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Abstract

Explanation and Reflection in Calculus Learning

by

Daniel Reinholz

Doctor of Philosophy in Science & Mathematics Education

University of California, Berkeley

Professor Alan Schoenfeld, Chair

This dissertation focuses on explanation and reflection in mathematics and offers an
instructional intervention for supporting student learning. Explanation and reflection are
considered hallmarks of deep understanding; they are also tools for promoting learning. The
primary context of study was calculus, because it is often considered a gatekeeper that pre-
vents students from accessing higher-level mathematics and Science, Technology, Engineer-
ing, and Mathematics (STEM) careers. Simultaneously, there is concern that even students
who are successful (in the conventional sense) lack deep mathematical understanding. I col-
lected both conventional and deeper performance measures, because both have implications
for learning and performance.

Over three semesters of instruction I used design-based research methods to iteratively
develop and refine an intervention. The intervention, Peer-Assisted Reflection (PAR), used
peer-review and self-reflection as means to promote explanations. The core PAR activities
required students to: (1) engage in meaningful problems, (2) reflect on their own work, (3)
analyze a peer’s work and give and receive feedback, and finally (4) revise their own work
based on insights gained throughout this cycle. PAR was supported by other aspects of
the instructional environment, such as adequate training and opportunities for students to
explain their ideas regularly during class sessions.

The first semester (pilot study) took place in an introductory algebra classroom in a
community college; the second and third semesters (Phases I and II) took place in an in-
troductory college calculus course in a research university. The purpose of the pilot study
was to refine theoretical principles to create an effective instructional intervention. Phase I
was the first full implementation of the intervention, and Phase II served to replicate and
extend the findings from Phase I. During Phases I and II quasi-experimental methods were
used to compare students in an experimental section to students in parallel sections of the
same course. I collected the following data: students’ common exams, pre- and post-surveys
about beliefs, student interviews, video observations of class sessions, copies of students’
PAR assignments, and audio records of student conversations.

Students in the experimental sections were more successful in calculus than their coun-
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terparts in the comparison sections. During Phase I the experimental success rate (A’s,
B’s, and C’s in the course) was 13% higher than the comparison section. The difference in
success was 23% during Phase II, due to iterative refinements of the intervention. These im-
provements were statistically significant on common department exams in Phase I (average
exam score 73.03% vs. 66.84% and 67.32% in the two comparison conditions) and Phase II
(average exam score 75.20% vs. 64.17%). Improvements were evident on both conceptual
and procedural problems. Students in the experimental sections also improved their written
explanations and demonstrated improved persistence in problem solving.

In sum, engaging in PAR helped students improve their: success rates, exam scores, writ-
ten explanations, and persistence. Because PAR is not grounded in specific mathematical
(or formal) content, it should be a broadly applicable intervention for improving student
learning in a variety of contexts. The findings of this dissertation also contribute to a the-
oretical understanding of peer-analysis and self-reflection as tools to promote explanations.
For example, explaining to an authentic peer audience helped students focus on their com-
munication, rather than just finding the correct answer. The findings also provide further
evidence of the importance of conceptual understanding; by engaging in PAR, an interven-
tion specifically targeted at improving explanations, students also improved their success on
measures of procedural understanding.
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1 Introduction

Numerous mathematical domains are widely recognized as difficult for learners: e.g., ratio
and proportion, negative numbers, algebra, calculus, and proof. The present study focuses
on two of these: algebra (in the pilot work), and calculus (in the main experiments). This
dissertation is premised on the notion that these difficulties cannot be avoided, but rather,
that students must be supported to grapple with and overcome them; learning that sidesteps
these fundamental difficulties is unlikely to be robust.

A considerable body of literature addresses the learning of specific mathematical concepts.
One could imagine combining all of these results (e.g., on limits, derivatives) to create a
course of instruction, but this approach has limitations and is unlikely to generalize to a
larger population of instructors. Instead, I focus on methods that should be more likely
to generalize across domains be accessible to many instructors.1 Specifically, I focus on
explanation and reflection, which are widely recognized as hallmarks of deep understanding,
and are essential to promoting self-guided learning. The logic of the intervention is to: (1)
provide access to meaningful problems, and (2) create a supportive learning environment in
which students can engage them; both are essential.

This dissertation studies took place over three semesters, in which I iteratively designed
and implemented an intervention for promoting deep understanding. After reviewing the
relevant literature, I dedicate a chapter to each of these semesters. The first semester (pilot
study) took place in an elementary algebra class in a community college, and the next two
semesters (Phases I and II) took place in introductory college calculus. The focus of the
pilot study was to translate theoretical principles into a working intervention for promoting
explanation and reflection. Building on these results, the purpose of Phase I was to test a
full implementation of the intervention and its impact on student learning. Phase II was
intended to replicate the findings from Phase I, and extend them by examining the impact of
iterative improvements to the design. Chapters 3, 4, and 5 focus primarily on the evolution
of the design, with some supporting analysis of student exam scores. I withhold analyses
of student explanations until Chapter 6 to facilitate comparisons of performance between
Phases I and II, and to illustrate the impact of iterative improvements to the design. In
Chapter 7, I outline the learning mechanisms that appeared to make PAR a meaningful
activity for students. I close with a summary and discussion of implications.

1At time of writing, the methods have been used in two contexts beyond the dissertation: introductory
ordinary differential equations, and introductory mechanics taught from a modeling approach.
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1.1 History and Context

Each fall semester, nearly 85,000 students (28%) fail to successfully complete introductory
college calculus, even though more than half of them have already studied calculus in high
school (Bressoud, Carlson, Mesa, & Rasmussen, 2013). This lack of success persists despite a
nationwide call over 2 decades ago to make calculus a “pump, not a filter” (L. A. Steen, 1988).
This prompted numerous studies, most notably the group of studies known as the calculus
reform movement (Hurley, Koehn, & Ganter, 1999), and honors-style calculus courses based
on the Emerging Scholars Program (described below) aimed at improving success for minority
students (Fullilove & Treisman, 1990). After these landmark efforts, calculus continues to
be an area of research interest, but the number of studies has waned. Moreover, many of
the studies still focus on calculus reform (e.g., Star & Smith, 2006; Roddick, 2003) and the
Emerging Scholars Program (e.g., Burmeister, Kenney, & Nice, 1996; Moreno, Muller, Asera,
Wyatt, & Epperson, 1999).

In general, interventions have focused on the tasks that students engage with and the
conditions under which the students engage them. Many reform courses utilized “real-world
problems” and introduced either technology or collaborative group work. The results of the
studies have been mixed. Some of the interventions have been relatively successful, while
others have had negative impacts on students. It is difficult to compare studies because
they each used their own outcome measures. In their nationwide survey, Bressoud et al.
(2013) found standard calculus exams were comprised of 71-88% procedural questions (while
instructors self-reported a perception of 40-70%). Given that most calculus exams are very
procedural, one might question the measures used by many of the studies. It is also difficult
to generalize the results of the calculus reform movement, because most studies had no
measure for the quality of the two variables that were changed: (a) the tasks, and (b) the
structures used to promote collaborative learning. Because most of the studies did not
focus explicitly on implementation itself, it is impossible to say much about these important
dimensions. The need for more careful documentation of the intervention prompted the use
of design-based research methodology for the present study (Brown, 1992; Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003; Collins, Joseph, & Bielaczyc, 2004).

I now review some of the factors that make calculus so difficult and consider notable
attempts to address them. Finally, I address the issue of choosing quality tasks; supports
for student learning will be further discussed in the next chapter.

1.1.1 The Calculus Filter

Calculus is full of conceptual difficulties. Limits (e.g. Tall, 1992; Davis & Vinner, 1986) and
functions2 (e.g. Oehrtman, Carlson, & Thompson, 2008) are extremely difficult for students
to understand. Students struggle with object-process duality of functions (Sfard, 1991),
confusing functions and equations, thinking all functions can be algebraically-defined, and

2Although students have some exposure to functions before calculus, functions are usually peripheral to
the curriculum, whereas in calculus they are a central object of study.
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interpreting functions intuitively, as well as other issues (Oehrtman et al., 2008). Limits
introduce linguistic and conceptual difficulties, such as understanding arbitrarily large or
small, terms like tends to or approaches, and whether or not a limit can actually be reached
(Tall, 1992). Calculus is especially difficult because intuitive understandings of concepts
(e.g., of continuity) often contradict mathematical formalism (Tall & Vinner, 1981; Tall,
1990).

Entering college students have generally experienced superficial, rote learning in K-12
mathematics classrooms for years (e.g. Aud et al., 2011; Schoenfeld, 1991, 1992), which
creates gaps in knowledge and reinforces unproductive learning dispositions (Schoenfeld,
1988). Some unproductive beliefs students develop are: (a) math is only for geniuses, (b) all
problems have a single right or wrong answer, and (c) problems are generally solved in less
than two minutes or not at all; these beliefs prevent students from engaging in mathematics
in deep and meaningful ways. Despite the failures of traditional mathematics classrooms,
there is growing evidence of the efficacy of reform curricula and teaching practices to improve
student understanding (Boaler & Staples, 2005; Senk & Thompson, 2003).

1.1.2 The Calculus Reform Movement

The reform movement was fostered by a 1986 conference at Tulane University, focused on
creating a “lean and lively calculus” (Douglas, 1986). A year later, at the Calculus for
a New Century conference (Hurley et al., 1999), mathematics educators were given the
famous charge to make calculus a “pump, not a filter.” Calculus, a great achievement of
human understanding, should impel students to want to learn more mathematics and science,
rather than pushing them to pursue other majors, or so went the argument.

The calculus syllabus was reformed, due to widespread agreement that the current cal-
culus syllabus was a mile wide but an inch deep (Schoenfeld, 1995). This new syllabus
generally emphasized multiple representations of functions (e.g., algebraic, graphical, nu-
meric). Reformed courses often utilized technology (e.g., hand-held calculators, computer
labs, programming) and collaborative learning. As of 1994, reform calculus texts had sold
over 80,000 copies, and in a spring 1994 survey, 68% of respondents indicated at least modest
reform efforts (Schoenfeld, 1995). I now consider a few projects that are emblematic of the
larger movement.

The University of Connecticut introduced a weekly computer lab session and converted
its discussion session to group problem solving (Hurley et al., 1999). Students worked in
collaborative groups of 3-5 members in both environments. Parallel sessions of reform and
traditional courses were run with common exams for 6 years, and of the 7 semesters reported
on during this period, the experimental section always outperformed the traditional section,
ranging from 1%-10% differences (Hurley et al., 1999); this was a small positive effect on
traditional outcomes. The authors note that a similar approach at Dartmouth University,
resulted in no significant difference in the performance between traditional and reform classes.

As a part of Project CALC classes at Duke University were reformed to consist of
three regular class periods with a weekly 2-hour lab session (Bookman & Blake, 1996).
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Project CALC utilized real-world problems, activities, group work, writing, and technol-
ogy. The findings of a multi-year evaluation were generally positive, with improved engage-
ment, problem-solving skills, and increased enrollment in subsequent math-related courses
(Bookman & Friedman, 1999). Nevertheless, students in traditional sections still had bet-
ter computational skills (not statistically significant), and higher GPAs overall (statistically
significant).

Calculus & Mathematica was an intervention that focused on teaching calculus through
Mathematica, a Computer Algebra System (CAS). Depending on the institution, common
final exams have favored both reform and traditional practices (Roddick, 2001). For example,
at Ohio State University, traditional students were found to do much better in differential
equations (mean GPA 2.7 vs 2.06), while reform students were found to have a higher GPA in
introductory physics (mean GPA 2.83 vs 2.47) (Roddick, 2001). Accordingly, it was difficult
to evaluate the impact of the reformed course.

In total, NSF funded 127 projects at 110 institutions as a part of its 1988-1994 calculus
initiative (Ganter, 1999). Awards ranged from $1,500 to $570,283 per year, with a mean
annual award for $186,458. Some common themes emerged from the projects (Ganter, 1999):

• student and faculty responses were almost uniformly negative at first, improving only
after the project had been revised based on continuous feedback,
• students in reform courses generally had better conceptual understanding, higher re-

tention, higher confidence, and higher continued mathematics enrollment, yet
• scores on common traditional exams were mixed, making it unclear whether or not

reform students were falling behind on traditional skills.

Accordingly, the mathematics and mathematics-education communities remain divided on
the virtues of reform calculus (Wilson, 1997). Keeping these lessons in mind, I turn to
another set of prominent efforts in calculus education.

1.1.3 The Emerging Scholars Program

The Emerging Scholars Program was developed in response to a decade of data showing
that 60% of African-American students at UC Berkeley failed introductory calculus. The
program was based on a study of the working habits 20 African American students and
20 Chinese American students (Treisman, 1992; Fullilove & Treisman, 1990). The authors
found that the groups approached mathematics learning in very different ways. The Black
students worked diligently for about 6-8 hours per week, turned in all assignments on time,
but primarily worked alone. In contrast, the Chinese students worked about 8-10 hours alone,
but also spent about 4-6 hours working with other students. They checked one another’s
answers, worked on problems from old exams together, and were extremely aware of their
standing in the course.

Thus began the Emerging Scholars Program (ESP), an honors program for minority
students (Fullilove & Treisman, 1990). There are two key components to the program:
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• convincing students that college success requires collaboration and the creation of an
intellectual community with other students with shared interests and common profes-
sional aims, and
• providing students with a set of rich mathematical tasks to solve in a collaborative

group environment.

Essentially, the ESP sought to reproduce the learning conditions under which Chinese
students were found to be so successful. The ESP enrolls first-year students of all races,
but typically 80% of participants are Black and Latino (Fullilove & Treisman, 1990). When
students enroll in the program, they take part in special two-hour problem sessions, twice
a week, in addition to their traditional calculus section. These sessions involve students
organized in groups of 5-7 working on exceptionally difficult sets of problems.

From the years 1978-1984, 40% of non-ESP African American students failed calculus
(115/284), while less than 4% of ESP African American students (8/231) failed the course
(Fullilove & Treisman, 1990). Studies of implementations of the ESP at other institutions
(e.g., UT Austin, CCNY) show similar improvements for minority students (Treisman, 1992).
Both the collaborative group setting and meaningful mathematical tasks are considered to be
crucial to the program’s success (Treisman, 1992). However, the ESP requires four additional
hours of weekly problem solving, which is nontrivial to import this structure into a regular
calculus section. Nevertheless, the principles of collaborative problem solving and meaningful
tasks underlie the intervention I describe in this dissertation.

1.2 Worthy Mathematical Problems

Calculus is difficult for students to learn and efforts to reform calculus are perhaps even more
difficult. Notable calculus reform efforts moved away from procedural exercises towards more
meaningful tasks and utilized collaborative work. As a result, reformed courses were able
to improve student engagement and retention, but performance on traditional measures was
mixed. In contrast, the ESP resulted in drastic student performance gains, but has its own
barriers to widespread adoption.

As stated previously, most of the studies described above lacked any measures of the
quality of the mathematical tasks used in the interventions. To avoid this difficulty, I have
justified my choice of tasks drawing from Complex Instruction (Featherstone et al., 2011)
and Alan Schoenfeld’s (1991) work on problem solving.

Complex Instruction is a theory and set of techniques for implementing equity-oriented
group work, most commonly used in K-12 mathematics learning (E. G. Cohen & Lotan,
1997). One of the principles of Complex Instruction is that group work will only be effective
if you give a group something worthy of group engagement, a group worthy problem. Given
the equity-oriented focus of Complex Instruction, multiple entry points and the need for
multiple competencies are central, so that all students have an opportunity to meaningfully
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engage the given task. Based on this work, Featherstone et al. (2011, p 119) recommend
three guiding questions for choosing and altering tasks to create group worthy problems:

1. How can I make sure this task will engage my students with big mathematical ideas?
2. How can I improve the chances that the context that the task proposed supports rather

than distracts from mathematical investigation?
3. Does the task allow for multiple points of access and more than one solution path

(promoting the visibility of mathematical connections)?

In a similar vein, Schoenfeld (1991) explains his problem aesthetic for potentially valuable
problems. In general, good problems:

1. are (relatively) accessible;
2. have multiple solution paths, making mathematical connections visible;
3. serve as introductions to important mathematical ideas;
4. serve as “seeds” to mathematical exploration (i.e., are extensible and generalizable).

Both sets of criteria emphasize the importance of opportunities to make connections and
generalize the mathematics to new situations. These principles provide a basis for choosing
tasks, but as Triesman notes, it is often difficult to find worthwhile calculus tasks (Treisman,
1992). In this dissertation, I often had to choose tasks in which students generated examples
or explained some sort of substantial mathematics (Reinholz, 2013b), because it was difficult
to find problems with multiple solution paths. In the context of peer-assisted reflection,
problems that allowed for a great deal of explanation or the generation of examples made it
likely that students would have different solutions, and thus made mathematical connections
more likely.

In summary, this chapter has highlighted some of difficulties of improving student learning
in calculus. I have also provided some of the rationale for the tasks chosen in my study and
the use of a design-based research methodology. Moving forward, I now turn my attention
to the skills students need to think deeply about mathematics and how to help students
develop them. These will be emphasized in the next chapter and in the design sections of
all subsequent chapters.
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2 Theoretical Framing

The previous chapter described some of the difficulties of calculus reform and the importance
of meaningful tasks. I now focus on explanation and reflection, fundamental skills for deeply
engaging such tasks. Explanation relates to students’ abilities to express their mathematical
understandings verbally and in writing. Crucially, explanation is a tool for developing under-
standing, not just communicating it. Reflection relates to the monitoring and self-regulation
of learning and understanding. When students analyze others’ work, they develop the skills
to explain and reflect upon their own work. This is the crux of peer-assisted reflection, the
intervention I later describe.

2.1 Explanation

Explanation is fundamental to mathematical problem solving and understanding. The Com-
mon Core State Standards for Mathematics consider explanation to be a “hallmark” of under-
standing (CCSSI, 2010). Of the five NCTM process standards, explanation is fundamental
to three of them (reasoning and proof, communication, and connections), and important to
the other two (problem solving and representation; NCTM, 2000). Explanations promote
generalization through the recognition and extension of patterns (Lombrozo, 2006; M. Ran-
ney & Schank, 1998), and mathematics is a “science of patterns” (L. Steen, 1988), making
the centrality of explanation to mathematical practice hard to dispute. Major science educa-
tion standards documents (AAAS, 1993; NRC, 1996) also emphasize explanation in scientific
practice.

2.1.1 Explanation and Learning

Mathematical arguments (i.e., proofs) embody methods, tools, and strategies for solving
other problems (Hanna & Barbeau, 2008). These explanatory aspects of proof (not just the
proving aspects) provide the basis for generalizing between problems (Raman, 2003). In
science education, explanation often relates to describing (usually causal) mechanisms be-
hind natural phenomena (e.g., why a ball eventually falls when you throw it up). Related to
explanation is argumentation, which refers to reasoning from evidence (e.g., why one species



CHAPTER 2. THEORETICAL FRAMING 8

would be more likely to adapt to a new situation than another; Osborne & Patterson, 2011).1

Other researchers have focused on the coherence of explanations, using computational meth-
ods to model individuals’ reasoning (M. Ranney & Schank, 1998). In this dissertation, I
group all of these processes together under the heading of explanation, because all of them
support making connections and generalizations.

Chi, Bassok, Lewis, Reimann, and Glaser (1989) observed students learning physics from
worked examples. The most successful students spent the most time explaining the reason-
ing behind the examples. The authors hypothesized that explanation supported generalizing
principles from the worked examples to new problems. To follow up, Chi, De Leeuw, Chiu,
and LaVancher (1994) experimentally manipulated whether or not students self-explained
while reading a biology text. The students who self-explained learned more than the com-
parison students, who read the text twice rather than a single time, even though many
of the self-explanations were incorrect. The authors hypothesized the key features of self-
explanation were that: (1) it is constructive, (2) it promotes the integration of new and prior
knowledge, and (3) it is carried out continuously, providing multiple opportunities to see
conflict between one’s evolving understanding and the text. Self-explanation has been used
effectively in other learning contexts, such as in promoting understanding of global climate
change (M. A. Ranney, Clark, Reinholz, & Cohen, 2012a, 2012b). Self-explanation pushes
readers to make explicit unspecified connections (i.e., explanation supports reflection).

2.2 Reflection

Reflection relates to monitoring, regulating, and assessing one’s own work, progress, or
learning. Reflection features in formative assessment (particularly peer- and self-assessment),
feedback, self-regulation, metacognition, and metacomprehension.

2.2.1 Formative Assessment

Constructivist theories emphasize that learning must be grounded in students’ current un-
derstandings (Smith, diSessa, & Roschelle, 1993). Accordingly, formative assessment is con-
cerned with evoking information about learning and using it to modify the teaching and
learning activities in which students are engaged (Black, Harrison, & Lee, 2003); i.e. any in-
structional practice that adheres to basic constructivist principles must include some aspect
of formative assessment. The positive impact of formative assessment on student learning is
well-documented (e.g., Black & Wiliam, 1998; Black et al., 2003).

Peer- and self-assessment are core parts of formative assessment (Black & Wiliam, 2009),
as students themselves have been argued as the definitive source of formative assessment
(Andrade, 2010). Emphasizing peer- and self-assessment accounts for the role that students,
not just the teacher, must play in guiding the learning process. Peer-assessment refers to a

1But these meanings for the terms are not universal.(For an example of a explanation in this sense being
used to refer to argument, see Songer & Gotwals, 2012).
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spectrum of activities in which students engage with the work of other students (cf. Topping,
1998). As a result, the mere assignment of grades is often conflated with activities that
involve in-depth analysis and feedback. Because grades alone contain so little information
about how to improve one’s performance, peer-marking (the assignment of grades) is much
less effective than in-depth analysis and feedback (cf. Hattie & Timperley, 2007). For
conceptual clarity, I will use the term peer-assisted reflection, rather than peer-assessment,
in this dissertation.

Reflection can be peer-assisted in two ways: (1) when students analyze a peer’s work and
provide feedback, they develop skills that they can later apply to their own work; and (2)
when students receive feedback from a peer, they gain insight into their peer’s perceptions
of the solution, which helps them reflect on their work from the distanced perspective of
another. During phases I and II of the experiment I define peer-assisted reflection (PAR) as
a specific activity structure, but in theory, PAR could be implemented in other ways as well.
PAR involves students analyzing one another’s work and conferring about their analyses.
As they confer, students explain both their own work and the work of their peers, which
promotes deeper understanding.

Ultimately, peer-assisted reflection should help students develop self-reflection skills. Be-
cause self-reflection is difficult, PAR helps students develop the distanced objectivity required
for self-reflection (Black et al., 2003). In order to effectively self-reflect, a learner must: (a)
possess a concept of the standard or goal to be achieved, (b) be able to compare actual
performance to this standard, and (c) engage in appropriate action to close the gap between
(a) and (b) (Sadler, 1989). This requires practice assessing a large number of examples of
various quality (ibid); PAR provides students with precisely this opportunity.

2.2.2 Self-regulation and Metacognition

Standard models of self-regulation involve planning, monitoring, regulation, and reflection
(cf. D. Butler & Winne, 1995; Pintrich, 2004; Zimmerman, 2002). Self-reflection supports
monitoring (judging the quality of products during their production) and reflection (judging
the quality of products after their production). Individuals must make accurate judgments
about their work in order to meaningfully guide their future actions, or they will act based
on misunderstandings.

External feedback often plays an important role in self-regulation. In general, feed-
back that focuses on task processing (e.g., error detection strategies, use of cues) and self-
regulation (e.g., generating internal feedback, assessing the correctness of one’s response) is
the most productive (Hattie & Timperley, 2007), especially when it is used to improve one’s
initial performance (Sadler, 1989). Feedback that focuses on the self (e.g., praise) is usually
detrimental, and should be avoided (Hattie & Timperley, 2007; Shute, 2008). Ultimately, as
individuals learn to accurately self-reflect, they move away from reliance on external feedback
to self-regulation (Sadler, 1989).

Metacomprehension is the ability to judge one’s own understanding. Although this ability
is often assessed using limited measures of understanding (e.g., text comprehension and
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multiple choice questions; Dunlosky & Lipko, 2007; Dunlosky & Thiede, 2013), individuals’
accuracy is still quite low. Evidently, many individuals self-assess by using a generalized
notion of cognitive ease (Kahneman, 2011), rather than actually attempting the task and
measuring their performance. Pushing individuals to engage more substantively with a task
before making judgments has been shown to improve their accuracy (Dunlosky & Lipko,
2007). More broadly, metacognition refers to one’s knowledge, beliefs, and awareness of
one’s thinking and learning processes (Brown, 1987; Young, 2010), which is an important
part of self-regulation and learning more generally (Bransford, Brown, & Cocking, 2000).
Just as peer-assessment supports self-assessment (Black et al., 2003), learners often develop
metacognitive skills by internalizing external, social practices (cf. Palinscar & Brown, 1984;
Schoenfeld, 1985; White, Frederiksen, & Collins, 2009).

2.3 Summary

Explanation helps students connect new and prior knowledge, reflect on gaps in understand-
ing, and generalize to new situations. Reflection is a core part of self-regulation, the ability to
control and direct one’s own learning. Peer-assisted reflection leverages the learning poten-
tial of explanation to help students develop the metacognitive skills necessary to transition
from external feedback to self-regulation. The next chapter concerns my preliminary efforts
to enact PAR in the classroom.

2.4 Research Questions and Overview

I focused on two primary research questions, related to the efficacy of the PAR intervention:

1. How does student performance change on standard measures of understanding (com-
pared to other sections)?; and,

2. How do student explanations develop over the course of the semester?

I attempted to address these questions through three semesters of study (see Figure
2.1). The next three chapters (Pilot Study, Phase I, and Phase II) focus primarily on the
evolution of the experimental intervention and its implementation in the classroom. To
support these discussions, I provide analyses of student outcomes during Phases I and II,
which demonstrate significant learning gains in the experimental sections; student success
rates were much higher in the experimental sections than the comparison sections, as were
exam scores, on both conceptual and procedural problems. Readers who are interested in the
final version of the design but not its evolution should skip Chapters 3 and 4, and begin with
Chapter 5 (Phase II). Chapter 6 provides qualitative analyses of student explanations in the
Phase I and Phase II experimental sections, and a comparison section sampled during Phase
II. These analyses highlight the improvements in explanations in the experimental sections.
Chapter 7 provides a discussion of the mechanisms that appeared to make the intervention
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a powerful learning activity. The dissertation ends with a summary of the three semesters
of study.

Pilot	  Study:	  
Develop	  Interven3on	  

• Develop	  design	  
principles	  for	  
promo3ng	  
explana3on	  and	  
reflec3on	  

• Preliminary	  version	  
of	  PAR	  

Phase	  I:	  
Test	  Interven3on	  

• Full	  implementa3on	  
of	  PAR	  

• Further	  refine	  design	  
• Analyze	  student	  
performance	  

Phase	  II:	  
Replicate	  &	  Extend	  

• Use	  refined	  PAR	  
interven3on	  

• Replicate	  Phase	  I	  
results	  

• Compare	  impact	  of	  
interven3on	  during	  
Phases	  I	  and	  II	  

Figure 2.1: Overview of the 3-phase design-based research study.
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3 Pilot Study

3.1 Chapter Overview

The purpose of the pilot study was to translate theoretical principles of explanation and
reflection into an intervention to promote meaningful student learning. During the pilot
study I acted as a teacher and researcher in a community college remedial algebra class-
room. Because the students had already been unsuccessful in traditional algebra classes,
this study would help me design activities to support deep learning for traditionally under-
served students. I begin with an overview of the design as conceived, provide analyses of the
design as implemented, and close with a discussion of student learning and design principles
developed. The following two chapters (phase I and phase II) utilize the same structure.

The pilot study was exploratory, and I did not collect data to assess the impact of the
experimental activities on student outcomes. Nevertheless, I uncovered important theoret-
ical insights that served as the basis for future iterations of the intervention. Supporting
explanation and reflection appeared to require: (1) helping students overcome the perceived
need for expertise to construct and critique explanations (the “expert barrier”), (2) utilizing
a small number of specific, focused prompts to facilitate reflection, and (3) leveraging the
role of the audience of student explanations. Using these insights I constructed a standard
form and activity structure for self-reflection and peer-analysis. I refrain from using the term
peer-assisted reflection in this chapter to distinguish the pilot study activities from phases I
and II of the study.

3.2 Design

The design had four main components: (1) a framework for analysis of explanations/solutions,
(2) opening problems and self-assessments, (3) analysis tasks, and (4) opportunities for stu-
dent explanations. Activities were chosen to provide as many opportunities as possible for
students to explain and reflect upon mathematics. Choices relied heavily on the work of
other researchers (e.g., Black et al., 2003; Sadler, 1989) and advice from experienced in-
structors in the developmental (remedial) mathematics program at Los Medanos College. I
summarize the characteristics of the pilot study design in table 3.1.
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Strand of Design Key Features

Explanation
Framework

• Focus on execution, explanation, justification
• Rubric co-constructed by teacher and students
• Used for reflecting on solutions

Opening Problems
& Self-Assessments

• Written on board at beginning of class
• Opening problem pushes students to think about lesson
• Guiding question to help focus students
• Five self-assessment questions

Analysis Tasks • 3 types: explanation framework, unguided, standard form
• Used primarily student work until end of semester
• Variety of types used to see which would be most effective

Student Explanations • Written explanations, class discussions
• Student presentations to class (later in semester)

Table 3.1: Pilot Study Design Summary

3.2.1 Explanation Framework

To support students to engage in novel peer-analysis and self-reflection activities, instructors
at Los Medanos College suggested that I should co-construct a rubric for analyzing the quality
of mathematics solutions with my students. This rubric would help students meaningfully
engage in analysis tasks throughout the course. The actual rubric that was co-constructed
is presented in the analysis section.

