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Selective Export into Extracellular Vesicles and Function of 
tRNA Fragments during T Cell Activation

Ni-Ting Chiou1, Robin Kageyama1, and K. Mark Ansel1,2,*

1Sandler Asthma Basic Research Center and Department of Microbiology & Immunology, 
University of California, San Francisco, San Francisco, CA, USA

2Lead Contact

SUMMARY

The discovery of microRNA (miRNA) sorting into extracellular vesicles (EVs) revealed a novel 

mode of intercellular communication and uncovered a link between cellular endomembrane 

compartments and small RNAs in EV-secreting cells. Using a two-step ultracentrifugation 

procedure to isolate EVs released by T cells, we found that 45% of tRNA fragments (tRFs), but 

fewer than 1% of miRNAs, were significantly enriched in EVs compared with the corresponding 

cellular RNA. T cell activation induced the EV-mediated release of a specific set of tRFs derived 

from the 5′ end and 3′-internal region of tRNAs without variable loops. Inhibition of EV 

biogenesis pathways specifically led to the accumulation of these activation-induced EV-enriched 

tRFs within multivesicular bodies (MVBs). Introducing antisense oligonucleotides to inhibit these 

tRFs enhanced T cell activation. Taken together, these results demonstrate that T cells selectively 

release tRFs into EVs via MVBs and suggest that this process may remove tRFs that repress 

immune activation.
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In Brief

Chiou et al. show that T cells release extracellular vesicles that carry RNA cargo enriched in tRNA 

fragments. Immune activating signals enhance multivesicular body formation and the secretion of 

vesicles containing specific tRNA fragments. Within cells, these tRNA fragments inhibit T cell 

activation and cytokine production.

INTRODUCTION

Extracellular vesicles (EVs) that carry extracellular RNAs (ex-RNAs) are generated from 

different intracellular origins. Microvesicles are assumed to be released directly from 

budding of the plasma membrane, whereas exosomes originate from the endosomal 

compartment and are released upon fusion of multivesicular bodies (MVBs) with the plasma 

membrane (Colombo et al., 2014). The encapsulation of exRNAs within vesicles protects 

them from degradation, making them stable constituents of body fluids. Moreover, exosome-

associated CD47 inhibits phagocytosis, increasing retention in circulation (Kamerkar et al., 

2017). These properties of exRNAs and their carriers have been exploited for biomarker 

discovery, and they allow exRNAs to mediate communication between exosome secreting 

cells and recipient cells (Tkach and Thery, 2016). In addition, the exosome biogenesis 

pathway modulates microRNA (miRNA) silencing activity through the association of 

miRNA effector proteins with MVBs (Gibbings et al., 2009).

T cells are a robust source of EVs containing small RNAs. T-cell-expressed miRNAs are 

associated with EVs and increase in the serum of immunized mice and humans (de Candia et 

al., 2013, 2014), while cellular miRNAs are globally downregulated upon T cell activation 

(Bronevetsky et al., 2013). Exosome secretion is important for proper immune function, as 

Rab27 deficiency modulates inflammatory responses and inhibits chronic inflammation in 

mice (Alexander et al., 2017; Okoye et al., 2014). Target cell killing by cytotoxic T cells 

involves the activation-induced fusion of Rab7-containing cytotoxic granules with the 
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plasma membrane in a Rab27-dependent manner (Daniele et al., 2011; de Saint Basile et al., 

2010). The fusion of MVBs with the plasma membrane in may be regulated in a similar 

manner to control exRNA release in exosomes. For these reasons, T cells are a good model 

for investigating signal-regulated mechanisms of RNA packaging into exosomes and how 

this process affects their biological activity in source and recipient cells.

tRNA fragments (tRFs) are generated through endonucleolytic cleavage of tRNAs 

(Gebetsberger and Polacek, 2013). They are among the most prevalent small RNA species 

detected in exRNA, and in cells they rank second in abundance only to miRNAs (Lee et al., 

2009). Early studies detected tRFs in the urine of cancer patients (Borek et al., 1977; Speer 

et al., 1979), raising the possibility that tRFs may be oncogenic and that they may be 

actively released into body fluids. tRFs can be transferred from epididymosomes to sperm, 

epigenetically transmitting information about paternal diet and metabolism to offspring 

(Sharma et al., 2016). tRFs also impact a number of functions in somatic cells, including cell 

proliferation, cancer progression, and the activity of endogenous retroelements (Goodarzi et 

al., 2015; Maute et al., 2013; Schorn et al., 2017). However, their secretion and biological 

effects in T cells remain unexplored.

In the present study, we analyzed EVs rigorously separated from ribonucleoprotein 

aggregates in cell culture supernatants of activated T cells. RNA sequencing showed that 

compared with cellular RNAs, tRFs were enriched in EVs more than any other class of 

RNA, which is consistent with studies in cell lines (Baglio et al., 2015; Koppers-Lalic et al., 

2014; Li et al., 2013; Liao et al., 2014; Tosar et al., 2015). We further identified specific sets 

of tRFs whose release via EVs is enhanced by T cell activation and showed that blocking 

tRF release by neutral sphingomyelinase (nSMase) inhibitor increased the cellular levels of 

these activation-induced EV-enriched tRFs but not other activation-independent EV-enriched 

tRFs. Subcellular fractionation further showed that nSMase inhibitor treatment specifically 

led to the accumulation of these activation-induced EV-enriched tRFs within the Rab7-

containing compartments, suggesting that these tRFs were released via MVB sorting. T cells 

transfected with antisense oligonucleotides against these tRFs displayed enhanced T cell 

activation. These results indicate that activated T cells utilize EV biogenesis pathways to 

selectively secrete tRFs that can repress T cell activation.

RESULTS

Purified T Cell EVs Contain Intact Extracellular Small RNA Species

To establish an experimental system for investigating the effects of activating signals on 

exRNA biogenesis, we isolated EVs secreted by primary T cells stimulated with antibody 

agonists of antigen and costimulatory receptors (anti-CD3 and anti-CD28) (Figure S1A). 

After 3 days in these culture conditions, approximately 60% of in vitro activated T cells 

remain alive, and they uniformly upregulate CD44 and downregulate CD62L (Figure S1B). 

Since so many T cells die during activation, we expected that intracellular contents passively 

released from dead cells would contaminate EVs secreted by live cells. To separate EVs 

from contaminating particles, we used a two-stage purification procedure to isolate EVs. 

First, large contaminating cells and cellular debris were removed from the media by 

successive low and medium speed centrifugation, and EVs and other small particles were 
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pelleted by ultracentrifugation at 100,000 × g. Second, to eliminate non-vesicle 

contaminants, the 100,000 × g pellet was resuspended in 80% sucrose buffer, overlaid with 

lower concentrations of sucrose buffer, and ultracentrifuged again to float vesicles into the 

less dense sucrose layers (Figure 1A).

Fractions of these gradients were collected for further analysis. Several independent lines of 

evidence indicated that fraction 3 contained EVs, while fraction 6 was dominated by 

degraded RNA and/or protein aggregates. First, fraction 3 was composed of 34% to 52% 

sucrose, corresponding to a density of 1.15 to 1.20 g/ml, the known density range of 

exosomes (Théry et al., 2006). Second, fraction 3 was highly enriched in the microvesicle 

and exosome protein markers Arf6 and Tsg101 (Figure 1B). Ago2 and GW182 proteins 

involved in miRNA function were present but not enriched in EVs. The total protein quantity 

in fraction 3 was similar to that of T cell lysates made from 100-fold fewer cells (Figure 1B, 

bottom; compare fraction 3 of 100,000 × g pellet from 12 × 106 cells versus cell lysate from 

0.12 × 106 cells), indicating that activated T cells secreted at least 1% of their cellular 

protein content in an EV-rich exudate. Fraction 6 contained even more total protein and was 

non-selectively enriched for all proteins tested by immunoblotting, suggesting that it was 

dominated by dense protein aggregates that remained at the bottom of the sucrose gradient.

