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Adjoint-based inversion of geodetic data for sources of

deformation and strain

J. Torquil Smith 1and D. W. Vasco 1

1Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.

Key Points:

• An adjoint-based gradient calculation provides the basis for an efficient inversion
approach, using observations of quasi-static deformation to infer a distribution of
source parameters, such as aquifer volume change or fault/fracture aperture changes.

• A comparison with a conventional sensitivity-based inversion technique demon-
strates the accuracy of the adjoint-based gradients and the efficiency of the ap-
proach in finding a solution to the inverse problem.

• An application to Interferometric Synthetic Aperture Radar line-of-sight displace-
ment data from the Tulare Basin in California’s Central Valley indicates that it
is possible to satisfy the observations with a model containing aquifer volume changes
near documented well locations.

Corresponding author: D. W. Vasco, dwvasco@lbl.gov
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Abstract

An adjoint-based formulation leads to a particularly efficient approach for invert-
ing geodetic measurements for the source of the deformation. Specifically, the quanti-
ties necessary to iteratively improve the fit to the observations can be computed with
just three forward calculations, one to obtain the current residuals, another to solve the
adjoint problem, and a third to compute the step length. An inversion algorithm uti-
lizing the adjoint-based gradient is applied to a set of Interferometric Synthetic Aper-
ture Radar (InSAR) data gathered between 2016 and 2018 over the Tulare Basin in Cal-
ifornia’s Central Valley. Because the measured deformation is due to groundwater with-
drawal, a penalty function is included in the inversion to avoid placing aquifer volume
change in locations that are far from any documented wells. The solution of the inverse
problem provides estimates of aquifer compaction that provide a match to the observed
range changes while honoring the well data. The solution indicates an average aquifer
volume loss of 2.17 km3/year over the two year period from January 2016 to January
2018, encompassing one drought year (2016) and one wet year (2017). This magnitude
of lost volume is compatible with the 3.1 km3/year decrease in water volume for the en-
tire Central Valley, estimated from GRACE satellite gravity data.

Plain Language Summary

A new approach allows for the inversion of quasi-static deformation data for pa-
rameters describing the source, such as aquifer/reservoir volume changes or fracture aper-
ture changes. The technique utilizes the solution of the adjoint problem to find the model
parameter gradients necessary for an iterative update of an initial model. Each update
of the source model requires the equivalent of three forward simulations, one to deter-
mine the residuals, one to solve the adjoint problem, and one the determine the step length.
The technique is applied to InSAR line-of-sight displacement data from California’s Cen-
tral Valley in order to estimate aquifer volume loss in the Tulare Basin.

1 Introduction

With the increasing use of large-scale data sets, as generated by satellite-based ob-
servations from Interferometric Synthetic Aperture Radar (InSAR) (Galloway et al., 1998;
Ferretti, 2014), the Gravity Recovery and Climate Experiment (GRACE) (Liu et al., 2019),
and even by the seismic time-strains that are detected during reservoir monitoring (Hatchell
& Bourne, 2005; Hodgson et al., 2007), the modeling of quasi-static deformation is be-
coming an ever larger computational challenge. Furthermore, given the larger areas of
the Earth that are often under study, the three-dimensional nature of the structural fea-
tures in many of todays geologic models cannot be ignored. The sources of quasi-static
deformation are often widely distributed, as in the case of subsidence driven by large-
scale groundwater extraction from thousands of wells (Vasco et al., 2019), and for de-
formation due to hydrothermal/volcanic activity in large systems containing faults and
fractures, such as the Yellowstone Caldera (Chang et al., 2007). Thus, the representa-
tion of the often three-dimensional source can require thousands of parameters, leading
to a very large inverse problem for the distributed source.