3.2.2 Opening Problems and Self-Assessments

The basic lesson structure was inspired by the Learning Mathematics through Representa-
tions (LMR) project (Saxe, de Kirby, Le, Sitabkhan, & Kang, in press). Each LMR classroom
lesson consisted of five phases; the first phase (opening problem) was designed to promote
initial reflection by students, and the final phase (closing problem) was designed to provide
insight into students’ understandings at the end of the lesson, to help inform future lessons.
I used these phases as a part of the daily lesson structure to promote reflection.

Students were presented with a guiding question and an opening problem to begin each
lesson (see appendix D for sample guiding questions). The guiding question was intended to
help students stay focused throughout the lesson on a core mathematical idea. The opening
problem either reviewed old ideas or pushed students to think about new mathematics in
order to set up the lesson. As soon as students entered the classroom they were expected
to take out a sheet of paper, write down the guiding question, and work on the opening
problem. At the end of each lesson, students completed five prompts:
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1. Answer the day’s guiding question.
2. “Traffic light” how well you understood the lesson (traffic lights are described below).
3. Explain something you learned today as if you were explaining it to a classmate who

missed the lesson.
4. Ask one question about mathematics.
5. Tell me something else you think I should know.

These questions were meant to focus students on their learning processes and make
progress explicit, which is a key component of increasing self-efficacy (Bandura, 1997). Ongo-
ing self-assessments were intended to improve the accuracy of students judgments (Dunlosky
& Lipko, 2007). By explaining mathematics each day, students were meant to deepen their
understanding. Finally, these self-assessments helped the instructor modify instruction to
meet learners’ needs (i.e., to practice formative assessment).

Students frequently used “traffic lights” to self-assess their understanding of classroom
activities, homework problems, and entire lessons (Black et al., 2003). Green (G) repre-
sented a strong understanding, yellow (Y) represented a partial understanding, and red (R)
represented a lack of understanding. These self-assessments informed future classroom prac-
tices (e.g., students often chose a “red” homework problem to discuss with a partner). The
instructor was explicit about the purpose of traffic lights, their role in informing instruction,
and how to use them to guide learning.

3.2.3 Analysis Tasks

Students need explicit guidance, access to a variety of examples, and a lot of practice to learn
to analyze mathematical work (cf. Sadler, 1989). Malcolm Swan, a lead designer for the
Shell Centre’s formative assessment lessons, suggested that I utilize primarily hypothetical
student work, so I could engineer learning opportunities around specific conceptual difficulties
(Malcolm Swan, personal communication, November 14, 2011). Accordingly, most of the
analysis tasks used during the beginning of the semester utilized hypothetical student work.
Analyzing hypothetical student work would also provide a safer classroom environment.

Students engaged in three types of tasks: (1) general analysis tasks, (2) tasks utilizing the
explanation framework, and (3) tasks using the standard form that was later developed. In
(1), students had to explain other students’ thinking or rate the quality of various solutions.
In (2), students applied the explanation framework to a sample of work (hypothetical or their
own). In (3), near the end of the semester, students analyzed real and hypothetical work
(see appendix B). The peer-feedback and self-reflection components of the standard form
were identical, which was intended to facilitate the transfer of peer-analysis to self-reflection.

The tasks used in the class were meant to be accessible but nontrivial, afford oppor-
tunities for explanation and multiple solution methods, and engage the students with deep
mathematics, to promote making mathematical connections. The high-quality mathematical
tasks developed by the Mathematics Assessment Resource Service (MARS) were a source of
inspiration (see http://map.mathshell.org/materials/lessons.php). In fact, a number of the
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formative assessment lessons, such as gold rush and counting trees, were used during the
semester.

3.2.4 Student Explanations

During the beginning of the semester, students primarily explained their reasoning in re-
sponse to written prompts. This took place through homework and in-class activities. As
the intervention evolved, students were afforded increased opportunities to explain their
reasoning verbally. This occurred through group work and student presentations.

3.3 Method

Observations took place in two classrooms at a community college in the San Francisco Bay
Area. Students in the experimental section (N = 14 after dropouts), were involved in a first
year experience program, which grouped recent high-school graduates into a cohort that
took the same three classes: elementary algebra (remedial algebra I), remedial English, and
a study skills course. The comparison section (N = 17 after dropouts) was supposed to be
another cohort of the first year experience program, but due to low enrollment the section
was opened up to all students and was not tied to the English or study skills courses.

Both algebra sections met in parallel (i.e., all classes took place simultaneously in different
classrooms). The class met five days a week at 8:00am for 50 minutes each session. The
urban classroom consisted primarily of students of color (roughly 80%). As a teacher and
researcher, I taught the experimental section and collected copies of all of the students’ in-
class work and homework assignments, and a stationary video camera in the back of the
classroom captured lectures and in-class discussions. Additionally, I kept field notes of daily
observations and reflections. In the comparison section, I video recorded five class sessions
and collected copies of students’ final exams.

3.4 Analysis

To begin, I provide a brief description of the comparison section. This is to provide a baseline
comparison for standard instruction in the community college. This stands in contrast to
the experimental activities that I later describe.

3.4.1 Comparison Section

The comparison section was taught by a cooperating instructor, Sarah. Sarah’s class was
typical in most respects. She began each day by writing assignments and other important
reminders on the left side of the blackboard, and then began by titling the blackboard with
the name of the day’s lecture. In general, lectures flowed smoothly, and the instructor’s
organization of the board was excellent. All material that was written was very clear and
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organized, and if the students were simply to copy the board work down verbatim, they would
have a complete set of notes. Class sessions proceeded with the instructor explaining the
main ideas and working out a large number of examples. The class sessions were instructor-
driven, giving students relatively few opportunities to ask questions or give input in problem
solving. Of the 5 class sessions that were observed, the class remained in whole class lecture
the entire time.

3.4.2 Implementation of Intervention

Implementation was hindered in a number of ways: modest attendance (mean 71.6%), stu-
dents coming to class late (often 20 or more minutes late), and a large number of homework
assignments not turned in. Basic literacy was an issue; most students struggled to write
complete sentences. This prompted the use of more verbal, rather than written, activities.
Other members of the mathematics department informed me that these issues were typical
for this particular mathematics course and early meeting time (8:00am).

3.4.2.1 Explanation Framework

During the second class session, the class co-constructed a set of criteria for high-quality
mathematics solutions. After the students came up with the criteria for high-quality solu-
tions, the instructor grouped them into three categories: execution, explanation, and justi-
fication. A few of the items given in table 3.2 that were not suggested by the students were
added by the instructor (e.g., check units), but the majority of the suggestions came from
the students.

Execution Explanation Justification)
(what did you do?) (why did you do it?) (did you do it correctly?)
Show all solution steps in order

Define all variables in the problem

Write down important infor-
mation from the problem statement

Include units on all quantities

Answer all questions asked in
the problem

State any assumptions made

Explain why you chose to solve the
problem a certain way

Draw a picture or diagram

Use words to explain meaning
of arithmetic operations in problem
context

Explain choice of representations

Check units

Estimate or solve a simpler problem

Interpret answer using the problem
context

Solve the problem using another
method

Table 3.2: Explanation Framework for High Quality Solutions

The various components of the rubric - execution, explanation, and justification - were
designed to provide a sense of what constitutes an explanation (more than recounting steps).
Use of the framework was often modeled during class and students were asked to apply it to
sample work. Nevertheless, students did not find the framework very useful. Consider two
questions from homework 6:
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• Choose one of the problems you solved on either a previous homework, exam, or in-
class assignment. Write your original solution. Then analyze the solution in terms of
execution, explanation, and justification. Write down at least two ways in which you
could improve the original solution.
• Based on your answer to the previous question, rework the problem that you just

analyzed your solution for (don’t just copy from the solutions!).

Two samples of typical student responses are given, one from Teresa (see figure 3.1), the
other from Josh (see figure 3.2).

Teresa chose a problem from a recent in-class assignment of matching equations and
graphs with each other. However, she only focused on the correctness of the solution, without
applying the framework for analysis.

Figure 3.1: Teresa’s Solution for the Homework 6 Revision Problem

Josh also picked out a problem from a previous class session. Students had to create a
graphical representation of a standard story situation: riding on the bus, walking, sitting at
class, walking back to the bus, and riding home. Josh reworked his initial solution, fixing
one of the errors (the distance traveled did not change while the student was in class), even
though other errors remained (and were introduced). Just as for Teresa, the framework did
not support Josh to reflect on his work. Due to its inefficacy, the explanation framework was
phased out near the middle of the semester.

3.4.2.2 Opening Problems and Reflections

When students arrived on time, they generally began working on the opening problem
quickly. However, students who came to class late were slow to work on the problem,
spending a long time and disrupting the flow of the class session, and often did not work
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Figure 3.2: Josh’s Solution for the Homework 6 Revision Problem

on the problems at all (because they came halfway through the session). Students were not
graded for on-time attendance. Opening problems were usually simple. For instance, on the
second day of class students were asked to multiply various combinations of positive and
negative numbers together. The prompts were: 5 · 5, (−1) · 6, (−2) · (−2), and 6 · (−1).

Guiding questions either summarized a big idea from the lesson or were used to interrogate
student thinking about a specific topic. For instance, the guiding question corresponding
to constructing the explanation framework was what does a “good” math solution look like?
Student responses are given:

• I have no clue.
• A good math solution has multiple elements to show you did it right. One, what did

you do, two why did you do it, 3 did you do it correctly: execution, justification, and
explanation.
• 25, -6, +4, -6
• + ·+ = +, − ·+ = −, − · − = +, + · − = −,
• A good one likes one were you can see how you got from point A to point B.
• I would like to better understand the in-class activities because I recognize the equation

but can’t explain.
• A good math solution either has two positives or two negatives.
• A good solution would be a complete answer that is correct with a box around it.
• A good math solution looks like when you’re able to solve everything in order and it’s

easy to understand the process. The shorter the work the better the solution would
look.

These responses provided a number of insights: (1) only 9 of 20 students enrolled (at that
time) attended the second day of class, (2) most students misunderstood the self-assessment
task, and (3) student responses were mostly unrelated to the class discussion. Future class
sessions were modified to address these issues. By the third week of the class, nearly all
students understood how to answer the guiding question. Nevertheless, guiding questions
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had a number of limitations: (1) students seemed to only think about them at the end of
the lesson, not as a tool to stay focused during class, (2) students often rushed to finish their
reflections, and (3) it was often difficult to develop a meaningful guiding question before
each lesson (e.g., sometimes lesson goals were emergent).

In contrast, students found using traffic lights (cf. Black et al., 2003) to track their
progress useful, but also felt limited by only having three choices. While students could
easily identify “red lights,” students frequently marked work that was mostly incorrect as
green, greatly overestimating their abilities (cf. Dunlosky & Lipko, 2007). Student reflections
about traffic lights illuminated the source of some of their difficulties. For example, Vanessa
stated:

“Red flag” doesn’t help me - it only makes me frustrated I don’t have an under-
standing of solving or graphing. That is my frustration for the entire homework.

Vanessa notes that a “red flag” doesn’t help, because it provides insufficient grist for
working through partial understandings. A general, non-specific method of self-assessment
(such as the traffic lights) rests on the tacit assumption that students have the skills to self-
assess and reflect but not the predilection to do so. However, most students made vague,
general comments such as “I’m confused” or “I don’t get it,” which are not very effective for
self-assessment because they do not specify “what” exactly needs to be resolved.

This problem was ameliorated to some extent through the design of the standard form
for peer-analysis and self-reflection (see appendix B.1). Withholding further discussion for
the next section, I provide a direct comparison between traffic lights and the standard form
made by Teresa after class one day:

This new assessment form is a lot better than the traffic lights. It actually gives
you questions to answer, which makes it a lot easier to use.

The third self-assessment prompt asked students to explain something they had learned
today as though they were explaining it to a classmate who missed the lesson. In practice,
students almost never provided an explanation for a classmate. Instead, most students
interpreted the question as what did you learn today? Here is a representative sample of
student responses (from week 5):

• (Blank)
• I remembered x and y axis. We learned about input and output.
• (Blank)
• d(t) = st, d = distance = traveled like likes, time means hours
• I learn x, y axes.
• We used an input/output box meaning whatever goes into a function gives us an

output.
• To find what the output is you have to know what the input is first and put that into

the function to get the output.
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• Today we learned about graphing.
• Input goes into a function and then it gives us a output
• Today I relearned about graphs and input and output.

The vast majority of these explanations would not support a classmate’s learning; they are
simply statements of what students felt they learned.

The final two self-assessment prompts required students to ask a question and say some-
thing else they wanted the instructor to know. Both of these prompts provided useful infor-
mation for the instructor. Students asked questions that they may have felt uncomfortable
asking in class, and talked about how personal struggles could be affecting their attendance
and performance.

3.4.2.3 Analysis Tasks

The explanation framework was discussed above, so I now consider general analysis tasks
and the standard form that was later developed. General analysis tasks focused on analyzing
sample student work (primarily at the beginning of the semester). Students developed their
analytic skills slowly, and in the absence of a guiding framework, each student applied
idiosyncratic methods. Consider another problem from homework 6:

Four answers to the question “how do you create a graph from an equation?” are
given below.

(a) Plug in values for x, find the y values, and plot the points.
(b) The way you create a graph from an equation is by looking at the equation

and thinking of what inputs you would have.
(c) To plot an equation you need to find the rise and the run. Any number

times the x will give you the rise, and then the other number will give you
the run. Once you find the rise and run, you can create the whole graph.

(d) By plotting points on an axis.

Order these explanations from best (1) to worst (4). Explain why you ordered
the explanations how you did.

The four choices were modified samples of student work. Example (c) was designed as a
decoy to see if students would consider it to be the best because of its length. Indeed, not
a single student ranked (c) as the worst explanation, and some ranked it as the best. I now
consider three samples of student work, Teresa (see figure 3.3), Joseph (see figure 3.4), and
Vanessa (see figure 3.5). These samples represent higher quality responses from students;
many students skipped these problem, wrote down that they didn’t know what to do, or
attempted to solve the problem while ignoring the sample work.
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Figure 3.3: Teresa’s Solution for the Homework 6 Analysis Problem

Figure 3.4: Joseph’s Solution for the Homework 6 Analysis Problem

Teresa ranked the four explanations in the order of (b)-(a)-(c)-(d). Although she rated
(c) near the bottom, she ranked (b) near the top, which is also a very flawed explanation.
Teresa provided no justifications for her answers.

Joseph chose the order (a)-(c)-(b)-(d). He ranked (c) as second because it was “very
thorough,” even though it appears he viewed the length as a drawback. Joseph evidently
did not recognize the numerous flaws in the explanation.

Finally, Vanessa ranked the solutions as (c)-(a)-(d)-(b). Vanessa ranked the decoy (c) as
the best solution, but her reasoning was difficult to follow.

In summary, Joseph gave partial reasoning, Vanessa offered less complete reasoning, and
Teresa offered no reasoning. Of all of the students, not a single one lucidly articulated the
specific limitations of the explanations (e.g., (b) gives you no idea how to get outputs, (c)
gives incorrect ways for finding rise and run and doesn’t specify how to create the graph
once they are found, and (d) gives you no idea how to get the points to plot). Even after
six weeks, the students had relatively little ability to analyze mathematical explanations.
Yet, they knew it was an expectation of the course. Jacki and Tia frequently referred to the
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Figure 3.5: Vanessa’s Solution for the Homework 6 Analysis Problem

class as “the explain class,” and during an in-class discussion when a number of students
asked me to “just tell them” how to solve the problem, Sigfried exclaimed “you know he’s
not going to tell us the answer!”

The student work and reflections shown previously provided insight into the first major
theoretical breakthrough, the expert barrier. Most students in the class believed that only
“experts” are capable of explaining mathematics, which was a barrier to their engagement
with explanation activities. Yet, as a constructive activity, explanation is one of the very
practices students must engage to develop expertise. Explanation provides students with an
opportunity to surface, examine, and reflect upon their current understandings, and refine
them toward more normative understandings (Chi et al., 1994). This is an “expert barrier” –
the perceived need for expertise prevents students from developing expertise. This perception
is related both to issues of self-efficacy (Bandura, 1997) and perceived locus of mathematical
authority (Boaler & Greeno, 2000).

This theoretical insight prompted design modifications. Because students didn’t feel they
had the expertise to assess “right or wrong” or “good or bad” I reframed the tasks so that
students wouldn’t feel as though they had to make such judgments. This resulted in the
development of the standard form for peer-analysis and self-reflection (see appendix B.1). I
now provide the three prompts used in the form:

• Big Picture: What was the approach to solving the problem?
• Accuracy: Do you think the problem was solved correctly? How do you know? (Note

any errors you found.)
• Questions: What are you unsure about in the problem or response? What do you

want to know more about?

The design goals for the standard form were as follows: (1) provide students with a
standard tool for both peer-analysis and self-reflection, (2) focus students on what their
peers were doing, and (3) move students away from acting as judges (e.g., by leaving in
room for uncertainty in the third prompt). This resulted in the third type of analysis tasks
that students engaged in, primarily during the final 4 weeks of the semester. Students
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typically used the standard form to analyze one another’s homework solutions, but they also
used it to analyze sample solutions in class. Use of the form seemed to relate to shifts in
engagement. As Teresa noted after analyzing a peer’s work:

I didn’t get it before, why you were always asking us to explain, but now it makes
sense. When you don’t explain things people can’t tell what you’re doing.

When the framing for the activity was shifted to focus on understanding the explanations
and providing feedback rather than assessing them, students were better able to engage the
activity. Consider an excerpt from a lesson in which students engaged sample student work
with the standard form1:

Instructor: That’s good, so what questions might you ask him?
. . .
Dahlia: I don’t get it, because he’s not explaining anything.
Julius: I want him to say more about two people, I didn’t really get that part.
Instructor: Okay, so you want him to clarify what he meant about two people.
Julius: Yeah, I don’t really understand that part. “When you have two people it’s

easier to do it by yourself;” what do you mean by that?

Even though the task was framed as understanding the given explanations, it ultimately
led to the assessment of the explanations, as evident in Dahlia’s comment that he “wasn’t
explaining anything.” In his self-assessment that day, Julius noted:

I learned that explaining a problem wrong even with the right answer can be
confusing.

This shift in framing was effective because the perceived need for expertise was reduced.
Further, I recognized that students needed an authentic (peer) audience for their expla-
nations. Awareness of their audience made students more likely to see communication as
important. I elaborate more below.

3.4.2.4 Student Explanations

During the first half of the semester, students primarily explained through written prompts
or during whole-class discussion. As a result, when students engaged with the self-assessment
prompts (as shown above) they simply stated what they learned, rather than actually trying
to explain the ideas. It appears that the instructor was the students’ primary (perhaps only)
audience, and they tailored their responses accordingly. Students explained their homework
problems in the same way.

1The work was a part of the Shell Centre’s formative assessment lesson, “Golden Rectangles,” which is
freely available online at http://map.mathshell.org/materials/download.php?fileid=1226
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I conjectured that a peer audience would highlight the communicative aspects of expla-
nation, because students would receive visceral feedback when their explanations were not
understood. Accordingly, student presentations of mathematics became a crucial component
of the course. Students primarily presented homework problems and opening problems, but
occasionally novel problems as well. Thus, students replaced their instructor as discussion
leaders for these problems. Student presentations were framed as opportunities to work out
partial understandings, not to teach classmates “the answer.”

Just two weeks after students began regularly presenting their work, Teresa and Tia were
vigorously discussing who would present the opening problem, in contrast to two weeks earlier
when they both deliberately avoided being in front of the class. In reviewing homework 13,
students decided amongst themselves who would work out problems, and didn’t even ask
the instructor to present. On another occasion Julius stated that he would prefer to work
out the problem in front of the class and get feedback rather than having someone else just
show the solution to him.

Analysis activities with the standard form appeared to supported student presentations.
To illustrate, I contrast a student presentation from before the use of the form and after.
On 2012-04-03, before the use of the form, Sigfried presented about a situation in which the
students were given a right triangle with two sides equal to 3, 4, and the other side was an
unknown.

Sigfried: So class, today we learned a2 + b2 = c2. As we see these two right here, we
can plug in either or for a or b. [writes 42 + 32 = c2 on board]

Sigfried: Okay so we plugged in 4 as a, and 3 as b.
(side conversation)
Sigfried: so 42 simplifies as 16. 32 okay... [writes 16 + 9 = c2]
Sigfried: so 25. Then you gotta do the square root of 25, cuz it’s c2 and that would

give you 5.

After the presentation a few students asked him to clarify his steps, but the conversation
remained focused on answer-getting.

In contrast, during Sigfried’s (2012-04-25) presentation (after the introduction of the
standard form), students had a lively discussion (see figure 3.6 for the task). At first the
presentation looked as before, but it took an unexpected turn.

Sigfried’s presentation is given:

Sigfried: You see right here it’s like they are points on a single line. If you see on this
side, it goes up by 2 (it goes 0,2,4,6). And on this side it goes up by 5 - it goes from
−3, to 2, to 7, to 12 - it goes up by 5. [writes +5 to the right of table, +2 to the
left of it]

Sigfried: So if it was y = 22, you’d have to go up...
(Sigfried gets confused for a minute if x or y has to be 22, but it is resolved)
Sigfried: So this goes up by 5, so the next would be 17, and then 22.
Sigfried: So if you go 2 more down on this one, it would be 8, then 10
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Figure 3.6: Homework 13, problem 1

At this point Teresa asked “is there an equation you could do?,” launching a deeper
mathematical discussion:

Sigfried: Honestly, I didn’t get an equation. But if we had an equation then we could
check it...do you know an equation we could do?

Dan (Instructor): So this is good. You solved the problem, but now this relates to
the whole questions thing. Even though you solved the problem, there’s still more
math. We’re pushing one level deeper here.

. . .
Dan: So how would we find a line for this?
Sigfried: We need an equation, or a graph.
Dan: So what do you want to do? Do you want to try to graph it, or look for an

equation?
Sigfried: I think we should try to graph it
Tia: I wanna graph it.

This was the first time in the class that students pushed deeper with the mathematics
rather than stopping as soon as the problem was “solved.” Continuing on, the instructor
worked with the students to construct a graph from the table. The instructor was at the
board, but the students told him the process for graphing and how to proceed. For the next
4 minutes the students engaged with the difficulties of constructing a graph, and then came
up with an equation based on the graph. Then Sigfried had his major insight.

Sigfried: Oh!! Oh I see!!
Sigfried: You can just find it from the thing. The rise over the run is the pattern, the
y over the x, it’s like the differences that they move.
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Sigfried: All right, so now I see a better way to get it. Fo sho! [gives a high-five to
another student]

Teresa: Good job!

The class engaged mathematics with an unprecedented interest. On the self-reflection
Sigfried had turned in a day earlier, two questions were written: “What is the line?” and,
“how do I know it’s a line?” which may have supported his deeper inquiry. In sum, the
standard form seemed to help students see the importance of communication and opened up
space for deeper mathematical conversations.

3.4.3 Results

Students provided evidence that they recognized the expectation to explain and understand
mathematics deeply, and began to recognize the importance of communication. Nevertheless,
the standard form was only used during the final 4 weeks of class, so I could not document
student growth over time. I was also unable to collect evidence supporting the specific
reflection prompts used, and recognized that they would likely be revised later. Also, due
to the nature of the pilot study, it was difficult to compare the written work of students
between sections in any statistically or qualitatively meaningful way.

Nevertheless, on the final exam, I included the classic NAEP buses problem (Carpenter,
Lindquist, Matthews, & Silver, 1983) (as a free-response item rather than multiple choice).
Student responses were as follows: 8/10 correctly answered 32 buses or clearly explained
there would be 31 full buses and part of the 32nd bus, 1/10 students performed the correct
calculation but answered with ‘remainder buses,’ and one student could not perform the
correct calculation (contrast this 80% correct to 23% who answered correctly in the origi-
nal study). This gives some indication that most students had understood the point that
mathematics should make sense.

3.5 Discussion

The results of the pilot study highlighted the difficulties of translating broader theories of
learning into a specific design. I learned as much from the repeated failures to promote
meaningful student engagement at the beginning of the semester as I learned from the
eventual successes. The results of the pilot study provided the basis for an intervention that
would be fully implemented during Phase I, in order to assess its impact on student learning.

3.5.1 Revisions for Theory and Intervention

I now take stock of the key lessons learned during the pilot study.
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1. The importance of framing. Effective analysis or assessment tasks need to address
the expert barrier. Tasks should be framed to consider some aspect of communication
or describing thinking and should leave room for uncertainty.

2. The importance of a few, simple prompts. Students will best be able to engage
in an analysis task if they are given a simple framework to guide their learning.

3. The importance of audience. The perceived audience influences the ways in which
students engaged in the analysis tasks. In order for students to engage in meaningful
explanations, they should perceive an authentic audience that requires a more in-depth
discussion than that which is standardly communicated to an instructor.

The first of these insights built on notions of self-efficacy (Bandura, 1997) and authority
(Boaler & Greeno, 2000). When students were asked to assess the correctness of solutions,
they felt as though they did not have the expertise to do so. Yet, when the framing was
shifted to focus on providing useful feedback, students were better able to engage, because
they did not perceive themselves as lacking adequate expertise.

The next major insight was the importance of having a limited number of effective
prompts. When students used the explanation framework, they had too much informa-
tion that they didn’t know how to apply. On the other hand, without a guiding framework
to analyze solutions, students did so in idiosyncratic and largely ineffective ways. Once the
standard form was used, focusing on a limited number of specific prompts, it appeared to
be much more effective for guiding student activity.

The final theoretical insight was the importance of audience for engaging in peer-analysis.
Depending on who students perceive as their audience, they are likely to engage in expla-
nations in very different ways. By actually having students explain to their peers, issues of
audience became immediately apparent as real obstacles that needed to be overcome, rather
than just as the pickiness of their instructor. Furthermore, by having students to explain
to one another, students are afforded powerful opportunities to learn from one another’s
explanations.

In addition to the breakthroughs above, a number of smaller changes were made to the
intervention as well.

1. Opening problems would henceforth be given to students on a piece of paper in order
to facilitate a quick start in class. Giving students a physical piece of paper would also
make it easier to change the self-assessment questions for the end of the class more
easily to survey students about various topics.

2. The self-assessment prompts at the end of each class period would be reduced from 5 to
3. The guiding question would be dropped altogether, as would the explanation prompt
(explain something you learned as though you were explaining it to a classmate). This
would reduce the amount of time spent on the daily self-assessments.

3. Rather than using traffic lights, students would instead use a 0% to 100% scale at the
end of each class period. This would correspond with the idea of a grading scale which
is familiar, so it should be easy to adopt, and it would address the issue of lack of
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choices with 3 colors. Students would no longer need to rate their understanding on
the homework assignments, only each class period.

4. Students would begin engaging with the analysis tasks using the standard tool starting
from the beginning of the semester. This would allow for framing and training related
to these specific prompts. The explanation framework was dropped altogether.

5. The process of analyzing solutions and reflecting upon them needed to become stream-
lined into a regular, predictable activity. Also, this activity should involve a real
audience rather than mostly hypothetical work. As a result, a regularized cycle of
analysis, peer-assisted reflection (PAR), was introduced from the start of the semester.

6. Students would be given regular opportunities for in-class presentations and to present
to one another in smaller groups or pairs. This discussion aspect of mathematical ideas
would be made a regular part of PAR.

All of these changes will be considered in greater detail in the next chapter, as I discuss
the next iteration of the design in detail.
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4 Phase I

4.1 Chapter Overview

The purpose of Phase I was to fully implement the intervention developed during the pilot
study. This would provide opportunities to assess the impact of the intervention on student
learning, and also to further develop theoretical principles to refine the intervention. Phase
I took place in an introductory college calculus course, and the intervention was taught by
a cooperating instructor. As before, I begin with the design as conceived. Next, I analyze
student surveys and exam scores to describe the impact of the experimental intervention. I
follow up with an analysis of the design and implementation, and close with a discussion of
results.

Students in the experimental section performed significantly better than their compari-
son counterparts on the common department exams. Students in the experimental section
performed better on conceptual problems as well as purely procedural problems. These im-
provements were also evidenced by a (marginally significant) 13% improvement in success
rates (A, B, C’s in the course).

Phase I also provided theoretical insights. In terms of design, the peer-analysis form was
modified to focus on communication rather than directly asking about a peer’s reasoning.
The explicit focus on communication facilitated meaningful feedback and analysis. The
importance of adequate training also became evident during Phase I. These insights were
used to improve the final version of the intervention, which was implemented in Phase II.

4.2 Design

The four components of the design were all revisions from the pilot study: (1) reflective
questions, (2) opening problems and self-assessments of learning, (3) peer-assisted reflection,
and (4) opportunities for student explanations. Reflective questioning replaced the ineffective
explanation framework from the pilot study to promote reflection related to the process of
problem solving, not just the outcome. Opening problems and reflections looked similar
to those in the pilot study, but the number of prompts was reduced and the logistics of
the process were streamlined. Peer-assisted reflection was an outgrowth of the peer-analysis
and self-reflection activities from the pilot study. Finally, verbal opportunities for student
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presentations were recognized as crucial to ensure that students had an authentic audience
for their explanations. I summarize the characteristics of the phase I design in table 4.1.