Finally, RNA analyses showed that fraction 3 contains intact exRNA species. Bioanalyzer 

analysis detected intact 28S and 18S rRNA in fraction 3 but not in fraction 6, despite the 

latter’s higher overall RNA content (Figure 1C). Compared with cells, both fractions were 

enriched in smaller RNA species. PAGE separation of 50–300 nt RNAs further demonstrated 

that fraction 3 contained intact 5.8S and 5S rRNAs and tRNAs, whereas fraction 6 was 

dominated by apparently randomly fragmented RNAs. Although full-length rRNAs were 

detected in EV fractions, they were not enriched in EV fractions compared to cellular RNA, 

consistent with previous reports (Wei et al., 2017). qPCR showed that intact miRNAs were 

also much more abundant in fraction 3 than in fraction 6 (Figure 1D). These results suggest 

that the various exRNA species in fraction 3 are protected from degradation by 

encapsulation within EVs. To test this possibility, we treated fraction 3 or fraction 6 with 

RNase A in the presence or absence of the vesicle-disrupting detergent Triton X-100. For 

fraction 3, RNase treatment did not dramatically alter miRNA or other exRNA species 

detection unless Triton X-100 was present (Figure 1E, top). By contrast, RNase treatment of 

fraction 6 with RNase A dramatically reduced the detection of exRNAs even in the absence 

of Triton X-100 (Figure 1E, bottom). All together, these data show that in vitro activated T 

cells release EVs that contain and protect exRNAs and that our purification procedure 

separates these EVs from RNA and/or protein aggregates that also accumulate in the culture 

media.

tRFs Are Enriched in T Cell EVs

To identify specific small RNAs that were enriched in bona fide T cell EVs free from 

aggregate contamination, we performed sequencing of small (~15–31 nt) RNA libraries 

prepared from EVs (F3), aggregates (F6), and activated T cells (Figure 1B). To reduce bias 

in small RNA library preparation, we modified the 5′ and 3′ ligation adaptors with five 

random bases added to the 3′ end and 5′ end, respectively (Fuchs et al., 2015). Greater than 
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70% of sequence reads from cell libraries mapped to the genome, compared to 62% from 

EVs and 55% from aggregates (Figure S2A), consistent with lower mapping rates for EV 

libraries in the previous study (Cha et al., 2015).

Classifying the sequenced RNAs revealed several distinct features of the composition of 

small RNAs and RNA fragments in T cells, EVs, and aggregates. First, RNA fragments 

derived from larger RNA classes, including protein coding mRNAs and long intergenic 

noncoding RNAs (lincRNAs), accounted for about 50% of the total reads in all libraries, and 

their composition was similar among all samples (Figure 2A). Second, miRNAs were 

depleted compared to cellular RNA, slightly in EVs but greatly in aggregates (Figure 2A). 

This is consistent with qPCR results that detected much higher miRNA abundance in EVs 

than in aggregate fractions (Figure 1D). Third, EVs and aggregates differ greatly in their 

composition of other RNA classes. In particular, tRFs were specifically enriched in EVs, 

whereas aggregates contained more small nucleolar RNA (snoRNAs) and small nuclear 

RNA (snRNAs) (Figure 2B).

We further classified tRFs into five groups derived from different parts of full-length tRNAs: 

the 5′ end (5′tRF), 3′ end (3′CCA-tRF), 5′-internal region (5′i-tRF), 3′-internal regions 

(3′i-tRF), and central internal region (i-tRF) (Figure 2C). In each group, longer tRFs (26 to 

31 nt) and shorter tRFs (14 to 25 nt) were classified as L-tRF and tRF, respectively. We 

found that 5′tRFs and 3′i-tFRs were enriched, but 3′CCA-tFRs were depleted in EVs 

compared to cellular small RNAs (Figure 2D). Analysis of tRF read length revealed that 18–

21 nt 5′tRFs were dominantly enriched in EVs, while 17–18 and 22 nt 3′CCA-tRF reads 

were significantly depleted (Figure S2B). These data indicate that specific tRNA cleavage 

events generate tRFs that are preferentially released or retained in cells.

Detailed comparison of all RNA species in EVs and cells further elucidated the specificity 

ofTcell release of tRFs within EVs. As a fraction of all sequenced RNAs, only one miRNA 

(miR-150) exhibited EV enrichment (EE) as measured by the ratio of RNA reads in EVs 

versus cells. In contrast, 45% of tRFs showed at least 1.5-fold EE (Figure 2E; Table S1). 

Among the subgroups of tRFs, 5′tRFs were the most uniformly and highly enriched in EVs. 

98% of all 5′tRFs displayed at least 1.5-fold EE, with some enriched as much as 10-fold 

(Figure 2F). In comparison, EE greater than 1.5-fold was observed for just 2%, 26%, 29%, 

and 36% of 3′L-tRF/i-tRF, 5′i-tRF, 5′L-tRF, and 3′i-tRF, respectively. Although 53% of 

3′CCA-tRFs exhibited at least 1.5-fold EE (Figure 2F), the 3′CCA-tRF derived from tRNA-

Ala-TGC that accounted for 10% of all tRF reads were depleted in EVs, resulting in fewer 

total reads of 3′CCA-tRFs in EVs compared to cells (Figure 2D). Taken together, our results 

revealed that tRFs were more significantly enriched in EVs than were miRNAs and other 

small RNAs and that 5′tRFs and select other tRFs were preferentially exported into EVs 

secreted from activated T cells.

Selective Signal-Regulated tRF Release by T Cells

To determine whether T cell activation modulates the export of tRFs, we isolated EVs 

secreted from resting T cells using the same two-step procedure (Figure S3A). Resting T 

cells were much smaller than stimulated T cells (Figure S3B), and 3.3-fold more resting 

cells were required to obtain the same yield of EVs (by protein content) as was obtained 
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from stimulated cells (Figure 3A; compare 40 million resting versus 12 million stimulated T 

cells). However, the efficiency of EV production was similar under resting and stimulated 

conditions. Once again, approximately 1% of the protein yield from cell lysates was released 

into the EV fraction during culture under resting conditions (Figure 3B; compare EVs from 

40 × 106 cells to cell lysate from 0.4 × 106 cells). Small RNAs under 150 nt and the 

exosome protein markers Tsg101 andCD81 were less enriched in EV fractions under resting 

conditions (Figures 3B and S3C), whereas EV fractions contained similar amounts of β-

actin and total protein under resting conditions and stimulated conditions. This indicates that 

fewer exosomes were secreted and other types of co-purifying EVs that contained lower 

levels of exosomal markers and small RNAs may be more predominantly released under 

resting conditions. Small RNA sequencing showed that miRNAs were similar, but tRFs 

showed less EE under resting conditions (Figures S3D and S3E). In particular, 5′tRF and 

3′i-tRF reads were less enriched, and 3′CCA-tRF reads were less depleted from EV 

fractions under resting conditions compared to stimulated conditions (Figure 3C).

