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Seasonality modeling of the distribution of

Aedes albopictus in China based on climatic
and environmental suitability

Xueli Zheng1* , Daibin Zhong2, Yulan He1 and Guofa Zhou2
Abstract

Background: Aedes albopictus is a highly invasive mosquito species and a major vector of numerous viral
pathogens. Many recent dengue fever outbreaks in China have been caused solely by the vector. Mapping of the
potential distribution ranges of Ae. albopictus is crucial for epidemic preparedness and the monitoring of vector
populations for disease control. Climate is a key factor influencing the distribution of the species. Despite field
studies indicating seasonal population variations, very little modeling work has been done to analyze how
environmental conditions influence the seasonality of Ae. albopictus. The aim of the present study was to develop
a model based on available observations, climatic and environmental data, and machine learning methods for the
prediction of the potential seasonal ranges of Ae. albopictus in China.

Methods: We collected comprehensive up-to-date surveillance data in China, particularly records from the northern
distribution margin of Ae. albopictus. All records were assigned long-term (1970–2000) climatic data averages based
on the WorldClim 2.0 data set. Machine learning regression tree models were developed using a 10-fold cross-
validation method to predict the potential seasonal (or monthly) distribution ranges of Ae. albopictus in China at
high resolution based on environmental conditions. The models were assessed based on sensitivity, specificity, and
accuracy, using area under curve (AUC). WorldClim 2.0 and climatic and environmental data were used to produce
environmental conduciveness (probability) prediction surfaces. Predicted probabilities were generated based on the
averages of the 10 models.

Results: During 1998–2017, Ae. albopictus was observed at 200 out of the 242 localities surveyed. In addition, at
least 15 new Ae. albopictus occurrence sites lay outside the potential ranges that have been predicted using models
previously. The average accuracy was 98.4% (97.1–99.5%), and the average AUC was 99.1% (95.6–99.9%). The
predicted Ae. albopictus distribution in winter (December–February) was limited to a small subtropical-tropical area
of China, and Ae. albopictus was predicted to occur in northern China only during the short summer season (usually
June–September). The predicted distribution areas in summer could reach northeastern China bordering Russia and
the eastern part of the Qinghai-Tibet Plateau in southwestern China. Ae. albopictus could remain active in expansive
areas from central to southern China in October and November.

Conclusions: Climate and environmental conditions are key factors influencing the seasonal distribution of Ae.
albopictus in China. The areas predicted to potentially host Ae. albopictus seasonally in the present study could
reach northeastern China and the eastern slope of the Qinghai-Tibet Plateau. Our results present new evidence and
suggest the expansion of systematic vector population monitoring activities and regular re-assessment of epidemic
risk potential.
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Multilingual abstracts
Please see Additional file 1 for translations of the ab-
stract into the five official working languages of the
United Nations.

Background
Aedes albopictus (Stegomyia albopicta) Skuse, a mos-
quito native to the tropical and subtropical areas of
south and east Asia, is an epidemiologically important
vector of numerous viral pathogens, including yellow,
dengue, chikungunya, and potentially Zika fever viruses
[1–4]. An aggressive invasive species, Ae. albopictus has
invaded and adapted to diverse environments in numer-
ous countries across all continents except Antarctica [5].
The frequent outbreaks of dengue and chikungunya fe-
vers in southern and southeastern China over the past
few decades, and in central and eastern China in the past
few years have raised major public health concerns [6–8].
In numerous cases, Ae. albopictus has been the sole vector
responsible for dengue fever outbreaks in China [8, 9]. At
present, vaccines are available for some Aedes mosquito
transmitted diseases such as yellow fever and dengue fever.
However, Sanofi Pasteur, the dengue fever vaccine manu-
facturer, announced in 2017 that people who receive the
vaccine and have not been infected previously with a den-
gue virus may be at risk of developing severe dengue fever
if they contract dengue after being vaccinated (https://
www.cdc.gov/dengue/prevention/dengue-vaccine.html).
In addition, no therapeutic treatments are available for