Large-scale three-dimensional numerical simulations of quasi-static displacements,
in a fully heterogeneous medium, can take several hours of computation for current finite-
difference or finite element codes. This can lead to computational difficulties when in-
verting large data sets using sensitivity-based or stochastic approaches. Boundary ele-
ment methods may provide much needed efficiency (Gwinner & Stephan, 2018), but we
are not aware of any published large-scale inversions for a fully three-dimensional, het-
erogeneous medium. As shown below, even our implicit finite-difference code, which takes
roughly 3 minutes for a simulation of displacements in an elastic medium described by
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over 1 million nodes, requires roughly 230 hours to solve for volume changes at all 4900
source grid blocks describing the source. Techniques utilizing adjoints to estimate gra-
dients for an iterative conjugate gradient algorithm provide an efficient approach for large-
scale inversions (Plessix, 2006). Such approaches have a long history in the geosciences,
dating from their early use in fluid flow and pressure inversion (Jacquard & Jain, 1965).
However, their use in the analysis of quasi-static deformation had been restricted to the
more difficult inverse problem associated with the characterization of the medium prop-
erties, such as poroelastic moduli and the flow properties (Iglesias & McLaughlin, 2012;
Hesse & Stadler, 2014). Though this approach is more comprehensive, it is nonlinear and
requires modeling the fully coupled deformation and flow within the complex source re-
gion. The use of adjoints for the much simpler source identification problem, which solves
for an equivalent source, had been restricted to the dynamic case associated with the prop-
agation of elastic waves (Kaderli et al., 2018). Recently, a Green’s function formulation
of an adjoint-based inverse problem for the source of quasi-static deformation was pub-
lished (Vasco & Mali, 2021). In that work, the application of the Green’s function to the
distribution of sources was approximated by a numerical simulator.

Here, we dispense with the Green’s functions entirely, and formulate the adjoint-
based inverse problem directly in terms of the governing equations that are utilized by
the numerical simulator. This results in an extremely efficient approach for estimating
a distribution of sources of quasi-static deformation. Each gradient calculation only re-
quires two solutions of the forward problem, one to compute the residuals, and an ad-
joint solution whereby the current residual surface displacements are applied as sources
of deformation. The gradient components are given by the resulting source grid block
volume changes. The technique is applied to Interferometric Synthetic Aperture Radar
(InSAR) data from California’s Central Valley (Figure 1) in order to estimate aquifer
compaction due to groundwater pumping. In this area InSAR data has been used to im-
prove our understanding of the hydrodynamics of the groundwater aquifers and their sea-
sonal variations (Murray & Lohman, 2018; Neely et al., 2020; Vasco et al., 2019). The
approach can be used for other investigations, such as the study of ground deformation
due to oil production, as observed to the south of our area of interest (Fielding et al.,
1998; Vasco et al., 2017), and the study of coseismic and post-seismic slip associated with
faulting (Moore et al., 2017).

2 Methodology

Our goal is to use measured displacements or strains to define a distributed source
model that generates the observed deformation. The source could be variable volume
change within an aquifer/reservoir or spatially-varying aperture/shear on a fault plane
(Vasco et al., 2010). The forward problem relates the changes in the source strength, de-
noted by m to the deformation at the surface, u or, more generally, outside of the reser-
voir or aquifer. The governing equations are in the form of a system of linear partial dif-
ferential equations. For a numerical solution one typically writes these equations as a
discrete linear system

Au = Bm+ b (1)

that may be formulated and solved using methods such as finite differences (Phillips &
Rose, 1986; Hattel & Hansen, 1995). Given a set of boundary conditions and source func-
tions m, we can solve these equations for the three components of the displacement vec-
tor u in the finite-difference mesh. Thus, u will contain 3 times the number of nodes,
say M , in the finite-difference mesh. The matrix B maps the source magnitudes into the
nodes of the finite-difference mesh. For example, if the sources are Ng grid blocks en-
compassing many nodes of the underlying finite-difference mesh, then B is a map from
the grid block to all of the associated nodes. Thus, the matrix B have dimensions of 3×
M by Ng for this finite-difference example. The forward problem involves determining
the displacements in the medium given a set of source functions m, and, if present, a set
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Figure 1. (a) Location of the area within California’s Central Valley, (b) Schematic map of

the region around the study area, (c) Interferometric Synthetic Aperture Radar range change

observations associated with groundwater withdrawal from aquifers in the Tulare Basin of the

Central Valley in California. The curve of filled black squares denotes the location of the Friant

canal.

