW3

4

]}
. (2.79)

The virtual splitting functions are

P Vf,2(q) = −3

4

[∫ 1−mV
q

0
z dz PRff,G(z) +

∫ 1

0
z dz PRV f,G(z)

]
, (2.80)

P VW,2(q) = −2

∫ 1−mV
q

0
z dz PRV V,G(z)− ng(NC + 1)

∫ 1

0
z dz PRfV,G(z)−

∫ 1

0
z dz PRHV,G(z) ,

(2.81)

P VH,2(q) = −3

4

[∫ 1−mV
q

0
z dz PRHH,G(z) +

∫ 1

0
z dz PRVH,G(z)

]
, (2.82)

from which the Sudakov factor can be constructed using eq. (2.29).

An important aspect of the SU(2) evolution equations is that, contrary to the other

gauge groups, the dependence on the ratio mV /q does not cancel between the real and

virtual splitting functions. As an example, consider the evolution equation for an up-type

fermion, given on the first line of eq. (2.74), with the virtual contribution given by the first

line of eq. (2.80). The sum of the contributions of real and virtual splitting functions is

given by

α2

π

∫ 1−mV
q

0
dz

1

4
PRff,G(z) [2 fdL(x/z) + fuL(x/z)− 3 fuL(x)] + . . . , (2.83)
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where . . . represents less singular terms. Thus, the SU(2) breaking in the proton, which ren-

ders fu(z) 6= fd(z), gives rise to a logarithmic dependence on mV /q, which leads to a double-

logarithmic dependence upon integration over q. As we will see later, the effect of this de-

pendence is to double-logarithmically suppress the SU(2) breaking effects at high energies.

2.8 I = Y : Yukawa interactions

The interaction of Higgs particles with fermions is described by the Yukawa interactions.

In this work we only keep the top Yukawa coupling, setting all others to zero. This gives

the following couplings

Cq3LtR,Y
= CH0tR,Y = CH+tR,Y = CtRq3L,Y

= CH̄0tL,Y
= CH−bL,Y = 1 , (2.84)

where q3
L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtLH̄0,Y = CbLH−,Y = NC . (2.85)

This gives contributions to the top quark PDFs, as well as the left-handed bottom PDF:[
∆q3L,Y

q
∂

∂q

ftL
∆q3L,Y

]
Y

=
αY
π

{
PRff,Y ⊗ ftR +NCPfH,Y ⊗ fH̄0

}
, (2.86)[

∆tR,Y q
∂

∂q

ftR
∆tR,Y

]
Y

=
αY
π

{
PRff,Y ⊗ [ftL + fbL ] +NCPfH,Y ⊗ [fH0 + fH+ ]

}
, (2.87)[

∆q3L,Y
q
∂

∂q

fbL
∆q3L,Y

]
Y

=
αY
π

{
PRff,Y ⊗ ftR +NCPfH,Y ⊗ fH−

}
. (2.88)

It also contributes to the evolution of the Higgs bosons:[
∆H,Y q

∂

∂q

fH+

∆H,Y

]
Y

=
αY
π
PRHf,Y ⊗

[
ftR + fb̄L

]
, (2.89)[

∆H,Y q
∂

∂q

fH0

∆H0,Y

]
Y

=
αY
π
PRHf,Y ⊗

[
ftR + ft̄L

]
. (2.90)

The Sudakov factors can be obtained using eq. (2.29) with

P Vq3L,Y
(q) =

1

2
P VtR,Y (q) = −

∫ 1

0
z dz PRff,Y (z)−

∫ 1

0
z dz PRHf,Y (z) , (2.91)

P VH,Y (q) = −2NC

∫ 1

0
z dz PRfH,Y (z) . (2.92)

2.9 I = M : mixed B − W3 interactions

Finally, we need to consider the evolution involving the mixed BW boson PDF. The non-

vanishing couplings are

CBWfu,M = −CBWfd,M = 2
Yf
2
, (2.93)

CfuBW,M = −CfdBW,M = Nf
Yf
2
, (2.94)

– 15 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
6

where fu and fd represent the up- and down-type left-handed fermions and anti-fermions

of all generations. Since Yf̄ = −Yf and T3f̄ = −T3f , the couplings for fermions and anti-

fermions are identical. The factor of 2 in the first line comes from our definition of fBW as

the sum of BW and WB contributions. The diagonal coefficients Cfufu,M and Cfdfd,M are

zero because there is no vector boson with both U(1) and SU(2) interactions. For the same

reason, there are no Sudakov factors associated with the mixed interaction. The couplings

involving the Higgs bosons are

CBWH+,M = −CBWH0,M =
1

2
, (2.95)

CH+BW,M = −CH0BW,M =
1

4
, (2.96)

where, as for the fermions, the same relations hold for the charge-conjugate states.