most viruses transmitted by Ae. albopictus, which makes
vector control a key strategy for controlling the trans-
mission of such diseases [5]. Therefore, understanding
the biology, distribution, and factors influencing the ex-
pansion of its range could facilitate the formulation of
effective vector control strategies.
Local environmental conditions are key factors influen-

cing the distribution, survivorship, and development of
both larval and adult Ae. albopictus mosquitoes [10, 11].
The high capacity of Ae. albopictus to adapt to diverse
environments and climates makes it a potential invasive
species in numerous localities globally [1–5, 12–15]. The
dynamic expansion in range raises questions about how
environmental factors influence the distribution of Ae.
albopictus. For example, can Ae. albopictus extend its dis-
tribution range to temperate regions such as northern
China? If the answer is ‘Yes’, since winters are very cold in
northern China, can Ae. albopictus adults survive the win-
ters or only emerge in summer in northern China?
Numerous studies have mapped regional or global distri-

bution ranges of Ae. albopictus based on the biological or
physiological characteristics of the species. Majority of the
studies have examined how climatic conditions limit the
distribution of the species, often focusing on temperature
exclusively. Some studies have used laboratory-based
results to predict how climatic factors, i.e., temperature and
precipitation, affect the northern limits of Ae. albopictus in
different regions [16–19] and potential ranges of Ae. aegypti
and Ae. albopictus under present-day and future climate
conditions [20]. Such studies present the most recent
trends in research on Aedes risks. It is essential to examine
how local environments influence Ae. albopictus ranges,
particularly their seasonality in China, based on a more
comprehensive review of field observational data since it
could provide insights into the underlying factors [9, 13].
Prediction of seasonality is particularly critical because
could facilitate better allocation of resources and guarantee
cost-effectiveness in disease prevention and control.
In China, which has a vast territory, most regions are

located in the temperate zone while some southern re-
gions are located in the subtropical and tropical zones
[21]. The northern region is close to the frigid zone. The
Qinghai-Tibetan Plateau in southwest China is an area
experiencing low temperatures throughout the year.
There are also arid and semi-arid climates in the north-
western desert regions [21]. Notably, previous climatic
suitability studies suggested that Ae. albopictus would be
found only in the tropical, sub-tropical and warm tem-
perate areas of China [20–22]. In a systematic surveil-
lance that covered 19 provinces from 2006 to 2013, Ae.
albopictus individuals were trapped in 16 out of the 19
provinces [23], which was consistent with previous re-
ports [20, 22]. However, a more comprehensive review
with updated information is required to evaluate the
current distribution limits of Ae. albopictus in China.
Field studies from different areas have delineated high

seasonality in Ae. albopictus population dynamics and
distribution. For example, in Croatia, Ae. albopictus ovi-
position activity began in April and ended in November,
with high seasonality and spatial heterogeneity [24]. In the
northern temperate areas of Japan, adult Ae. albopictus
were observed from May through October [25–28]. Simi-
larly, in southern China, Ae. albopictus were active all year
round [29]; however, in central China, adult Ae. albopictus
were observed only from May to October [30]. Despite
such findings in the field, modeling studies have rarely an-
alyzed the seasonal influence of environment on Ae. albo-
pictus populations and their distribution [18, 22, 31, 32].
In the present study, our aim was to model the seasonal

distribution of Ae. albopictus in China based on compre-
hensive data from published literature. Our models used
environmental data to predict distribution and seasonality,
particularly in the earliest and latest months of occurrence
of the species, at high spatial resolution. The present study
focuses solely on the distribution of adult Ae. albopictus.