To identify the specific tRFs that exhibit activation-induced EE, we directly compared 

sequencing data for EVs and cells under stimulated and resting conditions. Among the 

5′tRFs, 5′L-tRFs, and 5′-i-tRFs with ≥ 1.5-fold EE in stimulated conditions, large 

majorities (77%, 98%, and 69%, respectively) exhibited at least 1.5-fold greater EE in 

stimulated T cell cultures as compared to their EE in resting T cells. In contrast, 3′CCA-

tRFs displayed uniformly higher EE in resting conditions, and only 48% of 3′i-tRFs were 

more EV enriched in stimulated conditions (Figure 3D; Table S2). There are two structural 

types of 3′i-tRF, as follows: hairpin fragments (3′i-tRF-H) and linear fragments (3′i-tRF-L) 

that derive from tRNAs with and without variable loops, respectively (Figure 2C). 63% of 

the linear 3′i-tRF-L, but none of the haripin 3′i-tRF-H fragments, showed greater EE in 

stimulated conditions (Figure 3E). These results indicate that the positions within parent 

tRNAs and the secondary structures of internal tRFs correlate with selective release into EVs 

in response to T cell activation. tRFs derived from the 5′ end of tRNAs and from internal 

regions without hairpin structures exhibited EE that is enhanced upon T cell activation.

Examination of read alignments to individual representative tRNAs illustrate these regional 

patterns of EE and revealed that tRFs derived from the same tRNA can display different 

types of EE (Figures 4A and S4A). For simplicity, we classified tRFs into the following 

three categories: activation-induced EE, activation-independent EE, and not enriched. 5′tRF 

derived from the tRNAs Leu-TAA and Leu-TAG showed activation-induced EE, whereas 

3′i-tRF-H from tRNA Leu-TAA exhibited activation-independent EE. Oligo(dT) qRT-PCR 

detected both tRFs and full-length tRNA in Poly(A) polymerase treated cellular RNA, as 

shown by gel electrophoresis of PCR products in the exponential phase of amplification 

(Figure 4B). However, since EV did not contain detectable full-length tRNA, this assay 

could be used to measure the relative abundance of tRFs in EVs from resting and activated T 

cells. Activation-induced EV-enriched tRFs were increased by 4- to 6-fold in EVs following 

T cell stimulation, whereas activation-independent EV-enriched tRFs were only ~2-fold 

more abundant in EVs from resting versus stimulated T cells (Figure 4C). RNase treatment 

with and without Triton X-100 indicated that these tRFs were encapsulated within EVs 

(Figure 4D).
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We designed stem-loop qRT-PCR assays that reliably distinguish tRFs from their 

corresponding full-length tRNAs (Figures S4B and S4C) and used them to further confirm 

that all three of these EV-enriched tRFs were enriched in EV compared to cellular RNA 

(Figure 4E). Moreover, the difference in tRF abundance in EV and cellular RNA was greater 

in stimulated conditions than resting conditions for activation-induced EV-enriched 5′tRFs 

Leu-TAA and Leu-TAG but not for the activation-independent EV-enriched 3′i-tRF Leu-

TAA. These data validate specific abundant tRFs that were differentially enriched in EVs 

produced by T cells in response to activating antigen and costimulatory receptor signals.

Activation-Induced nSMase-Dependent MVB Formation and tRF Downregulation

We hypothesized that activation-induced EV release may lead to the downregulation of 

cellular tRFs through MVB-mediated EV biogenesis pathways. Exosomes are released when 

cellular MVBs fuse with the plasma membrane, releasing intraluminal vesicles and their 

associated cargo. This process is regulated by ESCRT (endosomal sorting complexes 

required for transport) complexes and the activity of nSMase (Colombo et al., 2014). The 

nSMase inhibitor GW4869 (Luberto et al., 2002) repressed EV production by activated T 

cells, as indicated by dose-dependent reductions in the recovery of EV proteins and RNA in 

EV fractions (Figures 5A–5C). Total EV RNA recovery was reduced to about 50% of 

control in GW4869 treated cells, similar to the decrease of TfR and Arf6, but less than the 

95% reduction of the restricted exosomal marker Tsg101 (compare Figure 5B and Figure 

5C). These data indicate that GW4869 repressed the release of exosomes more than other 

types of EVs produced by activated T cells.

We compared the small RNA species in cells and EV fractions from T cells treated with 

GW4869 and DMSO vehicle alone by sequencing. GW4869 treatment did not significantly 

alter the overall distribution of broad classes of small RNAs in cells or EV fractions (Figures 

S5A–S5C). However, the EE of tRFs was altered by GW4869 treatment. 40% of all 

activation-induced EV-enriched tRFs and 63% of activation-independent EV-enriched tRFs 

exhibited 1.5-fold or more reduction in EE in GW4869 treated cells, compared with just 

13% of non-enriched tRFs (Figure 5D; Table S2). Oligo(dT) qRT-PCR confirmed that 

GW4869 reduced the abundance of EV-enriched tRFs in EVs by 20%–50% at low 

concentration (10 μM) and by 60%–80% at high concentration (20 μM) (Figures 5E and 5F). 

Quantifying gel bands corresponding to tRF qRT-PCR products from cellular RNA indicated 

that activation-induced EV-enriched tRFs accumulated in cells upon GW4869 treatment 

more than activation-independent EV-enriched tRFs (Figures 5E and S5D). Stem-loop qRT-

PCR confirmed that GW4869 treatment reduced both activation-induced and activation-

independent EV-enriched tRF abundance in EVs while selectively increasing the cellular 

abundance of activation-induced EV-enriched tRFs (Figure 5G). Thus, nSMase activity is 

required for EV-enriched tRF enrichment in EVs and to prevent accumulation of activation-

induced EV-enriched tRFs in activated T cells.

GW4869 represses not only the release of exosomes via MVB but also microvesicles that 

bud directly from the plasma membrane (Menck et al., 2017). To further probe the pathway 

of tRF release by T cells, we analyzed their subcellular localization by cellular organelle 

fractionation. Previous studies have reported that the 15,000 × g pellet of homogenized cells 
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contains active MVBs that can sort proteins or RNAs into intraluminal vesicles (Shurtleff et 

al., 2016). We obtained 15,000 × g pellets from homogenized T cells and then further 

fractionated them by Opti-prep gradient centrifugation (Figure 6A). In resting T cells, the 

late endosome protein Rab7 was enriched in fractions (6 and 7) that contained no detectable 

CD81 (Figure 6B). CD81 is an exosome marker that can appear on the plasma membrane 

and endomembranes in lymphocytes. By contrast, in activated T cells, Rab7 was enriched in 

fractions (4,5, and 6) with substantial CD81 protein. These results indicate that CD81 may 

be more actively incorporated into Rab7-containing MVBs in activated T cells. Notably, we 

also observed greater enrichment of CD81 in EV fractions from activated compared with 

resting T cell supernatants (Figures 3A and 3B).

The lower-density Rab7- and CD81-containing membrane fractions may represent MVBs 

that are intracellular intermediates of exosome biogenesis. Consistent with this 

interpretation, GW4869 treatment of stimulated T cells shifted the enrichment of Rab7 back 

to the higher-density fractions 6 and 7. GW4869 reduces the formation of intraluminal 

vesicles in MVBs, which may lead to increased MVB density (Trajkovic et al., 2008). These 

high-density Rab7-containing fractions also contained CD81, suggesting that GW4869 

blocked MVB maturation after incorporation of CD81 and potentially RNA cargo as well. 

Oligo(dT) RT-PCR detected both full-length tRNAs and tRFs in key cellular Optiprep 

gradient fractions (Figure S6). Therefore, we used stem-loop qRT-PCR to quantify tRFs 

(Figure 6C). Under resting conditions, both activation-independent and activation-induced 

EV-enriched tRFs were concentrated in cytosolic and high-density Rab7-containing fractions 

(Figure 6C, left panel). These tRFs were mainly restricted to the cytosolic fractions from 

stimulated T cells (Figure 6C, middle panel). Increased MVB formation and EV release may 

efficiently reduce the burden of EV-enriched tRFs in Rab7-containing endomembrane 

compartments in activated T cells. Consistent with this possibility, GW4869 treatment 

induced dramatic accumulation of activation-induced EV-enriched tRFs (and to a lesser 

degree, the activation-independent EV-enriched 3′i-tRF from Leu-TAA) in high-density 

Rab7- and CD81-containing fractions as compared to cytosolic fractions (Figure 6C, right 

panel). Taken together, these results indicate that T cell activating signals induce functional 

MVB formation and constitutive removal of activation-induced EV-enriched tRFs.