Plugging these into the general evolution equation gives[
q
∂

∂q
ffu

]
M

=
αM
π

Yf
2
NfP

R
fV,G ⊗ fBW , (2.97)[

q
∂

∂q
ffd

]
M

= −αM
π

Yf
2
NfP

R
fV,G ⊗ fBW , (2.98)[

q
∂

∂q
fBW

]
M

=
αM
π

[∑
fu

YfP
R
V f,G ⊗ ffu −

∑
fd

YfP
R
V f,G ⊗ ffd

+
1

2

∑
hu

PRVH,G ⊗ fhu −
1

2

∑
hd

PRVH,G ⊗ fhd

]
, (2.99)[

q
∂

∂q
fhu

]
M

=
αM
π

1

4
PRHV,G ⊗ fBW , (2.100)[

q
∂

∂q
fhd

]
M

= −αM
π

1

4
PRHV,G ⊗ fBW . (2.101)

As already discussed, the mixed gauge field PDF fBW has Sudakov factors associated with

the U(1) and SU(2) interactions, given by eq. (2.29). Since there is no corresponding real

emission term in the evolution equation for fBW , it evolves double-logarithmically and is

suppressed at high scales relative to the unmixed PDFs.

3 Implementation details

Our treatment assumes that the SM PDFs at very high energies can be obtained by

smoothly matching the broken and unbroken symmetry regimes at a matching scale q0 ∼
mV , which in practice we take to be 100 GeV. Our input PDFs at 100 GeV are obtained as

follows. We take the CT14qed PDF set [15] at 10 GeV and replace the photon PDF by that

of the LUXqed set [16]. We do not use the CT14qed photon because the LUXqed photon,

while being consistent with CT14qed, has much smaller uncertanties and a smoother x

dependence. The LUXqed PDF set combines the PDF4LHC15 nnlo 100 parton set [31]

with a determination of the photon PDF from structure function and elastic form factor
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fits in electron-proton scattering. However, we do not use the LUXqed partons, because

being NNLO they are not positive-definite, which we require for our LO treatment and is

satisfied by CT14qed.

We evolve this hybrid CT14-LUX PDF set from 10 to 100 GeV using leading-order

QCD plus QED evolution, which incidentally generates the charged leptons. The resulting

parton, photon and lepton PDFs form our input to the unbroken SM evolution upwards

from 100 GeV. The input left- and right-handed fermion PDFs are identical. The input

W 3, B and mixed B/W 3 PDFs are determined by the photon (and the absence of the Z0)

at the matching scale according to eq. (2.7). The remaining vector boson, neutrino and

Higgs PDFs are all generated dynamically starting from zero at the matching scale.

The equations given in sections 2.5 to 2.9 completely define the evolution of all parton

distribution functions in the unbroken symmetry regime. However, as already explained,

one can rewrite the equations slightly to make them more amenable to a numerical imple-

mentation. First, switching to a basis of states with well-defined isospin decouples the set

of 52 equations to some degree. In this new basis another transformation eliminates the

double logarithmic sensitivity to the ratio mV /q. Second, by combining the virtual and

real splitting functions into +-distributions, one can reduce numerical sensitivity to the

cutoff of the z integrations. We will now discuss these simplifications in turn.