Methods
Comprehensive Ae. albopictus field surveillance records
and GPS location data from China for the 1998–2017

https://www.cdc.gov/dengue/prevention/dengue-vaccine.html
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period were collected (Additional file 2: Table S1 and
Additional file 3: Table S2). Since Ae. albopictus has
been observed frequently in southern China [7–10], to
minimize redundancy during modeling, repeated sampling
activities in similar locations (e.g., the same city) in south-
ern China (e.g., Guangdong, Zhejiang, and other provinces)
were not included [7–10]. Information extracted from the
surveillance records included prevalence and months of
occurrence of Ae. albopictus. Incomplete occurrence
period records were filled in using k-medoids clustering
based on climate similarity (see Data analysis below). If a
specific location was included in the published record, the
GPS readings of that record were extracted. If only the
name of the sampling location was included (usually the
name of the city or county where the sample was col-
lected), a GPS location was arbitrarily selected within the
city or the major town (usually the capital) of the county.
The GPS readings were used to extract the climatic and
environmental data described in the following section.

Climatic and environmental data for model development
We used WorldClim 2.0 as major reference climatic
data [33]. High resolution (30 arcsec or approximately
1-km2 spatial resolution) WorldClim 2.0 data were
generated based on averages during 1971–2000 [33].
Climatic data variables included monthly mean, mini-
mum, and maximum temperatures, and monthly total
precipitations. Climatic data that assigned to each sam-
pling point were from the nearest grid points in
WorldClim 2.0. Climatic-environmental zones were
established based on previous literature [21]. The en-
vironmental regions were divided into four categories,
including humid, sub-humid, semiarid, and arid regions.
Climatic zone comprised nine categories, including south
subtropical, mid-subtropical, north subtropical, warm
temperate, mild temperate, cool temperate, plateau sub-
tropical, plateau temperate, and plateau sub frigid zones.
Each sampling location was assigned its corresponding cli-
matic and environmental categories.

Climatic data for spatial prediction
To map the spatial distribution of Ae. albopictus based
on climatic-environmental factors in China, we used
existing globally gridded climate surfaces WorldClim 2.0
data in the present study [33]. The WorldClim dataset
has used extensively for the modeling of the impact of
global climate change on the distribution of Ae. albopic-
tus, particularly its range expansion, as well as the map-
ping of dengue and chikungunya fever risks in the US,
Europe, and globally [13, 19, 31, 34]. WorldClim2.0 data
includes globally gridded climate surfaces (30 arcsec or
approximately 1-km2 spatial resolution) of monthly aver-
age temperature (minimum, mean, and maximum) and
monthly rainfall for 1971–2000.
Data analysis
Data analysis included three steps. Step 1: assigning cli-
matic and environmental data to each surveillance rec-
ord based on the GPS location of the record, regardless
of the status of occurrence of Ae. albopictus. Step 2:
sorting sampling points into groups based on similarity
in environmental conditions and the known Ae. albopic-
tus occurrence months, then assigning occurrence
months to missing records due to lack of longitudinal
observations, which was carried out using k-medoids
clustering [35]. Step 3: predicting the conduciveness of
environmental conditions for Ae. albopictus populations
using a machine-learning regression model. The model
was evaluated by examining Ae. albopictus occurrence
against model-predicted probability of occurrence at
each sampling site in each month. The cutoff predicted
probability for determining ‘presence’ or ‘absence’ was
based on accuracy [36], which balances specificity and
sensitivity. The accuracy is calculated as the sum of cor-
rectly predicted positives and correctly predicted nega-
tives over a total number of samples. The eventual
model sensitivity and specificity were calculated based
on a cutoff predicted probability that gives the optimal ac-
curacy, i.e., if the predicted risk rate was greater than cut-
off, the prediction was considered ‘presence’; otherwise it
was considered ‘absence’. Sensitivity was estimated based
on the proportion of sites with Ae. albopictus that were
predicted as ‘presence’ and specificity was estimated based
on the proportion of sites without Ae. albopictus that were
predicted as ‘absence’. In addition to sensitivity, specificity,
and accuracy, we also calculated area under curve (AUC)
based on receiver operating characteristic curve or ROC
curve. AUC provides an aggregate measure of perform-
ance across all possible classification thresholds. Subse-
quently, the predicted monthly Ae. albopictus occurrence
maps were generated.
The following are briefs of the k-medoids clustering. k-

