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Abstract

Methods for Analysis of Nanopore DNA Sequencing Data

by

Arthur C. Rand

Technology guides the practice of scientific inquiry. In the biological sciences, DNA

sequencing has encouraged the commingling of traditional experimental biology and

computer science. In this thesis, I describe computational and biochemical methods

for DNA sequencing technology. Nanopore DNA sequencing is an single-molecule tech-

nology that shows promise in the area of read lengths, instrument portability, and, as

shown in this work, chemical modification detection. A nanopore sequencing device

contains a nanometer-sized pore that separates two electrolyte buffer reservoirs. A volt-

age potential is applied across the nanopore and the device records the ionic current

through pore. As DNA polymers translocate through the pore they modulate the ionic

current by partially obstructing the pore in a sequence-dependent manner. In Chapter 2

I describe a hidden Markov model for the nanopore ionic current and how a hierarchical

Dirichlet process can be used to model new non-canonical (modified) bases affording a

HMM-HDP model. In chapter 3 I show how the model can detect multiple chemical

modifications to DNA. The last section of the paper describes a biochemical method to

re-read DNA sequences using a nanopore and a helicase enzyme.
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Chapter 1

Introduction

Sequencing DNA allows for precise biological investigation. The datasets pro-

duced by modern DNA sequencing experiments are a rich source of information and

often out live their original study. This work focuses on nanopore-based DNA sequenc-

ing. Nanopore sequencing belongs to a class of technologies often referred to as single-

molecule or third-generation technologies. The practical benefits of these technologies

are long read lengths, device portability, speed, and DNA modification detection. The

last of which is the focus of this thesis.

1.1 Single-molecule investigation of nucleic acids

Sequencing DNA is fundamentally about analysis of organic molecules. Lim-

iting the search to nucleotide polymers only serves to narrow the search space. Single-

molecule analysis of biomolecules, however, is somewhat unique compared to other

analysis methods where an ensemble of molecules are observed together. Molecular

1



tweezers have allowed researchers to probe the mechanical characteristics of individual

DNA molecules [34] and DNA processing enzymes [32, 27, 38, 14]. Tweezers allow for

direct observation of a biological complex at angstrom scale in real time (on the order

of milliseconds) as well as record force measurements on the order of pico Newtons [39].

Another, in many ways, unique, single molecule technique used in DNA sequencing uses

zero-mode waveguide wells to restrict the observable space to a volume where individual

DNA polymerases can be monitored [28].

Traditionally, nanopore sensors were used to answer similar questions to these

methods. The basic setup of a nanopore sensor can be seen in Figure 1.1. An artificial

membrane partitions two wells containing electrolyte buffer. A single nanopore, usually

an engineered protein, is isolated in the membrane and allows for the passage of certain

biomolecules and electrolytes. A voltage is applied across the membrane that induces

an ionic current through the nanopore.

Figure 1.1: Traditional single-molecule nanopore setup showing a protein pore embed-
ded in an artificial membrane with an ionic current flowing through the nanopore.

In the case of investigations of nucleic acids, nucleic acid polymers (hereafter

2



referred to as a substrate) are added to one partition of the apparatus and electrophoret-

ically driven through the nanopore. The ionic current (on the order of pico-amperes)

is monitored in real time using a patch clamp amplifier [1]. When a substrate passes

through the nanopore from the cis well to the trans well, it partially obstructs the pas-

sage of the ions though the nanopore sequence-specific way. These data are collected as

a time series and referred to as a trace. These traces can be decoded into the underlying

nucleotide sequence.

1.2 Nanopore characterization of DNA polymers

A simple setup where nucleic acid polymer translocation is driven by the volt-

age alone results in translocation times on the order of tens of microseconds per nu-

cleotide. These traces contain enough information to distinguish between molecules

of differing lengths, but not to distinguish nucleotide sequence beyond homopolymer

composition [1]. To gain more information about the sequence of the substrate, it is

necessary to slow the translocation of the substrate through the nanopore. The most

successful method to date has been to couple the nanopore sensor with a DNA (or RNA)

metabolizing enzyme. This led many researchers to search for the best enzyme/nanopore

combination [20, 21, 10, 19]. A side-effect of these studies was the increased knowledge

of the exact biophysics of these enzymes at high precision [12, 13]. A highly desirable

system would have the following characteristics:

• The nanopore must have a shape such that different nucleotide sequences produce

3



distinguishable changes in the ionic current.

• High processivity of the motor enzyme, meaning that the entire motor/DNA/pore

complex metabolizes a large amount of the substrate before the complex dissoci-

ates.

• Reproducible behavior of the system.

In 2012, a collaboration between the nanopore groups at University of Califor-

nia at Santa Cruz and University of Washington yielded two papers showing that the

DNA polymerase from bacteriophage phi29 was especially adept to this task. These

papers showed that the polymerase was able to consistently slow the translocation of

the DNA to 2.5-40 nucleotides per second, slow enough to resolve individual “events” or

“levels” due to single nucleotide steps of the substrate through the pore [36, 9]. These

papers also highlighted the opportunistic use of creative DNA architectures to allow

for the enzyme to process the DNA in a favorable way. In these papers, for example,

the main challenge was pr prevent the DNA polymerase from acting in bulk before the

ternary complex is captured by the pore. This is especially important because the DNA

polymerase chemically modifies the substrate, and thus cannot be re-analyzed. The

solution in this case was to use the blocking oligo a hybridized partially complementary

oligonucleotide that prevented the DNA polymerase from replicating the DNA strand

but did not prevent it from binding to the substrate. The blocking oligonucleotide is

removed when the DNA/enzyme complex is captured by the nanopore and is allowed

to process.
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Subsequent papers would go on to show that the nanopore MspA (introduced

by the UW group) was sensitive enough to distinguish between modified and unmodified

cytosine bases within a known DNA context [52, 46, 25]. The UW group also showed

that the phi29 DNA polymerase is capable of metabolizing strands of almost a kilobase

in length and that the traces themselves could be decoded (base called) into DNA

sequence reads [26].

1.3 Introduction of the Oxford Nanopore Technologies Min-

ION

The 2014 paper by Laszlo et al. was the most advanced research-grade demon-

stration of the potential of nanopore sensors as a relevant DNA sequencing technology.

However, later that year Oxford Nanopore Technologies (ONT) would soft release their

commercial nanopore-based sequencing instrument, the MinION, to approximately one

hundred research labs. The MinION uses a application specific integrated circuit con-

taining an array of individually controlled nanopore sensors that each record ionic cur-

rent traces. ONT licensed patents from the University of California regarding what has

become known as stand sequencing. Strand sequencing is the specific approach orig-

inally described by the UCSC nanopore group where the DNA strand is fed through

the nanopore sensor controlled by an enzyme. Alternative approaches using enzymes

to destruct (or construct) the DNA polymer have also been proposed [18, 3]. The in-

strument itself is the size of a candy bar and is powered by a USB 3.0 port. It streams

5



the ionic current traces to a laptop where, at least initially, the traces are uploaded to

ONT’s proprietary cloud-based service, Metrichor, quality checked, base called, and are

then downloaded back to the laptop.

A DNA sample, usually referred to as a library is prepared by first shearing

the genomic DNA into fragments followed by repair and ligating sequencing adapters on

either end (see [22] figure 1a.). These adapters allow for the motor enzyme (a helicase

in the case of the MinION) to mediate the DNA translocation through the nanopore.

Initially, the strand sequencing accuracy was not very good, with a mean base identity

of 75%, to improve the accuracy for a single molecule a hairpin adaptor is ligated to

the substrate effectively making the molecule into one long DNA strand. This allows

the motor enzyme to process both strands of the DNA duplex into what are called 2D

reads. The increased accuracy comes from an alignment of the two individual strands

[22]. The effective rereading of the strand to increase accuracy was part of the motivation

to develop specific methods to reread a single molecule of DNA (discussed in Chapter

4).

Data produced by MinION has a few notable features. First, similar to SMRT

sequencing, the DNA does not require PCR amplification prior to sequencing. By

sequencing DNA directly from the cell, chemical modifications such as methylation are

retained on the substrate. Second, the raw ionic current data is packaged along with

the reads. Although it is not uncommon for sequencing instruments to provide the raw

measurements along with the processed sequencing data, additional post hoc analysis of

the MinION ionic current traces has been a rapid area of research and is the subject of

6



Chapter 2.

During the first few years of the early access program dozens of papers have

been published touting the MinION’s unique characteristics and performance. Many of

these papers have leveraged the long reads produced by the instrument (on the order

of tens of kilobases in length being typical at the time of this writing), portability, and

speed. [41, 2]. The technology evolves rapidly, however, which while good news for

researchers because the performance of the instrument is consistently improving, also

means that researchers may rush to publish data and results before they are outdated.

The first widely released edition of the sequencing workflow was termed R7.3. This

version widely used the 2D sequencing technique and processed the DNA at 120 base

pairs per second. At its apogee, sequencing reads had 85% base identity and a generally

robust workflow. The base calling was done using a hidden Markov model (HMM) using

the Metrichor cloud service. The initial DNA modification modeling (Section 3.5) was

done on the R7.3 chemistry.

In early 2016, ONT released the R9 sequencing kits and associated workflows.

The new version used a different pore, (CsgG from E. coli), and an increased sequenc-

ing speed of 240 base pairs per second. The base calling (still done in the cloud) was

now done by a long-short term memory recurrent neural network (LSTM-RNN) a more

advanced type of model which have been shown to be especially adept at machine trans-

lation tasks. These two changes improved the sequencing performance to consistently in

the mid-90% base identity. The newer results showing modeling of DNA modifications

in bacteria (Section 3.6 and 3.7) and human genomic DNA (Section 3.8) use the R9

7



chemistry.

1.4 Nanopore sequence analysis with hidden Markov mod-

els

Hidden Markov models (HMMs) are graphical models commonly used in bioin-

formatics due to their extensibility and probabilistic interpretation. Classic examples

include protein structure prediction and sequence searching [24, 16]. These models can

also be used for alignment, although they are somewhat less performant than the more

commonly used Smith-Waterman based alignment algorithms [29].

A key advantage of using HMMs for biological sequence alignment comes from

their probabilistic output, specifically the ability to derive a posterior probability. An

abridged version of the description by [15] follows. The HMM is a form of a Bayesian

network that represents a distribution over sequences of observations. Each node in the

graph of the graph represents an unobservable (hidden) state of the system and the

edges of the graph represent the probability of moving from one state to another. More

formally, consider a sequence of observations x = {xi, . . . , xn} and a set of symbols

b ∈ B. The hidden states are characterized by the emission probability table E which

if given by: E(b) = P (xi = b|πj = k), where πj is the state at time j in the path π

through the HMM lattice, k is the identity of the hidden state (node) in the graph,

and i, j is the time step of the observations and the paths, respectively. The edges of

the graph represent the transition probabilities of the system, which can be intuitively
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thought of as the probability of moving from one hidden state to another. The transition

probability table is given by Ak→l = P (πi = l|πi−1 = k). As described in Chapter 2

both of these probability tables can be learned from an input dataset.

The real power of the HMM is comes from utilizing these two probability tables

to compute the full probability of a sequence of observations given the model affording

the forward/backward HMM briefly described here. To calculate the full probability of

the observation sequence, P (x), we sum over all paths for the joint probabilities of the

path and x,

P (x) =
∑
π

P (x, π) (1.1)

A naive solution would run with time complexityO(L·nL) (where L is x.length

and n is the order of the HMM graph). A belief propagation method (implemented here)

uses the recursion.

cl(i) = El(xi)
∑
k

ck(i+ o) · Ak→l (1.2)

Where l is the current state, k is a previous state, and o is the time offset (o ∈

{1,−1}). The well known forward and backward variables are then fl(i) = cl(i), o = 1

and bl(i) = cl(i), o = −1. Calculating the forward and backward matrices of probabili-

ties is performed using dynamic programming. From here we can calculate the posterior

probability that a observation, xi, was emitted from state ek by P (πi = kj |x) = fl(i)bl(i)
P (x) .