of body forces b. The inverse problem involves determining m from a set of observed
displacements or, as shown next, a linear function of observed displacements. In order
to determine m in terms of the subset of u that correspond to measured one must re-
formulate the linear system (1) due to the presence of the intermediate displacements,
those components of u that do not correspond to observed quantities. Thus, one does
not solve equation (1) directly for m, as this is an under-constrained problem. Typically,
one resorts to a Green’s function formulation in order to write the observed displacements
directly in terms of the source parameters m, effectively solving the forward problem (1)
for m (Menke, 2018; Vasco & Mali, 2021). We avoid the use of Green’s functions, due
to the difficulty of computing them for complicated three-dimesional variations in elas-
tic properties, and solve the inverse problem for m directly in terms of a numerical sim-
ulation, that is, a numerical solution of the forward problem (1). Thus, we show how to
construct an iterative model update with three simulations, first with a current model
to calculate the residuals, then with the residual displacements as sources at the obser-
vation points, the adjoint problem, and lastly to compute the step length or magnitude
of the update.

The observed deformation, may be some linear function of the displacements, such
as tilt, range change from Interferometric Synthetic Aperture Radar (InSAR), or time
strains from three-dimensional seismic data. This transformation from the full displace-
ment vector to the observed components of deformation can be written as

d = Cu+ e. (2)

where C is the linear mapping that may represent projections in the case of InSAR ob-
servations, or spatial differentiations in the case of tilt and strain. The matrix C has a
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strong influence on the resolution provided by the geodetic data. For example, in the case
of seismic time strains, the matrix has many more non-zero elements relating the dis-
placements within the entire volume under study to the seismic observations. For geode-
tic data gathered as the Earth’s surface many of the displacements in u are projected
to zero, leading to poor depth resolution. The vector e denotes the data residuals, the
observed minus the calculated line-of-sight displacements. For the inverse problems we
seek a solution that minimizes the misfit or the residual vector given by

e = d−Cu. (3)

The inverse problem is typically unstable due to issues related to the uniqueness or res-
olution, particularly for observations obtained at the Earth’s surface. A common approach
to mitigate the uniqueness issue and to stabilize the inverse problem is to introduce a
regularization penalty term (Menke, 2018). Some examples of such penalty terms are
the model roughness, the deviation of the model from some desired or a priori model,
the weighted model parameters with weights that increase away from a particular set
of locations (Vasco et al., 2019). One can generally write the penalty term in the form
of a quadratic function of the model parameters

P (m) = (r−Rm)
t
(r−Rm) . (4)

An objective function consisting of a linear combination of the data misfit and the reg-
ularization term

J(m) = ete+ λ (r−Rm)
t
(r−Rm) (5)

where λ is a scalar specifying the relative importance of the penalty term. The inverse
problem entails minimizing the quadratic (5), perhaps subject to inequality constraints.
There are several methods for accomplishing this minimization including stochastic and
iterative approaches. Here, we will operate under the assumption that the forward prob-
lem is computationally intensive and may take hours or days for a complete solution. Thus,
stochastic approaches that can require thousands of forward simulations for large prob-
lems are usually not feasible. Even iterative techniques may not be practical unless they
are extremely efficient.

The critical step for many iterative methods is the computation of the gradient of
the misfit function J(m) with respect to the model parameters m. For example, in the
application below we describe the conjugate gradient algorithm for minimizing a penal-
ized misfit function defining the inverse problem. The simplest and most direct method
for computing the gradient, is a perturbation approach in which each model parameter
is subject to a small deviation and a forward simulation is conducted to estimate the change
in the observations. This scheme requires N+1 simulations where N is the number of
model parameters and is impractical for large models with thousands of parameters. As
noted in the Introduction, we describe an alternative approach that is based upon the
solution of the adjoint problem. We can formulate the method using equations (1) and
(3) to write e as

e = d−CA−1 (Bm+ b) . (6)

Substituting this into equation (5) gives

J(m) =
[

d−CA−1 (Bm+ b)
]t [

d−CA−1 (Bm+ b)
]

(7)

+λ (r−Rm)t (r−Rm) ,

an expression for the penalized misfit functional in terms of the source parameters m.
Direct differentiation provides an expression for the gradient with respect to the source
parameters

∇mJ(mi) = −2Bt
(

At
)

−1
Ct [d−Cui]− 2λRt (r−Rmi) . (8)
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Figure 2. Well densities (number of wells/grid block) for the upper three depth ranges in the

model. The densities were used to compute the distance weighting in the matrix D is the penal-

ized misfit function (12). The open circles denote the locations of the towns labeled in Figure 1.