medoids is a classical partitioning clustering technique
that clusters a dataset of objects into k groups known a
priori [35]. The k-medoid clustering applied most exten-
sively is the Partitioning Around Medoids (PAM) algo-
rithm [35], which was selected for the present study. The
method initially selects k data points as the medoids, and
the points represent different clusters. Each data point is
associated with the closest medoid through a stepwise
method to minimize the cost of the configuration, i.e.,
sum of distances of points to their medoid. Briefly, for
each medoid and non-medoid data point, swap medoid
with non-medoid, and re-compute the cost. If the total
cost of the configuration decreases, then continue, other-
wise undo the swap. The process continues until all data
points are assigned to clusters. In the study, we knew that
Ae. albopictus occurred all-year-around in tropical China,
in regions such as Hainan Island; however, one may
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observed adult Ae. albopictus only in summer from
June to September in northern China, in regions such
as in Liaoning province (Additional file 2: Table S1,
Additional file 3: Table S2 and Additional file 4: Figure
S1). The initial k value was set as 12, and values including
11, 10, 9, and 8 were also examined. We used data points
with known Ae. albopictus occurrence months as training
data then used clustering results to assign occurrence
months to each record in cases where they were missing
due to a lack of longitudinal observations.
The machine learning classification and regression tree

(CART) analysis was used to predict the monthly/seasonal
distribution of Ae. albopictus. The binary values, 0 and 1,
representing ‘presence’ and ‘absence’, respectively were
assigned to each month for all sampling points based on
field observation or the results of k-medoids clustering. The
binary variables were then used for CART modeling as the
dependent variables, while environmental variables were
the independent variables. We have adapted the commonly
used 10-fold cross-validation rule in the present study
[37, 38]. Consequently, 10 prediction models were pro-
duced for each month. The training sets were used to grow
the tree and the testing sets were used for cross-validation
to prune the tree. We set a minimum data points of five for
all terminate nodes. Since Ae. albopictus was only
present in a small area in southern China in winter
(December–February) and absent in a small area in north-
ern China in summer (July–September), the stratification
(i.e., rearrangement of the data) 10-fold cross-validation
method was used to ensure that each fold was an appro-
priate representative of the whole to minimize sampling
bias induced by 10-fold random selection [37, 38].
Once the models were established, climatic-environmental

suitability maps were generated for each month based on cli-
matic surface, climatic zone, and regional environmental
data. Suitability was predicted as the average predicted suit-
ability probability of the 10 models developed during the 10-
fold cross-validation modeling process, and spatial resolution
was 30 arcsec or approximately 1 km2 spatial resolution.
All data analyses were conducted and maps generated

using the open-source programming language R v3.3.2 (R
Foundation for Statistical Computing, Vienna, Austria).
For k-medoids clustering, we used the pam method of the
cluster package; for raster image reading and risk map-
ping, we used the raster and crop methods within the ras-
terImage and sp packages; and for regression tree
modeling, we used the ctree and rpart methods within the
rpart, party, and caret packages.