This allows us to probabilistically infer latent features about the data.
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1.5 Description of this work

In this work I develop new methods to improve the utilization of a developing

third generation sequencing technology, nanopore sequencing. Nanopore sequencing is

unique in the data stream it produces and is amenable to machine learning methods.

Specifically, by implementing with multiple hidden Markov model (HMM) topologies

and modeling paradigms (Chapter 2, Section 2.1) I show that a traditional aligning

model can be used to probabilistically assign continuous ionic current segments (events)

to a reference sequence. In this chapter at I describe a traditional pair-HMM, a HMM

where the state transitions are conditionally dependent on the emissions of the previous

state, and a one where the time duration of the event stream is considered. The goal of

the modeling endeavour was not to simply assign events to the reference sequence but to

use the aligned events to classify and detect various unknown qualities of the reference

sequence, specifically base modifications. In Section 2.2 I show how the simple pair

HMM can be augmented with a variable-order meta structure that allows for multiple

different bases to be simultaneously aligned to any number of positions in the reference

sequence. For variant detection (where we suspect that a base in the true sequence is

different from that in the reference) I showed how this model can be used to sample

multiple candidate sequences in a principled way to propose variants (Section 2.6). A

major advantage of single-molecule sequencing, and nanopore sequencing, is that the

substrate DNA does not require amplification prior to sequencing, meaning that the

substrate retains any biological markers present in the cell. In Sections 2.2.2 through
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2.4 I show how the emissions probabilities of the variable order HMM can be trained

to learn new bases using a hierarchical Dirichlet process (HDP) in an iterative expec-

tation maximization and Gibbs sampling procedure. Lastly, in Section 2.7 I show how

this model can be scaled to compute on large datasets such as those produced when

sequencing the human genome.

In Chapter 3 I show how the above model can be used to detect two cyto-

sine methylation products (5-methyl cytosine, and 5-hydroxymethyl cytosine) and one

adenine methylation product (6-methyl adenine). To date, few sequencing technolo-

gies have been able to directly detect and classify modified bases in genomic DNA.

Currently, this includes standard ONT MinION protocols which have been designed to

exclusively call canonical bases. I describe how aligned events can be classified with

neural networks without using the variant calling power of the variable order HMM in

Section 3.4. In Section 3.5 I describe the classification performance of the variable order

HMM on synthetic oligonucleotides bearing one of the three cytosine variants. There

are two methylation marks of importance in bacteria, 5-methyl cytosine in CC(A/T)GG

contexts and 6-methyl adenine in GATC contexts. In Section 3.6 I describe the per-

formance of the model in detecting these two marks in a controlled plasmid system

and E. coli genomic DNA. In Section 3.7 I show how the model is sensitive enough

to detect dynamic changes in genome-wide methylation levels. Lastly, in Section, 3.8

I demonstrate the classification performance of the model on human genomic DNA at

scale.

Chapter 4 contains work from early in my graduate career, specifically de-
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velopment of biochemical techniques to use in nanopore sequencers. With the rapid

development of the MinION and my shift in focus to computational biology this work

become less relevant, however it was still the subject of multiple talks and presentations.

In this chapter is describe how DNA can be reread using helicase enzyme coupled with

a translocation preventing structure called a G-quadruplex. The G-quadruplex folds

single stranded DNA into a knot that prevents the helicase from translocating in bulk,

a technique similar to the “blocking oligo” originally used by Cherf et al. [9], but for a

different enzyme. This work resulted in a patent for the adapter technique.
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Chapter 2

Modeling of MinION signal data

Modeling of nanopore data has historically been a niche area of bioinformatic

research [45, 51], but the commercialization of the technology in the form of the Oxford

Nanopore Technologies (ONT) MinION has broadened the field to more researchers.

Many early algorithms focused on de novo genome assembly and consensus building

[33] hidden Markov models (HMMs).

The standard MinION DNA preparation protocol involves ligating a hairpin

to one end of the DNA duplex so that both the template and complement strands are

sequenced [22]. During sequencing, the MinION continuously records ionic current and

then divides it into segments referred to as events. Both the ONT software and the

method described here method model each event as a nucleotide string of length k,

a k-mer. The length of the k-mer depends on the model used, which varies between

sequencing protocols (k=6 for R7.3 and k=5 for R9). Each k-mer is associated with a

distribution of ionic currents in picoamps (pA).
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Publication Note

The model described in this chapter is published here: [42] and the words

herein are attributed to myself and my co-authors. Section 2.6 contains unpublished

algorithm descriptions.

Implementation Note

Code containing the implementation of these models and the cloud-based work-

flow described in Section 2.7 can be found at https://github.com/ArtRand/signalAlign,

https://github.com/ArtRand/toil-marginAlign, and https://github.com/ArtRand/toil-signalAlign.

2.1 Pair hidden Markov model

During strand sequencing multiple nucleotides occupy the nanopore at one

time and thus multiple nucleotides contribute to the ionic current. The motor enzyme

moves the DNA one nucleotide at a time through the nanopore so k − 1 of the nu-

cleotides remain and one changes, resulting in a new k-mer in the nanopore. Following

is the description of three models for aligning ionic current events (event sequence) to

nucleotides (reference sequence such as a genome). The first model is adaptation of

the traditional pair aligning HMM for use with continuous data types, the second is a

reimplementation of the model by Loman et al. implemented as a forward/backward

HMM, and the third is a generalized HMM that incorporates event duration. I then

describe how the traditional three-state model is expanded to allow for alignment to
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multiple variants at multiple independent positions in the reference sequence, which is

the basis for the rest of this work.

2.1.1 Traditional Pair HMM

A pair-HMM with the structure shown in 2.1.1A was implemented.

 (xi,ej)
M

 (xi ,-)
Ix

 (-,ej)
Iy

P(skip)

P(skip’)1 - P(skip’)

P(stride)

1 -  (P(stride) + P(skip)) P(stay)

1 - P(stay)
 (xi ,ej)
M

xi 

Ix

 ej

Iy

β

amy(1 - β) 

β
1 - β

1 - amy(1 - β) - β 

ayy

1 - ayy

A B

Figure 2.1: Pair-HMM and Conditional HMM based on Loman et al.

This model calculates the probability of an alignment π given a sequence of

events E = {e0, . . . , en}, a sequence of nucleotides, S, divided into nucleotide k-mers S =

{k0, . . . , km}, and the model Θ; P (π|E,S,Θ). The three states; match M for matching

one event with one nucleotide k-mer, insert-X, Ix, for pairing a nucleotide k-mer with a

gap, and insert-Y, Iy, for pairing an event with a gap. The transition probabilities are

initialized to naive estimates for the stride, skip, and stay probabilities that correspond

to the enzyme advancing exactly one nucleotide, advancing more than one nucleotide,
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and not advancing, respectively. In one version of the model, the emissions for the M

state and Iy are the product of the probability of the ionic current mean and ionic current

noise. We assume independence of the mean and noise variables, so the conditional

probability of an event, ej , for a given k-mer, ki, is given by,

P (ej |ki) = P (µj |ki)P (σ′j |ki)

The mean and noise are modeled as a normal distributions µi ∼ N (µi, σi) and

σi ∼ N (µ′i, σ
′
i), where µi, σi, µ

′
i, and σ′i are given by the lookup table (Section 3.1) or are

the maximum likelihood estimate (MLE) (3.5). For alignments using the MLE we only

update the µi, σi parameters. The Ix is silent and does not emit. In another version of

the model we modeled the ionic current distributions as a hierarchical Dirichlet process

mixture of normal distributions (section 2.2.2). In this case we use the posterior mean

density as the emission probability of the M , and Iy states instead of the probability

density function for a normal distribution.

2.1.2 Conditional Pair HMM

In the first iteration to improve the pair-HMM, a conditional model was used

with similar underlying mechanics as the profile-HMM proposed by Loman et al. [33].

The basic architecture is shown in ??B. This model calculates the probability of an event

sequence given a nucleotide sequence, P (e1...en|k1...kn,Θ) by using the given model for

the individual k-mers, θ, to calculate the probability of a k-mer being skipped due to

it’s similarity to the previous k-mer. Thus the probability of the transition from M to
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Ix is now a function of the expected value of the mean for ki and ki−1:

δ = |E(µki)− E(µki−1
)|

β = f(δ) = f(|E(µki)− E(µki−1
)|

The values of δ binned in 0.5 pA intervals. For illustrative purposes, suppose

two identical adjacent k-mers such as a homopolymer run TTTTTTT, δ will be zero and

the function will return the maximum allowed skip probability, argmax
k

P (Mk → Ix). On

the other hand, two adjacent k-mers with drastically different expected mean current

levels will return the lowest probability of transitioning to the skip state. The rest of the

transitions are shown in 2.1.1. The two constant multipliers were adopted from Loman

et al. and initialized without modification1. The emission probabilities for the M and

Iy states are the same as the pair-HMM with the exception that the noise is modeled

as an inverse Gaussian,

Pµ,λ(x) =

[
λ

2πx3

]
e

−λ(x−µ)2

2µ2x

The Ix state is silent therefore does not emit a event/k-mer pair.

2.1.3 Generalized HMM with Duration Modeling

Each event persists for a certain amount of time in between movements by

the enzyme. The event duration, or dwell time, has historically been used to measure

1pmx = 0.17, pyy = 0.55
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enzyme kinetics using nanopore sensors [31]. We sought to incorporate the duration

of events into our model in order to account for potential errors in the segmenting

algorithm and more accurately represent the biophysics of the nanopore. In the case

where an event is split without the enzyme advancing the two resulting ’over segmented’

events should be shorter than expected. Alternatively, if there is no noticeable change

in current, for example in homopolymeric runs or kmers with similar expected current

levels, the resulting ’under segmented’ event should be longer than expected. The over-

all algorithm can be summarized,

P (ej |xi, xi+1..., xi+n) =


P (dj |n) 1

n

∑n−1
k=0 P (ej |xk+i), if n > 0.

P (dj |0), if n = 0.

The structure of the HMM is shown in 2.1.3. The frequencies of the event

durations were fit to a Poisson distribution

P (n|dj) = Poisson(λ) =
λ

n!
e−λ

where,

λ = cdj .

The constant c was estimated as shown in ??. Then using Bayes theorem we

can calculate the likelihood of n for a given λ by

P (λ|n) = Bn+1λ
n

n!
e−2λ

18



xi

(ej,xi)(ej,xi+4)

ej

H

M

(ej,xi+3) (ej,xi+2) (ej,xi+1)

P(d j
|5)

P(d
j|4
) P(dj|3)

P(d
j |2)

P(d
j |1)

P(d
j|0)

1 1 1 1

1

β

1 - β

α

1 - α

Figure 2.2: General HMM with Duration Modeling

Where B is the rate parameter of the Gamma distribution defined as the

conjugate prior to the Poisson. The calculation for the transition to the skip state, β,

is identical as the previous model. The calculation for the skip self-loop, α, follows

α = f ′(δ) = f ′(|E(µki)− E(µki−1
)|

with the exception that the bins for the α parameters are trained indepen-
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duration (seconds)

frequency

Figure 2.3: Plot of duration frequencies from sample of 17,000 events, c estimated as
the value at the red line.

dently from the ones for β. The emission probabilities for a given event/k-mer pair are

calculated as before using the model θ. For paths that involve matching one event to

multiple k-mers the average of the probabilities for the k-mers is used. This was done

as to not inappropriately ‘penalize’ matching events to multiple k-mers.

2.2 Hidden Markov model for variant calling

We model the signal with a variable-order pair HMM that tracks a reference

sequence but allows a reference nucleotide to be any of several potentially modified

bases Figure 2.2B. The model allows for multiple types of modifications to be mapped

simultaneously at a single molecule level. We use hierarchical Dirichlet process mixture

model to learn the effects different base modifications have on the ionic current 2.2 [49].
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The HDP mixture model is a Bayesian nonparametric method that shares statistical

strength to robustly estimate a set of related but potentially complex distributions.