3.1 Switching to a basis of conserved quantum numbers

As we already explained in section 2.2, the set of 52 evolution equations can be decoupled

to some degree by switching to a basis of well-defined isospin T and CP. Writing a fermion

PDF with T and CP as fTCP
i , we write the left-handed fermions as

f0+
fL

=
1

4

(
fuL + fdL + fd̄L + fūL

)
, f1+

fL
=

1

4

(
fuL − fdL − fd̄L + fūL

)
, (3.1)

f0−
fL

=
1

4

(
fuL + fdL − fd̄L − fūL

)
, f1−

fL
=

1

4

(
fuL − fdL + fd̄L − fūL

)
, (3.2)

where uL and dL refer to left-handed up- and down-type fermions. Right-handed fermions

are given by

f0+
fR

=
1

2

(
ffR + ff̄R

)
, f0−

fR
=

1

2

(
ffR − ff̄R

)
. (3.3)

The SU(3) and U(1) boson PDFs have T = 0, CP = +

f0+
g = fg , f0+

B = fB , (3.4)

while the SU(2) boson PDFs can have T = 0, 1, 2 with respectively CP = +,−,+

f0+
W =

1

3
(fW+ + fW− + fW 0) , f1−

W =
1

2
(fW+ − fW−) , (3.5)

f2+
W =

1

6
(fW+ + fW− − 2fW 0) . (3.6)

The mixed BW boson state is a combination of 0− and 1− and therefore its PDF has

T = 1, CP = +

f1+
BW = fBW . (3.7)
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For the Higgs boson, one writes similarly to the fermions

f0+
H =

1

4
(fH+ + fH0 + fH̄0 + fH−) , f1+

H =
1

4
(fH+ − fH0 − fH̄0 + fH−) , (3.8)

f0−
H =

1

4
(fH+ + fH0 − fH̄0 − fH−) , f1+

H =
1

4
(fH+ − fH0 + fH̄0 − fH−) . (3.9)

In terms of these states the longitudinal vector boson and Higgs PDFs are then, using

eq. (2.16),

fW+
L

= f0+
H + f1+

H + f0−
H + f1−

H , (3.10)

fW−
L

= f0+
H + f1+

H − f
0−
H − f

1−
H , (3.11)

fZL = fh = f0+
H − f

1+
H . (3.12)

3.2 Cancellation of double-logarithmic dependence in evolution equations

In the {T,CP} basis the singular contributions to the evolution equations (those that are

proportional to the splitting functions PRff,G(z), PRV V,G(z) and PRHH,G(z), which diverge in

the limit z → 1) are diagonal,[
∆i,I q

∂

∂q

fTCP
i

∆i,I

]
I

=
αI
π
DTCP
i,I PRii,I ⊗ fTCP

i + . . . , (3.13)

such that the PDF multiplying the divergent splitting function is the same as that appearing

on the left-hand side. Here, as in fTCPi , the label i now refers to a parton species f, V,H

rather than a particular parton. Recalling that the Sudakov factor takes the form

∆i,I(q) = exp

[∫ q

q0

dq′

q′
αI(q

′)

π
P Vi,I(q

′)

]
= exp

[
−Ci,I

∫ q

q0

dq′

q′
αI(q

′)

π

∫ zii,Imax(q)

0
z dz PRii,I(z) + . . .

]
, (3.14)

where . . . represents less divergent terms, and

Ci,I =
∑
k∈i

Ckl,I for l ∈ i , (3.15)

where k and l are particular partons, we have[
q
∂

∂q
fTCP
i

]
I

=
αI
π

[
DTCP
i,I PRii,I ⊗ fTCP

i + P Vi,If
TCP
i

]
+ . . . ,

=
αI
π

[
DTCP
i,I P+

ii,I ⊗ f
TCP
i +

(
1−

DTCP
i,I

Ci,I

)
P Vi,If

TCP
i

]
+ . . . , (3.16)

where

P+
ii,I ⊗ fi ≡ P

R
ii,I ⊗ fi +

P Vi,I
Ci,I

fi (3.17)

=

∫ zii,Imax(q)

0
dz
[
PRii,I(z)θ(z > x)f(x/z, q)− zPRii,I(z)f(x, q)

]
+ . . . .
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The +-prescription defined by eq. (3.17) regulates the divergence in the integrand as z → 1

and therefore if we define the modifying factor

FTCP
i,I (q) = exp

[(
1−

DTCP
i,I

Ci,I

)∫ q

q0

dq′

q′
αI(q

′)

π
P Vi,I(q

′)

]
= [∆i,I(q)]

1−DTCP
i,I /Ci,I , (3.18)

then the evolution equation (3.13) becomes[
FTCP
i,I q

∂

∂q

fTCP
i

FTCP
i,I

]
I

=
αI
π
DTCP
i,I P+

ii,I ⊗ f
TCP
i + . . . , (3.19)

with no logarithmic dependence on mV /q on the right-hand side.

