UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Can computers tell a story? Discourse Structure in Computer-generated Text and Humans

Permalink

https://escholarship.org/uc/item/2276k59j

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors

Wey, Alex Hemmatian, Babak Avram, Rachel et al.

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Can computers tell a story? Discourse Structure in Computer-generated Text and Humans

Alex Wey

Brown University, Providence, Rhode Island, United States

Babak Hemmatian

Brown University, Providence, Rhode Island, United States

Rachel Avram

Brown University, Providence, Rhode Island, United States

Sheridan Feucht

Brown University, Providence, Rhode Island, United States

Kate Spitalnic

University of Sussex, Falmer, Brighton, United Kingdom

Muskaan Garg

Brown University, Providence, Rhode Island, United States

Carsten Eickhoff

Brown Univeristy, Providence, Rhode Island, United States

Ellie Pavlick

Brown University, Providence, Rhode Island, United States

Björn Sandstede

Brown University, Providence, Rhode Island, United States

Steven Sloman

Brown University, Providence, Rhode Island, United States

Abstract

Text-generation algorithms like GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) produce documents which resemble coherent human writing. But no study has compared the discourse linguistics features of the artificial text with that of comparable human content. We used a sample of Reddit and news discourse as prompts to generate artificial text using fine-tuned GPT-2 (Grover; Zellers et al., 2019). Blind annotators identified clause-level discourse features (e.g., states and events; Smith, 2003), and coherence relations (e.g., contrast; Wolf and Gibson, 2005) in prompts and generated text. Comparing the >20000 clauses, Grover recreates human word co-occurrence patterns and clause types across discourse modes. However, its coherence relations have shorter length and lower quality, with many nonsensical instances. Therefore, annotators could perfectly guess the human/algorithmic source of documents. Using a corresponding GPT-3 sample, we discuss aspects of generation that have and have not improved since Grover.