Figure 2.4: Overview of models. A. Architecture of hidden Markov model used in this
work. The match state, M (square), emits an event-k-mer pair and proceeds along the
reference and the event sequence, Insert-Y, Iy (diamond), emits a pair and proceeds
along the event sequence but stays in place with respect to the reference, and Insert-X,
Ix (circle), proceeds along the reference but does not emit a pair and stays in place
with respect to the event sequence. B. Variable-order HMM meta-structure over an
example reference sequence containing ambiguous methylation variants. Each C∗ in the
reference represents a potentially methylated cytosine. The structure expands around
the C∗ to accommodate all possible methylation states (in this case, C, 5-mC, and
5-hmC). Each cell contains the three states shown in A, and transitions span between
cells. The transitions are restricted so that methylation states are labeled consistently
within a path. The match states are drawn with 4-mers for simplicity, but the model
is implemented with 5-mers and 6-mers. Two-level (C) and three-level (D) hierarchical
Dirichlet process shown in graphical form. Circles represent random variables. The base
distribution H is a normal inverse-gamma distribution for both models. The Dirichlet
processes G0, Gσn, and Gσni are parameterized by their parent distribution and shared
concentration parameters γB, γM, and γL. The factors θji specify the parameters of
the normal distribution mixture component that generates observation xji.

Our method calls methylation variants based on the posterior probability of

aligned event to k-mer pairs. First, the model aligns the event sequence to all self-

consistent k-mers containing each variant. The template and complement event se-

quences are aligned separately because the current distributions differ between the two
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strands. We then marginalize over the HMMs states to obtain posterior probabilities

for the methylation variants at a given base. We call the methylation status as the vari-

ant with the highest marginal posterior probability. To call methylation using multiple

reads, we sum the probabilities from the individual reads aligned to a position and call

the variant with the highest posterior mean.

2.2.1 Structure of variable-order hidden Markov model

Our HMM is structured to allow alignment of multiple different bases at a

given position in the reference sequence. We term these positions ambiguous posi-

tions. Positions in the reference are flagged as ambiguous before the alignment begins.

Ambiguous positions can be any subset of potential allowed nucleotides, for example

N = {A,C,G, T} or C = {C,mC, hmC} for variant calling and 3-way cytosine clas-

sification, respectively. In three-way classification experiments on synthetic oligonu-

cleotides (section 3.5), we allow for C, 5-mC, and 5-hmC to be aligned to a given cy-

tosine. In two-way classification experiments (Sections 3.6, 3.7), the model is restricted

to C and 5-mC or A and 6-mA in the cases of alignment to cytosine and adenine,

respectively.

The fact that each event corresponds to multiple positions in the reference

(Section 1.3, 2.2) means that more than one event reports on a single ambiguous position.

Accordingly we model each event as reporting on a substring of nucleotides of length k,

k-mers. When we allow for multiple variants in the reference sequence we would like to

compute over all possibilities in a way that the probabilities for a given k-mer are tied
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with only k-mers that share that particular variant pattern. As can be seen visually in

Figure 2.2 and Figure 2.2.1, when a position is allowed to be variable (C* bases) the

number of paths expands to accommodate the number of ambiguous positions.

Figure 2.5: Transitions between cells in the dynamic programming matrix are only
allowed between k-mers where the last k-1 bases of the first k-mer (AGEOAT) match
the first k-1 bases of the next (GEOATA).

Given k-mer ki that contains η variable bases within the set B = {C,Cm, Ch}

(or B = {A,Am}, in the case of adenine methylation) the number of paths, l, is simply

l = η|B|. The dynamic programming matrix is changed such that every cell has l

dimensions, which is precomputed based on the reference and the ambiguous positions.

Then we perform the forward-backward algorithm through the matrix except that we

don’t want to sum over all paths, Π, only paths that represent legal moves, π ⊆ Π. A

move is defined as legal if bases 2-k of the previous path’s k-mer are the same as bases

1-(k-1) of the current path’s k-mer. For example, assume 5m-C is represented at E and
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5hm-C is O, the move between 6-mers AGEOAT and GEOATA would be legal, but the move

between AGEOAT and GEEATA would not. Moves from the start state and to the end

state are legal regardless of the k-mer. With this framework we can calculate the total

probability of an event sequence, E, the reference sequence, S, containing ambiguous

positions, and the model by:

P (E,S,Θ) =
∑
π

P (E,S, π)

Next we can calculate the posterior probability that 6-mer xi is aligned to event ej

(noted as xi � ej) as

P (xi � ej |E,S,Θ) = P (πi = M |E,S,Θ) =
fM (i)bM (i)

P (E,S,Θ)

Where fM and bM are the forward and backward variables respectively. The joint

probability for the reads event sequence and the reference is calculated with the forward-

backward algorithm, and the likelihood of each methylation variant at each ambiguous

position is calculated by marginalizing over the HMMs states. To make methylation

variant calls using multiple reads, the variant with the greatest posterior mean given

the reads is used.

2.2.2 Hierarchical Dirichlet process mixture model

The hierarchical Dirichlet process (HDP) mixture is a statistical model in which

a collection of mixture distributions are composed of a countably infinite set of shared

mixture components. The weights of the components in each mixture distribution are
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determined according to a separate Dirichlet process on the shared collection of compo-

nents [49]. In addition, the mixture components themselves are distributed according

to a Dirichlet process that draws components from a base distribution.

We model the distribution of ionic currents across the different k-mers as a hi-

erarchical Dirichlet process mixture of normal distributions. In this model, each current

distribution is composed of a countably infinite collection of Gaussian mixture compo-

nents that are shared between the k-mers. More precisely, all of the distributions draw

mixture components according to a Dirichlet process over the same discrete distribution

over a countably infinite collection of “atoms”, each of which consists of the parame-

ters for a normal distribution. In addition, this discrete distribution is itself generated

according a Dirichlet process on the normal-inverse-gamma distribution (a conjugate

prior to a normal distribution, that is to the mixture components). Sharing mixture

components statistically shrinks our estimates of the current distributions toward each

other. This boosts statistical strength since each distribution can share the information

learned by the others. We also have the option of adding a further layer of Dirichlet

processes between the Dirichlet process that generates the distribution over shared com-

ponents and the Dirichlet processes that generate the k-mer distributions. After doing

so, the Dirichlet processes are arranged in a tree structure Figure 2.2C and D. This

encourages a greater degree of shrinkage within each subtree. We experimented with

several topologies for this tree, each representing a different grouping of k-mers based

on their sequence composition (see 2.2.3 for results).

The most intuitive interpretation of the Dirichlet process for this setting is the
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“stick-breaking procedure”. In this construction, we draw a countably infinite number

of atoms from the normal-inverse-gamma distribution and then form a new distribution

over these atoms by assigning them weights wk, k = 1, . . . ,∞ sequentially:

wk = βk

k−1∏
i=1

(1− βi) βi ∼ Beta(1, α) (2.1)

where α is a hyper-parameter referred to as the “concentration”. Note that

both the value of the atoms and their weights are random variables. To generate each

of the current distributions, the HDP draws a countably infinite set of mixture compo-

nents according to a Dirichlet process on this new distribution (treating the weights as

probability masses). The weights that this process assigns to the atoms are the weights

on the components in the mixture distribution.

Our motivation for using an HDP to model signal distributions is that it shrinks

the set of distributions it learns towards each other, which increases robustness, while

retaining the flexibility to approximate any arbitrary distribution given sufficient data

(allows for each k-mer to have a potentially complex emission distribution). Both of

these features are important, since we expect that the current distributions may have

complex shapes and we must estimate a large number of them. The shrinkage is a

result of the fact that all of the distributions share the same mixture components: each

distribution can share the information learned by the others. In addition, this allows us

to calculate informed prior distributions even for k-mers that have not been positively

identified in the training data, a feature that will be useful for expanding the scope of
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modifications that the model can detect.

2.2.3 Grouping 6-mers with different HDP topologies

Since the biophysical relationship between each given k-mer sequence and the

observed ionic current distribution is poorly understood, we empirically tested whether

different subgroupings would increase statistical strength using reads from the synthetic

oligonucleotides. We tested HDP models with five different subgroupings of 6-mers, and

compared their single-molecule accuracy on the synthetic oligos. The two-level HDP

does not separate them into any subgroups Figure 2.2C, whereas the rest of the models

group 6-mers by features of their 6-mer sequence Figure 2.2D.

In the original HDP described by Teh, et al. (2006) [50], all of the mixture

distributions draw mixture components from the same distribution over atoms, which

is generated by a Dirichlet process on the base distribution. However, there is a rela-

tively simple extension of this model in which the mixture distributions are split into

predetermined groups, and it is these groups that share a distribution of over atoms.

This is accomplished by adding an additional layer of Dirichlet processes between the

one that generates the initial distribution over atoms and the ones that generate the

mixture distributions. To conceptualize this, it helps to think of the HDP as a collection

of Dirichlet processes arranged in a tree structure (with the Dirichlet process over the

base distribution at the root). With this framing, the generalization amounts to having

a tree with a depth of two instead of one.

All of the mixture distributions still share the same collection of atoms, since
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all of the atoms in the middle layer of Dirichlet processes are drawn from the original

root Dirichlet process. However, the weights of the atoms are reassigned according to a

new stick-breaking procedure (See Equation (2.1)) in each of the middle-level Dirichlet

processes. The effect is that the shrinkage between the distribution estimates is greater

within a subtree than between subtrees. Since we have control over the topology of

the tree, this serves an extra “knob” that can be used to increase statistical strength.

However, the grouping of mixture distributions into subtrees presumably must reflect

clusters of similarity in the true distributions in order to accomplish this goal.

We took an empirical approach to determining what topologies for the tree of

Dirichlet processes would be meaningful. We came up with several ways to partition

6-mers based on their sequence composition and tested the performance of each one.

The groupings were as follows:

1. No groups: this model has no middle layer of Dirichlet processes.

2. Groups of 6-mers containing the same number of purines and pyrimidines: this

corresponds to a hypothesis that steric bulk is a strong determinant of the current

distribution.

3. Groups of 6-mers that shared the same two middle nucleotides: this corresponds

to a hypothesis that the nucleotides that are passing through the most constricted

portion of the nanopore have the most influence.

4. Groups of 6-mers that contain the same nucleotides, irrespective of their order :

this corresponds to a hypothesis that the position of nucleotide in the 6-mer is
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less important than which nucleotide it is, similar to resistors in series.

5. Groups of 6-mers that contain the same nucleotides, irrespective of both their

order and their modification status: this corresponds to the same hypothesis as

the previous grouping and also a hypothesis that the modification status has

relatively little effect on the current distribution.

2.3 Supervised training of model parameters

We train the HMM with a variant of the Baum-Welch procedure. First, we

heuristically initialize the emission distributions by training them on aligned events

above a probability threshold (0.9 for the synthetic oligonucleotides and 0.8 for the E.

coli and plasmid DNA) from the preliminary alignment described in Section 3.2. In the

three-way classification control experiments on synthetic oligonucleotides using normal

distributions, this entails calculating the maximum likelihood normal distribution for

each 6-mer. For the HMM-HDP, we estimate the posterior mean density for each k-mers

distribution using a Markov chain Monte Carlo (MCMC) algorithm (Section 2.4). In

both cases, only the distributions for the ionic current means are learned following the

preliminary alignment. A separate neural net experiment suggested that the event noise

did not add to classification accuracy (Section 3.4). At this step, we also re-estimate

the HMMs transition probabilities independently. For experiments on synthetic oligonu-

cleotides, training was performed in batches of 15,000 nucleotides and iterated 20 times.