Activation-Induced EV-Enriched tRFs Inhibit T Cell Activation

We hypothesized that signal-regulated release of tRFs in EVs may serve as a means to 

export cellular tRFs that could alter T cell activation. To test the functional impact of these 

tRFs, we transfected T cells with 2′-o-methylated oligonucleotides antisense to specific 

abundant tRFs (Table S2) on day 1 of activation and then analyzed transfected cells on day 

3. Activated T cells upregulate CD44, downregulate the lymph node homing molecule 

CD62L, and produce cytokines such as interleukin-2 (IL-2). Antisense oligos against the 

activation-independent EV-enriched 3′i-tRF derived from tRNA Leu-TAA and tRNA Ser-

GCT did not affect the downregulation of CD62L or the upregulation of CD44 (Figures 7A–

7C). However, antisense oligos against the activation-induced EV-enriched 5′tRFs derived 

from both tRNA Leu-TAA and tRNA Leu-TAG enhanced cell activation, as shown by 

decreased CD62Lhi cells and a corresponding increase in the frequency of fully activated 

CD44hiCD62Llo cells (Figures 7A–7C). We measured cytokine production by flow 
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cytometry following restimulation with PMA (phorbol 12-myristate 13-acetate) and 

ionomycin (Figures 7D and 7E). IL-2 production was enhanced in T cells transfected with 

antisense oligo against either activation-induced EV-enriched tRF but neither of the 

activation-independent EV-enriched tRFs. These transfected T cells expressing more IL-2 

and other activation markers also displayed lower viability in culture (Figure S7). These 

observations may be linked, as IL-2 sensitizes T cells to activation-induced apoptotic cell 

death (Marks-Konczalik et al., 2000). These results suggest that T cells engage EV 

biogenesis pathways to dispose of tRFs that can inhibit their activation and cytokine 

production.

DISCUSSION

Our results show that T cells release specific sets of tRFs within EVs through their 

association with MVBs in a signal-regulated manner. By rigorously separating 

contaminating RNA and/or protein aggregates from EVs, we found that tRFs, but not 

miRNAs, are enriched in T-cell-derived EVs relative to all other cellular small RNA species. 

Specific classes of tRFs distinguished by their location in the parent tRNA and by tRNA-

specific structural features were preferentially released in EVs. For some of these classes, 

their release was regulated during T cell activation. tRFs enriched in EVs in an activation-

induced manner were mostly derived from tRNA 5′ ends, 5′-internal regions, and 3′-

internal regions without variable loop hairpins. In contrast, tRFs derived from tRNA 3′ ends 

and 3′-internal regions with variable loop hairpins were frequently enriched in EVs from 

activated T cells similarly or even less than those produced by resting T cells. These patterns 

of EV release corresponded with differences in the accumulation of tRFs within activated T 

cells treated with the nSMase inhibitor GW4869, which inhibits EV biogenesis pathways. 

GW4869-treated activated T cells accumulated activation-induced EV-enriched tRFs, but not 

activation-independent EV-enriched tRFs within high-density fractions containing Rab7 and 

the exosome marker CD81, suggesting that these tRFs are released through an MVB-

mediated EV biogenesis pathway. EVs released from activated T cells also contained more 

CD81 than EVs from resting T cells, further indicating that signal-regulated exosome 

production contributes to tRF secretion. Antisense oligos directed against activation-induced 

tRFs increased T cell activation. Taken together, these findings imply that secretion via 

exosomes and other EVs is a mechanism whereby T cells rapidly remove tRFs through 

endomembrane compartments to prevent them from engaging cytosolic targets that mediate 

T cell activation.

Global miRNA turnover and selective downregulation also occurs during T cell activation 

(Bronevetsky et al., 2013). However, in contrast to tRFs, miRNAs were present but not 

enriched in EVs released by T cells. This finding is consistent with previous analyses of the 

RNA composition of exosomes secreted by B cells, stem cells, and glioblastoma, 

esophageal, and breast cancer cells (Baglio et al., 2015; Koppers-Lalic et al., 2014; Li et al., 

2013; Liao et al., 2014; Tosar et al., 2015). Ago2 protein was also not enriched in T cell EVs 

compared to cellular protein, indicating that Ago2-miRNA complexes are not selected for 

sorting into EVs. In isogenic cell lines differing only in KRAS status, MVB association and 

exosomal release of Ago2 and miRNAs was decreased by an activating KRAS mutation 

(McKenzie et al., 2016). Since Kras is activated by T cell receptor signaling (Ebinu et al., 
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2000), it is possible that activated Kras represses exosomal release of miRNAs associated 

with Ago2 in T cells and in a variety of stem and cancer cell lines. This possibility is 

consistent with the report that few miRNAs are enriched in exosomes secreted by the Jurkat 

T cell line and that these exosomal miRNAs are not associated with Ago2 but instead 

interact with another RNA binding protein, hnRNPA2/B1 (Villarroya-Beltri et al., 2013). 

Coordinated mechanisms of cellular small RNA repertoire remodeling may be an important 

feature of T cell activation and immune responses.

Among small RNAs, tRFs are second only to miRNAs in their abundance, and they have 

been shown to regulate critical cellular functions (Lee et al., 2009; Thompson and Parker, 

2009). Although tRF species have been shown to be abundant in exosomes in several 

studies, their biogenesis and function as exRNAs are relatively understudied. Our 

comprehensive analysis of tRFs in T cells and their secreted EVs showed that almost all 

5′tRFs, but only a select few derived from other regions of tRNAs, are enriched in EVs. 

Three types of tRFs derived the 5′ terminus of tRNAs have been classified according to 

their length: 5′halves (31–33 nt), 5′L-tRFs (26–31 nt), and 5′tRF (less than 26 nt). Specific 

5′halves repress protein translation by targeting eukaryotic translation initiation factors 

(Ivanov et al., 2011) and modulate the formation of stress granules to inhibit protein 

synthesis (Emara et al., 2010). 5′L-tRFs derived from tRNA Gly-GCC are transferred from 

the epididymis to sperm to regulate endogenous retroelements (Sharma et al., 2016). In 

contrast to 5′halves and 5′L-tRFs, 5′tRFs have no hairpin structures. Their specific and 

prominent activation-induced EE suggest that 5′tRFs may regulate different cellular 

processes that are associated with membrane compartments, allowing their rapid removal 

through EV-biogenesis pathways.

The positional and structural patterns apparent in tRFs that undergo activation-induced EV 

release indicates that mechanisms that sort specific tRFs into EVs may be coupled to tRNA 

processing pathways. Dicer and Angiogenin (ANG) cleave the D-loops, T-loops, and 

anticodon loops of mature tRNAs (Cole et al., 2009; Fu et al., 2009). ANG is a candidate 

mediator of tRF processing and sorting into EVs, possibly in collaboration with the RNA 

binding protein YBX1. ANG is a secreted protein present at high concentration in blood 

plasma (Barcena et al., 2015) and is itself enriched in exosomes (Wei et al., 2017). YBX1 

associates with miR-223 and packages this miRNA into exosomes (Frye et al., 2009; 

Shurtleff et al., 2016). YBX1 also interacts with a specific set of tRFs (Goodarzi et al., 

2015). Some of these tRFs could be derived from ANG cleavage. Most YBX1-associated 

tRFs are derived from 5′ internal regions or central regions that include the anticodon loops 

of tRNAs (Goodarzi et al., 2015). Both miR-223 and some of the known YBX1-associated 

tRFs were enriched in EVs in an activation-induced manner in T cells, making YBX1 a 

candidate for tRF sorting into EVs upon T cell activation. tRNA synthetases that associate 

with ceramide or the lysosome may also play a role in the observed selectivity of tRF 

processing and secretion (Bidlingmaier et al., 2016; Choi et al., 2017; Han et al., 2012).