Results
Updated Ae. albopictus distribution map in China
Two hundred and forty-two sampling locations were in-
cluded in the present study (Fig. 1). Ae. albopictus was
recorded in 200 sites and no Ae. albopictus were
observed in the rest of the 42 sites. Only four provinces
had ongoing systematic surveillance programs, including
two southern provinces, Zhejiang and Hainan Island,
representing the subtropical-tropical areas; one southwest-
ern province, Guizhou, which is a high-elevation moun-
tainous area; and Shaanxi province, representing northern
China, and potentially the northern distribution margin of
Ae. albopictus in China (Fig. 1, Additional file 4: Figure S1)
[39–42]. Data records included 31 sampling sites (county
or city) in Shaanxi province, in which Ae. albopictus oc-
curred in 20 sites (Fig. 1, Additional file 4: Figure S1).
Gansu province, in the semiarid and arid area of north-
western China, had 22 sampling sites, of which 14 had Ae.
albopictus (Fig. 1). No Ae. albopictus were observed in the
Ningxia Hui Autonomous Region, the Inner Mongolia Au-
tonomous Region, or Qinghai province, which are all lo-
cated in the semiarid, arid or Qinghai-Tibetan Plateau
temperate areas (Fig. 1). No sampling has been conducted
previously in the Tibet Autonomous Region, and very few
collections have been carried out in Qinghai province, and
the Xinjiang Uygur Autonomous Region; the three prov-
inces represent some of the provinces with the largest land
areas and the harshest climatic and environmental condi-
tions in western China (Additional file 4: Figure S1). Most
of the Ae. albopictus positive sites in the present study are
in areas where ,the species have been found before, and the
areas are considered to have suitable climatic conditions
(Fig. 1, Additional file 4: Figure S1) [20, 22, 23, 32]. Not-
ably, however, some more recent reports of Ae. albopictus
are far outside the conventional suitable climate ranges in-
cluding a site in Heilongjiang province in northeastern
China, which borders the Democratic People’s Republic of
Korea, a site in the far west of Gansu province, in the des-
ert city of Jiayuguan, and a site in northern Xinjiang, which
borders Russia, Mongolia and Kazakhstan (Fig. 1). There
are also several Ae. albopictus positive sampling sites in
northern Liaoning province, in which the vector has never
been reported previously, in addition to two sites on the east
slope of the Qinghai-Tibet Plateau in western Sichuan
province (Fig. 1, Additional file 4: Figure S1).

Seasonal risk modeling
Climatic and environmental similarity analysis results
suggested that the observational data points could be
clustered into nine clusters because all the Ae. albopictus
occurrence sites corresponded to the June–September
period; therefore, regression trees were developed for 9
months or clusters of months, with June–September
considered one cluster. Figure 2 illustrates the sensitivity,
specificity, and accuracy of the models, in addition to
the AUC (Fig. 2, Additional file 5). Using a cutoff yield
the optimal accuracy for each month or cluster of
months. The average model accuracy was 98.4% (range:
97.1–99.9%) and the average AUC was 99.1% (range:



Fig. 1 Map of Aedes albopictus surveillance sites in China. Bottom right box: South China Sea islands
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95.7–99.9%). The sensitivity rate was 97.2% on average
(range: 94.4–98.2%), with the lowest value in January
and the highest in April. The specificity rate was 99.1%
on average (range: 97.1–100%).

Seasonal risk mapping
The model unequivocally predicts that in the winter
months (December–February) Ae. albopictus will be
observed only in southern China, as depicted in the
risk maps (Fig. 3). The major expansion of the range
of Ae. albopictus adults begins in April, when the
predicted occurrence covers most of the areas south
of the Yellow River (Fig. 3). By May, it covered all
of China, including a few places in northwestern
China, although risk probabilities are low in the
Fig. 2 Model sensitivity, specificity, accuracy, and area under curve based o
northeast and southwest regions (Fig. 3). In June–
September, the major dengue fever transmission sea-
son in China, the model predicts the greatest range
of climate and environmental suitability. The most
notable areas are included northeastern China, and
the eastern slope of the Qinghai-Tibet Plateau in
southwestern China (Fig. 3), which have been
predicted in previous studies to have unsuitable
climates. Predicted ranges decreased considerably by
October compared to June–September, when the risk
map is similar to the map of April. In November,
Ae. albopictus adults remained active across most
regions south of the Yangtze River and in a small
portion of the areas north of the Yangtze River
(Fig. 3).
n months