For experiments on E. coli and pUC18 reads, batches of 30,000 bases and 30 iterations
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were performed. When experimenting with different emissions models (eg. different

HDP topologies, Section 2.2.3), the transition matrices were trained specifically for that

model. We then produce new alignments and re-estimate the emission distributions from

high confidence assignments as in the initialization. This process is iterated until the

models variant calling accuracy stops improving. The MCMC algorithm we use for the

HDP is the Chinese Restaurant Franchise Algorithm, a Gibbs sampler for HDP mixture

models (Section 2.2.2). We discard the first 30-times the total number of assignment

data points as burn-in and collect 10,000 samples, thinning sampling iterations by 100.

Whenever we record samples from the Markov chain, we evaluate the posterior predic-

tive distribution for each 6-mer at a grid of 1200 evenly spaced points in the interval

between 30 pA and 90 pA for R7.3. For R9 experiments we use a grid of 1800 evenly

spaced points in the interval between 50 pA and 140 pA. After sampling, we compute

our estimate of the posterior mean density as the mean of the sampled densities at each

grid point. Subsequently, we interpolate within the grid using natural cubic splines.

2.4 Training the HMM-HDP model

We train the HMM-HDP by an iterative expectation maximization and Gibbs

sampling procedure. However, this method is sensitive to the initial values of the model’s

parameters, so first we leverage a standard statistical model to heuristically initialize

the HMM’s emission distributions to normal distributions. We use a lookup table pro-

vided by ONT that consists of parametric distributions that describe the events arising

30



from each of k-mers composed of the four conventional nucleotides, (Section 2.6.3). To

generate preliminary alignments we used the parameters lookup table to calculate the

probability an event being due to a particular k-mer in the Match and Insert-Y states

of the HMM. The events’ mean current and fluctuation in the mean (noise) are modeled

as normal distributions. We assume independence of the mean and noise variables, so

the conditional probability of an event for a given k-mer is just the product of the mean

and noise marginal probabilities (section 2.1).

This initial HMM only has emissions for the canonical four-nucleotide alphabet.

This allows us to use the standard statistical model and use a first-order HMM, described

in Section 2.1.1 since there are no ambiguities between the HMM’s alphabet and the

reference alphabet. We use the banded alignment scheme described in Section 3.2 to

obtain a posterior probabilities that an event was generated by a given k-mer. Our

experimental design allows us to then label the methylation status of the cytosines (or

adenines) from these alignments post hoc. After doing so, we extract the aligned events

with posterior probabilities of at least 0.9 (0.8 for E. coli and pUC19 alignments) and

use these as training data to learn emission distributions for the HDP.

Once we have a set of aligned events as training data, we estimate the emission

distributions using an MCMC method described in section 2.3. Briefly, it involves

integrating out the values of the HDP’s atoms and then sampling the full conditional

distributions of latent variables that indicates which mixture component generated each

data point [50]. For models trained on E. coli we record 15,000 samples. Every time

we record a sample, we compute the posterior predictive distribution of each k-mer on
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a grid that covers the range of MinION current signal. We then estimate the mean

posterior density at each of these grid points from the sample and interpolate between

them using natural cubic splines. These serve as our distribution estimates.

We then proceed in a similar fashion to the heuristic initialization. First,

we align the reads to the reference, except now we use the HMM with the emission

distributions estimated by the HDP. We then extract the assignments with posterior

probabilities greater than or equal to the threshold for that dataset and use these as

training data to obtain mean posterior distributions from the HDP. We then iterate this

process until classification accuracy stops improving. This differs from the true Baum-

Welch procedure since we are using posterior mean estimates rather than maximum a

posteriori. However, these values are asymptotically equivalent in unimodal posteriors,

so this is probably a reasonable approximation.

2.5 Computing posterior probabilities of alignments and

ungapped alignment scores

To have an empirical measure of the quality of an alignment (and its under-

lying event sequence) we use an average of the posterior match probabilities from the

alignment. As mentioned previously, the HMM takes the event sequences as input and

aligns them to a reference nucleotide sequence. Let xi be a k-mer in the reference se-

quence S, and ej be an event in the event sequence E, and ej �xi mean that event ej is

aligned to k-mer xi. The model calculates P (xi � ej |E,S,Θ), the posterior probability

32



for event/k-mer aligned pairs given the model Θ. From here we calculate the ungapped

alignment score, U.A.S., which is defined as

U.A.S =
P (xi � ej |E,S,Θ)

N
(2.2)

where N is the total number of aligned pairs in the alignment.

2.6 Variant calling and error correction

This section describes a method that probabilistically identifies variation be-

tween a known nucleotide reference sequence (for example, an assembly or candidate

reference sequence) and a latent reference sequence (the ‘correct’ or true sequence, S∗)

that generated the observed reads. The HMM is used as the generative model, θ, for all

sequences, S, that contains the desired sequence which generates the observed sequenc-

ing reads, R, (Figure ??). Where S is the set of all possible sequences {Si, Si+1, ..., Sk}

of length l. Finding the sequence S∗ that satisfies

S∗ = argmax
S∈S

P (S|R) = P (R|S)P (S|θ)

could potentially involve exploring all 4l possible sequences. However, instead

of starting with a random reference sequence the reference sequence is initialized by

mapping the sequencing reads to a known reference (SI) or assembly. Then it can be

assumed that the majority of the bases in SI will be in S∗. The two extreme examples

would be in the case of sequence error-correction where 10-25% of bases will be errors
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(mismatches between SI and S∗), on the other hand, in variant calling, <1% of the

bases might be mismatches.

Figure 2.6: Generative model for all sequences of length l composed of the canonical 4
nucleotides.

The total number of potential sequences might still be very large. Distant bases

in the reference can be assumed to be independent given the data due to a reasonable

assumption of linkage disequilibrium, so multiple bases can be tested at once effectively

parallelizing the search process. The HMM model also simultaneously aligns all bases

{A,C,G, T} to an ambiguous position, N. To further constrain the search space, instead

of checking for edits at every base, only a subset of the bases are checked.

First a method is described that proposes bases to be checked for edits (chang-

ing base identity). Followed by two methods for exploring the posterior probability

distribution over the possible sequences within the edit distance of SI given the pro-

posed edits.
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2.6.1 Proposing edit positions

Notation

The initial (input) reference sequence S∗ of length l contains bases from the

set N = {A,C,G, T} to afford a sequence {s0, s1, . . . , sl} of nucleotides. The marginal

probability of a base in S having a particular identity, denoted si ← n where n ∈ N , for

a given read, r, is calculated by summing the posterior probability of all events aligned

to a k-mer where the appropriate base in the k-mer is n.

P (xi ← n|r, θ) =

∑
i|ksi=n

P (ej � ki|θ, r)∑
i

P (ej � ki|θ, r)

The posteriors for all of the reads are summed and normalized, to give the

final marginal posterior probability.

P (xi ← n|R, θ) =

|R|∑
r

P (xi ← n|θ, r)

|R|∑
r

P (xi|θ, r)

2.6.2 Scanning all bases to propose edits

The first problem in error-correction/variant calling is to determine the bases

that should be checked for edits without having to check all possible sequences. A

function called ScanForProposals (Algorithm 1) takes as input a reference nucleotide
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sequence S = {s0, s1, . . . , sl} and a set of ionic current event reads, R. It outputs

Proposals, C, a list tuples containing base position, and the difference between the

marginal posterior probability for the base in the current reference, n, and an alternative

base, n′, (∇i = P (si ← n′|R, θ)− P (si ← n|R, θ)).

C = {(x{l},∇{l}), . . . , (x{l},∇{l})}

where {l} denotes l ∈ {0, . . . , len(S)}

To begin a set of sequences S is generated where every step bases are changed

to N for every register <step. Below is an example where step = 6.

S = AGAATTGGTTAATTGGTT

S0 = NGAATTNGTTAANTGGTT

S1 = ANAATTGNTTAATNGGTT

S2 = AGNATTGGNTAATTNGTT

. . .

S5 = AGAATNGGTTANTTGGTN

Every read is aligned to every sequence in S in parallel (Algorithm 1).

2.6.3 Estimating the posterior distribution of single-base edits

After determining positions where there is evidence that a base in the reference

should be edited, (2.6.2), the next step is to estimate the posterior distribution of the

bases at these positions. The MinION reads words of DNA, so neighboring positions

within a certain window cannot be considered independent. Accordingly, the function
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INITIALIZE C ← {}

for si in S do

if s′i = argmax
n

P (si ← n|R, θ) 6= si then

Add (xi,∇i) to C

end if

end for

return C
Algorithm 1: ScanForProposals

GroupSitesInWindow groups the elements in C if they are within a window. Elements

in C that aren’t grouped together can be evaluated independently so the inner loop can

actually be evaluated in parallel. The length of window can be anything, but empirically

≥ 6 works well. This turns C into a set of lists of tuples of co-localized elements.

2.6.4 A method based on gradient descent

This method attempts to iteratively refine the reference sequence by priori-

tizing the proposal positions with higher ∇. As input the function takes the initial

reference sequence, SI , and the set of lists of proposals, C. It outputs a set of key-value

pairs, where the key is the position in the reference sequence and the value is an array

containing the frequency of each base at that position, denoted F .

From each list in C take the element with the maximum ∇i and change those

positions in S to N (the wild card character that will allow the model to calculate

the probability of each base in N of being at that position). The positions are then

37



changed to the base with maximum posterior probability, yielding S′, and the sequence

is re-scanned for proposal positions. The iteration continues until there are no more

proposals or a set number of cycles is reached. The full algorithm is described in detail

in Algorithm 2.

1: INITIALIZE S ← SI , C ← GroupSitesInWindow(ScanForProposals(SI))

2: for cycle in 0 . . . cycles do

3: for si in argmax
∇

C do

4: Align all reads in R

5: s′i ← argmax
n

P (si ← n|R, θ)

6: F [i][n] += 1

7: end for

8: S ← S′

9: C = GroupSitesInWindow(ScanForProposals(S′))

10: if C = {} then

11: break

12: end if

13: end for

14: return F
Algorithm 2: GD
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2.6.5 A method based on Gibbs Sampling

This method does not prioritize proposal positions based on ∇, instead it

randomly picks from each group in C and records the frequency of each nucleotide in

F . It performs the iteration for a given number of sweeps. The input and output are

the same as the above function. Described in Algorithm 3.

1: INITIALIZE S ← SI , C ← GroupSitesInWindow(ScanForProposals(SI))

2: for sweep in 0 . . . sweeps do

3: s = Sample si i.i.d from groups in C

4: for si in s do

5: Align all reads in R

6: F [i][n] += argmax
n

P (si ← n|R, θ)

7: end for

8: end for

9: return F
Algorithm 3: GibbsSampler

2.6.6 Generalizing the HMM-HDP model

Nanopore sequencing has the unique feature that the sensor actually touches

the DNA as it’s being sequenced. As we’ve shown in this study, the waveform of ionic

current can be mined for more information than just the canonical base identities. While

ground-truth training data can be generated for some biologically-relevant DNA modifi-

cations (5-mC at CpGs, for example) by using enzymatic treatment or synthetic oligos,
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de novo discovery of new modifications is a more difficult problem. The entry point to

any study going after new or not completely characterized modifications (using the Min-

ION) will be analysis of the ionic current. The HDP has a convenient ability of adding

an amount of regularization when learning new k-mer distributions that makes it par-

ticularly adept to this task. One could imagine testing a hypothesis where methylation

is suspected at a motif due to the presence of a methyltransferase gene. Changes due to

methylation can easily be investigated by using our naive HMM (Figure 3), which can

be followed up by approximate labeling of the motifs in question and training the HDP

to detect these modifications. This form of bootstrapping will likely not be as accurate

as a model trained with perfectly labeled training data. However, the relative ease and

low equipment cost make the combination of MinION sequencing with our method an

appealing research avenue for investigating DNA modification.