The filled squares denote the path of the Friant canal.

An algorithm for ∇mJ can be executed in two main steps. The first step involves solv-
ing the forward problem (1) for the displacement components ui, given an initial or cur-
rent source model mi where we consider the i-th iteration of the iterative algorithm, and
computing the residuals ei = d−Cui. The second step is to solve the companion prob-
lem

Atwi = Ct (d−Cui) (9)

or
Atwi = Ctei (10)

for wi. Equation (10) can be solved numerically if the coefficients composing the ma-
trix A are available. However, many geomechanical simulators form the coefficient ma-
trix A internally or use numerical methods such as finite-elements or finite-volume to
solve the forward problem as encapsulated in equation (1). We will assume that such a
simulator is available for solving the forward problem associated with the simulation of
deformation. Note that the problem (10) is the adjoint problem, which for a linear op-
erator is given by (y,Ax) = (A∗y,x) where x and y are two vectors and the brack-
ets denote the inner product of two vectors. For a matrix operator A∗ = At, and the
adjoint is equivalent to the transpose of the matrix (Stakgold, 1979). If the forward prob-
lem is self-adjoint then A∗ = At = A, e.g. the governing equations for elastic defor-
mation, formulated in terms of displacements, then equation (10) is simply the forward
problem with the residuals as source terms. The final expression for the gradient is

∇mJ(mi) = −2Btwi − 2λRt (r−Rmi) , (11)

and it is obtained with the equivalent of two solutions of the forward problem, similar
to adjoint approaches for estimating gradients in order to solve inverse problems. Specif-
ically, given an initial source at the i-th iteration, one solves the forward problem (1) for
the residuals ei, and then the adjoint problem (10) for wi, where the residuals are used
as sources of deformation. As shown below, the gradient can be incorporated into the
conjugate gradient algorithm or the variable metric method (Press et al., 1992; Fletcher,
2000) for the minimization of the penalized misfit function J(m) given by expression (5).

3 Application to subsidence in California’s Central Valley

Over-subscribed groundwater basins and their sustainability is a world-wide issue
that is exacerbated by advancing climate change. In order to better understand the po-
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tential lifetime of groundwater resources one needs to understand the existing volume
of water, the recharge of the system, and the rate of withdrawal. Unfortunately, many
jurisdictions lack the data needed to accurately determine these important quantities.
For example, in California individual well usage is not currently reported to any author-
ity or governing agency, though this may change in the future. Therefore, it is necessary
to estimate extracted water volumes by other means, such as the correlation of electri-
cal usage with pumping rates. Surface subsidence in major basins, such as in the Cen-
tral Valley of California (Figure 1), has been linked to aquifer compaction and ground-
water pumping (Faunt et al., 2010; Galloway et al., 1998). Detailed and quantitative es-
timates of surface subsidence are provided by the Sentinel-1a/b synthetic aperture radar
(SAR) data (Farr & Liu, 2015) that are freely available from the European Space Agency,
providing repeat coverage every 6 to 12 days. As noted in the Appendix, our line-of-sight
displacement data may be downloaded from the Zenodo repository. The satellite head-
ing is 348o and the look angle is 39o from vertical, so that the line-of-sight displacement
is somewhat more sensitive to vertical displacements. Data were provided to us by NASA’s
Jet Propulsion Laboratory (JPL), processed using the Interferometric Scientific Com-
puting Environment (ISCE) which implements the Small Baseline Subset (SBAS) ap-
proach (Farr & Liu, 2015; Vasco et al., 2019). Such subsidence can be mapped into aquifer
volume changes and provides a lower bound on changes in water volume (Vasco et al.,
2019). In order to accurately localize these estimates, the volume changes need to be tied
to known wells. Fortunately, there exists a database of wells that may be used in this
regard. The characteristics of all wells that have been drilled and completed must be sent
to the state of California, providing their location and depth of penetration. As an ex-
ample we plot the well density (number of wells/grid block) for the top three layers of
our model in Figure 2. Using this information, it is possible to define a quadratic penalty
function of the form (4) to bias the solution set to locate volume change in the vicinity
of documented wells (Vasco et al., 2019). In particular, we seek to minimize the penal-
ized misfit function

J(m) = ete+ λmtDm (12)

where D is a matrix with diagonal entries that are proportional to the distance from the
corresponding grid block to the location of the nearest well. The residuals are given by
e in equation (2) where, for this application, the matrix C takes the form of a projec-
tion of the displacement vector for each surface node onto the look vector l for the Sen-
tinel satellite.