For all interactions except SU(2), one can show that DTCP
i,I = Ci,I , so that the modi-

fying factor (3.18) is unity.7 For SU(2) we have explicitly:8

Cf,2 = CH,2 =
3

4
, CV,2 = 2 , (3.20)

while

D0±
f,2 = D0±

H,2 =
3

4
, D1±

f,2 = D1±
H,2 = −1

4
, (3.21)

D0+
V,2 = 2 , D1−

V,2 = 1 , D2+
V,2 = −1 , (3.22)

so that

F 0±
f,2 = F 0±

H,2 = 1 , F 1±
f/H,2 = ∆

4/3
f/H,2 , (3.23)

F 0+
V,2 = 1 , F 1−

V,2 = ∆
1/2
V,2 , F 2+

V,2 = ∆
3/2
V,2 . (3.24)

For the mixed PDF fBW we have D1+
BW,2 = 0 and therefore

F 1+
BW,2 = ∆BW,2 = ∆

1/2
V,2 = F 1−

V,2 (3.25)

The equations finally used to evolve the PDFs in the conserved-quantum-number basis

are given in appendix A.

4 Results

We begin by showing how the PDFs of strongly interacting particles are changed by in-

cluding the evolution of the full Standard Model. Figure 1 shows results on the evolution

of left- and right-handed quark PDFs, shown solid and dashed respectively, normalized

to their values assuming pure QCD evolution. In each plot we show the results at three

different scales, namely q = 104 GeV, q = 106 GeV and q = 108 GeV. The values of 106

and 108 GeV are of course far away from energy scales one can reach at any collider in the

near or distant future. However, showing the results at such unattainable values helps to

illustrate their approach to asymptotic behavior.

7For the U(1) interaction one has DTCP
i,1 = Ci,1 = 0, and we choose to set the modifying factor to 1 in

this case.
8Here we have used the numerical values for the Casimir operator eigenvalues for the corresponding

SU(2) representations, C
SU(2)
F = 3/4, C

SU(2)
A = 2.
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Figure 1. Quark and gluon PDFs in the full unbroken SM, divided by their values assuming pure

QCD evolution only. Left- and right-handed quark chiralities are solid and dashed, respectively. The

thin gray lines show where the scales on the x- and/or y-axes switch between linear and logarithmic.

All the light quarks (and antiquarks, not shown) evolve to lower values compared to

pure QCD at small x, due to an overall loss of energy to the electroweak gauge bosons

through the additional splittings q → qW and q → qB. At higher x values, the up and
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down quarks (top row) exhibit different behaviors, with the left-handed up PDF evolving

more rapidly to lower values compared to pure QCD, while the down quark eventually

evolves to higher values. This is because the left-handed up and down distributions evolve

towards each other, their difference being double-logarithmically suppressed at high scales.

The right-handed quark PDFs have no double-logarithmic component and evolve to slightly

lower values than pure QCD, due to energy loss through the additional splitting qR → qRB.

The asymmetry between left-handed charm and strange quarks also evolves double-

logarithmically towards zero, primarily through a more rapid decrease of the strange PDF.

At high x the behavior is more complicated because the input CT14qed charm PDF is

larger than the strange above x ∼ 0.7. The right-handed quarks behave qualitatively the

same as those of the first generation.

The left-handed top and bottom quarks also must evolve towards equal values, which

in this case means that the top has higher values than in pure QCD, while the bottom

evolution looks similar to strange, relative to pure QCD. The right-handed b-quark behaves

qualitatively like the right-handed quarks of the first and second generation, while the right-

handed top quark, being generated purely dynamically, behaves differently at large x. Since

the right-handed top has vanishing initial condition, the splitting tR → tRB, which would

decrease the PDF, is sub-dominant compared to the process B → tRt̄R. This means that

at large x the right-handed top PDF is increased, rather than decreased.

The effect on the gluon PDF is shown in last row of figure 1. While the effects are

quite small up to q ∼ 104 GeV, at larger scales the back-reaction from the changing quark

PDFs is affecting the gluon PDF at an appreciable level.