2.7 Scaling methylation calling and alignment pipelines

with cloud-based workflows

To handle the large data volume, the original marginAlign [22] and SignalAlign

[42] algorithms were adapted to cloud infrastructures using the Toil batch system (Vi-

vian et al. BioRxiv 2016). Toil allows for computational resources to be scaled horizon-

tally and vertically as a given experiment requires and enables researchers to perform

their own experiments in identical conditions. Workflow diagrams are shown in Figure

2.7.
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Figure 2.7: Cloud-based workflow showing how analysis can be scaled horizontally to
consume more input data.
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Chapter 3

Detection of chemical modifications in

genomic DNA

Publication Note

The results in this chapter were published here: [42]. The results were obtained

in collaboration with my co-authors and the words herein are therefore influenced by

them, however they have been adapted for this thesis. Section 3.8 contains unpublished

results that were obtained in collaboration with the co-authors of Jain et al. Nanopore

sequencing and assembly of a human genome with ultra-long reads. BiorXiv April 2017

a manuscript is currently under review.

3.1 Estimating emission distributions for R9 nanopores

For the R7.3 sequencing protocol, and earlier versions, ONT provided a lookup

table describing the expected normal distribution of ionic currents for each k-mer. In
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all experiments with the R7.3 chemistry, we used this table to initialize the HMM’s

emission distributions. However, with the release of the R9 chemistry, ONT switched to

a new base calling algorithm that no longer utilizes the lookup table and they no longer

provide it with sequencing reads. We obtained an R9 lookup table directly from ONT,

but it described distributions for 6-mers rather than the 5-mers that R9 model uses.

We estimated a new set of distributions to serve as a 5-mer lookup table for

the R9 chemistry. Doing so is complicated by the fact that we need to use normalized

events for the estimates to make them generalizable. However, before estimating the

distributions, we do not yet have distributional expectations with which to normalize

the reads. To break this circularity, we first computed a set of heuristic normalization

parameters based on the R9 6-mer table (privided by ONT for the R9 chemistry), and

then used these to estimate the distributions in the 5-mer table.

Our estimates were based on a set of 1D reads from a methyltransferase defi-

cient (dam-/dcm-) E. coli (NEB cat. no. C2925I) whole genome sequencing run. First,

we obtained a set of 6-mer calls from the table we obtained from ONT anchoring the

calls at the positions of the 5-mer calls in the reads. We then used the 6-mer calls to

estimate the normalization parameters for our reads. We estimated the scale, shift, and

drift parameters for each of our reads using a weighted linear regression.

ei = SC · µi +DR · ti + SH + ε (3.1)

where ei is the current of the i-th event, ti is its time from the start of the experiment,
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and µi is the mean for the corresponding 6-mer in the lookup table. The weights for each

event were 1/σ2i , where σ2i is the 6-mer’s variance. Technically, the weights should have

also included the variance normalization parameter, but this will not result in any bias,

only some inefficiency. We then estimated the variance normalization parameter for

each read by measuring the overdispersion after accounting for the other normalization

parameters.

V AR =

√√√√ 1

N

N∑
i=1

(ei − SC · µi −DR · ti − SH)2

σ2i
(3.2)

Next we used the 5-mer calls from ONT’s software and the normalization

parameters to compute a new 5-mer table. First, we normalized each event.

ẽi =
ei −DR · ti − SH

SC
. (3.3)

We then use a weighted linear regression to estimate the means for each 5-mer.

ẽi = µi + ε (3.4)

where we are now treating µi as a coefficient on an indicator variable for the 5-mer call.

The weights in this regression are 1/(V AR2 · τ2i ) where τi is the standard deviation of

the current signal for event i. Finally, we estimate the variance of each 5-mer’s normal

distribution.
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σ2i =
1

N − 1

Ni∑
j=1

(eij − µi)2

V AR2
ij

(3.5)

3.2 Mapping of reads and event alignment

Alignment of the ionic current events from each read to the reference sequence

is a two step process. Briefly, first we generate a guide alignment between the reads’

nucleotide sequence and the reference, which we then use to constrain a second alignment

of events to the reference. The guide alignment uses a concatenated sequence from

Metrichors 2D alignment (Section 3.3) table, which allows for each base to be mapped

to an event in the template and complement event sequence. This nucleotide sequence

is aligned to the reference with BWA-MEM in ont2d mode [30]. We refer to this as the

guide alignment. We use a banded alignment heuristic to increase the speed and decrease

memory requirement of our HMM algorithm. The banding procedure is described in

detail in [40]. Briefly, from the guide alignment runs of un-gapped matches are used as

constraints in the edit graph around which we compute dynamic programming bands.

To prevent any edge effects, the constraints are trimmed at either end by 14 nucleotide

pairs. We then expand around the constraints to form the band by 50 anti-diagonal

cells. To increase the efficiency of the algorithm, we break the alignment into fragments.

Alignment bands computed between the centers of the constraints where the quality of

the guide alignment should be highest. This allows our higher order HMM to have a

smaller memory footprint as well as constraining the posterior probability distribution
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to higher likelihood matches.

3.3 Making a read sequence from the 2D alignment table

The current MinION DNA sequencing library preparation protocol involves

ligating a DNA hairpin to the distal end of the DNA duplex to be sequenced. This

effectively makes the sequencing substrate one long strand of nucleic acid polymer. The

sequencer then proceeds to sequence both strands of the DNA duplex. When these

two “1D” reads are base called there is an event attributed to each nucleotide in the

read. In the case of stays (where multiple events can be mapped to a k-mer) we take

the pair with the highest probability (p model). For skips (where there is no event

for a base), we assign the bases to the previously matched event. The two 1D reads

are assembled in silio into a “2D” read. During the assembly process some bases are

inferred by the algorithm and do not have events attributed to them, as they are likely

due to a combination of the two 1D sequence k-mers. We need every nucleotide in the

sequence to correspond to an event because we use BWA-MEM to map the nucleotide

reads to the reference sequence and use runs of consecutive matches to constrain the

dynamic programming (see 3.2). Obviously, the inferred bases cause problems when we

try to map bases to events. The “2D Alignment” table, however, does attribute each

nucleotide position to an event. Therefore, we use the list of k-mers in the 2D alignment

table to construct our nucleotide sequence, which is then used for when mapping the

reads to the reference and generating the anchors.
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3.4 Classification of ionic current events with neural net-

works

We investigated the feasibility of cytosine methylation detection by testing

whether or not events aligned to a single cytosine could be classified based on their

methylation status. We also used this strategy to evaluate which features are the most

discriminatory in classification. Artificial neural networks are non-sparse classifiers well

suited to this task, in this section we describe classification of events that have been

aligned to the reference sequence using the preliminary alignments generated without

consideration for methylation status.

3.4.1 Data processing for single cytosine motifs in synthetic oligonu-

cleotides

Subsequences of the reference sequence, motifs, were selected that contain a

single cytosine among a run of 11 nucleotides. The MinION reads both strands of the

DNA duplex and combines these reads into a 2D, high quality read. The motifs we

chose contain guanine bases, however, and the complement would therefore contain a

variable number of modified cytosine bases and contribute to the classification accuracy.

We therefore classified only one strand per read. In the case of forward-mapped reads

this was the template strand, in the case of backward-mapped it was the complement

strand. For this analysis, we only used data from the barcoded reads for training and

testing.
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To assess the amount of classification bias due to the stands alone, we classified

null sites that do not contain any cytosines. The features of the null motifs should be

the same between strands and the classifier should report accuracy close to random

chance (33%).

We used the methylation-naive HMM (Section 2.3) to align events to the ref-

erence sequence. Events that aligned to positions in the reference corresponding to

a motif were culled. When multiple events were aligned to a position, the one with

the highest posterior probability was taken. Thus an ordered set of a maximum of 6

observed event mean current levels, six observed ionic current noise levels, and six pos-

terior probabilities, was obtained. The difference from the observed mean current level

from the expected current level (from the ONT table) given the 6-mer was taken for

each observation. The same was done for the noise levels. The differences in the mean

current level (∆µ), differences in noise level (∆σ), and the posterior probabilities (P )

became the features input to the classifier. We experimented with four different feature

sets; ∆µ alone, ∆µ and ∆σ, ∆µ and P , and ∆µ, ∆σ and P .

3.4.2 Network architecture and training routine

Classification of the feature vectors was performed using a custom artificial

neural network implemented in Theano [4]. For the individual motif classification a

network with two hidden layers and a final softmax layer was used. The dimensions

of this network were 50, 10, 3, with rectified linear unit and hyperbolic tangent non-

linearity activation functions used for the first and second hidden layers respectively.
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For classification, the class with the highest probability from the softmax layer was

chosen. We split the dataset into three groups; 10% of the data was held out for test-

ing after the training procedure. Of the remaining, training data, 50% was used as

cross-training (validation) and 50% was used in the optimization. An equal number of

feature vectors for each category were used in all data sets. Training of the network

was done using mini-batch stochastic gradient descent with an annealing learning rate

schedule. We used 5 reads per batch and a dynamic learning rate initialized at 0.1%.

With decreases in cross-training batch costs, the learning rate was decreased by 10%, if

the cross-training batch cost increased, the learning rate was increased by 5%. We used

L1 and L2 regularization of 0.01. Lastly, the data was centered and normalized based

on the training data set before starting the routine. The model that had the highest

cross-training accuracy during the learning process was used for final evaluation of the

test set. We performed the same training routine on the null motifs.

3.4.3 Classification accuracy is maximized using ∆µ and posterior

probability as features

The accuracy for the different feature sets for the cytosine-containing motifs

is summarized in Table 3.4.3, the null motifs are summarized in 3.4.3. The highest

accuracy was obtained when using the mean and posterior probability at 65% on the

template reads and 66% on complement reads. Including ∆σ did not appear to increase

the accuracy of the classifier. We classified events culled from alignments generated

with the HMM-HDP and the methylation-naive HMM. Both data sets produced similar

49



error rates when classified with the neural network.

3.5 Single molecule discrimination between C, 5mC, and

5-hmC on synthetic oligonucleotides

We performed three-way classification experiments between three cytosine

methylation variants with synthetic oligonucleotides, each bearing a type of cytosine

methylation variant. The DNA substrates are 897 base pairs long, and they contain 201

and 246 cytosines on the forward and reverse strands respectively. These experiments

were performed with the R7.3 sequencing chemistry, so the k-mers were modeled as

6-mers. The reads span the full length of the substrate. The cytosines are distributed

such that the model needed to learn 2868 new 6-mer distributions with methylated bases

in addition to the 1784 canonical 6-mers contained in the forward and reverse reference

sequences. We treat the two strands as independent, so a given event sequence is aligned

to the appropriate strand and reports on only the cytosines in that strand.

We measured the per-read accuracy by the proportion of correct methylation

calls on a single strand from a read. The best performing model was the “Multiset”

model 3.5. However, it was a small gain in accuracy over the simpler ungrouped model.