Our findings indicate that removal of cellular tRFs via sorting into MVBs and EVs may be 

an important mechanism to avert inhibitory functions of tRFs during T cell activation. 

However, tRFs in secreted EVs may be actively transferred among cells, allowing them to 

mediate intercellular RNA communication. These uniquely regulated exRNA species may 

Chiou et al. Page 10

Cell Rep. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also have utility as biomarkers of immune activity and disease processes. Compared with 

miRNAs, which are ubiquitous in almost all cell types, 5′tRFs as a class appear to be 

selectively abundant in hematopoietic tissues (Dhahbi, 2015). In summary, our data show 

that tRFs are functionally active small RNAs that are dynamically regulated by differential 

intracellular compartmentalization and release within EVs in response to T cell activating 

signals.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, K. Mark Ansel (mark.ansel@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—C57BL/6J were purchased from Jackson Laboratory and bred in specific pathogen-

free conditions in the Animal Barrier Facility at the University of California, San Francisco. 

Male and female mice were euthanized with CO2 at 4-7 weeks of age for spleen and lymph 

node removal. All animal experiments were approved by the Institutional Animal Care and 

Use Committee of the University of California, San Francisco.

METHOD DETAILS

CD4+ T cell stimulation and culture—Naive CD4+ T cells from spleen and lymph 

nodes of mice were purified by magnetic bead selection (Invitrogen) and used in all 

experiments. For stimulated conditions, naive T cells were stimulated with plate-bound anti-

CD3 (2.0 μg/ml) and soluble anti-CD28 (0.5 μg/ml) in the presence of 10 units/mL IL2 

(National Cancer Institute) for ~60 hr at initial cell density of ~1 × 106 cells/ml. After 

stimulation, the cell density of live cells was similar to the initial density of the naive cells 

(~1 × 106 cells/ml) since not only cell proliferation but also cell death occurs during 

stimulation. For resting conditions, T cell cultures that were stimulated for ~48 hr were 

resuspended and diluted with 3 volumes of media containing 10 units/ml IL2. After 

expansion for ~24 hr, cells were spun down and resuspended in EV-free media containing 10 

units/ml IL2 for 48 hr at initial cell density of ~2 × 106 cells/ml, which then becomes ~4 × 

106 cells/ml after 48 hr-resting in IL2-containing media. Cells grown for exosome 

production were incubated in EV-free medium produced by ultracentrifugation at 100,000 × 

g (28,000 RPM) for 18 hr using an SW-28 rotor (Beckman Coulter). All T cell culture was 

done in DMEM high-glucose media supplemented with 10% FBS and other chemicals as 

previously described (Steiner et al., 2011).

Exosome/EV purification—Cell culture supernatant and T cells were harvested together 

by gently pipetting T cells sediment in the bottom of the plate with the conditioned medium. 

The collected medium containing both T cells and cell culture supernatant was centrifuged 

for 10 min at 300 × g. The resulting cell pellet was used for cell lysate, RNA preparation or 

subcellular fractionation and the resulting supernatant was further centrifuged for 20 min at 

2000 × g to remove cellular debris. To remove microvesicles, the supernatant collected from 

2000 × g spin was centrifuged for 30 min at 10,000 × g. The resulting supernatant 
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containing both exosomes, other types of EVs and RNA and/or protein/membrane 

complexes or aggregates was further subjected to ultracentrifugation at 100,000 × g for 2 hr. 

To separate EVs from the contaminating aggregates, the resulting crude EV pellet was 

resuspended in 100 μL PBS and 1 mL 90% sucrose buffer (final sucrose concentration = 

82%), which was then overlaid with 11 layers of 1 mL sucrose buffer in order from high to 

low concentrations, including buffers containing 70%, 64%, 58%, 46%, 40%, 34%, 28%, 

22%, 16%, and 10% of sucrose. The resulting 12 mL sucrose gradient was subjected to 

ultracentrifugation at 100,000 × g for 18 hr. Six fractions, each of which is 2 ml, were 

collected from top to bottom and resuspended in 9 mL PBS, which were then further 

centrifuged at 100,000 × g for 1 hr. The resulting supernatants were poured out and the 

pellets were resuspended in 50 μL PBS. The third fraction from the top, which contains the 

interface of the 34% and 40% sucrose solutions, should be enriched for EVs. The sixth 

fraction, which contains the interface of the 70% and 82% sucrose solutions, contains 

protein/RNA/membrane aggregates. All sucrose buffers were made with sucrose and PBS.

Qligo(dT) RT-qPCR—Total RNA was extract from EVs by using Trizol LS (Life 

Technologies). For RNase protection assays, EVs were left untreated, treated with 50 μg/ml 

RNase A or treated with RNase A in the presence of 0.1% Triton X-100 (Sigma) for 15 min 

at room temperature. The relative levels of miRNAs or tRFs in EVs were quantified by 

miScript II RT Kit and miSYBR Green PCR Kit (QIAGEN). The miScript II RT Kit added 

poly (A) to the 3′ end of RNAs followed by using oligo(dT) adaptor for the RT reactions. 

The qPCR universal reverse primer was included in the miSYBR Green PCR Kit. The qPCR 

forward primers for miRNAs, U6 snRNA, and 18S rRNA were previously described 

(Bronevetsky et al., 2013). The qPCR forward primers for all tRFs were the full-length tRF 

sequences provided in Figure S4.

Stem loop RT-qPCR—The design of primers, probes and reaction conditions were as 

previously described with the following modifications (Chen et al., 2005; Moltzahn et al., 

2011). TaqMan MicroRNA Reverse Transcription kit (Applied Biosystems) was used for 

reverse transcription reactions. The 7.5 μL RT reactions contained 20 ng of total RNA, 1 × 

RT buffer, 1 mM dNTP, 3.33 U/ìl MultiScribe reverse transcriptase, 0.25 U/ìl RNase 

inhibitor and 50 nM stem-loop RT primer. RT reaction conditions: 16°C for 30 min, 42°C 

for 30 min, and 85°C for 5 min. The 10 μL pre-PCR reactions contained 3 μL RT-product, 1 

× TaqMan Universal PCR master Mix with no AmpErase UNG (Applied Biosystems), 50 

nM forward primer and 50 nM universal reverse primer. Pre-PCR conditions: 95°C for 10 

min, followed by 8 cycles of 95°C for 10 s, and 65°C for 1 min. The 10 μL qPCR reactions 

included 2 μL pre-PCR product, 1 × TaqMan Universal PCR master Mix with no AmpErase 

UNG (Applied Biosystems), 0.2 ìM TaqMan probe (IDT), 1.5 ìM forward primer, and 0.7 

ìM universal reverse primer. qPCR reaction conditions: 95°C for 10 min, followed by 40 

cycles of 95°C for 10 s, and 65°C for 1 min. The universal reverse primer sequence is 

GTGTCGTGGAGTCGGC. The stem-loop RT primer sequence is 

CTCAACTGGTGTCGTG GAGTCGGCAATTCAGTTGAG(X)8. The forward primer 

sequence is ACACTCCAGCTGGGTGGATTTATATC(X)15-16. The TaqMan probe sequence 

is /56-FAM/TTCAGTTGA/ZEN/G(X)8/3IABkFQ/ (PrimeTime qPCR probes, IDT). In all 

sequences, X indicates the tRF-specific sequence shown in Figure S4C.
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Subcellular fractionation—107 cells T cells were washed 3 times in PBS and 

resuspended in 2 volumes of homogenization buffer (400 mM sucrose, 20 mM HEPES, pH 