Strand of Design Key Features

Reflective Questioning • Questions about reasoning, justification, conceptualization
• Poster at front of class reminds students of questions
• Questions used for reflection and problem solving

Opening Problems
& Self-Assessments

• Handed out on a single piece of paper
• Opening problem pushes students to think about lesson
• Rate understanding, ask two questions, tell something else

Peer-Assisted
Reflection

• Cycle: attempt problem, reflect, peer conference, revise
• Some training opportunities through sample work
• Parallel self-reflection and peer-feedback forms

Student Explanations • Written explanations, class discussions, PAR conferences
• Regular problem solving in small groups
• Regular student presentations (especially opening problems)

Table 4.1: Phase I Design Summary

4.2.1 Reflective Questioning

Reflective questions were intended to move students away from simply doing mathematics
(e.g., plug and chug) to reflect on the meaning of what they are doing (cf. Schoenfeld, 1985).
Students can use reflective questions both as a tool to facilitate problem solving and to
probe their own understanding. The underlying message was that if you can’t answer these
questions, your understanding is not as deep as you might think. There were three basic
questions:

• Why would you. . . ?
• Why can you. . . ?
• What does it mean that. . . ?

These questions are exemplars of categories of questions (see appendix A for the full
list of questions). Through metacognitive modeling, the instructor demonstrates how to use
these questions to the students. By repeatedly asking these questions of the class, students
were intended to integrate them into their regular practice, just as other interventions that
promote metacognitive development through social practice (cf. Palinscar & Brown, 1984;
Schoenfeld, 1985; White et al., 2009). The use of a small number of questions was intentional,
to make such reflective practice easier for students to internalize.



CHAPTER 4. PHASE I 31

4.2.2 Opening Problems and Self-Assessments of Learning

Students spent five minutes at the beginning of each class working independently on the
opening problem. The opening problem was provided on a double-sided sheet of paper with
the self-assessment questions on the back, so that students could begin to work immediately
upon entering class. The three self-assessment questions asked students to rate their un-
derstanding of the lesson from 0% to 100%, ask two questions, and tell something else of
importance (see appendix D).

Self-assessments allowed students to ask questions that they would otherwise not have
time to ask or not feel comfortable asking. This helped the instructor practice formative
assessment by regularly responding to student difficulties. Also, practice articulating one’s
uncertainties was meant to help students learn to better self-reflect and become independent
learners who could recognize and remedy their own struggles. By rating a 0 to 100% value
for each session, students would have a better idea of what to study for exams.

4.2.3 Peer-Assisted Reflection

Peer-assisted reflection (PAR) took place on a weekly basis, providing opportunities to ap-
ply the standard form developed in the pilot study on a special PAR homework problem.
Students: (1) completed the PAR problem (individually), (2) self-reflected on their under-
standing, (3) traded with a peer and gave peer-feedback during class, and (4) revised and
turned in a final solution. When students traded work with a peer, they spent about 5
minutes filling out peer-feedback forms silently, and then about 5 more minutes to discuss
their feedback and the problem more generally. Students were forced to first analyze their
partner’s work before their discussion to make sure that students focused on one another’s
reasoning, not just the problem more generally. The activity was designed to help students
internalize insights from peer-analysis for improved self-reflection (cf. Black et al., 2003).
The self-reflection form, peer-feedback form, and tasks can be found in the appendices (B,
C, and G).

Students practiced explanation; gave, received, and utilized feedback; and practiced an-
alyzing others’ work. PAR feedback was timely (before an assignment was due; cf. Shute,
2008) and the activity structure (submission of both a initial and final solution) supported
the closure of the feedback cycle (Sadler, 1989). Repeated practice analyzing a variety of
examples is crucial to transition from external feedback to self monitoring (ibid). Through
the use of hypothetical work, students were trained to meaningfully engage in PAR. PAR
positioned students as authors of mathematics (in solving nontrivial problems) and as con-
tributors to the work of others through peer-feedback (Engle, 2011), to promote positive
mathematics identities (Boaler & Greeno, 2000). Because students were not asked to judge
one another’s work, the PAR design addressed the expert barrier discovered in the pilot
study (Reinholz, 2013a).

PAR tasks were inspired or modified from a number of sources: the Shell Centre, the
Mathematics Workshop Problem Database, Calculus Problems for a New Century, and ex-
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isting homework problems from the course. Modifications provided more opportunities for
explanations and multiple approaches (e.g., solution paths, generation of examples). The
PAR tasks can be found in appendix G.1 PAR tasks were numbered based on when they
were assigned (i.e., PAR1 was assigned during the first week of class (due the second), PAR2
was assigned the second week of class (due the third), and so on).

4.2.4 Student Explanations

Students frequently explained their ideas both verbally and in written work. In order to
provide an authentic audience (evidenced as important in the pilot study), students regu-
larly explained their work at the board and through the PAR activity structure. Finally,
students were given regular opportunities to collaborate with one another on problems dur-
ing class. Even office hours (outside of class) focused on students working out the problems
and explaining them to one another rather than teacher exposition.

4.3 Method

4.3.1 Participants

Phase I (fall 2012) took place in a university-level introductory calculus course targeted at
students majoring in engineering and the physical sciences. The course met four days a
week for 50 minutes at a time. About 300-500 students register each semester, participating
in about 10 parallel sections. Most sections have a class size of 30-40, but there are also
a few large sections with 50-100 students. The intervention was implemented in a single
experimental section, and three comparison sections were observed to provide a baseline for
standard instructional practices. I will use pseudonyms to refer to the instructors of the
various sections.

For phase I, the experimental instructor, Michelle, was a PhD in mathematics education,
with nearly 10 years of teaching experience. Michelle also taught one of the comparison
sections. The other two comparison sections were taught by a full-time instructor with
over a decade of experience teaching mathematics (Heather) and an advanced PhD student
in mathematics who was graduating that semester (Logan). All instructors had taught the
course a number of times before. As a researcher I conducted all observations, interviews, and
collected samples of student work. Homework assignments were graded by undergraduate
graders, except for the PAR assignments, which I graded personally with the assistance of a
trained grader. Exam grading was performed by the group of instructors for the course, as
well as a handful of undergraduate graders (for a total of approximately 10-12 graders for
each exam).

1I provide the prompts for the PAR tasks during Phase II; changes in tasks between phases I and II were
minor, except for the second and eighth PAR problems, which were redesigned for phase II. Also, phase II
introduced extension questions as part of the tasks.
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4.3.2 Data Collection

I collected data in one experimental section and three comparison sections (the four sections
in the study). The exam scores from the remaining sections were used to compare exam
scores to the department average. In the four observed sections I scanned students’ exams,
performed video observations, and offered a mathematics belief survey for extra credit. In the
experimental section, I also scanned students’ PAR assignments and daily self-assessments of
learning, and made audio records of students’ conversations during peer-conferences. Because
instructors in each section were free to choose their own homework problems (from a provided
pool of problems), homework was not included as a part of the data collection. A summary
of the data collected is given in table 4.2. These are the numbers for students who remained
in the course after the W-drop date,2 so the original enrollments were higher.

Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total

Instructor Michelle Michelle Heather Logan - -
Students 56 18 38 67 222 401
Participants 53 17 29 54 - 163
Pre-survey 48 14 29 41 - 132
Post-survey 44 12 29 48 - 133
Video Obs. 45 6 6 6 - 63
Interviews 14 - - - - 14
PAR Conf. 66 - - - - 66

Table 4.2: Phase I Data Collection Summary

4.3.2.1 Exams

In this coordinated course, all students completed three common midterm exams and one
common final. Therefore, I calculated the department average scores in addition to the
observed sections.

4.3.2.2 Surveys

I administered identical mathematics beliefs pre- and post-surveys using Qualtrics. If stu-
dents completed the survey or an optional homework assignment they would receive extra
credit. The surveys consisted of seven open response items and 18 quantitative items from
the Modified Indiana Mathematics Beliefs System (MIMBS; see appendix E),3 which had

2If students withdrew from the class before this date, they would receive a W on their transcript, which
does not influence their GPA.

3To ensure consistency with the other belief scales, which focus on positive mathematics beliefs, I reversed
the coding of the nature of mathematics scales. In my scale, items that focused on mathematics as conceptual
were rated positively, and items that focused on mathematics as procedural were reverse coded.
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been used in prior studies of the same student population (Pilgrim, 2010). I used three
constructs from MIMBS: (1) self-efficacy (α = 0.76), (2) nature of mathematics (α = 0.55),
and (3) concepts (α = 0.81). I chose self-efficacy (r = 0.201, p < 0.001) and nature of math-
ematics (r = 0.155, p = 0.001) due to their correlation with the first midterm, a significant
predictor of performance.4 Although the concepts construct was not a significant predictor,
I included it due to theoretical interest.

4.3.2.3 Video Observations

I performed all video observations with two stationary video cameras, one for the teacher, one
for the class. Non-consenting students were assisted to sit out of the range of the cameras.
As a researcher, I attended all class sessions, taking field notes of student behaviors and class
discussions.

4.3.2.4 Interviews

After the second midterm, I interviewed students in the experimental section. The entire
class was solicited for interviews, and all students who agreed were interviewed. Students
were offered no incentives to complete the interview. Interviews took place in a one-on-one
interview setting, with a semi-structured protocol. In appendix F I provide the interview
protocol.5 All students were asked at least the set of questions listed in the protocol; other
follow-up questions were asked as appropriate.

4.3.2.5 PAR and Self-Assessments of Learning

I scanned students’ PAR packets (initial and final solutions, self-reflections, and peer-feedback),
opening problems, and self-assessments (approximately 10,000 pages total). During the first
two weeks I captured peer-conferences with video cameras, but the audio quality was poor,
students were hesitant to be recorded, and it was logistically difficult in a small classroom
with 60 students. Starting with week three I instead captured peer-conferences using less
intrusive handheld audio recorders. I could record up to seven conversations in a full room
of 60 students, with high-quality audio (although gestures were lost).

4.4 Analysis

4.4.1 Survey Results

Student responses to the seven open-ended questions were very short, generally consisting
of less than a single complete sentence. As a result, these responses were not analyzed,

4Self-efficacy was also a significant predictor (r = 0.400, p < 0.001) of final exam score.
5The interview protocol given is from Phase II; it was similar to protocol used in Phase I, but it also

contained some additional questions.
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and I instead focused on the quantitative scales. The scales focused on: (1) students’ self-
confidence, (2) beliefs that mathematics is non-procedural, and (3) beliefs about the value
of concepts in mathematics. I now provide sample questions from each of these scales (the
entire survey can be found in Appendix E):

1. Self-confidence: I feel I can do math problems that take a long time to complete.
2. Mathematics is non-procedural: There is no procedure to solve many math prob-

lems.
3. Concepts: In addition to getting a right answer in mathematics, it is important to

understand why the answer is correct.

All of these beliefs were measured on five-point Likert scales, with a five representing a
high endorsement of the belief, and a one representing low endorsement. Table 4.3 shows
the changes in beliefs in the experimental section. As the table shows, all changes in belief
were not statistically significant in the experimental section.

Belief Pre-survey Post-survey Change Paired t-test (df = 47)

Self-Efficacy 3.75 3.83 0.08 t = 0.8998, p = 0.3728

Nature of Mathematics 3.37 3.43 0.06 t = 0.8804, p = 0.3831

Concepts 4.09 3.98 −0.11 t = −1.4868, p = 0.1437

Table 4.3: Changes in Beliefs in the Experimental Section (On a Five-Point Scale)

Table 4.4 shows the changes in beliefs in the comparison sections. The table shows that
students in the comparison sections decreased in their beliefs about the nature of mathe-
matics; after completing a semester of calculus, they believed that mathematics was more
procedural in nature.

Belief Pre-survey Post-survey Change Paired t-test (df = 107)

Self-Efficacy 3.60 3.70 0.10 t = 1.8311, p = 0.0699

Nature of Mathematics 3.32 3.14 −0.18 t = −2.9870, p = 0.0490*

Concepts 3.95 3.96 0.01 t = 0.1596, p = 0.8735

Table 4.4: Changes in Beliefs in the Observed Comparison Sections (On a Five-Point Scale)

To compare changes across sections, I computed change scores (post-test minus pre-test)
and conducted independent samples t-tests for each belief scale.6 As one would expect

6If either the pre-test or post-test score was missing for a respondent I imputed the mean score for their
section.
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based on Tables 5.3 and 5.4, the differences in mean changes in beliefs (+0.06 vs -0.18) that
mathematics was nonprocedural were significant (t = 2.5045, p = 0.0137). There were no
significant differences for the other scales (self-efficacy: t = 0.1988, p = 0.8429 and concepts:
t = 1.3255, p = 0.1883).

4.4.2 Exam Performance

The guiding principle for exam grading (from the course coordinator) was to score “what
students know” rather than “how well students communicated what they know.” Because
poor communication necessarily obscures students’ ideas, poorly written responses tended
to score lower, even though the quality of the communication was not a part of the scoring.
Nevertheless, responses with highly elaborated reasoning tended to score the same as those
with less elaborated reasoning. Considering the following prompt and two sample responses:

If

∫ 1

0

f(x)dx = 4, then

∫ 1/2

0

f(x)dx = 2. If the statement is true, explain how

you know it’s true. If it is false, give a counterexample.

Now consider the following solutions to the problem (see figure 4.1 and figure 4.2).

Figure 4.1: Exam 3, sample solution 1

Figure 4.2: Exam 3, sample solution 2
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Both solutions provide a similar counterexample, yet the second also provides an expla-
nation why it is a counterexample. Both of these solutions received 4/4 points on the exam,
even though the second was more elaborated. Other problems on the exams were graded
similarly. Keeping this scoring philosophy in mind, I will compare student scores on exams
for the experimental and comparison sections. Before doing so, I explicate the exam design
and scoring in greater depth.

4.4.2.1 Exam Design and Logistics

Common exams were administered in the evenings, approximately every four weeks. The
first three exams covered material from the preceding 3-4 weeks, while the final exam was
comprehensive, with a slight emphasis (approximately 1/3) on topics after the third midterm.
The final exam was weighted as 28.5% of students’ final grades.

Exam writing typically began 11
2

weeks before the actual date of the exam. Each exam
was written by a five-member team, consisting of the course coordinator, Michelle, myself,
and two other instructors for the course (chosen by the course coordinator).7 After a few
members created an initial draft, the course coordinator flagged problems for modification
or removal, suggested new problems to be added, and revised wording for consistency with
prior semesters, the study guides, and textbook. This draft was sent to two other team
members who engaged in individual review. The course coordinator reviewed the comments,
and once again a larger meeting commenced to finalize the exam. In general, the exams were
designed to consist of about 2/3 conceptual problem-solving and explanation problems, and
about 1/3 rote use of skills and procedures.

Elaborated study guides (3-4 pages per exam) guided exam review and design. These
study guides, given to students 2-3 weeks in advance, consisted of a detailed list of the
expectations for conceptual understanding and some examples of potential problems for the
exams. Each exam was reviewed to ensure it covered a breadth of topics on the study guide,
and didn’t cover anything not on the study guide. In addition, students had access to prior
exams from 2-3 semesters prior, which gave them a reasonable idea of the types of problems
they could expect and the format of the exams (even though all exams were created from
scratch).

Exams were graded by the group of all course instructors, the course coordinator, myself,
and a number of undergraduate graders (for an approximate total of 10-12 graders for each
exam). Grading was blind (with exams from all sections mixed together), with each problem
delegated to a single team of graders (typically 2-3 members), to ensure objectivity. Partial
credit was assigned for all problems other than pure computations of limits, differentiation,
and integration. To receive full credit on other problems students needed to show their work
and explain their reasoning.

7The two additional members rotated on each exam, as chosen by the course coordinator. Thus, the
5-member team was different for each exam.
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4.4.2.2 Exam Content

All exams had a similar format (see appendix H for a sample exam). As a result, the exam
problems fit into a simple typology, given in table 4.5.

Problem Type Description

Problem Solving and
Explanations

Non-rote mathematical problems. Over 80% had multiple
parts and required written explanations.

True/False Students must explain why it is true, or provide a counterex-
ample and explain why it is false.

Pure Computation Procedural practice of limits, derivatives, and integrals.
Graded all or nothing.

Miscellaneous Multiple choice, fill-in-the-blank, and curve sketching prob-
lems. No written explanations required.

Table 4.5: Midterm Exam Problem Types

Problems in the first two categories (problem solving and true/false) all required written
explanations, and comprised about 2/3 of each exam. The other types of prompts (pure
computation and miscellaneous) did not require written explanations.8 Thus, even though
communication was not an explicit focus of grading, there were considerable amounts of
explanation included on each exam. On average the midterm exams had nine questions,
mostly multi-part, and the final exams were slightly longer. By percentage of total possible
points, the breakdown of points for each exam is given in table 4.6.

Type Exam 1 Exam 2 Exam 3 Final Exam

Problem Solving 45.9% 49.1% 46.2% 53.3%

True/False 18.3% 15.4% 15.4% 20.0%

Pure Computation 22.9% 19.2% 19.2% 26.7%

Miscellaneous 12.9% 16.3% 19.2% -

Table 4.6: Percentage of exam points by problem type

8The only exception to this occurred on exam 2 during spring 2013, in which a 4-part computation
problem had a single prompt of explanation, which was worth four points. Due to the way test scores were
gathered, it was not possible to disaggregate these points from the remaining computation portion of the
question.
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4.4.2.3 Results

I first analyzed student success rates (number of A,B,C’s in the course vs D,F,W’s). The
experimental section had a success rate of 82% while the comparison sections had a success
rate of 69% (difference of 13%). I ran chi-squared to test for the significance of this effect
(χ2 = 3.4247, df = 1, p = 0.0642), which was marginally significant.

Table 4.7 shows the average exam scores by condition. These scores provide the average
for all of the exams simultaneously, rather than considering each exam separately (i.e., the
experimental section was considered as having 218 exams total: 56 for Exam 1, 56 for Exam
2, 54 for Exam 4, and 52 for the Final Exam). I tested for significant differences in exam
scores across conditions. The results can be found in Table 4.8. The results show that
the experimental section performed significantly better than students in the comparison
section taught by the same instructor. Students in the experimental section also performed
significantly better than students in the comparison sections with different instructors. The
effect sizes are small, according to Cohen (J. Cohen, 1988). Taken together, these results
demonstrate the impact of the PAR intervention.

Mean Exam Score N

Experimental 73.03 218

Comparison (same instructor) 66.84 71

Comparison (all other sections) 67.32 1261

Table 4.7: Average Exam Scores, By Condition (Percentage Out of 100)

Exp. vs. Comp. Independent samples t−test Effect size Sign.

Same Instructor t = 2.0291, df = 99.456, p = 0.04512 d = 0.28 *

All Other Sections t = 4.2018, df = 307.005, p = 3.465 · 10−5 d = 0.31 **

Table 4.8: Statistical Comparisons of Average Exam Scores

Table 4.9 shows statistically significant differences in the exam scores, looking at each
exam individually. The table gives the average exam scores for the experimental section
(row 1, N = 56), the comparison section taught by the experimental instructor (row 2,
N = 18), and the average exam scores for all other sections not included above (row 4, N =
335). Numerically, the experimental section performed consistently better throughout the
semester, with the gap between experimental and comparison sections increasing throughout
the semester. Recall the small sample size of the comparison section with the experimental
instructor, which accounts for the fact that those t-tests were not significant.
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Exam 1 Exam 2 Exam 3 Final Exam

Experimental 70.2% 79.8% 74.4% 67.3%

N = 56 N = 56 N = 54 N = 52

Comparison (same instructor) 66.7% 75.3% 67.9% 56.9%

N = 18 N = 18 N = 18 N = 17

Difference (same instructor) 3.5 4.5 6.6 10.4

t/p-values 0.69 / 0.50 1.03 / 0.31 1.06 / 0.30 1.32 / 0.20

Comparison (all other sections) 67.2% 75.1% 66.3% 60.2%

N = 327 N = 321 N = 311 N = 302

Difference (all other sections) 3.0 4.8* 8.1** 7.1*

t/p-values 1.18 / 0.24 2.20 / 0.03 3.08 / 0.003 2.20 / 0.03

Table 4.9: Phase I, Mean Exam Scores (Significant for p < 0.05*, p < 0.01**)

To test for significant changes in exam scores from the first exam to final exam in each
section, I conducted a repeated measures ANOVA with between-subjects factors. Each of
the four exam scores was treated as a repeated measure of the same outcome variable, and I
compared the outcomes across the three groups (Michelle experimental, Michelle comparison,
and all other comparison sections). The assumption of sphericity was violated (Mauchly’s
W = 0.890, χ2 = 42.574, df = 5, p < 0.001), so the Greenhouse-Geisser correction was
used. There was a significant main effect for time (df = 2.791, F = 43.073, p < 0.001) and
Group (df = 2, F = 3.879, p = 0.022), but interactions between group and time were not
significant (df = 5.581, F = 0.902, p = 0.487). Following up with the post-hoc test Tukey’s
HSD (for Group), Michelle’s experimental section vs. all other comparison sections was
the only significant result (Difference of means = 6.419, SE = 2.32, p = 0.016). Michelle’s
experimental section vs. comparison section was not significant (Difference of means =
6.8, SE = 4.42, p = 0.274). These results are consistent with the t-tests shown in Table 4.9.

Comparing the experimental section to all other sections with a different instructor, the
effect sizes were as follows: d = 0.32 (Exam 2), d = 0.45 (Exam 3), d = 0.32 (Final Exam).
These indicate small to medium effect sizes, according to Cohen (J. Cohen, 1988). Using
the above typology of problem types (see Table 4.5), I disentangle student performance on
different problem types on each exam. Given the focus on explanation and deep conceptual
understanding, one would expect that students in the experimental section would perform
better on these specific problem types. However, given the link between conceptual under-
standing and more robust procedural knowledge, one might also suspect that they would do
better on more rote types of problems as well. See table 4.10 for the results.
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Exam 1 Exam 2 Exam 3 Final Exam

Problem Solving 1.63 2.27 4.08 6.06

t/p-values 0.77 / 0.44 1.09 / 0.28 1.41 / 0.16 1.73 / 0.09

True/False 11.38** 8.28** 7.27* 7.45*

t/p-values 2.94 / 0.004 2.68 / 0.009 2.25 / 0.03 2.33 / 0.02

Pure Computation 1.48 10.47** 19.52** 5.42

t/p-values 0.38 / 0.70 3.11 / 0.003 4.9 / < 10−5 1.57 / 0.12

Miscellaneous 10.31** −0.27 4.21 -

t/p-values 3.53 / 0.0006 -0.08 / 0.94 1.70 / 0.09

Table 4.10: Mean (Percentage) Differences Between Experimental and Comparison (includ-
ing Michelle) by Problem Type (Significant for p < 0.05*, p < 0.01**)

As shown in Table 4.6, different problem types were weighed more heavily than others
in the exam (e.g., many more points were assigned for problem solving as compared to
multiple choice questions). As a result, Table 4.10 shows scores scaled by the total number of
possible points in that problem type category, in order to make comparisons more meaningful.
Thus, a 100 in this table would mean that the experimental section received all possible
points on average, and that the comparison section received 0 points on average. Positive
numbers mean that the experimental section scored higher, while negative numbers mean
the experimental section scored lower. Note that for these analyses I have collapsed all
comparison sections together; due to the small sample size of Michelle’s comparison section,
differences between her two sections were not statistically significant.

Numerically, students in the experimental section virtually scored higher across the board
(including procedural problems). The only exception was miscellaneous problems on exam
2, for which there was a negligible difference in performance. The experimental section
performed statistically significantly better on all exams on the true/false problems. One
would expect that extra practice explaining one’s mathematical ideas and larger exposure
to classmates’ thinking would definitely be supportive of increased understanding in this
area. In particular, the ability to assess the quality of mathematical work might also be
supportive of the ability to assess the quality of (hypothetical) mathematical claims (i.e.,
the hypothetical claim that the conjecture is true or false).

Somewhat surprisingly, students in the experimental section performed significantly bet-
ter on the purely computational problems of the exams, especially on midterms 2 and 3.
Recall that the problems in this category were purely computational, such as: compute
this limit, derivative, or integral, and required no problem-solving. This gives evidence
of a conceptually-oriented intervention providing significant gains for basic skills as well.
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While the experimental section was considerably higher for these computational problems
on midterms 2 and 3, the gains dropped down for the final exam. There were three purely
computation problems on the final exam: one associated with limits, one for derivatives, and
one for integrals. The scores for experimental and comparison sections (as percentages) are
given in table 4.11.

Limits Derivatives Integrals

Experimental 45.13 89.04 63.85

Comparison 49.68 78.34 51.97

Difference −4.55 10.69** 11.86*

t/p-values -0.95 / 0.34 2.84 / 0.005 2.32 / 0.02

Table 4.11: Phase I final exam pure computation problems (percentage out of 100)

The table shows that the experimental section performed quite a bit better on both
the derivative and integral problems (both statistically significant), but actually performed
worse than the comparison section for the limit computations (but the difference was not
significant). There are a number of possible explanations. Looking at the PAR problems
that were assigned, only two of the 14 were related to limits, and neither of the PAR prob-
lems involved limit computation. In that sense, the students didn’t really experience the
intervention in the context of limits. Also, limits took place at the beginning of the semester
before students had much experience engaging with the experimental techniques. It is also
possible that there were systematic differences in the types of review different sections did
at the end of the semester, or perhaps other sections were simply more fluent with limit
computations than the experimental section.

4.4.3 Comparison Sections

To contextualize the activities that took place in the experimental section, I provide a brief
description of the standard practices that were observed in the comparison sections.

4.4.3.1 Michelle

Michelle taught the experimental section (N = 56) and one comparison section. Her com-
parison section was small (N = 18), and met early in the morning. Despite the early time
of day, students generally showed up on time and participated in class activities. At least
half of the students would participate on a given day, and students asked questions and were
willing to go to the board to present material.

The instructor’s teaching style was similar in the experimental and comparison sec-
tions she taught. All activities and lesson plans other than the experimental aspects of
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the intervention (PAR, opening problems, and self-assessments) were used in both sec-
tions. Michelle’s teaching style was fast-paced and consisted of a large number of Initiation-
Response-Evaluation (IRE) style interactions. In the experimental section the use of re-
flective questions sometimes slowed the class down and helped Michelle probe deeper into
students’ thinking.

In addition to IRE interactions, Michelle frequently utilized group work, typically one
or more times a week. In the comparison section students were often slow to get started
with group work, and many times students would work individually and only consult their
group members regarding their answers. As a result, these students may not have benefitted
fully during their group work sessions. In contrast, students in the experimental section
seemed more willing to work together in their groups, perhaps due to the other features of
the experimental classroom. In contrast to the other sections, Michelle presented no formal
proofs to the class, only conceptual explanations; proofs had not appeared on exams for
many years.

4.4.3.2 Heather

Heather’s section (N = 38) met in the early afternoon. In contrast to Michelle’s fast-paced
style, Heather moved more slowly and probed the topics in greater depth. As a result,
Heather was likely to cover fewer examples than Michelle, but more thoroughly. The level
at which the class explored topics generally exceeded the depth required by exams and
homework assignments. Students often asked difficult questions and did so spontaneously
without prompting.

Heather frequently used humor in her class sessions, which sometimes detracted from the
focus of the lessons. A few weeks into the semester I learned that Michelle and Heather
shared many of the same in-class activities, but only those which were not a part of the
experimental intervention. Many of these activities supported the same types of group work
that took place in Michelle’s class. In contrast to Michelle, Heather presented some formal
proofs, but she did not stress their importance to her students.

4.4.3.3 Logan

Logan’s section (N = 67) met in the afternoon after Heather’s section. In contrast to the
other two sections, Logan’s class was almost entirely lecture-driven; there was no use of
partner work or group work. Logan presented with a document camera and projector, which
gave students no opportunities to present to the rest of the class. Lectures were very focused
on mathematical formalisms and nuances of language (e.g., the difference between a theorem
and a law). Most lectures consisted of the instructor introducing the topic and presenting a
number of examples to the class.

Logan did afford some opportunities for student participation, typically in short IRE
sequences. When more open-ended questions were asked, if students did not answer them
quickly, the questions were simplified to make them more direct. Students frequently spent
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time on their phones, and one student in the class even brought a laptop to class to play a
flight simulator.

4.4.4 Implementation of Intervention

4.4.4.1 Reflective Questioning

The researcher and Michelle co-constructed a poster to highlight the three major reflective
questions (see figure 4.3). This physical artifact was intended to remind students to think
of the questions as they solved mathematical problems.

Figure 4.3: Poster with Reflective Questions

Michelle used the poster to reinforce her requests for explanation and justification, but
didn’t use the specific questions. I illustrate this with two examples from a class session on
related rates problems. In the first episode, Michelle used the poster as a means to ask for
further reasoning in a discussion about the relationship between the distance from a wall
and the height up the wall of a moving ladder:

Michelle: All right, so at 12 seconds, and this is going to be useful when we start
building everything. We definitely know that the ladder is 15. What is x gonna be?

Nathan: 10.
Michelle: After 12 seconds?
Nathan: Oh no, 7
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Michelle: How did you get 7, please explain to me your reasoning (Michelle points at
the poster).

Nathan: The ladder is moving in at a rate of 0.25 ft/s, and it’s been moving for 12
seconds, so we’ll move by 12 times 0.25.

Michelle points to the poster to ask the student to explain where they got their answer
from, connecting the need for explanation and the physical presence of the poster. In episode
two, the class was trying to find the rate of change of the volume of a cube with changing
sides:

Michelle: So we’ve got all kinds of information here, let’s talk about what we’re after.
What quantity are we after?