Based on these results we used the “Multiset” model for all further analyses. The mean

and median per-read accuracy were 74% and 80% respectively for the template reads

and 67% and 76% for the complement reads. The distribution of per-read accuracies is

shown in Figure 3.5A. These results represent a significant improvement over the 33%
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Table 3.1: Classification of null motifs

Forward/Template
Motif Sequence {∆µ} {∆µ, ∆σ} {∆µ, P} {∆µ, ∆σ, P}
TTGTTGAATAA 40 40 43.33 43.33
GAGTTGAAGGA 38.33 41.67 46.67 41.67
GGATGATGGGG 40 40 35 35
AGGGGTAAAAG 40 40 60 38.33
AGGATGAAGGT 40 40 40 40
GAGGAAGGTGA 40 40 40 40
AAAAGAGTTTG 40 40 40 40
GGTGATATGGG 40 40 41.67 40
GTTTATAAAAT 40 40 36.67 40
TTTTATAGGTT 40 40 40 40
ATAATAATGGT 40 40 40 40
GGGGAAATGTG 40 40 40 40
TTTGTTTATTT 40 40 40 40
Average: 39.87 40.13 41.80 39.87

Backward/Complement
TTGTTGAATAA 40 40 48.89 48.89
GAGTTGAAGGA 40 40 40 40
GGATGATGGGG 40 40 42.22 44.44
AGGGGTAAAAG 40 40 44.44 46.67
AGGATGAAGGT 40 40 42.22 40
GAGGAAGGTGA 40 40 42.22 40
AAAAGAGTTTG 40 40 46.67 44.44
GGTGATATGGG 40 40 35.56 40
GTTTATAAAAT 40 40 26.67 33.33
TTTTATAGGTT 40 40 40 26.67
ATAATAATGGT 40 40 33.33 35.56
GGGGAAATGTG 40 40 55.56 60
TTTGTTTATTT 40 40 40 48.89
Average: 40.00 40.00 41.37 42.22

51



Table 3.2: Classification of single cytosine motifs

Forward/Template
Motif Sequence {∆µ} {∆µ, ∆σ} {∆µ, P} {∆µ, ∆σ, P}
TTTTGCTGAGT 78.33 86.67 83.33 85
AAGTTCAAAAT 40 51.67 46.67 35
AGATGCAGGGG 70 73.33 83.33 76.67
AAGGGCTGGAT 66.67 75 68.33 61.67
ATTTGCTGAGG 65 78.33 58.33 73.33
TGGGGCAAATG 68.33 75 68.33 83.33
GGAATCAAATT 40 40 40 40
GTGGACAGGAA 76.67 68.33 71.67 75
AAATTCTTGAA 46.67 56.67 56.67 58.33
GAAGACGAAAG 81.67 66.67 85 76.67
AATGTCATGAT 53.33 61.67 68.33 73.33
GGTTTCTTAGA 45 43.33 58.33 51.67
TTTTTCTAAAT 43.33 40 60 60
Average: 59.62 62.82 65.26 65.38

Backward/Complement
TTTTGCTGAGT 53.33 51.67 64.44 66.67
AAGTTCAAAAT 41.67 43.33 62.22 60
AGATGCAGGGG 61.67 63.33 84.44 68.89
AAGGGCTGGAT 63.33 63.33 73.33 73.33
ATTTGCTGAGG 51.67 70 75.56 73.33
TGGGGCAAATG 71.67 68.33 75.56 66.67
GGAATCAAATT 40 41.67 40 57.78
GTGGACAGGAA 40 40 46.67 40
AAATTCTTGAA 35 40 62.22 77.78
GAAGACGAAAG 73.33 55 80 75.56
AATGTCATGAT 40 40 57.78 62.22
GGTTTCTTAGA 45 46.67 68.89 66.67
TTTTTCTAAAT 46.67 48.33 68.89 64.44
Average: 51.03 51.67 66.15 65.64
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Table 3.3: Comparison of different HDP topologies and one non-HDP model for three-
way classification of cytosine, 5-methylcytosine, and 5-hydroxymethylcytosine. MLE is
the maximum likelihood estimate of a normal distribution. The SingleLevel HDP is an
HDP model with no subgroupings of 6-mers, Multiset, Composition, MiddleNts, and
GroupMultiset HDPs are three-level HDP models described in the results

Model Mean Accuracy Median Accuracy

MLE 62% / 50% 58% / 47%
Single-Level 74% / 66% 79% / 72%
Multiset 74% / 67% 80% / 76%
Composition 73% / 66% 78% / 71%
Middle-nucleotides 71% / 63% 76% / 69%
Group Multiset 73% / 65% 78% / 71%

accuracy that would be expected by chance. They are also significantly better than the

results of the HMM with the emissions modeled by normal distributions, which achieved

mean and median accuracy of 58% and 62%, respectively, for the template reads and

47% and 50% for the complement reads Figure 3.5A.

The classification accuracy varied substantially among different cytosines on

the DNA substrate (Figure 3.5B). The best-performing three-way model classified dif-

ferent cytosines at accuracies ranging from 16% to 95% with median accuracy of 76%

for template reads and 70% for the complement reads (Figure 3.5C). Calling of sites as

unmodified cytosine is the most common error, with 5-mC being the most commonly

miscalled variant 3.5C. It is likely that some of the difficulty in classifying certain sites

results from 6-mer ionic current distributions that vary only slightly between the methy-

lation states. Therefore, we compared the mean pairwise Hellinger distance between the

ionic current distributions of the methylation states of the 6-mers overlapping a site and

the sites classification accuracy. The Pearson correlation was 0.52 (p = 6.6E-33) on the

template strand and 0.36 (p = 9.0E-15) on the complement strand Figure 3.5D. This
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suggests that there is indeed a relationship between the similarity of the distributions

and methylation calling accuracy.

3.5.1 The hierarchical Dirichlet process more realistically models ionic

current distributions

Figure 3.5.1 compares the current signal distributions of three representative 6-

mers from the HDP, the maximum likelihood estimate (MLE) normal distribution, and a

kernel density estimate. Qualitatively, compared to MLE, the HDP posterior densities

reflect the nuance of the 6-mer distributions more realistically. As a nonparametric

method, the HDP can approximate any empirical distribution with sufficient data. The

statistical shrinkage between the distribution estimates also tends to smooth away small-

scale irregularities that can be observed in the kernel density estimate.

3.6 Mapping 6-methyladenine and 5-methylcytosine in ge-

nomic E. coli DNA

The HMM-HDP model can map modifications to multiple bases on a single

substrate within a single sequencing run. As a demonstration, we sequenced pUC19

plasmid DNA grown in E. coli containing both dam and dcm methyltransferases. For

this experiment we used the newer R9 sequencing protocol. These genomic DNA sub-

strates are completely methylated at CC(A/T)GG and GATC, respectively (the bold

character indicating the methylated residue) [44]. We sequenced the methylated plas-
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mid and an unmethylated PCR amplicon in the same flow cell (Section 3.10.2). The

pUC19 DNA sequence is 2,686 base pairs long. It contains 30 adenine residues in GATC

motifs and 10 cytosines at CC(A/T)GG motifs. The motifs are palindromic, so they

each contain two potentially modified residues: one on each strand. The reads covered

the entire length of the substrate.

The model was more accurate for cytosine methylation than adenine methy-

lation. The mean per-read accuracy of calling cytosine variants 79% and 72% on the

template and complement strands, respectively. The accuracy for calling adenine vari-

ants on the two strands was 70% and 58%. The empirical current distributions for

cytosine showed a more pronounced difference between methylation states than did

adenine (Figure 3.6-top). This probably contributes to the lower accuracy on adenine.

To assess how robust the model is to variations in data quality, we explored the rela-

tionship between the ungapped alignment score and methylation calling accuracy. The

ungapped alignment score reflects many potential sources of variation in read quality.

We randomly sampled 40X read coverage and called methylation variants using the

posterior probabilities produced by the model. The variation in per-read accuracy was

correlated with the ungapped alignment score (Figure 3.6-bottom).

Consensus classification results are shown in Supplementary Table 2A with

various thresholds on ungapped alignment score and posterior probability. The best

parameters classified 96% and 91% of the residues correctly for cytosine and adenine

residues, respectively. The plasmid sequence only contains five 5-mC motifs. These may

not capture enough of variation in sequence context to accurately evaluate the model.
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To more rigorously evaluate the models ability to map 5-mC in genomic DNA, we

mapped 5-mC at CC(A/T)GG motifs in native E. coli DNA. We evenly divided 1,709

constitutively methylated sites (containing 3,418 potentially methylated cytosines) into

a training and testing set. We assume that none of cytosines in the PCR reads are

methylated and all of the cytosines in the stationary phase reads are methylated. Based

on these labels, the model was able to correctly classify 96% of the cytosines motifs in

the test set. These results show that the method described is suitable for mapping DNA

methylation in bacterial chromosomal DNA.

3.7 Assaying dynamic methylation levels in genomic DNA

Chemical modifications to DNA happen post-replication, and they are often

influenced by the state of the cell. One cell state that is known to affect methylation

levels in E. coli is growth phase. It takes time for methylation to become established on

newly synthesized DNA and DNA-binding proteins compete with methyltransferases for

occupancy on the chromosome [44]. We exploited this fact to further test our models

sensitivity. We sequenced genomic DNA isolated from E. coli cultures harvested at

three different growth phases: early-exponential (0.4 OD), late-exponential (0.8 OD),

and stationary (24 hours).

To assay cytosine methylation we employed the model described in the previous

section, except that we trained it on all 3,418 known-methylated cytosines. We trained

the model on reads from stationary phase genomic DNA and PCR amplified DNA. To
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train the adenine classification model we labeled all adenines at GATC sites in the E.

coli genome as methylated in reads from stationary phase cells (Section 3.9.2). In total,

we classified 24,100 cytosines at CC(A/T)GG motifs and 38,248 adenines at GATC

motifs. The results from both classification experiments are shown in 3.7.

Our model produced cytosine methylation calls consistent with known pat-

terns across growth phases. In the cytosine experiments, we used both template and

complement reads and called 23,004 (95.5%), 23,789 (98.7%), and 24,034 (99.8%) of

the cytosines as methylated in the early-exponential, late-exponential, and stationary

growth phases respectively. These results are consistent with previous studies that

showed increasing levels of cytosine methylation from early-exponential phase growth

through stationary phase growth [23]. We evaluated the model by classifying the 3,418

known cytosines using PCR and stationary phase reads that were held out during the

training of the model. The accuracy and precision were 96% and 92%, respectively.

The adenine methylation calls were also consistent with known biology. Our

adenine classification experiments on pUC19 plasmid DNA showed that using only tem-

plate reads gave the highest accuracy adenine methylation variant calls (Table 2A).

Therefore, we only used template reads to assay for genomic adenine methylation lev-

els. The classifier called 33,930 (89%), 34,884 (91%), and 31,901 (83%) of the adenines as

methylated in the early-exponential, late-exponential, and stationary growth phases re-

spectively. Transcriptional levels of dam have been shown to correlate with growth-rate,

reaching a maximum during exponential phase growth, followed by a decrease during

stationary phase growth 5,23. Our results are consistent with this pattern. We did not
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have a mapping of 6-mA in the E. coli genome to test the model with. Instead, to

evaluate the accuracy of the model we classified adenine variants on the pUC19 plasmid

using the iterative procedure described previously. The model trained on approximate

labels had an estimated accuracy and precision of 87(+/-)3% and 84(+/-)4%, respec-

tively. However, the pUC19 sequence does not contain all of the GATC contexts in the

E. coli genome, so this measure of accuracy may not fully generalize.

3.8 Mapping 5-methyl cytosine in human genomic DNA

We employed the cloud-based SignalAlign algorithm (Chapter 2 and this

chapter), to map 5-methyl cytosine at CpG dinucleotides on chromosome 20 of the

GRCh38 reference. Compared to the analysis in E. coli the dataset required to process

a single chromosome was roughly 10 times larger, and thus required significantly more

computational resources, explained in Section 2.7. We compared the methylation calls

produced by SignalAlign to published bisulfite data. Overall we observed good con-

cordance between the two call sets producing an r-value of 0.779. It should be noted

that SignalAlign produces a probability of methylation instead of a hard call, and this

likely negatively effects the r-value. We also produced a receiver operating characteristic

curve the probability of methylation to the number bisulfite reads reporting methylation

and produced an area under the curve of 0.9 (Figure 3.8). To show the general agree-

ment in the trends, we plotted the probability of methylation along with the confidently

called CpGs (ones where the calls were either all methyl or all not methyl cytosine) for
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a stretch of chromosome 20 Figure 3.8.