The conjugate gradient algorithm provides an iterative approach for minimizing
the quadratic penalized misfit function J(m) (Fletcher, 2000) and allows us to find a dis-
tribution of aquifer volume change that minimizes the misfit to the observations with
a model that has aquifer compaction near known wells. Specifically, for a given model
from the i-th iteration, the algorithm provides an update of the form

mi+1 = mi + αihi, (13)

where, for i = 0,

h0 = −∇J(m0), (14)

otherwise,

hi = γhi−1 −∇J(mi), (15)

with

γ = |∇J(mi)|
2/|∇J(mi−1)|

2, (16)

[e.g., (Press et al., 1992)]. This algorithm is useful for both nonlinear and linear least
squares problems and leads to efficient algorithms, particularly for problems involving
sparse matrices. The step length αi is chosen to minimize objective function J(mi+1),
with respect to α, either by line search (Fletcher, 2000), or by a direct computation. For
the direct computation we insert (13) into (7), then differentiate and use (9) and (11).
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Figure 3. Data gradient components, the first term on the right-hand-side of equation (11),

for source grid blocks in the top layer of the Central Valley aquifer model. The three panels

correspond to three different approaches for calculating the gradient of the misfit functional.

The numerical approach uses a perturbation approach to calculate the gradients and a one-

dimensional elastic model. The middle panel is the gradient computed using the adjoint approach

with the one-dimensional elastic model. The Three-Dimensional panel shows the gradient the

results from an application of the adjoint approach with a full three-dimensional elastic model for

the Tulare Basin. The units of the data gradients are cm2/m3 for range change data given in cm

and grid block volume changes given in cubic meters.

After some algebra one finds that the partial derivative with respect to changes in α is
given by

∂J(mi+1)

∂α
= hi

t∇J(mi) + 2αqi
tCtCqi + 2αλhiR

tRhi, (17)

where qi is an additional solution to a forward problem of the form

Aqi = Bhi. (18)

Setting ∂J(mi+1)/∂α = 0 and solving for α gives an analytic estimate for the step length
for the i+ 1-th step, based upon quantities from the previous i-th step,

α = −
hi

t∇J (mi)

2 [qi
tCtCqi + λhiRtRhi]

. (19)

Equations (10) and (11) allow us to evaluate the gradient using the equivalent of two nu-
merical simulations, one to compute the residuals e, and another to solve the adjoint prob-
lem (10). One additional forward solution is required to solve (18) for qi, giving the step
length estimate α in expression (19). One can contrast the adjoint-based conjugate gra-
dient algorithm with one that requires the computation of sensitivities. For the numer-
ical approaches required for fully general three-dimensional models the sensitivities are
calculated through numerical differencing, necessitating one numerical simulation per source
grid block. In our Central Valley aquifer source model with 2 km by 2 km by 200 m cells,
there are 4900 source grid blocks in total. For the actual finite-difference forward sim-
ulation our grid has a spacing of 200m along each axis for a total of 1.225 million nodes
(350×350×10) and a forward run took 2.815 minutes. Thus, an entire sensitivity calcu-
lation for all 4900 source grid blocks would require roughly 230 hours of computation.

For a comparison of the conventional sensitivity-based and the adjoint-based meth-
ods of gradient calculation we consider a layered approximation to the elastic model for
the region of interest. Symmetry considerations allow us to use the translational invari-
ance of the layered model to conduct the numerical differencing for just one column of
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Figure 4. Laterial variations in compressional wave velocity for four depth ranges in the area

under study.

grid blocks in order to compute sensitivities for the entire model. This was done using
a numerical code for calculating quasi-static displacements in a layered elastic half-space
(Wang et al., 2006) that we have used in previous work (Vasco et al., 2010). We plot the
data gradient components based upon these sensitivities for the top layer of the model
in Figure 3, along with adjoint-based gradient components from the approach detailed
above. A numerical linear solver was used to find the solution to the discrete equations
resulting from the finite-difference formulation. The two methods give similar data gra-
dient estimates, and both are dominated by the pattern of range change visible in Fig-
ure 1. As indicated in equations (10) and (11), the data gradient components are just
a linear mapping of the residuals.