Laura: volume
Michelle: So volume. Just volume?
Nicki: rate of change of volume
Michelle: Now that’s different, so which one is it? Do we want the volume, or rate of

change of volume?
Ed: we want dV/dt.
Michelle: Ah, what indicates, give me reasoning and justification (points to poster),

what indicates in that phrase that we’re after dV/dt?
Ed: how is the volume changing.
Michelle: How is the volume changing. Right there, rate of change. That phrase tells

us that we ultimately want dV/dt.

Once again, Michelle asks for reasoning and justification. Even though she doesn’t use the
specific questions, this type of probing into student thinking was not observed in Michelle’s
comparison section.

The above class session was an exception in terms of frequency of use of the poster;
Michelle rarely used the poster, and by week 8 she had stopped referring to it altogether.
During week 13 (of 15 weeks) Michelle stopped bringing the poster to class, after acknowl-
edging that she wasn’t really using it anymore. She noted even though she wanted to use
it, her teaching style felt ingrained over many years of practice, so she forgot to use it. It is
possible that the mere presence of the poster during most class sessions still had an impact,
but only 2 of the 14 students interviewed referred to the poster this way. An excerpt from
Robert’s interview is given:

Just seeing it every day, it makes you think about why would you do this, and
all of those questions. Like it makes you think through that and for me it really
helps with the explanations of everything. Why, how, all of those questions. It
really helps me come up with accurate explanations and what graders are actually
looking for.
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Some students (6 of 14) noted that the poster was useful when the teacher pointed it out
to them or that the instructor didn’t use the poster often enough. When students did talk
about the poster, many talked about using it mostly when stuck (6 of 14). For instance,
when asked if he used the questions in his own learning, Matt responded:

Big picture, I do think about why am I doing what I’m doing. Especially if I
start to struggle now, I don’t start to scramble and try to find an example or
something someone told me in class. It’s like, okay, why am I doing what I’m
doing.

Jacob had a similar response:

I feel like it’s something where if you don’t know where to start, you should start
with that. When you’re not completely clueless but stumped on something those
are three guidelines you can take to get you in the right direction.

Although student use of the poster wasn’t that high, there weren’t any negative responses
to the poster. It appears that, even weakly integrated, the poster and questions may have
had some positive impact.

4.4.4.2 Opening Problems and Self-Assessments of Learning

Without the need to write down the opening problem, students began working on the opening
problems immediately. The problems reviewed relevant concepts and introduced new ideas to
help students get started thinking about the day’s lesson. Opening problems provided many
opportunities for student presentations, but student explanations were generally limited. I
consider an episode from week 9 to illustrate a typical set of interactions. Students were
given three conceptual true/false questions (explain if true, provide a counterexample if false)
related to the first derivative test and critical points:

1. T/F: If f ′(5) = 0, then there is either a local maximum or local minimum at x = 5.
2. T/F: If f(2) is a local maximum, then f ′(2) = 0.
3. T/F: If f(7) is a local minimum at an interior point of D and f ′(7) is defined, then
f ′(7) = 0.

After a few minutes of silent work, Michelle requested that students come up to the board
to show their work. Although students willingly presented their results to the task, Michelle
limited their opportunities to fully explain their reasoning.

Michelle: What about two? True or false?
Mike: False
Michelle: You got a counterexample or reasoning? Someone come and draw a coun-

terexample.
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Michelle: I can draw examples all day but can you guys?
Mike: Can a local max be an absolute max?
Michelle: Sure it can.
(Mike comes to board to draw)

Mike’s work can be found in figure 4.4. After Mike drew his (correct) graph, Michelle
elaborated his reasoning for him, rather than providing Mike with the opportunity to do it
himself.

Figure 4.4: Mike’s work on the opening problem

Michelle: So you got an endpoint.
Mike: Yes
Michelle: Right! Does it say an interior point? Not in the true/false statement. So we

could be considering 2 could be an endpoint, and still be a local max. What else?
Lucy: It could be a minimum.
Michelle: Well we’re talking about a maximum.
Evan: Since that graph has an endpoint, wouldn’t it be absolute maximum instead of

local?
Michelle: Can’t it be both?
Evan: I dunno, can it?
Michelle: It can, think about it. In a neighborhood around this point (gestures to the

top of the graph) is it the highest point?
Evan: Yes.

This episode was typical of how the opening problems were used. Students frequently
presented to the class, but their responses were often limited to few words.

Students often referenced the opening problem in their self-assessment. Related to the
above class session, a number of students asked what a critical point was. Ideally the
instructor would be able to address this in real time during the class, but it was still important
to know that students were still confused at the end of class. Other students provided
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feedback on the lesson, such as saying “true/false questions help a lot.” A small subset of
students asked irrelevant questions or left the prompt blank.

In interviews students noted that it was difficult to come up with questions, especially
due to time constraints. To address student feedback, Michelle reduced the requirement
of asking two questions about the lesson to only asking one question. Students were also
provided with an alternative to asking questions: they could also generate a conceptual exam-
style question if they felt like they had no questions to ask. Although it wasn’t analyzed
in depth, students generally rated their understanding levels as very high (80% or better),
even when they asked questions on their self-assessments that indicated major conceptual
misunderstandings. Nevertheless, students still may have found their relative ratings of
understanding to be helpful.

Throughout the semester, Michelle frequently spoke about the usefulness of daily self-
assessments outside of class, such as how they let her “know what’s going on with her
students on a day-to-day basis.” Almost every few days Michelle would make notes about
what she was noticing in the self-assessments, whether it was that “students were leading into
the second derivative,” that they have been asking “less-content related questions,” or that
they were struggling with a particular concept. Perhaps most telling, Michelle continued to
integrate opening problems and daily assessments into her teaching practice in subsequent
semesters.

4.4.4.3 Peer-Assisted Reflection

PAR Conversations

I provide an example from PAR1 (found in appendix G.1) to illustrate the opportunities
PAR discussions afforded for students to engage in mathematical thinking. PAR1 was con-
cerned with the length and radius of tape on the spools of a cassette tape as it plays. Aaron
and Nancy’s conversation illustrates how students worked out their ideas in discussion. The
students were trying to determine how the radius of the spool affected the overall radius of
the tape on the spool:

Nancy: I’m not sure, because as I asked my adviser, err, tutor, he says it’s 2.5 cen-
timeters, that’s for the center, including the spool itself, it’s not just the tape. And
the spool itself is never gonna decrease.

Nancy: So if you plot points like this, you’re never gonna be at 0, when your tape
is going to, it’s not going to be anymore. So you almost have to change it to 1/2
centimeters, not 2.5 centimeters.

Aaron: Yeah, that’s what I was thinking about, but, I was working with some of the
kids I was living with, and um, they said they would have done it the exact same
way with the 2.5 and the 1. Saying, once it gets to 1cm then the tape is over. It’s
like, so you don’t want it to be exactly to 0.

Nancy: So it’s acceptable, but not necessarily specific, in a sense.
Aaron: When it’s going to zero, it’s really going to 1.
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Both students used their individual experiences (working with a tutor or roommates)
to support their ideas in discussion; PAR promoted deeper conversations because students
had already spent time working on the problems before discussing them together. During
the first few assignments students mostly discussed the mathematics, but over time students
became more direct in their feedback. Consider an example from PAR5:

Sam: On number four, you said that this, like f(a + h) − f(a) over h is the secant
line. It would be the slope of the secant line. Cause that would be your average
rate of change. And then. . . on. . . this one. You were pretty close except the slope
of a secant line is through two points and you’re trying to evaluate it at just that
single point, so it can’t really have a secant line at that one point.

Sam gives very direct feedback to her partner about specifics of mathematical language,
which demonstrates her increasing proficiency in giving feedback.

Students also used PAR to compare their solutions, as in this excerpt from PAR5:

Amanda: OK. What did you think about ’c’? Cause you had something different for
’c’.

Joe: Let’s see. What was the question? Explain why a limit is needed to find the slope
of a tangent line? Um. . .

Amanda: Cause you wrote the limit needed to be this. And that makes sense, too. So,
Joe: Well both are kind of the same thing because you’re just saying if you plug in

zero for the h then it would be like anything, like, I dunno. I can’t really remember
my thought process I just know that the limit from the example we used in class,
where it was absolute value of x over x, that the limit didn’t exist.

This is a small excerpt from a larger conversation. Because the students noticed discrep-
ancies between their two solutions they were clued into an important area for them both to
focus on. Students frequently made such comparisons.

Most PAR tasks worked well, but some had significant flaws. For instance, PAR8 was
a curve sketching problem, which resulted in very shallow conversations (so the task was
replaced for phase II). PAR2, related to various hypothetical definitions of a limit (with
situations such as limx→a f(x) = L, f(a) = L, or limx→a f(x) 6= L), was so confusing that
most students could not figure out how to even answer the question. Consider the following
excerpt:

Steve: Okay, so what’s the question?
Patrick: I don’t understand the first question, because is seems like you come up with

some random L, literally, and you hope to God your limit on the function you came
up with isn’t the L you came up with.

Steve: Right, because that’s what I felt it was like. Just pick something random and
not close.

. . .
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Patrick: I’m not sure how I got number 2. It was an explanation of how L and a are
not related, but. . .

Steve: f(x) approaches something, but it doesn’t approach L. I don’t know, I was
confused.

. . .
Patrick: but if for this one, if it’s the exact same problem, would it still work for

question 2?
Steve: pretty much.

Both of these students were confused about the problem, but the PAR conversation did
not help them resolve their confusion. This task was significantly reworked during Phase II,
which resulted in less student confusion.

Other tasks received only minor revisions, such as PAR7. PAR7 was a related rates
problem about a cone with increasing radius and decreasing height. Students were tasked
to find the rate of change of the volume, and this task focused students solely on procedural
conversations (see appendix G9). Nevertheless, a few students made interesting insights into
the problem situation, such as the fact that with a decreasing height the volume of the cone
would eventually have to go 0, no matter what the starting conditions were. These insights
were used to improve the task for phase II.

A small subset of students had very short and superficial conversations. Consider the
following discussion between Alex and Nicole, related to PAR10 (approximating the area
underneath one’s hand using simpler shapes).

Alex: Ridiculous.
Nicole: I think you did it right except for the last 3 parts.
Alex: Yeah.
Nicole: Do you know how to do it, just using triangles?
Alex: Yeah, I got that.
Nicole: You gotta add the ones underneath, and subtract the other ones.
Alex: Yep.
Nicole: It looks pretty good, and then for more accuracy, you could do some more

triangles.
Alex: Even more triangles.
Nicole: And more triangles!
Alex: I said yours is awesome, and, yeah.
Nicole: Thanks.
Alex: Uh huh.

This was the extent of the students’ conversation, which lasted less than a minute. Only a
few students had such conversations, which occurred especially when these students repeat-
edly worked with their friends in the class. Michelle had no formalized method for making

9The version of PAR7 using during phase I only consisted of parts (a)-(c), which meant that there was
essentially no explanation required of students.
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students work with other students, so this small subset of students continually worked to-
gether and had superficial conversations. This observation prompted a modification to the
intervention; during Phase II students were told to sit randomly as they entered the class on
PAR day. This eliminated all superficial conversations of this type. I also added extension
questions, which could be used to push students to continue thinking deeper when they felt
like they were done.

Self-Reflection and Peer-Feedback Forms

Over time, flaws in the initial design became evident. In particular, the big picture prompt
(what was the approach to solving the problem?) didn’t support either self-reflection or peer-
feedback. Consider Evan’s response on PAR1,

Use prior knowledge and common sense to determine the nature of the tape
recorder in order to sketch graphs loosely depicting this.

or Sam’s,

Understanding the situation and visualizing the graphs.

These responses were typical, containing little to no information about the student’s
thinking. Such reflections are neither helpful for understanding the student’s reasoning (from
the perspective of a teacher) nor for generalizing from it (from the perspective of the student).
To address this design flaw, the form was modified to ask students about communication
rather than the approach itself. When students focused on communication, they ultimately
analyzed one another’s reasoning anyway. Students also struggled to determine whether or
not they thought a problem was solved correctly. Accordingly, the prompts were changed to
instead focus more explicitly on justification, to help students think about how to determine
if a problem was solved correctly or not (see appendix C, phase I). Parallel changes were
made to the self-reflection forms, giving students a number of check boxes to self-reflect (see
appendix B, phase I).

In the days following these changes, a number of students came up to me and said that
the new version of the form made much more sense and was easier to use. Although there was
a definite improvement with the focus on communication, students still struggled to justify
their answers. Typical responses to what evidence was provided were as follows (Cynthia):

rational logic used when analyzing the graph that correspond to key calculus
definitions

or (Mike):

Most evidence does make sense but should probably be elaborated further.

These responses highlight that students did not a strong sense of how to justify their
solutions.
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Training Students

On the second day of class, the instructor walked through a sample analysis exercise with
the students. Students were given the prompt:

Train A leaves Fort Collins station traveling at 50 miles an hour on Track X.
Three hours later, Train B leaves the station traveling 60 miles an hour on Track
Y, which is parallel to Track X. How long does it take Train B to catch up with
Train A?

This classic algebra problem affords many solution paths, so it is likely that students
would solve it in a number of ways. After students worked through the problem individually,
they were given a few minutes to complete a self-reflection, just as they would with PAR.
Then, Michelle gave the students two sample solutions, and the students worked in pairs
to fill out the peer-feedback forms as if they were responding to the given student. After
working in pairs the class came back together to discuss what they had come up with, and
Michelle offered her own advice as well.

Throughout the semester students had other opportunities to discuss the analysis of
sample work, such as in the opening problems. Other times special activities were developed
in response to student difficulties on PAR problems. For instance, after PAR5 students were
given 3 sample responses to different prompts and asked specific questions to help them
analyze the work and areas that might be lacking (for instance, poor use of pronouns).
These activities were used sporadically. Although sample work could be collected from the
class, it was difficult to collect samples and develop an activity that could be used in a timely
manner. As a result, a large library of samples of common misconceptions, and work that
highlighted other common mistakes, was gathered from phase I for use during phase II.

4.4.4.4 Student Explanations

Students had opportunities to present work during class, but their opportunities for explana-
tion were often limited. The repeated use of quick IRE sequences during discussions usually
limited student responses to fragments of sentences. Nevertheless, students had frequent
opportunities to explain mathematics through group work and during PAR conversations.

4.5 Discussion

Quantitative results supported the experimental intervention. Students in the experimental
section performed significantly better on the exams than the comparison section with the
same instructor (average scores of 73.03% vs. 66.84%) and the comparison of all sections
with different instructors (average scores of 73.03% vs. 67.32%). The experimental section
also performed numerically better on nearly all aspects of the common exams. For the
final three exams, the differences in overall exam scores were statistically significant. Most
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impressively, students made large gains on purely procedural skills, even though they were
not an explicit target of the intervention. In contrast to students in the comparison section
who developed unproductive beliefs that mathematics is procedural, the surveys showed no
belief changes in the experimental section.

Michelle was positive about the intervention and continued to incorporate it into her
teaching in subsequent semesters. The iterative nature of the PAR cycle supported students
to go to office hours, to revise their work based on feedback, and to revise their work based
on thinking about the problem more than once before turning in a final solution. Opening
problems and self-assessments were generally successful. As Brad noted, the opening prob-
lems helped him get into “math mode” at the beginning of the lesson. Other students made
similar remarks. Opening problems also afforded opportunities for student presentations.
Daily self-assessments provided a wealth of information for the instructor, even though stu-
dents often wrote overly favorable estimates of understanding and struggled to construct
questions.

4.5.1 Revisions for Theory and Implementation

The design evolved considerably over the semester. The key lesson learned seemed to be
as follows: focusing on communication helped students focus on one another’s reasoning.
Students struggled to articulate one another’s reasoning based on the initial analysis forms,
but this was remedied with a focus on communication. This forced students to focus on what
it is that makes thinking visible, and ultimately it helped them better think about thinking.
Simultaneously, it improved their communication skills. In addition to this major insight, a
number of smaller changes were made to the intervention for Phase II.

1. To address the difficulties of training students to analyze solutions, a large corpus of
sample student work was collected. This would serve as the basis for training exercises
for phase II, which would occur on a weekly basis (or more frequently).

2. To address student difficulties with self-assessment (coming up with an accurate per-
centage), I introduced a two-column format into the opening problems. This would
allow students to compare their initial and final solutions. Students were encouraged
to do this multiple times during each lesson, so that they could assess how well they
understood the material.

3. Given that a subset of students did not fully engage the PAR activity, I designed
extension questions for each PAR assignment. The intent was that these would give
students something to do if they finished early, so that all students would be engaged
the entire time. Also, all students were sat randomly during PAR days so they worked
with a large variety of partners.

4. The reflective questions and the categories of reflective questioning were modified
slightly in ways that seemed more natural and well-suited for the problems.

5. PAR2 and PAR8 were replaced, and minor adjustments to the wording or the addition
of explanations prompts were added to some of the problems.



CHAPTER 4. PHASE I 54

6. Other minor changes were made to the self-reflection and peer-feedback forms, intended
to simplify reflection and analysis.

Even though experimental instructor was able to effectively implement the peer-assisted
reflection and daily self-assessment of learning activities, she struggled to engage in the use
of reflective questioning during class sessions. Accordingly, I decided to teach an experimen-
tal section for phase II, in order to research the impact of the full implementation of the
experimental intervention. Phase II was intended to replicate the findings of Phase I, and
also determine the impact of revisions and full implementation.



55

5 Phase II

5.1 Chapter Overview

The purpose of Phase II was to extend and replicate the findings from Phase I. My goals were
to assess if the experimental students still performed significantly better than their compar-
ison student counterparts, and also what impact revisions to the design had on improving
student performance. Phase II once again took place in an introductory college calculus
course. As before, I begin with the design as conceived. Next, I analyze student surveys
and exam scores to describe the impact of the experimental intervention. I follow up with
an analysis of the design and implementation, and close with a discussion of results.

Students in the phase II experimental section performed significantly better than com-
parison sections on the common exams, with differences even larger than in phase I. Once
again, these improvements were evident on both conceptual and procedural exam problems.
These improvements were also evidenced by a significant 23% improvement in success rates
(A, B, C’s in the course). These improvements in performance help highlight the importance
of design revisions, particularly regular training in analyzing solutions.

5.2 Design

The design consisted of revised versions of the same four strands as in phase I: (1) reflective
questions, (2) opening problems and self-assessments of learning, (3) peer-assisted reflection,
and (4) opportunities for student explanations. I summarize the characteristics of the phase
II design in table 5.1.

5.2.1 Reflective Questioning

As in phase I, reflective questions were used to help students think more deeply about math-
ematics. In particular, students were intended to use reflective questions both in problem
solving and in analyzing and reflecting on their own work. Through metacognitive modeling,
the instructor was to demonstrate practices that the students would ultimately incorporate
into their own thinking. Once again a poster was used as a classroom aid to make students
more aware of these questions and categories. Given that Michelle struggled to utilize re-
flective questioning in phase I, I adjusted the three categories of questions to try to make
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Strand of Design Key Features

Reflective Questioning • Questions about approach, justification, and meaning
• Poster at front of class reminds students of questions
• Questions used for reflection and problem solving

Opening Problems
& Self-Assessments

• Handed out on a single piece of paper
• Opening problem pushes students to think about lesson
• Rate % understanding, ask one question, tell something else

Peer-Assisted
Reflection

• Cycle: attempt problem, reflect, peer conference, revise
• Regular training through darts activity
• Random seating to ensure different partners
• Four categories for reflection and feedback

Student Explanations • Written explanations, class discussions, PAR conferences
• Regular group problem solving at chalkboards
• Regular student presentations (especially opening problems)

Table 5.1: Phase II Design Summary

them more natural to include in classroom discussions. The new categories were: approach,
justification, and meaning. Approach extends beyond what one does to why one does it.
Justification relates to how one knows a solution is right. Meaning relates to how one makes
sense of math. The questions associated with these categories can be found in appendix A.3.

5.2.2 Opening Problems and Self-Assessments of Learning

As in phase I, students were handed a piece of paper containing the opening problem and
self-assessment questions for the day. Students were given 5 minutes at the beginning of class
to work on the opening problem, and a few minutes at the end of class to answer the three
questions: rate your understanding of the lesson from 0% to 100%, ask a question about
mathematics, and (optional) tell me something else I should know. Unlike during phase I,
students were only required to ask a single question.

To help students self-assess, I introduced a two-column format for opening problems.
The left column was for an initial solution (before class discussion), and the right column
provided room for corrections after discussion, allowing for a direct comparison of the solu-
tions. Students were strongly encouraged to use this format during class. The sum of one’s
performance on these checkpoints would provide a grounded rationale for self-assessment.
For instance, a student who completed one of four problems without assistance would mark
a low understanding (less than 50%).
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5.2.3 Peer-Assisted Reflection

Peer-Assisted Reflection (PAR) followed a similar format to phase I. Once again, students:
(1) completed the PAR problem, (2) self-reflected, (3) engaged in peer-conferences, and (4)
revised and turned in a final solution. Students had about 10 minutes for peer-conferences: 5
for silent analysis, and 5 for discussion. Once again, PAR problems were completely weekly.

In phase II, self-reflection forms consisted of 6 prompts, grouped into four categories:
(1) completeness, organization, and labeling, (2) explanations, (3) use of language, and (4)
justification. These four categories were intended to guide self-reflection and peer-analysis,
by creating important categories to focus on. The peer-feedback form was also streamlined.
Prompts were simplified (and examples were provided) so that students would only have a
single prompt to answer. The phase I prompt:

Was their solution communicate clearly? (Give at least one suggestion to improve
the presentation of the solution.)

was changed to

Give at least one suggestion to improve the presentation of the solution,

This eliminated meaningless responses such as “yes” in the peer-feedback form.
I also added extension questions to each PAR, so that interested students could dig deeper

into the mathematics. Pedagogically, extension questions made it easier to hold students
accountable during PAR. Students who finished early or didn’t appear to be working could
be pressed to answer the extension questions. Additionally, two of the PAR problems (2 and
8) were replaced and minor changes to the wording and additional explanation prompts were
added to other problems. These were added in places that they could be used to support
students to make mathematical connections.

PAR training was made systematic in phase II, through a weekly activity called darts.
Each Wednesday, the opening problem presented students with three sample explanations to
the PAR problem they just turned in: the “bullseye” (correct explanation), “on the board”
(a mostly correct idea that is communicated poorly or has a minor error), and “off the mark”
(incorrect) solutions. Students had to classify the explanations, stating how to improve the
incorrect solutions, which led into a class discussion. Through darts, students could calibrate
their analysis to an expert perspective and see different ways of looking at a large corpus of
exemplars.

5.2.4 Student Explanations

As in phase I, students regularly presented mathematics at the board. Additionally, the
classroom during phase II had a dozen large chalk boards on the wall that were used for
collaborative group work. This allowed for about 8-10 groups of 4 students each to work
collaboratively on problems. Work was visible to all students but only one student could
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write at a time, which supported meaningful group engagement. This was in contrast to
phase I in which students were limited to group work using pencil and paper.

5.3 Method

5.3.1 Participants

Phase II once again had a single experimental section with observations in 3 comparison
sections (in the same course as phase I). I taught the experimental section, to better ensure
full implementation of the design during this phase. Two of three comparison sections were
taught by (unobserved) graduate student instructors from phase I. The third instructor
was a post-doctoral researcher working on mathematics education projects. To maintain
objectivity, a research assistant performed all observations and interviews for phase II. The
grading procedure was the same as in phase I, with the research assistant providing assistance
as a grader for weekly assignments.

5.3.2 Data Collection

There were 9 parallel sections of calculus. Most data collection procedures were the same,
except for a few minor changes: (1) one camera was used rather than two to reduce logistical
difficulties, (2) a research assistant conducted interviews and performed video observations,
and (3) students were offered one extra credit homework assignment as incentive to give an
interview. Table 5.2 summarizes the data collected (reported after the W-drop date).

Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total
Instructor Dan Sam Tom Bashir - -
Students 38 37 31 28 205 339
Participants 38 34 27 24 - 119
Pre-survey 32 23 18 18 - 91
Post-survey 32 19 20 14 - 85
Video Obs. 54 6 5 5 - 75
Interviews 22 - - - - 22
PAR Conf. 89 - - - - 89

Table 5.2: Phase II Data Collection Summary

Additionally, Tom included the PAR problems as a part of his regular homework assign-
ments, to provide a point of comparison for student growth.
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5.4 Analysis

5.4.1 Academic Background

I collected data on students’ academic backgrounds to verify that the comparison sections
were similar to the experimental section on relevant background characteristics. There were
no significant differences in comprehensive ACT scores (t = 1.2986, df = 64.6, p = 0.1987),
but the average scores were numerically slightly lower in the experimental section (mean
of 25.45 vs 26.3). Similarly, there no significant differences in high school GPA (t =
1.2685, df = 54.773, p = 0.21), but the average scores were numerically slightly lower in
the experimental section (mean of 3.43 vs 3.56). There were no significant differences in
gender (χ2 = 0.0019, df = 1, p = 0.9649) or race (comparing White students and students of
color; χ2 = 1.256, df = 1, p = 0.26) between the experimental and comparison sections. Of
the students who responded to these surveys, there were 87 males and 21 females; in terms
of race, there were 18 students of color, and 90 White students.

5.4.2 Survey Results

As in Phase I, student responses to the seven open-ended questions were very short, generally
consisting of less than a single complete sentence. As a result, these responses were not
analyzed, and I instead focused on the quantitative scales. The scales focused on: (1)
students’ self-confidence, (2) beliefs that mathematics is non-procedural, and (3) beliefs
about the value of concepts in mathematics. I now provide sample questions from each of
these scales (the entire survey can be found in Appendix E):

1. Self-confidence: I feel I can do math problems that take a long time to complete.
2. Mathematics is non-procedural: There is no procedure to solve many math prob-

lems.
3. Concepts: In addition to getting a right answer in mathematics, it is important to

understand why the answer is correct.

All of these beliefs were measured on five-point Likert scales, with a five representing a
high endorsement of the belief, and a one representing low endorsement. Table 5.3 shows the
changes in beliefs in the experimental section. The table shows a significant improvement in
beliefs related to self-efficacy and the non-procedural nature of mathematics.

Table 5.4 shows the changes in beliefs in the comparison sections. Like the experimental
section, there was a significant improvement in beliefs regarding the procedural nature of
mathematics.

To compare changes across conditions, I computed change scores (post-test minus pre-
test) and conducted independent samples t-tests for each belief scale. There were no signif-
icant differences (self-efficacy: t = 1.292, p = 0.2, nature of mathematics: t = −0.0006, p =
0.9953, and concepts: t = 1.3094, p = 0.194).
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Belief Pre-survey Post-survey Change Paired t-test (df = 33)

Self-Efficacy 3.52 3.74 0.22 t = 2.4731, p = 0.0187*

Nature of Mathematics 3.02 3.25 0.23 t = 2.7167, p = 0.0104**

Concepts 4.04 4.10 0.06 t = 0.8118, p = 0.4227

Table 5.3: Changes in Beliefs in the Experimental Section (On a Five-Point Scale)

Belief Pre-survey Post-survey Change Paired t-test (df = 73)

Self-Efficacy 3.67 3.74 0.07 t = 1.0441, p = 0.2999

Nature of Mathematics 3.00 3.24 0.24 t = 4.2712, p < 0.0001**

Concepts 4.04 3.96 −0.08 t = 1.0614, p = 0.2920

Table 5.4: Changes in Beliefs in the Comparison Sections (On a Five-Point Scale)

5.4.3 Exam Performance

Once again, students in the experimental section showed considerable improvement. The
experimental success rate (A,B,C vs. D,F,W) was 79% while the comparison success rate
was only 56%. This difference in success rates (23%) was statistically significant (χ2 =
6.3529, df = 1, p = 0.0117), building on phase I’s result, which was marginally significant
(Phase I’s difference in success rates was 13%).

Table 5.5 shows the average exam scores by condition. These scores provide the average
for all of the exams simultaneously, rather than considering each exam separately (i.e., the
experimental section was considered as having 139 exams total: 38 for Exam 1, 35 for Exam
2, 34 for Exam 4, and 32 for the Final Exam). I tested for significant differences in exam
scores across conditions. Student in the experimental section performed significantly better
than those in the comparison sections (t = 6.5085, df = 184.817, p = 6.935 · 10−10). The
effect size was d = 0.59, which is medium, according to Cohen (J. Cohen, 1988).

Mean Exam Score N

Experimental 75.20 139

Comparison 64.17 1124

Table 5.5: Average Exam Scores, By Condition (Percentage Out of 100)

These differences are also evident in individual exam scores (see table 5.6). I include
phase I results to facilitate comparison between phases I and II.
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Exam 1 Exam 2 Exam 3 Final Exam

Experimental 68.4% 81.7% 75.7% 75.7%

N = 38 N = 35 N = 34 N = 32

Comparison 62.2% 66.5% 61.5% 65.9%

N = 303 N = 294 N = 273 N = 254

Difference 6.2 15.2** 14.2** 9.8**

t/p-values 1.71 / 0.09 5.00 / < 10−5 4.45 / < 10−4 2.80 / 0.007

Difference (phase I) 3.0 4.8* 8.1** 7.1*

t/p-values 1.18 / 0.24 2.20 / 0.03 3.08 / 0.003 2.20 / 0.03

Table 5.6: Phase II, Mean Exam Scores. (significant for p < 0.05*, p < 0.01**)

Comparing the experimental section to the comparison sections for phase II, effect sizes
were as follows: d = 0.86 (Exam 2), d = 0.77 (Exam 3), and d = 0.48 (Final Exam). These
indicate large effect sizes for exams 2 and 3, and a medium effect size for the final exam,
according to Cohen (J. Cohen, 1988). To test for significant changes in exam scores from
the first exam to final exam in each section, I conducted a repeated measures ANOVA with
between-subjects factors. Each of the four exam scores was treated as a repeated measure
of the same outcome variable, and I compared the outcomes across the two groups. The
assumption of sphericity was violated (Mauchly’s W = 0.915, χ2 = 25.171, df = 5, p <
0.001), so the Greenhouse-Geisser correction was used. There was a significant main effect
for time (df = 2.841, F = 8.722, p < 0.001) and group (df = 1, F = 11.182, p = 0.001), but
interactions between group and time were not significant (df = 2.841, F = 1.666, p = 0.176).
These results are consistent with the t-tests shown in Table 5.6.