7.5, 1mM EDTA) with Complete Mini protease inhibitor (Roche) and 1U RNasin 

(Promega). The activated T cells in homogenization buffer were passed ~50 times through a 

22 gauge needle, and resting T cells were passed ~80 times through a 25 gauge needle until 

50%–80% of cells were disrupted, as assessed by trypan blue staining. The homogenized 

cells were then centrifuged at 1,500 × g for 5 min to remove nuclei and the resulting 

supernatant was centrifuged at 15,000 × g for 20 min to spin down large cellular membranes, 

which were then subjected to OptiPrep gradient centrifugation. The OptiPrep gradient was 

made by overlaying 10 layers of 0.4 mL buffer in order from high to low concentration 

(33%, 30%, 27%, 24%, 21%, 18%, 15%, 12%, 9% and 6%) of OptiPrep. All OptiPrep 

solutions were made in buffer containing 50 mM HEPES, 78 mM NaCl, 4 mM MgCl2 and 

8.4 mM CaCl2 and 10 mM EDTA. The 15,000 × g pellet fraction was resuspended in 100 μL 

PBS and added on the top of the OptiPrep gradients, and centrifuged at 40,000 rpm for 45 

min using a SW55 rotor (Beckman Coulter). Seven fractions of 600 μL each were collected 

from top to bottom. 200 μL of each fraction was extracted in 700 μL Trizol (Invitrogen) for 

RNA purification and 400 μL of each fraction was further concentrated by StrataClean Resin 

(Agilent Genomics) for western blot analysis. Briefly, 10 μL of StrataClean Resin was added 

to each fraction followed by incubation at 4°C for 1 hr on a rotator mixer. After spinning 

down resin and removing supernatant, 30 μL of 1.5 × Laemmli buffer was added to each 

sample, which was then frozen for at −80°C until use.

Small RNA cDNA library preparation—Barcoded small RNA cDNA libraries were 

prepared as previously described with modifications (Williams et al., 2013). Briefly, to 

reduce ligation bias, 5 random nucleotides were added into the 3′ end of 5′-adaptor and the 

5′end of 3′-adaptors during the oligo synthesis. Barcoded 3′-adaptors were adenylated by 

5′DNA adenylation kit (NEB). 19-nt and 24-nt synthetic oligoribonucleotides that were used 

as size markers were radiolabeled at the 5′ end by T4 PNK (NEB). 10 ng RNA from each 

EV or cell sample and the radiolabeled size markers were ligated separately to 10 μM 

adenylated 3′-adaptor using T4 RNA ligase 2, truncated K227Q (NEB) at 4°C for overnight. 

The 3′-ligation reactions containing EV or cell samples were pooled, ethanol-precipitated 

and loaded into a single lane of a 15% denaturing polyacrylamide gel. The ligation reactions 

containing radiolabeled 19-nt and 24-nt oligos were loaded into the nearby lane to be the 

size markers for cutting the band containing 3′-ligated products of pooled EV and cell 

samples from gels. The RNAs within the cut gel pieces were eluted at 4°C for overnight 

followed by ethanol precipitation. The purified 3′-ligated products were further ligated to 10 

μM 5′-adaptor using T4 RNA ligase 1 (NEB) at 37°C for 1 hr. Ligated small RNAs were 

again cut and purified from a 12% polyacrylamide gel based on the radiolabeled size 

markers. The purified ligated small RNAs were reverse-transcribed using SuperScript III 

(Invitrogen), and amplified by PCR. The PCR products that were in the exponential phase of 

amplification, which is 8-12 cycles in this study, were purified from 2.5% agarose gel 

(Semkem LE agarose, Lonza) using a gel extraction kit (QIAGEN). The gel purification step 

was performed twice to increase the removal of adaptor dimers from ligated small RNAs. 

Except for the five random nucleotides within the 3′ end of 5′-adaptor and the 5′ end of 3′-
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adaptors, all the sequences including 5′-adaptors, barcoded 3′-adaptors, PCR primers were 

the same as those published in the previous studies (Farazi et al., 2012).

Annotation of tRFs from RNA-seq data—The obtained sequence files were trimmed 

for the constant regions of the adaptor sequences by FASTQ/A Trimmer. The resulting files 

were split into the separate samples according to the barcode sequences in the 3′ end of the 

read by FASTQ/A Barcode splitter. The reads in the resulting files contain 5 random 

nucleotides in the 5′ end and barcoded sequences followed by 5 random nucleotides in the 

3′ end, which were both trimmed by FASTQ/A Trimmer. Extracted reads were mapped by 

Bowtie2 v2.2.4 (default settings) to mouse genome reference sequence (GRCm38/mm10). 

The mapped reads were then intersected with gene annotation (Ensemble GRCm38 release 

91) supplemented with tRNA annotation from the Genomic tRNA Database (Lowe and 

Eddy, 1997). The numbers of mapped reads that overlap with each annotations were counted 

by bedtools coverage. For annotating tRNA fragments, a bed file that contains the 

coordination of different tRF groups, as described in Figure 2C, within 472 annotated tRNAs 

was created. The coverage of tRNA reads in EV or cell samples for different tRF groups 

annotated in this bed file was calculated by bedtools coverage. The tRNA read was assigned 

to a specific tRF group that has the largest coverage by the read. More then 90% of tRNA 

reads were assigned to specific tRFs with more then 70% coverage. tRNA reads were 

annotated as ambigious when their coverage for all tRF groups was less than 70%.

tRF antisense oligonucleotides transfection—Antisense 2′-o-methyl 

oligonucleotides (IDT) were transfected using a Neon transfection kit and device 

(Invitrogen). A total of 5 × 105 T cells that have been stimulated for 1 day were washed two 

times with PBS before suspension in 10 μL of buffer T (Neon kit, Invitrogen). Antisense 

oligos (1 μL of 125 μM) were added to the cell suspension to a final volume of 11 μL and 

mixed. 10 μL of the suspension was electroporated with a Neon electroporation device 

(Invitrogen; 1,600 V, 10 ms, three pulses). The transfected T cells were then cultured in 0.5 

mL media so that the final concentration of tRF antisense oligos is 250 nM. The 0.5 mL 

media for culturing transfected T cells were in 24-well plates with plate-bound anti-CD3 

(2.0 μg/ml), soluble anti-CD28 (0.5 μg/ml) and 10 units/mL IL2. After 2 days of culture, the 

transfected T cells were harvested and analyzed by flow cytometry for surface CD44 and 

CD62L expression. The sequence of antisense oligo for Leu-TAA:5′tRF was 

CCACUCGGCCAUUCUG, for Leu-TAG:5′tRF was CCGCUCGGCCACGCUA, for Ser-

GCT:3′i-tRF was CCCUCGCGUGCAAAGCACA, and for Leu-TAA:3′i-tRF was 

ACGCGGAUAUAAAUCC.

Intracellular cytokine staining—After 2 days of culture, T cells transfected with 

antisense oligos were restimulated for 3 hours with 10 nM PMA and 1 μM Ionomycin in the 

presence of 5 μg/ml brefeldin A. The harvested cells were stained with cell viability dye 

(eFluor 780, Invitrogen) followed by fixation, permeabilization and IL-2 staining as 

previously described (Steiner et al., 2011).
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical information pertaining to the number of replicates and significance can be 

found in the figure legends. All experiments were performed at least three times 

independently where possible. In instances where the experiments were performed two times 

due to limited availability of primary cells or reagents, independent techniques were used to 

validate the findings.