3.9 Data selection and partitioning for model training

3.9.1 Dividing E. coli methylation motifs into training and test groups

From the results of bisulfite sequencing performed on stationary phase E. coli

K12 MG1655 we parsed 1,709 motifs, A, with the sequence CCWGG where the innermost

cytosine is methylated [23] (W refers to either A or T). Analysis of the genome showed

that 456 different 6-mers occur at the motifs centering around the second cytosine, let

this set be denoted as K. A training group of motifs, T, was generated by randomly

drawing motifs from A until all 6-mers in K were observed. Additional motifs from A

were added at random until T contained roughly half of the total motifs. The remaining

motifs were assigned to the test group, R, such that T ∩R = Ø. The same groupings

were used in experiments with 5-mers. The HDP-HMM was trained on alignments

generated with pcrDNA reads supplemented with events from gDNA reads that aligned

to the high-confidence methylated sites from the training group. We used the trained

model to classify the methylation status of cytosines in the test group motifs from the

held out portion of reads from the pcrDNA and gDNA sequencing runs.

3.9.2 Adenine classification with approximate labels

The HMM-HDP uses a supervised learning method where k-mer/event pairs

are fed to an MCMC algorithm (section 2.3). Unlike the case with 5-mC, we did not
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have a high-confidence mapping of 6-mA for E. coli K12 and it has been shown that

adenines at GATC contexts are not entirely methylated during stationary phase growth

[37, 11, 43]. To train the model to learn the new distributions attributed to 6-mA we

labeled all of the adenines at GATC motifs (two per motif) as 6-mA in reads from

stationary phase genomic DNA. We used events from PCR-generated reads to learn the

canonical base k-mers. The improperly labeled un-methylated adenines in the training

data likely explain the relatively high rate that adenines care called 6-mA in the PCR

data. The effect is not overwhelming, however, as changes in the genomic methylation

level is still detectable. In general, this shows that the model can be used to assay

methylation when perfectly labeled training data is not available (see 2.6.6 for further

discussion).

3.10 Sequencing materials and methods

3.10.1 MinION sequencing

The sequencing runs on synthetic oligonucleotides were performed in late 2015

using R7.3 chemistry (SQK-MAP006 sequencing kits). The R7.3 MinION sequencing

protocol records ionic current at 3kHz and modeled event as corresponding to 6-mers.

The pUC19 plasmid DNA, E. coli native and whole-genome-amplified DNA were se-

quenced using R9 chemistry (EXP-NSK007 sequencing kits). The R9 version uses a

different pore and increased sequencing speed. In this version of the protocol, the Min-

ION samples ionic current at 4kHz and the events are modeled as 5-mers. We initially
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used a 6-mer lookup table for the R9 pore provided by ONT, then estimated our own

5-mer model from a collection of reads (Section 3.1).

3.10.2 Sequencing controlled synthetic DNA substrates containing C,

5-mC, or 5-hmC

We used 897 bp synthetic DNA oligonucleotides from ZYMO Research (Cata-

log # D5405) that contain entirely C, 5-mC, or 5-hmC bases. Apart from the cytosines,

the oligonucleotides have identical sequences. We performed sequencing experiments

using R7.3 chemistry (SQK-MAP006 sequencing kits) with four MinION flow cells: one

for each of the three substrates, and one where all the substrates were with barcoded

with uniquely identifying sequences (EXP-NBD001 barcoding kit) and run together on

one flow cell. The runs where the strands were sequenced individually produced 68,920,

27,073, and 70,641, reads for the C, 5-mC, and 5-hmC strands, respectively. The run

where the strands were barcoded and sequenced together produced 6,966, 294, and 467

reads for the C, 5-mC, and 5-hmC strands, respectively. All models were trained on

the reads where the strands were run in separate flow cells. The bar-coded reads served

as our test dataset. This experimental design maximized the amount of training data

while controlling for batch effects between MinION runs. Sequence data were processed

using Metrichor (versions 1.15.0 and 1.19.0), and only “pass” 2D reads that covered the

full length of the reference sequence were used for downstream analysis.
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3.10.3 Preparation of DNA control substrates containing 6-mA and

5-mC

We purchased pUC19 vector DNA from New England Biolabs (NEB cat. num-

ber N3041S). This DNA is isolated from E. coli strain ER2272 that contains genes

methyltransferase (MTase) genes dam and dcm. The dam MTase methylates the ade-

nine in GATC sequence contexts and the dcm MTase methylates the inner cytosine at

CC(A/T)GG sequence contexts. We linearised the plasmid by restriction digest at a

unique SspI (NEB cat. number R0132S) restriction site. The linearised plasmid was

purified by excising the band from an agarose gel following electrophoresis. The DNA

was eluted from the gel using the Wizard SV kit (Promega) as per manufacturer’s in-

structions. To generate an unmethylated substrate, we PCR amplified the plasmid with

primers around the SspI restriction site (forward: 5 ATT ATT GAA GCA TTT ATC

AGG GTT ATT GTC, reverse: 5 ATT GAA AAA GGA AGA GTA TGA GTA TTC

AAC) with Q5 high-fidelity polymerase master mix (NEB cat. number M0492S) as per

the manufacturer’s specifications. The PCR reaction was purified with 0.4X AMPure

SPRI beads using standard procedures.

3.10.4 Sequencing for pUC19 plasmid DNA

The purified PCR-amplified and linear pUC19 DNA were individually bar-

coded (EXP-NBD002 barcoding kit). Roughly equimolar amounts of the barcoded

material was combined and sequenced on the MinION using R9 chemistry (NSK-007

sequencing kit). The sequencing run produced 27,293 and 17,220 pass 2D reads in the
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PCR-identified and native-identified categories, respectively.

3.10.5 Sequencing for genomic and amplified E. coli DNA

We performed one sequencing run using standard procedures on genomic DNA

(gDNA) from E. coli strain K-12 MG1655 and another run on DNA that was PCR-

amplified (pcrDNA) using a whole-genome amplification kit (Qiagen REPLI-g). Both

runs were done independently using R9 chemistry (EXP-NSK007 sequencing kits). The

gDNA run produced 18177 pass 2D reads (132 Mb) with an average read length of 7.3

kb. The pcrDNA run produced 61408 pass 2D reads (387 Mb) with an average read

length of 6.3 kb. The reads were shuffled and evenly divided into two groups, one was

used for training the model and the other for classification experiments.
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Figure 3.1: Cytosine methylation variant calling accuracy results on synthetic oligonu-
cleotides. Results are from classification of 6,966, 294, and 467, C, 5-mC, and 5-hmC
strands respectively that were barcoded and sequenced in the same MinION flow cell.
A. Per-read accuracy distribution is shown for the maximum-likelihood estimate (MLE)
normal distributions and the Multiset HDP model. The triangles represent the mean
of the distribution. B. Average three-way classification accuracy for all sites on the
substrate. Dotted lines represent the mean across all sites for template (blue) and com-
plement reads (green). C. Confusion matrix showing HMM-HDP three-way cytosine
classification performance on template reads of synthetic oligonucleotides. D. Scatter
plot showing the correlation between the log-odds of correct classification and the mean
pairwise Hellinger distance between the methylation statuses of the 6-mer distributions
overlapping a cytosine
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Figure 3.2: Probability distributions for three representative 6-mers by multiple meth-
ods. The first row shows the kernel density estimate (KDE) based on the preliminary
alignments described in the text. The middle row shows maximum likelihood estimated
(MLE) normal distribution probability density functions. The bottom row shows prob-
ability density functions from the Multiset hierarchical Dirichlet process (HDP). All
data shown are from template reads.
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Figure 3.3: Observed and learned ionic current distributions and read accuracy cor-
relation with ungapped alignment score for 6-mA in GATC motifs (left) and 5-mC in
CC(A/T)GG motifs (right). Top: Comparison of the influence of 6-mA and 5-mC on
ionic current levels for representative 5-mers. The empirical ionic current levels from
100 aligned events are shown as a normalized histogram and the HDP-learned proba-
bility densities were are shown as curves. The HDP density was sampled on 900 point
grid from 50 to 140 pA. Bottom. Correlation between ungapped alignment score (see
Methods) and per-read accuracy for 500 randomly sampled template reads
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Figure 3.4: Changes in genome-wide cytosine methylation at different stages of culture
growth. Bar height represents the percentage of residues that were called as methylated.
Axes are broken to accentuate differences between the growth phases.

Figure 3.5: Qualitative concordance between SignalAlign methylation probabilities
(black bars) for 1,500 human CpG dinucleotides on chromosome 20, blue line shows the
“true” bisulfite calls.
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Figure 3.6: Receiver operating characteristic curve showing the classification perfor-
mance of SignalAlign on chromosome 20.
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Chapter 4

Rereading DNA with helicase Hel308

4.1 Introduction

Due to the heterogeneity of the epigenome high-thoughput and sensitive se-

quencing techniques must be devised that are sensitive to multiple cytosine modifica-

tions simultaneously [48]. Existing technologies such as TET-assisted and oxidative

bisulfite sequencing, where only unmodified cytosines are chemically modified to uracil

allows for separate detection of methyl and hydroxymethylcytosine after amplification

by comparing treated and untreated samples can only detect one modification at a time

[5, 53]. Single-molecule real time (SMRT) sequencing harnesses the kinetics of poly-

merase dNTP incorporation at modified bases on the template strand and relies on

rereading the insert sequence for increased accuracy [17].

The primary signal of nanopore sequencers is the sequence specific partial

blockage of ionic current by DNA. Using a DNA polymerase to control strand transloca-
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tion, nanopore based platforms have been shown to discern between C, methyl-cytosine

(mC), hydroxymethyl-cytosine (hmC), formyl-cytosine, and carboxy-cytosine at accu-

racy rates ranging from 87-98% based on a single read of a DNA molecule [46, 52].

Commercial nanopore based sequencers read DNA molecules in the range of 0.5-48 kb

in length. An advantage of single molecule sequencing technologies is the opportunity

to characterize sub-populations within a sample. Thus a goal for these sequencers is to

increase accuracy of mapping mC and hmC bases on an individual molecules. One way

to increase calling accuracy is to reread a single molecule multiple times. If errors are

independent and randomly distributed, then multiple reads can be used to gain more

information of a target substrate.

This section describes a nanopore system where a Hel308 helicase from Methanococ-

coides burtonii (Hel308Mbu, referred to as Hel308) pulls single-stranded DNA (ss-

DNA) against an applied voltage through a mutated Mycobacterium smegmatis porin

A (M2MspA). Synthetic DNA strands containing a C, mC, or hmC embedded within

a CC*GG context (C* denoting the modified base) and an independent label sequence

were used to determine if rereading can increase accuracy of classification of modifica-

tions. A hidden Markov model (HMM) was used to model the movement of Hel308 on

the DNA strand and multiple analysis algorithms were implemented to determine the

accuracy of single and multiple reads.
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4.2 A method to reread DNA

Nanopore sequencing reads native DNA by directly touching the individual

bases in the strand. We engineered a system that can pass a single molecule of DNA

through the nanopore multiple times, this strategy we call the Break Away system. A

schematic of the design can be seen in Figure 4.2. Hel308 binds to a 5-nucleotide single-

stranded loading site. To prevent helicase activity in bulk, a G-quadruplex forming

sequence is positioned after the loading site. The 5 end of the strand contains a run

of abasic residues that causes Hel308 to dissociate. A complement strand that bears

a 3 cholesterol aids in capturing the substrate by concentrating the substrate at the

membrane. Once the strand is captured and threaded through the pore the complement

is removed and the force from the applied voltage is sufficient to unfold the G-quadruplex

[35]. The resulting ssDNA allows Hel308 to translocate on the strand, however because

Hel308 cannot pass through the MspA pore it pulls the strand through MspA against

the applied voltage. Based on crystal structures Hel308 occludes about 11 nucleotides

[6].

A representative trace from an event with 4 rereads is show in Figure 4.2.