Once again I analyzed exam scores by problem type (see table 5.7). The main story is
unchanged; the experimental section mostly did better across the board. However, there
are also noticeable differences. Drastic problem solving gains were present in phase II but
not phase I, which may be attributable to the effective problem sessions and PAR training
during phase II.

The results for computational problems were nearly replicated; students in the experimen-
tal section performed significantly better on midterms 2 and 3. Once again this prompted an
in-depth analysis of the final exam (see table 5.8). Once again the experimental section did
slightly worse (numerically) on the limit computation problems, which could be attributed to
a variety of reasons (e.g., few PAR problems on limits, limits occurring early in the semester).
Students performed considerably better than their comparison counterparts on the true/false
explanation/counterexample questions, although the results were not statistically significant
during phase II.
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Exam 1 Exam 2 Exam 3 Final Exam

Problem Solving 7.65* 11.16** 16.11** 11.27**

t/p-values 2.27 / 0.03 2.74 / 0.009 5.58 / < 10−5 3.89 / 0.0003

True/False 6.15 6.50 9.6 4.82

t/p-values 1.40 / 0.16 1.84 / 0.07 1.52 / 0.14 0.85 / 0.40

Pure Computation −0.21 11.53** 14.33** 4.83

t/p-values -0.05 / 0.95 3.99 / 0.0002 2.88 / 0.007 1.19 / 0.24

Miscellaneous 8.26 18.20** 10.10* -

t/p-values 1.61 / 0.11 3.15 / 0.003 2.34 / 0.02

Table 5.7: Mean (Percentage) Differences Between Experimental and Comparison Sections
by Problem Type

Limits Derivatives Integrals

Experimental 53.96 88.13 64.16

Comparison 56.08 78.41 57.27

Difference −2.13 9.71* 6.89

t/p-values -0.40 / 0.69 2.42 / 0.02 1.20 / 0.23

Table 5.8: Spring 2013 final exam pure computation problems (percentage out of 100)

5.4.4 Comparison Sections

To contextualize the activities that took place in the experimental section, I provide a brief
description of the standard practices that were observed in the comparison sections.

5.4.4.1 Sam

Sam’s section (N = 37) met in the early afternoon. The class sessions fell under two
categories: lecture and board work. During the lecture sessions, Sam engaged in long abstract
discussions of the mathematical concepts (e.g., spending 30 minutes on the meaning of
approach when it comes to limits). During these lecture sessions, students mostly listened;
for instance, during the first observed lecture (week 2) students had a total of three speaking
turns during the entire session, and only one of them was a complete sentence.

In contrast to the lecture sessions, Sam also put a strong emphasis on what he called
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board work. On the first day of class, Sam had students form groups of four students,
and the same groups remained throughout the semester. During the board work sessions
each group of students would work on problems at a chalkboard (there were enough boards
for each group to have its own workspace). Of both of the board work sessions observed,
students worked on problems the entire time while Sam circulated around the room answering
questions. Students appeared to be engaged with the material and discussing ideas with the
other members of their group. The majority of the problems were procedural (e.g., students
spent an entire class session practicing derivatives with the product, quotient, and chain
rules).

5.4.4.2 Tom

Tom’s section (N = 31) met in the afternoon after Sam’s section. By the second week of
class Tom knew most of his students’ names. Class sessions always proceeded in whole-class
discussion, but Tom asked lots of questions to include students in the discussions. Student
responses were typically complete sentences, but students rarely elaborated their thoughts
with multiple sentences. Students frequently asked questions when they were confused or
didn’t follow steps on the problems being worked on the board. Tom frequently asked his
students whether or not they were following along the lecture, and he re-explained ideas
when students expressed confusion. Tom discussed a number of minor theorems that were
not discussed at all by other instructors (e.g., Darboux’s theorem).

5.4.4.3 Bashir

Bashir’s section (N = 28) met later in the afternoon. Like Sam’s lecture sessions, Bashir
engaged in long abstract discussions of the mathematical concepts. Attendance in Bashir’s
section appeared to be very high. All class sessions were whole class lecture, with students
mostly listening. Bashir’s section moved through the material quickly, and he was typically
one-two sections in the syllabus ahead of the other instructors. When students made errors,
Bashir responded to correct their thinking.

5.4.5 Implementation of Intervention

5.4.5.1 Reflective Understanding (and Reflective Questioning)

Reflective questioning was used to elicit student reasoning, beyond just IRE sequences. I
provide an example (from week 4) to illustrate how both the instructor and students used
the reflective questions to guide the discussion. I put a number of infinite limits problems
on the board for students to work on, with the relevant problems reproduced here:

lim
y→∞

(y + 1)(y2 + 1)

y2 + 2
lim

h→−∞

h+ 1

h2
.
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Reflective questions were intended to help class think deeply even about these procedural
computations. Throughout the course I had repeatedly connected approach and why did you
do what you did, so I started the discussion by asking students about their approach to cue
that thinking. Another reflective question, How do you know?, was used to probe deeper
reasoning.

Dan: Let’s look at something here like number 1. What’s going on here with number
1? How would you start to think about approaching this problem?

Dan: Yeah, Ivan.
Ivan: As y is approaching infinity. You can just kind of think of it as the top part is

growing faster than the denominator, so it would approach a positive infinity.
Dan: How do you know it’s growing faster?
Ivan: Because it has the y2 times the extra y.
Dan: So what’s that going to give us in terms of y’s?
Ivan: y3

Dan: So I agree with your general reasoning, what would we want to do to show that
limit?

The discussion continued until the problem was solved. Afterwards, I asked students
if there were any questions. Two students brought up questions, using the basic format
of reflective questioning: How do you know? ; and Why did you?. I used the third type
of question: What does that mean? These basic questions were regularly integrated into
classroom discussions.

Brook: how do you know the top is going to infinity and the bottom is going to 1?
Dan: the limit of 1 is one and the limit of 2 over y squared is 0. It’s 2 over a really big

number; which is. . .
Students: 0
Dan: And here we have a similar kind of thing. These terms go to 0, but then we have

an actual y there which goes to infinity. Once you do the division you can see it’s
going to be the highest power that matters; everything else goes to 0.

Travis: why did you multiply by one over y squared?
Dan: what would you multiply by? What else could we multiply by? Why did we

need to multiply at all?
(Silence)
Dan: What did we have when we evaluated the limit without multiplying?
Bill: infinity over infinity
Dan: Infinity over infinity. And what does that mean?
Bill: Not much.

Shortly thereafter, I used the same method to introduce the next problem.

Dan: let’s look at this second one. How do we approach this?
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Kevin: I’m horrible at fractions so this is a shot in the dark, but couldn’t you just
factor an h out of the bottom and divide out?

Dan: Could we factor out an h here and cancel the two h’s?
(A number of students shake their heads no)
Dan: Why not?
DJ: You have to be multiplying all of the top.
Dan: So we have to have an h in every term in the top to do that. How else could we

think about approaching this?

These above excerpts illustrate how the questions were integrated into classroom discus-
sions. To address questions of impact, I turn to student interviews. Surprisingly, a number
of students (10 of 22) stated that they either never used the poster, or that they had no idea
what the questions even were. Some examples of students who never used the poster are
given (Peter):

I don’t think past the first week I’ve even looked at it or acknowledged it (the
poster). I don’t even know what the questions are that the monkeys are asking,
so I don’t think it’s beneficial. It’s kinda cool though, it adds a little twist to the
class; unique.

or Cory:

They don’t usually pop into my head at first. I’ve been solving math problems
for a really long time, so to get new ways of thinking about something stuck in
your head right away is kinda hard.

A number of the students who did mention using the poster or questions said they did
so subconsciously (6 of 22). For example (Brook):

I feel like I have unconsciously or subconsciously. They are like justifying stuff.
I don’t feel like I actually ask those questions in my head, but the path that I go
down with my work gets me to the same ending.

Based on student interviews it appears that the questions were seldom used by students
outside of class, at least consciously. In fact, a few students mentioned that they might use it
in class but outside of class they simply forgot about it. It appears that the primary impact
of the reflective questions and poster was to help facilitate discussions in class.

5.4.5.2 Opening Problems and Self-Assessments of Learning

Opening Problems

I provide an example of how students used the two-column format to answer the following
opening problem:
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Suppose you have the following table of values for a function f(x):

f(x) 1 10 50 1000 500,000,000
x 3 0.0003 0.000001 0.000000005 0.00000000000000009

True or False: Based on the table above, we can conclude that lim
x→0

f(x) Does

Not Exist (DNE). Explain your answer.

Katherine’s sample response is given in figure 5.1. Notice that Katherine’s initial solution
on the left side was incorrect, and the work on the right side reflects the notes she took based
on the in-class discussion.

Figure 5.1: Sample opening problem response.

The right-hand column was not just copied down from the board; only the figure was
drawn on the board. Whether or not it is possible to make any claims about how well
the student understood the problem after the in-class discussion, the two-column format
provides a clear demonstration that the student initially did not understand the problem.
Forcing students to “put their cards on the table” in this way was designed to help them
better self-assess.

Interviewed students virtually unanimously responded that opening problems were help-
ful (21 of 22). Students noted opening problems helped get into “math mode” (11 of 22).
For example, DJ said:
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I like it. It gets you into the mood for math. It makes you think about math
right away, so when you come from psychology and you’re thinking about the
human brain, you actually get into the mindset of math.

Many students (13 of 22) noted the usefulness of two-columns. Students noted how the
two columns helped them connect their work to the correct solution. For instance (Tyler):

That’s probably the most helpful part, because I can look back and see my
mistakes and compare it to what’s right.

or Samantha:

I think it’s helpful to have a space where I can just write what I know and what
I think might be helpful, and the final. It’s really helpful to have this is where
I started and this is where I should be. So if I had nothing, then I know I need
to study that. Or if I have the right thing, then I draw an arrow to show what
happened.

Students also made connections to PAR and the importance of being able to write down
one’s thoughts without worrying about being right (Mark):

I find it helpful. It’s like PAR, where you get a second chance. You don’t feel
pressured to get the right answer because you have space over here to write the
right answer down. You can just spill your thoughts onto the initial column and
I like it.

In combination with PAR, the two-column format helped see their solutions as a work in
progress, which led to greater persistence, as I discuss in the following chapter. Nevertheless,
only two students noted that they used the two-column format in their notes, and only when
explicitly prompted by their instructor.

Self-Assessments of Learning

Daily self-assessments provided a wealth of information to the instructor, and the “tell
me something else box” provided opportunities to build relationships with students by talk-
ing about things often not related to mathematics. To understand the extent to which
self-assessments supported students directly, I turn to the student interviews. Students
overwhelmingly responded that they struggled to come up with questions, particularly due
to time constraints. Most students appeared to see the questions solely as a means for
remedying confusions, not to learn more about specific topics. A few quotes highlight this
perspective well. As Brook said:
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The second part, where we come up with a question, sometimes is really hard.
People around me are all like looking around, that I can’t think of a darn question
to ask. But in some ways I think that’s more helpful because you have to dig
deeper and not think more surface level about math-related concepts. But most of
the time I’ll just ask a question from webwork or a conceptual one. Sometimes it’s
really hard to think of a question, which is kinda frustrating sometimes. Leaving
it to the end of class kinda sucks, because then you’re rushed and frantically
trying to think of something.

Or as Todd responded:

Sometimes the reflections are nice because you have questions you can answer in
class. Other times it is tedious, because you can’t ever think of a question, so
you always put some dumb question you already know the answer to just to get
points. But it helps sometimes.

Other students, like John, noted the usefulness of questions:

I like those, because for me, if there’s a question that I thought of that maybe I
didn’t really want to ask in front of the class, or maybe if there’s a question that
I thought about and wasn’t sure and then Dan moved on, it’s a good way to ask
that and get feedback every day.

While asking questions was useful for some students, students might be served better if
it were an optional, rather than mandatory, requirement.

The other aspect of the self-assessments that students seemed to find useful was ranking
a percentage of understanding each day. As Kevin noted:

It’s helpful because I could look back at which days I struggled, and on the front
side it tells you exactly what we did that day. If it’s a day I struggled I could
open up the text book and read or do some more problems on my own.

John had similar thoughts:

If you really don’t understand something and that percentage is low, it helps you
identify that as an area to really go back and study for the test.

Although the absolute accuracy of self-assessments is questionable, being able to rate their
relative understandings between lessons appeared to support students in their learning. Not
a single student made a negative comment about percentage ratings.
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5.4.5.3 Peer-Assisted Reflection

During phase II, PAR included regular training opportunities for students with the darts
activity. I now provide an example conversation that came out of this activity. The sample
comes from PAR5, which was focused on the relationship between secant and tangent lines.
This particular problem was chosen because it is one of the problems that I analyze in-depth
later when considering student explanations. To begin the class session students picked up
the opening problem with the three sample solutions on it, and spent a few minutes working
silently. The prompts are given:

Instructions: Classify the “bullseye” (correct explanation), “on the board” (a mostly
correct idea that is communicated poorly or has a minor error), and “off the mark” (incor-
rect) solutions.

Prompt: Write a short statement explaining in terms of your graph what

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
means (be sure to talk about secant lines and the tangent line).

Sample Solution 1:
f(a+ h)− f(a)

h
is the secant line. As h goes to 0, it becomes like

the tangent line.

Sample Solution 2: As the secant line becomes ever so small (to the point we can
substitute its value for 0) we can use that average rate of change to generalize for the in-
stantaneous rate of change.

Sample Solution 3: lim
h→0

f(a+ h)− f(a)

h
means that as the distance between a and

a + h approaches 0, the slope of the secant line through (a, f(a)) and (a + h, f(a + h))
becomes a better and better approximation of the slope of the tangent line at the point
(a, f(a)), the derivative f ′(a).

In the discussion that followed, students made many useful analytic observations, even
before the second midterm.

Dan: So without further ado, darts darts darts. What do you guys think about number
1? yes, Revati.

Revati: I thought it was on the board, because it defines what the secant line is, and
it kinda explains what’s right, but it’s not in depth enough.

Dan: What do you guys think? Do you agree with that or disagree with that?
(A few students nod or give thumbs up.)
Dan: What else did you notice about this one, that maybe wasn’t perfect?
Kevin: It doesn’t talk about what the derivative is.
Dan: It doesn’t really talk about, well, it doesn’t say that the tangent line relates to

that up front. So, there’s that. Aamir, what do you think?
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Aamir: It doesn’t explain the limit
Dan: It doesn’t talk about the limit right, it says as h goes to 0, but it doesn’t say in

the limit. Ivan?
Ivan: It doesn’t mention the slope at all
Dan: It doesn’t mention the slope at all! What is (f(a+ h)− f(a))/h?
Revati: That’s the slope of the secant line.
Dan: It’s the slope of a secant line, it’s a number. So if you call a number a line that’s

a problem.

I now continue to the next solution.

Dan: What about number 2, what do you think? What do you guys think about
number 2? All right Mark, what do you think?

Mark: Off the mark.
Dan: Why is this off the mark? Why do they hit the drywall?
Mark: Well, I was bothered that they use the words ‘ever so small.’ That’s not a very

mathematically helpful description.
Dan: Yeah, what does ever so small mean? Colton, what else do you think?
Colton: It doesn’t say anything about the whole equation.
Dan: Okay, what about the equation. It doesn’t refer to what?
Colton: The different parts.
Dan: Okay, it doesn’t say how the different parts relate to the equation.
Peter: It doesn’t say anything about the secant line
Dan: It doesn’t say anything about. . . well it says the secant line, but not the tangent

line. Anything else?
Peter: The secant line doesn’t become ever so small.
Dan: Right, the secant line doesn’t become ever so small, what is becoming ever so

small?
Peter: h
Dan: The h, the distance between those two points. Any other problems?
Dan: I’m also not quite sure what it means to generalize to the instantaneous rate of

change, but other than that, not bad.
Dan: Do we all agree the first one is on the board? What about 3?
Harry: bullseye
Dan: yeah, there weren’t many choices left.

Students’ improved analytic skills were evident in PAR conversations and the quality of
their peer-feedback, although in-depth analyses of PAR conversations are beyond the scope
of this dissertation.

Students apparently benefited from the random assignment of partners for peer-conferences;
phase II had far fewer superficial conversations recorded than phase I. Nevertheless, I only
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recorded two instances of students discussing extension questions, so they were mostly ig-
nored. In contrast, the students in Tom’s section regularly completed the extension ques-
tions, even though they knew that they were not graded. Finally, the self-reflection form,
peer-feedback form, and tasks all worked effectively, so no revisions are suggested for future
use.

5.4.5.4 Student Explanations

Students frequently explained their mathematical reasoning through: reflective questioning,
in-class presentations, PAR, and group work. Typically, when the syllabus afforded two class
periods for a topic, the second class period was dedicated to open-ended problem solving in
small groups working at chalk boards. Review sessions for exams were also run as group work
sessions. The following excerpt from a review session illustrates the way in which students
worked collaboratively. The prompt is given first:

True/False. If true, explain why. If false, provide a counterexample and explain
why it is false. Also, ask yourself what would make the statement true. If f(x)
is concave down at x = π, then f(x) has a local maximum at x = π.

I now provide the transcript. The ability to draw and gesture to a shared space facilitated
group discussions, allowing students to annotate one another’s drawings (as Cory does):

John: Is there any way we could have a concave down, where maybe it’s like, not
finished or something? I feel like if it’s concave down then you have to have . . .

Cory: Can you have um. . .
Francis: Well, I mean, there’s the, uh, x (draws x3), well, whatever. Maybe if we shift

it to the right? This is concave down,
Ivan: Uh, that’s concave up.
Francis: Yeah, for example, so if we shift it over here (draws in dotted lines with

inflection point of x3 at π), this would be π.
Cory: But then it’s an inflection point.
Francis: yeah, because at that point it’s neither concave up or down
Ivan: If it’s like this though (draws a single hump of the cosine graph, with the maxi-

mum slightly to the right of π; see figure 5.2)
Cory: I think, so say here’s the max (labels “not π”)
John: Um, technically on a whole I think this interval here would be. . .
Ivan: Isn’t that whole interval concave up? or concave down sorry.
Francis: Yeah, that’s down. Yeah, not necessarily. Because any point between these

two intersections is concave down, but they have to define the derivative at that
point has to be 0 for that to be the maximum.

Ivan: So, is that a counterexample? If that’s the max?
Francis: Yeah.
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John: That would make sense. I kinda want to ask Dan if every one of these points
would technically still be concave down. I feel like the easiest way to determine if
you have a maximum is to check the slope on either side of the point. I know the
second derivative test is a quick way. . .

Figure 5.2: Second figure drawn during groupwork.

This excerpt highlights the potential of the shared space of the chalkboards for supporting
student conversations.

5.5 Discussion

Phase II replicated and extended the results from phase I. During both phases, students
had improved success rates; they were 13% higher during Phase I (marginally significant
at p = 0.0642), and 23% higher during Phase II (significant at p = 0.0117). Students also
had improved exam scores; for instance, final exam scores were 9.8% higher during Phase
II (p = 0.007), and 7.1% higher during Phase I (p = 0.03). These differences were larger
during phase II, which seems to be attributable to improvements in the design (e.g., darts,
random PAR partners, and collaborative board work). In the following chapter I further
explore these differences by analyzing student explanations in depth.

5.5.1 Revisions for Theory and Design

There were no major theoretical changes after this semester of implementation, but there
are two main areas revision for the design: reflective questioning and daily-self assessments.



CHAPTER 5. PHASE II 73

While the reflective questions seemed to help facilitate classroom discussions, few of the
students remembered or used the questions on their own, so the impact is questionable.
Accordingly, for future uses of the design it is likely that one could use another form of
reflective questioning, such as Schoenfeld’s questions (Schoenfeld, 1985) or ideas from Ac-
countable Talk (Michaels, O’Connor, Hall, & Resnick, 2010) with a similar effect.

The other area of revision is related to the self-assessments of learning. While students
seemed to find assigning percentage scores to their level of understanding to be useful,
many students struggled to come up with questions. One way to take the design would be
to further develop the ability to ask insightful questions through classroom activities and
practice. Another alternative would be to transform the asking of questions aspect of the
self-assessment into an optional component and instead focus on some other sort of reflection,
such as the development of lifelong learning skills (e.g., collaboration, persistence). This is
the most likely path I will take in the future. Given evidence that PAR has helped students
improve their mathematical self-efficacy beliefs, having students reflect on dispositions and
beliefs towards mathematics could be a powerful way to supplement those changes.



74

6 Analysis of Student Explanations

Analysis of students’ exams showed considerable growth on traditional measures, but the
exam format required students to provide short (1-2 sentences) explanations under strict time
constraints. Also, recall (as explained in phase I) that exams were scored for “mathematical
correctness,” not the quality of communication. I turn to homework data to address the
shortcomings of the traditional exams. In the following analyses I focus only on students
written explanations; all other components of the problems are ignored.

6.1 Measuring Explanation Quality

I developed four criteria for measuring the growth of students’ explanations over time: ac-
curacy, use of mathematical language, clarity, and use of diagrams. In more detail:

• Accuracy: The extent to which an explanation correctly represents a mathematical
truth.
• Mathematical Language: The quality of the mathematical language used to describe

the idea.
• Clarity: The extent to which an explanation clearly and unambiguously describes why

a statement is true.
• Diagrams: The extent to which supporting diagrams are used to bolster a written

explanation.

The first three criteria can be applied to any explanation, whereas diagrams may not
always be relevant (e.g., Euclid’s proof of infinite primes is unlikely to benefit from a dia-
gram). These four criteria are intended capture how well an explanation communicates why
something is true. A basic measure of an explanation is its accuracy ; i.e., whether or not
it describes the mathematics correctly. But accuracy does not imply quality of expression;
hence the other criteria. Mathematical language concerns the accuracy and precision of the
words used to describe the mathematics; more technical language is not necessarily preferred,
because it may obscure communication. Clarity relates to both the clarity of expression and
the extent to which the explanation describes why something is true. While clarity of ex-
pression and describing why something is true could easily be separated in theory, in scoring
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it was easier to consider them simultaneously. Finally, diagrams can improve the clarity of
written explanations.

These four dimensions alone were insufficient to develop an analytic scheme; they did not
capture the interplay between accuracy and quality of expression. When students explained
mathematical ideas incorrectly, they often drastically simplified the problem situation, mak-
ing it much easier to describe their incorrect reasoning. Yet, if an explanation lucidly ex-
plained the mathematics in a wrong way, it did not seem appropriate to classify it as being
a high quality expression. I illustrate by providing example responses to one of the PAR
problems used in the course, which will be analyzed in depth later. Students were given the
definition of a derivative of a function f at a point x = a as defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Students were given three tasks: (1) illustrate the definition of a derivative graphically; (2)
connect the slopes of secant lines to the slopes of tangent lines; and (3) explain why the
limit is needed to find the slope of the tangent line. (Why can’t we just use arithmetic and
algebra?)

For illustrative purposes, I focus only on (3). Students were to connect the slopes of
secant lines and the slopes of tangent lines, as described in (2), to explain why the limit
is required. To contextualize student responses, I provide a complete explanation of the
mathematics: the average rate of change between two points (the slope of a secant line), can
be used to approximate the instantaneous rate of change at a single point (the slope of the
tangent line). The smaller the interval over which the average rate of change is calculated,
the better the approximation will be. Ideally, one would like to choose an interval of zero
width, but this is not possible, because the average rate of change is defined on a finite
interval. Attempting to evaluate the average rate of change at a single point would result in
an undefined output:

f(a+ 0)− f(a)

0
=

0

0
.

The number f ′(a) can be approximated as accurately as desired by calculating the average
rate of change over small enough intervals; the limit represents the logical conclusion of this
process of approximation.

Keeping this explanation in mind, consider the following student explanations. The first
example is:

“The limit is needed because otherwise we would have the slope of a secant line.”

This explanation is written in a way that is relatively easy to follow. It correctly states
that the equation written without a limit would describe the slope of a secant line. However,
this information does not explain why arithmetic and algebra cannot be used to find the
slope of the tangent line; this explanation does not address the mathematics of the question
asked. Contrast this with the second explanation:
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“The limit is necessary because if h was zero instead of just approaching zero, it
would result in a zero over zero output.”

This explanation begins to address why the limit is required: if an average rate of change
was calculated using the same point twice, the output would be zero over zero. Since average
rate of change is a method for computing a slope that involves arithmetic and algebra, the
explanation addresses the question asked. Yet, the explanation does not reference arithmetic
or algebra explicitly, and it still does not explain the role of the limit; the explanation is
lacking.

The first explanation clearly describes the mathematics incorrectly, while the second
explanation begins to explain the correct mathematics in a less clear way. Explaining correct
ideas is often much more difficult than explaining incorrect ideas, so incorrect explanations
may appear to be clearer, at least at a surface level. This tension was resolved by focusing on
the core mathematical idea. Above, the core mathematical idea was: average rate of change
can only be calculated with two distinct points on the curve, so it cannot be used to find a
tangent line, which (locally) intersects the function at a single point.

Rather than analyzing explanations for some general notion of communication, I used the
core mathematical idea to guide analysis. The first explanation above does not express the
core idea at all; it does not even reference average rate of change. Because the explanation
does not express this idea, it cannot be considered a clear explanation of this idea, even if the
statement is relatively easy to comprehend. In contrast, the second explanation begins to
address the core idea, by referencing a computation of average rate of change. Although this
explanation is still incomplete, compared to the first explanation, it is a clearer explanation
of the core idea. Thus, by focusing on the extent to which explanations describe the core
mathematical idea, I was able to resolve the tension between accuracy and clarity. Combined
with the four analytic dimensions given previously, this provided a content-neutral analytic
scheme.

6.2 Method

6.2.1 Scoring Procedures

Student work on PAR problems 5, 10, and 14 was analyzed, because these problems: (1)
spanned and separated the semester into thirds, (2) required considerable written expla-
nation, and (3) had the same explanation prompts in both Phase I and Phase II.1 These
problems are henceforth referred to as the early semester (PAR5) mid-semester (PAR10) and
late semester (PAR14) problems. I chose a subset of the prompts that required meaningful
student explanations; there was one prompt for the early semester problem, two prompts for
mid-semester problem, and two prompts for the late semester problem.

1Some of the other problems received significant revisions, or were even removed entirely.
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To choose a representative sample of work, I used the 10-point scoring rubrics that were
used for course grading for each PAR problem; these rubrics were consistent across instructors
and phases of instruction. For each PAR problem, I broke each class into quintiles according
to these scores. I removed the top and bottom quintiles from the analysis, to eliminate any
outliers (e.g., students who had already mastered the material or students who attended
very few class sessions). The middle 60% of students remained; these quintiles represented,
high, medium, and low scores on the PAR problems, respectively.

I used a random number generator to select three students from each of these groups
in each section. The result was 27 samples of student work for each problem, (3 sections
of the course: Phase II, Phase I, Comparison) x (3 groups of students: high, middle, low)
x (3 randomly sampled students per group). Across the three problems, I had a total of
81 samples of student work. Because PAR10 and PAR14 had two prompts scored for each,
there were a total of 135 prompts scored. Using photoshop I removed all grading marks,
comments, and student/class identifiers; this made it impossible to tell that the problems
had been graded, let alone what a grader might have written. I assigned random codes to
the de-identified student work in order to hide which section each sample came from.

Michelle (the Phase I experimental instructor) and I worked together to blindly double
code all of the student work. Before scoring I created a rubric and codebook that elaborated
the rubrics for each prompt, using samples of student work at all levels of the rubrics (taken
from student work that was not sampled for double-coding). After Michelle reviewed these
materials independently, we began the blind coding process. After the first two problems
were scored we had a short discussion about our coding rationale. Afterwards, we scored the
remaining problems and had a discussion once scoring was complete. Through discussion
each coder had the opportunity to change their initial coding to reach a consensus score.

6.2.2 Scoring Rubrics

Explanations were scored along four dimensions related to how well they expressed a core
mathematical idea: accuracy, mathematical language, clarity, and diagrams. Analyses re-
quired that the core mathematical idea be established before any scoring could take place;
agreeing on the core mathematical idea was unproblematic for the present analysis. Once
established, the four dimensions were scored according to that core mathematical idea. Indi-
vidual prompts on PAR problems all addressed only a single core idea. In situations where a
single prompt addresses multiple core ideas, an explanation could be scored multiple times,
once for each core idea.

Accuracy describes how correctly the explanation describes the core mathematical idea.
Explanations with no accuracy don’t express the core idea at all, and as a result, they tend
to receive a 0 on all other dimensions as well.2 Mathematical language is the accuracy and
precision of the words used to describe the core mathematical idea. Mathematical language
that is not related to the core idea is not scored for this dimension. Clarity focuses on

2Only a single solution that scored 0 on accuracy received a score higher than 0 on any other dimension.
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the extent to which an explanation clearly and unambiguously describes why a statement is
true. Diagrams that are used to bolster an argument are scored based on their effectiveness.
An appropriate diagram can improve a students’ scores on other dimensions as well (e.g.,
by making connections that weren’t apparent in the written text). The scoring rubrics are
given in Table 6.1.