Fig. 3 Maps of Aedes albopictus risk probabilities based on months or clusters of months. Blue curves are the major rivers in China from north to
south: Yellow (Huanghe), Yangtze (Changjiang), and Pearl (Zhujiang) rivers. There was no prediction for the South China Sea islands; therefore,
South China Sea islands are not showing displayed in the graph (see Fig. 1, bottom right box)
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Discussion
Ae. albopictus has extended its range globally due to its
capacity to adapt to the environment and climate change
[1–5]. The exploration of the environmental factors in-
fluencing its distribution range in China could facilitate
the formulation of effective monitoring and risk assess-
ment programs, since new dengue fever outbreaks are a
threat to public health. Indeed, recent dengue fever epi-
demics have occurred in different regions ranging from
Guangzhou, in southern China, in 2014, to Yuzhou in
Henan province, which is on the south bank of the
Yellow River in central China, 1400 km straight north of
Guangzhou, in 2013 [43]. Almost all the recent epi-
demics were caused solely by Ae. albopictus [6–9, 43].
The 2013 dengue fever epidemic in Yuzhou, initiated by
an imported index case, pointed to the suitability of the
local environment-climate in central China. The danger
lies in the fact that imported cases have been reported
all over China [44]; therefore, there is a need to update
the vector distribution maps and reassess environmental
suitability based on the updated distribution data. Al-
though our analysis introduced new sampling sites in
China, we anticipated Ae. albopictus distributional po-
tential similar to that reported in the previous studies
[20, 22]. The five most notable sites included two in
northwestern China (Jiayuguan City in Gansu and
Beitun City in Xinjiang) and one in northeastern China
(Ning’an County in Heilongjiang), and two sites in
Jiulong and Lixian counties in western Sichuan province,
which are located at high altitude (close to 3000 m above
sea level) on the east slope of the Qinghai-Tibetan
Plateau (Fig. 1). Using environmental data from the new
sites, the present study generated a new risk map with
risk ranges extended considerably in summer, particu-
larly in northeastern China in areas bordering Russia
and on the eastern slope of the Qinghai-Tibetan Plateau
in southwestern China. The predicted regions with suit-
able climates from May to September extended beyond



Zheng et al. Infectious Diseases of Poverty            (2019) 8:98 Page 7 of 9
the areas predicted substantially even in other recent
studies [22, 32]. Whether or not the expansion in the
Ae. albopictus population range is linked to global cli-
mate change or the biological adaptation of vectors re-
quires further study.
Based on the updated distribution data, the present

study predicted that Ae. albopictus could occur seasonally
in semiarid or even arid areas, as long as temperature and
precipitation conditions are favorable, which suggests a
need to consider seasonal climate suitability as opposed to
focusing on specific annual periods. In addition to
temperature, water availability influences mosquito distri-
bution [45]. In most temperate areas of China, precipita-
tion is highly seasonal and temperatures are usually high
in summer [21, 22]. The short summers, relatively high
temperature, and seasonal rainfall in northern China could
facilitate the establishment of Ae. albopictus populations
in the region, which has occurred in Japan in regions
at similar latitudes and in the northeastern United
States [46, 47]. With regard to the occurrence of Ae. albo-
pictus in semiarid and arid areas, the key examples are
Pakistan and Saudi Arabia, where dengue fever outbreaks
have been reported previously [46, 47].
Other Ae. albopictus risk areas of interest are the

southwestern international border areas and the eastern
slope of the Qinghai-Tibetan Plateau. Could the envir-
onmental conditions in such regions facilitate Ae. albo-
pictus population establishment? In the present study,
five Ae. albopictus occurrence sites had elevations >
2000 m above sea level, with the highest at approxi-
mately 2900 m. Dengue fever epidemics and Ae. albopic-
tus have been reported in northern Pakistan, not far
from the China-Pakistan border [46, 47]. In addition,
dengue fever epidemics and both Ae. albopictus and Ae.
aegypti have been reported in Nepal [48–50], which lies
on the south slope of the Himalaya mountain range, also
bordering southwestern China. Such studies indicate
that vectors of tropical infectious diseases could adapt to
the environmental conditions in the low altitude section
of the Qinghai-Tibetan Plateau and could even transmit
the diseases there. Again, the influence of global climate
change on such dynamics is a subject for further study.
The present study has some major limitations. The