In the Tulare Basin the actual properties in the subsurface vary spatially, and a
three-dimensional model is a more accurate description of the true structure. A three-
dimensional elastic model was constructed using textural variations documented in drilling
logs (Faunt et al., 2010), in conjunction with two digitized sonic logs and a model of the
pressure and depth dependence of sediments (Hardin & Blandford, 1989; Houlsby et al.,
2005). The sediments are considered to be a mixture of a coarse, or sand-like, material
and a fine, or clay-like, material. The two materials have a distinct variation with effec-
tive pressure and the sonic logs are used to determine the parameters for each material.
A mixture model then provides the equivalent material properties for a given depth and
a given coarse fraction of material. The spatial variation in the seismic compressional
wave velocity is shown in Figure 4 for the four main layers of the model. Note that the
lateral variations in velocity are not that dramatic, a roughly 5% deviation. As a result,
the gradient components for the full three-dimensional model are similar to those of the
layered model (Figure 3).
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Numerical

Adjoint-layered

Adjoint-3D

Figure 5. Misfit reduction as a function of the number of iterations taken in the conjugate

gradient algorithm. The reductions for the two models using the layered elastic model are la-

beled ’Numerical’ for the conventional sensitivity-based gradient and ’Adjoint-layered’ for the

adjoint-based conjugate gradient approach. The misfit reduction for the full three-dimensional

adjoint-based conjugate gradient algorithm is labeled ’Adjoint-3D’.
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Figure 6. Fits to the observed range changes after five iterations of the three inversions

schemes. (a) Observed versus calculated range changes obtained using the fifth iteration of

the conjugate gradient algorithm with numerical sensitivities to calculate the range changes.

(b) Comparison between the range changes calculated using the fifth iteration of the adjoint-

based conjugate gradient algorithm and the layered elastic model. (c) Observed and calculated

range changes for the adjoint-based conjugate gradient algorithm incorporating the full three-

dimensional elastic model shown in Figure 4.

Starting from the same uniform model we initiated conjugate gradient minimiza-
tion algorithms using the three approaches demonstrated in Figure 3. That is, we im-
plemented a conjugated gradient algorithm utilizing numerical sensitivities for a layered
model, an adjoint-based minimization for the layered model, and an adjoint-based three-
dimensional model. The three approaches cycled through 10 iterations though they con-
verged after the first five, as illustrated in the Figure 5. Because the layered numerical
code is based upon the semi-analytic method of Wang et al. (2006), and the adjoint codes
are based upon a finite-difference algorithm, the initial residuals are different for the two
methods, which start from the same non-zero unit fractional volume change model. Over-
all, the misfit reduction for the two sets of approaches is quite similar. Hence, the use
of the adjoint approach does not degrade the performance of the conjugate gradient min-
imization algorithm. In fact, the final misfit after 5 iterations (Figure 5) is lower for both
of the adjoint solutions, approximately 50% smaller than the numerical-based inversion.
This is evident in the plots of the observed range change against the calculated range
change in Figure 6. Because the data, regularization, and conjugate gradient algorithm
are the same for the numerical and adjoint approaches, the differences in the final fits
are most likely due to the small differences in the gradients. We found that the largest
residuals were near the edges of the model where the cells are not constrained by data
outside the boundaries of the model and the well regularization still allows for signifi-
cant volume change. These large residuals were removed by adding an additional model
norm constraint. Note that the scatter in the residuals for the three solutions is larger
than the formal errors in the InSAR data, which are of the order of 1 centimeter, sug-
gesting that the modeling errors dominate the misfit. In particular, the large 2 km (x)
by 2 km (y) by 200 m (z) grid blocks mean that the model cannot represent smaller scale
variations found in the data. A finer scale model would reduce such misfit but would con-
siderably increase the computational requirements.