RNA-seq data analysis—The ‘Deseq2′ package (Love et al., 2014) was used for 

analysis of differential expression. ‘ggplot2′ was used to produce scatterplots. EV 

enrichment (EE) in Figures 2, 3, and 5 was the fold-change of read counts in EVs versus 

cells. Deseq2 was used for analyzing the fold-changes of all annotated genes in EVs versus 

in cells and then the fold-changes of miRNAs and tRFs were subset from all genes. Thus, 

the EE of miRNAs and tRFs is a relative value that is compared to small RNAs derived from 

all genes. Deseq2 was also used for analyzing the fold-changes of the EE of all annotated 

genes in stimulated versus resting conditions or in stimulated conditions with DMSO versus 

with GW4869. The fold-changes of the EE of tRFs were subset from all genes. Thus, the 

fold-change of the EE of tRFs is also a relative value that is compared to small RNAs 

derived all genes.

DATA AND SOFTWARE AVAILABILITY

RNA sequencing data are deposited at GEO under the accession number GEO: GSE121724.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Specific tRFs are enriched in extracellular vesicles released by T cells

• T cell activating signals regulate tRF secretion

• Activation enhances multivesicular body formation and cellular tRF 

downregulation

• Activation-induced, extracellular-vesicle-enriched tRFs inhibit T cell 

activation
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Figure 1. EVs that Contain Intact Discrete RNA Species Are Separated from Protein Aggregates 
that Are Dominated by Fragmented RNAs
(A) Schematic of a two-step purification procedure for separation of EVs from aggregates in 

cell culture supernatant. The supernatant was first subjected to differential centrifugation to 

remove live cells, dead cells, cell debris, and, finally, EVs, and aggregates were precipitated 

into 100,000 × g pellets. The 100,000 × g pellets were further separated by sucrose gradient 

into 6 fractions.

(B) Western blot (top panel) analysis of sucrose gradient fractions of the separated 100,000 

× g pellets and cell lysates prepared from the indicated numbers of cells in each lane. 
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Bradford assay (bottom panel) determined total protein recovered in each fraction or cell 

lysate. * marks lanes containing similar concentrations of proteins from cell lysates (lane 2) 

and sucrose gradient fraction 3 (lane 7).

(C) RNA 2100 Bioanalyzer analysis of large RNA species (left panel) and PAGE analysis of 

small RNA species ranging from 50 to 300 bp (right panel). Bottom panel shows total RNA 

yield from each fraction. * marks lanes with similar RNA yield from cells (lane 1) and 

sucrose gradient fraction 3 (lane 4).

(D) qPCR analysis of miRNA abundance in equal volumes of RNA purified from each 

fraction.

(E) qPCR analysis of the abundance of the indicated RNA species detected in fraction 3 

(top) or in fraction 6 (bottom) left untreated or treated with RNase A or RNase A and Triton 

X-100.

Data are representative of three independent experiments. Statistical significance is 

measured using a one-tailed t test: *p < 0.05, **p < 0.01, and ***p < 0.001.

Error bars indicate SD of the mean. See also Figure S1.
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Figure 2. Comparing the Composition of Small RNAs in Activated T Cells, EVs, and Aggregates
(A) Relative composition of mapped reads in small RNA libraries. RNA classification was 

based on the biotypes of Ensembl gene and transcript annotation. The “transcript” RNA 

class is the union of different biotypes, including processed transcript, antisense, and 

pseudogene.

(B) Sub-classification of reads shown as “other_RNA” in (A) into tRNA, snoRNA, snRNA, 

and misc_RNA.
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(C) Pictorial summary of the 7 categories of tRFs that can arise from mature tRNAs. 3′i-tRF 

were further classified as hairpin (H) or linear (L) to indicate the presence or absence of 

tRNA variable loop-derived hairpin structures, respectively.

(D) Classification of reads in the 7 tRF classes shown in (C) and rare tRFs of ambiguous 

classification.

(E and F) MA plots comparing EV enrichment (EEs) (ratio of reads in EVs versus cells) and 

mean of normalized counts per million for all 257 detected miRNAs (E, left), all 768 

detected tRFs (E, right), and subsets of tRFs in the indicated classes (F). Dotted lines and 

arrows indicate thresholds at 1.0 (no enrichment) and 1.5 EE. Black circles (·) mark RNA 

species significantly enriched in exosomes (≥ 1.5-fold; adjusted p < 0.05), and the 

percentage of significantly enriched RNA species among each class is indicated in each plot.

See also Figure S2 and Table S1.
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Figure 3. T Cell Activation Induces the EV Enrichment of tRFs that Are Derived from the 5′-
Portion of tRNAs and the 3′-Internal Region of tRNAs without Hairpin Structures
(A) Western blot (top panel) analysis of sucrose gradient fractions of the separated 100,000 

× g pellets and cell lysates prepared from the indicated numbers of cells cultured under 

resting or stimulated conditions. Bradford assay (bottom panel) determined total protein 

recovered in each fraction or cell lysate. * marks lanes containing similar concentrations of 

proteins from cell lysates (lane 4) and EVs (sucrose gradient fraction 3; lane 8).

(B) Chemiluminescent quantification of western blot for proteins as shown in (A), expressed 

as the ratio of each protein in EVs versus cell lysates.
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(C) tRF sequence reads from resting and stimulated cellular and EV small RNA libraries 

classified as in Figures 2C and 2D.

(D) EV enrichment (EE) for the indicated tRF classes from T cells cultured under resting 

(EER, x axis) and stimulated (EES, y axis) conditions. Dotted black lines and arrows indicate 

thresholds at 1.0 EES (no enrichment) and 1.5 EES. Solid black line demarcates equal EE in 

resting and stimulated cells (EES/EER = 1). Red dotted line indicates threshold at 1.5-fold 

increased EE in stimulated cells compared to resting cells (EES/EER ≥ 1.5). tRFs exhibiting 

activation-induced EV enrichment (EEs ≥ 1.5 and EES/EER ≥ 1.5) are marked by red circles 

(adjusted p < 0.05) or pink circles (adjusted p < 0.5). Black circles (·) mark tRFs with 

activation-independent EV enrichment in stimulated cells (EES ≥ 1.5; adjusted p < 0.05). 

The percentage of tRFs with activation-induced EE (union of red and pink circles) among all 

tRFs enriched in EVs in stimulated cells (union of black, red, and pink circles; total number 

indicated in parentheses after tRF class label in each panel) is indicated in each plot.

(E) 3′i-tRF-L (linear) and 3′i-tRF-H (hairpin) subsets of the total 3′i-tRF shown in (D), 

lower left panel.

see also Figure S3 and Table S2.
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Figure 4. Validation of EV Enrichment of tRFs and Their Responses to T Cell Activation
(A) IGV visualization of tRFs of the indicated classes aligned to five representative mature 

tRNAs.

(B) Electrophoretic analysis of products from the exponential phase of amplification in 

oligo(dT) RT-PCR assays for the indicated tRFs. We detected a band of the correct size and 

a larger product ~60 nt longer than 5′tRF or ~30 nt longer than 3′i-tRF, corresponding to 

amplification from full-length (FL) tRNAs.
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(C) Oligo(dT) qRT-PCR measurement of tRF abundance in EVs in resting (black bars) and 

stimulated (gray bars) conditions.

(D) Oligo(dT) qRT-PCR analysis of the indicated RNA species detected in fraction 3 (F3) 

left untreated or treated with RNase A or with RNase A and Triton X-100.

(E) tRF abundance in cells (black bars) and EVs (gray bars) under resting (R) and stimulated 

(S) conditions as determined by stem-loop qRT-PCR.