Dimension 0 1 2

Accuracy The core mathemat-
ical idea was incor-
rectly expressed or not
expressed at all.

The core mathemat-
ical idea was mostly
expressed, with some
inaccuracies.

The core mathemati-
cal idea was expressed
correctly.

Mathematical
Language

The mathematical
language was inappro-
priate or incorrect.

The mathematical
language had some
minor inaccuracies.

The mathematical
language was appro-
priate and correct.

Clarity The explanation was
difficult to follow; OR
the explanation was
built on a misunder-
standing of the core
idea.

The explanation was
easy to follow, but did
not express “why”;
OR the explanation
expressed “why,” but
was unclear.

The reasoning was
clear and easy to
follow, AND ex-
pressed the why of the
situation.

Diagrams The diagram was se-
riously flawed and did
not illustrate the core
idea.

A diagram partially
conveyed the core
idea; OR a diagram
conveyed core idea
with some inaccuracy.

A diagram clearly
illustrated the core
idea.

Table 6.1: Rubrics for Scoring the Quality of Student Explanations.

The rubrics use a 3-point scale: (0) completely incorrect, (1) partially correct, (2) fully
correct (to the level of sophistication of an introductory calculus student). All dimensions
must always be scored, except diagrams, which could receive NA, because the use of a
diagram was optional. Completely incorrect (but present) diagrams received a 0.

6.3 Illustrative Growth Trajectories

To illustrate student growth over time, I present an “average” response from each section for
each problem. Although it was possible to compute mean scores for each section, it was not
possible to find exemplars that corresponded to all of these sets of scores. Median was also
not a useful measure, because it did not capture the significant improvement in the higher
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scores in the experimental sections. As a result, I chose the highest scored responses in the
middle quintile of each section. These responses are illustrative of the types of growth found
in each section, as will be evident when they are compared to the section average scores.

I provide the full problem statement from each problem (with relevant prompts in ital-
ics) as well as a brief solution to contextualize the student explanations that follow. Next,
I present the three exemplar solutions: from the comparison section, from the Phase I ex-
perimental section, and from the Phase II experimental section. These average solutions are
presented to illustrate student growth qualitatively; I follow up by presenting the aggregate
results for each section.

6.3.1 Early Semester

The early semester problem focused on the definition of the derivative. Students were asked
to illustrate the definition of the derivative graphically and explain the connection between
secant lines and tangent lines. Finally, students were asked why a limit is needed to find the
slope of a tangent line. The task is given in its entirety, but only part (c) was scored:

Draw an accurate graph of your favorite nonlinear function y = f(x) (no formula
for f(x) needed) and pick a point on the x-axis and label it “a”. (Make the graph
fairly large so you can clearly draw other things on it.) Recall that the derivative
of a function f at a point x = a is defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

(a) Illustrate and label on your graph each of the following quantities that
appear in the definition. Then write a short statement explaining in terms
of your graph what each quantity means (1-2 sentences for each quantity).

(i) f(a)
(ii) h
(iii) f(a+ h)

(iv) f(a+h)−f(a)
h

(v) f ′(a)

(b) Explain in terms of the graph what the equation f ′(a) = lim
h→0

f(a+ h)− f(a)

h
means (be sure to talk about secant lines and the tangent line).

(c) Explain why the limit is needed to find the slope of the tangent line. (Why
can’t we just use arithmetic and algebra?)

The core idea for this problem was: average rate of change (AROC) can only be calculated
with two distinct points on the curve, so it cannot be used to find the slope of a tangent line,
which (locally) intersects the function at a single point. An accurate explanation should
communicate that AROC cannot be used to calculate the slope of a tangent line. The
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mathematical language should describe AROC, expressing either that two points are needed
to find AROC, or that using a single point to compute AROC would result in 0/0. A
coherent explanation should express why the limit can be used to find the slope of the
tangent line (e.g., slopes of secant lines can be used to approximate the tangent slope with
arbitrary accuracy). No students used diagrams to support their explanations, so diagrams
were scored as NA for all students. The average student responses from each section are
given in Figures 6.1, 6.2, and 6.3.

Adam (see Figure 6.1) received a 1 for accuracy. He correctly stated that “you cannot find
the slope at one point using algebra.” However, he also made the incorrect statement “the
limit tells you where x approaches but algebra tells you what x is,” so he received a 1 rather
than 2. Adam received a 1 for mathematical language, because he described that the slope
could not be found with algebra, but did not describe how AROC could be found. Adam’s
explanation introduced a lot of irrelevant ideas, and did not did not connect approximation
to tangent slope, so he received a 0 for clarity.

Figure 6.1: Adam’s Solution to the Early Semester Problem (Comparison Section).

Samantha’s response (see Figure 6.2) received a 2 for accuracy and mathematical language
because she described that “if h was zero . . . it would result in a zero over zero output,” and
she demonstrated this symbolically as well. This calculation and description illustrated that
trying to calculate AROC using a single point (i.e., h = 0) would result in 0/0. Samantha
received a 0 for clarity, because her explanation was relatively unclear and she did not
introduce the idea of approximation or how to find a slope.

Brian’s response (see Figure 6.3) received a 2 for accuracy and mathematical language
because he stated “just trying to evaluate the tangent line at point a would result in a 0/0
slope.” Brian received a 1 for clarity, because it was relatively clear, even though it did not
explain the role of the limit. Scores are summarized in Table 6.2.

Early in the semester, none of the average student explanations explained why the limit
was needed; they scored low on clarity as a result. Ambiguous and imprecise communication,
like Samantha’s “it would result” or Brian’s “evaluation of the tangent line” (when he was
referring to calculating the slope) also reduced the clarity of the explanations. The com-
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Figure 6.2: Samantha’s Solution to the Early Semester Problem (Phase I Experimental
Section).

Figure 6.3: Brian’s Solution to the Early Semester Problem (Phase II Experimental Section).

parison explanation (Adam) was unclear and added a lot of irrelevant information. These
explanations were typical for early-semester explanations, which generally scored low.

Accuracy Mathematical Language Clarity Diagrams

Comparison (Adam) 1 1 0 -

Phase I (Samantha) 2 2 0 -

Phase II (Brian) 2 2 1 -

Table 6.2: Scores of the Average Student Solutions to the Early Semester Problem.

6.3.2 Mid-Semester

The mid-semester problem was assigned to students as they began to study integration,
before a formal treatment of Riemann sums. Students were asked to trace their hand and
use simple shapes approximate the area enclosed in the shape they created. Finally, students
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were asked to estimate the error of their approximation and describe how to reduce the error.
The task is given in its entirety, but only parts (d) and (f) were scored:

In this problem, you will trace the shape of your hand and approximate the
area of the picture that you create. Your main tasks are to devise a method for
approximating the area and to show that your approximation is very close to the
actual area.

(a) Put your hand flat on the grid provided (with fingers touching, no gaps)
and trace the shape of the outline of your hand. Make sure that the shape
you trace is a function (if not, erase the parts of the shape that would make
it not a function).

(b) Devise a method to approximate the area of the region inside the curve you
have traced. Explain your method in detail, and explain why it should work.
(Don’t perform any calculations yet.)

(c) Use the method you described above to approximate the area of the outline
of your hand. (Show your work.)

(d) Describe a method for estimating the error in your method of approximation.
(Error is something you would like to make small! Thus an estimate for the
error means being able to say the error is less than some value.)

(e) Calculate an estimate the error for your method.
(f) Explain (in principle) how you could improve your method to make your

estimate as accurate as one could want (i.e., minimize the error). (You do
not actually have to perform the calculations, just explain what you would
do.)

The core idea for part (d) was: an error estimate must be an overestimate (as requested
by the problem statement), not an estimate of the actual error. An accurate explanation
should provide a method for overestimating error. A student’s mathematical language should
unambiguously describe how error is actually calculated. A coherent explanation should
clearly explain why the estimate provided is an overestimate. Diagrams were only scored
when the error calculation was made explicit in the diagram. When necessary, work from
part (e) was used to determine how the estimate was calculated.

The core idea of part (f) was: smaller shapes result in a better estimate. An accurate
explanation should focus on decreasing the size of the intervals or shapes used. A student’s
mathematical language should describe the “small” shapes. Students needed to communicate
that the process can go on forever (e.g., by referring to a limiting process). A coherent
explanation should describe why smaller shapes reduce error; they result in less unaccounted
for area inside or outside the original figure. The overlap between the original figure and
shapes used to estimate area could be illustrated by a diagram. Three solutions (Figures 6.4,
6.5, and 6.6) are now provided.

Sanjay (Figure 6.4) stated: the error “can be approx by adding together the spaces
in between the rectangles and the curve.” These spaces are shaded on Sanjay’s diagram.
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Looking at part (e) of the solution (where he performs calculations to support (d)), some of
the areas were added while others were subtracted; Sanjay attempted to estimate the exact
error value. The core mathematical ideas was to overestimate error, not try to estimate it
exactly, so Sanjay received a 0 for accuracy. Because his accuracy was 0, he received a 0 for
the other dimensions for part (d) as well. In part (f), Sanjay stated: “I should make smaller
rectangles/subintervals to have less error,” but he also added “and use midpoint method
instead,” which would not help him reduce his error indefinitely. Because both of these
ideas were stated but not elaborated, he received a 1 for accuracy. Sanjay received a 1 for
mathematical language because he did not describe how to increase the accuracy indefinitely.
He received a 1 for clarity because he did not describe why smaller rectangles would reduce
error. Sanjay did not provide a diagram for part (f).

Figure 6.4: Sanjay’s Solution to the Mid-Semester Problem (Comparison Section).

Tim (Figure 6.4) explained, to “count the 1x1 grid units that were in the rectangles
and not under the function,” and “to add the amount of space under the curve that was
not in the rectangles.” Since both of these sources of error are added, this provides an
overestimate, so Tim received a 2 for accuracy for part (d). He received a 1 for mathematical
language because his exact calculation was unclear; his diagram illustrated numbered boxes
corresponding to error, but the assignment of partial boxes appears somewhat unsystematic.
Tim received a 2 for clarity because it was clear that all sources of error were added so
it should be an overestimate. Finally, Tim received a 1 for diagrams because the diagram
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supported the explanation, but did not show exactly how to find the error. In part (f), Tim
said, “we would need to increase the amount of rectangles,” so he received a 2 for accuracy.
He received a 1 for mathematical language, because he said we need “an infinite amount of
rectangles.” While this demonstrates that the size of rectangles could be reduced indefinitely,
it is not possible to have “infinite rectangles.” Tim also received a 1 for clarity because he
did not describe why smaller rectangles result in less error. Tim did not provide a diagram
for part (f).

Joe (Figure 6.4) received a 1 for accuracy for part (d). Joe “outlined a section of the
graph that always overestimates the error of the hand as a “Max” error tolerance.” This
provides an overestimate of the actual area, but Joe did not take additional steps necessary
to overestimate the error (e.g., by computing an underestimate of the area and using the
two estimates together). Joe received a 2 for mathematical language, because his diagram
made it clear exactly how he calculated his overestimate. He received a 1 for clarity for
his confusion between bounding error and the estimate itself. Finally, Joe received a 1 for
diagrams because he showed how to calculate the overestimate, but not exactly how that
would relate to error. Joe’s response to part (f) received a 2 for accuracy, because he said
“make more boxes to be more accurate.” Joe also stated “maybe use midpoint as well,”
but since he emphasized iteratively choosing smaller intervals (0.5 → 0.25 → 0.125 → . . .),
he still received a 2 rather than a 1. He received a 2 for mathematical language because he
illustrated the iterative nature of choosing smaller interval sizes, indicating that the process
could go on indefinitely. Joe received a 1 for clarity because he did not describe why smaller
intervals would result in less error. Joe did not provide a diagram.

Accuracy Mathematical Language Clarity Diagrams

Comparison (Sanjay) 0 0 0 0

Phase I (Tim) 2 1 2 1

Phase II (Joe) 1 2 1 1

Table 6.3: Scores of the Average Student Solutions to the Mid-Semester Problem (Part d).

Accuracy Mathematical Language Clarity Diagrams

Comparison (Sanjay) 1 1 1 -

Phase I (Tim) 2 1 1 -

Phase II (Joe) 2 2 1 -

Table 6.4: Scores of the Average Student Solutions to the Mid-Semester Problem (Part f).
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Figure 6.5: Tim’s Solution to the Mid-Semester Problem (Phase I Experimental Section).

The scores for the mid-semester problem are summarized in Table 6.3 and Table 6.4.
Sanjay’s explanation (comparison section) missed the core mathematical ideas, and his ex-
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Figure 6.6: Joe’s Solution to the Mid-Semester Problem (Phase II Experimental Section).

planations were relatively incomplete. In contrast, the average students in the experimental
sections used multiple sentences to more clearly express their ideas. They also used dia-
grams to support their written explanations, in contrast to Sanjay’s response that featured
an incomplete diagram. The differences in the average explanations were representative of
the other sampled mid-semester explanations, which showed an increasing divide between
the three groups of students.
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6.3.3 Late Semester

The late semester problem was the final PAR problem that students completed. This problem
described the creation of a bead designed by drilling a cylindrical hole through the center of
a sphere; this problem is also known as the napkin ring problem. Students could represent
the bead as a volume of revolution, and rewrite their result to express the fact that volume
only depends on the height, not the radius of the original sphere. Students then explained
two prompts related to the volume and the surface area of the bead. The task is given in its
entirety, but only parts (d) and (e) were scored:

A bead can be formed by removing a cylinder of radius r from the center of a
sphere of radius R (see the figure below).

(a) Use calculus to find the volume V of the bead with r = 1 and R = 2.
(b) Use calculus to find the volume V of a bead in terms of the variables r and

R.
(c) The bead’s height h is labeled in the figure. Rewrite your formula from (b)

to show that V = π
6
h3.

(d) Since your answer in part (c) expresses the volume entirely in terms of h
(and not r or R), it means that all beads of the same height have the same
volume. In other words, if you started with a sphere the size of an orange
and a sphere the size of a basketball and made them each into beads a height
of 2 inches, the beads would have the same volume. Explain how this can be
true. (Hint: think about the shape of the beads)

(e) Do all beads of the same height h also have the same outside surface area
(not including the surface area of the cylindrical hole inside)? (Note: you
do not need to use an integral to compute the surface area, just discuss it
intuitively.)

The core idea of part (d) is: as the outer radius of the sphere increases, the area of the
cross-section that is rotated is smaller (i.e., the bead is thinner); this allows the volume of
the beads to remain constant. An accurate explanation should explain the changing nature
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of the cross-sectional area. When a cylinder is removed from the small sphere, the cross-
sectional areas of the remaining portions are relatively large (in comparison to the total
area), which results in a thick bead with a small outer circumference. In contrast, when the
cylinder is removed from a large sphere, the cross-sectional areas of the remaining portions
are relatively small, resulting in a thin bead with a large outer circumference. Mathematical
language relates to how the shapes of the beads are described. Ideally, students should use
the terms cross-sectional area or thickness to describe aspects of the beads. A coherent
explanation should connect the increasing circumference and decreasing cross-sectional area
and why that matters. The differences in thickness and circumference cancel one another to
result in two beads with the same volume. Diagrams can illustrate graphically the difference
in cross-sections; a diagram is provided for clarity (see Figure 6.7).3

Figure 6.7: The Large Sphere Makes a Thinner Bead. The Small Sphere Makes a Thicker
Bead.

The core idea for part (e) is: beads with a larger outer radius have a larger outside
surface area. An accurate explanation should explain that the outer radius increases the
surface area. The bead made from the larger sphere has a larger surface area than the bead
made from the smaller sphere, because the outside circumference is the most significant factor
in determining surface area (the sphere’s curvature matters but not as much). In the limit
as R → ∞, the outside of the bead approaches a cylinder, so the surface area approaches
2πRh, which diverges to∞ (while the smaller spheres have finite surface area). Mathematical
language relates to how students describe the regions of the sphere that have an impact on
surface area; students could use terms like “outer radius” or “outside circumference.” A
coherent explanation should make clear how the outer radius affects surface area (e.g., by
including an equation). Not a single student mentioned the outside curvature of the bead,
so this aspect of the solution was not included in analysis. Diagrams could be used to help
illustrate graphically the surface areas of different beads. Student solutions are provided in
Figures 6.8, 6.9, and 6.10.

Will (see Figure 6.8) stated: “the beads would no longer be spherical, instead would
the bead would be more football shaped.” This statement indicates a misunderstanding
of the problem situation, so Will received a 0 for all dimensions on part (d) except for
diagrams, which was NA. In part (e), Will stated: “as volume increases the bead would
stretch outward creating more surface area.” The problem statement indicates that spheres

3This is a diagram that Katherine (Phase II experimental section) submitted as a part of her solution.
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have equal volumes, so once again Will received a 0 for all dimensions other than diagrams,
which was NA.

Figure 6.8: Will’s Solution to the Late Semester Problem (Comparison Section).

Silvia (see Figure 6.9) states: “big area has smaller circumference and the smaller the
radius the bigger the circumference.” Following Silvia’s parallel construction it is likely
that she meant “the smaller the area” but accidentally wrote radius instead of area. This
would indicate a correct description of the relationship between cross-sectional area and
circumference. However, she only received a 1 for accuracy, because she said “r/R are
directly proportional.” If r and R were directly proportional, the thickness of the beads
would increase with size of the sphere, rather than decrease. Because directly proportional
contradicts the special relationship between cross-sectional area and circumference, Silvia
received a 0 for mathematical language and clarity. For part (e), Silvia stated “the surface
area increase,” but it’s unclear if she’s attributing it to a growing R, a shrinking ∆x, or
something else; she received a 1 for accuracy. Despite these difficulties, she still received a 1
for mathematical language, because using R rather than just saying “radius” clearly denotes
the outer radius. Her explanation was unclear, so she received a 0 for clarity. She received
an NA for diagrams.

Kevin (Figure 6.10) stated: “as sphere gets larger the segments grow thinner,” and
illustrated the relationship between bead thickness and outer circumference in his diagram.
Due to the clarity of his written explanation and diagram, he received a 2 for all dimensions
on part (d). For part (f), Kevin received a 2 for accuracy, stating “surface area will change
with different size spheres due to the increased circumference.” This is also illustrated in
his diagram. Kevin does not clearly refer to outer circumference so he received a 1 for
mathematical language. He also did not state how exactly circumference relates to surface
area, so he received a 1 for clarity. His diagram received a 2, because it illustrated how the
surface area would increase with a larger outer circumference.

The late semester scores are summarized in Tables 6.5 and 6.6. Will’s solution was
representative of the other sampled solutions (N = 9) in the comparison section; all solutions
sampled received 0 scores for all dimensions. In contrast, explanations in the experimental
sections were of much higher quality.
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Figure 6.9: Sivia’s Solution to the Late Semester Problem (Phase I Experimental Section).

Figure 6.10: Kevin’s Solution to the Late Semester Problem (Phase II Experimental Section).

6.4 Overall Results

Solutions were scored with a very high agreement of 94.1%. There were only 8 disagreements
out of 135 explanations scored, and all disagreements were resolved after discussion. I
began my analyses by computing the correlation matrix for the four dimensions that were
scored. The goal of this analysis was to determine how closely related the various dimensions
were to one another. I expected that the dimensions would be closely related, because
students were likely to improve on all of these aspects of explanations simultaneously, rather
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Accuracy Mathematical Language Clarity Diagrams

Comparison (Will) 0 0 0 -

Phase I (Silvia) 1 0 0 -

Phase II (Kevin) 2 2 2 2

Table 6.5: Scores of the Average Student Solutions to the Late-Semester Problem (Part d)

Accuracy Mathematical Language Clarity Diagrams

Comparison (Will) 0 0 0 -

Phase I (Silvia) 1 1 0 -

Phase II (Kevin) 2 1 1 2

Table 6.6: Scores of the Average Student Solutions to the Late-Semester Problem (Part e)

than independently.4 I use pairwise deletion for correlations with the diagrams dimension,
which were mostly NA. The results can be found in Table 6.7. Given that students in
the comparison section nearly uniformly received all 0’s on the late semester problem, I
suspected the results of that section may be inflating the levels of correlation between the
various dimensions. To provide a more nuanced picture, I pooled together the results from
the Phase I and Phase II experimental sections into a single group, and compared this with
the results of the comparison section. See Tables 6.8 and 6.9.

Mathematical Language Clarity Diagrams (n = 21)

Accuracy 0.8123 0.7171 0.8368

Mathematical Language - 0.6990 0.6491

Clarity - - 0.8438

Table 6.7: Correlation Matrix of the Four Dimensions, N = 135

As suspected, the four dimensions of analysis were highly correlated. In the experimental
sections there was a range of correlations values; for instance, mathematical language was
most correlated with accuracy (r = 0.7829) and less so with clarity (r = 0.6558) and diagrams
(r = 0.4580). In contrast, all dimensions were correlated above r = 0.7379 in the comparison
section. This indicates that the development of skills was less differentiated in the comparison

4For comparison, consider the mechanics of students’ writing. Grammar, punctuation, spelling, etc., are
all independent dimensions, but one would expect for them to be highly correlated.
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Mathematical Language Clarity Diagrams (n = 15)

Accuracy 0.7829 0.6894 0.7082

Mathematical Language - 0.6558 0.4580

Clarity - - 0.8016

Table 6.8: Correlation Matrix of the Four Dimensions (Experimental, N = 90)

Mathematical Language Clarity Diagrams (n = 6)

Accuracy 0.8417 0.7379 1

Mathematical Language - 0.8139 1

Clarity - - 1

Table 6.9: Correlation Matrix of the Four Dimensions (Comparison, N = 45)

section; students either did well overall, or not so well. In the comparison section, there
were only six instances in which diagrams were used. In these cases, the use of diagrams
was perfectly correlated with all other dimensions. In five of six cases, this was because
the students scored zero on all four dimensions. Because there were so few students who
used diagrams, scoring would need to be conducted again with a larger sample size for a
more meaningful correlation to be found. The use of student diagrams is summarized by
Figure 6.11. The early semester problem was not included because no students sampled used
diagrams in their explanations.

The scores in Figure 6.11 show that only the Phase II experimental section was likely
to correctly use diagrams to support their explanations (on problems later in the semester).
Students used diagrams even though it was not an explicit part of instruction. Evidently,
students spontaneously came to value the use of diagrams; this idea may have been spread
throughout the class as a result of peer-conferences, but I do not have sufficient data to make
this claim.

Next I analyzed student scores by computing the aggregate scores for each section. Each
dimension (accuracy, mathematical language, clarity, and dimensions) was scored out two
points, so it was possible to receive a maximum of eight points for each explanation. Table
6.10 shows the average scores across sections. The first column of scores provides the average
score with all four dimensions included. Numerically, the Phase II section scored more than
4.5 times higher than the comparison section, and more than 1.5 times higher than the Phase
I section. The second column of scores provides the average for diagrams removed. This
score is also provided because students were not expected or encouraged to include diagrams
in any of the sections. The differences were still numerically large, but not as much so (
Phase II / Comparison = 4.1, Phase II / Phase I = 1.5). The final row shows the average
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Figure 6.11: Frequency of Diagram Scores Received.

scores for the aggregate of the two experimental sections.
I tested for significant differences across sections in Tables 6.11 and 6.12. The first test

was between the comparison section and the aggregate of the experimental sections, to see
if the experimental design had a significant impact. The second test was between the two
experimental sections (Phase I and Phase II), to see if the changes in the design had a
significant impact. Both comparisons were significant when diagram scores were included in
the analyses (Table 6.11). However, when diagrams were removed (Table 6.12) the differences
between Phase I and Phase II was only marginally statistically significant.

Total Average (8 Possible) Diagram-free Average (6 Possible)

Comparison 0.57 0.56

Phase I 1.60 1.53

Phase II 2.66 2.29

Experimental 2.13 1.91

Table 6.10: Average Explanation Scores By Section (N = 45 Per Section)

The final analysis of aggregate scores consisted of looking at average scores by dimension.
For these averages all NA’s for diagrams were converted to 0’s. As a result, the scores for
diagrams represent a combination of the frequency with which diagrams were used and the
quality of the diagrams used. See Table 6.13. As with Table 6.10, the table exhibits full
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Average Explanation Scores Independent samples t−test Sign.

Comparison vs Experimental t = 4.6813, df = 128.767, p = 7.12 · 10−6 **

Phase I vs Phase II t = 2.1424, df = 81.963, p = 0.0351 *

Table 6.11: Statistical Comparisons of Average Section Scores

Diagram-free Average Scores Independent samples t−test Sign.

Comparison vs Experimental t = 4.3828, df = 118.335, p = 2.55 · 10−5 **

Phase I vs Phase II t = 1.7708, df = 85.468, p = 0.0802

Table 6.12: Statistical Comparisons of Diagram-Free Average Section Scores

monotonicity: Phase I is higher than the comparison section on all dimensions, and Phase
II is higher than Phase I on all dimensions. Moreover, there were considerable numerical
differences between the sections. For instance, the Phase II section scored more than five
times as Phase I’s section for diagrams, and more than 17 times as high as the comparison
section.

Accuracy Mathematical Language Clarity Diagrams

Comparison 0.2889 0.1778 0.0889 0.0222

Phase I 0.7333 0.4444 0.3555 0.0667

Phase II 1.0000 0.7333 0.5556 0.3778

Experimental 0.8667 0.5889 0.4556 0.2222

Table 6.13: PAR Scores by Dimension (Out of 2 Possible)

The rest of the analyses that follow focus on change over time. To create a single score
for each time period, I averaged the scores for the two prompts on the mid-semester problem
and the two prompts on the late semester problem. Table 6.14 shows that students in the
experimental sections performed numerically better than the comparison section, and these
differences grew over time.

Students in all sections scored lower on the late semester problem than the mid-semester
problem; this reflects the difference in difficulty level of these two problems. To account for
problem difficulty, I decided to compare scores across sections rather than look at raw scores.
To compare scores I divided all scores by the Phase II experimental scores (i.e., each score
was divided by the Phase II score corresponding to that same problem). These scaled scores
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Early Semester Mid-Semester Late Semester

Comparison 1.11 0.89 0.00

Phase I 1.66 2.61 0.55

Phase II 1.66 3.33 2.50

Experimental 1.66 2.97 1.53

Table 6.14: Average Explanation Scores by Problem (Out of 8 Possible)

represent the percentage of the Phase II experimental score that each section achieved (see
Table 6.15).

Early Semester Mid-Semester Late Semester

Comparison 0.67 0.27 0.00

Phase I 1 0.78 0.22

Phase II 1 1 1

Table 6.15: Average Scaled Explanation Scores by Problem (Raw Score / Phase II Experi-
mental Score)

Table 6.15 shows considerable numerical improvement for the experimental sections. As
the semester progressed, the ratio of comparison scores to the Phase II experimental section
continued to shrink. Simultaneously, the numerical distance between the two experimental
sections also grew, suggesting that the revised intervention had a greater impact on learning
in the Phase II experimental section. These scores are consistent with the patterns of growth
illustrated by the average explanations in the previous section.

Table 6.16 shows statistical comparisons of growth over time between the experimental
and comparison sections, and Phase I and Phase II experimental sections. The results were
computed by examining the change in scores for each section from the early semester to late
semester problems. To do so, I subtracted the average early semester score for each section
from the late semester scores. These results show that the experimental sections learned
significantly more than the comparison section during the semester, and that the Phase II
section learned significantly more than the Phase I section.

Changes along individual dimensions are given in Figure 6.12. At the beginning of the
semester, student performance was relatively similar across sections. Over time, students
in the experimental sections began to perform numerically better across all dimensions.
As with the aggregate scores, these numerical differences grew over time, with the Phase
II experimental section performing even better than the Phase I experimental section. In
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Diagram-free Average Scores Independent samples t−test Sign.

Comparison vs Experimental t = 2.624, df = 35, p = 0.01279 *

Phase I vs Phase II t = 2.8856, df = 22.696, p = 0.008416 **

Table 6.16: Statistical Comparisons of Average Change From Early to Late Semester

general, students scored numerically higher on accuracy than on mathematical language and
clarity. This highlights the difficulty of communicating clearly.
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Figure 6.12: Average Explanation Scores by Dimension.
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6.5 Discussion

The analysis of student explanations further supported the positive impact of Peer-Assisted
Reflection (PAR). At the beginning of the semester, student explanations were relatively
similar across sections. As the semester progressed, students in the experimental sections
improved the accuracy and clarity of their explanations considerably, while the students in
the comparison section did not. Overall, students in the Phase I experimental section scored
over twice as many points as the students in the comparison section, while the Phase II
experimental students scored over four times as many points as students in the comparison
section; these scores highlight the impact of the intervention, as well as the considerable
design improvements that were made between Phase I and Phase II. These improvements
were the result of careful study and analysis of student engagements during Phase I. Through
PAR, students engaged in peer-analysis to learned to self-reflect on the quality of their
own explanations. Systematic training and regular practice analyzing a variety of examples
supported students to construct their own high-quality explanations.

Students in all sections scored relatively low at the beginning of the semester, especially
in terms of mathematical language and clarity. Even though the students were enrolled in
a college level mathematics course, it was difficult for them to clearly express their math-
ematical ideas. Unfortunately, the comparison section of students who received standard
instruction developed relatively little in terms of explanation skills. Not a single one of
these students received any points on the late semester problem; their explanations were
largely incoherent. This suggests that students may make little progress over the course of a
semester in learning to explain mathematics unless it is made a specific focus of the teaching
and learning environment.