The volume changes in the top three layers of the models are plotted in Figure 7
in terms of the percentage of grid block volume. The patterns of volume change are sim-
ilar for the three approaches and change systematically with depth, following the pat-
tern of well distributions plotted in Figure 2. The estimated total volume loss in the aquifer
during the two year period from January 2016 to January 2018 was 2.17 cubic kilome-
ters/year. This value in of the same order as the loss of water volume estimates from the

–11–



manuscript submitted to JGR Solid Earth

analysis of GRACE satellite gravity data, 3.1 km3/year, which covered the entire Cen-
tral Valley and a substantial portion of the California drought (Richley et al., 2015). The
estimated volume changes are in agreement with recent work (Vasco et al., 2019) and
thus, as shown in that paper, are compatible with known well extraction rates and cal-
culated crop water requirements. The two year period considered here encompasses one
year at the and of the recent drought (2016) and a very wet year (2017). The inclusion
of the three-dimensional elastic model changed some of the details from the layered so-
lution, particularly the amplitudes in certain areas. However, the overall pattern did not
change significantly.

4 Discussion and Conclusions

The adjoint methods that have proven valuable in various areas of geophysics, such
as seismic waveform inversion (Tarantola, 2005; Fichtner, 2010), are also useful in the
inversion of quasi-static geodetic data for distributed source models. For a formulation
in terms of displacements, one step in an iterative model updating approach simply re-
quires the computational equivalent of three numerical simulations: one to compute the
residuals, one to solve the adjoint problem for the gradient, and a final one to calculate
the step length. The application to Interferometric Synthetic Aperture Radar data il-
lustrates that the approach is practical for problems involving more than 1 million grid
points. In fact, the adjoint-based inversion accounting for the full three-dimensional struc-
ture results in a somewhat better fit to the InSAR observations than does a conventional
seisntivity-based approach (Figures 5 and 6). The final models plotted in Figure 7 all
share the same general features and similar variations in depth. The depth variations
for all of the models reflects the changes in the well configurations for each depth inter-
val. Thus, even though the surface deformation looks very different from the distribu-
tion of wells at depth, the results indicate that a source model with changes near known
wells can indeed satisfy the InSAR observations. There are differences in the detailed
distribution of volume change in the three models, due to the small deviations in the so-
lution to to forward problem, such as the numerical convergence criteria and boundary
conditions that lead to variations in the gradients (Figure 3). These differences can be
amplified due to the inherent instability of the inverse problem, even though regulariza-
tion terms are included.

The iterative approach for solving the inverse problem allows for increased efficiency
in both computational time and memory requirements. In that sense, it shares charac-
teristics with iterative linear solvers such as the least squares QR algorithm (LSQR) (Paige
& Saunders, 1982) which can be interpreted as the application of a conjugate gradient
method. Conjugate gradient metods are particularly well suited for problems that are
sparse in some sense (Press et al., 1992), such as those defined in terms of discretized
partial differential equations. The application presented here involves one of the simpler
cases, a linear elastic medium, and a formulation solely in terms of displacements. Other
formulations, such as a specification in terms of velocity and stress, can also be treated
with the appropriate scalings (Kaderli et al., 2018). The adjoint-based techniques have
been applied to general coupled simulators, so the approaches should be applicable to
poroelastic, viscoelastic, and general nonlinear deformation. This may require reformu-
lations, such as a transformation into the frequency domain, in order to map the con-
volutions that occur in time-domain poroelastic and viscoelastic problems into multipli-
cations. Or it may require seperating out the anelastic effects from the elastic strain for
viscoelastic and poroelastic problems (D’Agostino et al., 2018). A general nonlinear de-
formation might be broken up into a sequence of linearized step, with the adjoint-based
methodology applied to each increment. There are many areas where large-scale mod-
els of deformation sources could be useful, including geothermal activities, carbon seques-
tration, reservoir injection and production, groundwater management, as well as in mon-
itoring volcanic processes.
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Numerical Adjoint-Layered Adjoint-Three Dimensional

Figure 7. The results from three distinct inversions of the InSAR range change data in Fig-

ure 1. The panels designated as ’Numerical’ are the result of a conjugate gradient algorithm

utilizing a layered elastic model and symmetry in order to calculate the sensitivities used in the

gradient computatation. The panels in the column labeled ’Adjoint-Layered’ show the results

from an inversion that used an equivalent layered model but employing the adjoint-based ap-

proach described above for the inversion. The right-most panels, under the label ’Adjoint-Three

dimensional’ utilized the full three-dimensional model shown in Figure 4, in conjunction with the

adjoint-based gradients.
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