Briefly, the strand is captured and the first read starts immediately (Read i). Next,

the abasic block passes through the pore sensor resulting in high ( 82 pA) current (red

bars). Hel308 arrives at the abasic block shortly after it passes through though the pore

and the first enzyme dissociates. This causes the DNA to fall back to just before the

abasic block (about 11 nucleotides) where another Hel308 is positioned. The process
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repeats itself two additional times until all enzymes are removed from the strand. In

the case of the first read there were 3 Hel308 on the strand. Once all of the enzymes

are removed, the strand falls back to the starting position and the process repeats itself

affording the second, third, and forth read. Occasionally the read will fail to restart

either from the G-quadruplex not refolding or because too many Hel308 are loaded on

the strand, in this case we observe reads that do not start from the beginning but rather

somewhere in the middle of the strand (green bars).

With the G-quadruplex unfolded plus the single-stranded loading site there

are 20 nucleotides available, allowing for multiple Hel308 enzymes to bind. This is

advantageous because these enzymes have been shown to act as functional oligomers

[47]. In the case where multiple Hel308 have loaded on the strand, a 10-12 nucleotide

backslip is observed instead of a reset to the start of the read Figure ?? (red bars).

We typically observe 2-3 enzymes bound per-read. Once all of the active Hel308 are

removed, the strand remains captured and is pulled by the voltage to the G-quadruplex

sequence and the strand is reread.

4.3 Mapping ionic current segments to 4-nucleotide words

To determine the segments corresponding to the modified cytosine in the con-

text we mapped each segment in the read to its corresponding nucleotides in the se-

quence. It has been shown that 4 nucleotides (4-mers) are responsible for the segment

current level when using MspA [26, 52]. Within a read we observed Hel308 can occa-
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sionally backslip 1-5 nucleotides (discussed in the next section), a property that can

make mapping current segments to 4-mers difficult in repeating regions. Two strate-

gies were implemented to unambiguously map current segments to nucleotide 4-mers.

First, asymmetric bookend homopolymer sequences were added to the 5 and 3 end of

the sequence of interest (Figure 4.3). The bookend sequences allow for the accurate

mapping of the first and last non-bookend 4-mer. Second, we used a sequence where

each 4-mer has unique neighbors within the sequence context. This means that even

though a segment may occur more than once in the read it can be mapped to its 4-mer

based on its immediately following segment. One 4-mer, TCAT, occurs 3 times within

the sequence. The TCAT segments were used as anchor points allowing for mapping of

the intermediate segments (4.3).

The sequence employed contains a context and label region (Figure 4.2). The

context region consists of the CpG dinucleotide where the cytosine can be C, mC, or

hmC and the neighboring 5 and 3 nucleotides. To emphasize the advantage of rereading

we chose to use the CCGG context because it had low single-read accuracy in previous

studies [52]. The label sequences were chosen to be GG, AA, and TT for C, mC, and

hmC respectively.
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4.4 Modeling and classification of reads using modular

HMM

Hidden Markov Models (HMMs) have been used in many computational appli-

cations including statistical modeling, database searching, and multiple sequence align-

ment of protein families and domains [7]. Similar to other SF2 helicases we observed

Hel308 backslip one or more nucleotides causing a repeat of segments to be observed

[8]. Hel308 can also dissociate from the substrate mid-read, and if another helicase

happens to be bound directly behind it (a common occurrence), the DNA will fall back

the length of one helicase occlusion site (10 nts, 6 segments). To model this behavior, a

standard profile HMM was used as a reference point with an added modular structure

and a backslip pathway that models both spontaneous backslip and mid-read Hel308

dissociations (Figure 4.4 bottom). To more accurately represent the biophysical similar-

ity between backslips and dissociations probabilities were selected such that backslips

of 1-5 nucleotides carry an exponential decay in transition probability and yet the prob-

ability of a backslip of 1 segment is equivalent to a backslip of 6 segments (Figure 4.4

bottom). The HMM was designed with forks for the 3 modifications and their corre-

sponding labels. Taking these differences into account led to the complete model seen

in Figure 4.4-top, that allows the different substrates to align to their respective track

in the fork.

Evaluation of multiple algorithms for combining single-molecule rereads For

events that contain rereads, we computed the accuracy based on 3 methods, Best,
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independent consensus (IC), and standard posterior decoding (PD). The Best method

calculates the accuracy based on the calls from the Chunk with the highest CScore. The

IC method calculates the error of a read by the product of the probabilities of error of

each Chunk, following the equation: . A full discussion of the IC method can be found

in the supplement. The PD method calculates the accuracy by computing the sum of

the probability over all paths through the HMM.

Of the three multi-read algorithms IC produces the highest accuracy for reads

where the context CScore is greater than 0.65 (Figure ??A). Using the IC algorithm

events in this range have 11-18% higher accuracy if they contain multiple Chunks.

Chunks with intermediate CScores (0.65 ¿ CScore ¿ 0.35) do not benefit from multi-

reads over single reads using IC, and when the CScore is less than 0.35 single reads

perform better than IC. For a distribution of the number of reads in the events see

Figure 4.4B. We can reconcile this decrease by using the Best algorithm for Chunks

with CScore below 0.35 (Figure ??C). A confusion matrix was constructed to show how

each context was being called. C is miscalled as mC and hmC equally, whereas both

mC and hmC have a bias of being called as cytosine.
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Figure 4.1: A. Schematic of typical nanopore setup. A single MspA porin is inserted
into an artificial lipid membrane suspended between a teflon aperture. The membrane
separates two buffered solutions into the cis and trans compartments. A voltage is
applied across the membrane and the resulting ionic current is monitored using a patch-
clamp amplifier. B. Scheme of the Break-Away reread system: i. The hybrid substrate
is attracted to the membrane by a 3 cholesterol-linked tether oligo that is partially
complementary to the reread strand. Hel308 helicase in bulk loads onto the 3 end of
the reread strand, behind the folded G-quadruplex. ii. The 5 tail of the reread strand
threads through MspA, removing the tether strand. Electrophoretic force pulls the
reread strand until the G-quadruplex is positioned between Hel308 and the constriction
of MspA. iii. The force from the voltage unfolds the G-quadruplex into single-stranded
DNA allowing Hel308 to process on the strand in the 3 to 5 direction. iv. Hel308
pulls the reread strand against the voltage allowing the strand to be read by recording
the changes in ionic current through MspA. Simultaneously, the G-quadruplex refolds
preventing additional Hel308 from processing on the reread strand. v. The block of
abasic residues passes through MspA, producing a characteristic high (85 pA) current
level. vi. When Hel308 reaches the block of abasic residues, it dissociates. Allowing the
reread strand to return to position ii, initiating a reread.
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Figure 4.2: Representative current trace with 4 complete rereads of a single DNA
molecule. This current trace is from due to the mC context and AA label. High
current levels from abasic resides are highlighted by red bars (Fig. 1B v.). Full length
reads with bookends are shown by blue blue bars and expanded below. Unsuccessful
restarts, where the read does not start from the beginning (pol-dT bookend) are shown
by green bars.
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Figure 4.3: A. Cartoon representation of entire substrate used in Break-Away system.
The 5 poly-dC tail threads through MspA. The abasic block, represented as a is 12
residues long to ensure Hel308 will dissociate. The sequence of interest contains the 5
poly-dC bookend, the CC*GG context sequence, the corresponding label sequence, and
the 3 poly-dT bookend. The 3 end of the strand contains a 5-cytosine Hel308 binding
sequence and a thrombin binding aptamer sequence that folds into a G-Quadruplex. B.
Reread sequence showing mapped 4-mers and bookend sequences. Reoccurring TCAT
4-mers were used as anchor states with consistent 43.5 pA current. The sequence was
designed so that each 4-mer has unique neighbors within the sequence (see text). C.
Representative current trace with mapped segments colored according to 4-mer sequence
as in B. Arrows show TCAT anchor segments.
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Figure 4.4: A. (Top) Each current level in the mapped ionic traces was mapped as a
separate board (below) allowing for transitions to and from match/insert, delete, and
back slip paths through the model. The current states corresponding to the context and
label were modeled as three separate paths through the model and used for classification.
The downstream label (hexagons) were used to confirm or disprove the classification of
the context. (Below) A modular board in the HMM representative of a specific segment
in a nanopore trace. Circular nodes represent silent states (non-emitting states), D is the
delete state (missing segment), I is the insert state (off-pathway segment/noise spikes),
M is the match state (aligning to a segment of the same mean), and the red states
represent the backslip pathway. B. There are two roughly equally likely possibilities
that can explain a back slip observation; one Hel308 can move backwards on the reread
strand or one Hel308 can dissociate mid-read and the strand will move backwards to a
trailing Hel308.
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Figure 4.5: A. Plot comparing accuracy of multi-read events to single-read events by
CScore. At CScore>0.65 multi-read evens have accuracies 11-18% higher than their
single-read counterparts. From 0.65>CScore>0.35 single and multi-read events are
roughly the same. In events with CScore<0.35 single reads are more accurate. B.
Plot showing the number of events used and the number of Chunks contained in those
reads above a given CScore. C. Plot of accuracy by CScore by various methods. Best
and IC are described in the text. First, Last, and Random were used as controls for
ordering bias. IC is the highest performer at CScore>0.3, after which Best is the highest
performer. D. Confusion matrix showing occurrence of miscalls by type.
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Chapter 5

Conclusion

In this work, I developed new models for detection of DNA base modifications

with nanopore sequencing instruments. In Chapter 2 I describe a hybrid statistical

model composed of a hidden Markov model and hierarchical Dirichlet process mixture

of normal distributions. In Chapter 3 I use the model in combination with the MinIONs

ionic current data, I showed how the model can achieve a median three-way cytosine

classification read accuracy of 80% on synthetic DNA. I explain that the classification

accuracy varies between sequence contexts and is correlated with the impact the methy-

lation has on the ionic current signal. In Section 3.6 I show how I tested the method in

a model system by mapping 5-mC and 6-mA bases in genomic E. coli DNA and plasmid

DNA. The described model correctly mapped the methylation status of 96% of the cy-

tosines in E. coli DNA and 86% of the adenines in pUC19 plasmid DNA with 20X and

40X coverage, respectively. This coverage is lower than is typical in studies with other

platforms. To show the utility of the method in a dynamic system, I demonstrated how
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the model can detect genome-wide changes in methylation at different growth phases in

E. coli even with imperfect training data. Lastly in Section 3.8 I show how the model

can be scaled to human genome experiments and retain high performance in detect-

ing CpG methylation. Moreover, since no extra sample preparation is necessary, this

information is available in any MinION sequencing experiment that uses genomic DNA.

I anticipate numerous applications for this method. For instance, it could

be used to physically phase multiple base modifications simultaneously on long reads,

allowing for haplotype phasing of differentially methylated blocks in the genome. This

method is also applicable as a starting point for additional machine learning algorithms.

For example by probabilistically assigning events to methylation and variant status, new

base calling neural networks can be trained to detect base modifications de novo. In

addition, it is straightforward to change the set of base modifications our model detects

as long as there is appropriate training data (Section 2.6.6), for example modified RNA

bases or DNA damage.
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[6] Katharina Büttner, Sebastian Nehring, and Karl-Peter Hopfner. Structural ba-

sis for DNA duplex separation by a superfamily-2 helicase. Nature structural &

molecular biology, 14(7):647–52, jul 2007.

[7] Christopher Bystroff and Anders Krogh. Hidden Markov Models for prediction

of protein features. Methods in molecular biology (Clifton, N.J.), 413:173–98, jan

2008.

[8] Wei Cheng, Srikesh G Arunajadai, Jeffrey R Moffitt, Ignacio Tinoco, and Carlos

Bustamante. Single-base pair unwinding and asynchronous RNA release by the

hepatitis C virus NS3 helicase. Science (New York, N.Y.), 333(6050):1746–9, sep

2011.

[9] Gerald M Cherf, Kate R Lieberman, Hytham Rashid, Christopher E Lam, Kevin

Karplus, and Mark Akeson. Automated forward and reverse ratcheting of DNA in
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