In contrast, students in the experimental sections made considerable improvements in
their explanations. Not only did they increase the accuracy of their explanations, but their
clarity and use of language was also much greater than the baseline of the comparison
section. Growth was most dramatic in the Phase II experimental section, due to iterative
design improvements.

Accuracy scores were consistently higher than mathematical language and clarity in all
sections; a certain level of accurate understanding seems prerequisite to effective communi-
cation. This highlights the challenge of separating communication from understanding (cf.,
Sfard, 2007).

Only students in the Phase II experimental section effectively used diagrams to support
their written explanations. Curiously, the use of diagrams emerged mid-semester, and was
not an explicit focus of instruction. It may be that the use of diagrams emerged spon-
taneously as a means of improving communication, and that it spread as a result of peer
interactions; without more data it is not possible to tell. Regardless, it is clear that ex-
plaining mathematics is difficult for students, and that students are unlikely to learn how to
explain effectively without considerable support. Peer-Assisted Reflection (PAR) appears to
provide such support.
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7 Mechanisms for Learning

Previous chapters provided evidence of learning gains for students engaging in PAR. I now
delve into the specific mechanisms of PAR that seemed to support learning. PAR required
students to work in iterative cycles: students made a preliminary attempt at a problem,
receive feedback and thought about the problem more deeply, revised, and turned in their
final solution. Within these iterative cycles, students encountered new ideas to support their
learning: by spending extra time with a problem, by discussing with peers, by explaining
and hearing explanations, and by seeing the work of others. These four sources can be
consolidated into the acronym IDEA, meaning Iteration, Discussion, Explanation, Al-
ternatives. In contrast to other activities, PAR seemingly allowed students to better close
the feedback cycle; in more general learning contexts, students often receive feedback that
is never used, limited in usefulness.

The data I draw upon in this section are primarily for illustrative purposes. Given the
nature of my data collection, it is not possible to make claims that certain mechanisms had
greater impacts than others, or that these mechanisms impacted all students. However,
the evidence I collected indicates that at least some students benefited in these ways, and
provides a tentative theoretical framework for understanding the impact of PAR.

7.1 Iteration

The iterative cycles of PAR seemed to change students’ perceptions of problem solving.
Rather than viewing homework as something that is attempted once, turned in, and forgotten
about, PAR forced students to revisit their work. As a result, students seemed to increasingly
view their first draft of the problem as a work in progress, and didn’t expect it to be correct.
As Andy said:

With the PAR problems I honestly think we’re not supposed to get it correct the
first time around.

Other students also made note of this. As Tony noted one day during office hours:

I like the PAR. It’s like we get to come to class and be wrong, and that’s okay.
Then later we get to revise our work and be right.
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Mike made a similar remark:

PAR is good. I like how we can put our initial solution down, and even if it’s
wrong it doesn’t really matter, because we can just talk about it with a group
member the next day, and figure it out together. And generally you don’t get
stuck on a wrong solution, you figure it out.

These quotes from students (and others not shown) indicate that PAR helped some
students view homework in a different way. Students worked on a problem, received new
information from a variety of sources, and tried again. This activity structure seemed to
increase students’ persistence. Rather than giving up when they couldn’t solve a problem on
their own, students realized that getting input from peers, the instructor, or other resources
was often sufficient to help them solve challenging problems. Persistence in the face of failure
is an extremely important skill that students seemingly developed through PAR.

PAR also influenced the way that students perceived mathematics and their role as
students in the classroom. In the interviews, students noted that both explanation and
justification were skills that were emphasized in the course and that they learned to develop.
Andy captured this sentiment well in his interview:

What this class has really showed me, now that I think about it, is the importance
of justification. Because Dan talks about it all of the time. So we’re always
looking to justify stuff. So if I look back on the written homework assignments
I did well on, you can see this evolution of here’s my answer, and here’s why I
think it’s right.

As students developed these skills, they learned to analyze the work of others and make
assessments as to whether or not they thought it was correct. This positioned students
as authorities and liberated them from complete reliance on the instructor’s judgments of
correctness.

PAR provided students with crucial practice in how to collaborate in an honest and
collegial way. In the interviews, students emphasized that they could be honest with their
partners, and that as long as they communicated in an appropriate, tactful way, it was not
problematic. As Maria notes:

I feel like all of the students are pretty open about their work and are not upset
if I say something’s wrong. Normally if I see something I don’t understand or
don’t think is right I point it out and ask them about it. I’ll point it out and ask
them how do you know it’s right?

The conclusion that students learned to collaborate better through this process garners
evidence in the types of group work that took place in the class and the study groups that
students formed outside of class to solve problems together.
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By the end of the semester, more students wrote solutions containing complete, coherent
sentences describing mathematical ideas compared to students who did not receive PAR
training. Students learned how to better express their ideas both verbally and in writing,
and they seemingly began to realize the importance of communication. Sometimes time
alone, without even working with other students, was enough to support students to revise
their work. As Chris notes:

The PAR stuff works out the second time I go over it; then I usually understand
it. Like the first time, like today, just before I came here, I was looking over the
PAR that we have due on Tuesday, and I found that since I’ve already been doing
stuff for awhile and I didn’t get much sleep last night and stuff, I’ll have to come
back to it this weekend. If I try to do it the same way as I’ve always done math
before, just do it and knock it out, it’s not gonna be good enough. After the
feedback part, I usually understand it, but not because of the feedback, which
I found interesting. I have to go over it, have some time to not think about it,
and then think about it again. When I think about that now it makes sense, in
terms of trying to memorize stuff for history class or something. I can go over it
and keep memorizing for 2 hours, and I’ll forget it again. If instead, I go over it
for 20 minutes, leave it for half a day, go over it for 20 minutes, and go over it 20
minutes the next day, I’ve only spent 1 hour on it, but I’ve actually memorized
it instead of just seeing it over and over again at the same time.

Chris’ quote illustrates that sometimes students were able to conquer problems because
they were given additional time to think about them. In traditional homework cycles students
don’t have the same period after working on the problems (interviews revealed that students
used to work on it, finish up, and turn it in a single period). PAR prevented students from
doing this. During these time periods, students were exposed to new ideas, as highlighted
by Kevin:

If we are learn something in the class that day which applies to the PAR I’ll go
back and put that in. Or if another problem on the written homework ties into
the same ideas I’ll go back and revise the PAR.

Iteration supported students considerably. On PAR days a large number of students
would come to office hours after class (typically 5-10) to work on the PAR problems. Stu-
dents worked collaboratively to solve the problems, only asking for help as needed. Because
students had already worked on the problems, each student had ideas to contribute to group
discussions. As students worked through these iterative cycles, they came to recognize that
even though they couldn’t solve it on their first try, they could solve it eventually.
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7.2 Discussing the Problem Together

As students noted in the interviews, often both partners in a peer-conference didn’t know
how to solve some part of the problem, and they were forced to figure it out together. Even
given a short amount of time, this was sometimes effective given that students had already
done a lot of thinking about the problem previously. Consider Lance and Peter working
together on PAR10. Both students were struggling with part (d), which required them to
come up with an estimate for the error in their method. Initial solutions are given (see
figures 7.1 and 7.2).

Figure 7.1: Peter’s Initial Solution to PAR10, Part d.

Figure 7.2: Lance’s Initial Solution to PAR10, Part d.

Both of these initial solutions lacked an adequate method for estimating error. Peter’s
method was focused on estimating the error from the inside, while Lance focused on es-
timating from the outside. These different opinions meshed together nicely in the PAR
conversation:

Peter: One thing, I just wasn’t sure how to do the error either, really.
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Lance: The error?
Peter: Yeah
. . .
Lance: Were you trying to. . . get an under?
Peter: Yeah, initially.
Lance: What I was thinking was you could make an over-approximation. Take this

right here and create an over-approximation and then subtract what you got from
here with your over-approximation and it should get you this space that you were. . . that
you didn’t have filled in initially.

Peter: So it’s showing it has to be between those two values. That’s the error.
Lance: Right, that actual value is going to be between your low approximation and

your high approximation.
Peter: Yeah, that makes sense.
Lance: And by subtracting them you’ll find the error between the approximations.
Peter: Okay, cool.
Lance: Or at least I think that’s what it’s supposed to be.
Peter: Yeah
Lance: Maybe
Peter: I read this thing while I was doing yours and it. . . that made it seem like. . . it

says you want to think about bounding your error with some larger value. So that
would make sense then.

Lance: Right. Overestimate.
Peter: Alright.

The final solutions show how the students revised their solutions accordingly. Lance’s
solution is given in figure 7.3.1

2. I will draw blocks inside my hand and get the area of these blocks and add them
together for my approximation.

4. You could find the area of the hand using an overestimate. Then subtract the estimate
you just got from your first estimate. This will show you the difference between the
two which will give you the error.

While the idea is not fully expressed, Lance draws a diagram that shows all of the blocks
inside the hand. Then, he talks about getting an over approximation, and that the difference
between the two would be the error. This method if executed properly would indeed calculate
an overestimate of the error. Peter also improved his solution (see figure 7.4).

In his solution Peter fully explains the idea of overestimate and has an accompanying
diagram that makes his work clear. While this is only one example, it shows that by working
together students were able to make new insights into the PAR problems. A number of

1Lance’s solution is typed due to the poor image quality of the scan and difficulty of reading the hand-
writing.
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Figure 7.3: Lance’s final solution to PAR10.

students noted this in the interviews as well. For instance, Mike notes that having the
opportunity to discuss and get new ideas is very helpful:

It’s also just talking to the person you’re working with. Every time, unless
I’ve gotten it spot on, I’ve always added something from talking to the peer.
Generally, most students are helpful. It doesn’t really matter on intelligence
level. If you talk it out with anyone you can figure it out.

Andy gave a similar response:

I do spend time before class working on these things, but it always seems like I
get something wrong. I feel like the hard part is the justification. It would be
almost impossible if I had to do it myself. It’s when I get to talk to other people,
and when I get to bounce ideas off of them and hear their ideas that I can see
why it’s right or wrong, and how to justify that.

7.3 Explanation

Explanation is a powerful tool for promoting learning. In this context explanation works
in two ways - students explain their ideas and are exposed to the explanations of others.
Sometimes when students try to explain their own ideas, new insights are revealed or in-
consistencies are uncovered. Explanations also allow students to provide one another with
individualized feedback. Consider Revati and Zane’s discussion of PAR5:
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Figure 7.4: Peter’s final solution to PAR10.

Revati: So explain to me what you meant in ’b’ and ’c’. Cause I feel like you have the
right idea, you just didn’t explain it as well as you could.

Zane: So the equation. . . isn’t that equation used to find the slope.
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Revati: Wait, what? Say that again.
Zane: This equation? It’s used to find the slope. So,
Revati: So explain, say it out loud, explain to me what this, in terms of your graph,

what that means. And if you don’t know that’s totally fine. I can help you. That’s
what we’re here for.

Zane: I dunno
Revati: That’s fine. So what this means... you understand what this is, right? That’s
f ′(a), which is the derivative.

Zane: Yeah
Revati: This is the really long way to find the derivative, okay?
Zane: Okay

In practicing their explanations, students learned a lot about communication. As Maria
said, PAR helps her learn:

how to make it easier to read from another person’s perspective. It’s one thing if
I think it looks good, but other people look at it and say it doesn’t make sense to
me. So it helps me figure out how to communicate better. It helps me to explain
things in a way that is readable to others and not just myself.

As Bob said,

I like the PAR. I’d take it over the other homework. You do about the same
amount of work, and I think I actually learn more from it. You do have to
explain what you did, rather than just say here, I got this magical number. You
actually understand the process and I think that helps more in learning than just
getting the magical number. I noticed I’ve been getting better grades on PAR
than written homework, so I’m trying to do the written homework like I do the
PAR, and hopefully that will help my grade go up. In my physics class we have
these problem sets. I’ve actually started to use the PAR thing on those. Not the
checklist, but the general method.

7.4 Exposure to Alternatives

On many occasions students recognized errors in their own solutions simply by looking at
one another’s work. Consider the following excerpt from PAR7. As soon as the students
finished silently reading one another’s work, Revati exclaimed out that she saw her errors:

Revati: I know I did it all wrong. I was reading yours and was like, ’Oh my goodness.
How did I miss this’. Okay, so. You did a really good job explaining, so you have
all that right. And your math is all correct so... good job! You could have turned
this in as your final and gotten 100%
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Federico: Okay, thank you. Em... Well I think now you know the errors?
Revati: I feel so dumb because I know I should have done that. I don’t know why I

didn’t do that. Can I see mine?
Revati: I don’t even know what I was doing. I was trying to do this this morning.

Probably not the best idea in the world.

Mike summarized this same experience:

If I got stuck at a part of the PAR, and I’ve looked at theirs, and their steps
make more sense than mine I’ll consider it, look over what they did, and change
what I did wrong.

As did Harry:

I really like looking at other people’s initial models. I can see what they are
thinking, it puts me in their head, and I can see that. A lot of times I’m really
wrong and I can see different ways to do the same thing.

In his interview, Kevin also spoke a lot about learning from reading other students’ work:

All of the time I look at how other people work the problems, because everyone
works it differently. Algebra was really weak for me coming into this class, and
just seeing how other people approach things has helped me out quite a bit.

Kevin continued on, elaborating about darts:

Darts gives us 3 examples of how the PAR should have been, or at least a part
of the PAR. It shows you what you need to do to justify a little better. All in all
it helps, in PAR especially, but really the whole course because we’re supposed
to justify a lot of our answers. All in all the darts it shows you how you should
work things, or at least an example of how you should, and ways you shouldn’t,
so it’s helpful.

Other students gave similar responses, noting that the darts activity was a useful means
of gaining access to sample working in order to assess their own work.
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8 Summary and Impact

The main purpose of this dissertation was to better understand how reflection could promote
explanations and improve performance in mathematics. Introductory calculus is a notori-
ously difficult area of mathematics. This made it an excellent context for studying a novel
approach to learning: I was unlikely to encounter ceiling effects on student growth and the
intervention could have a meaningful impact on students and their future career goals.

8.1 Impact on Learning

The design had two primary goals: (1) improve lack of success in introductory calculus, and
(2) deepen shallow understandings of concepts in introductory calculus. Through iterative
cycles of problem solving, reflection, feedback and analysis, and revision, students learned
to explain and reflect on mathematics. PAR was implemented in a context in which there
were classroom discussions involving reflective questioning, student self-assessments of their
work on a daily basis, and students regularly working collaboratively in groups and explaining
their mathematical reasoning to others. Although the context of this study was introductory
calculus, PAR is a flexible method and can be applied to a variety of contexts.1

During phase I success rates (A,B,C) were improved by 13%, and during phase II they
were improved by 23%. Exam scores also echoed this improvement, with differences of up
to 10-15% on individual exams. Students significantly improved their ability to explain
mathematical ideas; students improved on their use of language (mathematical terms and
avoidance of pronouns), use of diagrams, organization of work, and explaining why, not
just what. Considering the students who were sampled for qualitative analysis, the Phase
I explanation scores in the experimental section were more than twice as large as those in
the comparison section; during Phase II, the scores in the experimental section were over
four times as large as in the comparison section. Students learned how to look through
the work of others, make sense of it, and provide meaningful feedback. These skills were
then seemingly transferred to self-reflection. Through engaging in PAR students learned to
work collaboratively. The iterative nature of PAR helped students develop the persistence
required to solve challenging problems.

1Since the end of this study, it has also been used in ordinary differential equations and introductory
mechanics.
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8.2 Design

8.2.1 Design Products

This dissertation was premised on the importance of high-quality tasks. Throughout the
pursuit of this project, I collected and modified a large number of mathematical tasks (see
appendix G). In particular, I found that having additional opportunities for explanation
and generating examples supported student interactions, because the students had different
solutions to discuss with one another. This set of tasks is now in use by instructors at the
math department in which the study took place. I believe the tasks would also be of great
applicability to others teaching introductory calculus. The task design principles are broadly
applicable.

I also generated questions that could be useful for problem solving or reflecting on solu-
tions (see appendix A.3). Student interviews showed that these questions were not used in
a way that optimally supported student learning. Nevertheless, with additional work, these
could potentially be incorporated into a successful intervention. For instance, I believe there
may be utility in integrating these questions into an online learning environment, which often
doesn’t provide many opportunities for reflection.

The PAR activity structure and darts training exercise are very general methods that
should be broadly applicable. I believe that PAR techniques could be used in a wide va-
riety of mathematical and scientific domains (e.g., physics and chemistry) with little to no
modification.

8.2.2 Design Evolution

I refined the experimental intervention over the course of three stages. I drew primarily on
the insights that: (1) explanation promotes learning (Chi et al., 1994); (2) peer-analysis and
self-reflection are closely related (Black et al., 2003), and (3) self-reflection requires practice
analyzing a large number of examples of various quality (Sadler, 1989). These insights guided
me to create a design in which students had lots of opportunities to analyze work and practice
explaining mathematics, yet, they provided little guidance how to implement them in the
classroom.

The first stage took of the study place in an elementary algebra course. Initial attempts
were largely ineffective. However, they led to two important insights: the expert barrier, and
the impact of an authentic audience. The expert barrier prevented students from engaging
meaningfully with the tasks, because the students perceived the tasks as ones that only
experts could engage in, even though they were exactly the types of tasks that could help
the students gain expertise. This was addressed by reframing the tasks as having students
provide feedback, but not being expected to make explicit judgments about correct and
incorrect work. The other insight was that for students to learn to better communicate and
explain their ideas, they needed an authentic audience to explain to. It was difficult for the
instructor to provide feedback, because the students simply thought the instructor was being



CHAPTER 8. SUMMARY AND IMPACT 109

overly critical. However, when other students responded that they couldn’t understand the
explanations, it provided visceral feedback that the explanations were lacking. Relatedly,
giving students an authentic audience for their analyses (helping a peer rather than just
completing a mathematical task), they were more likely to see the utility of the activity.

These insights were embodied into a standard tool for analysis and reflection that served
the basis for the intervention in phase I. Simultaneously, I created a regular activity structure
called Peer-Assisted Reflection (PAR), that provided students with opportunities to: work
on difficult problems, self-reflect, analyze a peer’s work and provide/receive feedback, and
revise and turn in a final solution. The logic behind this structure was that it would help
students make connections between self-reflection and peer-analysis, and that the regular
structure would make it easier to implement into regular classroom practice.

The iterative nature of the PAR cycle turned out to be crucial to its effectiveness. Stu-
dents were forced to regularly revisit their work on a single problem, in contrast to their
standard practice in which they worked on a problem once, turned it in, and forgot about
it. PAR problems were difficult, and most students could not solve them on their first try.
However, between peer-conferences and other collaborations that took place before their final
revisions, students were able to make significant progress and solve many of the problems.
This helped them see that through sustained work it was often possible to solve problems
that they couldn’t solve initially on their first try. Evidently, the iterative nature of PAR
made it a powerful intervention for helping students develop persistence in problem solving.

The communicative aspects of explanation also played an important role in PAR’s effec-
tiveness. Thinking through another person’s communication helped students think about
various aspects of each other’s solutions. The focus on communication was well-aligned with
the framing of helping other students be more successful, so students were willing to put in
effort to provide meaningful feedback.

As powerful as the activity structure was, it also required considerable training for stu-
dents to engage with meaningfully. During phase II a regular training activity, darts, was
used to great effect. By having students analyze sample work for problems they had just
completed, it removed the difficulties and time constraints of working out a new problem
before analysis. Also, because students had just spent many days working through the PAR
problem, they were generally interested in knowing the correct answer the problem, so they
actively engaged with the sample solutions, trying to determine what was correct.

These key features of PAR are summarized as follows:

• The PAR cycle provided opportunities for students to revisit and revise their work
multiple times. This promoted persistence in problem solving.
• Students analyzed one another’s work silently before conferencing. This helped stu-

dents focus on each other’s reasoning, not just the problem itself.
• Only the final solution was graded; this helped students see the initial solution as a

learning opportunity.
• A small number of targeted prompts helped students focus on important aspects of

their solution.
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• Students explained their work to their peers; they received visceral feedback about
communication from peers who could not understand their solutions.
• PAR focused on providing feedback, not grading. This helped students overcome the

need to provide a “correct” answer.
• Students received regular training and instruction on how to analyze others’ work and

provide meaningful feedback. This seemed to improve the quality of their conversations
in peer conferences.

The two other components of the design, (a) opening problems and self-assessments,
and (b) the reflection framework, also evolved throughout the study. Reflective questions
appeared to have little impact on students’ mathematical learning practices outside of the
classroom; their utility is unclear, but most likely limited. Opening problems were well-
accepted by students and helped facilitate class sessions. Some students connected the use
of two columns to the revision cycles of PAR, but otherwise, they were mostly indepen-
dent of PAR, and could likely be modified without diminishing the impact of PAR. Finally,
some students found rating their understandings using percentages to be useful, and self-
assessments provided information to the instructor, but I was unable to demonstrate that
they had a significant impact on students’ reflection skills. Even during phase II students
seemed to struggle to construct meaningful questions.

8.3 Toward a Theory of Peer-Analysis

There is still relatively little literature on peer-assessment and peer-marking. Unfortunately,
this area suffers from a lack of conceptual clarity. A number of distinct activities are of-
ten lumped under the heading of peer-assessment, yet the various activities have different
theoretical underpinnings and potential for supporting student learning. In my theoretical
framing, I argued for the use of the term peer-analysis rather than peer-assessment, to make
a clear distinction between these types of activities.

In particular, I found that framing the analysis tasks in a way that didn’t make students
feel as though they had to make judgments of correct and incorrect was an important part
of engagement. In contrast, the explicit purpose of peer-marking is to judge correctness.
This overemphasis on grades seems to negate some of the benefits that would be achieved by
supportive feedback (R. Butler, 1988). Through peer-analysis students provided feedback
to one another that was ultimately used to revise and improve their solutions. In peer-
marking, this is generally not possible because the grades are being assigned for the purpose
of evaluating the quality of a student’s work, not allowing for revision. Finally, peer-analysis
pushed students to think about one another’s reasoning in depth. Peer-marking is unlikely to
promote such thinking, because a salient feature is classification and sorting, not necessarily
deep understanding. For all of these reasons, peer-analysis is a very distinct activity from
peer-marking, and should be recognized as such. The literature would benefit from further
conceptual clarity on this matter.
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To further theories of peer-analysis, I have identified a number of potential research areas
based on the present study.

• There is a need to better understand the impact of student feedback compared to
instructor feedback. While instructors are more likely to have more accurate feedback,
students seemed much more likely to listen to other students regarding matters such
as communication.
• The darts training activity (analyzing three example solutions) supported students to

improve the quality of their feedback, but it is only one of many possible training
activities. Better understanding what types of training, how often they should occur,
and when they should be sequenced in a course would be beneficial.
• I found value in students having opportunities to practice explanations. In particular,

there seemed to be great utility in having students practice verbal explanations in
addition to written. However, there are many ways students could be asked to explain
their reasoning (e.g., how they thought about a task, how they understand a concept,
how they might approach a proof) and a number of different formats for providing an
audience (e.g., partners, small group, whole class). Which of these formats might be
most effective and how they would support students to take risks is still unknown.
• The iterative design of PAR seems to be a promising intervention for promoting per-

sistence. However, explicit conversations or student reflections were never targeted
at developing this skill. It seems worthwhile to study how PAR might be used in
combination with other interventions to impact student dispositions.
• I identified mechanisms through which PAR promoted learning (Iteration, Discussion,

Explanation, and exposure to Alternatives). These mechanisms are not necessarily
unique to PAR and could be used in other contexts. It would be worth study to better
understand how some of these mechanisms (in particular iteration and exposure to
alternatives) contribute to learning.

As with any new insight, the potential avenues for further inquiry are even greater than
what seemed evident before the project began. These are just a few areas that I feel might be
productive, but there are many other unanswered questions (e.g., how to best use reflective
questioning, helping students self-assess and ask questions, promoting student justifications).

8.4 Future Directions

Given the success of the PAR intervention, it is currently being implemented in all sections of
introductory calculus at the university the study was conducted at. This opens up a number
of productive research paths: how to train relatively inexperienced teaching assistants to
implement the activities, how suboptimal implementations might still impact learning, etc.

Another area I am currently pursuing is better understanding how to influence student
dispositions towards learning. Collaborating with a number of physics educators I have been



CHAPTER 8. SUMMARY AND IMPACT 112

developing a Guided Reflection Form (GRF) to help students reflect on a number areas that
are crucial to disciplinary practice. Combining the impact of PAR and the GRF together, I
am interesting in studying how such dispositions develop.
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A Frameworks

A.1 Pilot Study

The execution, explanation, justification framework was populated primarily by entries sug-
gested by the students in the experimental section. It was designed for the analysis of written
work.

Execution Explanation Justification)
(what did you do?) (why did you do it?) (did you do it correctly?)
Show all solution steps in order

Define all variables in the problem

Write down important infor-
mation from the problem statement

Include units on all quantities

Answer all questions asked in
the problem

State any assumptions made

Explain why you chose to solve the
problem a certain way

Draw a picture or diagram

Use words to explain meaning
of arithmetic operations in problem
context

Explain choice of representations

Check units

Estimate or solve a simpler problem

Interpret answer using the problem
context

Solve the problem using another
method
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A.2 Phase I

The framework for phase I revolved around reflective questions in three categories: reason-
ing, justification, and conceptualization. These questions were designed both to aid problem
solving and for reflecting upon work.

About the reasoning involved in solving the problem:

• Why would you ...?
• What was the purpose of...? How does it help?
• How would someone know to...?

About the mathematical justification involved in solving the problem:

• Why can you ...? Why does it work?
• How do you know that...?
• Do things always work this way? What if ... was different?

About the conceptualization of the problem:

• What does it mean that ...?
• What’s really going on here?
• How does one visualize, interpret, or think about ...?
• What other situations might ... apply to?
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A.3 Phase II

The reflective questioning framework for phase II was simply a streamlined version of the
phase I framework.

Approach	  

Jus,fica,on	  Meaning	  

In order to develop reflective understanding, it is important to practice asking reflective
questions during and after problem-solving. A number of such reflective questions are given
below:

• Approach: How would you approach . . . ?

– Why would you . . . ? How would someone know to. . . ?
– What was the purpose of. . . ? How does it help?

• Justification: How do you know that . . . ?

– Why can you . . . ? Why does it work?
– Do things always work this way? What if . . . was different?

• Meaning: What does it mean that . . . ?

– What’s really going on here?
– How does one visualize, interpret, or think about . . . ?

If you really understand something, you should be able to answer these questions.
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B Self-Reflection Forms

B.1 Pilot Study

Big Picture: What was the approach to solving the problem?

Accuracy: Do you think the problem was solved correctly? How do you know? (Note
any errors you found.)

Questions: What are you unsure about in the problem or response? What do you want
to know more about?



APPENDIX B. SELF-REFLECTION FORMS 123

B.2 Phase I

Note: This reflection form was implemented starting with sixth PAR problem. For the first
five PAR problems the form from the pilot study was used.

Communication: Was your solution communicated clearly?

Did you clearly explain your reasoning (i.e. why you did what you did)? yes no

Did you avoid the use of pronouns? yes no

Did you give a written explanation of your calculations/graphs? yes no

Did you label all graphs, include units, etc.? yes no

Accuracy: What evidence do you have that you solved the problem correctly?

Was the problem solved in multiple ways? yes no

Was the solution checked in any way? yes no
If so, how?

Did you explain (in writing) how you know your solution is correct? yes no

Questions: What are you unsure about in the problem or response? What do you want
to know more about?

Extension: What did you learn from this problem that you can apply to solving other
problems? (Did you learn something about a concept, a problem-solving technique, etc.?)
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B.3 Phase II

Hwk0X PAR Problem Problem Solver’s Name:

On a scale from 0% to 100%, how confident do you feel in your solution?

Completeness, Organization, and Labeling
Did you answer all questions asked, showing all steps, in the proper order? yes no

(If applicable) Did you label and explain all graphs, include units, etc.? yes no

Explanations
Did you explain why (not just what)? yes no

Use of Language
Did you avoid the use of pronouns (and other ambiguous language)? yes no

(If applicable) Did you consult definitions of mathematical terms you used? yes no

Justification
Did you justify your solution (in at least 1 of the following ways): yes no

• by checking if answers to different parts of the question are consistent?
• by explaining (in writing) how you know your solution is correct?
• in some other way? If so, how?
Note: Show explicitly on your solution how you justified your solution.

(Optional:) Is there anything in particular you’d like to discuss with your partner?
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C Peer Feedback Form

C.1 Pilot Study

Note: The peer- and self-reflection forms were identical in the pilot study.

Big Picture: What was the approach to solving the problem?

Accuracy: Do you think the problem was solved correctly? How do you know? (Note
any errors you found.)

Questions: What are you unsure about in the problem or response? What do you want
to know more about?
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C.2 Phase I

Note: This reflection form was implemented starting with PAR06. For PAR01-PAR05 the
form from the pilot study was used.

Communication: Was their solution communicated clearly? (Give at least one sugges-
tion to improve the presentation of the solution.)

Accuracy: What evidence did they provide that the problem was solved correctly? (Push
your partner to justify “how they know;” also, note any errors you found.)

Questions and Feedback: What are you unsure about in their solution? How could it
be improved?



APPENDIX C. PEER FEEDBACK FORM 127

C.3 Phase II

Hwk0X PAR Problem Peer-Assister’s Name:

Communication: Give at least one suggestion to improve the communication of the
solution. (Focus on explanations, imprecise use of language, organization, labeling, etc.
Be specific: don’t say “it was hard to follow” or “part 2 was unclear;” say why it was hard
to follow, what was unclear, and how to improve it.)