It is interesting to study how rapidly electroweak symmetry is restored. To illustrate

this, we show the asymmetry

AqL =
fuL − fdL
fuL + fdL

, (4.1)

compared to the result if only QCD evolution were turned on. This asymmetry ratio is

shown in figure 2 for the three generation of quarks as a function of q, for various values

of x. For all generations the asymmetry decreases as q gets larger, driving the PDFs of

the different isospin states towards each other. The onset of the deviation from pure QCD

is in the range 1–10 TeV. The ratio between the full asymmetry and the result using only

QCD evolution is given by

AqL(x, q) ∼ [∆f,2(q)]4/3AqLQCD(x, q) (4.2)

where ∆f,2(q) is the fermion Sudakov factor, as given in eq. (3.18), independent of the

generation.

Next, we study the size of the PDFs of particles not charged under the strong interac-

tion. Since these PDFs are only generated by emissions due to the U(1), SU(2) or Yukawa

interactions, they are vanishing at all scales if one is including only SU(3) evolution. The

only exception is the photon, which has a non-vanishing initial condition at q = 100 GeV.

Figure 3 shows results on the electroweak boson PDFs normalized to the gluon PDF, both

evolved using the full Standard Model. One can see that the electroweak gauge boson

PDFs become a significant fraction of the gluon PDF, especially at large values of x. The

photon PDF is the largest mainly because it has a non-zero input. The PDF for the W+
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Figure 2. Asymmetry between up-isospin and down-isospin left-handed quark PDFs, defined in

eq. (4.1), in the full unbroken SM, compared to the result when only QCD evolution is included.

boson is initially larger than the W− boson PDF at large x because the W+ is mainly

generated through emissions from the up-quark, whose PDF is larger than the down-quark

which mainly generates the W−. Since the difference between W+ and W− has isospin 1,

the W+ evolves more slowly and the W− more rapidly, so that they approach each other

at high q. At low x they are more similar as are the up-quark and down-quark PDFs. The

Z0 PDF is similar to the W+ but it is smaller at low x and larger at large x. The mixed

γZ PDF is small and positive at small x and negative at large x. There is no constraint

to be positive definite for a mixed PDF as it is the product of two amplitudes rather than

the square modulus of one. Its absolute value becomes very large at large x and q.

We also show the PDFs for the longitudinally polarized gauge bosons, the Higgs boson,

the mixed PDF between the Higgs and the ZL and the leptons. The ZL PDF is the same

as the Higgs in our approximation, see eq. (2.16), so we do not make a separate plot for

it. The boson PDFs are shown in figure 4, and the leptons in figure 5, both normalized to

the gluon. Both are expected to be much smaller than the transverse vector boson PDFs,

because they are generated via a second order effect of emission from the vector bosons

and via Yukawa emission from the top and bottom quarks, which are much smaller than

the up and down quarks. The mixed PDF is even smaller because it is generated by the

asymmetry between transverse W+ and W− PDFs and the top and anti-top PDFs. The

W+
L and W−L PDFs are very similar, for the same reason.

As a final result, we study several parton luminosities, choosing a future 100 TeV pp

collider as a reference. While the energy scales that can be reached at such a collider
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Figure 3. Electroweak bosons PDF normalized by the gluon PDF. The thin gray lines show where

the scales on the x- and/or y-axes switch between linear and logarithmic.

are not quite large enough to get O(1) effects, the effects of the full Standard Model

evolution are still numerically relevant. In figure 6 we show the qLq̄L luminosities for the

six different quark flavors, normalized to their values if only QCD evolution is taken into

account. One can see that all except the tt̄ luminosity are reduced appreciably from their

values if only QCD evolution were taken into account. This will affect searches for Z ′-like

particles at a future 100 TeV collider. The dd̄ luminosity is decreasing more slowly as the

double-logarithmic evolution drives it larger than QCD at high x (see figure 1).

We also show selected luminosities of vector bosons combined with quarks, normalized

to the average of the uū and dd̄ luminosities. One can see that luminosities involving one

transverse vector boson become of comparable magnitude to the qq̄ luminosities. Lumi-

nosities involving the longitudinal gauge and Higgs bosons are much smaller.