model applied climatic data from 1971 to 2000, which
may have limited its capacity to predict the recent ex-
pansion of Ae. albopictus ranges, although WorldClim
data has been widely used for the prediction of the im-
pact of global change on the expansion of Ae. albopictus
ranges [13, 19, 31, 34]. Since climate change has intensi-
fied over the past two decades (http://www.ncdc.noaa.
gov/cag/), incorporating the most recent data could yield
an even more substantial Ae. albopictus range expansion
or late-year (late fall or early winter) activity predictions
[18, 31]. For example, the present study predicted that
Ae. albopictus adult activity would be restricted to the
south of the Yellow River by October and to the south
of the Yangtze River by November.
A previous study conducted in Shandong province,

along the banks of the Yellow River, trapped Ae. albopic-
tus outdoors in November [51], which our model pre-
dicted as ‘absence’ with zero probability. This could be
due to 1) old climatic data used in the modeling activity;
2) annual climate variability; or 3) real temperature in-
crease or climate change, which warrant further investi-
gation. Another limitation of the present study is the
lack of human distribution data [52–54]. While environ-
mental factors influence vector population growth, hu-
man population distribution influences the transmission
of disease [54, 55]. In the arid areas of northern and
northwestern China and in numerous parts of the
Qinghai-Tibetan Plateau, the human population distri-
bution is sparse; therefore, potential dengue fever risks
are low, particularly in the frigid area on top of the plat-
eau. However, how climate and environmental factors
interact with human distribution in landscapes and bio-
logical competitors, and their combined influence on Ae.
albopictus population establishment and distribution
require further investigation. Since the sampling sites in
the present study were point data, further analyses, such as
spatial extrapolation studies, are required, so that expan-
sion ranges and increased risks in populations can be esti-
mated in combination with population density maps. A
further prospect would be analyzing local climate trends in
the past and linking them with observed dengue fever out-
breaks, which would be more appealing from a public
health perspective than simply focusing on vector distribu-
tion ranges [1–5]. Furthermore, when mapping the distri-
bution and seasonality of Ae. albopictus and dengue fever
outbreaks in China, it could be more appropriate to use
only meteorological data from stations in China and inter-
national stations near the borders. This warrants further
explorations and it is the objective of our ongoing project.
Finally, systematic sampling, i.e., good spatial coverage

and sufficient longitudinal follow-ups, is key for the
determination of the distribution ranges conduciveness
of climatic conditions for Ae. albopictus. Currently, sys-
tematic survey data on Ae. albopictus are only available
for four provinces in China [39–42]. Although China’s
Center for Disease Control and Prevention has imple-
mented a cross-country surveillance system and con-
ducted longitudinal surveys, the spatial coverage is too
coarse for a comprehensive nationwide evaluation of Ae.
albopictus distribution [6, 23]. June–September is an im-
portant season for mosquito population dynamics moni-
toring, based on the results of this study. We emphasize
that both spatial coverage and sampling seasons are es-
sential for determining the northern geographic margins
of distribution of the vector.

http://www.ncdc.noaa.gov/cag/
http://www.ncdc.noaa.gov/cag/
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Conclusions
Both climatic and environmental factors both influence
Ae. albopictus distribution in China. The current pre-
dicted seasonal distribution of Ae. albopictus in China
may extend well beyond the ranges predicted previously,
particularly the northern limit, due to either global
climatic change or the adaptation of biological vectors.
Considering the sustained movement of dengue fever epi-
demics northward in central and eastern China, the timely
monitoring of Ae. albopictus populations and their expan-
sion, the assessment, and frequent reassessment of epi-
demic risks in such areas, and the assessment of risks
based on recent dengue fever outbreaks in China, particu-
larly in central and northern China, are crucial for epi-
demic preparedness and disease control, particularly in
the wake of global climate change.
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