Correctness: Note any errors you found. (Focus on misunderstanding of concepts, misuse
of mathematical language, calculational errors, incomplete answers, etc. Be specific: don’t
just say “part 2 is was wrong;” say exactly what is wrong, why it is wrong, and how to
improve it.)

(Optional:) What other feedback do you have? How else could the solution be improved?
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D Yellow Paper

D.1 Pilot Study

At the end of each class period, students were asked to answer a number of written reflection
questions. They are given:

1. Answer the day’s guiding question.
2. “Traffic light” how well you understood the lesson.
3. Explain something you learned today as if you were explaining to a classmate who

missed the lesson.
4. Ask one question about mathematics.
5. Tell me something else you think I should know.

Examples of guiding questions that were used are given:

1. What is the role of parentheses in algebra?
2. How does recognizing expressions help us solve equations?
3. How does ”balance” relate to solving equations?
4. How do you know if an equation is a line?
5. Why focus on equations where the right hand side is 0?
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D.2 Phase I

Assessment of Learning Name:

On a scale from 0 to 100%, rate how well you understand today’s class, where 100% =
understood everything, 50% = understood half of the class, and 0 = understood nothing.

What questions do you have? (What was unclear? How does the day’s lesson relate to
other math concepts?; Write at least 2 questions.)

Tell me something else you think I should know.
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D.3 Phase II

Assessment of Learning Name:

On a scale from 0 to 100%, rate how well you understand today’s class, where 100% =
understood everything, 50% = understood half of the class, and 0 = understood nothing.

Write at least 1 math content-related question (denoted with a Q). If you can’t think of
any questions, you may write a conceptual exam question (denoted with an E next to it).

(Optional:) Tell me something else you think I should know (or ask non-content ques-
tions).
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E Survey Questions

1. How do you define “problem solving” in mathematics?
2. How do you know when you’ve “solved” a mathematics problem? (ie. how do you

know when you’re “done?”)
3. How does explaining mathematics relate to understanding mathematics?

For questions 4-7, imagine that you and your classmates have completed your homework
assignment (independently), and have written your solutions on paper.

4. What might you learn from having fellow students look at your work?
5. What might you learn from looking at the work of fellow students?
6. How might giving and getting feedback from other students be better than from the

teacher?
7. How might giving and getting feedback from other students be worse than from the

teacher?

The following questions were borrowed (with permission) from the Modified Indiana
Mathematics Belief System (MIMBS). Note that Belief 2 has been reverse coded in this
study, in order to make it consistent with the other scales; all of these scales represent
positive beliefs.

Belief 1 (Student’s Self Confidence): I can solve time-consuming mathematics problems.

+ Math problems that take a long time don’t bother me.
+ I feel I can do math problems that take a long time to complete.
+ I find I can do hard math problems if I just hang in there.
- If I can’t do a math problem in a few minutes, I probably can’t do it at all.
- If I can’t solve a math problem quickly, I quit trying.
- I’m not very good at solving math problems that take a while to figure out.

Belief 2 (The Nature of Mathematics): Mathematics problems cannot be solved by simply
finding the correct procedure.

- Learning to solve math problems is mostly a matter of memorizing the right steps to
follow.

- Most math problems are easy to solve once you figure out what type of problem they
are.
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- Any math problem can be solved if you know the right steps to follow.
+ Many math problems cannot be solved by following a predetermined sequence of steps.
+ Some math problems aren’t like any of the common types of problems.
+ There is no procedure to solve many math problems.

Belief 3: Understanding concepts is important in mathematics.

+ Time used to investigate why a solution to a math problem works is time well spent.
+ A person who doesn’t understand why an answer to a math problem is correct hasn’t

really solved the problem.
+ In addition to getting a right answer in mathematics, it is important to understand

why the answer is correct.
- It’s not important to understand why a mathematical procedure works as long as it

gives the correct answer.
- Getting a right answer in math is more important than understanding why the answer

works.
- It doesn’t really matter if you understand a math problem, if you can get the right

answer.
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F Interview Protocol

Here I provide the final version of the interview protocol that was used during phase II of the
study. There were some minor changes from the phase I protocol, but most of the questions
were the same. The script and questions follow.

As you know, the math department is piloting some new ideas to help students in math
160 develop deeper understandings of calculus. It’s my job to find out if they’re working, and
how they might be improved. So I’d really appreciate it if you could be completely honest
with me. If something just isn’t working, the department needs to know it. If something
can be improved, learning that would be great too. And if something has been helpful,
it’s important to know that, too. On the basis of what students like you tell me, the ideas
the department is trying will either be abandoned or expanded. For that reason, it’s really
important for you to be honest with me. Anything you say is strictly confidential, and will
not affect your grades in any way.

We’ll begin by talking a little bit about the course in general, then the PAR, working
with other students, daily reflections, and finally any other thoughts you have. Do you have
any questions about the purpose of this interview or what I’m asking from you?

1. Opening Questions

a) What is your major and mathematics background? Have you taken calculus
before?

b) How has this class been different or the same as other math classes you’ve taken
in the past?

i. Same?
ii. Different?

c) In this class, what’s working well and what’s working not so well for you?

i. Well?
ii. Not so well?

d) How much time do you spend outside of class working on this course?

2. PAR

a) Let’s discuss the PAR. What’s working well and what’s working not so well for
you?
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i. Well?
ii. Not so well?

b) After you complete the PAR independently, you do a self-assessment. What works
well and not well about that?

i. How do you typically do the self-assessment?
ii. When do you do it?

c) Do you feel like the self-assessment portion of the PAR is related or unrelated to
the peer-assessment portion?

i. how is it related?
ii. how is it unrelated?

d) Does PAR have any influence on how you do your regular homework assignments
or not? (For example, the self-reflection or peer-conferencing)

e) What type of PAR feedback have you received from other students?

i. To what extent has it helped, or not?
ii. Have you ever revised your work based on the feedback? How? Could you

tell me a little more about that?

f) Do you feel like some students are more helpful than others, or are they all about
the same?

i. Do you have any way of determine whether or not you think a student’s
feedback is correct, or not really?

ii. Were there any times where you disagreed with feedback or didn’t take it into
account, or do you always agree with / use the feedback? Can you tell me
more about such a situation?

iii. Do you feel like you can tell whether or not another student knows what they
are talking about, or not really? If so, how would you do it? If not, why not?

iv. Have you ever looked at another student’s work and felt like you did something
wrong, or has that never happened to you? How do you determine whether
or not you think they are correct?

g) What type of feedback have you tried to give to other students?

i. Did other students indicate it was helpful, or not? What did they say?
ii. Do you feel like you are able to be honest with other students about their

work, or not really? (please elaborate)
iii. Have you ever noticed something that you didn’t talk to the other student

about? (please give an example)
iv. Do you ever have feedback that you don’t share because you’re not sure about

it, or do you always say what you’re thinking?

h) Do you ever revise your work for reasons other than peer-feedback? What might
those reasons be and what would it look like?

i) Do you feel like the way you engage in PAR has changed over the course of the
semester, or has it stayed the same? (could you elaborate with an example?)
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j) To what extent has the “darts” activity supported or not supported you to be
successful in PAR, and in the course more generally?

i. Supported you?
ii. Not supported you?

3. Working with other students

a) How do you feel about working with other students in this class? What are some
positive and not-so-positive reactions you’ve had?

b) Outside of the PAR, have you worked with other students in this class? for
instance, on homework or labs. in study groups? How about TILT tutoring?

i. If so, how did you form your study group(s)?

c) Is working with other students something you do in other classes? in study groups?

i. If so, is PAR similar or different from the way you work with other students
outside of class?

ii. If not, do you think you feel differently about PAR because you don’t usually
work with other students?

4. Reflections and questions

a) In this class, you write reflections and ask questions every day. What are your
positive and not-so-positive reactions to doing the daily reflections?

i. To what extent have reflections and questions supported your learning, or
not?

ii. Do you feel like the instructor has taken your feedback into account, or not
really?

iii. How do you determine the percentage of what you knew? What is helpful
and not helpful about this?

iv. How do you come up with questions? Are they “legitimate?” When do
you tend to write them down? How does it fit in with other activities of
participating in class?

v. Do you feel like you have enough time to complete the daily reflection in class,
or do you feel rushed?

b) What do you think about the opening problems? Have they been helpful or not
really? Why?

i. On the opening problem, your paper is split into two columns for an initial
and final solution. Do you find that helpful or not really? (please elaborate)

ii. Have you ever split your paper like this in your own work, or not really? If
so, has it helped? If not, why not, do you think?

c) Let me ask you about the poster and the “3 questions” your instructor uses.
What’s useful and what’s not so useful?

i. Have you ever used these questions to guide your learning? If so, can you tell
me more? If not, why not, do you think?
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5. Closing

a) Do you have any comments about the PAR and this math class that I haven’t
asked?

b) If you could change one thing in this course to help yourself learn more, what
would it be?
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G PAR Tasks

G.1 Cassette TapeTHE CASSETTE TAPE

--~

This diagram represents a cassette recorder just as it is beginning to playa tape.
The tape passes the "head" (Labelled H) at a constant speed and the tape is
wound from the left hand spool on to the right hand spool.

At the beginning, the radius of the tape on the left hand spool is 2.5 Cill. The tape
lasts 45 minutes.

(i) Sketch a graph to show how the length of the tape on the left hand spool
changes with time.

Length of tape
on left hand
spool

o 10 20 30 5040
Time (minutes)

(continued)

46

This diagram represents a tape recorder just as it is beginning to play a tape. The tape
passes from the “head” (labeled H) at a constant speed and the tape is wound from the
left-hand spool on to the right hand spool. At the beginning, the radius of the tape on the
left-hand spool is 2.5cm. The tape lasts 45 minutes.

1. Sketch a graph to show how the length of the tape on the left-hand spool changes with
time (label your graph as appropriate).

2. Explain (with words) why the graph you drew above has the shape that it does.
3. Sketch a graph to show how the radius of the tape on the left-hand spool changes with

time (label your graph as appropriate).
4. Explain (with words) why the graph you drew above has the shape that it does.
5. Describe (with words) how the radius on the tape of the right-hand spool changes with

time. Explain why it changes this way.
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Extension Questions: How would the graphs change if you pressed “fast forward”
rather than play on the cassette player? What would happen to the graph if you pressed
pause while the tape was playing? How does the radius of the spools influence your graphs?
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G.2 Examples Library

Suppose that f(x) denotes a function defined for all real numbers. Each of the statements
below is true sometimes. For each of the statements below give an example of a function for
which it holds true and an example of a function for which it does not hold true.

1. lim
x→3

f(x) = f(3)

2. If lim
x→0

f(x)

x
= 1, then f(0) = 0.

3. If lim
x→−7

f(x) = a, then lim
x→−7

1

f(x)
=

1

a
. (You may choose any value of a that you wish

for your examples.)
4. If lim

x→5+
f(x) > 0 and lim

x→5−
f(x) > 0, then lim

x→5
f(x) > 0.

Extension Questions: Look at the solutions you gave. How many more examples can
you come up with for which the statements are true and untrue? Is it possible to create an
infinite number of examples?
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G.3 Proof and Counterexamples

Indicate whether each of the following statements is True or False. If the statement is true,
explain how you know it’s true. If it is false, give a counterexample. (A counterexample is
an example that shows the statement is false.)

1. If f(−1) = −2 and f(1) = 2, then there is a point c between −1 and 1 where f(c) = 0.
2. If f(a) = 0 and f(b) = 0, and f is continuous on [a, b], then there is a point c between
a and b (ie. a < c < b) such that f(c) = 0.

3. The graph of a function with a horizontal asymptote can never touch that asymptote.
4. The graph of every rational function has a vertical asymptote.
5. If lim

x→a
f(x) =∞ then f(x) is not continuous at a.

Extension Questions: For each of the untrue statements, is it possible to add additional
hypotheses to make it true? (e.g., #1 would be true if you also assume that f is continuous).
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G.4 Filling Bottles

AS

~--
Beaker X

LOOKING AT GRADIENTS

Filling Bottles

In order to cal librate a bottle so that it
may be used to measure liquids, it is
necessary to know how the height of
the liquid depends upon the volume in
the bottle.

The graph below shows how the height
of liquid in beaker X varies as water is
steadily dripped into it. Copy the
graph, and on the same diagram, show
the height-volume relationship for
beakers A and B.

Sketch two more graphs for C and D .

A B Volume

I J lJ
C

Draw sketch graphs for the following sequence of
bottles.

* Using your sketches explain why a bottle with straight sloping
sides does not give a straight line graph (ie: explain why the ink
bottle does not correspond to graph g).

* Invent your own bottles and sketch their graphs on a separate
sheet of paper.
Pass only the graphs to your neighbour.
Can he reconstruct the shape of the original bottles using only
your graphs?
If not, try to discover what errors are being made.

* Is it possible to draw two different bottles which give the same
height-volume graph?
Try to draw some examples.

..c X/

.~ /
::c ./

l/-", ~ _ _ __ ~
Volume MJLt:.

t=========================================~=========================================j

Beaker X

And two more for E and F

Beaker X

...,I
~! X/~/

k/_~_~ __
VolumeD

E

Here are 6 bottles and 9 graphs.

Choose the correct graph for each bottle.

Explain your reasoning clearly.

For the remaining 3 graphs, sketch what the bottles
should look like.

4

Volume Volume

Ink bottle Conical flask

Evaporating flask Bucket

Vase Plugged funnel

Volume Volume~rli!(g)

:r:::
I ~

VolumeVolume Volume

Volume Volume

2 3
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For a science experiment, you are filling up various bottles with liquid, pictured above. The
liquid comes from a tap that pours water at a constant rate.

1. For each bottle ((a) ink bottle, (b) conical flask, (c) evaporating flask, and (d) bucket),
sketch a graph of the height of liquid in the bottle as a function of time. Label your
graphs appropriately.

2. For each bottle ((a) ink bottle, (b) conical flask, (c) evaporating flask, and (d) bucket),
sketch a graph of the rate of change of the height of liquid in the bottle as a function
of time. Label your graphs appropriately.

3. Look at the graph you created in part (2) for the conical flask. Imagine that this graph
described the height of liquid in a bottle as a function of time. Draw a sketch of the
bottle.

Extension Questions: Draw a graph of your favorite function. Is it possible to create
a bottle so that the graph of your function represents the height of water in that bottle?
What characteristics must a function have so that it could represent the height of the water
for some bottle?
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G.5 Favorite Non-linear Function

Draw an accurate graph of your favorite nonlinear function y = f(x) (no formula for f(x)
needed) and pick a point on the x-axis and label it “a”. (Make the graph fairly large so you
can clearly draw other things on it.) Recall that the derivative of a function f at a point
x = a is defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

(a) Illustrate and label on your graph each of the following quantities that appear in the
definition. Then write a short statement explaining in terms of your graph what each
quantity means (1-2 sentences for each quantity).

(i) f(a)
(ii) h

(iii) f(a+ h)

(iv) f(a+h)−f(a)
h

(v) f ′(a)

(b) Explain in terms of the graph what the equation f ′(a) = lim
h→0

f(a+ h)− f(a)

h
means

(be sure to talk about secant lines and the tangent line).
(c) Explain why the limit is needed to find the slope of the tangent line. (Why can’t we

just use arithmetic and algebra?)

Extension Questions: Why does this question ask you to use a nonlinear function?
How would things be different if you chose h to be positive versus negative? (Does it matter?)
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G.6 Radians vs Degrees: Who Wins?

When you work with sin(x) in calculus, it is assumed that x is given in radians. Let sin(x)
refer to the sine function that takes inputs in radians, and let S(x) refer to a different
function, the sine function that takes inputs in degrees (you might verify that S(x) and
sin(x) are indeed different functions). Define cos(x) and C(x) in a similar fashion for the
cosine function in radians and degrees. It follows that S(x) and C(x) are given by:

S(x) = sin(
2π

360
x) C(x) = cos(

2π

360
x)

1. Find S ′(x) and C ′(x). Express your final answers in terms of S(x) and C(x) (i.e. after
you find S ′(x), rewrite your final answer so that it no longer contains sin(x) or cos(x)).

2. How does the relationship between sin(x) and its derivative compare to the relationship
between S(x) and its derivative?

3. How does the relationship between sin(x) and its fourth derivative compare to the
relationship between S(x) and its fourth derivative?

4. Why do you think we use radians in calculus?

Extension Questions: How would you take the 100th derivative of sin(x)? What about
S(x)? Does [S(x)]2 + [C(x)]2 = 1? (i.e., does the Pythagorean identity hold true for both
degrees and radians?) Why or why not?
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G.7 Cone of Power

A right circular cone has radius r and height h. The radius r of the cone is increasing at
a rate of 3 cm/sec while its height h is decreasing at a rate of 2 cm/sec. (The volume of a
right circular cone is given by V = 1

3
πr2h.)

(a) Find
dV

dt
as a function of r and h.

(b) How fast is the volume of the cone changing when r = 10 cm and h = 20 cm?
(c) Is the volume increasing or decreasing at this time? (Explain how you know.)
(d) For which values of r and h is the volume increasing? (Write your answer as an

inequality involving both r and h.
(e) For which values of r and h is the volume decreasing? (Write your answer as an

inequality involving both r and h.
(f) Is it possible to choose initial values for r and h for which the volume of the cone is

always increasing? Explain why or why not.

Extension Questions: How would things change if the radius were decreasing and the
height were increasing? Is it possible to choose rates of change for the radius and height so
that the volume always remains constant?
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G.8 Derivative Solutions

The graphs of the derivatives of two functions f and g are given below.

1. How many solutions can the equation f(x) = 0 have on the interval a ≤ x ≤ b?
Explain how you know, elaborating each possible case.

2. How many solutions can the equation g(x) = 0 have on the interval a ≤ x ≤ b? Explain
how you know, elaborating each possible case.

3. Suppose g(x) = 0 has two solutions on a ≤ x ≤ b. What can you say where about
these solutions lie? Explain.

Extension Questions: Would would the graph of a derivative h′(x) for a function with
h(x) = 0 having 3 solutions look like? 4 solutions? n solutions?
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G.9 O.I.L.

An oil drilling rig located 14 miles off of a straight coastline is to be connected by a pipeline
to a refinery 10 miles down the coast from the point directly opposite the drilling rig. Laying
underwater pipe costs twice as much as laying pipe on land. (Hint: You may want to draw
a few pictures to get an idea of the possibilities. Scoring criteria for optimization problems
are on the MATH 160 web site under Strategy for Optimization Problems.)

1. Which combination of underwater and land-based pipe will minimize the total cost of
the pipeline? What is the minimum cost if pipe costs $50,000 per mile on land?

2. Suppose that underwater pipe costs α times as much as pipe on land (α > 1). Which
combination of underwater and land-based pipe will minimize the total cost of the
pipeline now? (Write your answer in terms of α.)

3. How does the ideal amount of pipe under water and on land change as α increases?
Does this seem to make sense to you?

Extension Questions: What would happen to your results of the refinery were 20 miles
down the coast, rather than 10 miles?



APPENDIX G. PAR TASKS 147

G.10 Hand Area

In this problem, you will trace the shape of your hand and approximate the area of the
picture that you create. Your main tasks are to devise a method for approximating the area
and to show that your approximation is very close to the actual area.

1. Put your hand flat on the grid provided (with fingers touching, no gaps) and trace the
shape of the outline of your hand. Make sure that the shape you trace is a function (if
not, erase the parts of the shape that would make it not a function).

2. Devise a method to approximate the area of the region inside the curve you have traced.
Explain your method in detail, and explain why it should work. (Don’t perform any
calculations yet.)

3. Use the method you described above to approximate the area of the outline of your
hand. (Show your work.)

4. Describe a method for estimating the error in your method of approximation. (Error is
something you would like to make small! Thus an estimate for the error means being
able to say the error is less than some value.)

5. Calculate an estimate the error for your method.
6. Explain (in principle) how you could improve your method to make your estimate as

accurate as one could want (i.e., minimize the error). (You do not actually have to
perform the calculations, just explain what you would do.)

Extension Questions: Think about implementing your method on a computer. Is it
something that could reasonably be done? If not, how much you modify your approach to
calculating area? Compare your method with your partner’s; which do you think will be
more accurate? Would your methods work well for any arbitrary function?
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G.11 An Odd Function

Let f(x) be differentiable on [−3, 3], with f(x) = 0 for x = −2, 0, and 2 (and nowhere
else). Let f(x) have critical points at x = −1 and x = 1 (and nowhere else). Also, let
f(−1) = 1. Finally, let f(x) be an odd function, meaning that f(x) = −f(−x) for all x (i.e.
f is symmetric about the origin). Define a new function G on [−3, 3] by the formula

G(x) =

∫ x

−2
f(t)dt

(a) Sketch a rough graph of f(x). (Because there are multiple acceptable graphs for f(x),
use your particular sketch for the rest of the problem.)

(b) Find the values of G(−2) and G(2). Estimate a maximum possible value for G(0).
(Explain how you made your estimate.)

(c) Find the critical points and possible inflection points of G(x) on [−3, 3].
(d) Sketch a rough graph of G(x) on [−3, 3].
(e) Interpret the points found in (c) in terms of the graph of f(x).

Extension Questions: How would things change if you started the integral from t = 0
rather than t = −2? How would things change if you had an even function (f(x) = f(−x))
rather than an odd function?
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G.12 Ink Blot

Suppose a function f is twice differentiable over [0, 2] and that its graph is given below. As
you see, the printer was sloppy and spilled a lot of ink on the graph. Decide, if possible,
whether each of the following definite integrals is positive, negative, or equal to 0. Explain
your answers.

(a)

∫ 2

0

f(x)dx

(b)

∫ 1

1/2

f

(
x+

1

2

)
dx

(c)

∫ 1

0

xf(x2)dx

(d)

∫ 2

0

f ′(x)dx

(e)

∫ 2

0

f ′′(x)dx

(bonus)

∫ 1/4

0

f ′′(x)dx

Extension Questions: Suppose the ink blot covered the whole area of [0.25, 1.75].
Which integrals could you still estimate? How large could the ink blot be before you could
no longer estimate those integrals?
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G.13 Gabriel’s Horn

All parts of this problem are based on the function f(x) =
1

x2/3
.

1. Find an expression for the area between f(x) and the x-axis for x = 1 to x = , for
some constant , > 1.

2. Take the limit as ,→∞ of your answer to (1) to find the area under the curve f(x)
for x-values from 1 to ∞.

3. Find the volume of the solid formed by rotating the region bounded by f(x) and the
x-axis around the x-axis for x-values 1 ≤ x ≤ /, for some constant / > 1.

4. Take the limit as / → ∞ of your answer to (3) to find the volume of this infinitely
long “trumpet” (known as Gabriel’s Horn).

5. How can your results to (2) and (4) both be true? Explain.

Extension Questions: Suppose your lower limits of integration were some arbitrary
value N rather than 1. How would this affect your answers above?
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G.14 Beads

A bead can be formed by removing a cylinder of radius r from the center of a sphere of
radius R (see the figure below).

(a) Use calculus to find the volume V of the bead with r = 1 and R = 2.
(b) Use calculus to find the volume V of a bead in terms of the variables r and R.
(c) The bead’s height h is labeled in the figure. Rewrite your formula from (b) to show

that V = π
6
h3.

(d) Since your answer in part (c) expresses the volume entirely in terms of h (and not r or
R), it means that all beads of the same height have the same volume. In other words,
if you started with a sphere the size of an orange and a sphere the size of a basketball
and made them each into beads a height of 2 inches, the beads would have the same
volume. Explain how this can be true. (Hint: think about the shape of the beads)

(e) Do all beads of the same height h also have the same outside surface area (not including
the surface area of the cylindrical hole inside)? (Note: you do not need to use an
integral to compute the surface area, just discuss it intuitively.)

Extension Questions: What if the shape removed was something other than a right
circular cylinder. Would your results still be the same? What if the rotated region was
something other than a portion of a circle?
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H Sample Exam

The following exam was the third midterm for phase I of the study. This exam is typical of
the other exams that were used during the study.

1. (15 points) A rectangle is inscribed with its base on the x-axis and its upper corners
on the parabola f(x) = 3P − x2 (where P > 3). Complete the following parts of this
question to find the dimensions of such a rectangle with the greatest possible area.

a) Draw a diagram of the situation, labeling the variable dimensions of the rectangle.

b) Write an equation for a function A that expresses the area of the rectangle in
terms of the

variable(s) identified in (a). A =

What is the domain of this function?

c) Find the dimensions of the inscribed rectangle that will maximize its area (write
your answers

in terms of P ). Width = Height =

The maximum area of the inscribed rectangle is Amax =
d) Explain how you know that the value you found in (c) is the maximum area.

e) Describe what happens to the shape of the inscribed rectangle as P increases.
(Relate your answer to how both the length and width of the rectangle depend
on P .)
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2. (12 points) The Riemann definite integral
∫ b
a
f(x)dx is defined as a limit of Riemann

sums. The definite integral can be approximated by a finite sum:∫ b

a

f(x)dx ≈ f(c1)∆x1 + f(c2)∆x2 + . . .+ f(cn−1)∆xn−1 + f(cn)∆xn

where ∆x1 = (x1−x0),∆x2 = (x2−x1), . . . ,∆xn−1 = (xn−1−xn−2),∆xn = (xn−xn−1).
A function y = f(x) defined on the interval [a, b] = [−1, 2] is shown in the figure.

a) Explain in words how to interpret x0, x1, x2, . . . , xn−1, xn. (Illustrate in the
figure with n = 6.)

b) Explain in words how to interpret f(c1), f(c2), . . . , f(cn−1), f(cn). (Illustrate in
the figure with n = 6.)

c) The definite integral is defined as a limit of Riemann sums. What does the limit
mean, and what purpose does it serve?

d) Is

∫ 2

−1
f(x)dx positive or negative? (Explain why in terms of the function f(x)

and the x-axis.)
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3. (15 points) Aaron and LeAnn are discussing y = F (x) defined by F (x) =

∫ x

0

√
16− t2dt

for −4 ≤ x ≤ 4.

a) Aaron said, “Look LeAnn, using my calculator I found that F (4) = 12.5664 . . .”
LeAnn interrupted, “Wait! You didn’t need to do that! It’s easy to get the exact
value of F (4) from the graph you have on your calculator screen!” The exact
value of F (4) = .

b) What graph did LeAnn see on the screen of Aaron’s calculator? How could she
get the exact value of F (4) from what she saw?

c) For what values of x is F (x) negative? Explain why F (x) negative for these
values of x. (“Because I graphed F (x) on my calculator and can see where F (x)
is negative” does not explain why!)

d) Are there any values of x for which F (x) = 0? If not, explain/show how you know
there are not. If so, find all such values of x and explain why the function is zero
at the x value(s) you found.

e) The derivative of the function y = F (x) is F ′(x) =
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4. (5 points) Let f(x) = x2 + 1 on the interval [1, 5]. If left-endpoints are used with
n = 100 subintervals to approximate the area of the region between f(x) and the
x-axis on the interval, then

a) The approximation will be less than the actual area.
b) The approximation will be greater than the actual area.
c) The approximation will be equal to the actual area.
d) We cannot determine if the approximation is greater than or less than the actual

area.

5. (6 points) Suppose you are trying to find a zero of the function f(x) = (x − 3)3 + x2

using Newton’s Method with an initial guess of x0 = 4.

a) Write the equation of a line (in point-slope form) that you could use to the find
the next approximation, x1.

b) How could you use the equation you wrote in order to find x1? (Explain why this
makes sense.)
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6. (20 points) Evaluate the following integrals. Answers must be accompanied by sup-
porting work that shows how you evaluated the integral. Write coefficients as fractions
reduced to lowest terms. Simplify numerical answers as directed. Answers will be
scored right or wrong. Dont expect partial credit for incorrect answers or answers with
no supporting work.

a)

∫ (
4

3
√
x2

+ 2x3
)
dx

b)

∫ (
20x+

5

x3
+ sec2(8x)

)
dx

c)

∫ (
2t2 + πt2/3

3t

)
dt

d)

∫ 2π

π

(sin(2x)− cos(2x)) dx

e)

∫ 2

−1
(|y| − 2) dy
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7. (16 points) Indicate whether each of the following statements is True or False. If the
statement is true, explain how you know it’s true. If it is false, give a counterexample.
(A counterexample is an example that shows the statement is false.)

a) If

∫ 1

0

f(x)dx = 4, then

∫ 1/2

0

f(x)dx = 2

b) If

∫ 1

0

f(x)dx = 4, then

∫ 1

0

f(x)

2
dx = 2

c) If f ′(x) > 0 for x < −3 and f ′(x) < 0 for x > −3, then there must be a local
maximum at x = −3.

d) If f ′(4) = 0 and f ′′(4) > 0, then there must be a local minimum at x = 4.
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8. (15 points) Sketch the graph of a function that has all of the following properties:

f(x) f ′(x) f ′′(x)

lim
x→−∞

f(x) = −∞

x < −2 lim
x→−2−

f(x) = 3 f ′(x) > 0 f ′′(x) < 0

x = −2 f(−2) = 3 f ′(−2) DNE f ′′(−2) DNE

−2 < x < 0 lim
x→−2+

f(x) = −∞ f ′(x) > 0 f ′′(x) < 0

x = 0 f(0) = 2 f ′(0) = 0 f ′′(0) < 0

0 < x < 1 f ′(x) < 0 f ′′(x) < 0

x = 1 f(1) = 0 f ′(1) < 0 f ′′(1) = 0

x > 1 lim
x→∞

f(x) = −2 f ′(x) < 0 f ′′(x) > 0

Free Plain Graph Paper from http://incompetech.com/graphpaper/plain/