Finally, to illustrate the uncertainties associated with subleading terms, we show in

tables 2 and 3 the dependence of some integrated PDFs (momentum fractions) on the in-
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Figure 4. Longitudinal gauge and Higgs bosons PDFs normalized by the gluon PDF. The ZL

PDF is the same as the h PDF. The hZL PDF is purely imaginary and we show the result divided

by i. The thin gray line shows where the scales on the x- and/or y-axes switch between linear and

logarithmic.
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Figure 5. First generation lepton PDFs normalized by the gluon PDF. Since we treat leptons as

massless, and all leptons have the same initial condition, the results for the other 2 generations are

identical. The thin gray line shows where the scales on the x- and/or y-axes switch between linear

and logarithmic.

frared cutoff mV and matching scale q0. We see that there are variations in the electroweak

PDFs of the order of ±10% at 10 TeV and 5% at 100 TeV for the ranges of parameters in-

dicated. The relative variations in the light quark PDFs are smaller as they are dominated

by QCD evolution. There are of course in addition the usual uncertainties associated with

the input PDFs and higher-order QCD corrections.
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Figure 6. Quark anti-quark luminosity in the full unbroken SM, divided by their values assuming

pure QCD evolution only.
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Figure 7. V q and Hq luminosity in the full unbroken SM, divided by the average of uū and dd̄

luminosity assuming pure QCD evolution only.

mV /GeV q0/GeV uL tL W+
T W−T e−L νe h

100 100 8.51 0.43 0.46 0.33 0.0019 0.0012 0.0026

50 100 8.42 0.43 0.46 0.34 0.0019 0.0012 0.0027

50 200 8.48 0.44 0.39 0.29 0.0017 0.0009 0.0025

100 200 8.56 0.43 0.39 0.29 0.0017 0.0009 0.0024

200 200 8.64 0.42 0.39 0.28 0.0017 0.0009 0.0024

Table 2. Momentum fractions (%) carried by various parton species at scale q = 10 TeV.

mV /GeV q0/GeV uL tL W+
T W−T e−L νe h

100 100 7.53 0.56 0.64 0.50 0.0031 0.0025 0.0061

50 100 7.43 0.61 0.63 0.51 0.0031 0.0026 0.0062

50 200 7.48 0.61 0.58 0.47 0.0028 0.0021 0.0059

100 200 7.58 0.60 0.58 0.46 0.0028 0.0021 0.0055

200 200 7.68 0.59 0.58 0.45 0.0028 0.0020 0.0054

Table 3. Momentum fractions (%) carried by various parton species at scale q = 100 TeV.
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5 Conclusions

The energy regime around and beyond the electroweak scale is currently being explored by

the LHC experiments, and so far they have found no firm evidence for physics beyond the

Standard Model. In the present paper, we have examined the consequences of assuming

that the parton distributions of the proton continue to be described by the Standard Model

up to very high energies, in the approximation that its symmetries are unbroken above the

electroweak scale.

We have implemented numerically the full set of generalized DGLAP evolution equa-

tions for all the parton species and interactions of the unbroken SM in leading order. The

input PDFs of 5 quark flavors, the gluon, photon and charged leptons at a starting scale

q0 = 100 GeV for the full SM evolution are obtained from parton and photon PDFs at

10 GeV by QCD plus QED evolution. The input left- and right-handed fermion PDFs

are thus identical at scale q0 but they evolve differently above that scale. The top quark

PDFs (not present in the input) start to evolve from the top mass scale. The input photon

is resolved into its U(1), SU(2) and mixed components, which are evolved independently

from scale q0 and reassembled into the photon and transversely polarized Z0 at higher

scales. The charged and longitudinal vector boson, Higgs and neutrino PDFs are gener-

ated dynamically starting from zero at scale q0. This simplified treatment misses some

symmetry-breaking effects around the electroweak scale, but these are power-suppressed

at higher scales and our results should provide a guide to the ways in which the PDFs

deviate from pure QCD evolution.

Amongst the most interesting features of the SM is the distinction between left- and

right-handed fermions. The evolution of the right-handed PDFs deviates little from pure

QCD, owing to the weakness of the U(1) interaction. The left-handed PDFs generally

deviate from pure QCD at the 5–10% level by 10 TeV.

Another important SM characteristic is the restoration of isospin symmetry at high

scales. This is manifest in the decreasing asymmetry between the up- and down-type quark

PDFs, which sets in at 1–10 TeV, the up-type being pulled down in the first generation

and conversely in the third. The suppression of the asymmetry is a double-logarithmic

effect that can be treated in fixed order at present energies but is resummed to all orders

in the evolution.