Data are representative of at least three independent experiments. Statistical significance is 

measured using a one-tailed t test: *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars 

indicate standard deviation of the mean. See also Figure S4.
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Figure 5. nSMase Inhibitor Represses EV Enrichment of Activation-Induced and Activation-
Independent EV-Enriched tRFs
(A) Western blot analysis of sucrose gradient fractions of the separated 100,000 × g pellets 

and cell lysates from T cells stimulated in the presence of DMSO vehicle control or 

GW4869 at the indicated concentrations. Cell lysates were prepared from higher and lower 

amounts of cells, which are labeled as H and L, respectively.

(B) RNA yield from EV fraction (F3).

(C) Chemiluminescent quantification of western blot for proteins as shown in (A).
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(D) EV enrichment (EE) for the indicated tRF classes from T cells stimulated in the 

presence of DMSO (EEDM, x axis) or GW4869 (EEGW, y axis). Dotted black lines indicate 

thresholds at 1.0 EE (no enrichment) in DMSO or GW4869 condition. Solid black line 

demarcates equal EE in each condition (EEDM/EEGW = 1). Red dotted line indicates 

threshold at 0.67-fold decreased EE in stimulated cells treated with GW4869 compared to 

stimulated cells treated with DMSO(EEGW/EEDM ≤ 0.67). tRFs with EE decreased by 

GW4869 treatment (EEGW/EEDM ≤ 0.67) are marked by red circles (adjusted p < 0.05) or 

pink circles (adjusted p < 0.5). The percentage of tRFs with EE decreased EE by GW4869 

treatment (union of red and pink circles) among all tRFs in that class (union of black, red, 

and pink) is indicated in each plot.

(E) Electrophoretic analysis of products from the exponential phase of amplification in 

oligo(dT) RT-PCR assays for the indicated tRFs as in Figure 4B.

(F) Oligo(dT) qRT-PCR measurement of tRF abundance in EVs from cells stimulated with 

DMSO (black bars) and the indicated concentrations of GW4869 (gray bars).

(G) tRF abundance in cells (black bars) and in EVs (gray bars) under resting and stimulated 

conditions as determined by stem-loop qRT-PCR.

Statistical significance is measured using a one-tailed t test: *p < 0.05, **p < 0.01, and ***p 

< 0.001. Error bars indicate SD of the mean.

See also Figure S5 and Table S2.
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Figure 6. nSMase Inhibitor Induced the Accumulation of Activation-Induced EV-Enriched tRFs, 
but Not Activation-Independent EV-Enriched tRFs, within Rab7-Containing MVB 
Compartments
(A) Schematic of subcellular fractionation of T cells. 15,000 × g pellets obtained from 

differential centrifugation of T cell lysates were layered on the top of the Optiprep gradient 

and then centrifuged at 40,000 rpm for 45 min to separate different membrane organelles or 

cytosolic proteins.

(B and C) Western blot analysis of proteins (B) and stem-loop qRT-PCR quantification of 

tRFs in subcellular fractions obtained from resting conditions or activated conditions treated 
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with DMSO or GW4869 (C). For each fraction, RNA concentration is normalized to fraction 

1. In (B) and (C), red lines indicate cytosolic fractions, and red boxes indicate MVB 

fractions.

Data are representative of two independent experiments. Statistical significance is measured 

using a one-tailed t test: *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars indicate 

standard deviation of the mean. See also Figure S6.
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Figure 7. Transfection of Antisense Oligos against tRFs that Are Associated with MVBs in an 
Activation-Induced Manner Enhances T Cell Activation
(A) Representative flow cytometric analysis of CD44 and CD62L expression on the surface 

of CD4+ T cells transfected with antisense oligos complementary to tRFs or water vehicle 

(H2O) control.

(B and C) Quantified frequency of CD62L+ (B) and CD44+ and CD62L+ (C) cells.

(D) Representative flow cytometric analysis of IL-2 intracellular staining of live CD4+ T 

cells restimulated with PMA and ionomycin.

(E) Geometric mean fluorescence intensity of IL-2 staining.
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Data are representative of at least three independent experiments. Statistical significance is 

measured using a one-tailed t test: *p < 0.05, **p < 0.01, and ***p < 0.001. Error bars 

indicate standard deviation of the mean. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GW182 Bethyl Laboratories Cat# A302-329A; RRID: AB_1850240

Ago2 (C34C6) Cell Signaling Cat# 2897S; RRID: AB_2054446

Tsg101 (C-2) Santa Cruz Biotechnology Cat# sc-7964; RRID: AB_671392

CD81 (D5O2Q) Cell Signaling Cat# 10037S; RRID: AB_2714207

Arf6 (3A-1) Santa Cruz Biotechnology Cat# sc-7971; RRID: AB_2289810

Transferrin Receptor Abcam Cat# ab84036; RRID: AB_10673794

Beta-actin (AC-74) Sigma Cat# A5316; RRID: AB_476743

Lamp1 Abcam Cat# ab24170; RRID: AB_775978

Rab7 (D95F2) Cell Signaling Cat# 9367S; RRID: AB_1904103

TIA1 (D-9) Santa Cruz Biotechnology Cat# sc-48371; RRID: AB_628358

Rabbit IgG (H+L) Bio-Rad Cat# 170-6515; RRID: AB_11125142

Mouse IgG (H+L) Bio-Rad Cat# 170-6516; RRID: AB_11125547

CD62L-BV605 (MEL-14) Biolegend Cat# 563252; RRID: AB_11125577

CD44-A700 (IM7) eBioscience Cat# 56-0441-80; RRID: AB_494012

IL2-PerCP-Cy5.5 (JES6-5H4) eBioscience Cat# 503821; RRID: AB_961403

Chemicals, Peptides, and Recombinant Proteins

GW4869 Sigma Cat# D1692

StrataClean Resin Agilent Technologies Cat# 400714

Deposited Data

Raw and processed small RNA sequencing data This paper GEO: GSE121724

Experimental Models: Organisms/Strains

C57BL/6 Jackson Laboratory JAX:000664

Oligonucleotides

Leu-TAA-5RF: ACCAGAATGGCCGAGTGGTTA This paper N/A

Leu-TAG-5RF: GGTAGCGTGGCCGAGCGGTC This paper N/A

Leu-TAA-3RF: GGATTTATATCCGCGTGGG This paper N/A

LeuTAA5_FP_2: ACACTCCAGCTGGGACCAGAATGGCCGA This paper N/A

LeuTAA3_FP_2: ACACTCCAGCTGGGTGGATTTATATCCG This paper N/A

LeuTAG5_FP_2: ACACTCCAGCTGGGGGTAGCGTGGCCGA This paper N/A

LeuTAA5_RP_2: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACCACTCG This paper N/A

LeuTAA3_RP_2: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCACGCGG This paper N/A

LeuTAG5_RP_2: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACCGCTCG This paper N/A

LeuTAA3_Pr_2: 5′- /56-FAM/TTCAGTTGA/ZEN/GCCACGCGG/3IBkFQ/ –3′ This paper N/A

LeuTAG5_Pr_2: 5′- /56-FAM/TTCAGTTGA/ZEN/GACCGCTCG/3IBkFQ/ –3′ This paper N/A

LeuTAA5_Pr_2: 5′- /56-FAM/TTCAGTTGA/ZEN/GACCACTCG/3IBkFQ/ –3′ This paper N/A

Universal RP: GTGTCGTGGAGTCGGC This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Bowtie2 v2.2.4 Langmead and Salzberg, 
2012

http://bowtie-bio.sourceforge.net/bowtie2

Samtools v1.7 Li et al., 2009 https://github.com/samtools/samtools

Bedtools v2.27.1 Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2

DEseq2 v1.18.1 Love et al., 2014 https://bioconductor.org/biocLite.R

FASTX-Toolkit v0.0.14 Gregory Hannon lab at 
cold spring harbor 
laboratory

http://hannonlab.cshl.edu/fastx_toolkit
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