The electroweak bosons are generated quite copiously, the W+ in particular at high

x due to splitting u → dW+. The photon and Z0 PDFs also grow rapidly, eventually

exceeding the gluon at high x. The PDFs of the longitudinal vector bosons, the Higgs

boson and the leptons are generally much smaller as they arise from second-order splittings.

Finally, we have used the generated PDFs to present some parton-parton luminosities

at a 100 TeV pp collider. These results are just an illustration of the size of the effects that

can be expected at such a future collider, and a more detailed phenomenological analysis

will be presented in a forthcoming publication.

In conclusion, we find a rich structure in the proton when probed beyond the elec-

troweak scale. The associated PDFs are interesting and useful in their own right. They

also represent a key component of event generators that aim to embody the full Standard

Model in initial-state parton showering, a topic we plan to explore further.
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A Equations used in the forward evolution

A.1 SU(3) interaction

• T = 0 and CP = +:[
q
∂

∂q
f0+
q

]
3

=
α3

π

[
CFP

+
ff,G ⊗ f

0+
q + TRP

R
fV,G ⊗ fg

]
, (A.1)[

q
∂

∂q
fg

]
3

=
α3

π

[
CAP

+
V V,G ⊗ fg + CFP

R
V f,G ⊗ f0+∑

g

]
. (A.2)

Here

f0+∑
g

= 4
∑
qL

f0+
qL

+ 2
∑
qR

f0+
qR

, (A.3)

where the sums run over all left-handed quark doublets and all right-handed quarks.

The factors of 4 and 2 are due to the different normalizations in eqs. (3.1) and (3.3).

• All other states: [
q
∂

∂q
fq

]
3

=
α3

π
CFP

+
ff,G ⊗ fq . (A.4)

A.2 U(1) interaction

• T = 0 and CP = +:[
q
∂

∂q
f0+
f

]
1

=
α1

π
Y 2
i

[
P+
ff,G ⊗ f

0+
f +NfP

R
fV,G ⊗ fB

]
, (A.5)[

q
∂

∂q
fB

]
1

=
α1

π

[
P VB,1fB + PRV f,G ⊗ f0+∑

B f
+ PRVH,G ⊗ f0+

H

]
, (A.6)[

q
∂

∂q
f0+
H

]
1

=
α1

π

1

4

[
P+
HH,G ⊗ f

0+
H + PRHV,G ⊗ fB

]
, (A.7)

where

f0+∑
B f

= 4
∑
fL

Y 2
fL
f0+
fL

+ 2
∑
fR

Y 2
fR
f0+
fR

. (A.8)

• T = 1 and CP = +: [
q
∂

∂q
f1+
BW

]
1

=
α1

π

1

2
P VB,1f

1+
BW . (A.9)
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• All other states: [
q
∂

∂q
ff

]
1

=
α1

π
Y 2
f P

+
ff,G ⊗ ff , (A.10)[

q
∂

∂q
fH

]
1

=
α1

π

1

4
P+
HH,G ⊗ fH . (A.11)

A.3 SU(2) interaction

• T = 0 and CP = +:[
q
∂

∂q
f0+
fL

]
2

=
α2

π

3

4

[
P+
ff,G ⊗ f

0+
fL

+NfP
R
fV,G ⊗ f0+

W

]
, (A.12)

[
q
∂

∂q
f0+
W

]
2

=
α2

π

2P+
V V,G ⊗ f

0+
W +

∑
fL

PRV f,G ⊗ f0+
fL

+ PRVH,G ⊗ f0+
H

 , (A.13)

[
q
∂

∂q
f0+
H

]
2

=
α2

π

3

4

[
P+
HH,G ⊗ f

0+
H + PRHV,G ⊗ f0+

W

]
. (A.14)

• T = 0 and CP = −: [
q
∂

∂q
f0−
fL

]
2

=
α2

π

3

4
P+
ff,G ⊗ f

0−
fL

, (A.15)[
q
∂

∂q
f0−
H

]
2

=
α2

π

3

4
P+
HH,G ⊗ f

0−
H . (A.16)

• T = 1 and CP = +: ∆
4/3
f,2 q

∂

∂q

f1+
fL

∆
4/3
f,2


2

= −α2

π

1

4
P+
ff,G ⊗ f

1+
fL

(A.17)

∆
4/3
H,2q

∂

∂q

f1+
H

∆
4/3
H,2


2

= −α2

π

1

4
P+
HH,G ⊗ f

1+
H (A.18)

∆
1/2
V,2q

∂

∂q

f1+
BW

∆
1/2
V,2


2

= 0 . (A.19)

• T = 1 and CP = −:∆
4/3
f,2 q

∂

∂q

f1−
fL

∆
4/3
f,2


2

=
α2

π

[
−1

4
P+
ff,G ⊗ f

1−
fL

+
1

2
NfP

R
fV,G ⊗ f1−

W

]
(A.20)

∆
1/2
V,2q

∂

∂q

f1−
W

∆
1/2
V,2


2

=
α2

π

P+
V V,G ⊗ f

1−
W +

∑
fL

PV f ⊗ f1−
fL

+ PV H ⊗ f1−
H

 (A.21)

∆
4/3
H,2q

∂

∂q

f1−
H

∆
4/3
H,2


2

=
α2

π

[
−1

4
P+
HH,G ⊗ f

1−
H +

1

2
PHV,G ⊗ f1−

W

]
. (A.22)
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• T = 2 and CP = +: ∆
3/2
V,2q

∂

∂q

f2+
W

∆
3/2
V,2


2

= −α2

π
P+
V V ⊗ f

2+
W . (A.23)

A.4 Yukawa interaction

• T = 0 and CP = +:[
q
∂

∂q
f0+
q3L

]
Y

=
αY
π

[
P Vq3L,Y

f0+
q3L

+ PRff,Y ⊗ f0+
tR

+NcPfH,Y ⊗ f0+
H

]
(A.24)[

q
∂

∂q
f0+
tR

]
Y

=
αY
π

2

[
P VtR,Y f

0+
tR

+ PRff,Y ⊗ f0+
q3L

+NCPfH,Y ⊗ f0+
H

]
(A.25)[

q
∂

∂q
f0+
H

]
Y

=
αY
π

[
P VH,Y f

0+
H + PRHf,Y ⊗ f0+∑

H f

]
, (A.26)

where

f0+∑
H f = f0+

tR
+ f0+

q3L
. (A.27)

• T = 0 and CP = −:[
q
∂

∂q
f0−
q3

]
Y

=
αY
π

[
P Vq3L,Y

f0−
q3L

+ PRff,Y ⊗ f0−
tR
−NcPfH,Y ⊗ f0−

H

]
(A.28)[

q
∂

∂q
f0−
tR

]
Y

=
αY
π

2

[
P VtR,Y f

0−
tR

+ PRff,Y ⊗ f0−
q3

+NCPfH,Y ⊗ f0−
H

]
(A.29)[

q
∂

∂q
f0−
H

]
Y

=
αY
π

[
P VH,Y f

0−
H + PRHf,Y ⊗ f0−∑

H f

]
, (A.30)

where

f0−∑
H f = f0−

tR
− f0−

q3L
. (A.31)

• T = 1 and CP = +:[
q
∂

∂q
f1+
q3L

]
Y

=
αY
π

[
P Vq3L,Y

f1+
q3L
−NcPfH,Y ⊗ f1+

H

]
(A.32)[

q
∂

∂q
f1+
H

]
Y

=
αY
π

[
P VH,Y f

1+
H − P

R
Hf ⊗ f1+

q3L

]
(A.33)

• T = 1 and CP = −:[
q
∂

∂q
f1−
tL

]
Y

=
αY
π

[
P VtL,Y f

1−
tL

+NcPfH,Y ⊗ f1−
H

]
(A.34)[

q
∂

∂q
f1−
H

]
Y

=
αY
π

[
P VH,Y f

1−
H + PRHf,Y ⊗ f1−

q3L

]
(A.35)
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A.5 Mixed interaction

• T = 1 and CP = +:[
q
∂

∂q
f1+
f

]
M

=
αM
π

Yf
2
NfP

R
fV,G ⊗ f1+

BW , (A.36)

[
q
∂

∂q
f1+
BW

]
M

=
αM
π

4
∑
fL

YfP
R
V f,G ⊗ f1+

f + 2PRVH,G ⊗ f1+
H

 , (A.37)

[
q
∂

∂q
f1+
H

]
M

=
αM
π

1

4
PRHV,G ⊗ f1+

BW , (A.38)

Equation (A.37) differs slightly from ref. [8] where, taking into account the definition there

of fB3 = fBW /2, an 8 would appear in place of 4 in the first term on the right-hand side.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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